xref: /openbmc/linux/drivers/net/wireless/ath/ath10k/pci.c (revision 176f011b)
1 /*
2  * Copyright (c) 2005-2011 Atheros Communications Inc.
3  * Copyright (c) 2011-2017 Qualcomm Atheros, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17 
18 #include <linux/pci.h>
19 #include <linux/module.h>
20 #include <linux/interrupt.h>
21 #include <linux/spinlock.h>
22 #include <linux/bitops.h>
23 
24 #include "core.h"
25 #include "debug.h"
26 #include "coredump.h"
27 
28 #include "targaddrs.h"
29 #include "bmi.h"
30 
31 #include "hif.h"
32 #include "htc.h"
33 
34 #include "ce.h"
35 #include "pci.h"
36 
37 enum ath10k_pci_reset_mode {
38 	ATH10K_PCI_RESET_AUTO = 0,
39 	ATH10K_PCI_RESET_WARM_ONLY = 1,
40 };
41 
42 static unsigned int ath10k_pci_irq_mode = ATH10K_PCI_IRQ_AUTO;
43 static unsigned int ath10k_pci_reset_mode = ATH10K_PCI_RESET_AUTO;
44 
45 module_param_named(irq_mode, ath10k_pci_irq_mode, uint, 0644);
46 MODULE_PARM_DESC(irq_mode, "0: auto, 1: legacy, 2: msi (default: 0)");
47 
48 module_param_named(reset_mode, ath10k_pci_reset_mode, uint, 0644);
49 MODULE_PARM_DESC(reset_mode, "0: auto, 1: warm only (default: 0)");
50 
51 /* how long wait to wait for target to initialise, in ms */
52 #define ATH10K_PCI_TARGET_WAIT 3000
53 #define ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS 3
54 
55 /* Maximum number of bytes that can be handled atomically by
56  * diag read and write.
57  */
58 #define ATH10K_DIAG_TRANSFER_LIMIT	0x5000
59 
60 #define QCA99X0_PCIE_BAR0_START_REG    0x81030
61 #define QCA99X0_CPU_MEM_ADDR_REG       0x4d00c
62 #define QCA99X0_CPU_MEM_DATA_REG       0x4d010
63 
64 static const struct pci_device_id ath10k_pci_id_table[] = {
65 	/* PCI-E QCA988X V2 (Ubiquiti branded) */
66 	{ PCI_VDEVICE(UBIQUITI, QCA988X_2_0_DEVICE_ID_UBNT) },
67 
68 	{ PCI_VDEVICE(ATHEROS, QCA988X_2_0_DEVICE_ID) }, /* PCI-E QCA988X V2 */
69 	{ PCI_VDEVICE(ATHEROS, QCA6164_2_1_DEVICE_ID) }, /* PCI-E QCA6164 V2.1 */
70 	{ PCI_VDEVICE(ATHEROS, QCA6174_2_1_DEVICE_ID) }, /* PCI-E QCA6174 V2.1 */
71 	{ PCI_VDEVICE(ATHEROS, QCA99X0_2_0_DEVICE_ID) }, /* PCI-E QCA99X0 V2 */
72 	{ PCI_VDEVICE(ATHEROS, QCA9888_2_0_DEVICE_ID) }, /* PCI-E QCA9888 V2 */
73 	{ PCI_VDEVICE(ATHEROS, QCA9984_1_0_DEVICE_ID) }, /* PCI-E QCA9984 V1 */
74 	{ PCI_VDEVICE(ATHEROS, QCA9377_1_0_DEVICE_ID) }, /* PCI-E QCA9377 V1 */
75 	{ PCI_VDEVICE(ATHEROS, QCA9887_1_0_DEVICE_ID) }, /* PCI-E QCA9887 */
76 	{0}
77 };
78 
79 static const struct ath10k_pci_supp_chip ath10k_pci_supp_chips[] = {
80 	/* QCA988X pre 2.0 chips are not supported because they need some nasty
81 	 * hacks. ath10k doesn't have them and these devices crash horribly
82 	 * because of that.
83 	 */
84 	{ QCA988X_2_0_DEVICE_ID_UBNT, QCA988X_HW_2_0_CHIP_ID_REV },
85 	{ QCA988X_2_0_DEVICE_ID, QCA988X_HW_2_0_CHIP_ID_REV },
86 
87 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
88 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
89 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
90 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
91 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
92 
93 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
94 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
95 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
96 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
97 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
98 
99 	{ QCA99X0_2_0_DEVICE_ID, QCA99X0_HW_2_0_CHIP_ID_REV },
100 
101 	{ QCA9984_1_0_DEVICE_ID, QCA9984_HW_1_0_CHIP_ID_REV },
102 
103 	{ QCA9888_2_0_DEVICE_ID, QCA9888_HW_2_0_CHIP_ID_REV },
104 
105 	{ QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_0_CHIP_ID_REV },
106 	{ QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_1_CHIP_ID_REV },
107 
108 	{ QCA9887_1_0_DEVICE_ID, QCA9887_HW_1_0_CHIP_ID_REV },
109 };
110 
111 static void ath10k_pci_buffer_cleanup(struct ath10k *ar);
112 static int ath10k_pci_cold_reset(struct ath10k *ar);
113 static int ath10k_pci_safe_chip_reset(struct ath10k *ar);
114 static int ath10k_pci_init_irq(struct ath10k *ar);
115 static int ath10k_pci_deinit_irq(struct ath10k *ar);
116 static int ath10k_pci_request_irq(struct ath10k *ar);
117 static void ath10k_pci_free_irq(struct ath10k *ar);
118 static int ath10k_pci_bmi_wait(struct ath10k *ar,
119 			       struct ath10k_ce_pipe *tx_pipe,
120 			       struct ath10k_ce_pipe *rx_pipe,
121 			       struct bmi_xfer *xfer);
122 static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar);
123 static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state);
124 static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
125 static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state);
126 static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state);
127 static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
128 static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state);
129 
130 static struct ce_attr host_ce_config_wlan[] = {
131 	/* CE0: host->target HTC control and raw streams */
132 	{
133 		.flags = CE_ATTR_FLAGS,
134 		.src_nentries = 16,
135 		.src_sz_max = 256,
136 		.dest_nentries = 0,
137 		.send_cb = ath10k_pci_htc_tx_cb,
138 	},
139 
140 	/* CE1: target->host HTT + HTC control */
141 	{
142 		.flags = CE_ATTR_FLAGS,
143 		.src_nentries = 0,
144 		.src_sz_max = 2048,
145 		.dest_nentries = 512,
146 		.recv_cb = ath10k_pci_htt_htc_rx_cb,
147 	},
148 
149 	/* CE2: target->host WMI */
150 	{
151 		.flags = CE_ATTR_FLAGS,
152 		.src_nentries = 0,
153 		.src_sz_max = 2048,
154 		.dest_nentries = 128,
155 		.recv_cb = ath10k_pci_htc_rx_cb,
156 	},
157 
158 	/* CE3: host->target WMI */
159 	{
160 		.flags = CE_ATTR_FLAGS,
161 		.src_nentries = 32,
162 		.src_sz_max = 2048,
163 		.dest_nentries = 0,
164 		.send_cb = ath10k_pci_htc_tx_cb,
165 	},
166 
167 	/* CE4: host->target HTT */
168 	{
169 		.flags = CE_ATTR_FLAGS | CE_ATTR_DIS_INTR,
170 		.src_nentries = CE_HTT_H2T_MSG_SRC_NENTRIES,
171 		.src_sz_max = 256,
172 		.dest_nentries = 0,
173 		.send_cb = ath10k_pci_htt_tx_cb,
174 	},
175 
176 	/* CE5: target->host HTT (HIF->HTT) */
177 	{
178 		.flags = CE_ATTR_FLAGS,
179 		.src_nentries = 0,
180 		.src_sz_max = 512,
181 		.dest_nentries = 512,
182 		.recv_cb = ath10k_pci_htt_rx_cb,
183 	},
184 
185 	/* CE6: target autonomous hif_memcpy */
186 	{
187 		.flags = CE_ATTR_FLAGS,
188 		.src_nentries = 0,
189 		.src_sz_max = 0,
190 		.dest_nentries = 0,
191 	},
192 
193 	/* CE7: ce_diag, the Diagnostic Window */
194 	{
195 		.flags = CE_ATTR_FLAGS | CE_ATTR_POLL,
196 		.src_nentries = 2,
197 		.src_sz_max = DIAG_TRANSFER_LIMIT,
198 		.dest_nentries = 2,
199 	},
200 
201 	/* CE8: target->host pktlog */
202 	{
203 		.flags = CE_ATTR_FLAGS,
204 		.src_nentries = 0,
205 		.src_sz_max = 2048,
206 		.dest_nentries = 128,
207 		.recv_cb = ath10k_pci_pktlog_rx_cb,
208 	},
209 
210 	/* CE9 target autonomous qcache memcpy */
211 	{
212 		.flags = CE_ATTR_FLAGS,
213 		.src_nentries = 0,
214 		.src_sz_max = 0,
215 		.dest_nentries = 0,
216 	},
217 
218 	/* CE10: target autonomous hif memcpy */
219 	{
220 		.flags = CE_ATTR_FLAGS,
221 		.src_nentries = 0,
222 		.src_sz_max = 0,
223 		.dest_nentries = 0,
224 	},
225 
226 	/* CE11: target autonomous hif memcpy */
227 	{
228 		.flags = CE_ATTR_FLAGS,
229 		.src_nentries = 0,
230 		.src_sz_max = 0,
231 		.dest_nentries = 0,
232 	},
233 };
234 
235 /* Target firmware's Copy Engine configuration. */
236 static struct ce_pipe_config target_ce_config_wlan[] = {
237 	/* CE0: host->target HTC control and raw streams */
238 	{
239 		.pipenum = __cpu_to_le32(0),
240 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
241 		.nentries = __cpu_to_le32(32),
242 		.nbytes_max = __cpu_to_le32(256),
243 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
244 		.reserved = __cpu_to_le32(0),
245 	},
246 
247 	/* CE1: target->host HTT + HTC control */
248 	{
249 		.pipenum = __cpu_to_le32(1),
250 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
251 		.nentries = __cpu_to_le32(32),
252 		.nbytes_max = __cpu_to_le32(2048),
253 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
254 		.reserved = __cpu_to_le32(0),
255 	},
256 
257 	/* CE2: target->host WMI */
258 	{
259 		.pipenum = __cpu_to_le32(2),
260 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
261 		.nentries = __cpu_to_le32(64),
262 		.nbytes_max = __cpu_to_le32(2048),
263 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
264 		.reserved = __cpu_to_le32(0),
265 	},
266 
267 	/* CE3: host->target WMI */
268 	{
269 		.pipenum = __cpu_to_le32(3),
270 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
271 		.nentries = __cpu_to_le32(32),
272 		.nbytes_max = __cpu_to_le32(2048),
273 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
274 		.reserved = __cpu_to_le32(0),
275 	},
276 
277 	/* CE4: host->target HTT */
278 	{
279 		.pipenum = __cpu_to_le32(4),
280 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
281 		.nentries = __cpu_to_le32(256),
282 		.nbytes_max = __cpu_to_le32(256),
283 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
284 		.reserved = __cpu_to_le32(0),
285 	},
286 
287 	/* NB: 50% of src nentries, since tx has 2 frags */
288 
289 	/* CE5: target->host HTT (HIF->HTT) */
290 	{
291 		.pipenum = __cpu_to_le32(5),
292 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
293 		.nentries = __cpu_to_le32(32),
294 		.nbytes_max = __cpu_to_le32(512),
295 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
296 		.reserved = __cpu_to_le32(0),
297 	},
298 
299 	/* CE6: Reserved for target autonomous hif_memcpy */
300 	{
301 		.pipenum = __cpu_to_le32(6),
302 		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
303 		.nentries = __cpu_to_le32(32),
304 		.nbytes_max = __cpu_to_le32(4096),
305 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
306 		.reserved = __cpu_to_le32(0),
307 	},
308 
309 	/* CE7 used only by Host */
310 	{
311 		.pipenum = __cpu_to_le32(7),
312 		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
313 		.nentries = __cpu_to_le32(0),
314 		.nbytes_max = __cpu_to_le32(0),
315 		.flags = __cpu_to_le32(0),
316 		.reserved = __cpu_to_le32(0),
317 	},
318 
319 	/* CE8 target->host packtlog */
320 	{
321 		.pipenum = __cpu_to_le32(8),
322 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
323 		.nentries = __cpu_to_le32(64),
324 		.nbytes_max = __cpu_to_le32(2048),
325 		.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
326 		.reserved = __cpu_to_le32(0),
327 	},
328 
329 	/* CE9 target autonomous qcache memcpy */
330 	{
331 		.pipenum = __cpu_to_le32(9),
332 		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
333 		.nentries = __cpu_to_le32(32),
334 		.nbytes_max = __cpu_to_le32(2048),
335 		.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
336 		.reserved = __cpu_to_le32(0),
337 	},
338 
339 	/* It not necessary to send target wlan configuration for CE10 & CE11
340 	 * as these CEs are not actively used in target.
341 	 */
342 };
343 
344 /*
345  * Map from service/endpoint to Copy Engine.
346  * This table is derived from the CE_PCI TABLE, above.
347  * It is passed to the Target at startup for use by firmware.
348  */
349 static struct service_to_pipe target_service_to_ce_map_wlan[] = {
350 	{
351 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
352 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
353 		__cpu_to_le32(3),
354 	},
355 	{
356 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
357 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
358 		__cpu_to_le32(2),
359 	},
360 	{
361 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
362 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
363 		__cpu_to_le32(3),
364 	},
365 	{
366 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
367 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
368 		__cpu_to_le32(2),
369 	},
370 	{
371 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
372 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
373 		__cpu_to_le32(3),
374 	},
375 	{
376 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
377 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
378 		__cpu_to_le32(2),
379 	},
380 	{
381 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
382 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
383 		__cpu_to_le32(3),
384 	},
385 	{
386 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
387 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
388 		__cpu_to_le32(2),
389 	},
390 	{
391 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
392 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
393 		__cpu_to_le32(3),
394 	},
395 	{
396 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
397 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
398 		__cpu_to_le32(2),
399 	},
400 	{
401 		__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
402 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
403 		__cpu_to_le32(0),
404 	},
405 	{
406 		__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
407 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
408 		__cpu_to_le32(1),
409 	},
410 	{ /* not used */
411 		__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
412 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
413 		__cpu_to_le32(0),
414 	},
415 	{ /* not used */
416 		__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
417 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
418 		__cpu_to_le32(1),
419 	},
420 	{
421 		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
422 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
423 		__cpu_to_le32(4),
424 	},
425 	{
426 		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
427 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
428 		__cpu_to_le32(5),
429 	},
430 
431 	/* (Additions here) */
432 
433 	{ /* must be last */
434 		__cpu_to_le32(0),
435 		__cpu_to_le32(0),
436 		__cpu_to_le32(0),
437 	},
438 };
439 
440 static bool ath10k_pci_is_awake(struct ath10k *ar)
441 {
442 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
443 	u32 val = ioread32(ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
444 			   RTC_STATE_ADDRESS);
445 
446 	return RTC_STATE_V_GET(val) == RTC_STATE_V_ON;
447 }
448 
449 static void __ath10k_pci_wake(struct ath10k *ar)
450 {
451 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
452 
453 	lockdep_assert_held(&ar_pci->ps_lock);
454 
455 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake reg refcount %lu awake %d\n",
456 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
457 
458 	iowrite32(PCIE_SOC_WAKE_V_MASK,
459 		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
460 		  PCIE_SOC_WAKE_ADDRESS);
461 }
462 
463 static void __ath10k_pci_sleep(struct ath10k *ar)
464 {
465 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
466 
467 	lockdep_assert_held(&ar_pci->ps_lock);
468 
469 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep reg refcount %lu awake %d\n",
470 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
471 
472 	iowrite32(PCIE_SOC_WAKE_RESET,
473 		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
474 		  PCIE_SOC_WAKE_ADDRESS);
475 	ar_pci->ps_awake = false;
476 }
477 
478 static int ath10k_pci_wake_wait(struct ath10k *ar)
479 {
480 	int tot_delay = 0;
481 	int curr_delay = 5;
482 
483 	while (tot_delay < PCIE_WAKE_TIMEOUT) {
484 		if (ath10k_pci_is_awake(ar)) {
485 			if (tot_delay > PCIE_WAKE_LATE_US)
486 				ath10k_warn(ar, "device wakeup took %d ms which is unusually long, otherwise it works normally.\n",
487 					    tot_delay / 1000);
488 			return 0;
489 		}
490 
491 		udelay(curr_delay);
492 		tot_delay += curr_delay;
493 
494 		if (curr_delay < 50)
495 			curr_delay += 5;
496 	}
497 
498 	return -ETIMEDOUT;
499 }
500 
501 static int ath10k_pci_force_wake(struct ath10k *ar)
502 {
503 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
504 	unsigned long flags;
505 	int ret = 0;
506 
507 	if (ar_pci->pci_ps)
508 		return ret;
509 
510 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
511 
512 	if (!ar_pci->ps_awake) {
513 		iowrite32(PCIE_SOC_WAKE_V_MASK,
514 			  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
515 			  PCIE_SOC_WAKE_ADDRESS);
516 
517 		ret = ath10k_pci_wake_wait(ar);
518 		if (ret == 0)
519 			ar_pci->ps_awake = true;
520 	}
521 
522 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
523 
524 	return ret;
525 }
526 
527 static void ath10k_pci_force_sleep(struct ath10k *ar)
528 {
529 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
530 	unsigned long flags;
531 
532 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
533 
534 	iowrite32(PCIE_SOC_WAKE_RESET,
535 		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
536 		  PCIE_SOC_WAKE_ADDRESS);
537 	ar_pci->ps_awake = false;
538 
539 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
540 }
541 
542 static int ath10k_pci_wake(struct ath10k *ar)
543 {
544 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
545 	unsigned long flags;
546 	int ret = 0;
547 
548 	if (ar_pci->pci_ps == 0)
549 		return ret;
550 
551 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
552 
553 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake refcount %lu awake %d\n",
554 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
555 
556 	/* This function can be called very frequently. To avoid excessive
557 	 * CPU stalls for MMIO reads use a cache var to hold the device state.
