1 /* 2 * Copyright (c) 2005-2011 Atheros Communications Inc. 3 * Copyright (c) 2011-2013 Qualcomm Atheros, Inc. 4 * 5 * Permission to use, copy, modify, and/or distribute this software for any 6 * purpose with or without fee is hereby granted, provided that the above 7 * copyright notice and this permission notice appear in all copies. 8 * 9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 16 */ 17 18 #include <linux/pci.h> 19 #include <linux/module.h> 20 #include <linux/interrupt.h> 21 #include <linux/spinlock.h> 22 #include <linux/bitops.h> 23 24 #include "core.h" 25 #include "debug.h" 26 27 #include "targaddrs.h" 28 #include "bmi.h" 29 30 #include "hif.h" 31 #include "htc.h" 32 33 #include "ce.h" 34 #include "pci.h" 35 36 enum ath10k_pci_reset_mode { 37 ATH10K_PCI_RESET_AUTO = 0, 38 ATH10K_PCI_RESET_WARM_ONLY = 1, 39 }; 40 41 static unsigned int ath10k_pci_irq_mode = ATH10K_PCI_IRQ_AUTO; 42 static unsigned int ath10k_pci_reset_mode = ATH10K_PCI_RESET_AUTO; 43 44 module_param_named(irq_mode, ath10k_pci_irq_mode, uint, 0644); 45 MODULE_PARM_DESC(irq_mode, "0: auto, 1: legacy, 2: msi (default: 0)"); 46 47 module_param_named(reset_mode, ath10k_pci_reset_mode, uint, 0644); 48 MODULE_PARM_DESC(reset_mode, "0: auto, 1: warm only (default: 0)"); 49 50 /* how long wait to wait for target to initialise, in ms */ 51 #define ATH10K_PCI_TARGET_WAIT 3000 52 #define ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS 3 53 54 static const struct pci_device_id ath10k_pci_id_table[] = { 55 { PCI_VDEVICE(ATHEROS, QCA988X_2_0_DEVICE_ID) }, /* PCI-E QCA988X V2 */ 56 { PCI_VDEVICE(ATHEROS, QCA6164_2_1_DEVICE_ID) }, /* PCI-E QCA6164 V2.1 */ 57 { PCI_VDEVICE(ATHEROS, QCA6174_2_1_DEVICE_ID) }, /* PCI-E QCA6174 V2.1 */ 58 { PCI_VDEVICE(ATHEROS, QCA99X0_2_0_DEVICE_ID) }, /* PCI-E QCA99X0 V2 */ 59 { PCI_VDEVICE(ATHEROS, QCA9888_2_0_DEVICE_ID) }, /* PCI-E QCA9888 V2 */ 60 { PCI_VDEVICE(ATHEROS, QCA9984_1_0_DEVICE_ID) }, /* PCI-E QCA9984 V1 */ 61 { PCI_VDEVICE(ATHEROS, QCA9377_1_0_DEVICE_ID) }, /* PCI-E QCA9377 V1 */ 62 { PCI_VDEVICE(ATHEROS, QCA9887_1_0_DEVICE_ID) }, /* PCI-E QCA9887 */ 63 {0} 64 }; 65 66 static const struct ath10k_pci_supp_chip ath10k_pci_supp_chips[] = { 67 /* QCA988X pre 2.0 chips are not supported because they need some nasty 68 * hacks. ath10k doesn't have them and these devices crash horribly 69 * because of that. 70 */ 71 { QCA988X_2_0_DEVICE_ID, QCA988X_HW_2_0_CHIP_ID_REV }, 72 73 { QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV }, 74 { QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV }, 75 { QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV }, 76 { QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV }, 77 { QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV }, 78 79 { QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV }, 80 { QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV }, 81 { QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV }, 82 { QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV }, 83 { QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV }, 84 85 { QCA99X0_2_0_DEVICE_ID, QCA99X0_HW_2_0_CHIP_ID_REV }, 86 87 { QCA9984_1_0_DEVICE_ID, QCA9984_HW_1_0_CHIP_ID_REV }, 88 89 { QCA9888_2_0_DEVICE_ID, QCA9888_HW_2_0_CHIP_ID_REV }, 90 91 { QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_0_CHIP_ID_REV }, 92 { QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_1_CHIP_ID_REV }, 93 94 { QCA9887_1_0_DEVICE_ID, QCA9887_HW_1_0_CHIP_ID_REV }, 95 }; 96 97 static void ath10k_pci_buffer_cleanup(struct ath10k *ar); 98 static int ath10k_pci_cold_reset(struct ath10k *ar); 99 static int ath10k_pci_safe_chip_reset(struct ath10k *ar); 100 static int ath10k_pci_init_irq(struct ath10k *ar); 101 static int ath10k_pci_deinit_irq(struct ath10k *ar); 102 static int ath10k_pci_request_irq(struct ath10k *ar); 103 static void ath10k_pci_free_irq(struct ath10k *ar); 104 static int ath10k_pci_bmi_wait(struct ath10k_ce_pipe *tx_pipe, 105 struct ath10k_ce_pipe *rx_pipe, 106 struct bmi_xfer *xfer); 107 static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar); 108 static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state); 109 static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state); 110 static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state); 111 static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state); 112 static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state); 113 static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state); 114 115 static struct ce_attr host_ce_config_wlan[] = { 116 /* CE0: host->target HTC control and raw streams */ 117 { 118 .flags = CE_ATTR_FLAGS, 119 .src_nentries = 16, 120 .src_sz_max = 256, 121 .dest_nentries = 0, 122 .send_cb = ath10k_pci_htc_tx_cb, 123 }, 124 125 /* CE1: target->host HTT + HTC control */ 126 { 127 .flags = CE_ATTR_FLAGS, 128 .src_nentries = 0, 129 .src_sz_max = 2048, 130 .dest_nentries = 512, 131 .recv_cb = ath10k_pci_htt_htc_rx_cb, 132 }, 133 134 /* CE2: target->host WMI */ 135 { 136 .flags = CE_ATTR_FLAGS, 137 .src_nentries = 0, 138 .src_sz_max = 2048, 139 .dest_nentries = 128, 140 .recv_cb = ath10k_pci_htc_rx_cb, 141 }, 142 143 /* CE3: host->target WMI */ 144 { 145 .flags = CE_ATTR_FLAGS, 146 .src_nentries = 32, 147 .src_sz_max = 2048, 148 .dest_nentries = 0, 149 .send_cb = ath10k_pci_htc_tx_cb, 150 }, 151 152 /* CE4: host->target HTT */ 153 { 154 .flags = CE_ATTR_FLAGS | CE_ATTR_DIS_INTR, 155 .src_nentries = CE_HTT_H2T_MSG_SRC_NENTRIES, 156 .src_sz_max = 256, 157 .dest_nentries = 0, 158 .send_cb = ath10k_pci_htt_tx_cb, 159 }, 160 161 /* CE5: target->host HTT (HIF->HTT) */ 162 { 163 .flags = CE_ATTR_FLAGS, 164 .src_nentries = 0, 165 .src_sz_max = 512, 166 .dest_nentries = 512, 167 .recv_cb = ath10k_pci_htt_rx_cb, 168 }, 169 170 /* CE6: target autonomous hif_memcpy */ 171 { 172 .flags = CE_ATTR_FLAGS, 173 .src_nentries = 0, 174 .src_sz_max = 0, 175 .dest_nentries = 0, 176 }, 177 178 /* CE7: ce_diag, the Diagnostic Window */ 179 { 180 .flags = CE_ATTR_FLAGS, 181 .src_nentries = 2, 182 .src_sz_max = DIAG_TRANSFER_LIMIT, 183 .dest_nentries = 2, 184 }, 185 186 /* CE8: target->host pktlog */ 187 { 188 .flags = CE_ATTR_FLAGS, 189 .src_nentries = 0, 190 .src_sz_max = 2048, 191 .dest_nentries = 128, 192 .recv_cb = ath10k_pci_pktlog_rx_cb, 193 }, 194 195 /* CE9 target autonomous qcache memcpy */ 196 { 197 .flags = CE_ATTR_FLAGS, 198 .src_nentries = 0, 199 .src_sz_max = 0, 200 .dest_nentries = 0, 201 }, 202 203 /* CE10: target autonomous hif memcpy */ 204 { 205 .flags = CE_ATTR_FLAGS, 206 .src_nentries = 0, 207 .src_sz_max = 0, 208 .dest_nentries = 0, 209 }, 210 211 /* CE11: target autonomous hif memcpy */ 212 { 213 .flags = CE_ATTR_FLAGS, 214 .src_nentries = 0, 215 .src_sz_max = 0, 216 .dest_nentries = 0, 217 }, 218 }; 219 220 /* Target firmware's Copy Engine configuration. */ 221 static struct ce_pipe_config target_ce_config_wlan[] = { 222 /* CE0: host->target HTC control and raw streams */ 223 { 224 .pipenum = __cpu_to_le32(0), 225 .pipedir = __cpu_to_le32(PIPEDIR_OUT), 226 .nentries = __cpu_to_le32(32), 227 .nbytes_max = __cpu_to_le32(256), 228 .flags = __cpu_to_le32(CE_ATTR_FLAGS), 229 .reserved = __cpu_to_le32(0), 230 }, 231 232 /* CE1: target->host HTT + HTC control */ 233 { 234 .pipenum = __cpu_to_le32(1), 235 .pipedir = __cpu_to_le32(PIPEDIR_IN), 236 .nentries = __cpu_to_le32(32), 237 .nbytes_max = __cpu_to_le32(2048), 238 .flags = __cpu_to_le32(CE_ATTR_FLAGS), 239 .reserved = __cpu_to_le32(0), 240 }, 241 242 /* CE2: target->host WMI */ 243 { 244 .pipenum = __cpu_to_le32(2), 245 .pipedir = __cpu_to_le32(PIPEDIR_IN), 246 .nentries = __cpu_to_le32(64), 247 .nbytes_max = __cpu_to_le32(2048), 248 .flags = __cpu_to_le32(CE_ATTR_FLAGS), 249 .reserved = __cpu_to_le32(0), 250 }, 251 252 /* CE3: host->target WMI */ 253 { 254 .pipenum = __cpu_to_le32(3), 255 .pipedir = __cpu_to_le32(PIPEDIR_OUT), 256 .nentries = __cpu_to_le32(32), 257 .nbytes_max = __cpu_to_le32(2048), 258 .flags = __cpu_to_le32(CE_ATTR_FLAGS), 259 .reserved = __cpu_to_le32(0), 260 }, 261 262 /* CE4: host->target HTT */ 263 { 264 .pipenum = __cpu_to_le32(4), 265 .pipedir = __cpu_to_le32(PIPEDIR_OUT), 266 .nentries = __cpu_to_le32(256), 267 .nbytes_max = __cpu_to_le32(256), 268 .flags = __cpu_to_le32(CE_ATTR_FLAGS), 269 .reserved = __cpu_to_le32(0), 270 }, 271 272 /* NB: 50% of src nentries, since tx has 2 frags */ 273 274 /* CE5: target->host HTT (HIF->HTT) */ 275 { 276 .pipenum = __cpu_to_le32(5), 277 .pipedir = __cpu_to_le32(PIPEDIR_IN), 278 .nentries = __cpu_to_le32(32), 279 .nbytes_max = __cpu_to_le32(512), 280 .flags = __cpu_to_le32(CE_ATTR_FLAGS), 281 .reserved = __cpu_to_le32(0), 282 }, 283 284 /* CE6: Reserved for target autonomous hif_memcpy */ 285 { 286 .pipenum = __cpu_to_le32(6), 287 .pipedir = __cpu_to_le32(PIPEDIR_INOUT), 288 .nentries = __cpu_to_le32(32), 289 .nbytes_max = __cpu_to_le32(4096), 290 .flags = __cpu_to_le32(CE_ATTR_FLAGS), 291 .reserved = __cpu_to_le32(0), 292 }, 293 294 /* CE7 used only by Host */ 295 { 296 .pipenum = __cpu_to_le32(7), 297 .pipedir = __cpu_to_le32(PIPEDIR_INOUT), 298 .nentries = __cpu_to_le32(0), 299 .nbytes_max = __cpu_to_le32(0), 300 .flags = __cpu_to_le32(0), 301 .reserved = __cpu_to_le32(0), 302 }, 303 304 /* CE8 target->host packtlog */ 305 { 306 .pipenum = __cpu_to_le32(8), 307 .pipedir = __cpu_to_le32(PIPEDIR_IN), 308 .nentries = __cpu_to_le32(64), 309 .nbytes_max = __cpu_to_le32(2048), 310 .flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR), 311 .reserved = __cpu_to_le32(0), 312 }, 313 314 /* CE9 target autonomous qcache memcpy */ 315 { 316 .pipenum = __cpu_to_le32(9), 317 .pipedir = __cpu_to_le32(PIPEDIR_INOUT), 318 .nentries = __cpu_to_le32(32), 319 .nbytes_max = __cpu_to_le32(2048), 320 .flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR), 321 .reserved = __cpu_to_le32(0), 322 }, 323 324 /* It not necessary to send target wlan configuration for CE10 & CE11 325 * as these CEs are not actively used in target. 326 */ 327 }; 328 329 /* 330 * Map from service/endpoint to Copy Engine. 331 * This table is derived from the CE_PCI TABLE, above. 332 * It is passed to the Target at startup for use by firmware. 333 */ 334 static struct service_to_pipe target_service_to_ce_map_wlan[] = { 335 { 336 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO), 337 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */ 338 __cpu_to_le32(3), 339 }, 340 { 341 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO), 342 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */ 343 __cpu_to_le32(2), 344 }, 345 { 346 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK), 347 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */ 348 __cpu_to_le32(3), 349 }, 350 { 351 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK), 352 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */ 353 __cpu_to_le32(2), 354 }, 355 { 356 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE), 357 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */ 358 __cpu_to_le32(3), 359 }, 360 { 361 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE), 362 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */ 363 __cpu_to_le32(2), 364 }, 365 { 366 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI), 367 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */ 368 __cpu_to_le32(3), 369 }, 370 { 371 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI), 372 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */ 373 __cpu_to_le32(2), 374 }, 375 { 376 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL), 377 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */ 378 __cpu_to_le32(3), 379 }, 380 { 381 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL), 382 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */ 383 __cpu_to_le32(2), 384 }, 385 { 386 __cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL), 387 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */ 388 __cpu_to_le32(0), 389 }, 390 { 391 __cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL), 392 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */ 393 __cpu_to_le32(1), 394 }, 395 { /* not used */ 396 __cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS), 397 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */ 398 __cpu_to_le32(0), 399 }, 400 { /* not used */ 401 __cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS), 402 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */ 403 __cpu_to_le32(1), 404 }, 405 { 406 __cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG), 407 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */ 408 __cpu_to_le32(4), 409 }, 410 { 411 __cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG), 412 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */ 413 __cpu_to_le32(5), 414 }, 415 416 /* (Additions here) */ 417 418 { /* must be last */ 419 __cpu_to_le32(0), 420 __cpu_to_le32(0), 421 __cpu_to_le32(0), 422 }, 423 }; 424 425 static bool ath10k_pci_is_awake(struct ath10k *ar) 426 { 427 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 428 u32 val = ioread32(ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS + 429 RTC_STATE_ADDRESS); 430 431 return RTC_STATE_V_GET(val) == RTC_STATE_V_ON; 432 } 433 434 static void __ath10k_pci_wake(struct ath10k *ar) 435 { 436 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 437 438 lockdep_assert_held(&ar_pci->ps_lock); 439 440 ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake reg refcount %lu awake %d\n", 441 ar_pci->ps_wake_refcount, ar_pci->ps_awake); 442 443 iowrite32(PCIE_SOC_WAKE_V_MASK, 444 ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS + 445 PCIE_SOC_WAKE_ADDRESS); 446 } 447 448 static void __ath10k_pci_sleep(struct ath10k *ar) 449 { 450 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 451 452 lockdep_assert_held(&ar_pci->ps_lock); 453 454 ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep reg refcount %lu awake %d\n", 455 ar_pci->ps_wake_refcount, ar_pci->ps_awake); 456 457 iowrite32(PCIE_SOC_WAKE_RESET, 458 ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS + 459 PCIE_SOC_WAKE_ADDRESS); 460 ar_pci->ps_awake = false; 461 } 462 463 static int ath10k_pci_wake_wait(struct ath10k *ar) 464 { 465 int tot_delay = 0; 466 int curr_delay = 5; 467 468 while (tot_delay < PCIE_WAKE_TIMEOUT) { 469 if (ath10k_pci_is_awake(ar)) { 470 if (tot_delay > PCIE_WAKE_LATE_US) 471 ath10k_warn(ar, "device wakeup took %d ms which is unusally long, otherwise it works normally.\n", 472 tot_delay / 1000); 473 return 0; 474 } 475 476 udelay(curr_delay); 477 tot_delay += curr_delay; 478 479 if (curr_delay < 50) 480 curr_delay += 5; 481 } 482 483 return -ETIMEDOUT; 484 } 485 486 static int ath10k_pci_force_wake(struct ath10k *ar) 487 { 488 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 489 unsigned long flags; 490 int ret = 0; 491 492 if (ar_pci->pci_ps) 493 return ret; 494 495 spin_lock_irqsave(&ar_pci->ps_lock, flags); 496 497 if (!ar_pci->ps_awake) { 498 iowrite32(PCIE_SOC_WAKE_V_MASK, 499 ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS + 500 PCIE_SOC_WAKE_ADDRESS); 501 502 ret = ath10k_pci_wake_wait(ar); 503 if (ret == 0) 504 ar_pci->ps_awake = true; 505 } 506 507 spin_unlock_irqrestore(&ar_pci->ps_lock, flags); 508 509 return ret; 510 } 511 512 static void ath10k_pci_force_sleep(struct ath10k *ar) 513 { 514 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 515 unsigned long flags; 516 517 spin_lock_irqsave(&ar_pci->ps_lock, flags); 518 519 iowrite32(PCIE_SOC_WAKE_RESET, 520 ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS + 521 PCIE_SOC_WAKE_ADDRESS); 522 ar_pci->ps_awake = false; 523 524 spin_unlock_irqrestore(&ar_pci->ps_lock, flags); 525 } 526 527 static int ath10k_pci_wake(struct ath10k *ar) 528 { 529 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 530 unsigned long flags; 531 int ret = 0; 532 533 if (ar_pci->pci_ps == 0) 534 return ret; 535 536 spin_lock_irqsave(&ar_pci->ps_lock, flags); 537 538 ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake refcount %lu awake %d\n", 539 ar_pci->ps_wake_refcount, ar_pci->ps_awake); 540 541 /* This function can be called very frequently. To avoid excessive 542 * CPU stalls for MMIO reads use a cache var to hold the device state. 543 */ 544 if (!ar_pci->ps_awake) { 545 __ath10k_pci_wake(ar); 546 547 ret = ath10k_pci_wake_wait(ar); 548 if (ret == 0) 549 ar_pci->ps_awake = true; 550 } 551 552 if (ret == 0) { 553 ar_pci->ps_wake_refcount++; 554 WARN_ON(ar_pci->ps_wake_refcount == 0); 555 } 556 557 spin_unlock_irqrestore(&ar_pci->ps_lock, flags); 558 559 return ret; 560 } 561 562 static void ath10k_pci_sleep(struct ath10k *ar) 563 { 564 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 565 unsigned long flags; 566 567 if (ar_pci->pci_ps == 0) 568 return; 569 570 spin_lock_irqsave(&ar_pci->ps_lock, flags); 571 572 ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep refcount %lu awake %d\n", 573 ar_pci->ps_wake_refcount, ar_pci->ps_awake); 574 575 if (WARN_ON(ar_pci->ps_wake_refcount == 0)) 576 goto skip; 577 578 ar_pci->ps_wake_refcount--; 579 580 mod_timer(&ar_pci->ps_timer, jiffies + 581 msecs_to_jiffies(ATH10K_PCI_SLEEP_GRACE_PERIOD_MSEC)); 582 583 skip: 584 spin_unlock_irqrestore(&ar_pci->ps_lock, flags); 585 } 586 587 static void ath10k_pci_ps_timer(unsigned long ptr) 588 { 589 struct ath10k *ar = (void *)ptr; 590 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 591 unsigned long flags; 592 593 spin_lock_irqsave(&ar_pci->ps_lock, flags); 594 595 ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps timer refcount %lu awake %d\n", 596 ar_pci->ps_wake_refcount, ar_pci->ps_awake); 597 598 if (ar_pci->ps_wake_refcount > 0) 599 goto skip; 600 601 __ath10k_pci_sleep(ar); 602 603 skip: 604 spin_unlock_irqrestore(&ar_pci->ps_lock, flags); 605 } 606 607 static void ath10k_pci_sleep_sync(struct ath10k *ar) 608 { 609 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 610 unsigned long flags; 611 612 if (ar_pci->pci_ps == 0) { 613 ath10k_pci_force_sleep(ar); 614 return; 615 } 616 617 del_timer_sync(&ar_pci->ps_timer); 618 619 spin_lock_irqsave(&ar_pci->ps_lock, flags); 620 WARN_ON(ar_pci->ps_wake_refcount > 0); 621 __ath10k_pci_sleep(ar); 622 spin_unlock_irqrestore(&ar_pci->ps_lock, flags); 623 } 624 625 static void ath10k_bus_pci_write32(struct ath10k *ar, u32 offset, u32 value) 626 { 627 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 628 int ret; 629 630 if (unlikely(offset + sizeof(value) > ar_pci->mem_len)) { 631 ath10k_warn(ar, "refusing to write mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n", 632 offset, offset + sizeof(value), ar_pci->mem_len); 633 return; 634 } 635 636 ret = ath10k_pci_wake(ar); 637 if (ret) { 638 ath10k_warn(ar, "failed to wake target for write32 of 0x%08x at 0x%08x: %d\n", 639 value, offset, ret); 640 return; 641 } 642 643 iowrite32(value, ar_pci->mem + offset); 644 ath10k_pci_sleep(ar); 645 } 646 647 static u32 ath10k_bus_pci_read32(struct ath10k *ar, u32 offset) 648 { 649 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 650 u32 val; 651 int ret; 652 653 if (unlikely(offset + sizeof(val) > ar_pci->mem_len)) { 654 ath10k_warn(ar, "refusing to read mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n", 655 offset, offset + sizeof(val), ar_pci->mem_len); 656 return 0; 657 } 658 659 ret = ath10k_pci_wake(ar); 660 if (ret) { 661 ath10k_warn(ar, "failed to wake target for read32 at 0x%08x: %d\n", 662 offset, ret); 663 return 0xffffffff; 664 } 665 666 val = ioread32(ar_pci->mem + offset); 667 ath10k_pci_sleep(ar); 668 669 return val; 670 } 671 672 inline void ath10k_pci_write32(struct ath10k *ar, u32 offset, u32 value) 673 { 674 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 675 676 ar_pci->bus_ops->write32(ar, offset, value); 677 } 678 679 inline u32 ath10k_pci_read32(struct ath10k *ar, u32 offset) 680 { 681 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 682 683 return ar_pci->bus_ops->read32(ar, offset); 684 } 685 686 u32 ath10k_pci_soc_read32(struct ath10k *ar, u32 addr) 687 { 688 return ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS + addr); 689 } 690 691 void ath10k_pci_soc_write32(struct ath10k *ar, u32 addr, u32 val) 692 { 693 ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + addr, val); 694 } 695 696 u32 ath10k_pci_reg_read32(struct ath10k *ar, u32 addr) 697 { 698 return ath10k_pci_read32(ar, PCIE_LOCAL_BASE_ADDRESS + addr); 699 } 700 701 void ath10k_pci_reg_write32(struct ath10k *ar, u32 addr, u32 val) 702 { 703 ath10k_pci_write32(ar, PCIE_LOCAL_BASE_ADDRESS + addr, val); 704 } 705 706 bool ath10k_pci_irq_pending(struct ath10k *ar) 707 { 708 u32 cause; 709 710 /* Check if the shared legacy irq is for us */ 711 cause = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + 712 PCIE_INTR_CAUSE_ADDRESS); 713 if (cause & (PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL)) 714 return true; 715 716 return false; 717 } 718 719 void ath10k_pci_disable_and_clear_legacy_irq(struct ath10k *ar) 720 { 721 /* IMPORTANT: INTR_CLR register has to be set after 722 * INTR_ENABLE is set to 0, otherwise interrupt can not be 723 * really cleared. */ 724 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS, 725 0); 726 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_CLR_ADDRESS, 727 PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL); 728 729 /* IMPORTANT: this extra read transaction is required to 730 * flush the posted write buffer. */ 731 (void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + 732 PCIE_INTR_ENABLE_ADDRESS); 733 } 734 735 void ath10k_pci_enable_legacy_irq(struct ath10k *ar) 736 { 737 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + 738 PCIE_INTR_ENABLE_ADDRESS, 739 PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL); 740 741 /* IMPORTANT: this extra read transaction is required to 742 * flush the posted write buffer. */ 743 (void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + 744 PCIE_INTR_ENABLE_ADDRESS); 745 } 746 747 static inline const char *ath10k_pci_get_irq_method(struct ath10k *ar) 748 { 749 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 750 751 if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_MSI) 752 return "msi"; 753 754 return "legacy"; 755 } 756 757 static int __ath10k_pci_rx_post_buf(struct ath10k_pci_pipe *pipe) 758 { 759 struct ath10k *ar = pipe->hif_ce_state; 760 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 761 struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl; 762 struct sk_buff *skb; 763 dma_addr_t paddr; 764 int ret; 765 766 skb = dev_alloc_skb(pipe->buf_sz); 767 if (!skb) 768 return -ENOMEM; 769 770 WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb"); 771 772 paddr = dma_map_single(ar->dev, skb->data, 773 skb->len + skb_tailroom(skb), 774 DMA_FROM_DEVICE); 775 if (unlikely(dma_mapping_error(ar->dev, paddr))) { 776 ath10k_warn(ar, "failed to dma map pci rx buf\n"); 777 dev_kfree_skb_any(skb); 778 return -EIO; 779 } 780 781 ATH10K_SKB_RXCB(skb)->paddr = paddr; 782 783 spin_lock_bh(&ar_pci->ce_lock); 784 ret = __ath10k_ce_rx_post_buf(ce_pipe, skb, paddr); 785 spin_unlock_bh(&ar_pci->ce_lock); 786 if (ret) { 787 dma_unmap_single(ar->dev, paddr, skb->len + skb_tailroom(skb), 788 DMA_FROM_DEVICE); 789 dev_kfree_skb_any(skb); 790 return ret; 791 } 792 793 return 0; 794 } 795 796 static void ath10k_pci_rx_post_pipe(struct ath10k_pci_pipe *pipe) 797 { 798 struct ath10k *ar = pipe->hif_ce_state; 799 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 800 struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl; 801 int ret, num; 802 803 if (pipe->buf_sz == 0) 804 return; 805 806 if (!ce_pipe->dest_ring) 807 return; 808 809 spin_lock_bh(&ar_pci->ce_lock); 810 num = __ath10k_ce_rx_num_free_bufs(ce_pipe); 811 spin_unlock_bh(&ar_pci->ce_lock); 812 813 while (num >= 0) { 814 ret = __ath10k_pci_rx_post_buf(pipe); 815 if (ret) { 816 if (ret == -ENOSPC) 817 break; 818 ath10k_warn(ar, "failed to post pci rx buf: %d\n", ret); 819 mod_timer(&ar_pci->rx_post_retry, jiffies + 820 ATH10K_PCI_RX_POST_RETRY_MS); 821 break; 822 } 823 num--; 824 } 825 } 826 827 void ath10k_pci_rx_post(struct ath10k *ar) 828 { 829 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 830 int i; 831 832 for (i = 0; i < CE_COUNT; i++) 833 ath10k_pci_rx_post_pipe(&ar_pci->pipe_info[i]); 834 } 835 836 void ath10k_pci_rx_replenish_retry(unsigned long ptr) 837 { 838 struct ath10k *ar = (void *)ptr; 839 840 ath10k_pci_rx_post(ar); 841 } 842 843 static u32 ath10k_pci_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr) 844 { 845 u32 val = 0; 846 847 switch (ar->hw_rev) { 848 case ATH10K_HW_QCA988X: 849 case ATH10K_HW_QCA9887: 850 case ATH10K_HW_QCA6174: 851 case ATH10K_HW_QCA9377: 852 val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + 853 CORE_CTRL_ADDRESS) & 854 0x7ff) << 21; 855 break; 856 case ATH10K_HW_QCA9888: 857 case ATH10K_HW_QCA99X0: 858 case ATH10K_HW_QCA9984: 859 case ATH10K_HW_QCA4019: 860 val = ath10k_pci_read32(ar, PCIE_BAR_REG_ADDRESS); 861 break; 862 } 863 864 val |= 0x100000 | (addr & 0xfffff); 865 return val; 866 } 867 868 /* 869 * Diagnostic read/write access is provided for startup/config/debug usage. 