xref: /openbmc/linux/drivers/net/wireless/ath/ath10k/pci.c (revision 2e7c04aec86758e0adfcad4a24c86593b45807a3)
1 /*
2  * Copyright (c) 2005-2011 Atheros Communications Inc.
3  * Copyright (c) 2011-2017 Qualcomm Atheros, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17 
18 #include <linux/pci.h>
19 #include <linux/module.h>
20 #include <linux/interrupt.h>
21 #include <linux/spinlock.h>
22 #include <linux/bitops.h>
23 
24 #include "core.h"
25 #include "debug.h"
26 #include "coredump.h"
27 
28 #include "targaddrs.h"
29 #include "bmi.h"
30 
31 #include "hif.h"
32 #include "htc.h"
33 
34 #include "ce.h"
35 #include "pci.h"
36 
37 enum ath10k_pci_reset_mode {
38 	ATH10K_PCI_RESET_AUTO = 0,
39 	ATH10K_PCI_RESET_WARM_ONLY = 1,
40 };
41 
42 static unsigned int ath10k_pci_irq_mode = ATH10K_PCI_IRQ_AUTO;
43 static unsigned int ath10k_pci_reset_mode = ATH10K_PCI_RESET_AUTO;
44 
45 module_param_named(irq_mode, ath10k_pci_irq_mode, uint, 0644);
46 MODULE_PARM_DESC(irq_mode, "0: auto, 1: legacy, 2: msi (default: 0)");
47 
48 module_param_named(reset_mode, ath10k_pci_reset_mode, uint, 0644);
49 MODULE_PARM_DESC(reset_mode, "0: auto, 1: warm only (default: 0)");
50 
51 /* how long wait to wait for target to initialise, in ms */
52 #define ATH10K_PCI_TARGET_WAIT 3000
53 #define ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS 3
54 
55 /* Maximum number of bytes that can be handled atomically by
56  * diag read and write.
57  */
58 #define ATH10K_DIAG_TRANSFER_LIMIT	0x5000
59 
60 #define QCA99X0_PCIE_BAR0_START_REG    0x81030
61 #define QCA99X0_CPU_MEM_ADDR_REG       0x4d00c
62 #define QCA99X0_CPU_MEM_DATA_REG       0x4d010
63 
64 static const struct pci_device_id ath10k_pci_id_table[] = {
65 	/* PCI-E QCA988X V2 (Ubiquiti branded) */
66 	{ PCI_VDEVICE(UBIQUITI, QCA988X_2_0_DEVICE_ID_UBNT) },
67 
68 	{ PCI_VDEVICE(ATHEROS, QCA988X_2_0_DEVICE_ID) }, /* PCI-E QCA988X V2 */
69 	{ PCI_VDEVICE(ATHEROS, QCA6164_2_1_DEVICE_ID) }, /* PCI-E QCA6164 V2.1 */
70 	{ PCI_VDEVICE(ATHEROS, QCA6174_2_1_DEVICE_ID) }, /* PCI-E QCA6174 V2.1 */
71 	{ PCI_VDEVICE(ATHEROS, QCA99X0_2_0_DEVICE_ID) }, /* PCI-E QCA99X0 V2 */
72 	{ PCI_VDEVICE(ATHEROS, QCA9888_2_0_DEVICE_ID) }, /* PCI-E QCA9888 V2 */
73 	{ PCI_VDEVICE(ATHEROS, QCA9984_1_0_DEVICE_ID) }, /* PCI-E QCA9984 V1 */
74 	{ PCI_VDEVICE(ATHEROS, QCA9377_1_0_DEVICE_ID) }, /* PCI-E QCA9377 V1 */
75 	{ PCI_VDEVICE(ATHEROS, QCA9887_1_0_DEVICE_ID) }, /* PCI-E QCA9887 */
76 	{0}
77 };
78 
79 static const struct ath10k_pci_supp_chip ath10k_pci_supp_chips[] = {
80 	/* QCA988X pre 2.0 chips are not supported because they need some nasty
81 	 * hacks. ath10k doesn't have them and these devices crash horribly
82 	 * because of that.
83 	 */
84 	{ QCA988X_2_0_DEVICE_ID_UBNT, QCA988X_HW_2_0_CHIP_ID_REV },
85 	{ QCA988X_2_0_DEVICE_ID, QCA988X_HW_2_0_CHIP_ID_REV },
86 
87 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
88 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
89 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
90 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
91 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
92 
93 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
94 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
95 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
96 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
97 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
98 
99 	{ QCA99X0_2_0_DEVICE_ID, QCA99X0_HW_2_0_CHIP_ID_REV },
100 
101 	{ QCA9984_1_0_DEVICE_ID, QCA9984_HW_1_0_CHIP_ID_REV },
102 
103 	{ QCA9888_2_0_DEVICE_ID, QCA9888_HW_2_0_CHIP_ID_REV },
104 
105 	{ QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_0_CHIP_ID_REV },
106 	{ QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_1_CHIP_ID_REV },
107 
108 	{ QCA9887_1_0_DEVICE_ID, QCA9887_HW_1_0_CHIP_ID_REV },
109 };
110 
111 static void ath10k_pci_buffer_cleanup(struct ath10k *ar);
112 static int ath10k_pci_cold_reset(struct ath10k *ar);
113 static int ath10k_pci_safe_chip_reset(struct ath10k *ar);
114 static int ath10k_pci_init_irq(struct ath10k *ar);
115 static int ath10k_pci_deinit_irq(struct ath10k *ar);
116 static int ath10k_pci_request_irq(struct ath10k *ar);
117 static void ath10k_pci_free_irq(struct ath10k *ar);
118 static int ath10k_pci_bmi_wait(struct ath10k *ar,
119 			       struct ath10k_ce_pipe *tx_pipe,
120 			       struct ath10k_ce_pipe *rx_pipe,
121 			       struct bmi_xfer *xfer);
122 static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar);
123 static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state);
124 static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
125 static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state);
126 static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state);
127 static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
128 static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state);
129 
130 static struct ce_attr host_ce_config_wlan[] = {
131 	/* CE0: host->target HTC control and raw streams */
132 	{
133 		.flags = CE_ATTR_FLAGS,
134 		.src_nentries = 16,
135 		.src_sz_max = 256,
136 		.dest_nentries = 0,
137 		.send_cb = ath10k_pci_htc_tx_cb,
138 	},
139 
140 	/* CE1: target->host HTT + HTC control */
141 	{
142 		.flags = CE_ATTR_FLAGS,
143 		.src_nentries = 0,
144 		.src_sz_max = 2048,
145 		.dest_nentries = 512,
146 		.recv_cb = ath10k_pci_htt_htc_rx_cb,
147 	},
148 
149 	/* CE2: target->host WMI */
150 	{
151 		.flags = CE_ATTR_FLAGS,
152 		.src_nentries = 0,
153 		.src_sz_max = 2048,
154 		.dest_nentries = 128,
155 		.recv_cb = ath10k_pci_htc_rx_cb,
156 	},
157 
158 	/* CE3: host->target WMI */
159 	{
160 		.flags = CE_ATTR_FLAGS,
161 		.src_nentries = 32,
162 		.src_sz_max = 2048,
163 		.dest_nentries = 0,
164 		.send_cb = ath10k_pci_htc_tx_cb,
165 	},
166 
167 	/* CE4: host->target HTT */
168 	{
169 		.flags = CE_ATTR_FLAGS | CE_ATTR_DIS_INTR,
170 		.src_nentries = CE_HTT_H2T_MSG_SRC_NENTRIES,
171 		.src_sz_max = 256,
172 		.dest_nentries = 0,
173 		.send_cb = ath10k_pci_htt_tx_cb,
174 	},
175 
176 	/* CE5: target->host HTT (HIF->HTT) */
177 	{
178 		.flags = CE_ATTR_FLAGS,
179 		.src_nentries = 0,
180 		.src_sz_max = 512,
181 		.dest_nentries = 512,
182 		.recv_cb = ath10k_pci_htt_rx_cb,
183 	},
184 
185 	/* CE6: target autonomous hif_memcpy */
186 	{
187 		.flags = CE_ATTR_FLAGS,
188 		.src_nentries = 0,
189 		.src_sz_max = 0,
190 		.dest_nentries = 0,
191 	},
192 
193 	/* CE7: ce_diag, the Diagnostic Window */
194 	{
195 		.flags = CE_ATTR_FLAGS,
196 		.src_nentries = 2,
197 		.src_sz_max = DIAG_TRANSFER_LIMIT,
198 		.dest_nentries = 2,
199 	},
200 
201 	/* CE8: target->host pktlog */
202 	{
203 		.flags = CE_ATTR_FLAGS,
204 		.src_nentries = 0,
205 		.src_sz_max = 2048,
206 		.dest_nentries = 128,
207 		.recv_cb = ath10k_pci_pktlog_rx_cb,
208 	},
209 
210 	/* CE9 target autonomous qcache memcpy */
211 	{
212 		.flags = CE_ATTR_FLAGS,
213 		.src_nentries = 0,
214 		.src_sz_max = 0,
215 		.dest_nentries = 0,
216 	},
217 
218 	/* CE10: target autonomous hif memcpy */
219 	{
220 		.flags = CE_ATTR_FLAGS,
221 		.src_nentries = 0,
222 		.src_sz_max = 0,
223 		.dest_nentries = 0,
224 	},
225 
226 	/* CE11: target autonomous hif memcpy */
227 	{
228 		.flags = CE_ATTR_FLAGS,
229 		.src_nentries = 0,
230 		.src_sz_max = 0,
231 		.dest_nentries = 0,
232 	},
233 };
234 
235 /* Target firmware's Copy Engine configuration. */
236 static struct ce_pipe_config target_ce_config_wlan[] = {
237 	/* CE0: host->target HTC control and raw streams */
238 	{
239 		.pipenum = __cpu_to_le32(0),
240 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
241 		.nentries = __cpu_to_le32(32),
242 		.nbytes_max = __cpu_to_le32(256),
243 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
244 		.reserved = __cpu_to_le32(0),
245 	},
246 
247 	/* CE1: target->host HTT + HTC control */
248 	{
249 		.pipenum = __cpu_to_le32(1),
250 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
251 		.nentries = __cpu_to_le32(32),
252 		.nbytes_max = __cpu_to_le32(2048),
253 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
254 		.reserved = __cpu_to_le32(0),
255 	},
256 
257 	/* CE2: target->host WMI */
258 	{
259 		.pipenum = __cpu_to_le32(2),
260 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
261 		.nentries = __cpu_to_le32(64),
262 		.nbytes_max = __cpu_to_le32(2048),
263 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
264 		.reserved = __cpu_to_le32(0),
265 	},
266 
267 	/* CE3: host->target WMI */
268 	{
269 		.pipenum = __cpu_to_le32(3),
270 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
271 		.nentries = __cpu_to_le32(32),
272 		.nbytes_max = __cpu_to_le32(2048),
273 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
274 		.reserved = __cpu_to_le32(0),
275 	},
276 
277 	/* CE4: host->target HTT */
278 	{
279 		.pipenum = __cpu_to_le32(4),
280 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
281 		.nentries = __cpu_to_le32(256),
282 		.nbytes_max = __cpu_to_le32(256),
283 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
284 		.reserved = __cpu_to_le32(0),
285 	},
286 
287 	/* NB: 50% of src nentries, since tx has 2 frags */
288 
289 	/* CE5: target->host HTT (HIF->HTT) */
290 	{
291 		.pipenum = __cpu_to_le32(5),
292 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
293 		.nentries = __cpu_to_le32(32),
294 		.nbytes_max = __cpu_to_le32(512),
295 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
296 		.reserved = __cpu_to_le32(0),
297 	},
298 
299 	/* CE6: Reserved for target autonomous hif_memcpy */
300 	{
301 		.pipenum = __cpu_to_le32(6),
302 		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
303 		.nentries = __cpu_to_le32(32),
304 		.nbytes_max = __cpu_to_le32(4096),
305 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
306 		.reserved = __cpu_to_le32(0),
307 	},
308 
309 	/* CE7 used only by Host */
310 	{
311 		.pipenum = __cpu_to_le32(7),
312 		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
313 		.nentries = __cpu_to_le32(0),
314 		.nbytes_max = __cpu_to_le32(0),
315 		.flags = __cpu_to_le32(0),
316 		.reserved = __cpu_to_le32(0),
317 	},
318 
319 	/* CE8 target->host packtlog */
320 	{
321 		.pipenum = __cpu_to_le32(8),
322 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
323 		.nentries = __cpu_to_le32(64),
324 		.nbytes_max = __cpu_to_le32(2048),
325 		.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
326 		.reserved = __cpu_to_le32(0),
327 	},
328 
329 	/* CE9 target autonomous qcache memcpy */
330 	{
331 		.pipenum = __cpu_to_le32(9),
332 		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
333 		.nentries = __cpu_to_le32(32),
334 		.nbytes_max = __cpu_to_le32(2048),
335 		.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
336 		.reserved = __cpu_to_le32(0),
337 	},
338 
339 	/* It not necessary to send target wlan configuration for CE10 & CE11
340 	 * as these CEs are not actively used in target.
341 	 */
342 };
343 
344 /*
345  * Map from service/endpoint to Copy Engine.
346  * This table is derived from the CE_PCI TABLE, above.
347  * It is passed to the Target at startup for use by firmware.
348  */
349 static struct service_to_pipe target_service_to_ce_map_wlan[] = {
350 	{
351 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
352 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
353 		__cpu_to_le32(3),
354 	},
355 	{
356 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
357 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
358 		__cpu_to_le32(2),
359 	},
360 	{
361 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
362 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
363 		__cpu_to_le32(3),
364 	},
365 	{
366 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
367 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
368 		__cpu_to_le32(2),
369 	},
370 	{
371 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
372 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
373 		__cpu_to_le32(3),
374 	},
375 	{
376 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
377 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
378 		__cpu_to_le32(2),
379 	},
380 	{
381 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
382 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
383 		__cpu_to_le32(3),
384 	},
385 	{
386 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
387 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
388 		__cpu_to_le32(2),
389 	},
390 	{
391 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
392 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
393 		__cpu_to_le32(3),
394 	},
395 	{
396 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
397 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
398 		__cpu_to_le32(2),
399 	},
400 	{
401 		__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
402 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
403 		__cpu_to_le32(0),
404 	},
405 	{
406 		__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
407 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
408 		__cpu_to_le32(1),
409 	},
410 	{ /* not used */
411 		__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
412 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
413 		__cpu_to_le32(0),
414 	},
415 	{ /* not used */
416 		__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
417 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
418 		__cpu_to_le32(1),
419 	},
420 	{
421 		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
422 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
423 		__cpu_to_le32(4),
424 	},
425 	{
426 		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
427 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
428 		__cpu_to_le32(5),
429 	},
430 
431 	/* (Additions here) */
432 
433 	{ /* must be last */
434 		__cpu_to_le32(0),
435 		__cpu_to_le32(0),
436 		__cpu_to_le32(0),
437 	},
438 };
439 
440 static bool ath10k_pci_is_awake(struct ath10k *ar)
441 {
442 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
443 	u32 val = ioread32(ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
444 			   RTC_STATE_ADDRESS);
445 
446 	return RTC_STATE_V_GET(val) == RTC_STATE_V_ON;
447 }
448 
449 static void __ath10k_pci_wake(struct ath10k *ar)
450 {
451 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
452 
453 	lockdep_assert_held(&ar_pci->ps_lock);
454 
455 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake reg refcount %lu awake %d\n",
456 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
457 
458 	iowrite32(PCIE_SOC_WAKE_V_MASK,
459 		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
460 		  PCIE_SOC_WAKE_ADDRESS);
461 }
462 
463 static void __ath10k_pci_sleep(struct ath10k *ar)
464 {
465 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
466 
467 	lockdep_assert_held(&ar_pci->ps_lock);
468 
469 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep reg refcount %lu awake %d\n",
470 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
471 
472 	iowrite32(PCIE_SOC_WAKE_RESET,
473 		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
474 		  PCIE_SOC_WAKE_ADDRESS);
475 	ar_pci->ps_awake = false;
476 }
477 
478 static int ath10k_pci_wake_wait(struct ath10k *ar)
479 {
480 	int tot_delay = 0;
481 	int curr_delay = 5;
482 
483 	while (tot_delay < PCIE_WAKE_TIMEOUT) {
484 		if (ath10k_pci_is_awake(ar)) {
485 			if (tot_delay > PCIE_WAKE_LATE_US)
486 				ath10k_warn(ar, "device wakeup took %d ms which is unusually long, otherwise it works normally.\n",
487 					    tot_delay / 1000);
488 			return 0;
489 		}
490 
491 		udelay(curr_delay);
492 		tot_delay += curr_delay;
493 
494 		if (curr_delay < 50)
495 			curr_delay += 5;
496 	}
497 
498 	return -ETIMEDOUT;
499 }
500 
501 static int ath10k_pci_force_wake(struct ath10k *ar)
502 {
503 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
504 	unsigned long flags;
505 	int ret = 0;
506 
507 	if (ar_pci->pci_ps)
508 		return ret;
509 
510 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
511 
512 	if (!ar_pci->ps_awake) {
513 		iowrite32(PCIE_SOC_WAKE_V_MASK,
514 			  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
515 			  PCIE_SOC_WAKE_ADDRESS);
516 
517 		ret = ath10k_pci_wake_wait(ar);
518 		if (ret == 0)
519 			ar_pci->ps_awake = true;
520 	}
521 
522 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
523 
524 	return ret;
525 }
526 
527 static void ath10k_pci_force_sleep(struct ath10k *ar)
528 {
529 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
530 	unsigned long flags;
531 
532 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
533 
534 	iowrite32(PCIE_SOC_WAKE_RESET,
535 		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
536 		  PCIE_SOC_WAKE_ADDRESS);
537 	ar_pci->ps_awake = false;
538 
539 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
540 }
541 
542 static int ath10k_pci_wake(struct ath10k *ar)
543 {
544 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
545 	unsigned long flags;
546 	int ret = 0;
547 
548 	if (ar_pci->pci_ps == 0)
549 		return ret;
550 
551 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
552 
553 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake refcount %lu awake %d\n",
554 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
555 
556 	/* This function can be called very frequently. To avoid excessive
557 	 * CPU stalls for MMIO reads use a cache var to hold the device state.