558 	 */
559 	if (!ar_pci->ps_awake) {
560 		__ath10k_pci_wake(ar);
561 
562 		ret = ath10k_pci_wake_wait(ar);
563 		if (ret == 0)
564 			ar_pci->ps_awake = true;
565 	}
566 
567 	if (ret == 0) {
568 		ar_pci->ps_wake_refcount++;
569 		WARN_ON(ar_pci->ps_wake_refcount == 0);
570 	}
571 
572 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
573 
574 	return ret;
575 }
576 
577 static void ath10k_pci_sleep(struct ath10k *ar)
578 {
579 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
580 	unsigned long flags;
581 
582 	if (ar_pci->pci_ps == 0)
583 		return;
584 
585 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
586 
587 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep refcount %lu awake %d\n",
588 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
589 
590 	if (WARN_ON(ar_pci->ps_wake_refcount == 0))
591 		goto skip;
592 
593 	ar_pci->ps_wake_refcount--;
594 
595 	mod_timer(&ar_pci->ps_timer, jiffies +
596 		  msecs_to_jiffies(ATH10K_PCI_SLEEP_GRACE_PERIOD_MSEC));
597 
598 skip:
599 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
600 }
601 
602 static void ath10k_pci_ps_timer(struct timer_list *t)
603 {
604 	struct ath10k_pci *ar_pci = from_timer(ar_pci, t, ps_timer);
605 	struct ath10k *ar = ar_pci->ar;
606 	unsigned long flags;
607 
608 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
609 
610 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps timer refcount %lu awake %d\n",
611 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
612 
613 	if (ar_pci->ps_wake_refcount > 0)
614 		goto skip;
615 
616 	__ath10k_pci_sleep(ar);
617 
618 skip:
619 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
620 }
621 
622 static void ath10k_pci_sleep_sync(struct ath10k *ar)
623 {
624 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
625 	unsigned long flags;
626 
627 	if (ar_pci->pci_ps == 0) {
628 		ath10k_pci_force_sleep(ar);
629 		return;
630 	}
631 
632 	del_timer_sync(&ar_pci->ps_timer);
633 
634 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
635 	WARN_ON(ar_pci->ps_wake_refcount > 0);
636 	__ath10k_pci_sleep(ar);
637 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
638 }
639 
640 static void ath10k_bus_pci_write32(struct ath10k *ar, u32 offset, u32 value)
641 {
642 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
643 	int ret;
644 
645 	if (unlikely(offset + sizeof(value) > ar_pci->mem_len)) {
646 		ath10k_warn(ar, "refusing to write mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
647 			    offset, offset + sizeof(value), ar_pci->mem_len);
648 		return;
649 	}
650 
651 	ret = ath10k_pci_wake(ar);
652 	if (ret) {
653 		ath10k_warn(ar, "failed to wake target for write32 of 0x%08x at 0x%08x: %d\n",
654 			    value, offset, ret);
655 		return;
656 	}
657 
658 	iowrite32(value, ar_pci->mem + offset);
659 	ath10k_pci_sleep(ar);
660 }
661 
662 static u32 ath10k_bus_pci_read32(struct ath10k *ar, u32 offset)
663 {
664 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
665 	u32 val;
666 	int ret;
667 
668 	if (unlikely(offset + sizeof(val) > ar_pci->mem_len)) {
669 		ath10k_warn(ar, "refusing to read mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
670 			    offset, offset + sizeof(val), ar_pci->mem_len);
671 		return 0;
672 	}
673 
674 	ret = ath10k_pci_wake(ar);
675 	if (ret) {
676 		ath10k_warn(ar, "failed to wake target for read32 at 0x%08x: %d\n",
677 			    offset, ret);
678 		return 0xffffffff;
679 	}
680 
681 	val = ioread32(ar_pci->mem + offset);
682 	ath10k_pci_sleep(ar);
683 
684 	return val;
685 }
686 
687 inline void ath10k_pci_write32(struct ath10k *ar, u32 offset, u32 value)
688 {
689 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
690 
691 	ce->bus_ops->write32(ar, offset, value);
692 }
693 
694 inline u32 ath10k_pci_read32(struct ath10k *ar, u32 offset)
695 {
696 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
697 
698 	return ce->bus_ops->read32(ar, offset);
699 }
700 
701 u32 ath10k_pci_soc_read32(struct ath10k *ar, u32 addr)
702 {
703 	return ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS + addr);
704 }
705 
706 void ath10k_pci_soc_write32(struct ath10k *ar, u32 addr, u32 val)
707 {
708 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + addr, val);
709 }
710 
711 u32 ath10k_pci_reg_read32(struct ath10k *ar, u32 addr)
712 {
713 	return ath10k_pci_read32(ar, PCIE_LOCAL_BASE_ADDRESS + addr);
714 }
715 
716 void ath10k_pci_reg_write32(struct ath10k *ar, u32 addr, u32 val)
717 {
718 	ath10k_pci_write32(ar, PCIE_LOCAL_BASE_ADDRESS + addr, val);
719 }
720 
721 bool ath10k_pci_irq_pending(struct ath10k *ar)
722 {
723 	u32 cause;
724 
725 	/* Check if the shared legacy irq is for us */
726 	cause = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
727 				  PCIE_INTR_CAUSE_ADDRESS);
728 	if (cause & (PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL))
729 		return true;
730 
731 	return false;
732 }
733 
734 void ath10k_pci_disable_and_clear_legacy_irq(struct ath10k *ar)
735 {
736 	/* IMPORTANT: INTR_CLR register has to be set after
737 	 * INTR_ENABLE is set to 0, otherwise interrupt can not be
738 	 * really cleared.
739 	 */
740 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
741 			   0);
742 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_CLR_ADDRESS,
743 			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
744 
745 	/* IMPORTANT: this extra read transaction is required to
746 	 * flush the posted write buffer.
747 	 */
748 	(void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
749 				PCIE_INTR_ENABLE_ADDRESS);
750 }
751 
752 void ath10k_pci_enable_legacy_irq(struct ath10k *ar)
753 {
754 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
755 			   PCIE_INTR_ENABLE_ADDRESS,
756 			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
757 
758 	/* IMPORTANT: this extra read transaction is required to
759 	 * flush the posted write buffer.
760 	 */
761 	(void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
762 				PCIE_INTR_ENABLE_ADDRESS);
763 }
764 
765 static inline const char *ath10k_pci_get_irq_method(struct ath10k *ar)
766 {
767 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
768 
769 	if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_MSI)
770 		return "msi";
771 
772 	return "legacy";
773 }
774 
775 static int __ath10k_pci_rx_post_buf(struct ath10k_pci_pipe *pipe)
776 {
777 	struct ath10k *ar = pipe->hif_ce_state;
778 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
779 	struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
780 	struct sk_buff *skb;
781 	dma_addr_t paddr;
782 	int ret;
783 
784 	skb = dev_alloc_skb(pipe->buf_sz);
785 	if (!skb)
786 		return -ENOMEM;
787 
788 	WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb");
789 
790 	paddr = dma_map_single(ar->dev, skb->data,
791 			       skb->len + skb_tailroom(skb),
792 			       DMA_FROM_DEVICE);
793 	if (unlikely(dma_mapping_error(ar->dev, paddr))) {
794 		ath10k_warn(ar, "failed to dma map pci rx buf\n");
795 		dev_kfree_skb_any(skb);
796 		return -EIO;
797 	}
798 
799 	ATH10K_SKB_RXCB(skb)->paddr = paddr;
800 
801 	spin_lock_bh(&ce->ce_lock);
802 	ret = ce_pipe->ops->ce_rx_post_buf(ce_pipe, skb, paddr);
803 	spin_unlock_bh(&ce->ce_lock);
804 	if (ret) {
805 		dma_unmap_single(ar->dev, paddr, skb->len + skb_tailroom(skb),
806 				 DMA_FROM_DEVICE);
807 		dev_kfree_skb_any(skb);
808 		return ret;
809 	}
810 
811 	return 0;
812 }
813 
814 static void ath10k_pci_rx_post_pipe(struct ath10k_pci_pipe *pipe)
815 {
816 	struct ath10k *ar = pipe->hif_ce_state;
817 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
818 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
819 	struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
820 	int ret, num;
821 
822 	if (pipe->buf_sz == 0)
823 		return;
824 
825 	if (!ce_pipe->dest_ring)
826 		return;
827 
828 	spin_lock_bh(&ce->ce_lock);
829 	num = __ath10k_ce_rx_num_free_bufs(ce_pipe);
830 	spin_unlock_bh(&ce->ce_lock);
831 
832 	while (num >= 0) {
833 		ret = __ath10k_pci_rx_post_buf(pipe);
834 		if (ret) {
835 			if (ret == -ENOSPC)
836 				break;
837 			ath10k_warn(ar, "failed to post pci rx buf: %d\n", ret);
838 			mod_timer(&ar_pci->rx_post_retry, jiffies +
839 				  ATH10K_PCI_RX_POST_RETRY_MS);
840 			break;
841 		}
842 		num--;
843 	}
844 }
845 
846 void ath10k_pci_rx_post(struct ath10k *ar)
847 {
848 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
849 	int i;
850 
851 	for (i = 0; i < CE_COUNT; i++)
852 		ath10k_pci_rx_post_pipe(&ar_pci->pipe_info[i]);
853 }
854 
855 void ath10k_pci_rx_replenish_retry(struct timer_list *t)
856 {
857 	struct ath10k_pci *ar_pci = from_timer(ar_pci, t, rx_post_retry);
858 	struct ath10k *ar = ar_pci->ar;
859 
860 	ath10k_pci_rx_post(ar);
861 }
862 
863 static u32 ath10k_pci_qca988x_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
864 {
865 	u32 val = 0, region = addr & 0xfffff;
866 
867 	val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS)
868 				 & 0x7ff) << 21;
869 	val |= 0x100000 | region;
870 	return val;
871 }
872 
873 /* Refactor from ath10k_pci_qca988x_targ_cpu_to_ce_addr.
874  * Support to access target space below 1M for qca6174 and qca9377.
875  * If target space is below 1M, the bit[20] of converted CE addr is 0.
876  * Otherwise bit[20] of converted CE addr is 1.
877  */
878 static u32 ath10k_pci_qca6174_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
879 {
880 	u32 val = 0, region = addr & 0xfffff;
881 
882 	val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS)
883 				 & 0x7ff) << 21;
884 	val |= ((addr >= 0x100000) ? 0x100000 : 0) | region;
885 	return val;
886 }
887 
888 static u32 ath10k_pci_qca99x0_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
889 {
890 	u32 val = 0, region = addr & 0xfffff;
891 
892 	val = ath10k_pci_read32(ar, PCIE_BAR_REG_ADDRESS);
893 	val |= 0x100000 | region;
894 	return val;
895 }
896 
897 static u32 ath10k_pci_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
898 {
899 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
900 
901 	if (WARN_ON_ONCE(!ar_pci->targ_cpu_to_ce_addr))
902 		return -ENOTSUPP;
903 
904 	return ar_pci->targ_cpu_to_ce_addr(ar, addr);
905 }
906 
907 /*
908  * Diagnostic read/write access is provided for startup/config/debug usage.
909  * Caller must guarantee proper alignment, when applicable, and single user
910  * at any moment.
911  */
912 static int ath10k_pci_diag_read_mem(struct ath10k *ar, u32 address, void *data,
913 				    int nbytes)
914 {
915 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
916 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
917 	int ret = 0;
918 	u32 *buf;
919 	unsigned int completed_nbytes, alloc_nbytes, remaining_bytes;
920 	struct ath10k_ce_pipe *ce_diag;
921 	/* Host buffer address in CE space */
922 	u32 ce_data;
923 	dma_addr_t ce_data_base = 0;
924 	void *data_buf = NULL;
925 	int i;
926 
927 	spin_lock_bh(&ce->ce_lock);
928 
929 	ce_diag = ar_pci->ce_diag;
930 
931 	/*
932 	 * Allocate a temporary bounce buffer to hold caller's data
933 	 * to be DMA'ed from Target. This guarantees
934 	 *   1) 4-byte alignment
935 	 *   2) Buffer in DMA-able space
936 	 */
937 	alloc_nbytes = min_t(unsigned int, nbytes, DIAG_TRANSFER_LIMIT);
938 
939 	data_buf = (unsigned char *)dma_alloc_coherent(ar->dev, alloc_nbytes,
940 						       &ce_data_base,
941 						       GFP_ATOMIC);
942 
943 	if (!data_buf) {
944 		ret = -ENOMEM;
945 		goto done;
946 	}
947 
948 	/* The address supplied by the caller is in the
949 	 * Target CPU virtual address space.
950 	 *
951 	 * In order to use this address with the diagnostic CE,
952 	 * convert it from Target CPU virtual address space
953 	 * to CE address space
954 	 */
955 	address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
956 
957 	remaining_bytes = nbytes;
958 	ce_data = ce_data_base;
959 	while (remaining_bytes) {
960 		nbytes = min_t(unsigned int, remaining_bytes,
961 			       DIAG_TRANSFER_LIMIT);
962 
963 		ret = ce_diag->ops->ce_rx_post_buf(ce_diag, &ce_data, ce_data);
964 		if (ret != 0)
965 			goto done;
966 
967 		/* Request CE to send from Target(!) address to Host buffer */
968 		ret = ath10k_ce_send_nolock(ce_diag, NULL, (u32)address, nbytes, 0,
969 					    0);
970 		if (ret)
971 			goto done;
972 
973 		i = 0;
974 		while (ath10k_ce_completed_send_next_nolock(ce_diag,
975 							    NULL) != 0) {
976 			udelay(DIAG_ACCESS_CE_WAIT_US);
977 			i += DIAG_ACCESS_CE_WAIT_US;
978 
979 			if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
980 				ret = -EBUSY;
981 				goto done;
982 			}
983 		}
984 
985 		i = 0;
986 		while (ath10k_ce_completed_recv_next_nolock(ce_diag,
987 							    (void **)&buf,
988 							    &completed_nbytes)
989 								!= 0) {
990 			udelay(DIAG_ACCESS_CE_WAIT_US);
991 			i += DIAG_ACCESS_CE_WAIT_US;
992 
993 			if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
994 				ret = -EBUSY;
995 				goto done;
996 			}
997 		}
998 
999 		if (nbytes != completed_nbytes) {
1000 			ret = -EIO;
1001 			goto done;
1002 		}
1003 
1004 		if (*buf != ce_data) {
1005 			ret = -EIO;
1006 			goto done;
1007 		}
1008 
1009 		remaining_bytes -= nbytes;
1010 		memcpy(data, data_buf, nbytes);
1011 
1012 		address += nbytes;
1013 		data += nbytes;
1014 	}
1015 
1016 done:
1017 
1018 	if (data_buf)
1019 		dma_free_coherent(ar->dev, alloc_nbytes, data_buf,
1020 				  ce_data_base);
1021 
1022 	spin_unlock_bh(&ce->ce_lock);
1023 
1024 	return ret;
1025 }
1026 
1027 static int ath10k_pci_diag_read32(struct ath10k *ar, u32 address, u32 *value)
1028 {
1029 	__le32 val = 0;
1030 	int ret;
1031 
1032 	ret = ath10k_pci_diag_read_mem(ar, address, &val, sizeof(val));
1033 	*value = __le32_to_cpu(val);
1034 
1035 	return ret;
1036 }
1037 
1038 static int __ath10k_pci_diag_read_hi(struct ath10k *ar, void *dest,
1039 				     u32 src, u32 len)
1040 {
1041 	u32 host_addr, addr;
1042 	int ret;
1043 
1044 	host_addr = host_interest_item_address(src);
1045 
1046 	ret = ath10k_pci_diag_read32(ar, host_addr, &addr);
1047 	if (ret != 0) {
1048 		ath10k_warn(ar, "failed to get memcpy hi address for firmware address %d: %d\n",
1049 			    src, ret);
1050 		return ret;
1051 	}
1052 
1053 	ret = ath10k_pci_diag_read_mem(ar, addr, dest, len);
1054 	if (ret != 0) {
1055 		ath10k_warn(ar, "failed to memcpy firmware memory from %d (%d B): %d\n",
1056 			    addr, len, ret);
1057 		return ret;
1058 	}
1059 
1060 	return 0;
1061 }
1062 
1063 #define ath10k_pci_diag_read_hi(ar, dest, src, len)		\
1064 	__ath10k_pci_diag_read_hi(ar, dest, HI_ITEM(src), len)
1065 
1066 int ath10k_pci_diag_write_mem(struct ath10k *ar, u32 address,
1067 			      const void *data, int nbytes)
1068 {
1069 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1070 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1071 	int ret = 0;
1072 	u32 *buf;
1073 	unsigned int completed_nbytes, alloc_nbytes, remaining_bytes;
1074 	struct ath10k_ce_pipe *ce_diag;
1075 	void *data_buf = NULL;
1076 	dma_addr_t ce_data_base = 0;
1077 	int i;
1078 
1079 	spin_lock_bh(&ce->ce_lock);
1080 
1081 	ce_diag = ar_pci->ce_diag;
1082 
1083 	/*
1084 	 * Allocate a temporary bounce buffer to hold caller's data
1085 	 * to be DMA'ed to Target. This guarantees
1086 	 *   1) 4-byte alignment
1087 	 *   2) Buffer in DMA-able space
1088 	 */
1089 	alloc_nbytes = min_t(unsigned int, nbytes, DIAG_TRANSFER_LIMIT);
1090 
1091 	data_buf = (unsigned char *)dma_alloc_coherent(ar->dev,
1092 						       alloc_nbytes,
1093 						       &ce_data_base,
1094 						       GFP_ATOMIC);
1095 	if (!data_buf) {
1096 		ret = -ENOMEM;
1097 		goto done;
1098 	}
1099 
1100 	/*
1101 	 * The address supplied by the caller is in the
1102 	 * Target CPU virtual address space.