870 * Caller must guarantee proper alignment, when applicable, and single user 871 * at any moment. 872 */ 873 static int ath10k_pci_diag_read_mem(struct ath10k *ar, u32 address, void *data, 874 int nbytes) 875 { 876 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 877 int ret = 0; 878 u32 *buf; 879 unsigned int completed_nbytes, alloc_nbytes, remaining_bytes; 880 struct ath10k_ce_pipe *ce_diag; 881 /* Host buffer address in CE space */ 882 u32 ce_data; 883 dma_addr_t ce_data_base = 0; 884 void *data_buf = NULL; 885 int i; 886 887 spin_lock_bh(&ar_pci->ce_lock); 888 889 ce_diag = ar_pci->ce_diag; 890 891 /* 892 * Allocate a temporary bounce buffer to hold caller's data 893 * to be DMA'ed from Target. This guarantees 894 * 1) 4-byte alignment 895 * 2) Buffer in DMA-able space 896 */ 897 alloc_nbytes = min_t(unsigned int, nbytes, DIAG_TRANSFER_LIMIT); 898 899 data_buf = (unsigned char *)dma_alloc_coherent(ar->dev, 900 alloc_nbytes, 901 &ce_data_base, 902 GFP_ATOMIC); 903 904 if (!data_buf) { 905 ret = -ENOMEM; 906 goto done; 907 } 908 memset(data_buf, 0, alloc_nbytes); 909 910 remaining_bytes = nbytes; 911 ce_data = ce_data_base; 912 while (remaining_bytes) { 913 nbytes = min_t(unsigned int, remaining_bytes, 914 DIAG_TRANSFER_LIMIT); 915 916 ret = __ath10k_ce_rx_post_buf(ce_diag, &ce_data, ce_data); 917 if (ret != 0) 918 goto done; 919 920 /* Request CE to send from Target(!) address to Host buffer */ 921 /* 922 * The address supplied by the caller is in the 923 * Target CPU virtual address space. 924 * 925 * In order to use this address with the diagnostic CE, 926 * convert it from Target CPU virtual address space 927 * to CE address space 928 */ 929 address = ath10k_pci_targ_cpu_to_ce_addr(ar, address); 930 931 ret = ath10k_ce_send_nolock(ce_diag, NULL, (u32)address, nbytes, 0, 932 0); 933 if (ret) 934 goto done; 935 936 i = 0; 937 while (ath10k_ce_completed_send_next_nolock(ce_diag, 938 NULL) != 0) { 939 mdelay(1); 940 if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) { 941 ret = -EBUSY; 942 goto done; 943 } 944 } 945 946 i = 0; 947 while (ath10k_ce_completed_recv_next_nolock(ce_diag, 948 (void **)&buf, 949 &completed_nbytes) 950 != 0) { 951 mdelay(1); 952 953 if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) { 954 ret = -EBUSY; 955 goto done; 956 } 957 } 958 959 if (nbytes != completed_nbytes) { 960 ret = -EIO; 961 goto done; 962 } 963 964 if (*buf != ce_data) { 965 ret = -EIO; 966 goto done; 967 } 968 969 remaining_bytes -= nbytes; 970 971 if (ret) { 972 ath10k_warn(ar, "failed to read diag value at 0x%x: %d\n", 973 address, ret); 974 break; 975 } 976 memcpy(data, data_buf, nbytes); 977 978 address += nbytes; 979 data += nbytes; 980 } 981 982 done: 983 984 if (data_buf) 985 dma_free_coherent(ar->dev, alloc_nbytes, data_buf, 986 ce_data_base); 987 988 spin_unlock_bh(&ar_pci->ce_lock); 989 990 return ret; 991 } 992 993 static int ath10k_pci_diag_read32(struct ath10k *ar, u32 address, u32 *value) 994 { 995 __le32 val = 0; 996 int ret; 997 998 ret = ath10k_pci_diag_read_mem(ar, address, &val, sizeof(val)); 999 *value = __le32_to_cpu(val); 1000 1001 return ret; 1002 } 1003 1004 static int __ath10k_pci_diag_read_hi(struct ath10k *ar, void *dest, 1005 u32 src, u32 len) 1006 { 1007 u32 host_addr, addr; 1008 int ret; 1009 1010 host_addr = host_interest_item_address(src); 1011 1012 ret = ath10k_pci_diag_read32(ar, host_addr, &addr); 1013 if (ret != 0) { 1014 ath10k_warn(ar, "failed to get memcpy hi address for firmware address %d: %d\n", 1015 src, ret); 1016 return ret; 1017 } 1018 1019 ret = ath10k_pci_diag_read_mem(ar, addr, dest, len); 1020 if (ret != 0) { 1021 ath10k_warn(ar, "failed to memcpy firmware memory from %d (%d B): %d\n", 1022 addr, len, ret); 1023 return ret; 1024 } 1025 1026 return 0; 1027 } 1028 1029 #define ath10k_pci_diag_read_hi(ar, dest, src, len) \ 1030 __ath10k_pci_diag_read_hi(ar, dest, HI_ITEM(src), len) 1031 1032 int ath10k_pci_diag_write_mem(struct ath10k *ar, u32 address, 1033 const void *data, int nbytes) 1034 { 1035 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 1036 int ret = 0; 1037 u32 *buf; 1038 unsigned int completed_nbytes, orig_nbytes, remaining_bytes; 1039 struct ath10k_ce_pipe *ce_diag; 1040 void *data_buf = NULL; 1041 u32 ce_data; /* Host buffer address in CE space */ 1042 dma_addr_t ce_data_base = 0; 1043 int i; 1044 1045 spin_lock_bh(&ar_pci->ce_lock); 1046 1047 ce_diag = ar_pci->ce_diag; 1048 1049 /* 1050 * Allocate a temporary bounce buffer to hold caller's data 1051 * to be DMA'ed to Target. This guarantees 1052 * 1) 4-byte alignment 1053 * 2) Buffer in DMA-able space 1054 */ 1055 orig_nbytes = nbytes; 1056 data_buf = (unsigned char *)dma_alloc_coherent(ar->dev, 1057 orig_nbytes, 1058 &ce_data_base, 1059 GFP_ATOMIC); 1060 if (!data_buf) { 1061 ret = -ENOMEM; 1062 goto done; 1063 } 1064 1065 /* Copy caller's data to allocated DMA buf */ 1066 memcpy(data_buf, data, orig_nbytes); 1067 1068 /* 1069 * The address supplied by the caller is in the 1070 * Target CPU virtual address space. 1071 * 1072 * In order to use this address with the diagnostic CE, 1073 * convert it from 1074 * Target CPU virtual address space 1075 * to 1076 * CE address space 1077 */ 1078 address = ath10k_pci_targ_cpu_to_ce_addr(ar, address); 1079 1080 remaining_bytes = orig_nbytes; 1081 ce_data = ce_data_base; 1082 while (remaining_bytes) { 1083 /* FIXME: check cast */ 1084 nbytes = min_t(int, remaining_bytes, DIAG_TRANSFER_LIMIT); 1085 1086 /* Set up to receive directly into Target(!) address */ 1087 ret = __ath10k_ce_rx_post_buf(ce_diag, &address, address); 1088 if (ret != 0) 1089 goto done; 1090 1091 /* 1092 * Request CE to send caller-supplied data that 1093 * was copied to bounce buffer to Target(!) address. 1094 */ 1095 ret = ath10k_ce_send_nolock(ce_diag, NULL, (u32)ce_data, 1096 nbytes, 0, 0); 1097 if (ret != 0) 1098 goto done; 1099 1100 i = 0; 1101 while (ath10k_ce_completed_send_next_nolock(ce_diag, 1102 NULL) != 0) { 1103 mdelay(1); 1104 1105 if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) { 1106 ret = -EBUSY; 1107 goto done; 1108 } 1109 } 1110 1111 i = 0; 1112 while (ath10k_ce_completed_recv_next_nolock(ce_diag, 1113 (void **)&buf, 1114 &completed_nbytes) 1115 != 0) { 1116 mdelay(1); 1117 1118 if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) { 1119 ret = -EBUSY; 1120 goto done; 1121 } 1122 } 1123 1124 if (nbytes != completed_nbytes) { 1125 ret = -EIO; 1126 goto done; 1127 } 1128 1129 if (*buf != address) { 1130 ret = -EIO; 1131 goto done; 1132 } 1133 1134 remaining_bytes -= nbytes; 1135 address += nbytes; 1136 ce_data += nbytes; 1137 } 1138 1139 done: 1140 if (data_buf) { 1141 dma_free_coherent(ar->dev, orig_nbytes, data_buf, 1142 ce_data_base); 1143 } 1144 1145 if (ret != 0) 1146 ath10k_warn(ar, "failed to write diag value at 0x%x: %d\n", 1147 address, ret); 1148 1149 spin_unlock_bh(&ar_pci->ce_lock); 1150 1151 return ret; 1152 } 1153 1154 static int ath10k_pci_diag_write32(struct ath10k *ar, u32 address, u32 value) 1155 { 1156 __le32 val = __cpu_to_le32(value); 1157 1158 return ath10k_pci_diag_write_mem(ar, address, &val, sizeof(val)); 1159 } 1160 1161 /* Called by lower (CE) layer when a send to Target completes. */ 1162 static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state) 1163 { 1164 struct ath10k *ar = ce_state->ar; 1165 struct sk_buff_head list; 1166 struct sk_buff *skb; 1167 1168 __skb_queue_head_init(&list); 1169 while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) { 1170 /* no need to call tx completion for NULL pointers */ 1171 if (skb == NULL) 1172 continue; 1173 1174 __skb_queue_tail(&list, skb); 1175 } 1176 1177 while ((skb = __skb_dequeue(&list))) 1178 ath10k_htc_tx_completion_handler(ar, skb); 1179 } 1180 1181 static void ath10k_pci_process_rx_cb(struct ath10k_ce_pipe *ce_state, 1182 void (*callback)(struct ath10k *ar, 1183 struct sk_buff *skb)) 1184 { 1185 struct ath10k *ar = ce_state->ar; 1186 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 1187 struct ath10k_pci_pipe *pipe_info = &ar_pci->pipe_info[ce_state->id]; 1188 struct sk_buff *skb; 1189 struct sk_buff_head list; 1190 void *transfer_context; 1191 unsigned int nbytes, max_nbytes; 1192 1193 __skb_queue_head_init(&list); 1194 while (ath10k_ce_completed_recv_next(ce_state, &transfer_context, 1195 &nbytes) == 0) { 1196 skb = transfer_context; 1197 max_nbytes = skb->len + skb_tailroom(skb); 1198 dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr, 1199 max_nbytes, DMA_FROM_DEVICE); 1200 1201 if (unlikely(max_nbytes < nbytes)) { 1202 ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)", 1203 nbytes, max_nbytes); 1204 dev_kfree_skb_any(skb); 1205 continue; 1206 } 1207 1208 skb_put(skb, nbytes); 1209 __skb_queue_tail(&list, skb); 1210 } 1211 1212 while ((skb = __skb_dequeue(&list))) { 1213 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n", 1214 ce_state->id, skb->len); 1215 ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ", 1216 skb->data, skb->len); 1217 1218 callback(ar, skb); 1219 } 1220 1221 ath10k_pci_rx_post_pipe(pipe_info); 1222 } 1223 1224 static void ath10k_pci_process_htt_rx_cb(struct ath10k_ce_pipe *ce_state, 1225 void (*callback)(struct ath10k *ar, 1226 struct sk_buff *skb)) 1227 { 1228 struct ath10k *ar = ce_state->ar; 1229 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 1230 struct ath10k_pci_pipe *pipe_info = &ar_pci->pipe_info[ce_state->id]; 1231 struct ath10k_ce_pipe *ce_pipe = pipe_info->ce_hdl; 1232 struct sk_buff *skb; 1233 struct sk_buff_head list; 1234 void *transfer_context; 1235 unsigned int nbytes, max_nbytes, nentries; 1236 int orig_len; 1237 1238 /* No need to aquire ce_lock for CE5, since this is the only place CE5 1239 * is processed other than init and deinit. Before releasing CE5 1240 * buffers, interrupts are disabled. Thus CE5 access is serialized. 1241 */ 1242 __skb_queue_head_init(&list); 1243 while (ath10k_ce_completed_recv_next_nolock(ce_state, &transfer_context, 1244 &nbytes) == 0) { 1245 skb = transfer_context; 1246 max_nbytes = skb->len + skb_tailroom(skb); 1247 1248 if (unlikely(max_nbytes < nbytes)) { 1249 ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)", 1250 nbytes, max_nbytes); 1251 continue; 1252 } 1253 1254 dma_sync_single_for_cpu(ar->dev, ATH10K_SKB_RXCB(skb)->paddr, 1255 max_nbytes, DMA_FROM_DEVICE); 1256 skb_put(skb, nbytes); 1257 __skb_queue_tail(&list, skb); 1258 } 1259 1260 nentries = skb_queue_len(&list); 1261 while ((skb = __skb_dequeue(&list))) { 1262 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n", 1263 ce_state->id, skb->len); 1264 ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ", 1265 skb->data, skb->len); 1266 1267 orig_len = skb->len; 1268 callback(ar, skb); 1269 skb_push(skb, orig_len - skb->len); 1270 skb_reset_tail_pointer(skb); 1271 skb_trim(skb, 0); 1272 1273 /*let device gain the buffer again*/ 1274 dma_sync_single_for_device(ar->dev, ATH10K_SKB_RXCB(skb)->paddr, 1275 skb->len + skb_tailroom(skb), 1276 DMA_FROM_DEVICE); 1277 } 1278 ath10k_ce_rx_update_write_idx(ce_pipe, nentries); 1279 } 1280 1281 /* Called by lower (CE) layer when data is received from the Target. */ 1282 static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state) 1283 { 1284 ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler); 1285 } 1286 1287 static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state) 1288 { 1289 /* CE4 polling needs to be done whenever CE pipe which transports 1290 * HTT Rx (target->host) is processed. 1291 */ 1292 ath10k_ce_per_engine_service(ce_state->ar, 4); 1293 1294 ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler); 1295 } 1296 1297 /* Called by lower (CE) layer when data is received from the Target. 