1 /* 2 * Copyright (c) 2005-2011 Atheros Communications Inc. 3 * Copyright (c) 2011-2013 Qualcomm Atheros, Inc. 4 * 5 * Permission to use, copy, modify, and/or distribute this software for any 6 * purpose with or without fee is hereby granted, provided that the above 7 * copyright notice and this permission notice appear in all copies. 8 * 9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 16 */ 17 18 #include "mac.h" 19 20 #include <net/mac80211.h> 21 #include <linux/etherdevice.h> 22 23 #include "hif.h" 24 #include "core.h" 25 #include "debug.h" 26 #include "wmi.h" 27 #include "htt.h" 28 #include "txrx.h" 29 #include "testmode.h" 30 #include "wmi.h" 31 #include "wmi-ops.h" 32 33 /**********/ 34 /* Crypto */ 35 /**********/ 36 37 static int ath10k_send_key(struct ath10k_vif *arvif, 38 struct ieee80211_key_conf *key, 39 enum set_key_cmd cmd, 40 const u8 *macaddr, bool def_idx) 41 { 42 struct ath10k *ar = arvif->ar; 43 struct wmi_vdev_install_key_arg arg = { 44 .vdev_id = arvif->vdev_id, 45 .key_idx = key->keyidx, 46 .key_len = key->keylen, 47 .key_data = key->key, 48 .macaddr = macaddr, 49 }; 50 51 lockdep_assert_held(&arvif->ar->conf_mutex); 52 53 if (key->flags & IEEE80211_KEY_FLAG_PAIRWISE) 54 arg.key_flags = WMI_KEY_PAIRWISE; 55 else 56 arg.key_flags = WMI_KEY_GROUP; 57 58 switch (key->cipher) { 59 case WLAN_CIPHER_SUITE_CCMP: 60 arg.key_cipher = WMI_CIPHER_AES_CCM; 61 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV_MGMT; 62 break; 63 case WLAN_CIPHER_SUITE_TKIP: 64 arg.key_cipher = WMI_CIPHER_TKIP; 65 arg.key_txmic_len = 8; 66 arg.key_rxmic_len = 8; 67 break; 68 case WLAN_CIPHER_SUITE_WEP40: 69 case WLAN_CIPHER_SUITE_WEP104: 70 arg.key_cipher = WMI_CIPHER_WEP; 71 /* AP/IBSS mode requires self-key to be groupwise 72 * Otherwise pairwise key must be set */ 73 if (memcmp(macaddr, arvif->vif->addr, ETH_ALEN)) 74 arg.key_flags = WMI_KEY_PAIRWISE; 75 76 if (def_idx) 77 arg.key_flags |= WMI_KEY_TX_USAGE; 78 break; 79 case WLAN_CIPHER_SUITE_AES_CMAC: 80 /* this one needs to be done in software */ 81 return 1; 82 default: 83 ath10k_warn(ar, "cipher %d is not supported\n", key->cipher); 84 return -EOPNOTSUPP; 85 } 86 87 if (cmd == DISABLE_KEY) { 88 arg.key_cipher = WMI_CIPHER_NONE; 89 arg.key_data = NULL; 90 } 91 92 return ath10k_wmi_vdev_install_key(arvif->ar, &arg); 93 } 94 95 static int ath10k_install_key(struct ath10k_vif *arvif, 96 struct ieee80211_key_conf *key, 97 enum set_key_cmd cmd, 98 const u8 *macaddr, bool def_idx) 99 { 100 struct ath10k *ar = arvif->ar; 101 int ret; 102 103 lockdep_assert_held(&ar->conf_mutex); 104 105 reinit_completion(&ar->install_key_done); 106 107 ret = ath10k_send_key(arvif, key, cmd, macaddr, def_idx); 108 if (ret) 109 return ret; 110 111 ret = wait_for_completion_timeout(&ar->install_key_done, 3*HZ); 112 if (ret == 0) 113 return -ETIMEDOUT; 114 115 return 0; 116 } 117 118 static int ath10k_install_peer_wep_keys(struct ath10k_vif *arvif, 119 const u8 *addr) 120 { 121 struct ath10k *ar = arvif->ar; 122 struct ath10k_peer *peer; 123 int ret; 124 int i; 125 bool def_idx; 126 127 lockdep_assert_held(&ar->conf_mutex); 128 129 spin_lock_bh(&ar->data_lock); 130 peer = ath10k_peer_find(ar, arvif->vdev_id, addr); 131 spin_unlock_bh(&ar->data_lock); 132 133 if (!peer) 134 return -ENOENT; 135 136 for (i = 0; i < ARRAY_SIZE(arvif->wep_keys); i++) { 137 if (arvif->wep_keys[i] == NULL) 138 continue; 139 /* set TX_USAGE flag for default key id */ 140 if (arvif->def_wep_key_idx == i) 141 def_idx = true; 142 else 143 def_idx = false; 144 145 ret = ath10k_install_key(arvif, arvif->wep_keys[i], SET_KEY, 146 addr, def_idx); 147 if (ret) 148 return ret; 149 150 spin_lock_bh(&ar->data_lock); 151 peer->keys[i] = arvif->wep_keys[i]; 152 spin_unlock_bh(&ar->data_lock); 153 } 154 155 return 0; 156 } 157 158 static int ath10k_clear_peer_keys(struct ath10k_vif *arvif, 159 const u8 *addr) 160 { 161 struct ath10k *ar = arvif->ar; 162 struct ath10k_peer *peer; 163 int first_errno = 0; 164 int ret; 165 int i; 166 167 lockdep_assert_held(&ar->conf_mutex); 168 169 spin_lock_bh(&ar->data_lock); 170 peer = ath10k_peer_find(ar, arvif->vdev_id, addr); 171 spin_unlock_bh(&ar->data_lock); 172 173 if (!peer) 174 return -ENOENT; 175 176 for (i = 0; i < ARRAY_SIZE(peer->keys); i++) { 177 if (peer->keys[i] == NULL) 178 continue; 179 180 /* key flags are not required to delete the key */ 181 ret = ath10k_install_key(arvif, peer->keys[i], 182 DISABLE_KEY, addr, false); 183 if (ret && first_errno == 0) 184 first_errno = ret; 185 186 if (ret) 187 ath10k_warn(ar, "failed to remove peer wep key %d: %d\n", 188 i, ret); 189 190 spin_lock_bh(&ar->data_lock); 191 peer->keys[i] = NULL; 192 spin_unlock_bh(&ar->data_lock); 193 } 194 195 return first_errno; 196 } 197 198 bool ath10k_mac_is_peer_wep_key_set(struct ath10k *ar, const u8 *addr, 199 u8 keyidx) 200 { 201 struct ath10k_peer *peer; 202 int i; 203 204 lockdep_assert_held(&ar->data_lock); 205 206 /* We don't know which vdev this peer belongs to, 207 * since WMI doesn't give us that information. 208 * 209 * FIXME: multi-bss needs to be handled. 210 */ 211 peer = ath10k_peer_find(ar, 0, addr); 212 if (!peer) 213 return false; 214 215 for (i = 0; i < ARRAY_SIZE(peer->keys); i++) { 216 if (peer->keys[i] && peer->keys[i]->keyidx == keyidx) 217 return true; 218 } 219 220 return false; 221 } 222 223 static int ath10k_clear_vdev_key(struct ath10k_vif *arvif, 224 struct ieee80211_key_conf *key) 225 { 226 struct ath10k *ar = arvif->ar; 227 struct ath10k_peer *peer; 228 u8 addr[ETH_ALEN]; 229 int first_errno = 0; 230 int ret; 231 int i; 232 233 lockdep_assert_held(&ar->conf_mutex); 234 235 for (;;) { 236 /* since ath10k_install_key we can't hold data_lock all the 237 * time, so we try to remove the keys incrementally */ 238 spin_lock_bh(&ar->data_lock); 239 i = 0; 240 list_for_each_entry(peer, &ar->peers, list) { 241 for (i = 0; i < ARRAY_SIZE(peer->keys); i++) { 242 if (peer->keys[i] == key) { 243 ether_addr_copy(addr, peer->addr); 244 peer->keys[i] = NULL; 245 break; 246 } 247 } 248 249 if (i < ARRAY_SIZE(peer->keys)) 250 break; 251 } 252 spin_unlock_bh(&ar->data_lock); 253 254 if (i == ARRAY_SIZE(peer->keys)) 255 break; 256 /* key flags are not required to delete the key */ 257 ret = ath10k_install_key(arvif, key, DISABLE_KEY, addr, false); 258 if (ret && first_errno == 0) 259 first_errno = ret; 260 261 if (ret) 262 ath10k_warn(ar, "failed to remove key for %pM: %d\n", 263 addr, ret); 264 } 265 266 return first_errno; 267 } 268 269 /*********************/ 270 /* General utilities */ 271 /*********************/ 272 273 static inline enum wmi_phy_mode 274 chan_to_phymode(const struct cfg80211_chan_def *chandef) 275 { 276 enum wmi_phy_mode phymode = MODE_UNKNOWN; 277 278 switch (chandef->chan->band) { 279 case IEEE80211_BAND_2GHZ: 280 switch (chandef->width) { 281 case NL80211_CHAN_WIDTH_20_NOHT: 282 if (chandef->chan->flags & IEEE80211_CHAN_NO_OFDM) 283 phymode = MODE_11B; 284 else 285 phymode = MODE_11G; 286 break; 287 case NL80211_CHAN_WIDTH_20: 288 phymode = MODE_11NG_HT20; 289 break; 290 