1103 	 *
1104 	 * In order to use this address with the diagnostic CE,
1105 	 * convert it from
1106 	 *    Target CPU virtual address space
1107 	 * to
1108 	 *    CE address space
1109 	 */
1110 	address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
1111 
1112 	remaining_bytes = nbytes;
1113 	while (remaining_bytes) {
1114 		/* FIXME: check cast */
1115 		nbytes = min_t(int, remaining_bytes, DIAG_TRANSFER_LIMIT);
1116 
1117 		/* Copy caller's data to allocated DMA buf */
1118 		memcpy(data_buf, data, nbytes);
1119 
1120 		/* Set up to receive directly into Target(!) address */
1121 		ret = ce_diag->ops->ce_rx_post_buf(ce_diag, &address, address);
1122 		if (ret != 0)
1123 			goto done;
1124 
1125 		/*
1126 		 * Request CE to send caller-supplied data that
1127 		 * was copied to bounce buffer to Target(!) address.
1128 		 */
1129 		ret = ath10k_ce_send_nolock(ce_diag, NULL, ce_data_base,
1130 					    nbytes, 0, 0);
1131 		if (ret != 0)
1132 			goto done;
1133 
1134 		i = 0;
1135 		while (ath10k_ce_completed_send_next_nolock(ce_diag,
1136 							    NULL) != 0) {
1137 			udelay(DIAG_ACCESS_CE_WAIT_US);
1138 			i += DIAG_ACCESS_CE_WAIT_US;
1139 
1140 			if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
1141 				ret = -EBUSY;
1142 				goto done;
1143 			}
1144 		}
1145 
1146 		i = 0;
1147 		while (ath10k_ce_completed_recv_next_nolock(ce_diag,
1148 							    (void **)&buf,
1149 							    &completed_nbytes)
1150 								!= 0) {
1151 			udelay(DIAG_ACCESS_CE_WAIT_US);
1152 			i += DIAG_ACCESS_CE_WAIT_US;
1153 
1154 			if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
1155 				ret = -EBUSY;
1156 				goto done;
1157 			}
1158 		}
1159 
1160 		if (nbytes != completed_nbytes) {
1161 			ret = -EIO;
1162 			goto done;
1163 		}
1164 
1165 		if (*buf != address) {
1166 			ret = -EIO;
1167 			goto done;
1168 		}
1169 
1170 		remaining_bytes -= nbytes;
1171 		address += nbytes;
1172 		data += nbytes;
1173 	}
1174 
1175 done:
1176 	if (data_buf) {
1177 		dma_free_coherent(ar->dev, alloc_nbytes, data_buf,
1178 				  ce_data_base);
1179 	}
1180 
1181 	if (ret != 0)
1182 		ath10k_warn(ar, "failed to write diag value at 0x%x: %d\n",
1183 			    address, ret);
1184 
1185 	spin_unlock_bh(&ce->ce_lock);
1186 
1187 	return ret;
1188 }
1189 
1190 static int ath10k_pci_diag_write32(struct ath10k *ar, u32 address, u32 value)
1191 {
1192 	__le32 val = __cpu_to_le32(value);
1193 
1194 	return ath10k_pci_diag_write_mem(ar, address, &val, sizeof(val));
1195 }
1196 
1197 /* Called by lower (CE) layer when a send to Target completes. */
1198 static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state)
1199 {
1200 	struct ath10k *ar = ce_state->ar;
1201 	struct sk_buff_head list;
1202 	struct sk_buff *skb;
1203 
1204 	__skb_queue_head_init(&list);
1205 	while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1206 		/* no need to call tx completion for NULL pointers */
1207 		if (skb == NULL)
1208 			continue;
1209 
1210 		__skb_queue_tail(&list, skb);
1211 	}
1212 
1213 	while ((skb = __skb_dequeue(&list)))
1214 		ath10k_htc_tx_completion_handler(ar, skb);
1215 }
1216 
1217 static void ath10k_pci_process_rx_cb(struct ath10k_ce_pipe *ce_state,
1218 				     void (*callback)(struct ath10k *ar,
1219 						      struct sk_buff *skb))
1220 {
1221 	struct ath10k *ar = ce_state->ar;
1222 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1223 	struct ath10k_pci_pipe *pipe_info =  &ar_pci->pipe_info[ce_state->id];
1224 	struct sk_buff *skb;
1225 	struct sk_buff_head list;
1226 	void *transfer_context;
1227 	unsigned int nbytes, max_nbytes;
1228 
1229 	__skb_queue_head_init(&list);
1230 	while (ath10k_ce_completed_recv_next(ce_state, &transfer_context,
1231 					     &nbytes) == 0) {
1232 		skb = transfer_context;
1233 		max_nbytes = skb->len + skb_tailroom(skb);
1234 		dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1235 				 max_nbytes, DMA_FROM_DEVICE);
1236 
1237 		if (unlikely(max_nbytes < nbytes)) {
1238 			ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1239 				    nbytes, max_nbytes);
1240 			dev_kfree_skb_any(skb);
1241 			continue;
1242 		}
1243 
1244 		skb_put(skb, nbytes);
1245 		__skb_queue_tail(&list, skb);
1246 	}
1247 
1248 	while ((skb = __skb_dequeue(&list))) {
1249 		ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1250 			   ce_state->id, skb->len);
1251 		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1252 				skb->data, skb->len);
1253 
1254 		callback(ar, skb);
1255 	}
1256 
1257 	ath10k_pci_rx_post_pipe(pipe_info);
1258 }
1259 
1260 static void ath10k_pci_process_htt_rx_cb(struct ath10k_ce_pipe *ce_state,
1261 					 void (*callback)(struct ath10k *ar,
1262 							  struct sk_buff *skb))
1263 {
1264 	struct ath10k *ar = ce_state->ar;
1265 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1266 	struct ath10k_pci_pipe *pipe_info =  &ar_pci->pipe_info[ce_state->id];
1267 	struct ath10k_ce_pipe *ce_pipe = pipe_info->ce_hdl;
1268 	struct sk_buff *skb;
1269 	struct sk_buff_head list;
1270 	void *transfer_context;
1271 	unsigned int nbytes, max_nbytes, nentries;
1272 	int orig_len;
1273 
1274 	/* No need to aquire ce_lock for CE5, since this is the only place CE5
1275 	 * is processed other than init and deinit. Before releasing CE5
1276 	 * buffers, interrupts are disabled. Thus CE5 access is serialized.
1277 	 */
1278 	__skb_queue_head_init(&list);
1279 	while (ath10k_ce_completed_recv_next_nolock(ce_state, &transfer_context,
1280 						    &nbytes) == 0) {
1281 		skb = transfer_context;
1282 		max_nbytes = skb->len + skb_tailroom(skb);
1283 
1284 		if (unlikely(max_nbytes < nbytes)) {
1285 			ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1286 				    nbytes, max_nbytes);
1287 			continue;
1288 		}
1289 
1290 		dma_sync_single_for_cpu(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1291 					max_nbytes, DMA_FROM_DEVICE);
1292 		skb_put(skb, nbytes);
1293 		__skb_queue_tail(&list, skb);
1294 	}
1295 
1296 	nentries = skb_queue_len(&list);
1297 	while ((skb = __skb_dequeue(&list))) {
1298 		ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1299 			   ce_state->id, skb->len);
1300 		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1301 				skb->data, skb->len);
1302 
1303 		orig_len = skb->len;
1304 		callback(ar, skb);
1305 		skb_push(skb, orig_len - skb->len);
1306 		skb_reset_tail_pointer(skb);
1307 		skb_trim(skb, 0);
1308 
1309 		/*let device gain the buffer again*/
1310 		dma_sync_single_for_device(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1311 					   skb->len + skb_tailroom(skb),
1312 					   DMA_FROM_DEVICE);
1313 	}
1314 	ath10k_ce_rx_update_write_idx(ce_pipe, nentries);
1315 }
1316 
1317 /* Called by lower (CE) layer when data is received from the Target. */
1318 static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1319 {
1320 	ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1321 }
1322 
1323 static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1324 {
1325 	/* CE4 polling needs to be done whenever CE pipe which transports
1326 	 * HTT Rx (target->host) is processed.
1327 	 */
1328 	ath10k_ce_per_engine_service(ce_state->ar, 4);
1329 
1330 	ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1331 }
1332 
1333 /* Called by lower (CE) layer when data is received from the Target.
1334  * Only 10.4 firmware uses separate CE to transfer pktlog data.
1335  */
1336 static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state)
1337 {
1338 	ath10k_pci_process_rx_cb(ce_state,
1339 				 ath10k_htt_rx_pktlog_completion_handler);
1340 }
1341 
1342 /* Called by lower (CE) layer when a send to HTT Target completes. */
1343 static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state)
1344 {
1345 	struct ath10k *ar = ce_state->ar;
1346 	struct sk_buff *skb;
1347 
1348 	while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1349 		/* no need to call tx completion for NULL pointers */
1350 		if (!skb)
1351 			continue;
1352 
1353 		dma_unmap_single(ar->dev, ATH10K_SKB_CB(skb)->paddr,
1354 				 skb->len, DMA_TO_DEVICE);
1355 		ath10k_htt_hif_tx_complete(ar, skb);
1356 	}
1357 }
1358 
1359 static void ath10k_pci_htt_rx_deliver(struct ath10k *ar, struct sk_buff *skb)
1360 {
1361 	skb_pull(skb, sizeof(struct ath10k_htc_hdr));
1362 	ath10k_htt_t2h_msg_handler(ar, skb);
1363 }
1364 
1365 /* Called by lower (CE) layer when HTT data is received from the Target. */
1366 static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state)
1367 {
1368 	/* CE4 polling needs to be done whenever CE pipe which transports
1369 	 * HTT Rx (target->host) is processed.
1370 	 */
1371 	ath10k_ce_per_engine_service(ce_state->ar, 4);
1372 
1373 	ath10k_pci_process_htt_rx_cb(ce_state, ath10k_pci_htt_rx_deliver);
1374 }
1375 
1376 int ath10k_pci_hif_tx_sg(struct ath10k *ar, u8 pipe_id,
1377 			 struct ath10k_hif_sg_item *items, int n_items)
1378 {
1379 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1380 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1381 	struct ath10k_pci_pipe *pci_pipe = &ar_pci->pipe_info[pipe_id];
1382 	struct ath10k_ce_pipe *ce_pipe = pci_pipe->ce_hdl;
1383 	struct ath10k_ce_ring *src_ring = ce_pipe->src_ring;
1384 	unsigned int nentries_mask;
1385 	unsigned int sw_index;
1386 	unsigned int write_index;
1387 	int err, i = 0;
1388 
1389 	spin_lock_bh(&ce->ce_lock);
1390 
1391 	nentries_mask = src_ring->nentries_mask;
1392 	sw_index = src_ring->sw_index;
1393 	write_index = src_ring->write_index;
1394 
1395 	if (unlikely(CE_RING_DELTA(nentries_mask,
1396 				   write_index, sw_index - 1) < n_items)) {
1397 		err = -ENOBUFS;
1398 		goto err;
1399 	}
1400 
1401 	for (i = 0; i < n_items - 1; i++) {
1402 		ath10k_dbg(ar, ATH10K_DBG_PCI,
1403 			   "pci tx item %d paddr %pad len %d n_items %d\n",
1404 			   i, &items[i].paddr, items[i].len, n_items);
1405 		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1406 				items[i].vaddr, items[i].len);
1407 
1408 		err = ath10k_ce_send_nolock(ce_pipe,
1409 					    items[i].transfer_context,
1410 					    items[i].paddr,
1411 					    items[i].len,
1412 					    items[i].transfer_id,
1413 					    CE_SEND_FLAG_GATHER);
1414 		if (err)
1415 			goto err;
1416 	}
1417 
1418 	/* `i` is equal to `n_items -1` after for() */
1419 
1420 	ath10k_dbg(ar, ATH10K_DBG_PCI,
1421 		   "pci tx item %d paddr %pad len %d n_items %d\n",
1422 		   i, &items[i].paddr, items[i].len, n_items);
1423 	ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1424 			items[i].vaddr, items[i].len);
1425 
1426 	err = ath10k_ce_send_nolock(ce_pipe,
1427 				    items[i].transfer_context,
1428 				    items[i].paddr,
1429 				    items[i].len,
1430 				    items[i].transfer_id,
1431 				    0);
1432 	if (err)
1433 		goto err;
1434 
1435 	spin_unlock_bh(&ce->ce_lock);
1436 	return 0;
1437 
1438 err:
1439 	for (; i > 0; i--)
1440 		__ath10k_ce_send_revert(ce_pipe);
1441 
1442 	spin_unlock_bh(&ce->ce_lock);
1443 	return err;
1444 }
1445 
1446 int ath10k_pci_hif_diag_read(struct ath10k *ar, u32 address, void *buf,
1447 			     size_t buf_len)
1448 {
1449 	return ath10k_pci_diag_read_mem(ar, address, buf, buf_len);
1450 }
1451 
1452 u16 ath10k_pci_hif_get_free_queue_number(struct ath10k *ar, u8 pipe)
1453 {
1454 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1455 
1456 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get free queue number\n");
1457 
1458 	return ath10k_ce_num_free_src_entries(ar_pci->pipe_info[pipe].ce_hdl);
1459 }
1460 
1461 static void ath10k_pci_dump_registers(struct ath10k *ar,
1462 				      struct ath10k_fw_crash_data *crash_data)
1463 {
1464 	__le32 reg_dump_values[REG_DUMP_COUNT_QCA988X] = {};
1465 	int i, ret;
1466 
1467 	lockdep_assert_held(&ar->data_lock);
1468 
1469 	ret = ath10k_pci_diag_read_hi(ar, &reg_dump_values[0],
1470 				      hi_failure_state,
1471 				      REG_DUMP_COUNT_QCA988X * sizeof(__le32));
1472 	if (ret) {
1473 		ath10k_err(ar, "failed to read firmware dump area: %d\n", ret);
1474 		return;
1475 	}
1476 
1477 	BUILD_BUG_ON(REG_DUMP_COUNT_QCA988X % 4);
1478 
1479 	ath10k_err(ar, "firmware register dump:\n");
1480 	for (i = 0; i < REG_DUMP_COUNT_QCA988X; i += 4)
1481 		ath10k_err(ar, "[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n",
1482 			   i,
1483 			   __le32_to_cpu(reg_dump_values[i]),
1484 			   __le32_to_cpu(reg_dump_values[i + 1]),
1485 			   __le32_to_cpu(reg_dump_values[i + 2]),
1486 			   __le32_to_cpu(reg_dump_values[i + 3]));
1487 
1488 	if (!crash_data)
1489 		return;
1490 
1491 	for (i = 0; i < REG_DUMP_COUNT_QCA988X; i++)
1492 		crash_data->registers[i] = reg_dump_values[i];
1493 }
1494 
1495 static int ath10k_pci_dump_memory_section(struct ath10k *ar,
1496 					  const struct ath10k_mem_region *mem_region,