558 	 */
559 	if (!ar_pci->ps_awake) {
560 		__ath10k_pci_wake(ar);
561 
562 		ret = ath10k_pci_wake_wait(ar);
563 		if (ret == 0)
564 			ar_pci->ps_awake = true;
565 	}
566 
567 	if (ret == 0) {
568 		ar_pci->ps_wake_refcount++;
569 		WARN_ON(ar_pci->ps_wake_refcount == 0);
570 	}
571 
572 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
573 
574 	return ret;
575 }
576 
577 static void ath10k_pci_sleep(struct ath10k *ar)
578 {
579 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
580 	unsigned long flags;
581 
582 	if (ar_pci->pci_ps == 0)
583 		return;
584 
585 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
586 
587 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep refcount %lu awake %d\n",
588 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
589 
590 	if (WARN_ON(ar_pci->ps_wake_refcount == 0))
591 		goto skip;
592 
593 	ar_pci->ps_wake_refcount--;
594 
595 	mod_timer(&ar_pci->ps_timer, jiffies +
596 		  msecs_to_jiffies(ATH10K_PCI_SLEEP_GRACE_PERIOD_MSEC));
597 
598 skip:
599 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
600 }
601 
602 static void ath10k_pci_ps_timer(struct timer_list *t)
603 {
604 	struct ath10k_pci *ar_pci = from_timer(ar_pci, t, ps_timer);
605 	struct ath10k *ar = ar_pci->ar;
606 	unsigned long flags;
607 
608 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
609 
610 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps timer refcount %lu awake %d\n",
611 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
612 
613 	if (ar_pci->ps_wake_refcount > 0)
614 		goto skip;
615 
616 	__ath10k_pci_sleep(ar);
617 
618 skip:
619 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
620 }
621 
622 static void ath10k_pci_sleep_sync(struct ath10k *ar)
623 {
624 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
625 	unsigned long flags;
626 
627 	if (ar_pci->pci_ps == 0) {
628 		ath10k_pci_force_sleep(ar);
629 		return;
630 	}
631 
632 	del_timer_sync(&ar_pci->ps_timer);
633 
634 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
635 	WARN_ON(ar_pci->ps_wake_refcount > 0);
636 	__ath10k_pci_sleep(ar);
637 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
638 }
639 
640 static void ath10k_bus_pci_write32(struct ath10k *ar, u32 offset, u32 value)
641 {
642 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
643 	int ret;
644 
645 	if (unlikely(offset + sizeof(value) > ar_pci->mem_len)) {
646 		ath10k_warn(ar, "refusing to write mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
647 			    offset, offset + sizeof(value), ar_pci->mem_len);
648 		return;
649 	}
650 
651 	ret = ath10k_pci_wake(ar);
652 	if (ret) {
653 		ath10k_warn(ar, "failed to wake target for write32 of 0x%08x at 0x%08x: %d\n",
654 			    value, offset, ret);
655 		return;
656 	}
657 
658 	iowrite32(value, ar_pci->mem + offset);
659 	ath10k_pci_sleep(ar);
660 }
661 
662 static u32 ath10k_bus_pci_read32(struct ath10k *ar, u32 offset)
663 {
664 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
665 	u32 val;
666 	int ret;
667 
668 	if (unlikely(offset + sizeof(val) > ar_pci->mem_len)) {
669 		ath10k_warn(ar, "refusing to read mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
670 			    offset, offset + sizeof(val), ar_pci->mem_len);
671 		return 0;
672 	}
673 
674 	ret = ath10k_pci_wake(ar);
675 	if (ret) {
676 		ath10k_warn(ar, "failed to wake target for read32 at 0x%08x: %d\n",
677 			    offset, ret);
678 		return 0xffffffff;
679 	}
680 
681 	val = ioread32(ar_pci->mem + offset);
682 	ath10k_pci_sleep(ar);
683 
684 	return val;
685 }
686 
687 inline void ath10k_pci_write32(struct ath10k *ar, u32 offset, u32 value)
688 {
689 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
690 
691 	ce->bus_ops->write32(ar, offset, value);
692 }
693 
694 inline u32 ath10k_pci_read32(struct ath10k *ar, u32 offset)
695 {
696 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
697 
698 	return ce->bus_ops->read32(ar, offset);
699 }
700 
701 u32 ath10k_pci_soc_read32(struct ath10k *ar, u32 addr)
702 {
703 	return ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS + addr);
704 }
705 
706 void ath10k_pci_soc_write32(struct ath10k *ar, u32 addr, u32 val)
707 {
708 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + addr, val);
709 }
710 
711 u32 ath10k_pci_reg_read32(struct ath10k *ar, u32 addr)
712 {
713 	return ath10k_pci_read32(ar, PCIE_LOCAL_BASE_ADDRESS + addr);
714 }
715 
716 void ath10k_pci_reg_write32(struct ath10k *ar, u32 addr, u32 val)
717 {
718 	ath10k_pci_write32(ar, PCIE_LOCAL_BASE_ADDRESS + addr, val);
719 }
720 
721 bool ath10k_pci_irq_pending(struct ath10k *ar)
722 {
723 	u32 cause;
724 
725 	/* Check if the shared legacy irq is for us */
726 	cause = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
727 				  PCIE_INTR_CAUSE_ADDRESS);
728 	if (cause & (PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL))
729 		return true;
730 
731 	return false;
732 }
733 
734 void ath10k_pci_disable_and_clear_legacy_irq(struct ath10k *ar)
735 {
736 	/* IMPORTANT: INTR_CLR register has to be set after
737 	 * INTR_ENABLE is set to 0, otherwise interrupt can not be
738 	 * really cleared.
739 	 */
740 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
741 			   0);
742 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_CLR_ADDRESS,
743 			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
744 
745 	/* IMPORTANT: this extra read transaction is required to
746 	 * flush the posted write buffer.
747 	 */
748 	(void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
749 				PCIE_INTR_ENABLE_ADDRESS);
750 }
751 
752 void ath10k_pci_enable_legacy_irq(struct ath10k *ar)
753 {
754 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
755 			   PCIE_INTR_ENABLE_ADDRESS,
756 			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
757 
758 	/* IMPORTANT: this extra read transaction is required to
759 	 * flush the posted write buffer.
760 	 */
761 	(void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
762 				PCIE_INTR_ENABLE_ADDRESS);
763 }
764 
765 static inline const char *ath10k_pci_get_irq_method(struct ath10k *ar)
766 {
767 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
768 
769 	if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_MSI)
770 		return "msi";
771 
772 	return "legacy";
773 }
774 
775 static int __ath10k_pci_rx_post_buf(struct ath10k_pci_pipe *pipe)
776 {
777 	struct ath10k *ar = pipe->hif_ce_state;
778 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
779 	struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
780 	struct sk_buff *skb;
781 	dma_addr_t paddr;
782 	int ret;
783 
784 	skb = dev_alloc_skb(pipe->buf_sz);
785 	if (!skb)
786 		return -ENOMEM;
787 
788 	WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb");
789 
790 	paddr = dma_map_single(ar->dev, skb->data,
791 			       skb->len + skb_tailroom(skb),
792 			       DMA_FROM_DEVICE);
793 	if (unlikely(dma_mapping_error(ar->dev, paddr))) {
794 		ath10k_warn(ar, "failed to dma map pci rx buf\n");
795 		dev_kfree_skb_any(skb);
796 		return -EIO;
797 	}
798 
799 	ATH10K_SKB_RXCB(skb)->paddr = paddr;
800 
801 	spin_lock_bh(&ce->ce_lock);
802 	ret = ce_pipe->ops->ce_rx_post_buf(ce_pipe, skb, paddr);
803 	spin_unlock_bh(&ce->ce_lock);
804 	if (ret) {
805 		dma_unmap_single(ar->dev, paddr, skb->len + skb_tailroom(skb),
806 				 DMA_FROM_DEVICE);
807 		dev_kfree_skb_any(skb);
808 		return ret;
809 	}
810 
811 	return 0;
812 }
813 
814 static void ath10k_pci_rx_post_pipe(struct ath10k_pci_pipe *pipe)
815 {
816 	struct ath10k *ar = pipe->hif_ce_state;
817 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
818 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
819 	struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
820 	int ret, num;
821 
822 	if (pipe->buf_sz == 0)
823 		return;
824 
825 	if (!ce_pipe->dest_ring)
826 		return;
827 
828 	spin_lock_bh(&ce->ce_lock);
829 	num = __ath10k_ce_rx_num_free_bufs(ce_pipe);
830 	spin_unlock_bh(&ce->ce_lock);
831 
832 	while (num >= 0) {
833 		ret = __ath10k_pci_rx_post_buf(pipe);
834 		if (ret) {
835 			if (ret == -ENOSPC)
836 				break;
837 			ath10k_warn(ar, "failed to post pci rx buf: %d\n", ret);
838 			mod_timer(&ar_pci->rx_post_retry, jiffies +
839 				  ATH10K_PCI_RX_POST_RETRY_MS);
840 			break;
841 		}
842 		num--;
843 	}
844 }
845 
846 void ath10k_pci_rx_post(struct ath10k *ar)
847 {
848 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
849 	int i;
850 
851 	for (i = 0; i < CE_COUNT; i++)
852 		ath10k_pci_rx_post_pipe(&ar_pci->pipe_info[i]);
853 }
854 
855 void ath10k_pci_rx_replenish_retry(struct timer_list *t)
856 {
857 	struct ath10k_pci *ar_pci = from_timer(ar_pci, t, rx_post_retry);
858 	struct ath10k *ar = ar_pci->ar;
859 
860 	ath10k_pci_rx_post(ar);
861 }
862 
863 static u32 ath10k_pci_qca988x_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
864 {
865 	u32 val = 0, region = addr & 0xfffff;
866 
867 	val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS)
868 				 & 0x7ff) << 21;
869 	val |= 0x100000 | region;
870 	return val;
871 }
872 
873 static u32 ath10k_pci_qca99x0_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
874 {
875 	u32 val = 0, region = addr & 0xfffff;
876 
877 	val = ath10k_pci_read32(ar, PCIE_BAR_REG_ADDRESS);
878 	val |= 0x100000 | region;
879 	return val;
880 }
881 
882 static u32 ath10k_pci_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
883 {
884 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
885 
886 	if (WARN_ON_ONCE(!ar_pci->targ_cpu_to_ce_addr))
887 		return -ENOTSUPP;
888 
889 	return ar_pci->targ_cpu_to_ce_addr(ar, addr);
890 }
891 
892 /*
893  * Diagnostic read/write access is provided for startup/config/debug usage.
894  * Caller must guarantee proper alignment, when applicable, and single user
895  * at any moment.
896  */
897 static int ath10k_pci_diag_read_mem(struct ath10k *ar, u32 address, void *data,
898 				    int nbytes)
899 {
900 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
901 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
902 	int ret = 0;
903 	u32 *buf;
904 	unsigned int completed_nbytes, alloc_nbytes, remaining_bytes;
905 	struct ath10k_ce_pipe *ce_diag;
906 	/* Host buffer address in CE space */
907 	u32 ce_data;
908 	dma_addr_t ce_data_base = 0;
909 	void *data_buf = NULL;
910 	int i;
911 
912 	spin_lock_bh(&ce->ce_lock);
913 
914 	ce_diag = ar_pci->ce_diag;
915 
916 	/*
917 	 * Allocate a temporary bounce buffer to hold caller's data
918 	 * to be DMA'ed from Target. This guarantees
919 	 *   1) 4-byte alignment
920 	 *   2) Buffer in DMA-able space
921 	 */
922 	alloc_nbytes = min_t(unsigned int, nbytes, DIAG_TRANSFER_LIMIT);
923 
924 	data_buf = (unsigned char *)dma_zalloc_coherent(ar->dev,
925 						       alloc_nbytes,
926 						       &ce_data_base,
927 						       GFP_ATOMIC);
928 
929 	if (!data_buf) {
930 		ret = -ENOMEM;
931 		goto done;
932 	}
933 
934 	remaining_bytes = nbytes;
935 	ce_data = ce_data_base;
936 	while (remaining_bytes) {
937 		nbytes = min_t(unsigned int, remaining_bytes,
938 			       DIAG_TRANSFER_LIMIT);
939 
940 		ret = ce_diag->ops->ce_rx_post_buf(ce_diag, &ce_data, ce_data);
941 		if (ret != 0)
942 			goto done;
943 
944 		/* Request CE to send from Target(!) address to Host buffer */
945 		/*
946 		 * The address supplied by the caller is in the
947 		 * Target CPU virtual address space.
948 		 *
949 		 * In order to use this address with the diagnostic CE,
950 		 * convert it from Target CPU virtual address space
951 		 * to CE address space
952 		 */
953 		address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
954 
955 		ret = ath10k_ce_send_nolock(ce_diag, NULL, (u32)address, nbytes, 0,
956 					    0);
957 		if (ret)
958 			goto done;
959 
960 		i = 0;
961 		while (ath10k_ce_completed_send_next_nolock(ce_diag,
962 							    NULL) != 0) {
963 			mdelay(1);
964 			if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
965 				ret = -EBUSY;
966 				goto done;
967 			}
968 		}
969 
970 		i = 0;
971 		while (ath10k_ce_completed_recv_next_nolock(ce_diag,
972 							    (void **)&buf,
973 							    &completed_nbytes)
974 								!= 0) {
975 			mdelay(1);
976 
977 			if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
978 				ret = -EBUSY;
979 				goto done;
980 			}
981 		}
982 
983 		if (nbytes != completed_nbytes) {
984 			ret = -EIO;
985 			goto done;
986 		}
987 
988 		if (*buf != ce_data) {
989 			ret = -EIO;
990 			goto done;
991 		}
992 
993 		remaining_bytes -= nbytes;
994 		memcpy(data, data_buf, nbytes);
995 
996 		address += nbytes;
997 		data += nbytes;
998 	}
999 
1000 done:
1001 
1002 	if (data_buf)
1003 		dma_free_coherent(ar->dev, alloc_nbytes, data_buf,
1004 				  ce_data_base);
1005 
1006 	spin_unlock_bh(&ce->ce_lock);
1007 
1008 	return ret;
1009 }
1010 
1011 static int ath10k_pci_diag_read32(struct ath10k *ar, u32 address, u32 *value)
1012 {
1013 	__le32 val = 0;
1014 	int ret;
1015 
1016 	ret = ath10k_pci_diag_read_mem(ar, address, &val, sizeof(val));
1017 	*value = __le32_to_cpu(val);
1018 
1019 	return ret;
1020 }
1021 
1022 static int __ath10k_pci_diag_read_hi(struct ath10k *ar, void *dest,
1023 				     u32 src, u32 len)
1024 {
1025 	u32 host_addr, addr;
1026 	int ret;
1027 
1028 	host_addr = host_interest_item_address(src);
1029 
1030 	ret = ath10k_pci_diag_read32(ar, host_addr, &addr);
1031 	if (ret != 0) {
1032 		ath10k_warn(ar, "failed to get memcpy hi address for firmware address %d: %d\n",
1033 			    src, ret);
1034 		return ret;
1035 	}
1036 
1037 	ret = ath10k_pci_diag_read_mem(ar, addr, dest, len);
1038 	if (ret != 0) {
1039 		ath10k_warn(ar, "failed to memcpy firmware memory from %d (%d B): %d\n",
1040 			    addr, len, ret);
1041 		return ret;
1042 	}
1043 
1044 	return 0;
1045 }
1046 
1047 #define ath10k_pci_diag_read_hi(ar, dest, src, len)		\
1048 	__ath10k_pci_diag_read_hi(ar, dest, HI_ITEM(src), len)
1049 
1050 int ath10k_pci_diag_write_mem(struct ath10k *ar, u32 address,
1051 			      const void *data, int nbytes)
1052 {
1053 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1054 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1055 	int ret = 0;
1056 	u32 *buf;
1057 	unsigned int completed_nbytes, orig_nbytes, remaining_bytes;
1058 	struct ath10k_ce_pipe *ce_diag;
1059 	void *data_buf = NULL;
1060 	u32 ce_data;	/* Host buffer address in CE space */
1061 	dma_addr_t ce_data_base = 0;
1062 	int i;
1063 
1064 	spin_lock_bh(&ce->ce_lock);
1065 
1066 	ce_diag = ar_pci->ce_diag;
1067 
1068 	/*
1069 	 * Allocate a temporary bounce buffer to hold caller's data
1070 	 * to be DMA'ed to Target. This guarantees
1071 	 *   1) 4-byte alignment
1072 	 *   2) Buffer in DMA-able space
1073 	 */
1074 	orig_nbytes = nbytes;
1075 	data_buf = (unsigned char *)dma_alloc_coherent(ar->dev,
1076 						       orig_nbytes,
1077 						       &ce_data_base,
1078 						       GFP_ATOMIC);
1079 	if (!data_buf) {
1080 		ret = -ENOMEM;
1081 		goto done;
1082 	}
1083 
1084 	/* Copy caller's data to allocated DMA buf */
1085 	memcpy(data_buf, data, orig_nbytes);
1086 
1087 	/*
1088 	 * The address supplied by the caller is in the
1089 	 * Target CPU virtual address space.