case NL80211_CHAN_WIDTH_40: 291 phymode = MODE_11NG_HT40; 292 break; 293 case NL80211_CHAN_WIDTH_5: 294 case NL80211_CHAN_WIDTH_10: 295 case NL80211_CHAN_WIDTH_80: 296 case NL80211_CHAN_WIDTH_80P80: 297 case NL80211_CHAN_WIDTH_160: 298 phymode = MODE_UNKNOWN; 299 break; 300 } 301 break; 302 case IEEE80211_BAND_5GHZ: 303 switch (chandef->width) { 304 case NL80211_CHAN_WIDTH_20_NOHT: 305 phymode = MODE_11A; 306 break; 307 case NL80211_CHAN_WIDTH_20: 308 phymode = MODE_11NA_HT20; 309 break; 310 case NL80211_CHAN_WIDTH_40: 311 phymode = MODE_11NA_HT40; 312 break; 313 case NL80211_CHAN_WIDTH_80: 314 phymode = MODE_11AC_VHT80; 315 break; 316 case NL80211_CHAN_WIDTH_5: 317 case NL80211_CHAN_WIDTH_10: 318 case NL80211_CHAN_WIDTH_80P80: 319 case NL80211_CHAN_WIDTH_160: 320 phymode = MODE_UNKNOWN; 321 break; 322 } 323 break; 324 default: 325 break; 326 } 327 328 WARN_ON(phymode == MODE_UNKNOWN); 329 return phymode; 330 } 331 332 static u8 ath10k_parse_mpdudensity(u8 mpdudensity) 333 { 334 /* 335 * 802.11n D2.0 defined values for "Minimum MPDU Start Spacing": 336 * 0 for no restriction 337 * 1 for 1/4 us 338 * 2 for 1/2 us 339 * 3 for 1 us 340 * 4 for 2 us 341 * 5 for 4 us 342 * 6 for 8 us 343 * 7 for 16 us 344 */ 345 switch (mpdudensity) { 346 case 0: 347 return 0; 348 case 1: 349 case 2: 350 case 3: 351 /* Our lower layer calculations limit our precision to 352 1 microsecond */ 353 return 1; 354 case 4: 355 return 2; 356 case 5: 357 return 4; 358 case 6: 359 return 8; 360 case 7: 361 return 16; 362 default: 363 return 0; 364 } 365 } 366 367 static int ath10k_peer_create(struct ath10k *ar, u32 vdev_id, const u8 *addr) 368 { 369 int ret; 370 371 lockdep_assert_held(&ar->conf_mutex); 372 373 if (ar->num_peers >= ar->max_num_peers) 374 return -ENOBUFS; 375 376 ret = ath10k_wmi_peer_create(ar, vdev_id, addr); 377 if (ret) { 378 ath10k_warn(ar, "failed to create wmi peer %pM on vdev %i: %i\n", 379 addr, vdev_id, ret); 380 return ret; 381 } 382 383 ret = ath10k_wait_for_peer_created(ar, vdev_id, addr); 384 if (ret) { 385 ath10k_warn(ar, "failed to wait for created wmi peer %pM on vdev %i: %i\n", 386 addr, vdev_id, ret); 387 return ret; 388 } 389 390 ar->num_peers++; 391 392 return 0; 393 } 394 395 static int ath10k_mac_set_kickout(struct ath10k_vif *arvif) 396 { 397 struct ath10k *ar = arvif->ar; 398 u32 param; 399 int ret; 400 401 param = ar->wmi.pdev_param->sta_kickout_th; 402 ret = ath10k_wmi_pdev_set_param(ar, param, 403 ATH10K_KICKOUT_THRESHOLD); 404 if (ret) { 405 ath10k_warn(ar, "failed to set kickout threshold on vdev %i: %d\n", 406 arvif->vdev_id, ret); 407 return ret; 408 } 409 410 param = ar->wmi.vdev_param->ap_keepalive_min_idle_inactive_time_secs; 411 ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, param, 412 ATH10K_KEEPALIVE_MIN_IDLE); 413 if (ret) { 414 ath10k_warn(ar, "failed to set keepalive minimum idle time on vdev %i: %d\n", 415 arvif->vdev_id, ret); 416 return ret; 417 } 418 419 param = ar->wmi.vdev_param->ap_keepalive_max_idle_inactive_time_secs; 420 ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, param, 421 ATH10K_KEEPALIVE_MAX_IDLE); 422 if (ret) { 423 ath10k_warn(ar, "failed to set keepalive maximum idle time on vdev %i: %d\n", 424 arvif->vdev_id, ret); 425 return ret; 426 } 427 428 param = ar->wmi.vdev_param->ap_keepalive_max_unresponsive_time_secs; 429 ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, param, 430 ATH10K_KEEPALIVE_MAX_UNRESPONSIVE); 431 if (ret) { 432 ath10k_warn(ar, "failed to set keepalive maximum unresponsive time on vdev %i: %d\n", 433 arvif->vdev_id, ret); 434 return ret; 435 } 436 437 return 0; 438 } 439 440 static int ath10k_mac_set_rts(struct ath10k_vif *arvif, u32 value) 441 { 442 struct ath10k *ar = arvif->ar; 443 u32 vdev_param; 444 445 vdev_param = ar->wmi.vdev_param->rts_threshold; 446 return ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, value); 447 } 448 449 static int ath10k_mac_set_frag(struct ath10k_vif *arvif, u32 value) 450 { 451 struct ath10k *ar = arvif->ar; 452 u32 vdev_param; 453 454 if (value != 0xFFFFFFFF) 455 value = clamp_t(u32, arvif->ar->hw->wiphy->frag_threshold, 456 ATH10K_FRAGMT_THRESHOLD_MIN, 457 ATH10K_FRAGMT_THRESHOLD_MAX); 458 459 vdev_param = ar->wmi.vdev_param->fragmentation_threshold; 460 return ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, value); 461 } 462 463 static int ath10k_peer_delete(struct ath10k *ar, u32 vdev_id, const u8 *addr) 464 { 465 int ret; 466 467 lockdep_assert_held(&ar->conf_mutex); 468 469 ret = ath10k_wmi_peer_delete(ar, vdev_id, addr); 470 if (ret) 471 return ret; 472 473 ret = ath10k_wait_for_peer_deleted(ar, vdev_id, addr); 474 if (ret) 475 return ret; 476 477 ar->num_peers--; 478 479 return 0; 480 } 481 482 static void ath10k_peer_cleanup(struct ath10k *ar, u32 vdev_id) 483 { 484 struct ath10k_peer *peer, *tmp; 485 486 lockdep_assert_held(&ar->conf_mutex); 487 488 spin_lock_bh(&ar->data_lock); 489 list_for_each_entry_safe(peer, tmp, &ar->peers, list) { 490 if (peer->vdev_id != vdev_id) 491 continue; 492 493 ath10k_warn(ar, "removing stale peer %pM from vdev_id %d\n", 494 peer->addr, vdev_id); 495 496 list_del(&peer->list); 497 kfree(peer); 498 ar->num_peers--; 499 } 500 spin_unlock_bh(&ar->data_lock); 501 } 502 503 static void ath10k_peer_cleanup_all(struct ath10k *ar) 504 { 505 struct ath10k_peer *peer, *tmp; 506 507 lockdep_assert_held(&ar->conf_mutex); 508 509 spin_lock_bh(&ar->data_lock); 510 list_for_each_entry_safe(peer, tmp, &ar->peers, list) { 511 list_del(&peer->list); 512 kfree(peer); 513 } 514 spin_unlock_bh(&ar->data_lock); 515 516 ar->num_peers = 0; 517 ar->num_stations = 0; 518 } 519 520 /************************/ 521 /* Interface management */ 522 /************************/ 523 524 void ath10k_mac_vif_beacon_free(struct ath10k_vif *arvif) 525 { 526 struct ath10k *ar = arvif->ar; 527 528 lockdep_assert_held(&ar->data_lock); 529 530 if (!arvif->beacon) 531 return; 532 533 if (!arvif->beacon_buf) 534 dma_unmap_single(ar->dev, ATH10K_SKB_CB(arvif->beacon)->paddr, 535 arvif->beacon->len, DMA_TO_DEVICE); 536 537 if (WARN_ON(arvif->beacon_state != ATH10K_BEACON_SCHEDULED && 538 arvif->beacon_state != ATH10K_BEACON_SENT)) 539 return; 540 541 dev_kfree_skb_any(arvif->beacon); 542 543 arvif->beacon = NULL; 544 arvif->beacon_state = ATH10K_BEACON_SCHEDULED; 545 } 546 547 static void ath10k_mac_vif_beacon_cleanup(struct ath10k_vif *arvif) 548 { 549 struct ath10k *ar = arvif->ar; 550 551 lockdep_assert_held(&ar->data_lock); 552 553 ath10k_mac_vif_beacon_free(arvif); 554 555 if (arvif->beacon_buf) { 556 dma_free_coherent(ar->dev, IEEE80211_MAX_FRAME_LEN, 557 arvif->beacon_buf, arvif->beacon_paddr); 558 arvif->beacon_buf = NULL; 559 } 560 } 561 562 static inline int ath10k_vdev_setup_sync(struct ath10k *ar) 563 { 564 int ret; 565 566 lockdep_assert_held(&ar->conf_mutex); 567 568 if (test_bit(ATH10K_FLAG_CRASH_FLUSH, &ar->dev_flags)) 569 return -ESHUTDOWN; 570 571 ret = wait_for_completion_timeout(&ar->vdev_setup_done, 572 ATH10K_VDEV_SETUP_TIMEOUT_HZ); 573 if (ret == 0) 574 return -ETIMEDOUT; 575 576 return 0; 577 } 578 579 static int ath10k_monitor_vdev_start(struct ath10k *ar, int vdev_id) 580 { 581 struct cfg80211_chan_def *chandef = &ar->chandef; 582 struct ieee80211_channel *channel = chandef->chan; 583 struct wmi_vdev_start_request_arg arg = {}; 584 int ret = 0; 585 586 lockdep_assert_held(&ar->conf_mutex); 587 588 arg.vdev_id = vdev_id; 589 arg.channel.freq = channel->center_freq; 590 arg.channel.band_center_freq1 = chandef->center_freq1; 591 592 /* TODO setup this dynamically, what in case we 593 don't have any vifs? */ 594 arg.channel.mode = chan_to_phymode(chandef); 595 arg.channel.chan_radar = 596 !!