1497 					  u8 *buf, size_t buf_len)
1498 {
1499 	const struct ath10k_mem_section *cur_section, *next_section;
1500 	unsigned int count, section_size, skip_size;
1501 	int ret, i, j;
1502 
1503 	if (!mem_region || !buf)
1504 		return 0;
1505 
1506 	cur_section = &mem_region->section_table.sections[0];
1507 
1508 	if (mem_region->start > cur_section->start) {
1509 		ath10k_warn(ar, "incorrect memdump region 0x%x with section start address 0x%x.\n",
1510 			    mem_region->start, cur_section->start);
1511 		return 0;
1512 	}
1513 
1514 	skip_size = cur_section->start - mem_region->start;
1515 
1516 	/* fill the gap between the first register section and register
1517 	 * start address
1518 	 */
1519 	for (i = 0; i < skip_size; i++) {
1520 		*buf = ATH10K_MAGIC_NOT_COPIED;
1521 		buf++;
1522 	}
1523 
1524 	count = 0;
1525 
1526 	for (i = 0; cur_section != NULL; i++) {
1527 		section_size = cur_section->end - cur_section->start;
1528 
1529 		if (section_size <= 0) {
1530 			ath10k_warn(ar, "incorrect ramdump format with start address 0x%x and stop address 0x%x\n",
1531 				    cur_section->start,
1532 				    cur_section->end);
1533 			break;
1534 		}
1535 
1536 		if ((i + 1) == mem_region->section_table.size) {
1537 			/* last section */
1538 			next_section = NULL;
1539 			skip_size = 0;
1540 		} else {
1541 			next_section = cur_section + 1;
1542 
1543 			if (cur_section->end > next_section->start) {
1544 				ath10k_warn(ar, "next ramdump section 0x%x is smaller than current end address 0x%x\n",
1545 					    next_section->start,
1546 					    cur_section->end);
1547 				break;
1548 			}
1549 
1550 			skip_size = next_section->start - cur_section->end;
1551 		}
1552 
1553 		if (buf_len < (skip_size + section_size)) {
1554 			ath10k_warn(ar, "ramdump buffer is too small: %zu\n", buf_len);
1555 			break;
1556 		}
1557 
1558 		buf_len -= skip_size + section_size;
1559 
1560 		/* read section to dest memory */
1561 		ret = ath10k_pci_diag_read_mem(ar, cur_section->start,
1562 					       buf, section_size);
1563 		if (ret) {
1564 			ath10k_warn(ar, "failed to read ramdump from section 0x%x: %d\n",
1565 				    cur_section->start, ret);
1566 			break;
1567 		}
1568 
1569 		buf += section_size;
1570 		count += section_size;
1571 
1572 		/* fill in the gap between this section and the next */
1573 		for (j = 0; j < skip_size; j++) {
1574 			*buf = ATH10K_MAGIC_NOT_COPIED;
1575 			buf++;
1576 		}
1577 
1578 		count += skip_size;
1579 
1580 		if (!next_section)
1581 			/* this was the last section */
1582 			break;
1583 
1584 		cur_section = next_section;
1585 	}
1586 
1587 	return count;
1588 }
1589 
1590 static int ath10k_pci_set_ram_config(struct ath10k *ar, u32 config)
1591 {
1592 	u32 val;
1593 
1594 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1595 			   FW_RAM_CONFIG_ADDRESS, config);
1596 
1597 	val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1598 				FW_RAM_CONFIG_ADDRESS);
1599 	if (val != config) {
1600 		ath10k_warn(ar, "failed to set RAM config from 0x%x to 0x%x\n",
1601 			    val, config);
1602 		return -EIO;
1603 	}
1604 
1605 	return 0;
1606 }
1607 
1608 /* if an error happened returns < 0, otherwise the length */
1609 static int ath10k_pci_dump_memory_sram(struct ath10k *ar,
1610 				       const struct ath10k_mem_region *region,
1611 				       u8 *buf)
1612 {
1613 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1614 	u32 base_addr, i;
1615 
1616 	base_addr = ioread32(ar_pci->mem + QCA99X0_PCIE_BAR0_START_REG);
1617 	base_addr += region->start;
1618 
1619 	for (i = 0; i < region->len; i += 4) {
1620 		iowrite32(base_addr + i, ar_pci->mem + QCA99X0_CPU_MEM_ADDR_REG);
1621 		*(u32 *)(buf + i) = ioread32(ar_pci->mem + QCA99X0_CPU_MEM_DATA_REG);
1622 	}
1623 
1624 	return region->len;
1625 }
1626 
1627 /* if an error happened returns < 0, otherwise the length */
1628 static int ath10k_pci_dump_memory_reg(struct ath10k *ar,
1629 				      const struct ath10k_mem_region *region,
1630 				      u8 *buf)
1631 {
1632 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1633 	u32 i;
1634 
1635 	for (i = 0; i < region->len; i += 4)
1636 		*(u32 *)(buf + i) = ioread32(ar_pci->mem + region->start + i);
1637 
1638 	return region->len;
1639 }
1640 
1641 /* if an error happened returns < 0, otherwise the length */
1642 static int ath10k_pci_dump_memory_generic(struct ath10k *ar,
1643 					  const struct ath10k_mem_region *current_region,
1644 					  u8 *buf)
1645 {
1646 	int ret;
1647 
1648 	if (current_region->section_table.size > 0)
1649 		/* Copy each section individually. */
1650 		return ath10k_pci_dump_memory_section(ar,
1651 						      current_region,
1652 						      buf,
1653 						      current_region->len);
1654 
1655 	/* No individiual memory sections defined so we can
1656 	 * copy the entire memory region.
1657 	 */
1658 	ret = ath10k_pci_diag_read_mem(ar,
1659 				       current_region->start,
1660 				       buf,
1661 				       current_region->len);
1662 	if (ret) {
1663 		ath10k_warn(ar, "failed to copy ramdump region %s: %d\n",
1664 			    current_region->name, ret);
1665 		return ret;
1666 	}
1667 
1668 	return current_region->len;
1669 }
1670 
1671 static void ath10k_pci_dump_memory(struct ath10k *ar,
1672 				   struct ath10k_fw_crash_data *crash_data)
1673 {
1674 	const struct ath10k_hw_mem_layout *mem_layout;
1675 	const struct ath10k_mem_region *current_region;
1676 	struct ath10k_dump_ram_data_hdr *hdr;
1677 	u32 count, shift;
1678 	size_t buf_len;
1679 	int ret, i;
1680 	u8 *buf;
1681 
1682 	lockdep_assert_held(&ar->data_lock);
1683 
1684 	if (!crash_data)
1685 		return;
1686 
1687 	mem_layout = ath10k_coredump_get_mem_layout(ar);
1688 	if (!mem_layout)
1689 		return;
1690 
1691 	current_region = &mem_layout->region_table.regions[0];
1692 
1693 	buf = crash_data->ramdump_buf;
1694 	buf_len = crash_data->ramdump_buf_len;
1695 
1696 	memset(buf, 0, buf_len);
1697 
1698 	for (i = 0; i < mem_layout->region_table.size; i++) {
1699 		count = 0;
1700 
1701 		if (current_region->len > buf_len) {
1702 			ath10k_warn(ar, "memory region %s size %d is larger that remaining ramdump buffer size %zu\n",
1703 				    current_region->name,
1704 				    current_region->len,
1705 				    buf_len);
1706 			break;
1707 		}
1708 
1709 		/* To get IRAM dump, the host driver needs to switch target
1710 		 * ram config from DRAM to IRAM.
1711 		 */
1712 		if (current_region->type == ATH10K_MEM_REGION_TYPE_IRAM1 ||
1713 		    current_region->type == ATH10K_MEM_REGION_TYPE_IRAM2) {
1714 			shift = current_region->start >> 20;
1715 
1716 			ret = ath10k_pci_set_ram_config(ar, shift);
1717 			if (ret) {
1718 				ath10k_warn(ar, "failed to switch ram config to IRAM for section %s: %d\n",
1719 					    current_region->name, ret);
1720 				break;
1721 			}
1722 		}
1723 
1724 		/* Reserve space for the header. */
1725 		hdr = (void *)buf;
1726 		buf += sizeof(*hdr);
1727 		buf_len -= sizeof(*hdr);
1728 
1729 		switch (current_region->type) {
1730 		case ATH10K_MEM_REGION_TYPE_IOSRAM:
1731 			count = ath10k_pci_dump_memory_sram(ar, current_region, buf);
1732 			break;
1733 		case ATH10K_MEM_REGION_TYPE_IOREG:
1734 			count = ath10k_pci_dump_memory_reg(ar, current_region, buf);
1735 			break;
1736 		default:
1737 			ret = ath10k_pci_dump_memory_generic(ar, current_region, buf);
1738 			if (ret < 0)
1739 				break;
1740 
1741 			count = ret;
1742 			break;
1743 		}
1744 
1745 		hdr->region_type = cpu_to_le32(current_region->type);
1746 		hdr->start = cpu_to_le32(current_region->start);
1747 		hdr->length = cpu_to_le32(count);
1748 
1749 		if (count == 0)
1750 			/* Note: the header remains, just with zero length. */
1751 			break;
1752 
1753 		buf += count;
1754 		buf_len -= count;
1755 
1756 		current_region++;
1757 	}
1758 }
1759 
1760 static void ath10k_pci_fw_crashed_dump(struct ath10k *ar)
1761 {
1762 	struct ath10k_fw_crash_data *crash_data;
1763 	char guid[UUID_STRING_LEN + 1];
1764 
1765 	spin_lock_bh(&ar->data_lock);
1766 
1767 	ar->stats.fw_crash_counter++;
1768 
1769 	crash_data = ath10k_coredump_new(ar);
1770 
1771 	if (crash_data)
1772 		scnprintf(guid, sizeof(guid), "%pUl", &crash_data->guid);
1773 	else
1774 		scnprintf(guid, sizeof(guid), "n/a");
1775 
1776 	ath10k_err(ar, "firmware crashed! (guid %s)\n", guid);
1777 	ath10k_print_driver_info(ar);
1778 	ath10k_pci_dump_registers(ar, crash_data);
1779 	ath10k_ce_dump_registers(ar, crash_data);
1780 	ath10k_pci_dump_memory(ar, crash_data);
1781 
1782 	spin_unlock_bh(&ar->data_lock);
1783 
1784 	queue_work(ar->workqueue, &ar->restart_work);
1785 }
1786 
1787 void ath10k_pci_hif_send_complete_check(struct ath10k *ar, u8 pipe,
1788 					int force)
1789 {
1790 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif send complete check\n");
1791 
1792 	if (!force) {
1793 		int resources;
1794 		/*
1795 		 * Decide whether to actually poll for completions, or just
1796 		 * wait for a later chance.
1797 		 * If there seem to be plenty of resources left, then just wait
1798 		 * since checking involves reading a CE register, which is a
1799 		 * relatively expensive operation.
1800 		 */
1801 		resources = ath10k_pci_hif_get_free_queue_number(ar, pipe);
1802 
1803 		/*
1804 		 * If at least 50% of the total resources are still available,
1805 		 * don't bother checking again yet.
1806 		 */
1807 		if (resources > (host_ce_config_wlan[pipe].src_nentries >> 1))
1808 			return;
1809 	}
1810 	ath10k_ce_per_engine_service(ar, pipe);
1811 }
1812 
1813 static void ath10k_pci_rx_retry_sync(struct ath10k *ar)
1814 {
1815 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1816 
1817 	del_timer_sync(&ar_pci->rx_post_retry);
1818 }
1819 
1820 int ath10k_pci_hif_map_service_to_pipe(struct ath10k *ar, u16 service_id,
1821 				       u8 *ul_pipe, u8 *dl_pipe)
1822 {
1823 	const struct service_to_pipe *entry;
1824 	bool ul_set = false, dl_set = false;
1825 	int i;
1826 
1827 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif map service\n");
1828 
1829 	for (i = 0; i < ARRAY_SIZE(target_service_to_ce_map_wlan); i++) {
1830 		entry = &target_service_to_ce_map_wlan[i];
1831 
1832 		if (__le32_to_cpu(entry->service_id) != service_id)
1833 			continue;
1834 
1835 		switch (__le32_to_cpu(entry->pipedir)) {
1836 		case PIPEDIR_NONE:
1837 			break;
1838 		case PIPEDIR_IN:
1839 			WARN_ON(dl_set);
1840 			*dl_pipe = __le32_to_cpu(entry->pipenum);
1841 			dl_set = true;
1842 			break;
1843 		case PIPEDIR_OUT:
1844 			WARN_ON(ul_set);
1845 			*ul_pipe = __le32_to_cpu(entry->pipenum);
1846 			ul_set = true;
1847 			break;
1848 		case PIPEDIR_INOUT:
1849 			WARN_ON(dl_set);
1850 			WARN_ON(ul_set);
1851 			*dl_pipe = __le32_to_cpu(entry->pipenum);
1852 			*ul_pipe = __le32_to_cpu(entry->pipenum);
1853 			dl_set = true;
1854 			ul_set = true;
1855 			break;
1856 		}
1857 	}
1858 
1859 	if (!ul_set || !dl_set)
1860 		return -ENOENT;
1861 
1862 	return 0;
1863 }
1864 
1865 void ath10k_pci_hif_get_default_pipe(struct ath10k *ar,
1866 				     u8 *ul_pipe, u8 *dl_pipe)
1867 {
1868 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get default pipe\n");
1869 
1870 	(void)ath10k_pci_hif_map_service_to_pipe(ar,
1871 						 ATH10K_HTC_SVC_ID_RSVD_CTRL,
1872 						 ul_pipe, dl_pipe);
1873 }
1874 
1875 void ath10k_pci_irq_msi_fw_mask(struct ath10k *ar)
1876 {
1877 	u32 val;
1878 
1879 	switch (ar->hw_rev) {
1880 	case ATH10K_HW_QCA988X:
1881 	case ATH10K_HW_QCA9887:
1882 	case ATH10K_HW_QCA6174:
1883 	case ATH10K_HW_QCA9377:
1884 		val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1885 					CORE_CTRL_ADDRESS);
1886 		val &= ~CORE_CTRL_PCIE_REG_31_MASK;
1887 		ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1888 				   CORE_CTRL_ADDRESS, val);
1889 		break;
1890 	case ATH10K_HW_QCA99X0:
1891 	case ATH10K_HW_QCA9984:
1892 	case ATH10K_HW_QCA9888:
1893 	case ATH10K_HW_QCA4019:
1894 		/* TODO: Find appropriate register configuration for QCA99X0
1895 		 *  to mask irq/MSI.
1896 		 */
1897 		break;
1898 	case ATH10K_HW_WCN3990:
1899 		break;
1900 	}
1901 }
1902 
1903 static void ath10k_pci_irq_msi_fw_unmask(struct ath10k *ar)
1904 {
1905 	u32 val;
1906 
1907 	switch (ar->hw_rev) {
1908 	case ATH10K_HW_QCA988X:
1909 	case ATH10K_HW_QCA9887:
1910 	case ATH10K_HW_QCA6174:
1911 	case ATH10K_HW_QCA9377:
1912 		val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1913 					CORE_CTRL_ADDRESS);
1914 		val |= CORE_CTRL_PCIE_REG_31_MASK;
1915 		ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1916 				   CORE_CTRL_ADDRESS, val);
1917 		break;
1918 	case ATH10K_HW_QCA99X0:
1919 	case ATH10K_HW_QCA9984:
1920 	case ATH10K_HW_QCA9888:
1921 	case ATH10K_HW_QCA4019:
1922 		/* TODO: Find appropriate register configuration for QCA99X0
1923 		 *  to unmask irq/MSI.