1090 	 *
1091 	 * In order to use this address with the diagnostic CE,
1092 	 * convert it from
1093 	 *    Target CPU virtual address space
1094 	 * to
1095 	 *    CE address space
1096 	 */
1097 	address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
1098 
1099 	remaining_bytes = orig_nbytes;
1100 	ce_data = ce_data_base;
1101 	while (remaining_bytes) {
1102 		/* FIXME: check cast */
1103 		nbytes = min_t(int, remaining_bytes, DIAG_TRANSFER_LIMIT);
1104 
1105 		/* Set up to receive directly into Target(!) address */
1106 		ret = ce_diag->ops->ce_rx_post_buf(ce_diag, &address, address);
1107 		if (ret != 0)
1108 			goto done;
1109 
1110 		/*
1111 		 * Request CE to send caller-supplied data that
1112 		 * was copied to bounce buffer to Target(!) address.
1113 		 */
1114 		ret = ath10k_ce_send_nolock(ce_diag, NULL, (u32)ce_data,
1115 					    nbytes, 0, 0);
1116 		if (ret != 0)
1117 			goto done;
1118 
1119 		i = 0;
1120 		while (ath10k_ce_completed_send_next_nolock(ce_diag,
1121 							    NULL) != 0) {
1122 			mdelay(1);
1123 
1124 			if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
1125 				ret = -EBUSY;
1126 				goto done;
1127 			}
1128 		}
1129 
1130 		i = 0;
1131 		while (ath10k_ce_completed_recv_next_nolock(ce_diag,
1132 							    (void **)&buf,
1133 							    &completed_nbytes)
1134 								!= 0) {
1135 			mdelay(1);
1136 
1137 			if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
1138 				ret = -EBUSY;
1139 				goto done;
1140 			}
1141 		}
1142 
1143 		if (nbytes != completed_nbytes) {
1144 			ret = -EIO;
1145 			goto done;
1146 		}
1147 
1148 		if (*buf != address) {
1149 			ret = -EIO;
1150 			goto done;
1151 		}
1152 
1153 		remaining_bytes -= nbytes;
1154 		address += nbytes;
1155 		ce_data += nbytes;
1156 	}
1157 
1158 done:
1159 	if (data_buf) {
1160 		dma_free_coherent(ar->dev, orig_nbytes, data_buf,
1161 				  ce_data_base);
1162 	}
1163 
1164 	if (ret != 0)
1165 		ath10k_warn(ar, "failed to write diag value at 0x%x: %d\n",
1166 			    address, ret);
1167 
1168 	spin_unlock_bh(&ce->ce_lock);
1169 
1170 	return ret;
1171 }
1172 
1173 static int ath10k_pci_diag_write32(struct ath10k *ar, u32 address, u32 value)
1174 {
1175 	__le32 val = __cpu_to_le32(value);
1176 
1177 	return ath10k_pci_diag_write_mem(ar, address, &val, sizeof(val));
1178 }
1179 
1180 /* Called by lower (CE) layer when a send to Target completes. */
1181 static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state)
1182 {
1183 	struct ath10k *ar = ce_state->ar;
1184 	struct sk_buff_head list;
1185 	struct sk_buff *skb;
1186 
1187 	__skb_queue_head_init(&list);
1188 	while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1189 		/* no need to call tx completion for NULL pointers */
1190 		if (skb == NULL)
1191 			continue;
1192 
1193 		__skb_queue_tail(&list, skb);
1194 	}
1195 
1196 	while ((skb = __skb_dequeue(&list)))
1197 		ath10k_htc_tx_completion_handler(ar, skb);
1198 }
1199 
1200 static void ath10k_pci_process_rx_cb(struct ath10k_ce_pipe *ce_state,
1201 				     void (*callback)(struct ath10k *ar,
1202 						      struct sk_buff *skb))
1203 {
1204 	struct ath10k *ar = ce_state->ar;
1205 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1206 	struct ath10k_pci_pipe *pipe_info =  &ar_pci->pipe_info[ce_state->id];
1207 	struct sk_buff *skb;
1208 	struct sk_buff_head list;
1209 	void *transfer_context;
1210 	unsigned int nbytes, max_nbytes;
1211 
1212 	__skb_queue_head_init(&list);
1213 	while (ath10k_ce_completed_recv_next(ce_state, &transfer_context,
1214 					     &nbytes) == 0) {
1215 		skb = transfer_context;
1216 		max_nbytes = skb->len + skb_tailroom(skb);
1217 		dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1218 				 max_nbytes, DMA_FROM_DEVICE);
1219 
1220 		if (unlikely(max_nbytes < nbytes)) {
1221 			ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1222 				    nbytes, max_nbytes);
1223 			dev_kfree_skb_any(skb);
1224 			continue;
1225 		}
1226 
1227 		skb_put(skb, nbytes);
1228 		__skb_queue_tail(&list, skb);
1229 	}
1230 
1231 	while ((skb = __skb_dequeue(&list))) {
1232 		ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1233 			   ce_state->id, skb->len);
1234 		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1235 				skb->data, skb->len);
1236 
1237 		callback(ar, skb);
1238 	}
1239 
1240 	ath10k_pci_rx_post_pipe(pipe_info);
1241 }
1242 
1243 static void ath10k_pci_process_htt_rx_cb(struct ath10k_ce_pipe *ce_state,
1244 					 void (*callback)(struct ath10k *ar,
1245 							  struct sk_buff *skb))
1246 {
1247 	struct ath10k *ar = ce_state->ar;
1248 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1249 	struct ath10k_pci_pipe *pipe_info =  &ar_pci->pipe_info[ce_state->id];
1250 	struct ath10k_ce_pipe *ce_pipe = pipe_info->ce_hdl;
1251 	struct sk_buff *skb;
1252 	struct sk_buff_head list;
1253 	void *transfer_context;
1254 	unsigned int nbytes, max_nbytes, nentries;
1255 	int orig_len;
1256 
1257 	/* No need to aquire ce_lock for CE5, since this is the only place CE5
1258 	 * is processed other than init and deinit. Before releasing CE5
1259 	 * buffers, interrupts are disabled. Thus CE5 access is serialized.
1260 	 */
1261 	__skb_queue_head_init(&list);
1262 	while (ath10k_ce_completed_recv_next_nolock(ce_state, &transfer_context,
1263 						    &nbytes) == 0) {
1264 		skb = transfer_context;
1265 		max_nbytes = skb->len + skb_tailroom(skb);
1266 
1267 		if (unlikely(max_nbytes < nbytes)) {
1268 			ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1269 				    nbytes, max_nbytes);
1270 			continue;
1271 		}
1272 
1273 		dma_sync_single_for_cpu(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1274 					max_nbytes, DMA_FROM_DEVICE);
1275 		skb_put(skb, nbytes);
1276 		__skb_queue_tail(&list, skb);
1277 	}
1278 
1279 	nentries = skb_queue_len(&list);
1280 	while ((skb = __skb_dequeue(&list))) {
1281 		ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1282 			   ce_state->id, skb->len);
1283 		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1284 				skb->data, skb->len);
1285 
1286 		orig_len = skb->len;
1287 		callback(ar, skb);
1288 		skb_push(skb, orig_len - skb->len);
1289 		skb_reset_tail_pointer(skb);
1290 		skb_trim(skb, 0);
1291 
1292 		/*let device gain the buffer again*/
1293 		dma_sync_single_for_device(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1294 					   skb->len + skb_tailroom(skb),
1295 					   DMA_FROM_DEVICE);
1296 	}
1297 	ath10k_ce_rx_update_write_idx(ce_pipe, nentries);
1298 }
1299 
1300 /* Called by lower (CE) layer when data is received from the Target. */
1301 static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1302 {
1303 	ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1304 }
1305 
1306 static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1307 {
1308 	/* CE4 polling needs to be done whenever CE pipe which transports
1309 	 * HTT Rx (target->host) is processed.
1310 	 */
1311 	ath10k_ce_per_engine_service(ce_state->ar, 4);
1312 
1313 	ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1314 }
1315 
1316 /* Called by lower (CE) layer when data is received from the Target.
1317  * Only 10.4 firmware uses separate CE to transfer pktlog data.
1318  */
1319 static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state)
1320 {
1321 	ath10k_pci_process_rx_cb(ce_state,
1322 				 ath10k_htt_rx_pktlog_completion_handler);
1323 }
1324 
1325 /* Called by lower (CE) layer when a send to HTT Target completes. */
1326 static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state)
1327 {
1328 	struct ath10k *ar = ce_state->ar;
1329 	struct sk_buff *skb;
1330 
1331 	while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1332 		/* no need to call tx completion for NULL pointers */
1333 		if (!skb)
1334 			continue;
1335 
1336 		dma_unmap_single(ar->dev, ATH10K_SKB_CB(skb)->paddr,
1337 				 skb->len, DMA_TO_DEVICE);
1338 		ath10k_htt_hif_tx_complete(ar, skb);
1339 	}
1340 }
1341 
1342 static void ath10k_pci_htt_rx_deliver(struct ath10k *ar, struct sk_buff *skb)
1343 {
1344 	skb_pull(skb, sizeof(struct ath10k_htc_hdr));
1345 	ath10k_htt_t2h_msg_handler(ar, skb);
1346 }
1347 
1348 /* Called by lower (CE) layer when HTT data is received from the Target. */
1349 static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state)
1350 {
1351 	/* CE4 polling needs to be done whenever CE pipe which transports
1352 	 * HTT Rx (target->host) is processed.
1353 	 */
1354 	ath10k_ce_per_engine_service(ce_state->ar, 4);
1355 
1356 	ath10k_pci_process_htt_rx_cb(ce_state, ath10k_pci_htt_rx_deliver);
1357 }
1358 
1359 int ath10k_pci_hif_tx_sg(struct ath10k *ar, u8 pipe_id,
1360 			 struct ath10k_hif_sg_item *items, int n_items)
1361 {
1362 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1363 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1364 	struct ath10k_pci_pipe *pci_pipe = &ar_pci->pipe_info[pipe_id];
1365 	struct ath10k_ce_pipe *ce_pipe = pci_pipe->ce_hdl;
1366 	struct ath10k_ce_ring *src_ring = ce_pipe->src_ring;
1367 	unsigned int nentries_mask;
1368 	unsigned int sw_index;
1369 	unsigned int write_index;
1370 	int err, i = 0;
1371 
1372 	spin_lock_bh(&ce->ce_lock);
1373 
1374 	nentries_mask = src_ring->nentries_mask;
1375 	sw_index = src_ring->sw_index;
1376 	write_index = src_ring->write_index;
1377 
1378 	if (unlikely(CE_RING_DELTA(nentries_mask,
1379 				   write_index, sw_index - 1) < n_items)) {
1380 		err = -ENOBUFS;
1381 		goto err;
1382 	}
1383 
1384 	for (i = 0; i < n_items - 1; i++) {
1385 		ath10k_dbg(ar, ATH10K_DBG_PCI,
1386 			   "pci tx item %d paddr %pad len %d n_items %d\n",
1387 			   i, &items[i].paddr, items[i].len, n_items);
1388 		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1389 				items[i].vaddr, items[i].len);
1390 
1391 		err = ath10k_ce_send_nolock(ce_pipe,
1392 					    items[i].transfer_context,
1393 					    items[i].paddr,
1394 					    items[i].len,
1395 					    items[i].transfer_id,
1396 					    CE_SEND_FLAG_GATHER);
1397 		if (err)
1398 			goto err;
1399 	}
1400 
1401 	/* `i` is equal to `n_items -1` after for() */
1402 
1403 	ath10k_dbg(ar, ATH10K_DBG_PCI,
1404 		   "pci tx item %d paddr %pad len %d n_items %d\n",
1405 		   i, &items[i].paddr, items[i].len, n_items);
1406 	ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1407 			items[i].vaddr, items[i].len);
1408 
1409 	err = ath10k_ce_send_nolock(ce_pipe,
1410 				    items[i].transfer_context,
1411 				    items[i].paddr,
1412 				    items[i].len,
1413 				    items[i].transfer_id,
1414 				    0);
1415 	if (err)
1416 		goto err;
1417 
1418 	spin_unlock_bh(&ce->ce_lock);
1419 	return 0;
1420 
1421 err:
1422 	for (; i > 0; i--)
1423 		__ath10k_ce_send_revert(ce_pipe);
1424 
1425 	spin_unlock_bh(&ce->ce_lock);
1426 	return err;
1427 }
1428 
1429 int ath10k_pci_hif_diag_read(struct ath10k *ar, u32 address, void *buf,
1430 			     size_t buf_len)
1431 {
1432 	return ath10k_pci_diag_read_mem(ar, address, buf, buf_len);
1433 }
1434 
1435 u16 ath10k_pci_hif_get_free_queue_number(struct ath10k *ar, u8 pipe)
1436 {
1437 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1438 
1439 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get free queue number\n");
1440 
1441 	return ath10k_ce_num_free_src_entries(ar_pci->pipe_info[pipe].ce_hdl);
1442 }
1443 
1444 static void ath10k_pci_dump_registers(struct ath10k *ar,
1445 				      struct ath10k_fw_crash_data *crash_data)
1446 {
1447 	__le32 reg_dump_values[REG_DUMP_COUNT_QCA988X] = {};
1448 	int i, ret;
1449 
1450 	lockdep_assert_held(&ar->data_lock);
1451 
1452 	ret = ath10k_pci_diag_read_hi(ar, &reg_dump_values[0],
1453 				      hi_failure_state,
1454 				      REG_DUMP_COUNT_QCA988X * sizeof(__le32));
1455 	if (ret) {
1456 		ath10k_err(ar, "failed to read firmware dump area: %d\n", ret);
1457 		return;
1458 	}
1459 
1460 	BUILD_BUG_ON(REG_DUMP_COUNT_QCA988X % 4);
1461 
1462 	ath10k_err(ar, "firmware register dump:\n");
1463 	for (i = 0; i < REG_DUMP_COUNT_QCA988X; i += 4)
1464 		ath10k_err(ar, "[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n",
1465 			   i,
1466 			   __le32_to_cpu(reg_dump_values[i]),
1467 			   __le32_to_cpu(reg_dump_values[i + 1]),
1468 			   __le32_to_cpu(reg_dump_values[i + 2]),
1469 			   __le32_to_cpu(reg_dump_values[i + 3]));
1470 
1471 	if (!crash_data)
1472 		return;
1473 
1474 	for (i = 0; i < REG_DUMP_COUNT_QCA988X; i++)
1475 		crash_data->registers[i] = reg_dump_values[i];
1476 }
1477 
1478 static int ath10k_pci_dump_memory_section(struct ath10k *ar,
1479 					  const struct ath10k_mem_region *mem_region,
1480 					  u8 *buf, size_t buf_len)
1481 {
1482 	const struct ath10k_mem_section *cur_section, *next_section;
1483 	unsigned int count, section_size, skip_size;
1484 	int ret, i, j;
1485 
1486 	if (!mem_region || !buf)
1487 		return 0;
1488 
1489 	cur_section = &mem_region->section_table.sections[0];
1490 
1491 	if (mem_region->start > cur_section->start) {
1492 		ath10k_warn(ar, "incorrect memdump region 0x%x with section start address 0x%x.\n",
1493 			    mem_region->start, cur_section->start);
1494 		return 0;
1495 	}
1496 
1497 	skip_size = cur_section->start - mem_region->start;
1498 
1499 	/* fill the gap between the first register section and register
1500 	 * start address
1501 	 */
1502 	for (i = 0; i < skip_size; i++) {
1503 		*buf = ATH10K_MAGIC_NOT_COPIED;
1504 		buf++;
1505 	}
1506 
1507 	count = 0;
1508 
1509 	for (i = 0; cur_section != NULL; i++) {
1510 		section_size = cur_section->end - cur_section->start;
1511 
1512 		if (section_size <= 0) {
1513 			ath10k_warn(ar, "incorrect ramdump format with start address 0x%x and stop address 0x%x\n",
1514 				    cur_section->start,
1515 				    cur_section->end);
1516 			break;
1517 		}
1518 
1519 		if ((i + 1) == mem_region->section_table.size) {
1520 			/* last section */
1521 			next_section = NULL;
1522 			skip_size = 0;
1523 		} else {
1524 			next_section = cur_section + 1;
1525 
1526 			if (cur_section->end > next_section->start) {
1527 				ath10k_warn(ar, "next ramdump section 0x%x is smaller than current end address 0x%x\n",
1528 					    next_section->start,
1529 					    cur_section->end);
1530 				break;
1531 			}
1532 
1533 			skip_size = next_section->start - cur_section->end;
1534 		}
1535 
1536 		if (buf_len < (skip_size + section_size)) {
1537 			ath10k_warn(ar, "ramdump buffer is too small: %zu\n", buf_len);
1538 			break;
1539 		}
1540 
1541 		buf_len -= skip_size + section_size;
1542 
1543 		/* read section to dest memory */
1544 		ret = ath10k_pci_diag_read_mem(ar, cur_section->start,
1545 					       buf, section_size);
1546 		if (ret) {
1547 			ath10k_warn(ar, "failed to read ramdump from section 0x%x: %d\n",
1548 				    cur_section->start, ret);
1549 			break;
1550 		}
1551 
1552 		buf += section_size;
1553 		count += section_size;
1554 
1555 		/* fill in the gap between this section and the next */
1556 		for (j = 0; j < skip_size; j++) {
1557 			*buf = ATH10K_MAGIC_NOT_COPIED;
1558 			buf++;
1559 		}
1560 
1561 		count += skip_size;
1562 
1563 		if (!next_section)
1564 			/* this was the last section */
1565 			break;
1566 
1567 		cur_section = next_section;
1568 	}
1569 
1570 	return count;
1571 }
1572 
1573 static int ath10k_pci_set_ram_config(struct ath10k *ar, u32 config)
1574 {
1575 	u32 val;
1576 
1577 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1578 			   FW_RAM_CONFIG_ADDRESS, config);
1579 
1580 	val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1581 				FW_RAM_CONFIG_ADDRESS);
1582 	if (val != config) {
1583 		ath10k_warn(ar, "failed to set RAM config from 0x%x to 0x%x\n",
1584 			    val, config);
1585 		return -EIO;
1586 	}
1587 
1588 	return 0;
1589 }
1590 
1591 /* if an error happened returns < 0, otherwise the length */
1592 static int ath10k_pci_dump_memory_sram(struct ath10k *ar,
1593 				       const struct ath10k_mem_region *region,
1594 				       u8 *buf)
1595 {
1596 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1597 	u32 base_addr, i;
1598 
1599 	base_addr = ioread32(ar_pci->mem + QCA99X0_PCIE_BAR0_START_REG);
1600 	base_addr += region->start;
1601 
1602 	for (i = 0; i < region->len; i += 4) {
1603 		iowrite32(base_addr + i, ar_pci->mem + QCA99X0_CPU_MEM_ADDR_REG);
1604 		*(u32 *)(buf + i) = ioread32(ar_pci->mem + QCA99X0_CPU_MEM_DATA_REG);
1605 	}
1606 
1607 	return region->len;
1608 }
1609 
1610 /* if an error happened returns < 0, otherwise the length */
1611 static int ath10k_pci_dump_memory_reg(struct ath10k *ar,
1612 				      const struct ath10k_mem_region *region,
1613 				      u8 *buf)
1614 {
1615 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1616 	u32 i;
1617 
1618 	for (i = 0; i < region->len; i += 4)
1619 		*(u32 *)(buf + i) = ioread32(ar_pci->mem + region->start + i);
1620 
1621 	return region->len;
1622 }
1623 
1624 /* if an error happened returns < 0, otherwise the length */
1625 static int ath10k_pci_dump_memory_generic(struct ath10k *ar,
1626 					  const struct ath10k_mem_region *current_region,
1627 					  u8 *buf)
1628 {
1629 	int ret;
1630 
1631 	if (current_region->section_table.size > 0)
1632 		/* Copy each section individually. */
1633 		return ath10k_pci_dump_memory_section(ar,
1634 						      current_region,
1635 						      buf,
1636 						      current_region->len);
1637 
1638 	/* No individiual memory sections defined so we can
1639 	 * copy the entire memory region.