1298 * Only 10.4 firmware uses separate CE to transfer pktlog data. 1299 */ 1300 static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state) 1301 { 1302 ath10k_pci_process_rx_cb(ce_state, 1303 ath10k_htt_rx_pktlog_completion_handler); 1304 } 1305 1306 /* Called by lower (CE) layer when a send to HTT Target completes. */ 1307 static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state) 1308 { 1309 struct ath10k *ar = ce_state->ar; 1310 struct sk_buff *skb; 1311 1312 while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) { 1313 /* no need to call tx completion for NULL pointers */ 1314 if (!skb) 1315 continue; 1316 1317 dma_unmap_single(ar->dev, ATH10K_SKB_CB(skb)->paddr, 1318 skb->len, DMA_TO_DEVICE); 1319 ath10k_htt_hif_tx_complete(ar, skb); 1320 } 1321 } 1322 1323 static void ath10k_pci_htt_rx_deliver(struct ath10k *ar, struct sk_buff *skb) 1324 { 1325 skb_pull(skb, sizeof(struct ath10k_htc_hdr)); 1326 ath10k_htt_t2h_msg_handler(ar, skb); 1327 } 1328 1329 /* Called by lower (CE) layer when HTT data is received from the Target. */ 1330 static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state) 1331 { 1332 /* CE4 polling needs to be done whenever CE pipe which transports 1333 * HTT Rx (target->host) is processed. 1334 */ 1335 ath10k_ce_per_engine_service(ce_state->ar, 4); 1336 1337 ath10k_pci_process_htt_rx_cb(ce_state, ath10k_pci_htt_rx_deliver); 1338 } 1339 1340 int ath10k_pci_hif_tx_sg(struct ath10k *ar, u8 pipe_id, 1341 struct ath10k_hif_sg_item *items, int n_items) 1342 { 1343 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 1344 struct ath10k_pci_pipe *pci_pipe = &ar_pci->pipe_info[pipe_id]; 1345 struct ath10k_ce_pipe *ce_pipe = pci_pipe->ce_hdl; 1346 struct ath10k_ce_ring *src_ring = ce_pipe->src_ring; 1347 unsigned int nentries_mask; 1348 unsigned int sw_index; 1349 unsigned int write_index; 1350 int err, i = 0; 1351 1352 spin_lock_bh(&ar_pci->ce_lock); 1353 1354 nentries_mask = src_ring->nentries_mask; 1355 sw_index = src_ring->sw_index; 1356 write_index = src_ring->write_index; 1357 1358 if (unlikely(CE_RING_DELTA(nentries_mask, 1359 write_index, sw_index - 1) < n_items)) { 1360 err = -ENOBUFS; 1361 goto err; 1362 } 1363 1364 for (i = 0; i < n_items - 1; i++) { 1365 ath10k_dbg(ar, ATH10K_DBG_PCI, 1366 "pci tx item %d paddr 0x%08x len %d n_items %d\n", 1367 i, items[i].paddr, items[i].len, n_items); 1368 ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ", 1369 items[i].vaddr, items[i].len); 1370 1371 err = ath10k_ce_send_nolock(ce_pipe, 1372 items[i].transfer_context, 1373 items[i].paddr, 1374 items[i].len, 1375 items[i].transfer_id, 1376 CE_SEND_FLAG_GATHER); 1377 if (err) 1378 goto err; 1379 } 1380 1381 /* `i` is equal to `n_items -1` after for() */ 1382 1383 ath10k_dbg(ar, ATH10K_DBG_PCI, 1384 "pci tx item %d paddr 0x%08x len %d n_items %d\n", 1385 i, items[i].paddr, items[i].len, n_items); 1386 ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ", 1387 items[i].vaddr, items[i].len); 1388 1389 err = ath10k_ce_send_nolock(ce_pipe, 1390 items[i].transfer_context, 1391 items[i].paddr, 1392 items[i].len, 1393 items[i].transfer_id, 1394 0); 1395 if (err) 1396 goto err; 1397 1398 spin_unlock_bh(&ar_pci->ce_lock); 1399 return 0; 1400 1401 err: 1402 for (; i > 0; i--) 1403 __ath10k_ce_send_revert(ce_pipe); 1404 1405 spin_unlock_bh(&ar_pci->ce_lock); 1406 return err; 1407 } 1408 1409 int ath10k_pci_hif_diag_read(struct ath10k *ar, u32 address, void *buf, 1410 size_t buf_len) 1411 { 1412 return ath10k_pci_diag_read_mem(ar, address, buf, buf_len); 1413 } 1414 1415 u16 ath10k_pci_hif_get_free_queue_number(struct ath10k *ar, u8 pipe) 1416 { 1417 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 1418 1419 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get free queue number\n"); 1420 1421 return ath10k_ce_num_free_src_entries(ar_pci->pipe_info[pipe].ce_hdl); 1422 } 1423 1424 static void ath10k_pci_dump_registers(struct ath10k *ar, 1425 struct ath10k_fw_crash_data *crash_data) 1426 { 1427 __le32 reg_dump_values[REG_DUMP_COUNT_QCA988X] = {}; 1428 int i, ret; 1429 1430 lockdep_assert_held(&ar->data_lock); 1431 1432 ret = ath10k_pci_diag_read_hi(ar, ®_dump_values[0], 1433 hi_failure_state, 1434 REG_DUMP_COUNT_QCA988X * sizeof(__le32)); 1435 if (ret) { 1436 ath10k_err(ar, "failed to read firmware dump area: %d\n", ret); 1437 return; 1438 } 1439 1440 BUILD_BUG_ON(REG_DUMP_COUNT_QCA988X % 4); 1441 1442 ath10k_err(ar, "firmware register dump:\n"); 1443 for (i = 0; i < REG_DUMP_COUNT_QCA988X; i += 4) 1444 ath10k_err(ar, "[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n", 1445 i, 1446 __le32_to_cpu(reg_dump_values[i]), 1447 __le32_to_cpu(reg_dump_values[i + 1]), 1448 __le32_to_cpu(reg_dump_values[i + 2]), 1449 __le32_to_cpu(reg_dump_values[i + 3])); 1450 1451 if (!crash_data) 1452 return; 1453 1454 for (i = 0; i < REG_DUMP_COUNT_QCA988X; i++) 1455 crash_data->registers[i] = reg_dump_values[i]; 1456 } 1457 1458 static void ath10k_pci_fw_crashed_dump(struct ath10k *ar) 1459 { 1460 struct ath10k_fw_crash_data *crash_data; 1461 char uuid[50]; 1462 1463 spin_lock_bh(&ar->data_lock); 1464 1465 ar->stats.fw_crash_counter++; 1466 1467 crash_data = ath10k_debug_get_new_fw_crash_data(ar); 1468 1469 if (crash_data) 1470 scnprintf(uuid, sizeof(uuid), "%pUl", &crash_data->uuid); 1471 else 1472 scnprintf(uuid, sizeof(uuid), "n/a"); 1473 1474 ath10k_err(ar, "firmware crashed! (uuid %s)\n", uuid); 1475 ath10k_print_driver_info(ar); 1476 ath10k_pci_dump_registers(ar, crash_data); 1477 1478 spin_unlock_bh(&ar->data_lock); 1479 1480 queue_work(ar->workqueue, &ar->restart_work); 1481 } 1482 1483 void ath10k_pci_hif_send_complete_check(struct ath10k *ar, u8 pipe, 1484 int force) 1485 { 1486 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif send complete check\n"); 1487 1488 if (!force) { 1489 int resources; 1490 /* 1491 * Decide whether to actually poll for completions, or just 1492 * wait for a later chance. 1493 * If there seem to be plenty of resources left, then just wait 1494 * since checking involves reading a CE register, which is a 1495 * relatively expensive operation. 1496 */ 1497 resources = ath10k_pci_hif_get_free_queue_number(ar, pipe); 1498 1499 /* 1500 * If at least 50% of the total resources are still available, 1501 * don't bother checking again yet. 1502 */ 1503 if (resources > (host_ce_config_wlan[pipe].src_nentries >> 1)) 1504 return; 1505 } 1506 ath10k_ce_per_engine_service(ar, pipe); 1507 } 1508 1509 static void ath10k_pci_rx_retry_sync(struct ath10k *ar) 1510 { 1511 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 1512 1513 del_timer_sync(&ar_pci->rx_post_retry); 1514 } 1515 1516 int ath10k_pci_hif_map_service_to_pipe(struct ath10k *ar, u16 service_id, 1517 u8 *ul_pipe, u8 *dl_pipe) 1518 { 1519 const struct service_to_pipe *entry; 1520 bool ul_set = false, dl_set = false; 1521 int i; 1522 1523 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif map service\n"); 1524 1525 for (i = 0; i < ARRAY_SIZE(target_service_to_ce_map_wlan); i++) { 1526 entry = &target_service_to_ce_map_wlan[i]; 1527 1528 if (__le32_to_cpu(entry->service_id) != service_id) 1529 continue; 1530 1531 switch (__le32_to_cpu(entry->pipedir)) { 1532 case PIPEDIR_NONE: 1533 break; 1534 case PIPEDIR_IN: 1535 WARN_ON(dl_set); 1536 *dl_pipe = __le32_to_cpu(entry->pipenum); 1537 dl_set = true; 1538 break; 1539 case PIPEDIR_OUT: 1540 WARN_ON(ul_set); 1541 *ul_pipe = __le32_to_cpu(entry->pipenum); 1542 ul_set = true; 1543 break; 1544 case PIPEDIR_INOUT: 1545 WARN_ON(dl_set); 1546 WARN_ON(ul_set); 1547 *dl_pipe = __le32_to_cpu(entry->pipenum); 1548 *ul_pipe = __le32_to_cpu(entry->pipenum); 1549 dl_set = true; 1550 ul_set = true; 1551 break; 1552 } 1553 } 1554 1555 if (WARN_ON(!ul_set || !dl_set)) 1556 return -ENOENT; 1557 1558 return 0; 1559 } 1560 1561 void ath10k_pci_hif_get_default_pipe(struct ath10k *ar, 1562 u8 *ul_pipe, u8 *dl_pipe) 1563 { 1564 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get default pipe\n"); 1565 1566 (void)ath10k_pci_hif_map_service_to_pipe(ar, 1567 ATH10K_HTC_SVC_ID_RSVD_CTRL, 1568 ul_pipe, dl_pipe); 1569 } 1570 1571 void ath10k_pci_irq_msi_fw_mask(struct ath10k *ar) 1572 { 1573 u32 val; 1574 1575 switch (ar->hw_rev) { 1576 case ATH10K_HW_QCA988X: 1577 case ATH10K_HW_QCA9887: 1578 case ATH10K_HW_QCA6174: 1579 case ATH10K_HW_QCA9377: 1580 val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + 1581 CORE_CTRL_ADDRESS); 1582 val &= ~CORE_CTRL_PCIE_REG_31_MASK; 1583 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + 1584 CORE_CTRL_ADDRESS, val); 1585 break; 1586 case ATH10K_HW_QCA99X0: 1587 case ATH10K_HW_QCA9984: 1588 case ATH10K_HW_QCA9888: 1589 case ATH10K_HW_QCA4019: 1590 /* TODO: Find appropriate register configuration for QCA99X0 1591 * to mask irq/MSI. 1592 */ 1593 break; 1594 } 1595 } 1596 1597 static void ath10k_pci_irq_msi_fw_unmask(struct ath10k *ar) 1598 { 1599 u32 val; 1600 1601 switch (ar->hw_rev) { 1602 case ATH10K_HW_QCA988X: 1603 case ATH10K_HW_QCA9887: 1604 case ATH10K_HW_QCA6174: 1605 case ATH10K_HW_QCA9377: 1606 val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + 1607 CORE_CTRL_ADDRESS); 1608 val |= CORE_CTRL_PCIE_REG_31_MASK; 1609 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + 1610 CORE_CTRL_ADDRESS, val); 1611 break; 1612 case ATH10K_HW_QCA99X0: 1613 case ATH10K_HW_QCA9984: 1614 case ATH10K_HW_QCA9888: 1615 case ATH10K_HW_QCA4019: 1616 /* TODO: Find appropriate register configuration for QCA99X0 1617 * to unmask irq/MSI. 1618 */ 1619 break; 1620 } 1621 } 1622 1623 static void ath10k_pci_irq_disable(struct ath10k *ar) 1624 { 1625 ath10k_ce_disable_interrupts(ar); 1626 ath10k_pci_disable_and_clear_legacy_irq(ar); 1627 ath10k_pci_irq_msi_fw_mask(ar); 1628 } 1629 1630 static void ath10k_pci_irq_sync(struct ath10k *ar) 1631 { 1632 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 1633 1634 synchronize_irq(ar_pci->pdev->irq); 1635 } 1636 1637 static void ath10k_pci_irq_enable(struct ath10k *ar) 1638 { 1639 ath10k_ce_enable_interrupts(ar); 1640 ath10k_pci_enable_legacy_irq(ar); 1641 ath10k_pci_irq_msi_fw_unmask(ar); 1642 } 1643 1644 static int ath10k_pci_hif_start(struct ath10k *ar) 1645 { 1646 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 1647 1648 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif start\n"); 1649 1650 ath10k_pci_irq_enable(ar); 1651 ath10k_pci_rx_post(ar); 1652 1653 pcie_capability_write_word(ar_pci->pdev, PCI_EXP_LNKCTL, 1654 ar_pci->link_ctl); 1655 1656 return 0; 1657 } 1658 1659 static void ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe) 1660 { 1661 struct ath10k *ar; 1662 struct ath10k_ce_pipe *ce_pipe; 1663 struct ath10k_ce_ring *ce_ring; 1664 struct sk_buff *skb; 1665 int i; 1666 1667 ar = pci_pipe->hif_ce_state; 1668 ce_pipe = pci_pipe->ce_hdl; 1669 ce_ring = ce_pipe->dest_ring; 1670 1671 if (!ce_ring) 1672 return; 1673 1674 if (!pci_pipe->buf_sz) 1675 return; 1676 1677 for (i = 0; i < ce_ring->nentries; i++) { 1678 skb = ce_ring->per_transfer_context[i]; 1679 if (!skb) 1680 continue; 1681 1682 ce_ring->per_transfer_context[i] = NULL; 1683 1684 dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr, 1685 skb->len + skb_tailroom(skb), 1686 DMA_FROM_DEVICE); 1687 dev_kfree_skb_any(skb); 1688 } 1689 } 1690 1691 static void ath10k_pci_tx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe) 1692 { 1693 struct ath10k *ar; 1694 struct ath10k_ce_pipe *ce_pipe; 1695 struct ath10k_ce_ring *ce_ring; 1696 struct sk_buff *skb; 1697 int i; 1698 1699 ar = pci_pipe->hif_ce_state; 1700 ce_pipe = pci_pipe->ce_hdl; 1701 ce_ring = ce_pipe->src_ring; 1702 1703 if (!ce_ring) 1704 return; 1705 1706 if (!pci_pipe->buf_sz) 1707 return; 1708 1709 for (i = 0; i < ce_ring->nentries; i++) { 1710 skb = ce_ring->per_transfer_context[i]; 1711 if (!skb) 1712 continue; 1713 1714 ce_ring->per_transfer_context[i] = NULL; 1715 1716 ath10k_htc_tx_completion_handler(ar, skb); 1717 } 1718 } 1719 1720 /* 1721 * Cleanup residual buffers for device shutdown: 1722 * buffers that were enqueued for receive 1723 * buffers that were to be sent 1724 * Note: Buffers that had completed but which were 1725 * not yet processed are on a completion queue. They 1726 * are handled when the completion thread shuts down. 1727 */ 1728 static void ath10k_pci_buffer_cleanup(struct ath10k *ar) 1729 { 1730 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 1731 int pipe_num; 1732 1733 for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) { 1734 struct ath10k_pci_pipe *pipe_info; 1735 1736 pipe_info = &ar_pci->pipe_info[pipe_num]; 1737 ath10k_pci_rx_pipe_cleanup(pipe_info); 1738 ath10k_pci_tx_pipe_cleanup(pipe_info); 1739 } 1740 } 1741 1742 void ath10k_pci_ce_deinit(struct ath10k *ar) 1743 { 1744 int i; 1745 1746 for (i = 0; i < CE_COUNT; i++) 1747 ath10k_ce_deinit_pipe(ar, i); 1748 } 1749 1750 void ath10k_pci_flush(struct ath10k *ar) 1751 { 1752 ath10k_pci_rx_retry_sync(ar); 1753 ath10k_pci_buffer_cleanup(ar); 1754 } 1755 1756 static void ath10k_pci_hif_stop(struct ath10k *ar) 1757 { 1758 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 1759 unsigned long flags; 1760 1761 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif stop\n"); 1762 1763 /* Most likely the device has HTT Rx ring configured. The only way to 1764 * prevent the device from accessing (and possible corrupting) host 1765 * memory is to reset the chip now. 1766 * 1767 * There's also no known way of masking MSI interrupts on the device. 