1924 		 */
1925 		break;
1926 	case ATH10K_HW_WCN3990:
1927 		break;
1928 	}
1929 }
1930 
1931 static void ath10k_pci_irq_disable(struct ath10k *ar)
1932 {
1933 	ath10k_ce_disable_interrupts(ar);
1934 	ath10k_pci_disable_and_clear_legacy_irq(ar);
1935 	ath10k_pci_irq_msi_fw_mask(ar);
1936 }
1937 
1938 static void ath10k_pci_irq_sync(struct ath10k *ar)
1939 {
1940 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1941 
1942 	synchronize_irq(ar_pci->pdev->irq);
1943 }
1944 
1945 static void ath10k_pci_irq_enable(struct ath10k *ar)
1946 {
1947 	ath10k_ce_enable_interrupts(ar);
1948 	ath10k_pci_enable_legacy_irq(ar);
1949 	ath10k_pci_irq_msi_fw_unmask(ar);
1950 }
1951 
1952 static int ath10k_pci_hif_start(struct ath10k *ar)
1953 {
1954 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1955 
1956 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif start\n");
1957 
1958 	napi_enable(&ar->napi);
1959 
1960 	ath10k_pci_irq_enable(ar);
1961 	ath10k_pci_rx_post(ar);
1962 
1963 	pcie_capability_write_word(ar_pci->pdev, PCI_EXP_LNKCTL,
1964 				   ar_pci->link_ctl);
1965 
1966 	return 0;
1967 }
1968 
1969 static void ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
1970 {
1971 	struct ath10k *ar;
1972 	struct ath10k_ce_pipe *ce_pipe;
1973 	struct ath10k_ce_ring *ce_ring;
1974 	struct sk_buff *skb;
1975 	int i;
1976 
1977 	ar = pci_pipe->hif_ce_state;
1978 	ce_pipe = pci_pipe->ce_hdl;
1979 	ce_ring = ce_pipe->dest_ring;
1980 
1981 	if (!ce_ring)
1982 		return;
1983 
1984 	if (!pci_pipe->buf_sz)
1985 		return;
1986 
1987 	for (i = 0; i < ce_ring->nentries; i++) {
1988 		skb = ce_ring->per_transfer_context[i];
1989 		if (!skb)
1990 			continue;
1991 
1992 		ce_ring->per_transfer_context[i] = NULL;
1993 
1994 		dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1995 				 skb->len + skb_tailroom(skb),
1996 				 DMA_FROM_DEVICE);
1997 		dev_kfree_skb_any(skb);
1998 	}
1999 }
2000 
2001 static void ath10k_pci_tx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
2002 {
2003 	struct ath10k *ar;
2004 	struct ath10k_ce_pipe *ce_pipe;
2005 	struct ath10k_ce_ring *ce_ring;
2006 	struct sk_buff *skb;
2007 	int i;
2008 
2009 	ar = pci_pipe->hif_ce_state;
2010 	ce_pipe = pci_pipe->ce_hdl;
2011 	ce_ring = ce_pipe->src_ring;
2012 
2013 	if (!ce_ring)
2014 		return;
2015 
2016 	if (!pci_pipe->buf_sz)
2017 		return;
2018 
2019 	for (i = 0; i < ce_ring->nentries; i++) {
2020 		skb = ce_ring->per_transfer_context[i];
2021 		if (!skb)
2022 			continue;
2023 
2024 		ce_ring->per_transfer_context[i] = NULL;
2025 
2026 		ath10k_htc_tx_completion_handler(ar, skb);
2027 	}
2028 }
2029 
2030 /*
2031  * Cleanup residual buffers for device shutdown:
2032  *    buffers that were enqueued for receive
2033  *    buffers that were to be sent
2034  * Note: Buffers that had completed but which were
2035  * not yet processed are on a completion queue. They
2036  * are handled when the completion thread shuts down.
2037  */
2038 static void ath10k_pci_buffer_cleanup(struct ath10k *ar)
2039 {
2040 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2041 	int pipe_num;
2042 
2043 	for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) {
2044 		struct ath10k_pci_pipe *pipe_info;
2045 
2046 		pipe_info = &ar_pci->pipe_info[pipe_num];
2047 		ath10k_pci_rx_pipe_cleanup(pipe_info);
2048 		ath10k_pci_tx_pipe_cleanup(pipe_info);
2049 	}
2050 }
2051 
2052 void ath10k_pci_ce_deinit(struct ath10k *ar)
2053 {
2054 	int i;
2055 
2056 	for (i = 0; i < CE_COUNT; i++)
2057 		ath10k_ce_deinit_pipe(ar, i);
2058 }
2059 
2060 void ath10k_pci_flush(struct ath10k *ar)
2061 {
2062 	ath10k_pci_rx_retry_sync(ar);
2063 	ath10k_pci_buffer_cleanup(ar);
2064 }
2065 
2066 static void ath10k_pci_hif_stop(struct ath10k *ar)
2067 {
2068 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2069 	unsigned long flags;
2070 
2071 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif stop\n");
2072 
2073 	/* Most likely the device has HTT Rx ring configured. The only way to
2074 	 * prevent the device from accessing (and possible corrupting) host
2075 	 * memory is to reset the chip now.
2076 	 *
2077 	 * There's also no known way of masking MSI interrupts on the device.
2078 	 * For ranged MSI the CE-related interrupts can be masked. However
2079 	 * regardless how many MSI interrupts are assigned the first one
2080 	 * is always used for firmware indications (crashes) and cannot be
2081 	 * masked. To prevent the device from asserting the interrupt reset it
2082 	 * before proceeding with cleanup.
2083 	 */
2084 	ath10k_pci_safe_chip_reset(ar);
2085 
2086 	ath10k_pci_irq_disable(ar);
2087 	ath10k_pci_irq_sync(ar);
2088 	napi_synchronize(&ar->napi);
2089 	napi_disable(&ar->napi);
2090 	ath10k_pci_flush(ar);
2091 
2092 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
2093 	WARN_ON(ar_pci->ps_wake_refcount > 0);
2094 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
2095 }
2096 
2097 int ath10k_pci_hif_exchange_bmi_msg(struct ath10k *ar,
2098 				    void *req, u32 req_len,
2099 				    void *resp, u32 *resp_len)
2100 {
2101 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2102 	struct ath10k_pci_pipe *pci_tx = &ar_pci->pipe_info[BMI_CE_NUM_TO_TARG];
2103 	struct ath10k_pci_pipe *pci_rx = &ar_pci->pipe_info[BMI_CE_NUM_TO_HOST];
2104 	struct ath10k_ce_pipe *ce_tx = pci_tx->ce_hdl;
2105 	struct ath10k_ce_pipe *ce_rx = pci_rx->ce_hdl;
2106 	dma_addr_t req_paddr = 0;
2107 	dma_addr_t resp_paddr = 0;
2108 	struct bmi_xfer xfer = {};
2109 	void *treq, *tresp = NULL;
2110 	int ret = 0;
2111 
2112 	might_sleep();
2113 
2114 	if (resp && !resp_len)
2115 		return -EINVAL;
2116 
2117 	if (resp && resp_len && *resp_len == 0)
2118 		return -EINVAL;
2119 
2120 	treq = kmemdup(req, req_len, GFP_KERNEL);
2121 	if (!treq)
2122 		return -ENOMEM;
2123 
2124 	req_paddr = dma_map_single(ar->dev, treq, req_len, DMA_TO_DEVICE);
2125 	ret = dma_mapping_error(ar->dev, req_paddr);
2126 	if (ret) {
2127 		ret = -EIO;
2128 		goto err_dma;
2129 	}
2130 
2131 	if (resp && resp_len) {
2132 		tresp = kzalloc(*resp_len, GFP_KERNEL);
2133 		if (!tresp) {
2134 			ret = -ENOMEM;
2135 			goto err_req;
2136 		}
2137 
2138 		resp_paddr = dma_map_single(ar->dev, tresp, *resp_len,
2139 					    DMA_FROM_DEVICE);
2140 		ret = dma_mapping_error(ar->dev, resp_paddr);
2141 		if (ret) {
2142 			ret = -EIO;
2143 			goto err_req;
2144 		}
2145 
2146 		xfer.wait_for_resp = true;
2147 		xfer.resp_len = 0;
2148 
2149 		ath10k_ce_rx_post_buf(ce_rx, &xfer, resp_paddr);
2150 	}
2151 
2152 	ret = ath10k_ce_send(ce_tx, &xfer, req_paddr, req_len, -1, 0);
2153 	if (ret)
2154 		goto err_resp;
2155 
2156 	ret = ath10k_pci_bmi_wait(ar, ce_tx, ce_rx, &xfer);
2157 	if (ret) {
2158 		dma_addr_t unused_buffer;
2159 		unsigned int unused_nbytes;
2160 		unsigned int unused_id;
2161 
2162 		ath10k_ce_cancel_send_next(ce_tx, NULL, &unused_buffer,
2163 					   &unused_nbytes, &unused_id);
2164 	} else {
2165 		/* non-zero means we did not time out */
2166 		ret = 0;
2167 	}
2168 
2169 err_resp:
2170 	if (resp) {
2171 		dma_addr_t unused_buffer;
2172 
2173 		ath10k_ce_revoke_recv_next(ce_rx, NULL, &unused_buffer);
2174 		dma_unmap_single(ar->dev, resp_paddr,
2175 				 *resp_len, DMA_FROM_DEVICE);
2176 	}
2177 err_req:
2178 	dma_unmap_single(ar->dev, req_paddr, req_len, DMA_TO_DEVICE);
2179 
2180 	if (ret == 0 && resp_len) {
2181 		*resp_len = min(*resp_len, xfer.resp_len);
2182 		memcpy(resp, tresp, xfer.resp_len);
2183 	}
2184 err_dma:
2185 	kfree(treq);
2186 	kfree(tresp);
2187 
2188 	return ret;
2189 }
2190 
2191 static void ath10k_pci_bmi_send_done(struct ath10k_ce_pipe *ce_state)
2192 {
2193 	struct bmi_xfer *xfer;
2194 
2195 	if (ath10k_ce_completed_send_next(ce_state, (void **)&xfer))
2196 		return;
2197 
2198 	xfer->tx_done = true;
2199 }
2200 
2201 static void ath10k_pci_bmi_recv_data(struct ath10k_ce_pipe *ce_state)
2202 {
2203 	struct ath10k *ar = ce_state->ar;
2204 	struct bmi_xfer *xfer;
2205 	unsigned int nbytes;
2206 
2207 	if (ath10k_ce_completed_recv_next(ce_state, (void **)&xfer,
2208 					  &nbytes))
2209 		return;
2210 
2211 	if (WARN_ON_ONCE(!xfer))
2212 		return;
2213 
2214 	if (!xfer->wait_for_resp) {
2215 		ath10k_warn(ar, "unexpected: BMI data received; ignoring\n");
2216 		return;
2217 	}
2218 
2219 	xfer->resp_len = nbytes;
2220 	xfer->rx_done = true;
2221 }
2222 
2223 static int ath10k_pci_bmi_wait(struct ath10k *ar,
2224 			       struct ath10k_ce_pipe *tx_pipe,
2225 			       struct ath10k_ce_pipe *rx_pipe,
2226 			       struct bmi_xfer *xfer)
2227 {
2228 	unsigned long timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ;
2229 	unsigned long started = jiffies;
2230 	unsigned long dur;
2231 	int ret;
2232 
2233 	while (time_before_eq(jiffies, timeout)) {
2234 		ath10k_pci_bmi_send_done(tx_pipe);
2235 		ath10k_pci_bmi_recv_data(rx_pipe);
2236 
2237 		if (xfer->tx_done && (xfer->rx_done == xfer->wait_for_resp)) {
2238 			ret = 0;
2239 			goto out;
2240 		}
2241 
2242 		schedule();
2243 	}
2244 
2245 	ret = -ETIMEDOUT;
2246 
2247 out:
2248 	dur = jiffies - started;
2249 	if (dur > HZ)
2250 		ath10k_dbg(ar, ATH10K_DBG_BMI,
2251 			   "bmi cmd took %lu jiffies hz %d ret %d\n",
2252 			   dur, HZ, ret);
2253 	return ret;
2254 }
2255 
2256 /*
2257  * Send an interrupt to the device to wake up the Target CPU
2258  * so it has an opportunity to notice any changed state.
2259  */
2260 static int ath10k_pci_wake_target_cpu(struct ath10k *ar)
2261 {
2262 	u32 addr, val;
2263 
2264 	addr = SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS;
2265 	val = ath10k_pci_read32(ar, addr);
2266 	val |= CORE_CTRL_CPU_INTR_MASK;
2267 	ath10k_pci_write32(ar, addr, val);
2268 
2269 	return 0;
2270 }
2271 
2272 static int ath10k_pci_get_num_banks(struct ath10k *ar)
2273 {
2274 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2275 
2276 	switch (ar_pci->pdev->device) {
2277 	case QCA988X_2_0_DEVICE_ID_UBNT:
2278 	case QCA988X_2_0_DEVICE_ID:
2279 	case QCA99X0_2_0_DEVICE_ID:
2280 	case QCA9888_2_0_DEVICE_ID:
2281 	case QCA9984_1_0_DEVICE_ID:
2282 	case QCA9887_1_0_DEVICE_ID:
2283 		return 1;
2284 	case QCA6164_2_1_DEVICE_ID:
2285 	case QCA6174_2_1_DEVICE_ID:
2286 		switch (MS(ar->chip_id, SOC_CHIP_ID_REV)) {
2287 		case QCA6174_HW_1_0_CHIP_ID_REV:
2288 		case QCA6174_HW_1_1_CHIP_ID_REV:
2289 		case QCA6174_HW_2_1_CHIP_ID_REV:
2290 		case QCA6174_HW_2_2_CHIP_ID_REV:
2291 			return 3;
2292 		case QCA6174_HW_1_3_CHIP_ID_REV:
2293 			return 2;
2294 		case QCA6174_HW_3_0_CHIP_ID_REV:
2295 		case QCA6174_HW_3_1_CHIP_ID_REV:
2296 		case QCA6174_HW_3_2_CHIP_ID_REV:
2297 			return 9;
2298 		}
2299 		break;
2300 	case QCA9377_1_0_DEVICE_ID:
2301 		return 9;
2302 	}
2303 
2304 	ath10k_warn(ar, "unknown number of banks, assuming 1\n");
2305 	return 1;
2306 }
2307 
2308 static int ath10k_bus_get_num_banks(struct ath10k *ar)
2309 {
2310 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
2311 
2312 	return ce->bus_ops->get_num_banks(ar);
2313 }
2314 
2315 int ath10k_pci_init_config(struct ath10k *ar)
2316 {
2317 	u32 interconnect_targ_addr;
2318 	u32 pcie_state_targ_addr = 0;
2319 	u32 pipe_cfg_targ_addr = 0;
2320 	u32 svc_to_pipe_map = 0;
2321 	u32 pcie_config_flags = 0;
2322 	u32 ealloc_value;
2323 	u32 ealloc_targ_addr;
2324 	u32 flag2_value;
2325 	u32 flag2_targ_addr;
2326 	int ret = 0;
2327 
2328 	/* Download to Target the CE Config and the service-to-CE map */
2329 	interconnect_targ_addr =
2330 		host_interest_item_address(HI_ITEM(hi_interconnect_state));
2331 
2332 	/* Supply Target-side CE configuration */
2333 	ret = ath10k_pci_diag_read32(ar, interconnect_targ_addr,
2334 				     &pcie_state_targ_addr);
2335 	if (ret != 0) {
2336 		ath10k_err(ar, "Failed to get pcie state addr: %d\n", ret);
2337 		return ret;
2338 	}
2339 
2340 	if (pcie_state_targ_addr == 0) {
2341 		ret = -EIO;
2342 		ath10k_err(ar, "Invalid pcie state addr\n");
2343 		return ret;
2344 	}
2345 
2346 	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2347 					  offsetof(struct pcie_state,
2348 						   pipe_cfg_addr)),
2349 				     &pipe_cfg_targ_addr);
2350 	if (ret != 0) {
2351 		ath10k_err(ar, "Failed to get pipe cfg addr: %d\n", ret);
2352 		return ret;
2353 	}
2354 
2355 	if (pipe_cfg_targ_addr == 0) {
2356 		ret = -EIO;
2357 		ath10k_err(ar, "Invalid pipe cfg addr\n");
2358 		return ret;
2359 	}
2360 
2361 	ret = ath10k_pci_diag_write_mem(ar, pipe_cfg_targ_addr,
2362 					target_ce_config_wlan,
2363 					sizeof(struct ce_pipe_config) *
2364 					NUM_TARGET_CE_CONFIG_WLAN);
2365 
2366 	if (ret != 0) {
2367 		ath10k_err(ar, "Failed to write pipe cfg: %d\n", ret);
2368 		return ret;
2369 	}
2370 
2371 	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2372 					  offsetof(struct pcie_state,
2373 						   svc_to_pipe_map)),
2374 				     &svc_to_pipe_map);
2375 	if (ret != 0) {
2376 		ath10k_err(ar, "Failed to get svc/pipe map: %d\n", ret);
2377 		return ret;
2378 	}
2379 
2380 	if (svc_to_pipe_map == 0) {
2381 		ret = -EIO;
2382 		ath10k_err(ar, "Invalid svc_to_pipe map\n");
2383 		return ret;
2384 	}
2385 
2386 	ret = ath10k_pci_diag_write_mem(ar, svc_to_pipe_map,
2387 					target_service_to_ce_map_wlan,
2388 					sizeof(target_service_to_ce_map_wlan));
2389 	if (ret != 0) {
2390 		ath10k_err(ar, "Failed to write svc/pipe map: %d\n", ret);
2391 		return ret;
2392 	}
2393 
2394 	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2395 					  offsetof(struct pcie_state,
2396 						   config_flags)),
2397 				     &pcie_config_flags);
2398 	if (ret != 0) {
2399 		ath10k_err(ar, "Failed to get pcie config_flags: %d\n", ret);
2400 		return ret;
2401 	}
2402 
2403 	pcie_config_flags &= ~PCIE_CONFIG_FLAG_ENABLE_L1;
2404 
2405 	ret = ath10k_pci_diag_write32(ar, (pcie_state_targ_addr +
2406 					   offsetof(struct pcie_state,
2407 						    config_flags)),
2408 				      pcie_config_flags);
2409 	if (ret != 0) {
2410 		ath10k_err(ar, "Failed to write pcie config_flags: %d\n", ret);
2411 		return ret;
2412 	}
2413 
2414 	/* configure early allocation */
2415 	ealloc_targ_addr = host_interest_item_address(HI_ITEM(hi_early_alloc));
2416 
2417 	ret = ath10k_pci_diag_read32(ar, ealloc_targ_addr, &ealloc_value);
2418 	if (ret != 0) {
2419 		ath10k_err(ar, "Failed to get early alloc val: %d\n", ret);
2420 		return ret;
2421 	}
2422 
2423 	/* first bank is switched to IRAM */
2424 	ealloc_value |= ((HI_EARLY_ALLOC_MAGIC << HI_EARLY_ALLOC_MAGIC_SHIFT) &
2425 			 HI_EARLY_ALLOC_MAGIC_MASK);
2426 	ealloc_value |= ((ath10k_bus_get_num_banks(ar) <<
2427 			  HI_EARLY_ALLOC_IRAM_BANKS_SHIFT) &
2428 			 HI_EARLY_ALLOC_IRAM_BANKS_MASK);
2429 
2430 	ret = ath10k_pci_diag_write32(ar, ealloc_targ_addr, ealloc_value);
2431 	if (ret != 0) {
2432 		ath10k_err(ar, "Failed to set early alloc val: %d\n", ret);
2433 		return ret;
2434 	}
2435 
2436 	/* Tell Target to proceed with initialization */
2437 	flag2_targ_addr = host_interest_item_address(HI_ITEM(hi_option_flag2));
2438 
2439 	ret = ath10k_pci_diag_read32(ar, flag2_targ_addr, &flag2_value);
2440 	if (ret != 0) {
2441 		ath10k_err(ar, "Failed to get option val: %d\n", ret);
2442 		return ret;
2443 	}
2444 
2445 	flag2_value |= HI_OPTION_EARLY_CFG_DONE;
2446 
2447 	ret = ath10k_pci_diag_write32(ar, flag2_targ_addr, flag2_value);
2448 	if (ret != 0) {
2449 		ath10k_err(ar, "Failed to set option val: %d\n", ret);
2450 		return ret;
2451 	}
2452 
2453 	return 0;
2454 }
2455 
2456 static void ath10k_pci_override_ce_config(struct ath10k *ar)
2457 {
2458 	struct ce_attr *attr;
2459 	struct ce_pipe_config *config;
2460 
2461 	/* For QCA6174 we're overriding the Copy Engine 5 configuration,
2462 	 * since it is currently used for other feature.