1640 	 */
1641 	ret = ath10k_pci_diag_read_mem(ar,
1642 				       current_region->start,
1643 				       buf,
1644 				       current_region->len);
1645 	if (ret) {
1646 		ath10k_warn(ar, "failed to copy ramdump region %s: %d\n",
1647 			    current_region->name, ret);
1648 		return ret;
1649 	}
1650 
1651 	return current_region->len;
1652 }
1653 
1654 static void ath10k_pci_dump_memory(struct ath10k *ar,
1655 				   struct ath10k_fw_crash_data *crash_data)
1656 {
1657 	const struct ath10k_hw_mem_layout *mem_layout;
1658 	const struct ath10k_mem_region *current_region;
1659 	struct ath10k_dump_ram_data_hdr *hdr;
1660 	u32 count, shift;
1661 	size_t buf_len;
1662 	int ret, i;
1663 	u8 *buf;
1664 
1665 	lockdep_assert_held(&ar->data_lock);
1666 
1667 	if (!crash_data)
1668 		return;
1669 
1670 	mem_layout = ath10k_coredump_get_mem_layout(ar);
1671 	if (!mem_layout)
1672 		return;
1673 
1674 	current_region = &mem_layout->region_table.regions[0];
1675 
1676 	buf = crash_data->ramdump_buf;
1677 	buf_len = crash_data->ramdump_buf_len;
1678 
1679 	memset(buf, 0, buf_len);
1680 
1681 	for (i = 0; i < mem_layout->region_table.size; i++) {
1682 		count = 0;
1683 
1684 		if (current_region->len > buf_len) {
1685 			ath10k_warn(ar, "memory region %s size %d is larger that remaining ramdump buffer size %zu\n",
1686 				    current_region->name,
1687 				    current_region->len,
1688 				    buf_len);
1689 			break;
1690 		}
1691 
1692 		/* To get IRAM dump, the host driver needs to switch target
1693 		 * ram config from DRAM to IRAM.
1694 		 */
1695 		if (current_region->type == ATH10K_MEM_REGION_TYPE_IRAM1 ||
1696 		    current_region->type == ATH10K_MEM_REGION_TYPE_IRAM2) {
1697 			shift = current_region->start >> 20;
1698 
1699 			ret = ath10k_pci_set_ram_config(ar, shift);
1700 			if (ret) {
1701 				ath10k_warn(ar, "failed to switch ram config to IRAM for section %s: %d\n",
1702 					    current_region->name, ret);
1703 				break;
1704 			}
1705 		}
1706 
1707 		/* Reserve space for the header. */
1708 		hdr = (void *)buf;
1709 		buf += sizeof(*hdr);
1710 		buf_len -= sizeof(*hdr);
1711 
1712 		switch (current_region->type) {
1713 		case ATH10K_MEM_REGION_TYPE_IOSRAM:
1714 			count = ath10k_pci_dump_memory_sram(ar, current_region, buf);
1715 			break;
1716 		case ATH10K_MEM_REGION_TYPE_IOREG:
1717 			count = ath10k_pci_dump_memory_reg(ar, current_region, buf);
1718 			break;
1719 		default:
1720 			ret = ath10k_pci_dump_memory_generic(ar, current_region, buf);
1721 			if (ret < 0)
1722 				break;
1723 
1724 			count = ret;
1725 			break;
1726 		}
1727 
1728 		hdr->region_type = cpu_to_le32(current_region->type);
1729 		hdr->start = cpu_to_le32(current_region->start);
1730 		hdr->length = cpu_to_le32(count);
1731 
1732 		if (count == 0)
1733 			/* Note: the header remains, just with zero length. */
1734 			break;
1735 
1736 		buf += count;
1737 		buf_len -= count;
1738 
1739 		current_region++;
1740 	}
1741 }
1742 
1743 static void ath10k_pci_fw_crashed_dump(struct ath10k *ar)
1744 {
1745 	struct ath10k_fw_crash_data *crash_data;
1746 	char guid[UUID_STRING_LEN + 1];
1747 
1748 	spin_lock_bh(&ar->data_lock);
1749 
1750 	ar->stats.fw_crash_counter++;
1751 
1752 	crash_data = ath10k_coredump_new(ar);
1753 
1754 	if (crash_data)
1755 		scnprintf(guid, sizeof(guid), "%pUl", &crash_data->guid);
1756 	else
1757 		scnprintf(guid, sizeof(guid), "n/a");
1758 
1759 	ath10k_err(ar, "firmware crashed! (guid %s)\n", guid);
1760 	ath10k_print_driver_info(ar);
1761 	ath10k_pci_dump_registers(ar, crash_data);
1762 	ath10k_ce_dump_registers(ar, crash_data);
1763 	ath10k_pci_dump_memory(ar, crash_data);
1764 
1765 	spin_unlock_bh(&ar->data_lock);
1766 
1767 	queue_work(ar->workqueue, &ar->restart_work);
1768 }
1769 
1770 void ath10k_pci_hif_send_complete_check(struct ath10k *ar, u8 pipe,
1771 					int force)
1772 {
1773 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif send complete check\n");
1774 
1775 	if (!force) {
1776 		int resources;
1777 		/*
1778 		 * Decide whether to actually poll for completions, or just
1779 		 * wait for a later chance.
1780 		 * If there seem to be plenty of resources left, then just wait
1781 		 * since checking involves reading a CE register, which is a
1782 		 * relatively expensive operation.
1783 		 */
1784 		resources = ath10k_pci_hif_get_free_queue_number(ar, pipe);
1785 
1786 		/*
1787 		 * If at least 50% of the total resources are still available,
1788 		 * don't bother checking again yet.
1789 		 */
1790 		if (resources > (host_ce_config_wlan[pipe].src_nentries >> 1))
1791 			return;
1792 	}
1793 	ath10k_ce_per_engine_service(ar, pipe);
1794 }
1795 
1796 static void ath10k_pci_rx_retry_sync(struct ath10k *ar)
1797 {
1798 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1799 
1800 	del_timer_sync(&ar_pci->rx_post_retry);
1801 }
1802 
1803 int ath10k_pci_hif_map_service_to_pipe(struct ath10k *ar, u16 service_id,
1804 				       u8 *ul_pipe, u8 *dl_pipe)
1805 {
1806 	const struct service_to_pipe *entry;
1807 	bool ul_set = false, dl_set = false;
1808 	int i;
1809 
1810 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif map service\n");
1811 
1812 	for (i = 0; i < ARRAY_SIZE(target_service_to_ce_map_wlan); i++) {
1813 		entry = &target_service_to_ce_map_wlan[i];
1814 
1815 		if (__le32_to_cpu(entry->service_id) != service_id)
1816 			continue;
1817 
1818 		switch (__le32_to_cpu(entry->pipedir)) {
1819 		case PIPEDIR_NONE:
1820 			break;
1821 		case PIPEDIR_IN:
1822 			WARN_ON(dl_set);
1823 			*dl_pipe = __le32_to_cpu(entry->pipenum);
1824 			dl_set = true;
1825 			break;
1826 		case PIPEDIR_OUT:
1827 			WARN_ON(ul_set);
1828 			*ul_pipe = __le32_to_cpu(entry->pipenum);
1829 			ul_set = true;
1830 			break;
1831 		case PIPEDIR_INOUT:
1832 			WARN_ON(dl_set);
1833 			WARN_ON(ul_set);
1834 			*dl_pipe = __le32_to_cpu(entry->pipenum);
1835 			*ul_pipe = __le32_to_cpu(entry->pipenum);
1836 			dl_set = true;
1837 			ul_set = true;
1838 			break;
1839 		}
1840 	}
1841 
1842 	if (WARN_ON(!ul_set || !dl_set))
1843 		return -ENOENT;
1844 
1845 	return 0;
1846 }
1847 
1848 void ath10k_pci_hif_get_default_pipe(struct ath10k *ar,
1849 				     u8 *ul_pipe, u8 *dl_pipe)
1850 {
1851 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get default pipe\n");
1852 
1853 	(void)ath10k_pci_hif_map_service_to_pipe(ar,
1854 						 ATH10K_HTC_SVC_ID_RSVD_CTRL,
1855 						 ul_pipe, dl_pipe);
1856 }
1857 
1858 void ath10k_pci_irq_msi_fw_mask(struct ath10k *ar)
1859 {
1860 	u32 val;
1861 
1862 	switch (ar->hw_rev) {
1863 	case ATH10K_HW_QCA988X:
1864 	case ATH10K_HW_QCA9887:
1865 	case ATH10K_HW_QCA6174:
1866 	case ATH10K_HW_QCA9377:
1867 		val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1868 					CORE_CTRL_ADDRESS);
1869 		val &= ~CORE_CTRL_PCIE_REG_31_MASK;
1870 		ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1871 				   CORE_CTRL_ADDRESS, val);
1872 		break;
1873 	case ATH10K_HW_QCA99X0:
1874 	case ATH10K_HW_QCA9984:
1875 	case ATH10K_HW_QCA9888:
1876 	case ATH10K_HW_QCA4019:
1877 		/* TODO: Find appropriate register configuration for QCA99X0
1878 		 *  to mask irq/MSI.
1879 		 */
1880 		break;
1881 	case ATH10K_HW_WCN3990:
1882 		break;
1883 	}
1884 }
1885 
1886 static void ath10k_pci_irq_msi_fw_unmask(struct ath10k *ar)
1887 {
1888 	u32 val;
1889 
1890 	switch (ar->hw_rev) {
1891 	case ATH10K_HW_QCA988X:
1892 	case ATH10K_HW_QCA9887:
1893 	case ATH10K_HW_QCA6174:
1894 	case ATH10K_HW_QCA9377:
1895 		val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1896 					CORE_CTRL_ADDRESS);
1897 		val |= CORE_CTRL_PCIE_REG_31_MASK;
1898 		ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1899 				   CORE_CTRL_ADDRESS, val);
1900 		break;
1901 	case ATH10K_HW_QCA99X0:
1902 	case ATH10K_HW_QCA9984:
1903 	case ATH10K_HW_QCA9888:
1904 	case ATH10K_HW_QCA4019:
1905 		/* TODO: Find appropriate register configuration for QCA99X0
1906 		 *  to unmask irq/MSI.
1907 		 */
1908 		break;
1909 	case ATH10K_HW_WCN3990:
1910 		break;
1911 	}
1912 }
1913 
1914 static void ath10k_pci_irq_disable(struct ath10k *ar)
1915 {
1916 	ath10k_ce_disable_interrupts(ar);
1917 	ath10k_pci_disable_and_clear_legacy_irq(ar);
1918 	ath10k_pci_irq_msi_fw_mask(ar);
1919 }
1920 
1921 static void ath10k_pci_irq_sync(struct ath10k *ar)
1922 {
1923 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1924 
1925 	synchronize_irq(ar_pci->pdev->irq);
1926 }
1927 
1928 static void ath10k_pci_irq_enable(struct ath10k *ar)
1929 {
1930 	ath10k_ce_enable_interrupts(ar);
1931 	ath10k_pci_enable_legacy_irq(ar);
1932 	ath10k_pci_irq_msi_fw_unmask(ar);
1933 }
1934 
1935 static int ath10k_pci_hif_start(struct ath10k *ar)
1936 {
1937 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1938 
1939 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif start\n");
1940 
1941 	napi_enable(&ar->napi);
1942 
1943 	ath10k_pci_irq_enable(ar);
1944 	ath10k_pci_rx_post(ar);
1945 
1946 	pcie_capability_write_word(ar_pci->pdev, PCI_EXP_LNKCTL,
1947 				   ar_pci->link_ctl);
1948 
1949 	return 0;
1950 }
1951 
1952 static void ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
1953 {
1954 	struct ath10k *ar;
1955 	struct ath10k_ce_pipe *ce_pipe;
1956 	struct ath10k_ce_ring *ce_ring;
1957 	struct sk_buff *skb;
1958 	int i;
1959 
1960 	ar = pci_pipe->hif_ce_state;
1961 	ce_pipe = pci_pipe->ce_hdl;
1962 	ce_ring = ce_pipe->dest_ring;
1963 
1964 	if (!ce_ring)
1965 		return;
1966 
1967 	if (!pci_pipe->buf_sz)
1968 		return;
1969 
1970 	for (i = 0; i < ce_ring->nentries; i++) {
1971 		skb = ce_ring->per_transfer_context[i];
1972 		if (!skb)
1973 			continue;
1974 
1975 		ce_ring->per_transfer_context[i] = NULL;
1976 
1977 		dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1978 				 skb->len + skb_tailroom(skb),
1979 				 DMA_FROM_DEVICE);
1980 		dev_kfree_skb_any(skb);
1981 	}
1982 }
1983 
1984 static void ath10k_pci_tx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
1985 {
1986 	struct ath10k *ar;
1987 	struct ath10k_ce_pipe *ce_pipe;
1988 	struct ath10k_ce_ring *ce_ring;
1989 	struct sk_buff *skb;
1990 	int i;
1991 
1992 	ar = pci_pipe->hif_ce_state;
1993 	ce_pipe = pci_pipe->ce_hdl;
1994 	ce_ring = ce_pipe->src_ring;
1995 
1996 	if (!ce_ring)
1997 		return;
1998 
1999 	if (!pci_pipe->buf_sz)
2000 		return;
2001 
2002 	for (i = 0; i < ce_ring->nentries; i++) {
2003 		skb = ce_ring->per_transfer_context[i];
2004 		if (!skb)
2005 			continue;
2006 
2007 		ce_ring->per_transfer_context[i] = NULL;
2008 
2009 		ath10k_htc_tx_completion_handler(ar, skb);
2010 	}
2011 }
2012 
2013 /*
2014  * Cleanup residual buffers for device shutdown:
2015  *    buffers that were enqueued for receive
2016  *    buffers that were to be sent
2017  * Note: Buffers that had completed but which were
2018  * not yet processed are on a completion queue. They
2019  * are handled when the completion thread shuts down.