1768 * For ranged MSI the CE-related interrupts can be masked. However 1769 * regardless how many MSI interrupts are assigned the first one 1770 * is always used for firmware indications (crashes) and cannot be 1771 * masked. To prevent the device from asserting the interrupt reset it 1772 * before proceeding with cleanup. 1773 */ 1774 ath10k_pci_safe_chip_reset(ar); 1775 1776 ath10k_pci_irq_disable(ar); 1777 ath10k_pci_irq_sync(ar); 1778 ath10k_pci_flush(ar); 1779 napi_synchronize(&ar->napi); 1780 napi_disable(&ar->napi); 1781 1782 spin_lock_irqsave(&ar_pci->ps_lock, flags); 1783 WARN_ON(ar_pci->ps_wake_refcount > 0); 1784 spin_unlock_irqrestore(&ar_pci->ps_lock, flags); 1785 } 1786 1787 int ath10k_pci_hif_exchange_bmi_msg(struct ath10k *ar, 1788 void *req, u32 req_len, 1789 void *resp, u32 *resp_len) 1790 { 1791 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 1792 struct ath10k_pci_pipe *pci_tx = &ar_pci->pipe_info[BMI_CE_NUM_TO_TARG]; 1793 struct ath10k_pci_pipe *pci_rx = &ar_pci->pipe_info[BMI_CE_NUM_TO_HOST]; 1794 struct ath10k_ce_pipe *ce_tx = pci_tx->ce_hdl; 1795 struct ath10k_ce_pipe *ce_rx = pci_rx->ce_hdl; 1796 dma_addr_t req_paddr = 0; 1797 dma_addr_t resp_paddr = 0; 1798 struct bmi_xfer xfer = {}; 1799 void *treq, *tresp = NULL; 1800 int ret = 0; 1801 1802 might_sleep(); 1803 1804 if (resp && !resp_len) 1805 return -EINVAL; 1806 1807 if (resp && resp_len && *resp_len == 0) 1808 return -EINVAL; 1809 1810 treq = kmemdup(req, req_len, GFP_KERNEL); 1811 if (!treq) 1812 return -ENOMEM; 1813 1814 req_paddr = dma_map_single(ar->dev, treq, req_len, DMA_TO_DEVICE); 1815 ret = dma_mapping_error(ar->dev, req_paddr); 1816 if (ret) { 1817 ret = -EIO; 1818 goto err_dma; 1819 } 1820 1821 if (resp && resp_len) { 1822 tresp = kzalloc(*resp_len, GFP_KERNEL); 1823 if (!tresp) { 1824 ret = -ENOMEM; 1825 goto err_req; 1826 } 1827 1828 resp_paddr = dma_map_single(ar->dev, tresp, *resp_len, 1829 DMA_FROM_DEVICE); 1830 ret = dma_mapping_error(ar->dev, resp_paddr); 1831 if (ret) { 1832 ret = -EIO; 1833 goto err_req; 1834 } 1835 1836 xfer.wait_for_resp = true; 1837 xfer.resp_len = 0; 1838 1839 ath10k_ce_rx_post_buf(ce_rx, &xfer, resp_paddr); 1840 } 1841 1842 ret = ath10k_ce_send(ce_tx, &xfer, req_paddr, req_len, -1, 0); 1843 if (ret) 1844 goto err_resp; 1845 1846 ret = ath10k_pci_bmi_wait(ce_tx, ce_rx, &xfer); 1847 if (ret) { 1848 u32 unused_buffer; 1849 unsigned int unused_nbytes; 1850 unsigned int unused_id; 1851 1852 ath10k_ce_cancel_send_next(ce_tx, NULL, &unused_buffer, 1853 &unused_nbytes, &unused_id); 1854 } else { 1855 /* non-zero means we did not time out */ 1856 ret = 0; 1857 } 1858 1859 err_resp: 1860 if (resp) { 1861 u32 unused_buffer; 1862 1863 ath10k_ce_revoke_recv_next(ce_rx, NULL, &unused_buffer); 1864 dma_unmap_single(ar->dev, resp_paddr, 1865 *resp_len, DMA_FROM_DEVICE); 1866 } 1867 err_req: 1868 dma_unmap_single(ar->dev, req_paddr, req_len, DMA_TO_DEVICE); 1869 1870 if (ret == 0 && resp_len) { 1871 *resp_len = min(*resp_len, xfer.resp_len); 1872 memcpy(resp, tresp, xfer.resp_len); 1873 } 1874 err_dma: 1875 kfree(treq); 1876 kfree(tresp); 1877 1878 return ret; 1879 } 1880 1881 static void ath10k_pci_bmi_send_done(struct ath10k_ce_pipe *ce_state) 1882 { 1883 struct bmi_xfer *xfer; 1884 1885 if (ath10k_ce_completed_send_next(ce_state, (void **)&xfer)) 1886 return; 1887 1888 xfer->tx_done = true; 1889 } 1890 1891 static void ath10k_pci_bmi_recv_data(struct ath10k_ce_pipe *ce_state) 1892 { 1893 struct ath10k *ar = ce_state->ar; 1894 struct bmi_xfer *xfer; 1895 unsigned int nbytes; 1896 1897 if (ath10k_ce_completed_recv_next(ce_state, (void **)&xfer, 1898 &nbytes)) 1899 return; 1900 1901 if (WARN_ON_ONCE(!xfer)) 1902 return; 1903 1904 if (!xfer->wait_for_resp) { 1905 ath10k_warn(ar, "unexpected: BMI data received; ignoring\n"); 1906 return; 1907 } 1908 1909 xfer->resp_len = nbytes; 1910 xfer->rx_done = true; 1911 } 1912 1913 static int ath10k_pci_bmi_wait(struct ath10k_ce_pipe *tx_pipe, 1914 struct ath10k_ce_pipe *rx_pipe, 1915 struct bmi_xfer *xfer) 1916 { 1917 unsigned long timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ; 1918 1919 while (time_before_eq(jiffies, timeout)) { 1920 ath10k_pci_bmi_send_done(tx_pipe); 1921 ath10k_pci_bmi_recv_data(rx_pipe); 1922 1923 if (xfer->tx_done && (xfer->rx_done == xfer->wait_for_resp)) 1924 return 0; 1925 1926 schedule(); 1927 } 1928 1929 return -ETIMEDOUT; 1930 } 1931 1932 /* 1933 * Send an interrupt to the device to wake up the Target CPU 1934 * so it has an opportunity to notice any changed state. 1935 */ 1936 static int ath10k_pci_wake_target_cpu(struct ath10k *ar) 1937 { 1938 u32 addr, val; 1939 1940 addr = SOC_CORE_BASE_ADDRESS | CORE_CTRL_ADDRESS; 1941 val = ath10k_pci_read32(ar, addr); 1942 val |= CORE_CTRL_CPU_INTR_MASK; 1943 ath10k_pci_write32(ar, addr, val); 1944 1945 return 0; 1946 } 1947 1948 static int ath10k_pci_get_num_banks(struct ath10k *ar) 1949 { 1950 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 1951 1952 switch (ar_pci->pdev->device) { 1953 case QCA988X_2_0_DEVICE_ID: 1954 case QCA99X0_2_0_DEVICE_ID: 1955 case QCA9888_2_0_DEVICE_ID: 1956 case QCA9984_1_0_DEVICE_ID: 1957 case QCA9887_1_0_DEVICE_ID: 1958 return 1; 1959 case QCA6164_2_1_DEVICE_ID: 1960 case QCA6174_2_1_DEVICE_ID: 1961 switch (MS(ar->chip_id, SOC_CHIP_ID_REV)) { 1962 case QCA6174_HW_1_0_CHIP_ID_REV: 1963 case QCA6174_HW_1_1_CHIP_ID_REV: 1964 case QCA6174_HW_2_1_CHIP_ID_REV: 1965 case QCA6174_HW_2_2_CHIP_ID_REV: 1966 return 3; 1967 case QCA6174_HW_1_3_CHIP_ID_REV: 1968 return 2; 1969 case QCA6174_HW_3_0_CHIP_ID_REV: 1970 case QCA6174_HW_3_1_CHIP_ID_REV: 1971 case QCA6174_HW_3_2_CHIP_ID_REV: 1972 return 9; 1973 } 1974 break; 1975 case QCA9377_1_0_DEVICE_ID: 1976 return 2; 1977 } 1978 1979 ath10k_warn(ar, "unknown number of banks, assuming 1\n"); 1980 return 1; 1981 } 1982 1983 static int ath10k_bus_get_num_banks(struct ath10k *ar) 1984 { 1985 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 1986 1987 return ar_pci->bus_ops->get_num_banks(ar); 1988 } 1989 1990 int ath10k_pci_init_config(struct ath10k *ar) 1991 { 1992 u32 interconnect_targ_addr; 1993 u32 pcie_state_targ_addr = 0; 1994 u32 pipe_cfg_targ_addr = 0; 1995 u32 svc_to_pipe_map = 0; 1996 u32 pcie_config_flags = 0; 1997 u32 ealloc_value; 1998 u32 ealloc_targ_addr; 1999 u32 flag2_value; 2000 u32 flag2_targ_addr; 2001 int ret = 0; 2002 2003 /* Download to Target the CE Config and the service-to-CE map */ 2004 interconnect_targ_addr = 2005 host_interest_item_address(HI_ITEM(hi_interconnect_state)); 2006 2007 /* Supply Target-side CE configuration */ 2008 ret = ath10k_pci_diag_read32(ar, interconnect_targ_addr, 2009 &pcie_state_targ_addr); 2010 if (ret != 0) { 2011 ath10k_err(ar, "Failed to get pcie state addr: %d\n", ret); 2012 return ret; 2013 } 2014 2015 if (pcie_state_targ_addr == 0) { 2016 ret = -EIO; 2017 ath10k_err(ar, "Invalid pcie state addr\n"); 2018 return ret; 2019 } 2020 2021 ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr + 2022 offsetof(struct pcie_state, 2023 pipe_cfg_addr)), 2024 &pipe_cfg_targ_addr); 2025 if (ret != 0) { 2026 ath10k_err(ar, "Failed to get pipe cfg addr: %d\n", ret); 2027 return ret; 2028 } 2029 2030 if (pipe_cfg_targ_addr == 0) { 2031 ret = -EIO; 2032 ath10k_err(ar, "Invalid pipe cfg addr\n"); 2033 return ret; 2034 } 2035 2036 ret = ath10k_pci_diag_write_mem(ar, pipe_cfg_targ_addr, 2037 target_ce_config_wlan, 2038 sizeof(struct ce_pipe_config) * 2039 NUM_TARGET_CE_CONFIG_WLAN); 2040 2041 if (ret != 0) { 2042 ath10k_err(ar, "Failed to write pipe cfg: %d\n", ret); 2043 return ret; 2044 } 2045 2046 ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr + 2047 offsetof(struct pcie_state, 2048 svc_to_pipe_map)), 2049 &svc_to_pipe_map); 2050 if (ret != 0) { 2051 ath10k_err(ar, "Failed to get svc/pipe map: %d\n", ret); 2052 return ret; 2053 } 2054 2055 if (svc_to_pipe_map == 0) { 2056 ret = -EIO; 2057 ath10k_err(ar, "Invalid svc_to_pipe map\n"); 2058 return ret; 2059 } 2060 2061 ret = ath10k_pci_diag_write_mem(ar, svc_to_pipe_map, 2062 target_service_to_ce_map_wlan, 2063 sizeof(target_service_to_ce_map_wlan)); 2064 if (ret != 0) { 2065 ath10k_err(ar, "Failed to write svc/pipe map: %d\n", ret); 2066 return ret; 2067 } 2068 2069 ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr + 2070 offsetof(struct pcie_state, 2071 config_flags)), 2072 &pcie_config_flags); 2073 if (ret != 0) { 2074 ath10k_err(ar, "Failed to get pcie config_flags: %d\n", ret); 2075 return ret; 2076 } 2077 2078 pcie_config_flags &= ~PCIE_CONFIG_FLAG_ENABLE_L1; 2079 2080 ret = ath10k_pci_diag_write32(ar, (pcie_state_targ_addr + 2081 offsetof(struct pcie_state, 2082 config_flags)), 2083 pcie_config_flags); 2084 if (ret != 0) { 2085 ath10k_err(ar, "Failed to write pcie config_flags: %d\n", ret); 2086 return ret; 2087 } 2088 2089 /* configure early allocation */ 2090 ealloc_targ_addr = host_interest_item_address(HI_ITEM(hi_early_alloc)); 2091 2092 ret = ath10k_pci_diag_read32(ar, ealloc_targ_addr, &ealloc_value); 2093 if (ret != 0) { 2094 ath10k_err(ar, "Failed to get early alloc val: %d\n", ret); 2095 return ret; 2096 } 2097 2098 /* first bank is switched to IRAM */ 2099 ealloc_value |= ((HI_EARLY_ALLOC_MAGIC << HI_EARLY_ALLOC_MAGIC_SHIFT) & 2100 HI_EARLY_ALLOC_MAGIC_MASK); 2101 ealloc_value |= ((ath10k_bus_get_num_banks(ar) << 2102 HI_EARLY_ALLOC_IRAM_BANKS_SHIFT) & 2103 HI_EARLY_ALLOC_IRAM_BANKS_MASK); 2104 2105 ret = ath10k_pci_diag_write32(ar, ealloc_targ_addr, ealloc_value); 2106 if (ret != 0) { 2107 ath10k_err(ar, "Failed to set early alloc val: %d\n", ret); 2108 return ret; 2109 } 2110 2111 /* Tell Target to proceed with initialization */ 2112 flag2_targ_addr = host_interest_item_address(HI_ITEM(hi_option_flag2)); 2113 2114 ret = ath10k_pci_diag_read32(ar, flag2_targ_addr, &flag2_value); 2115 if (ret != 0) { 2116 ath10k_err(ar, "Failed to get option val: %d\n", ret); 2117 return ret; 2118 } 2119 2120 flag2_value |= HI_OPTION_EARLY_CFG_DONE; 2121 2122 ret = ath10k_pci_diag_write32(ar, flag2_targ_addr, flag2_value); 2123 if (ret != 0) { 2124 ath10k_err(ar, "Failed to set option val: %d\n", ret); 2125 return ret; 2126 } 2127 2128 return 0; 2129 } 2130 2131 static void ath10k_pci_override_ce_config(struct ath10k *ar) 2132 { 2133 struct ce_attr *attr; 2134 struct ce_pipe_config *config; 2135 2136 /* For QCA6174 we're overriding the Copy Engine 5 configuration, 2137 * since it is currently used for other feature. 