2463 	 */
2464 
2465 	/* Override Host's Copy Engine 5 configuration */
2466 	attr = &host_ce_config_wlan[5];
2467 	attr->src_sz_max = 0;
2468 	attr->dest_nentries = 0;
2469 
2470 	/* Override Target firmware's Copy Engine configuration */
2471 	config = &target_ce_config_wlan[5];
2472 	config->pipedir = __cpu_to_le32(PIPEDIR_OUT);
2473 	config->nbytes_max = __cpu_to_le32(2048);
2474 
2475 	/* Map from service/endpoint to Copy Engine */
2476 	target_service_to_ce_map_wlan[15].pipenum = __cpu_to_le32(1);
2477 }
2478 
2479 int ath10k_pci_alloc_pipes(struct ath10k *ar)
2480 {
2481 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2482 	struct ath10k_pci_pipe *pipe;
2483 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
2484 	int i, ret;
2485 
2486 	for (i = 0; i < CE_COUNT; i++) {
2487 		pipe = &ar_pci->pipe_info[i];
2488 		pipe->ce_hdl = &ce->ce_states[i];
2489 		pipe->pipe_num = i;
2490 		pipe->hif_ce_state = ar;
2491 
2492 		ret = ath10k_ce_alloc_pipe(ar, i, &host_ce_config_wlan[i]);
2493 		if (ret) {
2494 			ath10k_err(ar, "failed to allocate copy engine pipe %d: %d\n",
2495 				   i, ret);
2496 			return ret;
2497 		}
2498 
2499 		/* Last CE is Diagnostic Window */
2500 		if (i == CE_DIAG_PIPE) {
2501 			ar_pci->ce_diag = pipe->ce_hdl;
2502 			continue;
2503 		}
2504 
2505 		pipe->buf_sz = (size_t)(host_ce_config_wlan[i].src_sz_max);
2506 	}
2507 
2508 	return 0;
2509 }
2510 
2511 void ath10k_pci_free_pipes(struct ath10k *ar)
2512 {
2513 	int i;
2514 
2515 	for (i = 0; i < CE_COUNT; i++)
2516 		ath10k_ce_free_pipe(ar, i);
2517 }
2518 
2519 int ath10k_pci_init_pipes(struct ath10k *ar)
2520 {
2521 	int i, ret;
2522 
2523 	for (i = 0; i < CE_COUNT; i++) {
2524 		ret = ath10k_ce_init_pipe(ar, i, &host_ce_config_wlan[i]);
2525 		if (ret) {
2526 			ath10k_err(ar, "failed to initialize copy engine pipe %d: %d\n",
2527 				   i, ret);
2528 			return ret;
2529 		}
2530 	}
2531 
2532 	return 0;
2533 }
2534 
2535 static bool ath10k_pci_has_fw_crashed(struct ath10k *ar)
2536 {
2537 	return ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS) &
2538 	       FW_IND_EVENT_PENDING;
2539 }
2540 
2541 static void ath10k_pci_fw_crashed_clear(struct ath10k *ar)
2542 {
2543 	u32 val;
2544 
2545 	val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2546 	val &= ~FW_IND_EVENT_PENDING;
2547 	ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, val);
2548 }
2549 
2550 static bool ath10k_pci_has_device_gone(struct ath10k *ar)
2551 {
2552 	u32 val;
2553 
2554 	val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2555 	return (val == 0xffffffff);
2556 }
2557 
2558 /* this function effectively clears target memory controller assert line */
2559 static void ath10k_pci_warm_reset_si0(struct ath10k *ar)
2560 {
2561 	u32 val;
2562 
2563 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2564 	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2565 			       val | SOC_RESET_CONTROL_SI0_RST_MASK);
2566 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2567 
2568 	msleep(10);
2569 
2570 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2571 	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2572 			       val & ~SOC_RESET_CONTROL_SI0_RST_MASK);
2573 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2574 
2575 	msleep(10);
2576 }
2577 
2578 static void ath10k_pci_warm_reset_cpu(struct ath10k *ar)
2579 {
2580 	u32 val;
2581 
2582 	ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, 0);
2583 
2584 	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2585 				SOC_RESET_CONTROL_ADDRESS);
2586 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
2587 			   val | SOC_RESET_CONTROL_CPU_WARM_RST_MASK);
2588 }
2589 
2590 static void ath10k_pci_warm_reset_ce(struct ath10k *ar)
2591 {
2592 	u32 val;
2593 
2594 	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2595 				SOC_RESET_CONTROL_ADDRESS);
2596 
2597 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
2598 			   val | SOC_RESET_CONTROL_CE_RST_MASK);
2599 	msleep(10);
2600 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
2601 			   val & ~SOC_RESET_CONTROL_CE_RST_MASK);
2602 }
2603 
2604 static void ath10k_pci_warm_reset_clear_lf(struct ath10k *ar)
2605 {
2606 	u32 val;
2607 
2608 	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2609 				SOC_LF_TIMER_CONTROL0_ADDRESS);
2610 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS +
2611 			   SOC_LF_TIMER_CONTROL0_ADDRESS,
2612 			   val & ~SOC_LF_TIMER_CONTROL0_ENABLE_MASK);
2613 }
2614 
2615 static int ath10k_pci_warm_reset(struct ath10k *ar)
2616 {
2617 	int ret;
2618 
2619 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset\n");
2620 
2621 	spin_lock_bh(&ar->data_lock);
2622 	ar->stats.fw_warm_reset_counter++;
2623 	spin_unlock_bh(&ar->data_lock);
2624 
2625 	ath10k_pci_irq_disable(ar);
2626 
2627 	/* Make sure the target CPU is not doing anything dangerous, e.g. if it
2628 	 * were to access copy engine while host performs copy engine reset
2629 	 * then it is possible for the device to confuse pci-e controller to
2630 	 * the point of bringing host system to a complete stop (i.e. hang).
2631 	 */
2632 	ath10k_pci_warm_reset_si0(ar);
2633 	ath10k_pci_warm_reset_cpu(ar);
2634 	ath10k_pci_init_pipes(ar);
2635 	ath10k_pci_wait_for_target_init(ar);
2636 
2637 	ath10k_pci_warm_reset_clear_lf(ar);
2638 	ath10k_pci_warm_reset_ce(ar);
2639 	ath10k_pci_warm_reset_cpu(ar);
2640 	ath10k_pci_init_pipes(ar);
2641 
2642 	ret = ath10k_pci_wait_for_target_init(ar);
2643 	if (ret) {
2644 		ath10k_warn(ar, "failed to wait for target init: %d\n", ret);
2645 		return ret;
2646 	}
2647 
2648 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset complete\n");
2649 
2650 	return 0;
2651 }
2652 
2653 static int ath10k_pci_qca99x0_soft_chip_reset(struct ath10k *ar)
2654 {
2655 	ath10k_pci_irq_disable(ar);
2656 	return ath10k_pci_qca99x0_chip_reset(ar);
2657 }
2658 
2659 static int ath10k_pci_safe_chip_reset(struct ath10k *ar)
2660 {
2661 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2662 
2663 	if (!ar_pci->pci_soft_reset)
2664 		return -ENOTSUPP;
2665 
2666 	return ar_pci->pci_soft_reset(ar);
2667 }
2668 
2669 static int ath10k_pci_qca988x_chip_reset(struct ath10k *ar)
2670 {
2671 	int i, ret;
2672 	u32 val;
2673 
2674 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot 988x chip reset\n");
2675 
2676 	/* Some hardware revisions (e.g. CUS223v2) has issues with cold reset.
2677 	 * It is thus preferred to use warm reset which is safer but may not be
2678 	 * able to recover the device from all possible fail scenarios.
2679 	 *
2680 	 * Warm reset doesn't always work on first try so attempt it a few
2681 	 * times before giving up.
2682 	 */
2683 	for (i = 0; i < ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS; i++) {
2684 		ret = ath10k_pci_warm_reset(ar);
2685 		if (ret) {
2686 			ath10k_warn(ar, "failed to warm reset attempt %d of %d: %d\n",
2687 				    i + 1, ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS,
2688 				    ret);
2689 			continue;
2690 		}
2691 
2692 		/* FIXME: Sometimes copy engine doesn't recover after warm
2693 		 * reset. In most cases this needs cold reset. In some of these
2694 		 * cases the device is in such a state that a cold reset may
2695 		 * lock up the host.
2696 		 *
2697 		 * Reading any host interest register via copy engine is
2698 		 * sufficient to verify if device is capable of booting
2699 		 * firmware blob.
2700 		 */
2701 		ret = ath10k_pci_init_pipes(ar);
2702 		if (ret) {
2703 			ath10k_warn(ar, "failed to init copy engine: %d\n",
2704 				    ret);
2705 			continue;
2706 		}
2707 
2708 		ret = ath10k_pci_diag_read32(ar, QCA988X_HOST_INTEREST_ADDRESS,
2709 					     &val);
2710 		if (ret) {
2711 			ath10k_warn(ar, "failed to poke copy engine: %d\n",
2712 				    ret);
2713 			continue;
2714 		}
2715 
2716 		ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot chip reset complete (warm)\n");
2717 		return 0;
2718 	}
2719 
2720 	if (ath10k_pci_reset_mode == ATH10K_PCI_RESET_WARM_ONLY) {
2721 		ath10k_warn(ar, "refusing cold reset as requested\n");
2722 		return -EPERM;
2723 	}
2724 
2725 	ret = ath10k_pci_cold_reset(ar);
2726 	if (ret) {
2727 		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2728 		return ret;
2729 	}
2730 
2731 	ret = ath10k_pci_wait_for_target_init(ar);
2732 	if (ret) {
2733 		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2734 			    ret);
2735 		return ret;
2736 	}
2737 
2738 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca988x chip reset complete (cold)\n");
2739 
2740 	return 0;
2741 }
2742 
2743 static int ath10k_pci_qca6174_chip_reset(struct ath10k *ar)
2744 {
2745 	int ret;
2746 
2747 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset\n");
2748 
2749 	/* FIXME: QCA6174 requires cold + warm reset to work. */
2750 
2751 	ret = ath10k_pci_cold_reset(ar);
2752 	if (ret) {
2753 		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2754 		return ret;
2755 	}
2756 
2757 	ret = ath10k_pci_wait_for_target_init(ar);
2758 	if (ret) {
2759 		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2760 			    ret);
2761 		return ret;
2762 	}
2763 
2764 	ret = ath10k_pci_warm_reset(ar);
2765 	if (ret) {
2766 		ath10k_warn(ar, "failed to warm reset: %d\n", ret);
2767 		return ret;
2768 	}
2769 
2770 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset complete (cold)\n");
2771 
2772 	return 0;
2773 }
2774 
2775 static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar)
2776 {
2777 	int ret;
2778 
2779 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset\n");
2780 
2781 	ret = ath10k_pci_cold_reset(ar);
2782 	if (ret) {
2783 		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2784 		return ret;
2785 	}
2786 
2787 	ret = ath10k_pci_wait_for_target_init(ar);
2788 	if (ret) {
2789 		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2790 			    ret);
2791 		return ret;
2792 	}
2793 
2794 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset complete (cold)\n");
2795 
2796 	return 0;
2797 }
2798 
2799 static int ath10k_pci_chip_reset(struct ath10k *ar)
2800 {
2801 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2802 
2803 	if (WARN_ON(!ar_pci->pci_hard_reset))
2804 		return -ENOTSUPP;
2805 
2806 	return ar_pci->pci_hard_reset(ar);
2807 }
2808 
2809 static int ath10k_pci_hif_power_up(struct ath10k *ar)
2810 {
2811 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2812 	int ret;
2813 
2814 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power up\n");
2815 
2816 	pcie_capability_read_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2817 				  &ar_pci->link_ctl);
2818 	pcie_capability_write_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2819 				   ar_pci->link_ctl & ~PCI_EXP_LNKCTL_ASPMC);
2820 
2821 	/*
2822 	 * Bring the target up cleanly.
2823 	 *
2824 	 * The target may be in an undefined state with an AUX-powered Target
2825 	 * and a Host in WoW mode. If the Host crashes, loses power, or is
2826 	 * restarted (without unloading the driver) then the Target is left
2827 	 * (aux) powered and running. On a subsequent driver load, the Target
2828 	 * is in an unexpected state. We try to catch that here in order to
2829 	 * reset the Target and retry the probe.
2830 	 */
2831 	ret = ath10k_pci_chip_reset(ar);
2832 	if (ret) {
2833 		if (ath10k_pci_has_fw_crashed(ar)) {
2834 			ath10k_warn(ar, "firmware crashed during chip reset\n");
2835 			ath10k_pci_fw_crashed_clear(ar);
2836 			ath10k_pci_fw_crashed_dump(ar);
2837 		}
2838 
2839 		ath10k_err(ar, "failed to reset chip: %d\n", ret);
2840 		goto err_sleep;
2841 	}
2842 
2843 	ret = ath10k_pci_init_pipes(ar);
2844 	if (ret) {
2845 		ath10k_err(ar, "failed to initialize CE: %d\n", ret);
2846 		goto err_sleep;
2847 	}
2848 
2849 	ret = ath10k_pci_init_config(ar);
2850 	if (ret) {
2851 		ath10k_err(ar, "failed to setup init config: %d\n", ret);
2852 		goto err_ce;
2853 	}
2854 
2855 	ret = ath10k_pci_wake_target_cpu(ar);
2856 	if (ret) {
2857 		ath10k_err(ar, "could not wake up target CPU: %d\n", ret);
2858 		goto err_ce;
2859 	}
2860 
2861 	return 0;
2862 
2863 err_ce:
2864 	ath10k_pci_ce_deinit(ar);
2865 
2866 err_sleep:
2867 	return ret;
2868 }
2869 
2870 void ath10k_pci_hif_power_down(struct ath10k *ar)
2871 {
2872 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power down\n");
2873 
2874 	/* Currently hif_power_up performs effectively a reset and hif_stop
2875 	 * resets the chip as well so there's no point in resetting here.
2876 	 */
2877 }
2878 
2879 static int ath10k_pci_hif_suspend(struct ath10k *ar)
2880 {
2881 	/* Nothing to do; the important stuff is in the driver suspend. */
2882 	return 0;
2883 }
2884 
2885 static int ath10k_pci_suspend(struct ath10k *ar)
2886 {
2887 	/* The grace timer can still be counting down and ar->ps_awake be true.
2888 	 * It is known that the device may be asleep after resuming regardless
2889 	 * of the SoC powersave state before suspending. Hence make sure the
2890 	 * device is asleep before proceeding.