(channel->flags & IEEE80211_CHAN_RADAR); 597 598 arg.channel.min_power = 0; 599 arg.channel.max_power = channel->max_power * 2; 600 arg.channel.max_reg_power = channel->max_reg_power * 2; 601 arg.channel.max_antenna_gain = channel->max_antenna_gain * 2; 602 603 reinit_completion(&ar->vdev_setup_done); 604 605 ret = ath10k_wmi_vdev_start(ar, &arg); 606 if (ret) { 607 ath10k_warn(ar, "failed to request monitor vdev %i start: %d\n", 608 vdev_id, ret); 609 return ret; 610 } 611 612 ret = ath10k_vdev_setup_sync(ar); 613 if (ret) { 614 ath10k_warn(ar, "failed to synchronize setup for monitor vdev %i start: %d\n", 615 vdev_id, ret); 616 return ret; 617 } 618 619 ret = ath10k_wmi_vdev_up(ar, vdev_id, 0, ar->mac_addr); 620 if (ret) { 621 ath10k_warn(ar, "failed to put up monitor vdev %i: %d\n", 622 vdev_id, ret); 623 goto vdev_stop; 624 } 625 626 ar->monitor_vdev_id = vdev_id; 627 628 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac monitor vdev %i started\n", 629 ar->monitor_vdev_id); 630 return 0; 631 632 vdev_stop: 633 ret = ath10k_wmi_vdev_stop(ar, ar->monitor_vdev_id); 634 if (ret) 635 ath10k_warn(ar, "failed to stop monitor vdev %i after start failure: %d\n", 636 ar->monitor_vdev_id, ret); 637 638 return ret; 639 } 640 641 static int ath10k_monitor_vdev_stop(struct ath10k *ar) 642 { 643 int ret = 0; 644 645 lockdep_assert_held(&ar->conf_mutex); 646 647 ret = ath10k_wmi_vdev_down(ar, ar->monitor_vdev_id); 648 if (ret) 649 ath10k_warn(ar, "failed to put down monitor vdev %i: %d\n", 650 ar->monitor_vdev_id, ret); 651 652 reinit_completion(&ar->vdev_setup_done); 653 654 ret = ath10k_wmi_vdev_stop(ar, ar->monitor_vdev_id); 655 if (ret) 656 ath10k_warn(ar, "failed to to request monitor vdev %i stop: %d\n", 657 ar->monitor_vdev_id, ret); 658 659 ret = ath10k_vdev_setup_sync(ar); 660 if (ret) 661 ath10k_warn(ar, "failed to synchronize monitor vdev %i stop: %d\n", 662 ar->monitor_vdev_id, ret); 663 664 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac monitor vdev %i stopped\n", 665 ar->monitor_vdev_id); 666 return ret; 667 } 668 669 static int ath10k_monitor_vdev_create(struct ath10k *ar) 670 { 671 int bit, ret = 0; 672 673 lockdep_assert_held(&ar->conf_mutex); 674 675 if (ar->free_vdev_map == 0) { 676 ath10k_warn(ar, "failed to find free vdev id for monitor vdev\n"); 677 return -ENOMEM; 678 } 679 680 bit = __ffs64(ar->free_vdev_map); 681 682 ar->monitor_vdev_id = bit; 683 684 ret = ath10k_wmi_vdev_create(ar, ar->monitor_vdev_id, 685 WMI_VDEV_TYPE_MONITOR, 686 0, ar->mac_addr); 687 if (ret) { 688 ath10k_warn(ar, "failed to request monitor vdev %i creation: %d\n", 689 ar->monitor_vdev_id, ret); 690 return ret; 691 } 692 693 ar->free_vdev_map &= ~(1LL << ar->monitor_vdev_id); 694 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac monitor vdev %d created\n", 695 ar->monitor_vdev_id); 696 697 return 0; 698 } 699 700 static int ath10k_monitor_vdev_delete(struct ath10k *ar) 701 { 702 int ret = 0; 703 704 lockdep_assert_held(&ar->conf_mutex); 705 706 ret = ath10k_wmi_vdev_delete(ar, ar->monitor_vdev_id); 707 if (ret) { 708 ath10k_warn(ar, "failed to request wmi monitor vdev %i removal: %d\n", 709 ar->monitor_vdev_id, ret); 710 return ret; 711 } 712 713 ar->free_vdev_map |= 1LL << ar->monitor_vdev_id; 714 715 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac monitor vdev %d deleted\n", 716 ar->monitor_vdev_id); 717 return ret; 718 } 719 720 static int ath10k_monitor_start(struct ath10k *ar) 721 { 722 int ret; 723 724 lockdep_assert_held(&ar->conf_mutex); 725 726 ret = ath10k_monitor_vdev_create(ar); 727 if (ret) { 728 ath10k_warn(ar, "failed to create monitor vdev: %d\n", ret); 729 return ret; 730 } 731 732 ret = ath10k_monitor_vdev_start(ar, ar->monitor_vdev_id); 733 if (ret) { 734 ath10k_warn(ar, "failed to start monitor vdev: %d\n", ret); 735 ath10k_monitor_vdev_delete(ar); 736 return ret; 737 } 738 739 ar->monitor_started = true; 740 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac monitor started\n"); 741 742 return 0; 743 } 744 745 static int ath10k_monitor_stop(struct ath10k *ar) 746 { 747 int ret; 748 749 lockdep_assert_held(&ar->conf_mutex); 750 751 ret = ath10k_monitor_vdev_stop(ar); 752 if (ret) { 753 ath10k_warn(ar, "failed to stop monitor vdev: %d\n", ret); 754 return ret; 755 } 756 757 ret = ath10k_monitor_vdev_delete(ar); 758 if (ret) { 759 ath10k_warn(ar, "failed to delete monitor vdev: %d\n", ret); 760 return ret; 761 } 762 763 ar->monitor_started = false; 764 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac monitor stopped\n"); 765 766 return 0; 767 } 768 769 static int ath10k_monitor_recalc(struct ath10k *ar) 770 { 771 bool should_start; 772 773 lockdep_assert_held(&ar->conf_mutex); 774 775 should_start = ar->monitor || 776 ar->filter_flags & FIF_PROMISC_IN_BSS || 777 test_bit(ATH10K_CAC_RUNNING, &ar->dev_flags); 778 779 ath10k_dbg(ar, ATH10K_DBG_MAC, 780 "mac monitor recalc started? %d should? %d\n", 781 ar->monitor_started, should_start); 782 783 if (should_start == ar->monitor_started) 784 return 0; 785 786 if (should_start) 787 return ath10k_monitor_start(ar); 788 789 return ath10k_monitor_stop(ar); 790 } 791 792 static int ath10k_recalc_rtscts_prot(struct ath10k_vif *arvif) 793 { 794 struct ath10k *ar = arvif->ar; 795 u32 vdev_param, rts_cts = 0; 796 797 lockdep_assert_held(&ar->conf_mutex); 798 799 vdev_param = ar->wmi.vdev_param->enable_rtscts; 800 801 if (arvif->use_cts_prot || arvif->num_legacy_stations > 0) 802 rts_cts |= SM(WMI_RTSCTS_ENABLED, WMI_RTSCTS_SET); 803 804 if (arvif->num_legacy_stations > 0) 805 rts_cts |= SM(WMI_RTSCTS_ACROSS_SW_RETRIES, 806 WMI_RTSCTS_PROFILE); 807 808 return ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, 809 rts_cts); 810 } 811 812 static int ath10k_start_cac(struct ath10k *ar) 813 { 814 int ret; 815 816 lockdep_assert_held(&ar->conf_mutex); 817 818 set_bit(ATH10K_CAC_RUNNING, &ar->dev_flags); 819 820 ret = ath10k_monitor_recalc(ar); 821 if (ret) { 822 ath10k_warn(ar, "failed to start monitor (cac): %d\n", ret); 823 clear_bit(ATH10K_CAC_RUNNING, &ar->dev_flags); 824 return ret; 825 } 826 827 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac cac start monitor vdev %d\n", 828 ar->monitor_vdev_id); 829 830 return 0; 831 } 832 833 static int ath10k_stop_cac(struct ath10k *ar) 834 { 835 lockdep_assert_held(&ar->conf_mutex); 836 837 /* CAC is not running - do nothing */ 838 if (!test_bit(ATH10K_CAC_RUNNING, &ar->dev_flags)) 839 return 0; 840 841 clear_bit(ATH10K_CAC_RUNNING, &ar->dev_flags); 842 ath10k_monitor_stop(ar); 843 844 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac cac finished\n"); 845 846 return 0; 847 } 848 849 static void ath10k_recalc_radar_detection(struct ath10k *ar) 850 { 851 int ret; 852 853 lockdep_assert_held(&ar->conf_mutex); 854 855 ath10k_stop_cac(ar); 856 857 if (!ar->radar_enabled) 858 return; 859 860 if (ar->num_started_vdevs > 0) 861 return; 862 863 ret = ath10k_start_cac(ar); 864 if (ret) { 865 /* 866 * Not possible to start CAC on current channel so starting 867 * radiation is not allowed, make this channel DFS_UNAVAILABLE 868 * by indicating that radar was detected. 