2020  */
2021 static void ath10k_pci_buffer_cleanup(struct ath10k *ar)
2022 {
2023 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2024 	int pipe_num;
2025 
2026 	for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) {
2027 		struct ath10k_pci_pipe *pipe_info;
2028 
2029 		pipe_info = &ar_pci->pipe_info[pipe_num];
2030 		ath10k_pci_rx_pipe_cleanup(pipe_info);
2031 		ath10k_pci_tx_pipe_cleanup(pipe_info);
2032 	}
2033 }
2034 
2035 void ath10k_pci_ce_deinit(struct ath10k *ar)
2036 {
2037 	int i;
2038 
2039 	for (i = 0; i < CE_COUNT; i++)
2040 		ath10k_ce_deinit_pipe(ar, i);
2041 }
2042 
2043 void ath10k_pci_flush(struct ath10k *ar)
2044 {
2045 	ath10k_pci_rx_retry_sync(ar);
2046 	ath10k_pci_buffer_cleanup(ar);
2047 }
2048 
2049 static void ath10k_pci_hif_stop(struct ath10k *ar)
2050 {
2051 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2052 	unsigned long flags;
2053 
2054 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif stop\n");
2055 
2056 	/* Most likely the device has HTT Rx ring configured. The only way to
2057 	 * prevent the device from accessing (and possible corrupting) host
2058 	 * memory is to reset the chip now.
2059 	 *
2060 	 * There's also no known way of masking MSI interrupts on the device.
2061 	 * For ranged MSI the CE-related interrupts can be masked. However
2062 	 * regardless how many MSI interrupts are assigned the first one
2063 	 * is always used for firmware indications (crashes) and cannot be
2064 	 * masked. To prevent the device from asserting the interrupt reset it
2065 	 * before proceeding with cleanup.
2066 	 */
2067 	ath10k_pci_safe_chip_reset(ar);
2068 
2069 	ath10k_pci_irq_disable(ar);
2070 	ath10k_pci_irq_sync(ar);
2071 	ath10k_pci_flush(ar);
2072 	napi_synchronize(&ar->napi);
2073 	napi_disable(&ar->napi);
2074 
2075 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
2076 	WARN_ON(ar_pci->ps_wake_refcount > 0);
2077 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
2078 }
2079 
2080 int ath10k_pci_hif_exchange_bmi_msg(struct ath10k *ar,
2081 				    void *req, u32 req_len,
2082 				    void *resp, u32 *resp_len)
2083 {
2084 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2085 	struct ath10k_pci_pipe *pci_tx = &ar_pci->pipe_info[BMI_CE_NUM_TO_TARG];
2086 	struct ath10k_pci_pipe *pci_rx = &ar_pci->pipe_info[BMI_CE_NUM_TO_HOST];
2087 	struct ath10k_ce_pipe *ce_tx = pci_tx->ce_hdl;
2088 	struct ath10k_ce_pipe *ce_rx = pci_rx->ce_hdl;
2089 	dma_addr_t req_paddr = 0;
2090 	dma_addr_t resp_paddr = 0;
2091 	struct bmi_xfer xfer = {};
2092 	void *treq, *tresp = NULL;
2093 	int ret = 0;
2094 
2095 	might_sleep();
2096 
2097 	if (resp && !resp_len)
2098 		return -EINVAL;
2099 
2100 	if (resp && resp_len && *resp_len == 0)
2101 		return -EINVAL;
2102 
2103 	treq = kmemdup(req, req_len, GFP_KERNEL);
2104 	if (!treq)
2105 		return -ENOMEM;
2106 
2107 	req_paddr = dma_map_single(ar->dev, treq, req_len, DMA_TO_DEVICE);
2108 	ret = dma_mapping_error(ar->dev, req_paddr);
2109 	if (ret) {
2110 		ret = -EIO;
2111 		goto err_dma;
2112 	}
2113 
2114 	if (resp && resp_len) {
2115 		tresp = kzalloc(*resp_len, GFP_KERNEL);
2116 		if (!tresp) {
2117 			ret = -ENOMEM;
2118 			goto err_req;
2119 		}
2120 
2121 		resp_paddr = dma_map_single(ar->dev, tresp, *resp_len,
2122 					    DMA_FROM_DEVICE);
2123 		ret = dma_mapping_error(ar->dev, resp_paddr);
2124 		if (ret) {
2125 			ret = -EIO;
2126 			goto err_req;
2127 		}
2128 
2129 		xfer.wait_for_resp = true;
2130 		xfer.resp_len = 0;
2131 
2132 		ath10k_ce_rx_post_buf(ce_rx, &xfer, resp_paddr);
2133 	}
2134 
2135 	ret = ath10k_ce_send(ce_tx, &xfer, req_paddr, req_len, -1, 0);
2136 	if (ret)
2137 		goto err_resp;
2138 
2139 	ret = ath10k_pci_bmi_wait(ar, ce_tx, ce_rx, &xfer);
2140 	if (ret) {
2141 		dma_addr_t unused_buffer;
2142 		unsigned int unused_nbytes;
2143 		unsigned int unused_id;
2144 
2145 		ath10k_ce_cancel_send_next(ce_tx, NULL, &unused_buffer,
2146 					   &unused_nbytes, &unused_id);
2147 	} else {
2148 		/* non-zero means we did not time out */
2149 		ret = 0;
2150 	}
2151 
2152 err_resp:
2153 	if (resp) {
2154 		dma_addr_t unused_buffer;
2155 
2156 		ath10k_ce_revoke_recv_next(ce_rx, NULL, &unused_buffer);
2157 		dma_unmap_single(ar->dev, resp_paddr,
2158 				 *resp_len, DMA_FROM_DEVICE);
2159 	}
2160 err_req:
2161 	dma_unmap_single(ar->dev, req_paddr, req_len, DMA_TO_DEVICE);
2162 
2163 	if (ret == 0 && resp_len) {
2164 		*resp_len = min(*resp_len, xfer.resp_len);
2165 		memcpy(resp, tresp, xfer.resp_len);
2166 	}
2167 err_dma:
2168 	kfree(treq);
2169 	kfree(tresp);
2170 
2171 	return ret;
2172 }
2173 
2174 static void ath10k_pci_bmi_send_done(struct ath10k_ce_pipe *ce_state)
2175 {
2176 	struct bmi_xfer *xfer;
2177 
2178 	if (ath10k_ce_completed_send_next(ce_state, (void **)&xfer))
2179 		return;
2180 
2181 	xfer->tx_done = true;
2182 }
2183 
2184 static void ath10k_pci_bmi_recv_data(struct ath10k_ce_pipe *ce_state)
2185 {
2186 	struct ath10k *ar = ce_state->ar;
2187 	struct bmi_xfer *xfer;
2188 	unsigned int nbytes;
2189 
2190 	if (ath10k_ce_completed_recv_next(ce_state, (void **)&xfer,
2191 					  &nbytes))
2192 		return;
2193 
2194 	if (WARN_ON_ONCE(!xfer))
2195 		return;
2196 
2197 	if (!xfer->wait_for_resp) {
2198 		ath10k_warn(ar, "unexpected: BMI data received; ignoring\n");
2199 		return;
2200 	}
2201 
2202 	xfer->resp_len = nbytes;
2203 	xfer->rx_done = true;
2204 }
2205 
2206 static int ath10k_pci_bmi_wait(struct ath10k *ar,
2207 			       struct ath10k_ce_pipe *tx_pipe,
2208 			       struct ath10k_ce_pipe *rx_pipe,
2209 			       struct bmi_xfer *xfer)
2210 {
2211 	unsigned long timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ;
2212 	unsigned long started = jiffies;
2213 	unsigned long dur;
2214 	int ret;
2215 
2216 	while (time_before_eq(jiffies, timeout)) {
2217 		ath10k_pci_bmi_send_done(tx_pipe);
2218 		ath10k_pci_bmi_recv_data(rx_pipe);
2219 
2220 		if (xfer->tx_done && (xfer->rx_done == xfer->wait_for_resp)) {
2221 			ret = 0;
2222 			goto out;
2223 		}
2224 
2225 		schedule();
2226 	}
2227 
2228 	ret = -ETIMEDOUT;
2229 
2230 out:
2231 	dur = jiffies - started;
2232 	if (dur > HZ)
2233 		ath10k_dbg(ar, ATH10K_DBG_BMI,
2234 			   "bmi cmd took %lu jiffies hz %d ret %d\n",
2235 			   dur, HZ, ret);
2236 	return ret;
2237 }
2238 
2239 /*
2240  * Send an interrupt to the device to wake up the Target CPU
2241  * so it has an opportunity to notice any changed state.
2242  */
2243 static int ath10k_pci_wake_target_cpu(struct ath10k *ar)
2244 {
2245 	u32 addr, val;
2246 
2247 	addr = SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS;
2248 	val = ath10k_pci_read32(ar, addr);
2249 	val |= CORE_CTRL_CPU_INTR_MASK;
2250 	ath10k_pci_write32(ar, addr, val);
2251 
2252 	return 0;
2253 }
2254 
2255 static int ath10k_pci_get_num_banks(struct ath10k *ar)
2256 {
2257 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2258 
2259 	switch (ar_pci->pdev->device) {
2260 	case QCA988X_2_0_DEVICE_ID_UBNT:
2261 	case QCA988X_2_0_DEVICE_ID:
2262 	case QCA99X0_2_0_DEVICE_ID:
2263 	case QCA9888_2_0_DEVICE_ID:
2264 	case QCA9984_1_0_DEVICE_ID:
2265 	case QCA9887_1_0_DEVICE_ID:
2266 		return 1;
2267 	case QCA6164_2_1_DEVICE_ID:
2268 	case QCA6174_2_1_DEVICE_ID:
2269 		switch (MS(ar->chip_id, SOC_CHIP_ID_REV)) {
2270 		case QCA6174_HW_1_0_CHIP_ID_REV:
2271 		case QCA6174_HW_1_1_CHIP_ID_REV:
2272 		case QCA6174_HW_2_1_CHIP_ID_REV:
2273 		case QCA6174_HW_2_2_CHIP_ID_REV:
2274 			return 3;
2275 		case QCA6174_HW_1_3_CHIP_ID_REV:
2276 			return 2;
2277 		case QCA6174_HW_3_0_CHIP_ID_REV:
2278 		case QCA6174_HW_3_1_CHIP_ID_REV:
2279 		case QCA6174_HW_3_2_CHIP_ID_REV:
2280 			return 9;
2281 		}
2282 		break;
2283 	case QCA9377_1_0_DEVICE_ID:
2284 		return 9;
2285 	}
2286 
2287 	ath10k_warn(ar, "unknown number of banks, assuming 1\n");
2288 	return 1;
2289 }
2290 
2291 static int ath10k_bus_get_num_banks(struct ath10k *ar)
2292 {
2293 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
2294 
2295 	return ce->bus_ops->get_num_banks(ar);
2296 }
2297 
2298 int ath10k_pci_init_config(struct ath10k *ar)
2299 {
2300 	u32 interconnect_targ_addr;
2301 	u32 pcie_state_targ_addr = 0;
2302 	u32 pipe_cfg_targ_addr = 0;
2303 	u32 svc_to_pipe_map = 0;
2304 	u32 pcie_config_flags = 0;
2305 	u32 ealloc_value;
2306 	u32 ealloc_targ_addr;
2307 	u32 flag2_value;
2308 	u32 flag2_targ_addr;
2309 	int ret = 0;
2310 
2311 	/* Download to Target the CE Config and the service-to-CE map */
2312 	interconnect_targ_addr =
2313 		host_interest_item_address(HI_ITEM(hi_interconnect_state));
2314 
2315 	/* Supply Target-side CE configuration */
2316 	ret = ath10k_pci_diag_read32(ar, interconnect_targ_addr,
2317 				     &pcie_state_targ_addr);
2318 	if (ret != 0) {
2319 		ath10k_err(ar, "Failed to get pcie state addr: %d\n", ret);
2320 		return ret;
2321 	}
2322 
2323 	if (pcie_state_targ_addr == 0) {
2324 		ret = -EIO;
2325 		ath10k_err(ar, "Invalid pcie state addr\n");
2326 		return ret;
2327 	}
2328 
2329 	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2330 					  offsetof(struct pcie_state,
2331 						   pipe_cfg_addr)),
2332 				     &pipe_cfg_targ_addr);
2333 	if (ret != 0) {
2334 		ath10k_err(ar, "Failed to get pipe cfg addr: %d\n", ret);
2335 		return ret;
2336 	}
2337 
2338 	if (pipe_cfg_targ_addr == 0) {
2339 		ret = -EIO;
2340 		ath10k_err(ar, "Invalid pipe cfg addr\n");
2341 		return ret;
2342 	}
2343 
2344 	ret = ath10k_pci_diag_write_mem(ar, pipe_cfg_targ_addr,
2345 					target_ce_config_wlan,
2346 					sizeof(struct ce_pipe_config) *
2347 					NUM_TARGET_CE_CONFIG_WLAN);
2348 
2349 	if (ret != 0) {
2350 		ath10k_err(ar, "Failed to write pipe cfg: %d\n", ret);
2351 		return ret;
2352 	}
2353 
2354 	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2355 					  offsetof(struct pcie_state,
2356 						   svc_to_pipe_map)),
2357 				     &svc_to_pipe_map);
2358 	if (ret != 0) {
2359 		ath10k_err(ar, "Failed to get svc/pipe map: %d\n", ret);
2360 		return ret;
2361 	}
2362 
2363 	if (svc_to_pipe_map == 0) {
2364 		ret = -EIO;
2365 		ath10k_err(ar, "Invalid svc_to_pipe map\n");
2366 		return ret;
2367 	}
2368 
2369 	ret = ath10k_pci_diag_write_mem(ar, svc_to_pipe_map,
2370 					target_service_to_ce_map_wlan,
2371 					sizeof(target_service_to_ce_map_wlan));
2372 	if (ret != 0) {
2373 		ath10k_err(ar, "Failed to write svc/pipe map: %d\n", ret);
2374 		return ret;
2375 	}
2376 
2377 	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2378 					  offsetof(struct pcie_state,
2379 						   config_flags)),
2380 				     &pcie_config_flags);
2381 	if (ret != 0) {
2382 		ath10k_err(ar, "Failed to get pcie config_flags: %d\n", ret);
2383 		return ret;
2384 	}
2385 
2386 	pcie_config_flags &= ~PCIE_CONFIG_FLAG_ENABLE_L1;
2387 
2388 	ret = ath10k_pci_diag_write32(ar, (pcie_state_targ_addr +
2389 					   offsetof(struct pcie_state,
2390 						    config_flags)),
2391 				      pcie_config_flags);
2392 	if (ret != 0) {
2393 		ath10k_err(ar, "Failed to write pcie config_flags: %d\n", ret);
2394 		return ret;
2395 	}
2396 
2397 	/* configure early allocation */
2398 	ealloc_targ_addr = host_interest_item_address(HI_ITEM(hi_early_alloc));
2399 
2400 	ret = ath10k_pci_diag_read32(ar, ealloc_targ_addr, &ealloc_value);
2401 	if (ret != 0) {
2402 		ath10k_err(ar, "Failed to get early alloc val: %d\n", ret);
2403 		return ret;
2404 	}
2405 
2406 	/* first bank is switched to IRAM */
2407 	ealloc_value |= ((HI_EARLY_ALLOC_MAGIC << HI_EARLY_ALLOC_MAGIC_SHIFT) &
2408 			 HI_EARLY_ALLOC_MAGIC_MASK);
2409 	ealloc_value |= ((ath10k_bus_get_num_banks(ar) <<
2410 			  HI_EARLY_ALLOC_IRAM_BANKS_SHIFT) &
2411 			 HI_EARLY_ALLOC_IRAM_BANKS_MASK);
2412 
2413 	ret = ath10k_pci_diag_write32(ar, ealloc_targ_addr, ealloc_value);
2414 	if (ret != 0) {
2415 		ath10k_err(ar, "Failed to set early alloc val: %d\n", ret);
2416 		return ret;
2417 	}
2418 
2419 	/* Tell Target to proceed with initialization */
2420 	flag2_targ_addr = host_interest_item_address(HI_ITEM(hi_option_flag2));
2421 
2422 	ret = ath10k_pci_diag_read32(ar, flag2_targ_addr, &flag2_value);
2423 	if (ret != 0) {
2424 		ath10k_err(ar, "Failed to get option val: %d\n", ret);
2425 		return ret;
2426 	}
2427 
2428 	flag2_value |= HI_OPTION_EARLY_CFG_DONE;
2429 
2430 	ret = ath10k_pci_diag_write32(ar, flag2_targ_addr, flag2_value);
2431 	if (ret != 0) {
2432 		ath10k_err(ar, "Failed to set option val: %d\n", ret);
2433 		return ret;
2434 	}
2435 
2436 	return 0;
2437 }
2438 
2439 static void ath10k_pci_override_ce_config(struct ath10k *ar)
2440 {
2441 	struct ce_attr *attr;
2442 	struct ce_pipe_config *config;
2443 
2444 	/* For QCA6174 we're overriding the Copy Engine 5 configuration,
2445 	 * since it is currently used for other feature.