2891 	 */
2892 	ath10k_pci_sleep_sync(ar);
2893 
2894 	return 0;
2895 }
2896 
2897 static int ath10k_pci_hif_resume(struct ath10k *ar)
2898 {
2899 	/* Nothing to do; the important stuff is in the driver resume. */
2900 	return 0;
2901 }
2902 
2903 static int ath10k_pci_resume(struct ath10k *ar)
2904 {
2905 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2906 	struct pci_dev *pdev = ar_pci->pdev;
2907 	u32 val;
2908 	int ret = 0;
2909 
2910 	ret = ath10k_pci_force_wake(ar);
2911 	if (ret) {
2912 		ath10k_err(ar, "failed to wake up target: %d\n", ret);
2913 		return ret;
2914 	}
2915 
2916 	/* Suspend/Resume resets the PCI configuration space, so we have to
2917 	 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
2918 	 * from interfering with C3 CPU state. pci_restore_state won't help
2919 	 * here since it only restores the first 64 bytes pci config header.
2920 	 */
2921 	pci_read_config_dword(pdev, 0x40, &val);
2922 	if ((val & 0x0000ff00) != 0)
2923 		pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
2924 
2925 	return ret;
2926 }
2927 
2928 static bool ath10k_pci_validate_cal(void *data, size_t size)
2929 {
2930 	__le16 *cal_words = data;
2931 	u16 checksum = 0;
2932 	size_t i;
2933 
2934 	if (size % 2 != 0)
2935 		return false;
2936 
2937 	for (i = 0; i < size / 2; i++)
2938 		checksum ^= le16_to_cpu(cal_words[i]);
2939 
2940 	return checksum == 0xffff;
2941 }
2942 
2943 static void ath10k_pci_enable_eeprom(struct ath10k *ar)
2944 {
2945 	/* Enable SI clock */
2946 	ath10k_pci_soc_write32(ar, CLOCK_CONTROL_OFFSET, 0x0);
2947 
2948 	/* Configure GPIOs for I2C operation */
2949 	ath10k_pci_write32(ar,
2950 			   GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
2951 			   4 * QCA9887_1_0_I2C_SDA_GPIO_PIN,
2952 			   SM(QCA9887_1_0_I2C_SDA_PIN_CONFIG,
2953 			      GPIO_PIN0_CONFIG) |
2954 			   SM(1, GPIO_PIN0_PAD_PULL));
2955 
2956 	ath10k_pci_write32(ar,
2957 			   GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
2958 			   4 * QCA9887_1_0_SI_CLK_GPIO_PIN,
2959 			   SM(QCA9887_1_0_SI_CLK_PIN_CONFIG, GPIO_PIN0_CONFIG) |
2960 			   SM(1, GPIO_PIN0_PAD_PULL));
2961 
2962 	ath10k_pci_write32(ar,
2963 			   GPIO_BASE_ADDRESS +
2964 			   QCA9887_1_0_GPIO_ENABLE_W1TS_LOW_ADDRESS,
2965 			   1u << QCA9887_1_0_SI_CLK_GPIO_PIN);
2966 
2967 	/* In Swift ASIC - EEPROM clock will be (110MHz/512) = 214KHz */
2968 	ath10k_pci_write32(ar,
2969 			   SI_BASE_ADDRESS + SI_CONFIG_OFFSET,
2970 			   SM(1, SI_CONFIG_ERR_INT) |
2971 			   SM(1, SI_CONFIG_BIDIR_OD_DATA) |
2972 			   SM(1, SI_CONFIG_I2C) |
2973 			   SM(1, SI_CONFIG_POS_SAMPLE) |
2974 			   SM(1, SI_CONFIG_INACTIVE_DATA) |
2975 			   SM(1, SI_CONFIG_INACTIVE_CLK) |
2976 			   SM(8, SI_CONFIG_DIVIDER));
2977 }
2978 
2979 static int ath10k_pci_read_eeprom(struct ath10k *ar, u16 addr, u8 *out)
2980 {
2981 	u32 reg;
2982 	int wait_limit;
2983 
2984 	/* set device select byte and for the read operation */
2985 	reg = QCA9887_EEPROM_SELECT_READ |
2986 	      SM(addr, QCA9887_EEPROM_ADDR_LO) |
2987 	      SM(addr >> 8, QCA9887_EEPROM_ADDR_HI);
2988 	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_TX_DATA0_OFFSET, reg);
2989 
2990 	/* write transmit data, transfer length, and START bit */
2991 	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET,
2992 			   SM(1, SI_CS_START) | SM(1, SI_CS_RX_CNT) |
2993 			   SM(4, SI_CS_TX_CNT));
2994 
2995 	/* wait max 1 sec */
2996 	wait_limit = 100000;
2997 
2998 	/* wait for SI_CS_DONE_INT */
2999 	do {
3000 		reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET);
3001 		if (MS(reg, SI_CS_DONE_INT))
3002 			break;
3003 
3004 		wait_limit--;
3005 		udelay(10);
3006 	} while (wait_limit > 0);
3007 
3008 	if (!MS(reg, SI_CS_DONE_INT)) {
3009 		ath10k_err(ar, "timeout while reading device EEPROM at %04x\n",
3010 			   addr);
3011 		return -ETIMEDOUT;
3012 	}
3013 
3014 	/* clear SI_CS_DONE_INT */
3015 	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET, reg);
3016 
3017 	if (MS(reg, SI_CS_DONE_ERR)) {
3018 		ath10k_err(ar, "failed to read device EEPROM at %04x\n", addr);
3019 		return -EIO;
3020 	}
3021 
3022 	/* extract receive data */
3023 	reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_RX_DATA0_OFFSET);
3024 	*out = reg;
3025 
3026 	return 0;
3027 }
3028 
3029 static int ath10k_pci_hif_fetch_cal_eeprom(struct ath10k *ar, void **data,
3030 					   size_t *data_len)
3031 {
3032 	u8 *caldata = NULL;
3033 	size_t calsize, i;
3034 	int ret;
3035 
3036 	if (!QCA_REV_9887(ar))
3037 		return -EOPNOTSUPP;
3038 
3039 	calsize = ar->hw_params.cal_data_len;
3040 	caldata = kmalloc(calsize, GFP_KERNEL);
3041 	if (!caldata)
3042 		return -ENOMEM;
3043 
3044 	ath10k_pci_enable_eeprom(ar);
3045 
3046 	for (i = 0; i < calsize; i++) {
3047 		ret = ath10k_pci_read_eeprom(ar, i, &caldata[i]);
3048 		if (ret)
3049 			goto err_free;
3050 	}
3051 
3052 	if (!ath10k_pci_validate_cal(caldata, calsize))
3053 		goto err_free;
3054 
3055 	*data = caldata;
3056 	*data_len = calsize;
3057 
3058 	return 0;
3059 
3060 err_free:
3061 	kfree(caldata);
3062 
3063 	return -EINVAL;
3064 }
3065 
3066 static const struct ath10k_hif_ops ath10k_pci_hif_ops = {
3067 	.tx_sg			= ath10k_pci_hif_tx_sg,
3068 	.diag_read		= ath10k_pci_hif_diag_read,
3069 	.diag_write		= ath10k_pci_diag_write_mem,
3070 	.exchange_bmi_msg	= ath10k_pci_hif_exchange_bmi_msg,
3071 	.start			= ath10k_pci_hif_start,
3072 	.stop			= ath10k_pci_hif_stop,
3073 	.map_service_to_pipe	= ath10k_pci_hif_map_service_to_pipe,
3074 	.get_default_pipe	= ath10k_pci_hif_get_default_pipe,
3075 	.send_complete_check	= ath10k_pci_hif_send_complete_check,
3076 	.get_free_queue_number	= ath10k_pci_hif_get_free_queue_number,
3077 	.power_up		= ath10k_pci_hif_power_up,
3078 	.power_down		= ath10k_pci_hif_power_down,
3079 	.read32			= ath10k_pci_read32,
3080 	.write32		= ath10k_pci_write32,
3081 	.suspend		= ath10k_pci_hif_suspend,
3082 	.resume			= ath10k_pci_hif_resume,
3083 	.fetch_cal_eeprom	= ath10k_pci_hif_fetch_cal_eeprom,
3084 };
3085 
3086 /*
3087  * Top-level interrupt handler for all PCI interrupts from a Target.
3088  * When a block of MSI interrupts is allocated, this top-level handler
3089  * is not used; instead, we directly call the correct sub-handler.
3090  */
3091 static irqreturn_t ath10k_pci_interrupt_handler(int irq, void *arg)
3092 {
3093 	struct ath10k *ar = arg;
3094 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3095 	int ret;
3096 
3097 	if (ath10k_pci_has_device_gone(ar))
3098 		return IRQ_NONE;
3099 
3100 	ret = ath10k_pci_force_wake(ar);
3101 	if (ret) {
3102 		ath10k_warn(ar, "failed to wake device up on irq: %d\n", ret);
3103 		return IRQ_NONE;
3104 	}
3105 
3106 	if ((ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY) &&
3107 	    !ath10k_pci_irq_pending(ar))
3108 		return IRQ_NONE;
3109 
3110 	ath10k_pci_disable_and_clear_legacy_irq(ar);
3111 	ath10k_pci_irq_msi_fw_mask(ar);
3112 	napi_schedule(&ar->napi);
3113 
3114 	return IRQ_HANDLED;
3115 }
3116 
3117 static int ath10k_pci_napi_poll(struct napi_struct *ctx, int budget)
3118 {
3119 	struct ath10k *ar = container_of(ctx, struct ath10k, napi);
3120 	int done = 0;
3121 
3122 	if (ath10k_pci_has_fw_crashed(ar)) {
3123 		ath10k_pci_fw_crashed_clear(ar);
3124 		ath10k_pci_fw_crashed_dump(ar);
3125 		napi_complete(ctx);
3126 		return done;
3127 	}
3128 
3129 	ath10k_ce_per_engine_service_any(ar);
3130 
3131 	done = ath10k_htt_txrx_compl_task(ar, budget);
3132 
3133 	if (done < budget) {
3134 		napi_complete_done(ctx, done);
3135 		/* In case of MSI, it is possible that interrupts are received
3136 		 * while NAPI poll is inprogress. So pending interrupts that are
3137 		 * received after processing all copy engine pipes by NAPI poll
3138 		 * will not be handled again. This is causing failure to
3139 		 * complete boot sequence in x86 platform. So before enabling
3140 		 * interrupts safer to check for pending interrupts for
3141 		 * immediate servicing.
3142 		 */
3143 		if (ath10k_ce_interrupt_summary(ar)) {
3144 			napi_reschedule(ctx);
3145 			goto out;
3146 		}
3147 		ath10k_pci_enable_legacy_irq(ar);
3148 		ath10k_pci_irq_msi_fw_unmask(ar);
3149 	}
3150 
3151 out:
3152 	return done;
3153 }
3154 
3155 static int ath10k_pci_request_irq_msi(struct ath10k *ar)
3156 {
3157 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3158 	int ret;
3159 
3160 	ret = request_irq(ar_pci->pdev->irq,
3161 			  ath10k_pci_interrupt_handler,
3162 			  IRQF_SHARED, "ath10k_pci", ar);
3163 	if (ret) {
3164 		ath10k_warn(ar, "failed to request MSI irq %d: %d\n",
3165 			    ar_pci->pdev->irq, ret);
3166 		return ret;
3167 	}
3168 
3169 	return 0;
3170 }
3171 
3172 static int ath10k_pci_request_irq_legacy(struct ath10k *ar)
3173 {
3174 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3175 	int ret;
3176 
3177 	ret = request_irq(ar_pci->pdev->irq,
3178 			  ath10k_pci_interrupt_handler,
3179 			  IRQF_SHARED, "ath10k_pci", ar);
3180 	if (ret) {
3181 		ath10k_warn(ar, "failed to request legacy irq %d: %d\n",
3182 			    ar_pci->pdev->irq, ret);
3183 		return ret;
3184 	}
3185 
3186 	return 0;
3187 }
3188 
3189 static int ath10k_pci_request_irq(struct ath10k *ar)
3190 {
3191 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3192 
3193 	switch (ar_pci->oper_irq_mode) {
3194 	case ATH10K_PCI_IRQ_LEGACY:
3195 		return ath10k_pci_request_irq_legacy(ar);
3196 	case ATH10K_PCI_IRQ_MSI:
3197 		return ath10k_pci_request_irq_msi(ar);
3198 	default:
3199 		return -EINVAL;
3200 	}
3201 }
3202 
3203 static void ath10k_pci_free_irq(struct ath10k *ar)
3204 {
3205 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3206 
3207 	free_irq(ar_pci->pdev->irq, ar);
3208 }
3209 
3210 void ath10k_pci_init_napi(struct ath10k *ar)
3211 {
3212 	netif_napi_add(&ar->napi_dev, &ar->napi, ath10k_pci_napi_poll,
3213 		       ATH10K_NAPI_BUDGET);
3214 }
3215 
3216 static int ath10k_pci_init_irq(struct ath10k *ar)
3217 {
3218 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3219 	int ret;
3220 
3221 	ath10k_pci_init_napi(ar);
3222 
3223 	if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_AUTO)
3224 		ath10k_info(ar, "limiting irq mode to: %d\n",
3225 			    ath10k_pci_irq_mode);
3226 
3227 	/* Try MSI */
3228 	if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_LEGACY) {
3229 		ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_MSI;
3230 		ret = pci_enable_msi(ar_pci->pdev);
3231 		if (ret == 0)
3232 			return 0;
3233 
3234 		/* fall-through */
3235 	}
3236 
3237 	/* Try legacy irq
3238 	 *
3239 	 * A potential race occurs here: The CORE_BASE write
3240 	 * depends on target correctly decoding AXI address but
3241 	 * host won't know when target writes BAR to CORE_CTRL.
3242 	 * This write might get lost if target has NOT written BAR.
3243 	 * For now, fix the race by repeating the write in below
3244 	 * synchronization checking.
3245 	 */
3246 	ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_LEGACY;
3247 
3248 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
3249 			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
3250 
3251 	return 0;
3252 }
3253 
3254 static void ath10k_pci_deinit_irq_legacy(struct ath10k *ar)
3255 {
3256 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
3257 			   0);
3258 }
3259 
3260 static int ath10k_pci_deinit_irq(struct ath10k *ar)
3261 {
3262 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3263 
3264 	switch (ar_pci->oper_irq_mode) {
3265 	case ATH10K_PCI_IRQ_LEGACY:
3266 		ath10k_pci_deinit_irq_legacy(ar);
3267 		break;
3268 	default:
3269 		pci_disable_msi(ar_pci->pdev);
3270 		break;
3271 	}
3272 
3273 	return 0;
3274 }
3275 
3276 int ath10k_pci_wait_for_target_init(struct ath10k *ar)
3277 {
3278 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3279 	unsigned long timeout;
3280 	u32 val;
3281 
3282 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot waiting target to initialise\n");
3283 
3284 	timeout = jiffies + msecs_to_jiffies(ATH10K_PCI_TARGET_WAIT);
3285 
3286 	do {
3287 		val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
3288 
3289 		ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target indicator %x\n",
3290 			   val);
3291 
3292 		/* target should never return this */
3293 		if (val == 0xffffffff)
3294 			continue;
3295 
3296 		/* the device has crashed so don't bother trying anymore */
3297 		if (val & FW_IND_EVENT_PENDING)
3298 			break;
3299 
3300 		if (val & FW_IND_INITIALIZED)
3301 			break;
3302 
3303 		if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY)
3304 			/* Fix potential race by repeating CORE_BASE writes */
3305 			ath10k_pci_enable_legacy_irq(ar);
3306 
3307 		mdelay(10);
3308 	} while (time_before(jiffies, timeout));
3309 
3310 	ath10k_pci_disable_and_clear_legacy_irq(ar);
3311 	ath10k_pci_irq_msi_fw_mask(ar);
3312 
3313 	if (val == 0xffffffff) {
3314 		ath10k_err(ar, "failed to read device register, device is gone\n");
3315 		return -EIO;
3316 	}
3317 
3318 	if (val & FW_IND_EVENT_PENDING) {
3319 		ath10k_warn(ar, "device has crashed during init\n");
3320 		return -ECOMM;
3321 	}
3322 
3323 	if (!(val & FW_IND_INITIALIZED)) {
3324 		ath10k_err(ar, "failed to receive initialized event from target: %08x\n",
3325 			   val);
3326 		return -ETIMEDOUT;
3327 	}
3328 
3329 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target initialised\n");
3330 	return 0;
3331 }
3332 
3333 static int ath10k_pci_cold_reset(struct ath10k *ar)
3334 {
3335 	u32 val;
3336 
3337 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset\n");
3338 
3339 	spin_lock_bh(&ar->data_lock);
3340 
3341 	ar->stats.fw_cold_reset_counter++;
3342 
3343 	spin_unlock_bh(&ar->data_lock);
3344 
3345 	/* Put Target, including PCIe, into RESET. */
3346 	val = ath10k_pci_reg_read32(ar, SOC_GLOBAL_RESET_ADDRESS);
3347 	val |= 1;
3348 	ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
3349 
3350 	/* After writing into SOC_GLOBAL_RESET to put device into
3351 	 * reset and pulling out of reset pcie may not be stable
3352 	 * for any immediate pcie register access and cause bus error,
3353 	 * add delay before any pcie access request to fix this issue.