869 */ 870 ath10k_warn(ar, "failed to start CAC: %d\n", ret); 871 ieee80211_radar_detected(ar->hw); 872 } 873 } 874 875 static int ath10k_vdev_start_restart(struct ath10k_vif *arvif, bool restart) 876 { 877 struct ath10k *ar = arvif->ar; 878 struct cfg80211_chan_def *chandef = &ar->chandef; 879 struct wmi_vdev_start_request_arg arg = {}; 880 int ret = 0; 881 882 lockdep_assert_held(&ar->conf_mutex); 883 884 reinit_completion(&ar->vdev_setup_done); 885 886 arg.vdev_id = arvif->vdev_id; 887 arg.dtim_period = arvif->dtim_period; 888 arg.bcn_intval = arvif->beacon_interval; 889 890 arg.channel.freq = chandef->chan->center_freq; 891 arg.channel.band_center_freq1 = chandef->center_freq1; 892 arg.channel.mode = chan_to_phymode(chandef); 893 894 arg.channel.min_power = 0; 895 arg.channel.max_power = chandef->chan->max_power * 2; 896 arg.channel.max_reg_power = chandef->chan->max_reg_power * 2; 897 arg.channel.max_antenna_gain = chandef->chan->max_antenna_gain * 2; 898 899 if (arvif->vdev_type == WMI_VDEV_TYPE_AP) { 900 arg.ssid = arvif->u.ap.ssid; 901 arg.ssid_len = arvif->u.ap.ssid_len; 902 arg.hidden_ssid = arvif->u.ap.hidden_ssid; 903 904 /* For now allow DFS for AP mode */ 905 arg.channel.chan_radar = 906 !!(chandef->chan->flags & IEEE80211_CHAN_RADAR); 907 } else if (arvif->vdev_type == WMI_VDEV_TYPE_IBSS) { 908 arg.ssid = arvif->vif->bss_conf.ssid; 909 arg.ssid_len = arvif->vif->bss_conf.ssid_len; 910 } 911 912 ath10k_dbg(ar, ATH10K_DBG_MAC, 913 "mac vdev %d start center_freq %d phymode %s\n", 914 arg.vdev_id, arg.channel.freq, 915 ath10k_wmi_phymode_str(arg.channel.mode)); 916 917 if (restart) 918 ret = ath10k_wmi_vdev_restart(ar, &arg); 919 else 920 ret = ath10k_wmi_vdev_start(ar, &arg); 921 922 if (ret) { 923 ath10k_warn(ar, "failed to start WMI vdev %i: %d\n", 924 arg.vdev_id, ret); 925 return ret; 926 } 927 928 ret = ath10k_vdev_setup_sync(ar); 929 if (ret) { 930 ath10k_warn(ar, 931 "failed to synchronize setup for vdev %i restart %d: %d\n", 932 arg.vdev_id, restart, ret); 933 return ret; 934 } 935 936 ar->num_started_vdevs++; 937 ath10k_recalc_radar_detection(ar); 938 939 return ret; 940 } 941 942 static int ath10k_vdev_start(struct ath10k_vif *arvif) 943 { 944 return ath10k_vdev_start_restart(arvif, false); 945 } 946 947 static int ath10k_vdev_restart(struct ath10k_vif *arvif) 948 { 949 return ath10k_vdev_start_restart(arvif, true); 950 } 951 952 static int ath10k_vdev_stop(struct ath10k_vif *arvif) 953 { 954 struct ath10k *ar = arvif->ar; 955 int ret; 956 957 lockdep_assert_held(&ar->conf_mutex); 958 959 reinit_completion(&ar->vdev_setup_done); 960 961 ret = ath10k_wmi_vdev_stop(ar, arvif->vdev_id); 962 if (ret) { 963 ath10k_warn(ar, "failed to stop WMI vdev %i: %d\n", 964 arvif->vdev_id, ret); 965 return ret; 966 } 967 968 ret = ath10k_vdev_setup_sync(ar); 969 if (ret) { 970 ath10k_warn(ar, "failed to synchronize setup for vdev %i stop: %d\n", 971 arvif->vdev_id, ret); 972 return ret; 973 } 974 975 WARN_ON(ar->num_started_vdevs == 0); 976 977 if (ar->num_started_vdevs != 0) { 978 ar->num_started_vdevs--; 979 ath10k_recalc_radar_detection(ar); 980 } 981 982 return ret; 983 } 984 985 static int ath10k_mac_setup_bcn_p2p_ie(struct ath10k_vif *arvif, 986 struct sk_buff *bcn) 987 { 988 struct ath10k *ar = arvif->ar; 989 struct ieee80211_mgmt *mgmt; 990 const u8 *p2p_ie; 991 int ret; 992 993 if (arvif->vdev_type != WMI_VDEV_TYPE_AP) 994 return 0; 995 996 if (arvif->vdev_subtype != WMI_VDEV_SUBTYPE_P2P_GO) 997 return 0; 998 999 mgmt = (void *)bcn->data; 1000 p2p_ie = cfg80211_find_vendor_ie(WLAN_OUI_WFA, WLAN_OUI_TYPE_WFA_P2P, 1001 mgmt->u.beacon.variable, 1002 bcn->len - (mgmt->u.beacon.variable - 1003 bcn->data)); 1004 if (!p2p_ie) 1005 return -ENOENT; 1006 1007 ret = ath10k_wmi_p2p_go_bcn_ie(ar, arvif->vdev_id, p2p_ie); 1008 if (ret) { 1009 ath10k_warn(ar, "failed to submit p2p go bcn ie for vdev %i: %d\n", 1010 arvif->vdev_id, ret); 1011 return ret; 1012 } 1013 1014 return 0; 1015 } 1016 1017 static int ath10k_mac_remove_vendor_ie(struct sk_buff *skb, unsigned int oui, 1018 u8 oui_type, size_t ie_offset) 1019 { 1020 size_t len; 1021 const u8 *next; 1022 const u8 *end; 1023 u8 *ie; 1024 1025 if (WARN_ON(skb->len < ie_offset)) 1026 return -EINVAL; 1027 1028 ie = (u8 *)cfg80211_find_vendor_ie(oui, oui_type, 1029 skb->data + ie_offset, 1030 skb->len - ie_offset); 1031 if (!ie) 1032 return -ENOENT; 1033 1034 len = ie[1] + 2; 1035 end = skb->data + skb->len; 1036 next = ie + len; 1037 1038 if (WARN_ON(next > end)) 1039 return -EINVAL; 1040 1041 memmove(ie, next, end - next); 1042 skb_trim(skb, skb->len - len); 1043 1044 return 0; 1045 } 1046 1047 static int ath10k_mac_setup_bcn_tmpl(struct ath10k_vif *arvif) 1048 { 1049 struct ath10k *ar = arvif->ar; 1050 struct ieee80211_hw *hw = ar->hw; 1051 struct ieee80211_vif *vif = arvif->vif; 1052 struct ieee80211_mutable_offsets offs = {}; 1053 struct sk_buff *bcn; 1054 int ret; 1055 1056 if (!test_bit(WMI_SERVICE_BEACON_OFFLOAD, ar->wmi.svc_map)) 1057 return 0; 1058 1059 bcn = ieee80211_beacon_get_template(hw, vif, &offs); 1060 if (!bcn) { 1061 ath10k_warn(ar, "failed to get beacon template from mac80211\n"); 1062 return -EPERM; 1063 } 1064 1065 ret = ath10k_mac_setup_bcn_p2p_ie(arvif, bcn); 1066 if (ret) { 1067 ath10k_warn(ar, "failed to setup p2p go bcn ie: %d\n", ret); 1068 kfree_skb(bcn); 1069 return ret; 1070 } 1071 1072 /* P2P IE is inserted by firmware automatically (as configured above) 1073 * so remove it from the base beacon template to avoid duplicate P2P 1074 * IEs in beacon frames. 