2446 	 */
2447 
2448 	/* Override Host's Copy Engine 5 configuration */
2449 	attr = &host_ce_config_wlan[5];
2450 	attr->src_sz_max = 0;
2451 	attr->dest_nentries = 0;
2452 
2453 	/* Override Target firmware's Copy Engine configuration */
2454 	config = &target_ce_config_wlan[5];
2455 	config->pipedir = __cpu_to_le32(PIPEDIR_OUT);
2456 	config->nbytes_max = __cpu_to_le32(2048);
2457 
2458 	/* Map from service/endpoint to Copy Engine */
2459 	target_service_to_ce_map_wlan[15].pipenum = __cpu_to_le32(1);
2460 }
2461 
2462 int ath10k_pci_alloc_pipes(struct ath10k *ar)
2463 {
2464 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2465 	struct ath10k_pci_pipe *pipe;
2466 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
2467 	int i, ret;
2468 
2469 	for (i = 0; i < CE_COUNT; i++) {
2470 		pipe = &ar_pci->pipe_info[i];
2471 		pipe->ce_hdl = &ce->ce_states[i];
2472 		pipe->pipe_num = i;
2473 		pipe->hif_ce_state = ar;
2474 
2475 		ret = ath10k_ce_alloc_pipe(ar, i, &host_ce_config_wlan[i]);
2476 		if (ret) {
2477 			ath10k_err(ar, "failed to allocate copy engine pipe %d: %d\n",
2478 				   i, ret);
2479 			return ret;
2480 		}
2481 
2482 		/* Last CE is Diagnostic Window */
2483 		if (i == CE_DIAG_PIPE) {
2484 			ar_pci->ce_diag = pipe->ce_hdl;
2485 			continue;
2486 		}
2487 
2488 		pipe->buf_sz = (size_t)(host_ce_config_wlan[i].src_sz_max);
2489 	}
2490 
2491 	return 0;
2492 }
2493 
2494 void ath10k_pci_free_pipes(struct ath10k *ar)
2495 {
2496 	int i;
2497 
2498 	for (i = 0; i < CE_COUNT; i++)
2499 		ath10k_ce_free_pipe(ar, i);
2500 }
2501 
2502 int ath10k_pci_init_pipes(struct ath10k *ar)
2503 {
2504 	int i, ret;
2505 
2506 	for (i = 0; i < CE_COUNT; i++) {
2507 		ret = ath10k_ce_init_pipe(ar, i, &host_ce_config_wlan[i]);
2508 		if (ret) {
2509 			ath10k_err(ar, "failed to initialize copy engine pipe %d: %d\n",
2510 				   i, ret);
2511 			return ret;
2512 		}
2513 	}
2514 
2515 	return 0;
2516 }
2517 
2518 static bool ath10k_pci_has_fw_crashed(struct ath10k *ar)
2519 {
2520 	return ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS) &
2521 	       FW_IND_EVENT_PENDING;
2522 }
2523 
2524 static void ath10k_pci_fw_crashed_clear(struct ath10k *ar)
2525 {
2526 	u32 val;
2527 
2528 	val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2529 	val &= ~FW_IND_EVENT_PENDING;
2530 	ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, val);
2531 }
2532 
2533 static bool ath10k_pci_has_device_gone(struct ath10k *ar)
2534 {
2535 	u32 val;
2536 
2537 	val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2538 	return (val == 0xffffffff);
2539 }
2540 
2541 /* this function effectively clears target memory controller assert line */
2542 static void ath10k_pci_warm_reset_si0(struct ath10k *ar)
2543 {
2544 	u32 val;
2545 
2546 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2547 	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2548 			       val | SOC_RESET_CONTROL_SI0_RST_MASK);
2549 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2550 
2551 	msleep(10);
2552 
2553 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2554 	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2555 			       val & ~SOC_RESET_CONTROL_SI0_RST_MASK);
2556 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2557 
2558 	msleep(10);
2559 }
2560 
2561 static void ath10k_pci_warm_reset_cpu(struct ath10k *ar)
2562 {
2563 	u32 val;
2564 
2565 	ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, 0);
2566 
2567 	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2568 				SOC_RESET_CONTROL_ADDRESS);
2569 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
2570 			   val | SOC_RESET_CONTROL_CPU_WARM_RST_MASK);
2571 }
2572 
2573 static void ath10k_pci_warm_reset_ce(struct ath10k *ar)
2574 {
2575 	u32 val;
2576 
2577 	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2578 				SOC_RESET_CONTROL_ADDRESS);
2579 
2580 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
2581 			   val | SOC_RESET_CONTROL_CE_RST_MASK);
2582 	msleep(10);
2583 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
2584 			   val & ~SOC_RESET_CONTROL_CE_RST_MASK);
2585 }
2586 
2587 static void ath10k_pci_warm_reset_clear_lf(struct ath10k *ar)
2588 {
2589 	u32 val;
2590 
2591 	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2592 				SOC_LF_TIMER_CONTROL0_ADDRESS);
2593 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS +
2594 			   SOC_LF_TIMER_CONTROL0_ADDRESS,
2595 			   val & ~SOC_LF_TIMER_CONTROL0_ENABLE_MASK);
2596 }
2597 
2598 static int ath10k_pci_warm_reset(struct ath10k *ar)
2599 {
2600 	int ret;
2601 
2602 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset\n");
2603 
2604 	spin_lock_bh(&ar->data_lock);
2605 	ar->stats.fw_warm_reset_counter++;
2606 	spin_unlock_bh(&ar->data_lock);
2607 
2608 	ath10k_pci_irq_disable(ar);
2609 
2610 	/* Make sure the target CPU is not doing anything dangerous, e.g. if it
2611 	 * were to access copy engine while host performs copy engine reset
2612 	 * then it is possible for the device to confuse pci-e controller to
2613 	 * the point of bringing host system to a complete stop (i.e. hang).
2614 	 */
2615 	ath10k_pci_warm_reset_si0(ar);
2616 	ath10k_pci_warm_reset_cpu(ar);
2617 	ath10k_pci_init_pipes(ar);
2618 	ath10k_pci_wait_for_target_init(ar);
2619 
2620 	ath10k_pci_warm_reset_clear_lf(ar);
2621 	ath10k_pci_warm_reset_ce(ar);
2622 	ath10k_pci_warm_reset_cpu(ar);
2623 	ath10k_pci_init_pipes(ar);
2624 
2625 	ret = ath10k_pci_wait_for_target_init(ar);
2626 	if (ret) {
2627 		ath10k_warn(ar, "failed to wait for target init: %d\n", ret);
2628 		return ret;
2629 	}
2630 
2631 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset complete\n");
2632 
2633 	return 0;
2634 }
2635 
2636 static int ath10k_pci_qca99x0_soft_chip_reset(struct ath10k *ar)
2637 {
2638 	ath10k_pci_irq_disable(ar);
2639 	return ath10k_pci_qca99x0_chip_reset(ar);
2640 }
2641 
2642 static int ath10k_pci_safe_chip_reset(struct ath10k *ar)
2643 {
2644 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2645 
2646 	if (!ar_pci->pci_soft_reset)
2647 		return -ENOTSUPP;
2648 
2649 	return ar_pci->pci_soft_reset(ar);
2650 }
2651 
2652 static int ath10k_pci_qca988x_chip_reset(struct ath10k *ar)
2653 {
2654 	int i, ret;
2655 	u32 val;
2656 
2657 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot 988x chip reset\n");
2658 
2659 	/* Some hardware revisions (e.g. CUS223v2) has issues with cold reset.
2660 	 * It is thus preferred to use warm reset which is safer but may not be
2661 	 * able to recover the device from all possible fail scenarios.
2662 	 *
2663 	 * Warm reset doesn't always work on first try so attempt it a few
2664 	 * times before giving up.
2665 	 */
2666 	for (i = 0; i < ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS; i++) {
2667 		ret = ath10k_pci_warm_reset(ar);
2668 		if (ret) {
2669 			ath10k_warn(ar, "failed to warm reset attempt %d of %d: %d\n",
2670 				    i + 1, ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS,
2671 				    ret);
2672 			continue;
2673 		}
2674 
2675 		/* FIXME: Sometimes copy engine doesn't recover after warm
2676 		 * reset. In most cases this needs cold reset. In some of these
2677 		 * cases the device is in such a state that a cold reset may
2678 		 * lock up the host.
2679 		 *
2680 		 * Reading any host interest register via copy engine is
2681 		 * sufficient to verify if device is capable of booting
2682 		 * firmware blob.
2683 		 */
2684 		ret = ath10k_pci_init_pipes(ar);
2685 		if (ret) {
2686 			ath10k_warn(ar, "failed to init copy engine: %d\n",
2687 				    ret);
2688 			continue;
2689 		}
2690 
2691 		ret = ath10k_pci_diag_read32(ar, QCA988X_HOST_INTEREST_ADDRESS,
2692 					     &val);
2693 		if (ret) {
2694 			ath10k_warn(ar, "failed to poke copy engine: %d\n",
2695 				    ret);
2696 			continue;
2697 		}
2698 
2699 		ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot chip reset complete (warm)\n");
2700 		return 0;
2701 	}
2702 
2703 	if (ath10k_pci_reset_mode == ATH10K_PCI_RESET_WARM_ONLY) {
2704 		ath10k_warn(ar, "refusing cold reset as requested\n");
2705 		return -EPERM;
2706 	}
2707 
2708 	ret = ath10k_pci_cold_reset(ar);
2709 	if (ret) {
2710 		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2711 		return ret;
2712 	}
2713 
2714 	ret = ath10k_pci_wait_for_target_init(ar);
2715 	if (ret) {
2716 		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2717 			    ret);
2718 		return ret;
2719 	}
2720 
2721 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca988x chip reset complete (cold)\n");
2722 
2723 	return 0;
2724 }
2725 
2726 static int ath10k_pci_qca6174_chip_reset(struct ath10k *ar)
2727 {
2728 	int ret;
2729 
2730 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset\n");
2731 
2732 	/* FIXME: QCA6174 requires cold + warm reset to work. */
2733 
2734 	ret = ath10k_pci_cold_reset(ar);
2735 	if (ret) {
2736 		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2737 		return ret;
2738 	}
2739 
2740 	ret = ath10k_pci_wait_for_target_init(ar);
2741 	if (ret) {
2742 		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2743 			    ret);
2744 		return ret;
2745 	}
2746 
2747 	ret = ath10k_pci_warm_reset(ar);
2748 	if (ret) {
2749 		ath10k_warn(ar, "failed to warm reset: %d\n", ret);
2750 		return ret;
2751 	}
2752 
2753 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset complete (cold)\n");
2754 
2755 	return 0;
2756 }
2757 
2758 static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar)
2759 {
2760 	int ret;
2761 
2762 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset\n");
2763 
2764 	ret = ath10k_pci_cold_reset(ar);
2765 	if (ret) {
2766 		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2767 		return ret;
2768 	}
2769 
2770 	ret = ath10k_pci_wait_for_target_init(ar);
2771 	if (ret) {
2772 		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2773 			    ret);
2774 		return ret;
2775 	}
2776 
2777 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset complete (cold)\n");
2778 
2779 	return 0;
2780 }
2781 
2782 static int ath10k_pci_chip_reset(struct ath10k *ar)
2783 {
2784 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2785 
2786 	if (WARN_ON(!ar_pci->pci_hard_reset))
2787 		return -ENOTSUPP;
2788 
2789 	return ar_pci->pci_hard_reset(ar);
2790 }
2791 
2792 static int ath10k_pci_hif_power_up(struct ath10k *ar)
2793 {
2794 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2795 	int ret;
2796 
2797 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power up\n");
2798 
2799 	pcie_capability_read_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2800 				  &ar_pci->link_ctl);
2801 	pcie_capability_write_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2802 				   ar_pci->link_ctl & ~PCI_EXP_LNKCTL_ASPMC);
2803 
2804 	/*
2805 	 * Bring the target up cleanly.
2806 	 *
2807 	 * The target may be in an undefined state with an AUX-powered Target
2808 	 * and a Host in WoW mode. If the Host crashes, loses power, or is
2809 	 * restarted (without unloading the driver) then the Target is left
2810 	 * (aux) powered and running. On a subsequent driver load, the Target
2811 	 * is in an unexpected state. We try to catch that here in order to
2812 	 * reset the Target and retry the probe.
2813 	 */
2814 	ret = ath10k_pci_chip_reset(ar);
2815 	if (ret) {
2816 		if (ath10k_pci_has_fw_crashed(ar)) {
2817 			ath10k_warn(ar, "firmware crashed during chip reset\n");
2818 			ath10k_pci_fw_crashed_clear(ar);
2819 			ath10k_pci_fw_crashed_dump(ar);
2820 		}
2821 
2822 		ath10k_err(ar, "failed to reset chip: %d\n", ret);
2823 		goto err_sleep;
2824 	}
2825 
2826 	ret = ath10k_pci_init_pipes(ar);
2827 	if (ret) {
2828 		ath10k_err(ar, "failed to initialize CE: %d\n", ret);
2829 		goto err_sleep;
2830 	}
2831 
2832 	ret = ath10k_pci_init_config(ar);
2833 	if (ret) {
2834 		ath10k_err(ar, "failed to setup init config: %d\n", ret);
2835 		goto err_ce;
2836 	}
2837 
2838 	ret = ath10k_pci_wake_target_cpu(ar);
2839 	if (ret) {
2840 		ath10k_err(ar, "could not wake up target CPU: %d\n", ret);
2841 		goto err_ce;
2842 	}
2843 
2844 	return 0;
2845 
2846 err_ce:
2847 	ath10k_pci_ce_deinit(ar);
2848 
2849 err_sleep:
2850 	return ret;
2851 }
2852 
2853 void ath10k_pci_hif_power_down(struct ath10k *ar)
2854 {
2855 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power down\n");
2856 
2857 	/* Currently hif_power_up performs effectively a reset and hif_stop
2858 	 * resets the chip as well so there's no point in resetting here.
2859 	 */
2860 }
2861 
2862 static int ath10k_pci_hif_suspend(struct ath10k *ar)
2863 {
2864 	/* Nothing to do; the important stuff is in the driver suspend. */
2865 	return 0;
2866 }
2867 
2868 static int ath10k_pci_suspend(struct ath10k *ar)
2869 {
2870 	/* The grace timer can still be counting down and ar->ps_awake be true.
2871 	 * It is known that the device may be asleep after resuming regardless
2872 	 * of the SoC powersave state before suspending. Hence make sure the
2873 	 * device is asleep before proceeding.