3354 	 */
3355 	msleep(20);
3356 
3357 	/* Pull Target, including PCIe, out of RESET. */
3358 	val &= ~1;
3359 	ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
3360 
3361 	msleep(20);
3362 
3363 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset complete\n");
3364 
3365 	return 0;
3366 }
3367 
3368 static int ath10k_pci_claim(struct ath10k *ar)
3369 {
3370 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3371 	struct pci_dev *pdev = ar_pci->pdev;
3372 	int ret;
3373 
3374 	pci_set_drvdata(pdev, ar);
3375 
3376 	ret = pci_enable_device(pdev);
3377 	if (ret) {
3378 		ath10k_err(ar, "failed to enable pci device: %d\n", ret);
3379 		return ret;
3380 	}
3381 
3382 	ret = pci_request_region(pdev, BAR_NUM, "ath");
3383 	if (ret) {
3384 		ath10k_err(ar, "failed to request region BAR%d: %d\n", BAR_NUM,
3385 			   ret);
3386 		goto err_device;
3387 	}
3388 
3389 	/* Target expects 32 bit DMA. Enforce it. */
3390 	ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3391 	if (ret) {
3392 		ath10k_err(ar, "failed to set dma mask to 32-bit: %d\n", ret);
3393 		goto err_region;
3394 	}
3395 
3396 	ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3397 	if (ret) {
3398 		ath10k_err(ar, "failed to set consistent dma mask to 32-bit: %d\n",
3399 			   ret);
3400 		goto err_region;
3401 	}
3402 
3403 	pci_set_master(pdev);
3404 
3405 	/* Arrange for access to Target SoC registers. */
3406 	ar_pci->mem_len = pci_resource_len(pdev, BAR_NUM);
3407 	ar_pci->mem = pci_iomap(pdev, BAR_NUM, 0);
3408 	if (!ar_pci->mem) {
3409 		ath10k_err(ar, "failed to iomap BAR%d\n", BAR_NUM);
3410 		ret = -EIO;
3411 		goto err_master;
3412 	}
3413 
3414 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot pci_mem 0x%pK\n", ar_pci->mem);
3415 	return 0;
3416 
3417 err_master:
3418 	pci_clear_master(pdev);
3419 
3420 err_region:
3421 	pci_release_region(pdev, BAR_NUM);
3422 
3423 err_device:
3424 	pci_disable_device(pdev);
3425 
3426 	return ret;
3427 }
3428 
3429 static void ath10k_pci_release(struct ath10k *ar)
3430 {
3431 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3432 	struct pci_dev *pdev = ar_pci->pdev;
3433 
3434 	pci_iounmap(pdev, ar_pci->mem);
3435 	pci_release_region(pdev, BAR_NUM);
3436 	pci_clear_master(pdev);
3437 	pci_disable_device(pdev);
3438 }
3439 
3440 static bool ath10k_pci_chip_is_supported(u32 dev_id, u32 chip_id)
3441 {
3442 	const struct ath10k_pci_supp_chip *supp_chip;
3443 	int i;
3444 	u32 rev_id = MS(chip_id, SOC_CHIP_ID_REV);
3445 
3446 	for (i = 0; i < ARRAY_SIZE(ath10k_pci_supp_chips); i++) {
3447 		supp_chip = &ath10k_pci_supp_chips[i];
3448 
3449 		if (supp_chip->dev_id == dev_id &&
3450 		    supp_chip->rev_id == rev_id)
3451 			return true;
3452 	}
3453 
3454 	return false;
3455 }
3456 
3457 int ath10k_pci_setup_resource(struct ath10k *ar)
3458 {
3459 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3460 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
3461 	int ret;
3462 
3463 	spin_lock_init(&ce->ce_lock);
3464 	spin_lock_init(&ar_pci->ps_lock);
3465 
3466 	timer_setup(&ar_pci->rx_post_retry, ath10k_pci_rx_replenish_retry, 0);
3467 
3468 	if (QCA_REV_6174(ar) || QCA_REV_9377(ar))
3469 		ath10k_pci_override_ce_config(ar);
3470 
3471 	ret = ath10k_pci_alloc_pipes(ar);
3472 	if (ret) {
3473 		ath10k_err(ar, "failed to allocate copy engine pipes: %d\n",
3474 			   ret);
3475 		return ret;
3476 	}
3477 
3478 	return 0;
3479 }
3480 
3481 void ath10k_pci_release_resource(struct ath10k *ar)
3482 {
3483 	ath10k_pci_rx_retry_sync(ar);
3484 	netif_napi_del(&ar->napi);
3485 	ath10k_pci_ce_deinit(ar);
3486 	ath10k_pci_free_pipes(ar);
3487 }
3488 
3489 static const struct ath10k_bus_ops ath10k_pci_bus_ops = {
3490 	.read32		= ath10k_bus_pci_read32,
3491 	.write32	= ath10k_bus_pci_write32,
3492 	.get_num_banks	= ath10k_pci_get_num_banks,
3493 };
3494 
3495 static int ath10k_pci_probe(struct pci_dev *pdev,
3496 			    const struct pci_device_id *pci_dev)
3497 {
3498 	int ret = 0;
3499 	struct ath10k *ar;
3500 	struct ath10k_pci *ar_pci;
3501 	enum ath10k_hw_rev hw_rev;
3502 	struct ath10k_bus_params bus_params;
3503 	bool pci_ps;
3504 	int (*pci_soft_reset)(struct ath10k *ar);
3505 	int (*pci_hard_reset)(struct ath10k *ar);
3506 	u32 (*targ_cpu_to_ce_addr)(struct ath10k *ar, u32 addr);
3507 
3508 	switch (pci_dev->device) {
3509 	case QCA988X_2_0_DEVICE_ID_UBNT:
3510 	case QCA988X_2_0_DEVICE_ID:
3511 		hw_rev = ATH10K_HW_QCA988X;
3512 		pci_ps = false;
3513 		pci_soft_reset = ath10k_pci_warm_reset;
3514 		pci_hard_reset = ath10k_pci_qca988x_chip_reset;
3515 		targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3516 		break;
3517 	case QCA9887_1_0_DEVICE_ID:
3518 		hw_rev = ATH10K_HW_QCA9887;
3519 		pci_ps = false;
3520 		pci_soft_reset = ath10k_pci_warm_reset;
3521 		pci_hard_reset = ath10k_pci_qca988x_chip_reset;
3522 		targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3523 		break;
3524 	case QCA6164_2_1_DEVICE_ID:
3525 	case QCA6174_2_1_DEVICE_ID:
3526 		hw_rev = ATH10K_HW_QCA6174;
3527 		pci_ps = true;
3528 		pci_soft_reset = ath10k_pci_warm_reset;
3529 		pci_hard_reset = ath10k_pci_qca6174_chip_reset;
3530 		targ_cpu_to_ce_addr = ath10k_pci_qca6174_targ_cpu_to_ce_addr;
3531 		break;
3532 	case QCA99X0_2_0_DEVICE_ID:
3533 		hw_rev = ATH10K_HW_QCA99X0;
3534 		pci_ps = false;
3535 		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3536 		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3537 		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3538 		break;
3539 	case QCA9984_1_0_DEVICE_ID:
3540 		hw_rev = ATH10K_HW_QCA9984;
3541 		pci_ps = false;
3542 		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3543 		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3544 		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3545 		break;
3546 	case QCA9888_2_0_DEVICE_ID:
3547 		hw_rev = ATH10K_HW_QCA9888;
3548 		pci_ps = false;
3549 		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3550 		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3551 		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3552 		break;
3553 	case QCA9377_1_0_DEVICE_ID:
3554 		hw_rev = ATH10K_HW_QCA9377;
3555 		pci_ps = true;
3556 		pci_soft_reset = NULL;
3557 		pci_hard_reset = ath10k_pci_qca6174_chip_reset;
3558 		targ_cpu_to_ce_addr = ath10k_pci_qca6174_targ_cpu_to_ce_addr;
3559 		break;
3560 	default:
3561 		WARN_ON(1);
3562 		return -ENOTSUPP;
3563 	}
3564 
3565 	ar = ath10k_core_create(sizeof(*ar_pci), &pdev->dev, ATH10K_BUS_PCI,
3566 				hw_rev, &ath10k_pci_hif_ops);
3567 	if (!ar) {
3568 		dev_err(&pdev->dev, "failed to allocate core\n");
3569 		return -ENOMEM;
3570 	}
3571 
3572 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "pci probe %04x:%04x %04x:%04x\n",
3573 		   pdev->vendor, pdev->device,
3574 		   pdev->subsystem_vendor, pdev->subsystem_device);
3575 
3576 	ar_pci = ath10k_pci_priv(ar);
3577 	ar_pci->pdev = pdev;
3578 	ar_pci->dev = &pdev->dev;
3579 	ar_pci->ar = ar;
3580 	ar->dev_id = pci_dev->device;
3581 	ar_pci->pci_ps = pci_ps;
3582 	ar_pci->ce.bus_ops = &ath10k_pci_bus_ops;
3583 	ar_pci->pci_soft_reset = pci_soft_reset;
3584 	ar_pci->pci_hard_reset = pci_hard_reset;
3585 	ar_pci->targ_cpu_to_ce_addr = targ_cpu_to_ce_addr;
3586 	ar->ce_priv = &ar_pci->ce;
3587 
3588 	ar->id.vendor = pdev->vendor;
3589 	ar->id.device = pdev->device;
3590 	ar->id.subsystem_vendor = pdev->subsystem_vendor;
3591 	ar->id.subsystem_device = pdev->subsystem_device;
3592 
3593 	timer_setup(&ar_pci->ps_timer, ath10k_pci_ps_timer, 0);
3594 
3595 	ret = ath10k_pci_setup_resource(ar);
3596 	if (ret) {
3597 		ath10k_err(ar, "failed to setup resource: %d\n", ret);
3598 		goto err_core_destroy;
3599 	}
3600 
3601 	ret = ath10k_pci_claim(ar);
3602 	if (ret) {
3603 		ath10k_err(ar, "failed to claim device: %d\n", ret);
3604 		goto err_free_pipes;
3605 	}
3606 
3607 	ret = ath10k_pci_force_wake(ar);
3608 	if (ret) {
3609 		ath10k_warn(ar, "failed to wake up device : %d\n", ret);
3610 		goto err_sleep;
3611 	}
3612 
3613 	ath10k_pci_ce_deinit(ar);
3614 	ath10k_pci_irq_disable(ar);
3615 
3616 	ret = ath10k_pci_init_irq(ar);
3617 	if (ret) {
3618 		ath10k_err(ar, "failed to init irqs: %d\n", ret);
3619 		goto err_sleep;
3620 	}
3621 
3622 	ath10k_info(ar, "pci irq %s oper_irq_mode %d irq_mode %d reset_mode %d\n",
3623 		    ath10k_pci_get_irq_method(ar), ar_pci->oper_irq_mode,
3624 		    ath10k_pci_irq_mode, ath10k_pci_reset_mode);
3625 
3626 	ret = ath10k_pci_request_irq(ar);
3627 	if (ret) {
3628 		ath10k_warn(ar, "failed to request irqs: %d\n", ret);
3629 		goto err_deinit_irq;
3630 	}
3631 
3632 	ret = ath10k_pci_chip_reset(ar);
3633 	if (ret) {
3634 		ath10k_err(ar, "failed to reset chip: %d\n", ret);
3635 		goto err_free_irq;
3636 	}
3637 
3638 	bus_params.dev_type = ATH10K_DEV_TYPE_LL;
3639 	bus_params.chip_id = ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS);
3640 	if (bus_params.chip_id == 0xffffffff) {
3641 		ath10k_err(ar, "failed to get chip id\n");
3642 		goto err_free_irq;
3643 	}
3644 
3645 	if (!ath10k_pci_chip_is_supported(pdev->device, bus_params.chip_id)) {
3646 		ath10k_err(ar, "device %04x with chip_id %08x isn't supported\n",
3647 			   pdev->device, bus_params.chip_id);
3648 		goto err_free_irq;
3649 	}
3650 
3651 	ret = ath10k_core_register(ar, &bus_params);
3652 	if (ret) {
3653 		ath10k_err(ar, "failed to register driver core: %d\n", ret);
3654 		goto err_free_irq;
3655 	}
3656 
3657 	return 0;
3658 
3659 err_free_irq:
3660 	ath10k_pci_free_irq(ar);
3661 	ath10k_pci_rx_retry_sync(ar);
3662 
3663 err_deinit_irq:
3664 	ath10k_pci_deinit_irq(ar);
3665 
3666 err_sleep:
3667 	ath10k_pci_sleep_sync(ar);
3668 	ath10k_pci_release(ar);
3669 
3670 err_free_pipes:
3671 	ath10k_pci_free_pipes(ar);
3672 
3673 err_core_destroy:
3674 	ath10k_core_destroy(ar);
3675 
3676 	return ret;
3677 }
3678 
3679 static void ath10k_pci_remove(struct pci_dev *pdev)
3680 {
3681 	struct ath10k *ar = pci_get_drvdata(pdev);
3682 	struct ath10k_pci *ar_pci;
3683 
3684 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci remove\n");
3685 
3686 	if (!ar)
3687 		return;
3688 
3689 	ar_pci = ath10k_pci_priv(ar);
3690 
3691 	if (!ar_pci)
3692 		return;
3693 
3694 	ath10k_core_unregister(ar);
3695 	ath10k_pci_free_irq(ar);
3696 	ath10k_pci_deinit_irq(ar);
3697 	ath10k_pci_release_resource(ar);
3698 	ath10k_pci_sleep_sync(ar);
3699 	ath10k_pci_release(ar);
3700 	ath10k_core_destroy(ar);
3701 }
3702 
3703 MODULE_DEVICE_TABLE(pci, ath10k_pci_id_table);
3704 
3705 static __maybe_unused int ath10k_pci_pm_suspend(struct device *dev)
3706 {
3707 	struct ath10k *ar = dev_get_drvdata(dev);
3708 	int ret;
3709 
3710 	ret = ath10k_pci_suspend(ar);
3711 	if (ret)
3712 		ath10k_warn(ar, "failed to suspend hif: %d\n", ret);
3713 
3714 	return ret;
3715 }
3716 
3717 static __maybe_unused int ath10k_pci_pm_resume(struct device *dev)
3718 {
3719 	struct ath10k *ar = dev_get_drvdata(dev);
3720 	int ret;
3721 
3722 	ret = ath10k_pci_resume(ar);
3723 	if (ret)
3724 		ath10k_warn(ar, "failed to resume hif: %d\n", ret);
3725 
3726 	return ret;
3727 }
3728 
3729 static SIMPLE_DEV_PM_OPS(ath10k_pci_pm_ops,
3730 			 ath10k_pci_pm_suspend,
3731 			 ath10k_pci_pm_resume);
3732 
3733 static struct pci_driver ath10k_pci_driver = {
3734 	.name = "ath10k_pci",
3735 	.id_table = ath10k_pci_id_table,
3736 	.probe = ath10k_pci_probe,
3737 	.remove = ath10k_pci_remove,
3738 #ifdef CONFIG_PM
3739 	.driver.pm = &ath10k_pci_pm_ops,
3740 #endif
3741 };
3742 
3743 static int __init ath10k_pci_init(void)
3744 {
3745 	int ret;
3746 
3747 	ret = pci_register_driver(&ath10k_pci_driver);
3748 	if (ret)
3749 		printk(KERN_ERR "failed to register ath10k pci driver: %d\n",
3750 		       ret);
3751 
3752 	ret = ath10k_ahb_init();
3753 	if (ret)
3754 		printk(KERN_ERR "ahb init failed: %d\n", ret);
3755 
3756 	return ret;
3757 }
3758 module_init(ath10k_pci_init);
3759 
3760 static void __exit ath10k_pci_exit(void)
3761 {
3762 	pci_unregister_driver(&ath10k_pci_driver);
3763 	ath10k_ahb_exit();
3764 }
3765 
3766 module_exit(ath10k_pci_exit);
3767 
3768 MODULE_AUTHOR("Qualcomm Atheros");
3769 MODULE_DESCRIPTION("Driver support for Qualcomm Atheros 802.11ac WLAN PCIe/AHB devices");
3770 MODULE_LICENSE("Dual BSD/GPL");
3771 
3772 /* QCA988x 2.0 firmware files */
3773 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API2_FILE);
3774 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API3_FILE);
3775 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3776 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3777 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_BOARD_DATA_FILE);
3778 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3779 
3780 /* QCA9887 1.0 firmware files */
3781 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3782 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" QCA9887_HW_1_0_BOARD_DATA_FILE);
3783 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3784 
3785 /* QCA6174 2.1 firmware files */
3786 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API4_FILE);
3787 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API5_FILE);
3788 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" QCA6174_HW_2_1_BOARD_DATA_FILE);
3789 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3790 
3791 /* QCA6174 3.1 firmware files */
3792 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3793 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3794 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API6_FILE);
3795 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" QCA6174_HW_3_0_BOARD_DATA_FILE);
3796 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3797 
3798 /* QCA9377 1.0 firmware files */
3799 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API6_FILE);
3800 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3801 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" QCA9377_HW_1_0_BOARD_DATA_FILE);
3802