1075 */ 1076 ath10k_mac_remove_vendor_ie(bcn, WLAN_OUI_WFA, WLAN_OUI_TYPE_WFA_P2P, 1077 offsetof(struct ieee80211_mgmt, 1078 u.beacon.variable)); 1079 1080 ret = ath10k_wmi_bcn_tmpl(ar, arvif->vdev_id, offs.tim_offset, bcn, 0, 1081 0, NULL, 0); 1082 kfree_skb(bcn); 1083 1084 if (ret) { 1085 ath10k_warn(ar, "failed to submit beacon template command: %d\n", 1086 ret); 1087 return ret; 1088 } 1089 1090 return 0; 1091 } 1092 1093 static int ath10k_mac_setup_prb_tmpl(struct ath10k_vif *arvif) 1094 { 1095 struct ath10k *ar = arvif->ar; 1096 struct ieee80211_hw *hw = ar->hw; 1097 struct ieee80211_vif *vif = arvif->vif; 1098 struct sk_buff *prb; 1099 int ret; 1100 1101 if (!test_bit(WMI_SERVICE_BEACON_OFFLOAD, ar->wmi.svc_map)) 1102 return 0; 1103 1104 prb = ieee80211_proberesp_get(hw, vif); 1105 if (!prb) { 1106 ath10k_warn(ar, "failed to get probe resp template from mac80211\n"); 1107 return -EPERM; 1108 } 1109 1110 ret = ath10k_wmi_prb_tmpl(ar, arvif->vdev_id, prb); 1111 kfree_skb(prb); 1112 1113 if (ret) { 1114 ath10k_warn(ar, "failed to submit probe resp template command: %d\n", 1115 ret); 1116 return ret; 1117 } 1118 1119 return 0; 1120 } 1121 1122 static void ath10k_control_beaconing(struct ath10k_vif *arvif, 1123 struct ieee80211_bss_conf *info) 1124 { 1125 struct ath10k *ar = arvif->ar; 1126 int ret = 0; 1127 1128 lockdep_assert_held(&arvif->ar->conf_mutex); 1129 1130 if (!info->enable_beacon) { 1131 ath10k_vdev_stop(arvif); 1132 1133 arvif->is_started = false; 1134 arvif->is_up = false; 1135 1136 spin_lock_bh(&arvif->ar->data_lock); 1137 ath10k_mac_vif_beacon_free(arvif); 1138 spin_unlock_bh(&arvif->ar->data_lock); 1139 1140 return; 1141 } 1142 1143 arvif->tx_seq_no = 0x1000; 1144 1145 ret = ath10k_vdev_start(arvif); 1146 if (ret) 1147 return; 1148 1149 arvif->aid = 0; 1150 ether_addr_copy(arvif->bssid, info->bssid); 1151 1152 ret = ath10k_wmi_vdev_up(arvif->ar, arvif->vdev_id, arvif->aid, 1153 arvif->bssid); 1154 if (ret) { 1155 ath10k_warn(ar, "failed to bring up vdev %d: %i\n", 1156 arvif->vdev_id, ret); 1157 ath10k_vdev_stop(arvif); 1158 return; 1159 } 1160 1161 arvif->is_started = true; 1162 arvif->is_up = true; 1163 1164 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d up\n", arvif->vdev_id); 1165 } 1166 1167 static void ath10k_control_ibss(struct ath10k_vif *arvif, 1168 struct ieee80211_bss_conf *info, 1169 const u8 self_peer[ETH_ALEN]) 1170 { 1171 struct ath10k *ar = arvif->ar; 1172 u32 vdev_param; 1173 int ret = 0; 1174 1175 lockdep_assert_held(&arvif->ar->conf_mutex); 1176 1177 if (!info->ibss_joined) { 1178 ret = ath10k_peer_delete(arvif->ar, arvif->vdev_id, self_peer); 1179 if (ret) 1180 ath10k_warn(ar, "failed to delete IBSS self peer %pM for vdev %d: %d\n", 1181 self_peer, arvif->vdev_id, ret); 1182 1183 if (is_zero_ether_addr(arvif->bssid)) 1184 return; 1185 1186 eth_zero_addr(arvif->bssid); 1187 1188 return; 1189 } 1190 1191 ret = ath10k_peer_create(arvif->ar, arvif->vdev_id, self_peer); 1192 if (ret) { 1193 ath10k_warn(ar, "failed to create IBSS self peer %pM for vdev %d: %d\n", 1194 self_peer, arvif->vdev_id, ret); 1195 return; 1196 } 1197 1198 vdev_param = arvif->ar->wmi.vdev_param->atim_window; 1199 ret = ath10k_wmi_vdev_set_param(arvif->ar, arvif->vdev_id, vdev_param, 1200 ATH10K_DEFAULT_ATIM); 1201 if (ret) 1202 ath10k_warn(ar, "failed to set IBSS ATIM for vdev %d: %d\n", 1203 arvif->vdev_id, ret); 1204 } 1205 1206 static int ath10k_mac_vif_recalc_ps_wake_threshold(struct ath10k_vif *arvif) 1207 { 1208 struct ath10k *ar = arvif->ar; 1209 u32 param; 1210 u32 value; 1211 int ret; 1212 1213 lockdep_assert_held(&arvif->ar->conf_mutex); 1214 1215 if (arvif->u.sta.uapsd) 1216 value = WMI_STA_PS_TX_WAKE_THRESHOLD_NEVER; 1217 else 1218 value = WMI_STA_PS_TX_WAKE_THRESHOLD_ALWAYS; 1219 1220 param = WMI_STA_PS_PARAM_TX_WAKE_THRESHOLD; 1221 ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id, param, value); 1222 if (ret) { 1223 ath10k_warn(ar, "failed to submit ps wake threshold %u on vdev %i: %d\n", 1224 value, arvif->vdev_id, ret); 1225 return ret; 1226 } 1227 1228 return 0; 1229 } 1230 1231 static int ath10k_mac_vif_recalc_ps_poll_count(struct ath10k_vif *arvif) 1232 { 1233 struct ath10k *ar = arvif->ar; 1234 u32 param; 1235 u32 value; 1236 int ret; 1237 1238 lockdep_assert_held(&arvif->ar->conf_mutex); 1239 1240 if (arvif->u.sta.uapsd) 1241 value = WMI_STA_PS_PSPOLL_COUNT_UAPSD; 1242 else 1243 value = WMI_STA_PS_PSPOLL_COUNT_NO_MAX; 1244 1245 param = WMI_STA_PS_PARAM_PSPOLL_COUNT; 1246 ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id, 1247 param, value); 1248 if (ret) { 1249 ath10k_warn(ar, "failed to submit ps poll count %u on vdev %i: %d\n", 1250 value, arvif->vdev_id, ret); 1251 return ret; 1252 } 1253 1254 return 0; 1255 } 1256 1257 static int ath10k_mac_ps_vif_count(struct ath10k *ar) 1258 { 1259 struct ath10k_vif *arvif; 1260 int num = 0; 1261 1262 lockdep_assert_held(&ar->conf_mutex); 1263 1264 list_for_each_entry(arvif, &ar->arvifs, list) 1265 if (arvif->ps) 1266 num++; 1267 1268 return num; 1269 } 1270 1271 static int ath10k_mac_vif_setup_ps(struct ath10k_vif *arvif) 1272 { 1273 struct ath10k *ar = arvif->ar; 1274 struct ieee80211_vif *vif = arvif->vif; 1275 struct ieee80211_conf *conf = &ar->hw->conf; 1276 enum wmi_sta_powersave_param param; 1277 enum wmi_sta_ps_mode psmode; 1278 int ret; 1279 int ps_timeout; 1280 bool enable_ps; 1281 1282 lockdep_assert_held(&arvif->ar->conf_mutex); 1283 1284 if (arvif->vif->type != NL80211_IFTYPE_STATION) 1285 return 0; 1286 1287 enable_ps = arvif->ps; 1288 1289 if (enable_ps && ath10k_mac_ps_vif_count(ar) > 1 && 1290 !test_bit(ATH10K_FW_FEATURE_MULTI_VIF_PS_SUPPORT, 1291 ar->fw_features)) { 1292 ath10k_warn(ar, "refusing to enable ps on vdev %i: not supported by fw\n", 1293 arvif->vdev_id); 1294 enable_ps = false; 1295 } 1296 1297 if (enable_ps) { 1298 psmode = WMI_STA_PS_MODE_ENABLED; 1299 param = WMI_STA_PS_PARAM_INACTIVITY_TIME; 1300 1301 ps_timeout = conf->dynamic_ps_timeout; 1302 if (ps_timeout == 0) { 1303 /* Firmware doesn't like 0 */ 1304 ps_timeout = ieee80211_tu_to_usec( 1305 vif->bss_conf.beacon_int) / 1000; 1306 } 1307 1308 ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id, param, 1309 ps_timeout); 1310 if (ret) { 1311 ath10k_warn(ar, "failed to set inactivity time for vdev %d: %i\n", 1312 arvif->vdev_id, ret); 1313 return ret; 1314 } 1315 } else { 1316 psmode = WMI_STA_PS_MODE_DISABLED; 1317 } 1318 1319 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d psmode %s\n", 1320 arvif->vdev_id, psmode ? "enable" : "disable"); 1321 1322 ret = ath10k_wmi_set_psmode(ar, arvif->vdev_id, psmode); 1323 if (ret) { 1324 ath10k_warn(ar, "failed to set PS Mode %d for vdev %d: %d\n", 1325 psmode, arvif->vdev_id, ret); 1326 return ret; 1327 } 1328 1329 return 0; 1330 } 1331 1332 static int ath10k_mac_vif_disable_keepalive(struct ath10k_vif *arvif) 1333 { 1334 struct ath10k *ar = arvif->ar; 1335 struct wmi_sta_keepalive_arg arg = {}; 1336 int ret; 1337 1338 lockdep_assert_held(&arvif->ar->conf_mutex); 1339 1340 if (arvif->vdev_type != WMI_VDEV_TYPE_STA) 1341 return 0; 1342 1343 if (!test_bit(WMI_SERVICE_STA_KEEP_ALIVE, ar->wmi.svc_map)) 1344 return 0; 1345 1346 /* Some firmware revisions have a bug and ignore the `enabled` field. 1347 * Instead use the interval to disable the keepalive. 1348 */ 1349 arg.vdev_id = arvif->vdev_id; 1350 arg.enabled = 1; 1351 arg.method = WMI_STA_KEEPALIVE_METHOD_NULL_FRAME; 1352 arg.interval = WMI_STA_KEEPALIVE_INTERVAL_DISABLE; 1353 1354 ret = ath10k_wmi_sta_keepalive(ar, &arg); 1355 if (ret) { 1356 ath10k_warn(ar, "failed to submit keepalive on vdev %i: %d\n", 1357 arvif->vdev_id, ret); 1358 return ret; 1359 } 1360 1361 return 0; 1362 } 1363 1364 /**********************/ 1365 /* Station management */ 1366 /**********************/ 1367 1368 static u32 ath10k_peer_assoc_h_listen_intval(struct ath10k *ar, 1369 struct ieee80211_vif *vif) 1370 { 1371 /* Some firmware revisions have unstable STA powersave when listen 1372 * interval is set too high (e.g. 5). The symptoms are firmware doesn't 1373 * generate NullFunc frames properly even if buffered frames have been 1374 * indicated in Beacon TIM. Firmware would seldom wake up to pull 1375 * buffered frames. Often pinging the device from AP would simply fail. 1376 * 1377 * As a workaround set it to 1. 