2874 	 */
2875 	ath10k_pci_sleep_sync(ar);
2876 
2877 	return 0;
2878 }
2879 
2880 static int ath10k_pci_hif_resume(struct ath10k *ar)
2881 {
2882 	/* Nothing to do; the important stuff is in the driver resume. */
2883 	return 0;
2884 }
2885 
2886 static int ath10k_pci_resume(struct ath10k *ar)
2887 {
2888 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2889 	struct pci_dev *pdev = ar_pci->pdev;
2890 	u32 val;
2891 	int ret = 0;
2892 
2893 	ret = ath10k_pci_force_wake(ar);
2894 	if (ret) {
2895 		ath10k_err(ar, "failed to wake up target: %d\n", ret);
2896 		return ret;
2897 	}
2898 
2899 	/* Suspend/Resume resets the PCI configuration space, so we have to
2900 	 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
2901 	 * from interfering with C3 CPU state. pci_restore_state won't help
2902 	 * here since it only restores the first 64 bytes pci config header.
2903 	 */
2904 	pci_read_config_dword(pdev, 0x40, &val);
2905 	if ((val & 0x0000ff00) != 0)
2906 		pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
2907 
2908 	return ret;
2909 }
2910 
2911 static bool ath10k_pci_validate_cal(void *data, size_t size)
2912 {
2913 	__le16 *cal_words = data;
2914 	u16 checksum = 0;
2915 	size_t i;
2916 
2917 	if (size % 2 != 0)
2918 		return false;
2919 
2920 	for (i = 0; i < size / 2; i++)
2921 		checksum ^= le16_to_cpu(cal_words[i]);
2922 
2923 	return checksum == 0xffff;
2924 }
2925 
2926 static void ath10k_pci_enable_eeprom(struct ath10k *ar)
2927 {
2928 	/* Enable SI clock */
2929 	ath10k_pci_soc_write32(ar, CLOCK_CONTROL_OFFSET, 0x0);
2930 
2931 	/* Configure GPIOs for I2C operation */
2932 	ath10k_pci_write32(ar,
2933 			   GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
2934 			   4 * QCA9887_1_0_I2C_SDA_GPIO_PIN,
2935 			   SM(QCA9887_1_0_I2C_SDA_PIN_CONFIG,
2936 			      GPIO_PIN0_CONFIG) |
2937 			   SM(1, GPIO_PIN0_PAD_PULL));
2938 
2939 	ath10k_pci_write32(ar,
2940 			   GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
2941 			   4 * QCA9887_1_0_SI_CLK_GPIO_PIN,
2942 			   SM(QCA9887_1_0_SI_CLK_PIN_CONFIG, GPIO_PIN0_CONFIG) |
2943 			   SM(1, GPIO_PIN0_PAD_PULL));
2944 
2945 	ath10k_pci_write32(ar,
2946 			   GPIO_BASE_ADDRESS +
2947 			   QCA9887_1_0_GPIO_ENABLE_W1TS_LOW_ADDRESS,
2948 			   1u << QCA9887_1_0_SI_CLK_GPIO_PIN);
2949 
2950 	/* In Swift ASIC - EEPROM clock will be (110MHz/512) = 214KHz */
2951 	ath10k_pci_write32(ar,
2952 			   SI_BASE_ADDRESS + SI_CONFIG_OFFSET,
2953 			   SM(1, SI_CONFIG_ERR_INT) |
2954 			   SM(1, SI_CONFIG_BIDIR_OD_DATA) |
2955 			   SM(1, SI_CONFIG_I2C) |
2956 			   SM(1, SI_CONFIG_POS_SAMPLE) |
2957 			   SM(1, SI_CONFIG_INACTIVE_DATA) |
2958 			   SM(1, SI_CONFIG_INACTIVE_CLK) |
2959 			   SM(8, SI_CONFIG_DIVIDER));
2960 }
2961 
2962 static int ath10k_pci_read_eeprom(struct ath10k *ar, u16 addr, u8 *out)
2963 {
2964 	u32 reg;
2965 	int wait_limit;
2966 
2967 	/* set device select byte and for the read operation */
2968 	reg = QCA9887_EEPROM_SELECT_READ |
2969 	      SM(addr, QCA9887_EEPROM_ADDR_LO) |
2970 	      SM(addr >> 8, QCA9887_EEPROM_ADDR_HI);
2971 	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_TX_DATA0_OFFSET, reg);
2972 
2973 	/* write transmit data, transfer length, and START bit */
2974 	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET,
2975 			   SM(1, SI_CS_START) | SM(1, SI_CS_RX_CNT) |
2976 			   SM(4, SI_CS_TX_CNT));
2977 
2978 	/* wait max 1 sec */
2979 	wait_limit = 100000;
2980 
2981 	/* wait for SI_CS_DONE_INT */
2982 	do {
2983 		reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET);
2984 		if (MS(reg, SI_CS_DONE_INT))
2985 			break;
2986 
2987 		wait_limit--;
2988 		udelay(10);
2989 	} while (wait_limit > 0);
2990 
2991 	if (!MS(reg, SI_CS_DONE_INT)) {
2992 		ath10k_err(ar, "timeout while reading device EEPROM at %04x\n",
2993 			   addr);
2994 		return -ETIMEDOUT;
2995 	}
2996 
2997 	/* clear SI_CS_DONE_INT */
2998 	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET, reg);
2999 
3000 	if (MS(reg, SI_CS_DONE_ERR)) {
3001 		ath10k_err(ar, "failed to read device EEPROM at %04x\n", addr);
3002 		return -EIO;
3003 	}
3004 
3005 	/* extract receive data */
3006 	reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_RX_DATA0_OFFSET);
3007 	*out = reg;
3008 
3009 	return 0;
3010 }
3011 
3012 static int ath10k_pci_hif_fetch_cal_eeprom(struct ath10k *ar, void **data,
3013 					   size_t *data_len)
3014 {
3015 	u8 *caldata = NULL;
3016 	size_t calsize, i;
3017 	int ret;
3018 
3019 	if (!QCA_REV_9887(ar))
3020 		return -EOPNOTSUPP;
3021 
3022 	calsize = ar->hw_params.cal_data_len;
3023 	caldata = kmalloc(calsize, GFP_KERNEL);
3024 	if (!caldata)
3025 		return -ENOMEM;
3026 
3027 	ath10k_pci_enable_eeprom(ar);
3028 
3029 	for (i = 0; i < calsize; i++) {
3030 		ret = ath10k_pci_read_eeprom(ar, i, &caldata[i]);
3031 		if (ret)
3032 			goto err_free;
3033 	}
3034 
3035 	if (!ath10k_pci_validate_cal(caldata, calsize))
3036 		goto err_free;
3037 
3038 	*data = caldata;
3039 	*data_len = calsize;
3040 
3041 	return 0;
3042 
3043 err_free:
3044 	kfree(caldata);
3045 
3046 	return -EINVAL;
3047 }
3048 
3049 static const struct ath10k_hif_ops ath10k_pci_hif_ops = {
3050 	.tx_sg			= ath10k_pci_hif_tx_sg,
3051 	.diag_read		= ath10k_pci_hif_diag_read,
3052 	.diag_write		= ath10k_pci_diag_write_mem,
3053 	.exchange_bmi_msg	= ath10k_pci_hif_exchange_bmi_msg,
3054 	.start			= ath10k_pci_hif_start,
3055 	.stop			= ath10k_pci_hif_stop,
3056 	.map_service_to_pipe	= ath10k_pci_hif_map_service_to_pipe,
3057 	.get_default_pipe	= ath10k_pci_hif_get_default_pipe,
3058 	.send_complete_check	= ath10k_pci_hif_send_complete_check,
3059 	.get_free_queue_number	= ath10k_pci_hif_get_free_queue_number,
3060 	.power_up		= ath10k_pci_hif_power_up,
3061 	.power_down		= ath10k_pci_hif_power_down,
3062 	.read32			= ath10k_pci_read32,
3063 	.write32		= ath10k_pci_write32,
3064 	.suspend		= ath10k_pci_hif_suspend,
3065 	.resume			= ath10k_pci_hif_resume,
3066 	.fetch_cal_eeprom	= ath10k_pci_hif_fetch_cal_eeprom,
3067 };
3068 
3069 /*
3070  * Top-level interrupt handler for all PCI interrupts from a Target.
3071  * When a block of MSI interrupts is allocated, this top-level handler
3072  * is not used; instead, we directly call the correct sub-handler.
3073  */
3074 static irqreturn_t ath10k_pci_interrupt_handler(int irq, void *arg)
3075 {
3076 	struct ath10k *ar = arg;
3077 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3078 	int ret;
3079 
3080 	if (ath10k_pci_has_device_gone(ar))
3081 		return IRQ_NONE;
3082 
3083 	ret = ath10k_pci_force_wake(ar);
3084 	if (ret) {
3085 		ath10k_warn(ar, "failed to wake device up on irq: %d\n", ret);
3086 		return IRQ_NONE;
3087 	}
3088 
3089 	if ((ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY) &&
3090 	    !ath10k_pci_irq_pending(ar))
3091 		return IRQ_NONE;
3092 
3093 	ath10k_pci_disable_and_clear_legacy_irq(ar);
3094 	ath10k_pci_irq_msi_fw_mask(ar);
3095 	napi_schedule(&ar->napi);
3096 
3097 	return IRQ_HANDLED;
3098 }
3099 
3100 static int ath10k_pci_napi_poll(struct napi_struct *ctx, int budget)
3101 {
3102 	struct ath10k *ar = container_of(ctx, struct ath10k, napi);
3103 	int done = 0;
3104 
3105 	if (ath10k_pci_has_fw_crashed(ar)) {
3106 		ath10k_pci_fw_crashed_clear(ar);
3107 		ath10k_pci_fw_crashed_dump(ar);
3108 		napi_complete(ctx);
3109 		return done;
3110 	}
3111 
3112 	ath10k_ce_per_engine_service_any(ar);
3113 
3114 	done = ath10k_htt_txrx_compl_task(ar, budget);
3115 
3116 	if (done < budget) {
3117 		napi_complete_done(ctx, done);
3118 		/* In case of MSI, it is possible that interrupts are received
3119 		 * while NAPI poll is inprogress. So pending interrupts that are
3120 		 * received after processing all copy engine pipes by NAPI poll
3121 		 * will not be handled again. This is causing failure to
3122 		 * complete boot sequence in x86 platform. So before enabling
3123 		 * interrupts safer to check for pending interrupts for
3124 		 * immediate servicing.
3125 		 */
3126 		if (ath10k_ce_interrupt_summary(ar)) {
3127 			napi_reschedule(ctx);
3128 			goto out;
3129 		}
3130 		ath10k_pci_enable_legacy_irq(ar);
3131 		ath10k_pci_irq_msi_fw_unmask(ar);
3132 	}
3133 
3134 out:
3135 	return done;
3136 }
3137 
3138 static int ath10k_pci_request_irq_msi(struct ath10k *ar)
3139 {
3140 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3141 	int ret;
3142 
3143 	ret = request_irq(ar_pci->pdev->irq,
3144 			  ath10k_pci_interrupt_handler,
3145 			  IRQF_SHARED, "ath10k_pci", ar);
3146 	if (ret) {
3147 		ath10k_warn(ar, "failed to request MSI irq %d: %d\n",
3148 			    ar_pci->pdev->irq, ret);
3149 		return ret;
3150 	}
3151 
3152 	return 0;
3153 }
3154 
3155 static int ath10k_pci_request_irq_legacy(struct ath10k *ar)
3156 {
3157 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3158 	int ret;
3159 
3160 	ret = request_irq(ar_pci->pdev->irq,
3161 			  ath10k_pci_interrupt_handler,
3162 			  IRQF_SHARED, "ath10k_pci", ar);
3163 	if (ret) {
3164 		ath10k_warn(ar, "failed to request legacy irq %d: %d\n",
3165 			    ar_pci->pdev->irq, ret);
3166 		return ret;
3167 	}
3168 
3169 	return 0;
3170 }
3171 
3172 static int ath10k_pci_request_irq(struct ath10k *ar)
3173 {
3174 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3175 
3176 	switch (ar_pci->oper_irq_mode) {
3177 	case ATH10K_PCI_IRQ_LEGACY:
3178 		return ath10k_pci_request_irq_legacy(ar);
3179 	case ATH10K_PCI_IRQ_MSI:
3180 		return ath10k_pci_request_irq_msi(ar);
3181 	default:
3182 		return -EINVAL;
3183 	}
3184 }
3185 
3186 static void ath10k_pci_free_irq(struct ath10k *ar)
3187 {
3188 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3189 
3190 	free_irq(ar_pci->pdev->irq, ar);
3191 }
3192 
3193 void ath10k_pci_init_napi(struct ath10k *ar)
3194 {
3195 	netif_napi_add(&ar->napi_dev, &ar->napi, ath10k_pci_napi_poll,
3196 		       ATH10K_NAPI_BUDGET);
3197 }
3198 
3199 static int ath10k_pci_init_irq(struct ath10k *ar)
3200 {
3201 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3202 	int ret;
3203 
3204 	ath10k_pci_init_napi(ar);
3205 
3206 	if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_AUTO)
3207 		ath10k_info(ar, "limiting irq mode to: %d\n",
3208 			    ath10k_pci_irq_mode);
3209 
3210 	/* Try MSI */
3211 	if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_LEGACY) {
3212 		ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_MSI;
3213 		ret = pci_enable_msi(ar_pci->pdev);
3214 		if (ret == 0)
3215 			return 0;
3216 
3217 		/* fall-through */
3218 	}
3219 
3220 	/* Try legacy irq
3221 	 *
3222 	 * A potential race occurs here: The CORE_BASE write
3223 	 * depends on target correctly decoding AXI address but
3224 	 * host won't know when target writes BAR to CORE_CTRL.
3225 	 * This write might get lost if target has NOT written BAR.
3226 	 * For now, fix the race by repeating the write in below
3227 	 * synchronization checking.
3228 	 */
3229 	ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_LEGACY;
3230 
3231 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
3232 			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
3233 
3234 	return 0;
3235 }
3236 
3237 static void ath10k_pci_deinit_irq_legacy(struct ath10k *ar)
3238 {
3239 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
3240 			   0);
3241 }
3242 
3243 static int ath10k_pci_deinit_irq(struct ath10k *ar)
3244 {
3245 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3246 
3247 	switch (ar_pci->oper_irq_mode) {
3248 	case ATH10K_PCI_IRQ_LEGACY:
3249 		ath10k_pci_deinit_irq_legacy(ar);
3250 		break;
3251 	default:
3252 		pci_disable_msi(ar_pci->pdev);
3253 		break;
3254 	}
3255 
3256 	return 0;
3257 }
3258 
3259 int ath10k_pci_wait_for_target_init(struct ath10k *ar)
3260 {
3261 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3262 	unsigned long timeout;
3263 	u32 val;
3264 
3265 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot waiting target to initialise\n");
3266 
3267 	timeout = jiffies + msecs_to_jiffies(ATH10K_PCI_TARGET_WAIT);
3268 
3269 	do {
3270 		val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
3271 
3272 		ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target indicator %x\n",
3273 			   val);
3274 
3275 		/* target should never return this */
3276 		if (val == 0xffffffff)
3277 			continue;
3278 
3279 		/* the device has crashed so don't bother trying anymore */
3280 		if (val & FW_IND_EVENT_PENDING)
3281 			break;
3282 
3283 		if (val & FW_IND_INITIALIZED)
3284 			break;
3285 
3286 		if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY)
3287 			/* Fix potential race by repeating CORE_BASE writes */
3288 			ath10k_pci_enable_legacy_irq(ar);
3289 
3290 		mdelay(10);
3291 	} while (time_before(jiffies, timeout));
3292 
3293 	ath10k_pci_disable_and_clear_legacy_irq(ar);
3294 	ath10k_pci_irq_msi_fw_mask(ar);
3295 
3296 	if (val == 0xffffffff) {
3297 		ath10k_err(ar, "failed to read device register, device is gone\n");
3298 		return -EIO;
3299 	}
3300 
3301 	if (val & FW_IND_EVENT_PENDING) {
3302 		ath10k_warn(ar, "device has crashed during init\n");
3303 		return -ECOMM;
3304 	}
3305 
3306 	if (!(val & FW_IND_INITIALIZED)) {
3307 		ath10k_err(ar, "failed to receive initialized event from target: %08x\n",
3308 			   val);
3309 		return -ETIMEDOUT;
3310 	}
3311 
3312 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target initialised\n");
3313 	return 0;
3314 }
3315 
3316 static int ath10k_pci_cold_reset(struct ath10k *ar)
3317 {
3318 	u32 val;
3319 
3320 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset\n");
3321 
3322 	spin_lock_bh(&ar->data_lock);
3323 
3324 	ar->stats.fw_cold_reset_counter++;
3325 
3326 	spin_unlock_bh(&ar->data_lock);
3327 
3328 	/* Put Target, including PCIe, into RESET. */
3329 	val = ath10k_pci_reg_read32(ar, SOC_GLOBAL_RESET_ADDRESS);
3330 	val |= 1;
3331 	ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
3332 
3333 	/* After writing into SOC_GLOBAL_RESET to put device into
3334 	 * reset and pulling out of reset pcie may not be stable
3335 	 * for any immediate pcie register access and cause bus error,
3336 	 * add delay before any pcie access request to fix this issue.