2138 */ 2139 2140 /* Override Host's Copy Engine 5 configuration */ 2141 attr = &host_ce_config_wlan[5]; 2142 attr->src_sz_max = 0; 2143 attr->dest_nentries = 0; 2144 2145 /* Override Target firmware's Copy Engine configuration */ 2146 config = &target_ce_config_wlan[5]; 2147 config->pipedir = __cpu_to_le32(PIPEDIR_OUT); 2148 config->nbytes_max = __cpu_to_le32(2048); 2149 2150 /* Map from service/endpoint to Copy Engine */ 2151 target_service_to_ce_map_wlan[15].pipenum = __cpu_to_le32(1); 2152 } 2153 2154 int ath10k_pci_alloc_pipes(struct ath10k *ar) 2155 { 2156 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 2157 struct ath10k_pci_pipe *pipe; 2158 int i, ret; 2159 2160 for (i = 0; i < CE_COUNT; i++) { 2161 pipe = &ar_pci->pipe_info[i]; 2162 pipe->ce_hdl = &ar_pci->ce_states[i]; 2163 pipe->pipe_num = i; 2164 pipe->hif_ce_state = ar; 2165 2166 ret = ath10k_ce_alloc_pipe(ar, i, &host_ce_config_wlan[i]); 2167 if (ret) { 2168 ath10k_err(ar, "failed to allocate copy engine pipe %d: %d\n", 2169 i, ret); 2170 return ret; 2171 } 2172 2173 /* Last CE is Diagnostic Window */ 2174 if (i == CE_DIAG_PIPE) { 2175 ar_pci->ce_diag = pipe->ce_hdl; 2176 continue; 2177 } 2178 2179 pipe->buf_sz = (size_t)(host_ce_config_wlan[i].src_sz_max); 2180 } 2181 2182 return 0; 2183 } 2184 2185 void ath10k_pci_free_pipes(struct ath10k *ar) 2186 { 2187 int i; 2188 2189 for (i = 0; i < CE_COUNT; i++) 2190 ath10k_ce_free_pipe(ar, i); 2191 } 2192 2193 int ath10k_pci_init_pipes(struct ath10k *ar) 2194 { 2195 int i, ret; 2196 2197 for (i = 0; i < CE_COUNT; i++) { 2198 ret = ath10k_ce_init_pipe(ar, i, &host_ce_config_wlan[i]); 2199 if (ret) { 2200 ath10k_err(ar, "failed to initialize copy engine pipe %d: %d\n", 2201 i, ret); 2202 return ret; 2203 } 2204 } 2205 2206 return 0; 2207 } 2208 2209 static bool ath10k_pci_has_fw_crashed(struct ath10k *ar) 2210 { 2211 return ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS) & 2212 FW_IND_EVENT_PENDING; 2213 } 2214 2215 static void ath10k_pci_fw_crashed_clear(struct ath10k *ar) 2216 { 2217 u32 val; 2218 2219 val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS); 2220 val &= ~FW_IND_EVENT_PENDING; 2221 ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, val); 2222 } 2223 2224 static bool ath10k_pci_has_device_gone(struct ath10k *ar) 2225 { 2226 u32 val; 2227 2228 val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS); 2229 return (val == 0xffffffff); 2230 } 2231 2232 /* this function effectively clears target memory controller assert line */ 2233 static void ath10k_pci_warm_reset_si0(struct ath10k *ar) 2234 { 2235 u32 val; 2236 2237 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS); 2238 ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS, 2239 val | SOC_RESET_CONTROL_SI0_RST_MASK); 2240 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS); 2241 2242 msleep(10); 2243 2244 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS); 2245 ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS, 2246 val & ~SOC_RESET_CONTROL_SI0_RST_MASK); 2247 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS); 2248 2249 msleep(10); 2250 } 2251 2252 static void ath10k_pci_warm_reset_cpu(struct ath10k *ar) 2253 { 2254 u32 val; 2255 2256 ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, 0); 2257 2258 val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS + 2259 SOC_RESET_CONTROL_ADDRESS); 2260 ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS, 2261 val | SOC_RESET_CONTROL_CPU_WARM_RST_MASK); 2262 } 2263 2264 static void ath10k_pci_warm_reset_ce(struct ath10k *ar) 2265 { 2266 u32 val; 2267 2268 val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS + 2269 SOC_RESET_CONTROL_ADDRESS); 2270 2271 ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS, 2272 val | SOC_RESET_CONTROL_CE_RST_MASK); 2273 msleep(10); 2274 ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS, 2275 val & ~SOC_RESET_CONTROL_CE_RST_MASK); 2276 } 2277 2278 static void ath10k_pci_warm_reset_clear_lf(struct ath10k *ar) 2279 { 2280 u32 val; 2281 2282 val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS + 2283 SOC_LF_TIMER_CONTROL0_ADDRESS); 2284 ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + 2285 SOC_LF_TIMER_CONTROL0_ADDRESS, 2286 val & ~SOC_LF_TIMER_CONTROL0_ENABLE_MASK); 2287 } 2288 2289 static int ath10k_pci_warm_reset(struct ath10k *ar) 2290 { 2291 int ret; 2292 2293 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset\n"); 2294 2295 spin_lock_bh(&ar->data_lock); 2296 ar->stats.fw_warm_reset_counter++; 2297 spin_unlock_bh(&ar->data_lock); 2298 2299 ath10k_pci_irq_disable(ar); 2300 2301 /* Make sure the target CPU is not doing anything dangerous, e.g. if it 2302 * were to access copy engine while host performs copy engine reset 2303 * then it is possible for the device to confuse pci-e controller to 2304 * the point of bringing host system to a complete stop (i.e. hang). 2305 */ 2306 ath10k_pci_warm_reset_si0(ar); 2307 ath10k_pci_warm_reset_cpu(ar); 2308 ath10k_pci_init_pipes(ar); 2309 ath10k_pci_wait_for_target_init(ar); 2310 2311 ath10k_pci_warm_reset_clear_lf(ar); 2312 ath10k_pci_warm_reset_ce(ar); 2313 ath10k_pci_warm_reset_cpu(ar); 2314 ath10k_pci_init_pipes(ar); 2315 2316 ret = ath10k_pci_wait_for_target_init(ar); 2317 if (ret) { 2318 ath10k_warn(ar, "failed to wait for target init: %d\n", ret); 2319 return ret; 2320 } 2321 2322 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset complete\n"); 2323 2324 return 0; 2325 } 2326 2327 static int ath10k_pci_qca99x0_soft_chip_reset(struct ath10k *ar) 2328 { 2329 ath10k_pci_irq_disable(ar); 2330 return ath10k_pci_qca99x0_chip_reset(ar); 2331 } 2332 2333 static int ath10k_pci_safe_chip_reset(struct ath10k *ar) 2334 { 2335 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 2336 2337 if (!ar_pci->pci_soft_reset) 2338 return -ENOTSUPP; 2339 2340 return ar_pci->pci_soft_reset(ar); 2341 } 2342 2343 static int ath10k_pci_qca988x_chip_reset(struct ath10k *ar) 2344 { 2345 int i, ret; 2346 u32 val; 2347 2348 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot 988x chip reset\n"); 2349 2350 /* Some hardware revisions (e.g. CUS223v2) has issues with cold reset. 2351 * It is thus preferred to use warm reset which is safer but may not be 2352 * able to recover the device from all possible fail scenarios. 2353 * 2354 * Warm reset doesn't always work on first try so attempt it a few 2355 * times before giving up. 2356 */ 2357 for (i = 0; i < ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS; i++) { 2358 ret = ath10k_pci_warm_reset(ar); 2359 if (ret) { 2360 ath10k_warn(ar, "failed to warm reset attempt %d of %d: %d\n", 2361 i + 1, ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS, 2362 ret); 2363 continue; 2364 } 2365 2366 /* FIXME: Sometimes copy engine doesn't recover after warm 2367 * reset. In most cases this needs cold reset. In some of these 2368 * cases the device is in such a state that a cold reset may 2369 * lock up the host. 2370 * 2371 * Reading any host interest register via copy engine is 2372 * sufficient to verify if device is capable of booting 2373 * firmware blob. 2374 */ 2375 ret = ath10k_pci_init_pipes(ar); 2376 if (ret) { 2377 ath10k_warn(ar, "failed to init copy engine: %d\n", 2378 ret); 2379 continue; 2380 } 2381 2382 ret = ath10k_pci_diag_read32(ar, QCA988X_HOST_INTEREST_ADDRESS, 2383 &val); 2384 if (ret) { 2385 ath10k_warn(ar, "failed to poke copy engine: %d\n", 2386 ret); 2387 continue; 2388 } 2389 2390 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot chip reset complete (warm)\n"); 2391 return 0; 2392 } 2393 2394 if (ath10k_pci_reset_mode == ATH10K_PCI_RESET_WARM_ONLY) { 2395 ath10k_warn(ar, "refusing cold reset as requested\n"); 2396 return -EPERM; 2397 } 2398 2399 ret = ath10k_pci_cold_reset(ar); 2400 if (ret) { 2401 ath10k_warn(ar, "failed to cold reset: %d\n", ret); 2402 return ret; 2403 } 2404 2405 ret = ath10k_pci_wait_for_target_init(ar); 2406 if (ret) { 2407 ath10k_warn(ar, "failed to wait for target after cold reset: %d\n", 2408 ret); 2409 return ret; 2410 } 2411 2412 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca988x chip reset complete (cold)\n"); 2413 2414 return 0; 2415 } 2416 2417 static int ath10k_pci_qca6174_chip_reset(struct ath10k *ar) 2418 { 2419 int ret; 2420 2421 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset\n"); 2422 2423 /* FIXME: QCA6174 requires cold + warm reset to work. */ 2424 2425 ret = ath10k_pci_cold_reset(ar); 2426 if (ret) { 2427 ath10k_warn(ar, "failed to cold reset: %d\n", ret); 2428 return ret; 2429 } 2430 2431 ret = ath10k_pci_wait_for_target_init(ar); 2432 if (ret) { 2433 ath10k_warn(ar, "failed to wait for target after cold reset: %d\n", 2434 ret); 2435 return ret; 2436 } 2437 2438 ret = ath10k_pci_warm_reset(ar); 2439 if (ret) { 2440 ath10k_warn(ar, "failed to warm reset: %d\n", ret); 2441 return ret; 2442 } 2443 2444 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset complete (cold)\n"); 2445 2446 return 0; 2447 } 2448 2449 static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar) 2450 { 2451 int ret; 2452 2453 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset\n"); 2454 2455 ret = ath10k_pci_cold_reset(ar); 2456 if (ret) { 2457 ath10k_warn(ar, "failed to cold reset: %d\n", ret); 2458 return ret; 2459 } 2460 2461 ret = ath10k_pci_wait_for_target_init(ar); 2462 if (ret) { 2463 ath10k_warn(ar, "failed to wait for target after cold reset: %d\n", 2464 ret); 2465 return ret; 2466 } 2467 2468 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset complete (cold)\n"); 2469 2470 return 0; 2471 } 2472 2473 static int ath10k_pci_chip_reset(struct ath10k *ar) 2474 { 2475 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 2476 2477 if (WARN_ON(!ar_pci->pci_hard_reset)) 2478 return -ENOTSUPP; 2479 2480 return ar_pci->pci_hard_reset(ar); 2481 } 2482 2483 static int ath10k_pci_hif_power_up(struct ath10k *ar) 2484 { 2485 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 2486 int ret; 2487 2488 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power up\n"); 2489 2490 pcie_capability_read_word(ar_pci->pdev, PCI_EXP_LNKCTL, 2491 &ar_pci->link_ctl); 2492 pcie_capability_write_word(ar_pci->pdev, PCI_EXP_LNKCTL, 2493 ar_pci->link_ctl & ~PCI_EXP_LNKCTL_ASPMC); 2494 2495 /* 2496 * Bring the target up cleanly. 2497 * 2498 * The target may be in an undefined state with an AUX-powered Target 2499 * and a Host in WoW mode. If the Host crashes, loses power, or is 2500 * restarted (without unloading the driver) then the Target is left 2501 * (aux) powered and running. On a subsequent driver load, the Target 2502 * is in an unexpected state. We try to catch that here in order to 2503 * reset the Target and retry the probe. 2504 */ 2505 ret = ath10k_pci_chip_reset(ar); 2506 if (ret) { 2507 if (ath10k_pci_has_fw_crashed(ar)) { 2508 ath10k_warn(ar, "firmware crashed during chip reset\n"); 2509 ath10k_pci_fw_crashed_clear(ar); 2510 ath10k_pci_fw_crashed_dump(ar); 2511 } 2512 2513 ath10k_err(ar, "failed to reset chip: %d\n", ret); 2514 goto err_sleep; 2515 } 2516 2517 ret = ath10k_pci_init_pipes(ar); 2518 if (ret) { 2519 ath10k_err(ar, "failed to initialize CE: %d\n", ret); 2520 goto err_sleep; 2521 } 2522 2523 ret = ath10k_pci_init_config(ar); 2524 if (ret) { 2525 ath10k_err(ar, "failed to setup init config: %d\n", ret); 2526 goto err_ce; 2527 } 2528 2529 ret = ath10k_pci_wake_target_cpu(ar); 2530 if (ret) { 2531 ath10k_err(ar, "could not wake up target CPU: %d\n", ret); 2532 goto err_ce; 2533 } 2534 napi_enable(&ar->napi); 2535 2536 return 0; 2537 2538 err_ce: 2539 ath10k_pci_ce_deinit(ar); 2540 2541 err_sleep: 2542 return ret; 2543 } 2544 2545 void ath10k_pci_hif_power_down(struct ath10k *ar) 2546 { 2547 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power down\n"); 2548 2549 /* Currently hif_power_up performs effectively a reset and hif_stop 2550 * resets the chip as well so there's no point in resetting here. 2551 */ 2552 } 2553 2554 #ifdef CONFIG_PM 2555 2556 static int ath10k_pci_hif_suspend(struct ath10k *ar) 2557 { 2558 /* The grace timer can still be counting down and ar->ps_awake be true. 2559 * It is known that the device may be asleep after resuming regardless 2560 * of the SoC powersave state before suspending. Hence make sure the 2561 * device is asleep before proceeding. 2562 */ 2563 ath10k_pci_sleep_sync(ar); 2564 2565 return 0; 2566 } 2567 2568 static int ath10k_pci_hif_resume(struct ath10k *ar) 2569 { 2570 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 2571 struct pci_dev *pdev = ar_pci->pdev; 2572 u32 val; 2573 int ret = 0; 2574 2575 ret = ath10k_pci_force_wake(ar); 2576 if (ret) { 2577 ath10k_err(ar, "failed to wake up target: %d\n", ret); 2578 return ret; 2579 } 2580 2581 /* Suspend/Resume resets the PCI configuration space, so we have to 2582 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries 2583 * from interfering with C3 CPU state. pci_restore_state won't help 2584 * here since it only restores the first 64 bytes pci config header. 