1378 */ 1379 if (vif->type == NL80211_IFTYPE_STATION) 1380 return 1; 1381 1382 return ar->hw->conf.listen_interval; 1383 } 1384 1385 static void ath10k_peer_assoc_h_basic(struct ath10k *ar, 1386 struct ieee80211_vif *vif, 1387 struct ieee80211_sta *sta, 1388 struct wmi_peer_assoc_complete_arg *arg) 1389 { 1390 struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif); 1391 1392 lockdep_assert_held(&ar->conf_mutex); 1393 1394 ether_addr_copy(arg->addr, sta->addr); 1395 arg->vdev_id = arvif->vdev_id; 1396 arg->peer_aid = sta->aid; 1397 arg->peer_flags |= WMI_PEER_AUTH; 1398 arg->peer_listen_intval = ath10k_peer_assoc_h_listen_intval(ar, vif); 1399 arg->peer_num_spatial_streams = 1; 1400 arg->peer_caps = vif->bss_conf.assoc_capability; 1401 } 1402 1403 static void ath10k_peer_assoc_h_crypto(struct ath10k *ar, 1404 struct ieee80211_vif *vif, 1405 struct wmi_peer_assoc_complete_arg *arg) 1406 { 1407 struct ieee80211_bss_conf *info = &vif->bss_conf; 1408 struct cfg80211_bss *bss; 1409 const u8 *rsnie = NULL; 1410 const u8 *wpaie = NULL; 1411 1412 lockdep_assert_held(&ar->conf_mutex); 1413 1414 bss = cfg80211_get_bss(ar->hw->wiphy, ar->hw->conf.chandef.chan, 1415 info->bssid, NULL, 0, 0, 0); 1416 if (bss) { 1417 const struct cfg80211_bss_ies *ies; 1418 1419 rcu_read_lock(); 1420 rsnie = ieee80211_bss_get_ie(bss, WLAN_EID_RSN); 1421 1422 ies = rcu_dereference(bss->ies); 1423 1424 wpaie = cfg80211_find_vendor_ie(WLAN_OUI_MICROSOFT, 1425 WLAN_OUI_TYPE_MICROSOFT_WPA, 1426 ies->data, 1427 ies->len); 1428 rcu_read_unlock(); 1429 cfg80211_put_bss(ar->hw->wiphy, bss); 1430 } 1431 1432 /* FIXME: base on RSN IE/WPA IE is a correct idea? */ 1433 if (rsnie || wpaie) { 1434 ath10k_dbg(ar, ATH10K_DBG_WMI, "%s: rsn ie found\n", __func__); 1435 arg->peer_flags |= WMI_PEER_NEED_PTK_4_WAY; 1436 } 1437 1438 if (wpaie) { 1439 ath10k_dbg(ar, ATH10K_DBG_WMI, "%s: wpa ie found\n", __func__); 1440 arg->peer_flags |= WMI_PEER_NEED_GTK_2_WAY; 1441 } 1442 } 1443 1444 static void ath10k_peer_assoc_h_rates(struct ath10k *ar, 1445 struct ieee80211_sta *sta, 1446 struct wmi_peer_assoc_complete_arg *arg) 1447 { 1448 struct wmi_rate_set_arg *rateset = &arg->peer_legacy_rates; 1449 const struct ieee80211_supported_band *sband; 1450 const struct ieee80211_rate *rates; 1451 u32 ratemask; 1452 int i; 1453 1454 lockdep_assert_held(&ar->conf_mutex); 1455 1456 sband = ar->hw->wiphy->bands[ar->hw->conf.chandef.chan->band]; 1457 ratemask = sta->supp_rates[ar->hw->conf.chandef.chan->band]; 1458 rates = sband->bitrates; 1459 1460 rateset->num_rates = 0; 1461 1462 for (i = 0; i < 32; i++, ratemask >>= 1, rates++) { 1463 if (!(ratemask & 1)) 1464 continue; 1465 1466 rateset->rates[rateset->num_rates] = rates->hw_value; 1467 rateset->num_rates++; 1468 } 1469 } 1470 1471 static void ath10k_peer_assoc_h_ht(struct ath10k *ar, 1472 struct ieee80211_sta *sta, 1473 struct wmi_peer_assoc_complete_arg *arg) 1474 { 1475 const struct ieee80211_sta_ht_cap *ht_cap = &sta->ht_cap; 1476 int i, n; 1477 u32 stbc; 1478 1479 lockdep_assert_held(&ar->conf_mutex); 1480 1481 if (!ht_cap->ht_supported) 1482 return; 1483 1484 arg->peer_flags |= WMI_PEER_HT; 1485 arg->peer_max_mpdu = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR + 1486 ht_cap->ampdu_factor)) - 1; 1487 1488 arg->peer_mpdu_density = 1489 ath10k_parse_mpdudensity(ht_cap->ampdu_density); 1490 1491 arg->peer_ht_caps = ht_cap->cap; 1492 arg->peer_rate_caps |= WMI_RC_HT_FLAG; 1493 1494 if (ht_cap->cap & IEEE80211_HT_CAP_LDPC_CODING) 1495 arg->peer_flags |= WMI_PEER_LDPC; 1496 1497 if (sta->bandwidth >= IEEE80211_STA_RX_BW_40) { 1498 arg->peer_flags |= WMI_PEER_40MHZ; 1499 arg->peer_rate_caps |= WMI_RC_CW40_FLAG; 1500 } 1501 1502 if (ht_cap->cap & IEEE80211_HT_CAP_SGI_20) 1503 arg->peer_rate_caps |= WMI_RC_SGI_FLAG; 1504 1505 if (ht_cap->cap & IEEE80211_HT_CAP_SGI_40) 1506 arg->peer_rate_caps |= WMI_RC_SGI_FLAG; 1507 1508 if (ht_cap->cap & IEEE80211_HT_CAP_TX_STBC) { 1509 arg->peer_rate_caps |= WMI_RC_TX_STBC_FLAG; 1510 arg->peer_flags |= WMI_PEER_STBC; 1511 } 1512 1513 if (ht_cap->cap & IEEE80211_HT_CAP_RX_STBC) { 1514 stbc = ht_cap->cap & IEEE80211_HT_CAP_RX_STBC; 1515 stbc = stbc >> IEEE80211_HT_CAP_RX_STBC_SHIFT; 1516 stbc = stbc << WMI_RC_RX_STBC_FLAG_S; 1517 arg->peer_rate_caps |= stbc; 1518 arg->peer_flags |= WMI_PEER_STBC; 1519 } 1520 1521 if (ht_cap->mcs.rx_mask[1] && ht_cap->mcs.rx_mask[2]) 1522 arg->peer_rate_caps |= WMI_RC_TS_FLAG; 1523 else if (ht_cap->mcs.rx_mask[1]) 1524 arg->peer_rate_caps |= WMI_RC_DS_FLAG; 1525 1526 for (i = 0, n = 0; i < IEEE80211_HT_MCS_MASK_LEN*8; i++) 1527 if (ht_cap->mcs.rx_mask[i/8] & (1 << i%8)) 1528 arg->peer_ht_rates.rates[n++] = i; 1529 1530 /* 1531 * This is a workaround for HT-enabled STAs which break the spec 1532 * and have no HT capabilities RX mask (no HT RX MCS map). 1533 * 1534 * As per spec, in section 20.3.5 Modulation and coding scheme (MCS), 1535 * MCS 0 through 7 are mandatory in 20MHz with 800 ns GI at all STAs. 1536 * 1537 * Firmware asserts if such situation occurs. 1538 */ 1539 if (n == 0) { 1540 arg->peer_ht_rates.num_rates = 8; 1541 for (i = 0; i < arg->peer_ht_rates.num_rates; i++) 1542 arg->peer_ht_rates.rates[i] = i; 1543 } else { 1544 arg->peer_ht_rates.num_rates = n; 1545 arg->peer_num_spatial_streams = sta->rx_nss; 1546 } 1547 1548 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac ht peer %pM mcs cnt %d nss %d\n", 1549 arg->addr, 1550 arg->peer_ht_rates.num_rates, 1551 arg->peer_num_spatial_streams); 1552 } 1553 1554 static int ath10k_peer_assoc_qos_ap(struct ath10k *ar, 1555 struct ath10k_vif *arvif, 1556 struct ieee80211_sta *sta) 1557 { 1558 u32 uapsd = 0; 1559 u32 max_sp = 0; 1560 int ret = 0; 1561 1562 lockdep_assert_held(&ar->conf_mutex); 1563 1564 if (sta->wme && sta->uapsd_queues) { 1565 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac uapsd_queues 0x%x max_sp %d\n", 1566 sta->uapsd_queues, sta->max_sp); 1567 1568 if (sta->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_VO) 1569 uapsd |= WMI_AP_PS_UAPSD_AC3_DELIVERY_EN | 1570 WMI_AP_PS_UAPSD_AC3_TRIGGER_EN; 1571 if (sta->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_VI) 1572 uapsd |= WMI_AP_PS_UAPSD_AC2_DELIVERY_EN | 1573 WMI_AP_PS_UAPSD_AC2_TRIGGER_EN; 1574 if (sta->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_BK) 1575 uapsd |= WMI_AP_PS_UAPSD_AC1_DELIVERY_EN | 1576 WMI_AP_PS_UAPSD_AC1_TRIGGER_EN; 1577 if (sta->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_BE) 1578 uapsd |= WMI_AP_PS_UAPSD_AC0_DELIVERY_EN | 1579 WMI_AP_PS_UAPSD_AC0_TRIGGER_EN; 1580 1581 if (sta->max_sp < MAX_WMI_AP_PS_PEER_PARAM_MAX_SP) 1582 max_sp = sta->max_sp; 1583 1584 ret = ath10k_wmi_set_ap_ps_param(ar, arvif->vdev_id, 1585 sta->addr, 1586 WMI_AP_PS_PEER_PARAM_UAPSD, 1587 uapsd); 1588 if (ret) { 1589 ath10k_warn(ar, "failed to set ap ps peer param uapsd for vdev %i: %d\n", 1590 arvif->vdev_id, ret); 1591 return ret; 1592 } 1593 1594 ret = ath10k_wmi_set_ap_ps_param(ar, arvif->vdev_id, 1595 sta->addr, 1596 WMI_AP_PS_PEER_PARAM_MAX_SP, 1597 max_sp); 1598 if (ret) { 1599 ath10k_warn(ar, "failed to set ap ps peer param max sp for vdev %i: %d\n", 1600 arvif->vdev_id, ret); 1601 return ret; 1602 } 1603 1604 /* TODO setup this based on STA listen interval and 1605 beacon interval. Currently we don't know 1606 sta->listen_interval - mac80211 patch required. 