3337 	 */
3338 	msleep(20);
3339 
3340 	/* Pull Target, including PCIe, out of RESET. */
3341 	val &= ~1;
3342 	ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
3343 
3344 	msleep(20);
3345 
3346 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset complete\n");
3347 
3348 	return 0;
3349 }
3350 
3351 static int ath10k_pci_claim(struct ath10k *ar)
3352 {
3353 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3354 	struct pci_dev *pdev = ar_pci->pdev;
3355 	int ret;
3356 
3357 	pci_set_drvdata(pdev, ar);
3358 
3359 	ret = pci_enable_device(pdev);
3360 	if (ret) {
3361 		ath10k_err(ar, "failed to enable pci device: %d\n", ret);
3362 		return ret;
3363 	}
3364 
3365 	ret = pci_request_region(pdev, BAR_NUM, "ath");
3366 	if (ret) {
3367 		ath10k_err(ar, "failed to request region BAR%d: %d\n", BAR_NUM,
3368 			   ret);
3369 		goto err_device;
3370 	}
3371 
3372 	/* Target expects 32 bit DMA. Enforce it. */
3373 	ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3374 	if (ret) {
3375 		ath10k_err(ar, "failed to set dma mask to 32-bit: %d\n", ret);
3376 		goto err_region;
3377 	}
3378 
3379 	ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3380 	if (ret) {
3381 		ath10k_err(ar, "failed to set consistent dma mask to 32-bit: %d\n",
3382 			   ret);
3383 		goto err_region;
3384 	}
3385 
3386 	pci_set_master(pdev);
3387 
3388 	/* Arrange for access to Target SoC registers. */
3389 	ar_pci->mem_len = pci_resource_len(pdev, BAR_NUM);
3390 	ar_pci->mem = pci_iomap(pdev, BAR_NUM, 0);
3391 	if (!ar_pci->mem) {
3392 		ath10k_err(ar, "failed to iomap BAR%d\n", BAR_NUM);
3393 		ret = -EIO;
3394 		goto err_master;
3395 	}
3396 
3397 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot pci_mem 0x%pK\n", ar_pci->mem);
3398 	return 0;
3399 
3400 err_master:
3401 	pci_clear_master(pdev);
3402 
3403 err_region:
3404 	pci_release_region(pdev, BAR_NUM);
3405 
3406 err_device:
3407 	pci_disable_device(pdev);
3408 
3409 	return ret;
3410 }
3411 
3412 static void ath10k_pci_release(struct ath10k *ar)
3413 {
3414 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3415 	struct pci_dev *pdev = ar_pci->pdev;
3416 
3417 	pci_iounmap(pdev, ar_pci->mem);
3418 	pci_release_region(pdev, BAR_NUM);
3419 	pci_clear_master(pdev);
3420 	pci_disable_device(pdev);
3421 }
3422 
3423 static bool ath10k_pci_chip_is_supported(u32 dev_id, u32 chip_id)
3424 {
3425 	const struct ath10k_pci_supp_chip *supp_chip;
3426 	int i;
3427 	u32 rev_id = MS(chip_id, SOC_CHIP_ID_REV);
3428 
3429 	for (i = 0; i < ARRAY_SIZE(ath10k_pci_supp_chips); i++) {
3430 		supp_chip = &ath10k_pci_supp_chips[i];
3431 
3432 		if (supp_chip->dev_id == dev_id &&
3433 		    supp_chip->rev_id == rev_id)
3434 			return true;
3435 	}
3436 
3437 	return false;
3438 }
3439 
3440 int ath10k_pci_setup_resource(struct ath10k *ar)
3441 {
3442 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3443 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
3444 	int ret;
3445 
3446 	spin_lock_init(&ce->ce_lock);
3447 	spin_lock_init(&ar_pci->ps_lock);
3448 
3449 	timer_setup(&ar_pci->rx_post_retry, ath10k_pci_rx_replenish_retry, 0);
3450 
3451 	if (QCA_REV_6174(ar) || QCA_REV_9377(ar))
3452 		ath10k_pci_override_ce_config(ar);
3453 
3454 	ret = ath10k_pci_alloc_pipes(ar);
3455 	if (ret) {
3456 		ath10k_err(ar, "failed to allocate copy engine pipes: %d\n",
3457 			   ret);
3458 		return ret;
3459 	}
3460 
3461 	return 0;
3462 }
3463 
3464 void ath10k_pci_release_resource(struct ath10k *ar)
3465 {
3466 	ath10k_pci_rx_retry_sync(ar);
3467 	netif_napi_del(&ar->napi);
3468 	ath10k_pci_ce_deinit(ar);
3469 	ath10k_pci_free_pipes(ar);
3470 }
3471 
3472 static const struct ath10k_bus_ops ath10k_pci_bus_ops = {
3473 	.read32		= ath10k_bus_pci_read32,
3474 	.write32	= ath10k_bus_pci_write32,
3475 	.get_num_banks	= ath10k_pci_get_num_banks,
3476 };
3477 
3478 static int ath10k_pci_probe(struct pci_dev *pdev,
3479 			    const struct pci_device_id *pci_dev)
3480 {
3481 	int ret = 0;
3482 	struct ath10k *ar;
3483 	struct ath10k_pci *ar_pci;
3484 	enum ath10k_hw_rev hw_rev;
3485 	u32 chip_id;
3486 	bool pci_ps;
3487 	int (*pci_soft_reset)(struct ath10k *ar);
3488 	int (*pci_hard_reset)(struct ath10k *ar);
3489 	u32 (*targ_cpu_to_ce_addr)(struct ath10k *ar, u32 addr);
3490 
3491 	switch (pci_dev->device) {
3492 	case QCA988X_2_0_DEVICE_ID_UBNT:
3493 	case QCA988X_2_0_DEVICE_ID:
3494 		hw_rev = ATH10K_HW_QCA988X;
3495 		pci_ps = false;
3496 		pci_soft_reset = ath10k_pci_warm_reset;
3497 		pci_hard_reset = ath10k_pci_qca988x_chip_reset;
3498 		targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3499 		break;
3500 	case QCA9887_1_0_DEVICE_ID:
3501 		hw_rev = ATH10K_HW_QCA9887;
3502 		pci_ps = false;
3503 		pci_soft_reset = ath10k_pci_warm_reset;
3504 		pci_hard_reset = ath10k_pci_qca988x_chip_reset;
3505 		targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3506 		break;
3507 	case QCA6164_2_1_DEVICE_ID:
3508 	case QCA6174_2_1_DEVICE_ID:
3509 		hw_rev = ATH10K_HW_QCA6174;
3510 		pci_ps = true;
3511 		pci_soft_reset = ath10k_pci_warm_reset;
3512 		pci_hard_reset = ath10k_pci_qca6174_chip_reset;
3513 		targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3514 		break;
3515 	case QCA99X0_2_0_DEVICE_ID:
3516 		hw_rev = ATH10K_HW_QCA99X0;
3517 		pci_ps = false;
3518 		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3519 		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3520 		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3521 		break;
3522 	case QCA9984_1_0_DEVICE_ID:
3523 		hw_rev = ATH10K_HW_QCA9984;
3524 		pci_ps = false;
3525 		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3526 		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3527 		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3528 		break;
3529 	case QCA9888_2_0_DEVICE_ID:
3530 		hw_rev = ATH10K_HW_QCA9888;
3531 		pci_ps = false;
3532 		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3533 		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3534 		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3535 		break;
3536 	case QCA9377_1_0_DEVICE_ID:
3537 		hw_rev = ATH10K_HW_QCA9377;
3538 		pci_ps = true;
3539 		pci_soft_reset = NULL;
3540 		pci_hard_reset = ath10k_pci_qca6174_chip_reset;
3541 		targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3542 		break;
3543 	default:
3544 		WARN_ON(1);
3545 		return -ENOTSUPP;
3546 	}
3547 
3548 	ar = ath10k_core_create(sizeof(*ar_pci), &pdev->dev, ATH10K_BUS_PCI,
3549 				hw_rev, &ath10k_pci_hif_ops);
3550 	if (!ar) {
3551 		dev_err(&pdev->dev, "failed to allocate core\n");
3552 		return -ENOMEM;
3553 	}
3554 
3555 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "pci probe %04x:%04x %04x:%04x\n",
3556 		   pdev->vendor, pdev->device,
3557 		   pdev->subsystem_vendor, pdev->subsystem_device);
3558 
3559 	ar_pci = ath10k_pci_priv(ar);
3560 	ar_pci->pdev = pdev;
3561 	ar_pci->dev = &pdev->dev;
3562 	ar_pci->ar = ar;
3563 	ar->dev_id = pci_dev->device;
3564 	ar_pci->pci_ps = pci_ps;
3565 	ar_pci->ce.bus_ops = &ath10k_pci_bus_ops;
3566 	ar_pci->pci_soft_reset = pci_soft_reset;
3567 	ar_pci->pci_hard_reset = pci_hard_reset;
3568 	ar_pci->targ_cpu_to_ce_addr = targ_cpu_to_ce_addr;
3569 	ar->ce_priv = &ar_pci->ce;
3570 
3571 	ar->id.vendor = pdev->vendor;
3572 	ar->id.device = pdev->device;
3573 	ar->id.subsystem_vendor = pdev->subsystem_vendor;
3574 	ar->id.subsystem_device = pdev->subsystem_device;
3575 
3576 	timer_setup(&ar_pci->ps_timer, ath10k_pci_ps_timer, 0);
3577 
3578 	ret = ath10k_pci_setup_resource(ar);
3579 	if (ret) {
3580 		ath10k_err(ar, "failed to setup resource: %d\n", ret);
3581 		goto err_core_destroy;
3582 	}
3583 
3584 	ret = ath10k_pci_claim(ar);
3585 	if (ret) {
3586 		ath10k_err(ar, "failed to claim device: %d\n", ret);
3587 		goto err_free_pipes;
3588 	}
3589 
3590 	ret = ath10k_pci_force_wake(ar);
3591 	if (ret) {
3592 		ath10k_warn(ar, "failed to wake up device : %d\n", ret);
3593 		goto err_sleep;
3594 	}
3595 
3596 	ath10k_pci_ce_deinit(ar);
3597 	ath10k_pci_irq_disable(ar);
3598 
3599 	ret = ath10k_pci_init_irq(ar);
3600 	if (ret) {
3601 		ath10k_err(ar, "failed to init irqs: %d\n", ret);
3602 		goto err_sleep;
3603 	}
3604 
3605 	ath10k_info(ar, "pci irq %s oper_irq_mode %d irq_mode %d reset_mode %d\n",
3606 		    ath10k_pci_get_irq_method(ar), ar_pci->oper_irq_mode,
3607 		    ath10k_pci_irq_mode, ath10k_pci_reset_mode);
3608 
3609 	ret = ath10k_pci_request_irq(ar);
3610 	if (ret) {
3611 		ath10k_warn(ar, "failed to request irqs: %d\n", ret);
3612 		goto err_deinit_irq;
3613 	}
3614 
3615 	ret = ath10k_pci_chip_reset(ar);
3616 	if (ret) {
3617 		ath10k_err(ar, "failed to reset chip: %d\n", ret);
3618 		goto err_free_irq;
3619 	}
3620 
3621 	chip_id = ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS);
3622 	if (chip_id == 0xffffffff) {
3623 		ath10k_err(ar, "failed to get chip id\n");
3624 		goto err_free_irq;
3625 	}
3626 
3627 	if (!ath10k_pci_chip_is_supported(pdev->device, chip_id)) {
3628 		ath10k_err(ar, "device %04x with chip_id %08x isn't supported\n",
3629 			   pdev->device, chip_id);
3630 		goto err_free_irq;
3631 	}
3632 
3633 	ret = ath10k_core_register(ar, chip_id);
3634 	if (ret) {
3635 		ath10k_err(ar, "failed to register driver core: %d\n", ret);
3636 		goto err_free_irq;
3637 	}
3638 
3639 	return 0;
3640 
3641 err_free_irq:
3642 	ath10k_pci_free_irq(ar);
3643 	ath10k_pci_rx_retry_sync(ar);
3644 
3645 err_deinit_irq:
3646 	ath10k_pci_deinit_irq(ar);
3647 
3648 err_sleep:
3649 	ath10k_pci_sleep_sync(ar);
3650 	ath10k_pci_release(ar);
3651 
3652 err_free_pipes:
3653 	ath10k_pci_free_pipes(ar);
3654 
3655 err_core_destroy:
3656 	ath10k_core_destroy(ar);
3657 
3658 	return ret;
3659 }
3660 
3661 static void ath10k_pci_remove(struct pci_dev *pdev)
3662 {
3663 	struct ath10k *ar = pci_get_drvdata(pdev);
3664 	struct ath10k_pci *ar_pci;
3665 
3666 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci remove\n");
3667 
3668 	if (!ar)
3669 		return;
3670 
3671 	ar_pci = ath10k_pci_priv(ar);
3672 
3673 	if (!ar_pci)
3674 		return;
3675 
3676 	ath10k_core_unregister(ar);
3677 	ath10k_pci_free_irq(ar);
3678 	ath10k_pci_deinit_irq(ar);
3679 	ath10k_pci_release_resource(ar);
3680 	ath10k_pci_sleep_sync(ar);
3681 	ath10k_pci_release(ar);
3682 	ath10k_core_destroy(ar);
3683 }
3684 
3685 MODULE_DEVICE_TABLE(pci, ath10k_pci_id_table);
3686 
3687 static __maybe_unused int ath10k_pci_pm_suspend(struct device *dev)
3688 {
3689 	struct ath10k *ar = dev_get_drvdata(dev);
3690 	int ret;
3691 
3692 	ret = ath10k_pci_suspend(ar);
3693 	if (ret)
3694 		ath10k_warn(ar, "failed to suspend hif: %d\n", ret);
3695 
3696 	return ret;
3697 }
3698 
3699 static __maybe_unused int ath10k_pci_pm_resume(struct device *dev)
3700 {
3701 	struct ath10k *ar = dev_get_drvdata(dev);
3702 	int ret;
3703 
3704 	ret = ath10k_pci_resume(ar);
3705 	if (ret)
3706 		ath10k_warn(ar, "failed to resume hif: %d\n", ret);
3707 
3708 	return ret;
3709 }
3710 
3711 static SIMPLE_DEV_PM_OPS(ath10k_pci_pm_ops,
3712 			 ath10k_pci_pm_suspend,
3713 			 ath10k_pci_pm_resume);
3714 
3715 static struct pci_driver ath10k_pci_driver = {
3716 	.name = "ath10k_pci",
3717 	.id_table = ath10k_pci_id_table,
3718 	.probe = ath10k_pci_probe,
3719 	.remove = ath10k_pci_remove,
3720 #ifdef CONFIG_PM
3721 	.driver.pm = &ath10k_pci_pm_ops,
3722 #endif
3723 };
3724 
3725 static int __init ath10k_pci_init(void)
3726 {
3727 	int ret;
3728 
3729 	ret = pci_register_driver(&ath10k_pci_driver);
3730 	if (ret)
3731 		printk(KERN_ERR "failed to register ath10k pci driver: %d\n",
3732 		       ret);
3733 
3734 	ret = ath10k_ahb_init();
3735 	if (ret)
3736 		printk(KERN_ERR "ahb init failed: %d\n", ret);
3737 
3738 	return ret;
3739 }
3740 module_init(ath10k_pci_init);
3741 
3742 static void __exit ath10k_pci_exit(void)
3743 {
3744 	pci_unregister_driver(&ath10k_pci_driver);
3745 	ath10k_ahb_exit();
3746 }
3747 
3748 module_exit(ath10k_pci_exit);
3749 
3750 MODULE_AUTHOR("Qualcomm Atheros");
3751 MODULE_DESCRIPTION("Driver support for Qualcomm Atheros 802.11ac WLAN PCIe/AHB devices");
3752 MODULE_LICENSE("Dual BSD/GPL");
3753 
3754 /* QCA988x 2.0 firmware files */
3755 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API2_FILE);
3756 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API3_FILE);
3757 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3758 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3759 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_BOARD_DATA_FILE);
3760 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3761 
3762 /* QCA9887 1.0 firmware files */
3763 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3764 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" QCA9887_HW_1_0_BOARD_DATA_FILE);
3765 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3766 
3767 /* QCA6174 2.1 firmware files */
3768 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API4_FILE);
3769 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API5_FILE);
3770 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" QCA6174_HW_2_1_BOARD_DATA_FILE);
3771 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3772 
3773 /* QCA6174 3.1 firmware files */
3774 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3775 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3776 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API6_FILE);
3777 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" QCA6174_HW_3_0_BOARD_DATA_FILE);
3778 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3779 
3780 /* QCA9377 1.0 firmware files */
3781 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API6_FILE);
3782 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3783 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" QCA9377_HW_1_0_BOARD_DATA_FILE);
3784