2585 */ 2586 pci_read_config_dword(pdev, 0x40, &val); 2587 if ((val & 0x0000ff00) != 0) 2588 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff); 2589 2590 return ret; 2591 } 2592 #endif 2593 2594 static bool ath10k_pci_validate_cal(void *data, size_t size) 2595 { 2596 __le16 *cal_words = data; 2597 u16 checksum = 0; 2598 size_t i; 2599 2600 if (size % 2 != 0) 2601 return false; 2602 2603 for (i = 0; i < size / 2; i++) 2604 checksum ^= le16_to_cpu(cal_words[i]); 2605 2606 return checksum == 0xffff; 2607 } 2608 2609 static void ath10k_pci_enable_eeprom(struct ath10k *ar) 2610 { 2611 /* Enable SI clock */ 2612 ath10k_pci_soc_write32(ar, CLOCK_CONTROL_OFFSET, 0x0); 2613 2614 /* Configure GPIOs for I2C operation */ 2615 ath10k_pci_write32(ar, 2616 GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET + 2617 4 * QCA9887_1_0_I2C_SDA_GPIO_PIN, 2618 SM(QCA9887_1_0_I2C_SDA_PIN_CONFIG, 2619 GPIO_PIN0_CONFIG) | 2620 SM(1, GPIO_PIN0_PAD_PULL)); 2621 2622 ath10k_pci_write32(ar, 2623 GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET + 2624 4 * QCA9887_1_0_SI_CLK_GPIO_PIN, 2625 SM(QCA9887_1_0_SI_CLK_PIN_CONFIG, GPIO_PIN0_CONFIG) | 2626 SM(1, GPIO_PIN0_PAD_PULL)); 2627 2628 ath10k_pci_write32(ar, 2629 GPIO_BASE_ADDRESS + 2630 QCA9887_1_0_GPIO_ENABLE_W1TS_LOW_ADDRESS, 2631 1u << QCA9887_1_0_SI_CLK_GPIO_PIN); 2632 2633 /* In Swift ASIC - EEPROM clock will be (110MHz/512) = 214KHz */ 2634 ath10k_pci_write32(ar, 2635 SI_BASE_ADDRESS + SI_CONFIG_OFFSET, 2636 SM(1, SI_CONFIG_ERR_INT) | 2637 SM(1, SI_CONFIG_BIDIR_OD_DATA) | 2638 SM(1, SI_CONFIG_I2C) | 2639 SM(1, SI_CONFIG_POS_SAMPLE) | 2640 SM(1, SI_CONFIG_INACTIVE_DATA) | 2641 SM(1, SI_CONFIG_INACTIVE_CLK) | 2642 SM(8, SI_CONFIG_DIVIDER)); 2643 } 2644 2645 static int ath10k_pci_read_eeprom(struct ath10k *ar, u16 addr, u8 *out) 2646 { 2647 u32 reg; 2648 int wait_limit; 2649 2650 /* set device select byte and for the read operation */ 2651 reg = QCA9887_EEPROM_SELECT_READ | 2652 SM(addr, QCA9887_EEPROM_ADDR_LO) | 2653 SM(addr >> 8, QCA9887_EEPROM_ADDR_HI); 2654 ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_TX_DATA0_OFFSET, reg); 2655 2656 /* write transmit data, transfer length, and START bit */ 2657 ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET, 2658 SM(1, SI_CS_START) | SM(1, SI_CS_RX_CNT) | 2659 SM(4, SI_CS_TX_CNT)); 2660 2661 /* wait max 1 sec */ 2662 wait_limit = 100000; 2663 2664 /* wait for SI_CS_DONE_INT */ 2665 do { 2666 reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET); 2667 if (MS(reg, SI_CS_DONE_INT)) 2668 break; 2669 2670 wait_limit--; 2671 udelay(10); 2672 } while (wait_limit > 0); 2673 2674 if (!MS(reg, SI_CS_DONE_INT)) { 2675 ath10k_err(ar, "timeout while reading device EEPROM at %04x\n", 2676 addr); 2677 return -ETIMEDOUT; 2678 } 2679 2680 /* clear SI_CS_DONE_INT */ 2681 ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET, reg); 2682 2683 if (MS(reg, SI_CS_DONE_ERR)) { 2684 ath10k_err(ar, "failed to read device EEPROM at %04x\n", addr); 2685 return -EIO; 2686 } 2687 2688 /* extract receive data */ 2689 reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_RX_DATA0_OFFSET); 2690 *out = reg; 2691 2692 return 0; 2693 } 2694 2695 static int ath10k_pci_hif_fetch_cal_eeprom(struct ath10k *ar, void **data, 2696 size_t *data_len) 2697 { 2698 u8 *caldata = NULL; 2699 size_t calsize, i; 2700 int ret; 2701 2702 if (!QCA_REV_9887(ar)) 2703 return -EOPNOTSUPP; 2704 2705 calsize = ar->hw_params.cal_data_len; 2706 caldata = kmalloc(calsize, GFP_KERNEL); 2707 if (!caldata) 2708 return -ENOMEM; 2709 2710 ath10k_pci_enable_eeprom(ar); 2711 2712 for (i = 0; i < calsize; i++) { 2713 ret = ath10k_pci_read_eeprom(ar, i, &caldata[i]); 2714 if (ret) 2715 goto err_free; 2716 } 2717 2718 if (!ath10k_pci_validate_cal(caldata, calsize)) 2719 goto err_free; 2720 2721 *data = caldata; 2722 *data_len = calsize; 2723 2724 return 0; 2725 2726 err_free: 2727 kfree(caldata); 2728 2729 return -EINVAL; 2730 } 2731 2732 static const struct ath10k_hif_ops ath10k_pci_hif_ops = { 2733 .tx_sg = ath10k_pci_hif_tx_sg, 2734 .diag_read = ath10k_pci_hif_diag_read, 2735 .diag_write = ath10k_pci_diag_write_mem, 2736 .exchange_bmi_msg = ath10k_pci_hif_exchange_bmi_msg, 2737 .start = ath10k_pci_hif_start, 2738 .stop = ath10k_pci_hif_stop, 2739 .map_service_to_pipe = ath10k_pci_hif_map_service_to_pipe, 2740 .get_default_pipe = ath10k_pci_hif_get_default_pipe, 2741 .send_complete_check = ath10k_pci_hif_send_complete_check, 2742 .get_free_queue_number = ath10k_pci_hif_get_free_queue_number, 2743 .power_up = ath10k_pci_hif_power_up, 2744 .power_down = ath10k_pci_hif_power_down, 2745 .read32 = ath10k_pci_read32, 2746 .write32 = ath10k_pci_write32, 2747 #ifdef CONFIG_PM 2748 .suspend = ath10k_pci_hif_suspend, 2749 .resume = ath10k_pci_hif_resume, 2750 #endif 2751 .fetch_cal_eeprom = ath10k_pci_hif_fetch_cal_eeprom, 2752 }; 2753 2754 /* 2755 * Top-level interrupt handler for all PCI interrupts from a Target. 2756 * When a block of MSI interrupts is allocated, this top-level handler 2757 * is not used; instead, we directly call the correct sub-handler. 2758 */ 2759 static irqreturn_t ath10k_pci_interrupt_handler(int irq, void *arg) 2760 { 2761 struct ath10k *ar = arg; 2762 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 2763 int ret; 2764 2765 if (ath10k_pci_has_device_gone(ar)) 2766 return IRQ_NONE; 2767 2768 ret = ath10k_pci_force_wake(ar); 2769 if (ret) { 2770 ath10k_warn(ar, "failed to wake device up on irq: %d\n", ret); 2771 return IRQ_NONE; 2772 } 2773 2774 if ((ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY) && 2775 !ath10k_pci_irq_pending(ar)) 2776 return IRQ_NONE; 2777 2778 ath10k_pci_disable_and_clear_legacy_irq(ar); 2779 ath10k_pci_irq_msi_fw_mask(ar); 2780 napi_schedule(&ar->napi); 2781 2782 return IRQ_HANDLED; 2783 } 2784 2785 static int ath10k_pci_napi_poll(struct napi_struct *ctx, int budget) 2786 { 2787 struct ath10k *ar = container_of(ctx, struct ath10k, napi); 2788 int done = 0; 2789 2790 if (ath10k_pci_has_fw_crashed(ar)) { 2791 ath10k_pci_fw_crashed_clear(ar); 2792 ath10k_pci_fw_crashed_dump(ar); 2793 napi_complete(ctx); 2794 return done; 2795 } 2796 2797 ath10k_ce_per_engine_service_any(ar); 2798 2799 done = ath10k_htt_txrx_compl_task(ar, budget); 2800 2801 if (done < budget) { 2802 napi_complete(ctx); 2803 /* In case of MSI, it is possible that interrupts are received 2804 * while NAPI poll is inprogress. So pending interrupts that are 2805 * received after processing all copy engine pipes by NAPI poll 2806 * will not be handled again. This is causing failure to 2807 * complete boot sequence in x86 platform. So before enabling 2808 * interrupts safer to check for pending interrupts for 2809 * immediate servicing. 2810 */ 2811 if (CE_INTERRUPT_SUMMARY(ar)) { 2812 napi_reschedule(ctx); 2813 goto out; 2814 } 2815 ath10k_pci_enable_legacy_irq(ar); 2816 ath10k_pci_irq_msi_fw_unmask(ar); 2817 } 2818 2819 out: 2820 return done; 2821 } 2822 2823 static int ath10k_pci_request_irq_msi(struct ath10k *ar) 2824 { 2825 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 2826 int ret; 2827 2828 ret = request_irq(ar_pci->pdev->irq, 2829 ath10k_pci_interrupt_handler, 2830 IRQF_SHARED, "ath10k_pci", ar); 2831 if (ret) { 2832 ath10k_warn(ar, "failed to request MSI irq %d: %d\n", 2833 ar_pci->pdev->irq, ret); 2834 return ret; 2835 } 2836 2837 return 0; 2838 } 2839 2840 static int ath10k_pci_request_irq_legacy(struct ath10k *ar) 2841 { 2842 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 2843 int ret; 2844 2845 ret = request_irq(ar_pci->pdev->irq, 2846 ath10k_pci_interrupt_handler, 2847 IRQF_SHARED, "ath10k_pci", ar); 2848 if (ret) { 2849 ath10k_warn(ar, "failed to request legacy irq %d: %d\n", 2850 ar_pci->pdev->irq, ret); 2851 return ret; 2852 } 2853 2854 return 0; 2855 } 2856 2857 static int ath10k_pci_request_irq(struct ath10k *ar) 2858 { 2859 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 2860 2861 switch (ar_pci->oper_irq_mode) { 2862 case ATH10K_PCI_IRQ_LEGACY: 2863 return ath10k_pci_request_irq_legacy(ar); 2864 case ATH10K_PCI_IRQ_MSI: 2865 return ath10k_pci_request_irq_msi(ar); 2866 default: 2867 return -EINVAL; 2868 } 2869 } 2870 2871 static void ath10k_pci_free_irq(struct ath10k *ar) 2872 { 2873 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 2874 2875 free_irq(ar_pci->pdev->irq, ar); 2876 } 2877 2878 void ath10k_pci_init_napi(struct ath10k *ar) 2879 { 2880 netif_napi_add(&ar->napi_dev, &ar->napi, ath10k_pci_napi_poll, 2881 ATH10K_NAPI_BUDGET); 2882 } 2883 2884 static int ath10k_pci_init_irq(struct ath10k *ar) 2885 { 2886 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 2887 int ret; 2888 2889 ath10k_pci_init_napi(ar); 2890 2891 if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_AUTO) 2892 ath10k_info(ar, "limiting irq mode to: %d\n", 2893 ath10k_pci_irq_mode); 2894 2895 /* Try MSI */ 2896 if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_LEGACY) { 2897 ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_MSI; 2898 ret = pci_enable_msi(ar_pci->pdev); 2899 if (ret == 0) 2900 return 0; 2901 2902 /* fall-through */ 2903 } 2904 2905 /* Try legacy irq 2906 * 2907 * A potential race occurs here: The CORE_BASE write 2908 * depends on target correctly decoding AXI address but 2909 * host won't know when target writes BAR to CORE_CTRL. 2910 * This write might get lost if target has NOT written BAR. 2911 * For now, fix the race by repeating the write in below 2912 * synchronization checking. */ 2913 ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_LEGACY; 2914 2915 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS, 2916 PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL); 2917 2918 return 0; 2919 } 2920 2921 static void ath10k_pci_deinit_irq_legacy(struct ath10k *ar) 2922 { 2923 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS, 2924 0); 2925 } 2926 2927 static int ath10k_pci_deinit_irq(struct ath10k *ar) 2928 { 2929 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 2930 2931 switch (ar_pci->oper_irq_mode) { 2932 case ATH10K_PCI_IRQ_LEGACY: 2933 ath10k_pci_deinit_irq_legacy(ar); 2934 break; 2935 default: 2936 pci_disable_msi(ar_pci->pdev); 2937 break; 2938 } 2939 2940 return 0; 2941 } 2942 2943 int ath10k_pci_wait_for_target_init(struct ath10k *ar) 2944 { 2945 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 2946 unsigned long timeout; 2947 u32 val; 2948 2949 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot waiting target to initialise\n"); 2950 2951 timeout = jiffies + msecs_to_jiffies(ATH10K_PCI_TARGET_WAIT); 2952 2953 do { 2954 val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS); 2955 2956 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target indicator %x\n", 2957 val); 2958 2959 /* target should never return this */ 2960 if (val == 0xffffffff) 2961 continue; 2962 2963 /* the device has crashed so don't bother trying anymore */ 2964 if (val & FW_IND_EVENT_PENDING) 2965 break; 2966 2967 if (val & FW_IND_INITIALIZED) 2968 break; 2969 2970 if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY) 2971 /* Fix potential race by repeating CORE_BASE writes */ 2972 ath10k_pci_enable_legacy_irq(ar); 2973 2974 mdelay(10); 2975 } while (time_before(jiffies, timeout)); 2976 2977 ath10k_pci_disable_and_clear_legacy_irq(ar); 2978 ath10k_pci_irq_msi_fw_mask(ar); 2979 2980 if (val == 0xffffffff) { 2981 ath10k_err(ar, "failed to read device register, device is gone\n"); 2982 return -EIO; 2983 } 2984 2985 if (val & FW_IND_EVENT_PENDING) { 2986 ath10k_warn(ar, "device has crashed during init\n"); 2987 return -ECOMM; 2988 } 2989 2990 if (!(val & FW_IND_INITIALIZED)) { 2991 ath10k_err(ar, "failed to receive initialized event from target: %08x\n", 2992 val); 2993 return -ETIMEDOUT; 2994 } 2995 2996 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target initialised\n"); 2997 return 0; 2998 } 2999 3000 static int ath10k_pci_cold_reset(struct ath10k *ar) 3001 { 3002 u32 val; 3003 3004 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset\n"); 3005 3006 spin_lock_bh(&ar->data_lock); 3007 3008 ar->stats.fw_cold_reset_counter++; 3009 3010 spin_unlock_bh(&ar->data_lock); 3011 3012 /* Put Target, including PCIe, into RESET. */ 3013 val = ath10k_pci_reg_read32(ar, SOC_GLOBAL_RESET_ADDRESS); 3014 val |= 1; 3015 ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val); 3016 3017 /* After writing into SOC_GLOBAL_RESET to put device into 3018 * reset and pulling out of reset pcie may not be stable 3019 * for any immediate pcie register access and cause bus error, 3020 * add delay before any pcie access request to fix this issue. 