1607 Currently use 10 seconds */ 1608 ret = ath10k_wmi_set_ap_ps_param(ar, arvif->vdev_id, sta->addr, 1609 WMI_AP_PS_PEER_PARAM_AGEOUT_TIME, 1610 10); 1611 if (ret) { 1612 ath10k_warn(ar, "failed to set ap ps peer param ageout time for vdev %i: %d\n", 1613 arvif->vdev_id, ret); 1614 return ret; 1615 } 1616 } 1617 1618 return 0; 1619 } 1620 1621 static void ath10k_peer_assoc_h_vht(struct ath10k *ar, 1622 struct ieee80211_sta *sta, 1623 struct wmi_peer_assoc_complete_arg *arg) 1624 { 1625 const struct ieee80211_sta_vht_cap *vht_cap = &sta->vht_cap; 1626 u8 ampdu_factor; 1627 1628 if (!vht_cap->vht_supported) 1629 return; 1630 1631 arg->peer_flags |= WMI_PEER_VHT; 1632 1633 if (ar->hw->conf.chandef.chan->band == IEEE80211_BAND_2GHZ) 1634 arg->peer_flags |= WMI_PEER_VHT_2G; 1635 1636 arg->peer_vht_caps = vht_cap->cap; 1637 1638 ampdu_factor = (vht_cap->cap & 1639 IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK) >> 1640 IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT; 1641 1642 /* Workaround: Some Netgear/Linksys 11ac APs set Rx A-MPDU factor to 1643 * zero in VHT IE. Using it would result in degraded throughput. 1644 * arg->peer_max_mpdu at this point contains HT max_mpdu so keep 1645 * it if VHT max_mpdu is smaller. */ 1646 arg->peer_max_mpdu = max(arg->peer_max_mpdu, 1647 (1U << (IEEE80211_HT_MAX_AMPDU_FACTOR + 1648 ampdu_factor)) - 1); 1649 1650 if (sta->bandwidth == IEEE80211_STA_RX_BW_80) 1651 arg->peer_flags |= WMI_PEER_80MHZ; 1652 1653 arg->peer_vht_rates.rx_max_rate = 1654 __le16_to_cpu(vht_cap->vht_mcs.rx_highest); 1655 arg->peer_vht_rates.rx_mcs_set = 1656 __le16_to_cpu(vht_cap->vht_mcs.rx_mcs_map); 1657 arg->peer_vht_rates.tx_max_rate = 1658 __le16_to_cpu(vht_cap->vht_mcs.tx_highest); 1659 arg->peer_vht_rates.tx_mcs_set = 1660 __le16_to_cpu(vht_cap->vht_mcs.tx_mcs_map); 1661 1662 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vht peer %pM max_mpdu %d flags 0x%x\n", 1663 sta->addr, arg->peer_max_mpdu, arg->peer_flags); 1664 } 1665 1666 static void ath10k_peer_assoc_h_qos(struct ath10k *ar, 1667 struct ieee80211_vif *vif, 1668 struct ieee80211_sta *sta, 1669 struct wmi_peer_assoc_complete_arg *arg) 1670 { 1671 struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif); 1672 1673 switch (arvif->vdev_type) { 1674 case WMI_VDEV_TYPE_AP: 1675 if (sta->wme) 1676 arg->peer_flags |= WMI_PEER_QOS; 1677 1678 if (sta->wme && sta->uapsd_queues) { 1679 arg->peer_flags |= WMI_PEER_APSD; 1680 arg->peer_rate_caps |= WMI_RC_UAPSD_FLAG; 1681 } 1682 break; 1683 case WMI_VDEV_TYPE_STA: 1684 if (vif->bss_conf.qos) 1685 arg->peer_flags |= WMI_PEER_QOS; 1686 break; 1687 case WMI_VDEV_TYPE_IBSS: 1688 if (sta->wme) 1689 arg->peer_flags |= WMI_PEER_QOS; 1690 break; 1691 default: 1692 break; 1693 } 1694 1695 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac peer %pM qos %d\n", 1696 sta->addr, !!(arg->peer_flags & WMI_PEER_QOS)); 1697 } 1698 1699 static bool ath10k_mac_sta_has_11g_rates(struct ieee80211_sta *sta) 1700 { 1701 /* First 4 rates in ath10k_rates are CCK (11b) rates. */ 1702 return sta->supp_rates[IEEE80211_BAND_2GHZ] >> 4; 1703 } 1704 1705 static void ath10k_peer_assoc_h_phymode(struct ath10k *ar, 1706 struct ieee80211_vif *vif, 1707 struct ieee80211_sta *sta, 1708 struct wmi_peer_assoc_complete_arg *arg) 1709 { 1710 enum wmi_phy_mode phymode = MODE_UNKNOWN; 1711 1712 switch (ar->hw->conf.chandef.chan->band) { 1713 case IEEE80211_BAND_2GHZ: 1714 if (sta->vht_cap.vht_supported) { 1715 if (sta->bandwidth == IEEE80211_STA_RX_BW_40) 1716 phymode = MODE_11AC_VHT40; 1717 else 1718 phymode = MODE_11AC_VHT20; 1719 } else if (sta->ht_cap.ht_supported) { 1720 if (sta->bandwidth == IEEE80211_STA_RX_BW_40) 1721 phymode = MODE_11NG_HT40; 1722 else 1723 phymode = MODE_11NG_HT20; 1724 } else if (ath10k_mac_sta_has_11g_rates(sta)) { 1725 phymode = MODE_11G; 1726 } else { 1727 phymode = MODE_11B; 1728 } 1729 1730 break; 1731 case IEEE80211_BAND_5GHZ: 1732 /* 1733 * Check VHT first. 1734 */ 1735 if (sta->vht_cap.vht_supported) { 1736 if (sta->bandwidth == IEEE80211_STA_RX_BW_80) 1737 phymode = MODE_11AC_VHT80; 1738 else if (sta->bandwidth == IEEE80211_STA_RX_BW_40) 1739 phymode = MODE_11AC_VHT40; 1740 else if (sta->bandwidth == IEEE80211_STA_RX_BW_20) 1741 phymode = MODE_11AC_VHT20; 1742 } else if (sta->ht_cap.ht_supported) { 1743 if (sta->bandwidth == IEEE80211_STA_RX_BW_40) 1744 phymode = MODE_11NA_HT40; 1745 else 1746 phymode = MODE_11NA_HT20; 1747 } else { 1748 phymode = MODE_11A; 1749 } 1750 1751 break; 1752 default: 1753 break; 1754 } 1755 1756 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac peer %pM phymode %s\n", 1757 sta->addr, ath10k_wmi_phymode_str(phymode)); 1758 1759 arg->peer_phymode = phymode; 1760 WARN_ON(phymode == MODE_UNKNOWN); 1761 } 1762 1763 static int ath10k_peer_assoc_prepare(struct ath10k *ar, 1764 struct ieee80211_vif *vif, 1765 struct ieee80211_sta *sta, 1766 struct wmi_peer_assoc_complete_arg *arg) 1767 { 1768 lockdep_assert_held(&ar->conf_mutex); 1769 1770 memset(arg, 0, sizeof(*arg)); 1771 1772 ath10k_peer_assoc_h_basic(ar, vif, sta, arg); 1773 ath10k_peer_assoc_h_crypto(ar, vif, arg); 1774 ath10k_peer_assoc_h_rates(ar, sta, arg); 1775 ath10k_peer_assoc_h_ht(ar, sta, arg); 1776 ath10k_peer_assoc_h_vht(ar, sta, arg); 1777 ath10k_peer_assoc_h_qos(ar, vif, sta, arg); 1778 ath10k_peer_assoc_h_phymode(ar, vif, sta, arg); 1779 1780 return 0; 1781 } 1782 1783 static const u32 ath10k_smps_map[] = { 1784 [WLAN_HT_CAP_SM_PS_STATIC] = WMI_PEER_SMPS_STATIC, 1785 [WLAN_HT_CAP_SM_PS_DYNAMIC] = WMI_PEER_SMPS_DYNAMIC, 1786 [WLAN_HT_CAP_SM_PS_INVALID] = WMI_PEER_SMPS_PS_NONE, 1787 [WLAN_HT_CAP_SM_PS_DISABLED] = WMI_PEER_SMPS_PS_NONE, 1788 }; 1789 1790 static int ath10k_setup_peer_smps(struct ath10k *ar, struct ath10k_vif *arvif, 1791 const u8 *addr, 1792 const struct ieee80211_sta_ht_cap *ht_cap) 1793 { 1794 int smps; 1795 1796 if (!ht_cap->ht_supported) 1797 return 0; 1798 1799 smps = ht_cap->cap & IEEE80211_HT_CAP_SM_PS; 1800 smps >>= IEEE80211_HT_CAP_SM_PS_SHIFT; 1801 1802 if (smps >= ARRAY_SIZE(ath10k_smps_map)) 1803 return -EINVAL; 1804 1805 return ath10k_wmi_peer_set_param(ar, arvif->vdev_id, addr, 1806 WMI_PEER_SMPS_STATE, 1807 ath10k_smps_map[smps]); 1808 } 1809 1810 static int ath10k_mac_vif_recalc_txbf(struct ath10k *ar, 1811 struct ieee80211_vif *vif, 1812 struct ieee80211_sta_vht_cap vht_cap) 1813 { 1814 struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif); 1815 int ret; 1816 u32 param; 1817 u32 value; 1818 1819 if (!