3021 */ 3022 msleep(20); 3023 3024 /* Pull Target, including PCIe, out of RESET. */ 3025 val &= ~1; 3026 ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val); 3027 3028 msleep(20); 3029 3030 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset complete\n"); 3031 3032 return 0; 3033 } 3034 3035 static int ath10k_pci_claim(struct ath10k *ar) 3036 { 3037 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 3038 struct pci_dev *pdev = ar_pci->pdev; 3039 int ret; 3040 3041 pci_set_drvdata(pdev, ar); 3042 3043 ret = pci_enable_device(pdev); 3044 if (ret) { 3045 ath10k_err(ar, "failed to enable pci device: %d\n", ret); 3046 return ret; 3047 } 3048 3049 ret = pci_request_region(pdev, BAR_NUM, "ath"); 3050 if (ret) { 3051 ath10k_err(ar, "failed to request region BAR%d: %d\n", BAR_NUM, 3052 ret); 3053 goto err_device; 3054 } 3055 3056 /* Target expects 32 bit DMA. Enforce it. */ 3057 ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 3058 if (ret) { 3059 ath10k_err(ar, "failed to set dma mask to 32-bit: %d\n", ret); 3060 goto err_region; 3061 } 3062 3063 ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); 3064 if (ret) { 3065 ath10k_err(ar, "failed to set consistent dma mask to 32-bit: %d\n", 3066 ret); 3067 goto err_region; 3068 } 3069 3070 pci_set_master(pdev); 3071 3072 /* Arrange for access to Target SoC registers. */ 3073 ar_pci->mem_len = pci_resource_len(pdev, BAR_NUM); 3074 ar_pci->mem = pci_iomap(pdev, BAR_NUM, 0); 3075 if (!ar_pci->mem) { 3076 ath10k_err(ar, "failed to iomap BAR%d\n", BAR_NUM); 3077 ret = -EIO; 3078 goto err_master; 3079 } 3080 3081 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot pci_mem 0x%pK\n", ar_pci->mem); 3082 return 0; 3083 3084 err_master: 3085 pci_clear_master(pdev); 3086 3087 err_region: 3088 pci_release_region(pdev, BAR_NUM); 3089 3090 err_device: 3091 pci_disable_device(pdev); 3092 3093 return ret; 3094 } 3095 3096 static void ath10k_pci_release(struct ath10k *ar) 3097 { 3098 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 3099 struct pci_dev *pdev = ar_pci->pdev; 3100 3101 pci_iounmap(pdev, ar_pci->mem); 3102 pci_release_region(pdev, BAR_NUM); 3103 pci_clear_master(pdev); 3104 pci_disable_device(pdev); 3105 } 3106 3107 static bool ath10k_pci_chip_is_supported(u32 dev_id, u32 chip_id) 3108 { 3109 const struct ath10k_pci_supp_chip *supp_chip; 3110 int i; 3111 u32 rev_id = MS(chip_id, SOC_CHIP_ID_REV); 3112 3113 for (i = 0; i < ARRAY_SIZE(ath10k_pci_supp_chips); i++) { 3114 supp_chip = &ath10k_pci_supp_chips[i]; 3115 3116 if (supp_chip->dev_id == dev_id && 3117 supp_chip->rev_id == rev_id) 3118 return true; 3119 } 3120 3121 return false; 3122 } 3123 3124 int ath10k_pci_setup_resource(struct ath10k *ar) 3125 { 3126 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 3127 int ret; 3128 3129 spin_lock_init(&ar_pci->ce_lock); 3130 spin_lock_init(&ar_pci->ps_lock); 3131 3132 setup_timer(&ar_pci->rx_post_retry, ath10k_pci_rx_replenish_retry, 3133 (unsigned long)ar); 3134 3135 if (QCA_REV_6174(ar)) 3136 ath10k_pci_override_ce_config(ar); 3137 3138 ret = ath10k_pci_alloc_pipes(ar); 3139 if (ret) { 3140 ath10k_err(ar, "failed to allocate copy engine pipes: %d\n", 3141 ret); 3142 return ret; 3143 } 3144 3145 return 0; 3146 } 3147 3148 void ath10k_pci_release_resource(struct ath10k *ar) 3149 { 3150 ath10k_pci_rx_retry_sync(ar); 3151 netif_napi_del(&ar->napi); 3152 ath10k_pci_ce_deinit(ar); 3153 ath10k_pci_free_pipes(ar); 3154 } 3155 3156 static const struct ath10k_bus_ops ath10k_pci_bus_ops = { 3157 .read32 = ath10k_bus_pci_read32, 3158 .write32 = ath10k_bus_pci_write32, 3159 .get_num_banks = ath10k_pci_get_num_banks, 3160 }; 3161 3162 static int ath10k_pci_probe(struct pci_dev *pdev, 3163 const struct pci_device_id *pci_dev) 3164 { 3165 int ret = 0; 3166 struct ath10k *ar; 3167 struct ath10k_pci *ar_pci; 3168 enum ath10k_hw_rev hw_rev; 3169 u32 chip_id; 3170 bool pci_ps; 3171 int (*pci_soft_reset)(struct ath10k *ar); 3172 int (*pci_hard_reset)(struct ath10k *ar); 3173 3174 switch (pci_dev->device) { 3175 case QCA988X_2_0_DEVICE_ID: 3176 hw_rev = ATH10K_HW_QCA988X; 3177 pci_ps = false; 3178 pci_soft_reset = ath10k_pci_warm_reset; 3179 pci_hard_reset = ath10k_pci_qca988x_chip_reset; 3180 break; 3181 case QCA9887_1_0_DEVICE_ID: 3182 hw_rev = ATH10K_HW_QCA9887; 3183 pci_ps = false; 3184 pci_soft_reset = ath10k_pci_warm_reset; 3185 pci_hard_reset = ath10k_pci_qca988x_chip_reset; 3186 break; 3187 case QCA6164_2_1_DEVICE_ID: 3188 case QCA6174_2_1_DEVICE_ID: 3189 hw_rev = ATH10K_HW_QCA6174; 3190 pci_ps = true; 3191 pci_soft_reset = ath10k_pci_warm_reset; 3192 pci_hard_reset = ath10k_pci_qca6174_chip_reset; 3193 break; 3194 case QCA99X0_2_0_DEVICE_ID: 3195 hw_rev = ATH10K_HW_QCA99X0; 3196 pci_ps = false; 3197 pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset; 3198 pci_hard_reset = ath10k_pci_qca99x0_chip_reset; 3199 break; 3200 case QCA9984_1_0_DEVICE_ID: 3201 hw_rev = ATH10K_HW_QCA9984; 3202 pci_ps = false; 3203 pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset; 3204 pci_hard_reset = ath10k_pci_qca99x0_chip_reset; 3205 break; 3206 case QCA9888_2_0_DEVICE_ID: 3207 hw_rev = ATH10K_HW_QCA9888; 3208 pci_ps = false; 3209 pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset; 3210 pci_hard_reset = ath10k_pci_qca99x0_chip_reset; 3211 break; 3212 case QCA9377_1_0_DEVICE_ID: 3213 hw_rev = ATH10K_HW_QCA9377; 3214 pci_ps = true; 3215 pci_soft_reset = NULL; 3216 pci_hard_reset = ath10k_pci_qca6174_chip_reset; 3217 break; 3218 default: 3219 WARN_ON(1); 3220 return -ENOTSUPP; 3221 } 3222 3223 ar = ath10k_core_create(sizeof(*ar_pci), &pdev->dev, ATH10K_BUS_PCI, 3224 hw_rev, &ath10k_pci_hif_ops); 3225 if (!ar) { 3226 dev_err(&pdev->dev, "failed to allocate core\n"); 3227 return -ENOMEM; 3228 } 3229 3230 ath10k_dbg(ar, ATH10K_DBG_BOOT, "pci probe %04x:%04x %04x:%04x\n", 3231 pdev->vendor, pdev->device, 3232 pdev->subsystem_vendor, pdev->subsystem_device); 3233 3234 ar_pci = ath10k_pci_priv(ar); 3235 ar_pci->pdev = pdev; 3236 ar_pci->dev = &pdev->dev; 3237 ar_pci->ar = ar; 3238 ar->dev_id = pci_dev->device; 3239 ar_pci->pci_ps = pci_ps; 3240 ar_pci->bus_ops = &ath10k_pci_bus_ops; 3241 ar_pci->pci_soft_reset = pci_soft_reset; 3242 ar_pci->pci_hard_reset = pci_hard_reset; 3243 3244 ar->id.vendor = pdev->vendor; 3245 ar->id.device = pdev->device; 3246 ar->id.subsystem_vendor = pdev->subsystem_vendor; 3247 ar->id.subsystem_device = pdev->subsystem_device; 3248 3249 setup_timer(&ar_pci->ps_timer, ath10k_pci_ps_timer, 3250 (unsigned long)ar); 3251 3252 ret = ath10k_pci_setup_resource(ar); 3253 if (ret) { 3254 ath10k_err(ar, "failed to setup resource: %d\n", ret); 3255 goto err_core_destroy; 3256 } 3257 3258 ret = ath10k_pci_claim(ar); 3259 if (ret) { 3260 ath10k_err(ar, "failed to claim device: %d\n", ret); 3261 goto err_free_pipes; 3262 } 3263 3264 ret = ath10k_pci_force_wake(ar); 3265 if (ret) { 3266 ath10k_warn(ar, "failed to wake up device : %d\n", ret); 3267 goto err_sleep; 3268 } 3269 3270 ath10k_pci_ce_deinit(ar); 3271 ath10k_pci_irq_disable(ar); 3272 3273 ret = ath10k_pci_init_irq(ar); 3274 if (ret) { 3275 ath10k_err(ar, "failed to init irqs: %d\n", ret); 3276 goto err_sleep; 3277 } 3278 3279 ath10k_info(ar, "pci irq %s oper_irq_mode %d irq_mode %d reset_mode %d\n", 3280 ath10k_pci_get_irq_method(ar), ar_pci->oper_irq_mode, 3281 ath10k_pci_irq_mode, ath10k_pci_reset_mode); 3282 3283 ret = ath10k_pci_request_irq(ar); 3284 if (ret) { 3285 ath10k_warn(ar, "failed to request irqs: %d\n", ret); 3286 goto err_deinit_irq; 3287 } 3288 3289 ret = ath10k_pci_chip_reset(ar); 3290 if (ret) { 3291 ath10k_err(ar, "failed to reset chip: %d\n", ret); 3292 goto err_free_irq; 3293 } 3294 3295 chip_id = ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS); 3296 if (chip_id == 0xffffffff) { 3297 ath10k_err(ar, "failed to get chip id\n"); 3298 goto err_free_irq; 3299 } 3300 3301 if (!ath10k_pci_chip_is_supported(pdev->device, chip_id)) { 3302 ath10k_err(ar, "device %04x with chip_id %08x isn't supported\n", 3303 pdev->device, chip_id); 3304 goto err_free_irq; 3305 } 3306 3307 ret = ath10k_core_register(ar, chip_id); 3308 if (ret) { 3309 ath10k_err(ar, "failed to register driver core: %d\n", ret); 3310 goto err_free_irq; 3311 } 3312 3313 return 0; 3314 3315 err_free_irq: 3316 ath10k_pci_free_irq(ar); 3317 ath10k_pci_rx_retry_sync(ar); 3318 3319 err_deinit_irq: 3320 ath10k_pci_deinit_irq(ar); 3321 3322 err_sleep: 3323 ath10k_pci_sleep_sync(ar); 3324 ath10k_pci_release(ar); 3325 3326 err_free_pipes: 3327 ath10k_pci_free_pipes(ar); 3328 3329 err_core_destroy: 3330 ath10k_core_destroy(ar); 3331 3332 return ret; 3333 } 3334 3335 static void ath10k_pci_remove(struct pci_dev *pdev) 3336 { 3337 struct ath10k *ar = pci_get_drvdata(pdev); 3338 struct ath10k_pci *ar_pci; 3339 3340 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci remove\n"); 3341 3342 if (!ar) 3343 return; 3344 3345 ar_pci = ath10k_pci_priv(ar); 3346 3347 if (!ar_pci) 3348 return; 3349 3350 ath10k_core_unregister(ar); 3351 ath10k_pci_free_irq(ar); 3352 ath10k_pci_deinit_irq(ar); 3353 ath10k_pci_release_resource(ar); 3354 ath10k_pci_sleep_sync(ar); 3355 ath10k_pci_release(ar); 3356 ath10k_core_destroy(ar); 3357 } 3358 3359 MODULE_DEVICE_TABLE(pci, ath10k_pci_id_table); 3360 3361 static struct pci_driver ath10k_pci_driver = { 3362 .name = "ath10k_pci", 3363 .id_table = ath10k_pci_id_table, 3364 .probe = ath10k_pci_probe, 3365 .remove = ath10k_pci_remove, 3366 }; 3367 3368 static int __init ath10k_pci_init(void) 3369 { 3370 int ret; 3371 3372 ret = pci_register_driver(&ath10k_pci_driver); 3373 if (ret) 3374 printk(KERN_ERR "failed to register ath10k pci driver: %d\n", 3375 ret); 3376 3377 ret = ath10k_ahb_init(); 3378 if (ret) 3379 printk(KERN_ERR "ahb init failed: %d\n", ret); 3380 3381 return ret; 3382 } 3383 module_init(ath10k_pci_init); 3384 3385 static void __exit ath10k_pci_exit(void) 3386 { 3387 pci_unregister_driver(&ath10k_pci_driver); 3388 ath10k_ahb_exit(); 3389 } 3390 3391 module_exit(ath10k_pci_exit); 3392 3393 MODULE_AUTHOR("Qualcomm Atheros"); 3394 MODULE_DESCRIPTION("Driver support for Qualcomm Atheros 802.11ac WLAN PCIe/AHB devices"); 3395 MODULE_LICENSE("Dual BSD/GPL"); 3396 3397 /* QCA988x 2.0 firmware files */ 3398 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API2_FILE); 3399 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API3_FILE); 3400 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API4_FILE); 3401 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API5_FILE); 3402 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_BOARD_DATA_FILE); 3403 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_BOARD_API2_FILE); 3404 3405 /* QCA9887 1.0 firmware files */ 3406 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE); 3407 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" QCA9887_HW_1_0_BOARD_DATA_FILE); 3408 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_BOARD_API2_FILE); 3409 3410 /* QCA6174 2.1 firmware files */ 3411 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API4_FILE); 3412 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API5_FILE); 3413 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" QCA6174_HW_2_1_BOARD_DATA_FILE); 3414 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_BOARD_API2_FILE); 3415 3416 /* QCA6174 3.1 firmware files */ 3417 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API4_FILE); 3418 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API5_FILE); 3419 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" QCA6174_HW_3_0_BOARD_DATA_FILE); 3420 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_BOARD_API2_FILE); 3421 3422 /* QCA9377 1.0 firmware files */ 3423 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE); 3424 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" QCA9377_HW_1_0_BOARD_DATA_FILE); 3425