(ar->vht_cap_info & 1820 (IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE | 1821 IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE | 1822 IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE | 1823 IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE))) 1824 return 0; 1825 1826 param = ar->wmi.vdev_param->txbf; 1827 value = 0; 1828 1829 if (WARN_ON(param == WMI_VDEV_PARAM_UNSUPPORTED)) 1830 return 0; 1831 1832 /* The following logic is correct. If a remote STA advertises support 1833 * for being a beamformer then we should enable us being a beamformee. 1834 */ 1835 1836 if (ar->vht_cap_info & 1837 (IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE | 1838 IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE)) { 1839 if (vht_cap.cap & IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE) 1840 value |= WMI_VDEV_PARAM_TXBF_SU_TX_BFEE; 1841 1842 if (vht_cap.cap & IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE) 1843 value |= WMI_VDEV_PARAM_TXBF_MU_TX_BFEE; 1844 } 1845 1846 if (ar->vht_cap_info & 1847 (IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE | 1848 IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE)) { 1849 if (vht_cap.cap & IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE) 1850 value |= WMI_VDEV_PARAM_TXBF_SU_TX_BFER; 1851 1852 if (vht_cap.cap & IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE) 1853 value |= WMI_VDEV_PARAM_TXBF_MU_TX_BFER; 1854 } 1855 1856 if (value & WMI_VDEV_PARAM_TXBF_MU_TX_BFEE) 1857 value |= WMI_VDEV_PARAM_TXBF_SU_TX_BFEE; 1858 1859 if (value & WMI_VDEV_PARAM_TXBF_MU_TX_BFER) 1860 value |= WMI_VDEV_PARAM_TXBF_SU_TX_BFER; 1861 1862 ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, param, value); 1863 if (ret) { 1864 ath10k_warn(ar, "failed to submit vdev param txbf 0x%x: %d\n", 1865 value, ret); 1866 return ret; 1867 } 1868 1869 return 0; 1870 } 1871 1872 /* can be called only in mac80211 callbacks due to `key_count` usage */ 1873 static void ath10k_bss_assoc(struct ieee80211_hw *hw, 1874 struct ieee80211_vif *vif, 1875 struct ieee80211_bss_conf *bss_conf) 1876 { 1877 struct ath10k *ar = hw->priv; 1878 struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif); 1879 struct ieee80211_sta_ht_cap ht_cap; 1880 struct ieee80211_sta_vht_cap vht_cap; 1881 struct wmi_peer_assoc_complete_arg peer_arg; 1882 struct ieee80211_sta *ap_sta; 1883 int ret; 1884 1885 lockdep_assert_held(&ar->conf_mutex); 1886 1887 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %i assoc bssid %pM aid %d\n", 1888 arvif->vdev_id, arvif->bssid, arvif->aid); 1889 1890 rcu_read_lock(); 1891 1892 ap_sta = ieee80211_find_sta(vif, bss_conf->bssid); 1893 if (!ap_sta) { 1894 ath10k_warn(ar, "failed to find station entry for bss %pM vdev %i\n", 1895 bss_conf->bssid, arvif->vdev_id); 1896 rcu_read_unlock(); 1897 return; 1898 } 1899 1900 /* ap_sta must be accessed only within rcu section which must be left 1901 * before calling ath10k_setup_peer_smps() which might sleep. */ 1902 ht_cap = ap_sta->ht_cap; 1903 vht_cap = ap_sta->vht_cap; 1904 1905 ret = ath10k_peer_assoc_prepare(ar, vif, ap_sta, &peer_arg); 1906 if (ret) { 1907 ath10k_warn(ar, "failed to prepare peer assoc for %pM vdev %i: %d\n", 1908 bss_conf->bssid, arvif->vdev_id, ret); 1909 rcu_read_unlock(); 1910 return; 1911 } 1912 1913 rcu_read_unlock(); 1914 1915 ret = ath10k_wmi_peer_assoc(ar, &peer_arg); 1916 if (ret) { 1917 ath10k_warn(ar, "failed to run peer assoc for %pM vdev %i: %d\n", 1918 bss_conf->bssid, arvif->vdev_id, ret); 1919 return; 1920 } 1921 1922 ret = ath10k_setup_peer_smps(ar, arvif, bss_conf->bssid, &ht_cap); 1923 if (ret) { 1924 ath10k_warn(ar, "failed to setup peer SMPS for vdev %i: %d\n", 1925 arvif->vdev_id, ret); 1926 return; 1927 } 1928 1929 ret = ath10k_mac_vif_recalc_txbf(ar, vif, vht_cap); 1930 if (ret) { 1931 ath10k_warn(ar, "failed to recalc txbf for vdev %i on bss %pM: %d\n", 1932 arvif->vdev_id, bss_conf->bssid, ret); 1933 return; 1934 } 1935 1936 ath10k_dbg(ar, ATH10K_DBG_MAC, 1937 "mac vdev %d up (associated) bssid %pM aid %d\n", 1938 arvif->vdev_id, bss_conf->bssid, bss_conf->aid); 1939 1940 WARN_ON(arvif->is_up); 1941 1942 arvif->aid = bss_conf->aid; 1943 ether_addr_copy(arvif->bssid, bss_conf->bssid); 1944 1945 ret = ath10k_wmi_vdev_up(ar, arvif->vdev_id, arvif->aid, arvif->bssid); 1946 if (ret) { 1947 ath10k_warn(ar, "failed to set vdev %d up: %d\n", 1948 arvif->vdev_id, ret); 1949 return; 1950 } 1951 1952 arvif->is_up = true; 1953 1954 /* Workaround: Some firmware revisions (tested with qca6174 1955 * WLAN.RM.2.0-00073) have buggy powersave state machine and must be 1956 * poked with peer param command. 1957 */ 1958 ret = ath10k_wmi_peer_set_param(ar, arvif->vdev_id, arvif->bssid, 1959 WMI_PEER_DUMMY_VAR, 1); 1960 if (ret) { 1961 ath10k_warn(ar, "failed to poke peer %pM param for ps workaround on vdev %i: %d\n", 1962 arvif->bssid, arvif->vdev_id, ret); 1963 return; 1964 } 1965 } 1966 1967 static void ath10k_bss_disassoc(struct ieee80211_hw *hw, 1968 struct ieee80211_vif *vif) 1969 { 1970 struct ath10k *ar = hw->priv; 1971 struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif); 1972 struct ieee80211_sta_vht_cap vht_cap = {}; 1973 int ret; 1974 1975 lockdep_assert_held(&ar->conf_mutex); 1976 1977 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %i disassoc bssid %pM\n", 1978 arvif->vdev_id, arvif->bssid); 1979 1980 ret = ath10k_wmi_vdev_down(ar, arvif->vdev_id); 1981 if (ret) 1982 ath10k_warn(ar, "faield to down vdev %i: %d\n", 1983 arvif->vdev_id, ret); 1984 1985 arvif->def_wep_key_idx = -1; 1986 1987 ret = ath10k_mac_vif_recalc_txbf(ar, vif, vht_cap); 1988 if (ret) { 1989 ath10k_warn(ar, "failed to recalc txbf for vdev %i: %d\n", 1990 arvif->vdev_id, ret); 1991 return; 1992 } 1993 1994 arvif->is_up = false; 1995 } 1996 1997 static int ath10k_station_assoc(struct ath10k *ar, 1998 struct ieee80211_vif *vif, 1999 struct ieee80211_sta *sta, 2000 bool reassoc) 2001 { 2002 struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif); 2003 struct wmi_peer_assoc_complete_arg peer_arg; 2004 int ret = 0; 2005 2006 lockdep_assert_held(&ar->conf_mutex); 2007 2008 ret = ath10k_peer_assoc_prepare(ar, vif, sta, &peer_arg); 2009 if (ret) { 2010 ath10k_warn(ar, "failed to prepare WMI peer assoc for %pM vdev %i: %i\n", 2011 sta->addr, arvif->vdev_id, ret); 2012 return ret; 2013 } 2014 2015 peer_arg.peer_reassoc = reassoc; 2016 ret = ath10k_wmi_peer_assoc(ar, &peer_arg); 2017 if (ret) { 2018 ath10k_warn(ar, "failed to run peer assoc for STA %pM vdev %i: %d\n", 2019 sta->addr, arvif->vdev_id, ret); 2020 return ret; 2021 } 2022 2023 /* Re-assoc is run only to update supported rates for given station. It 2024 * doesn't make much sense to reconfigure the peer completely. 2025 */ 2026 if (!reassoc) { 2027 ret = ath10k_setup_peer_smps(ar, arvif, sta->addr, 2028 &sta->ht_cap); 2029 if (ret) { 2030 ath10k_warn(ar, "failed to setup peer SMPS for vdev %d: %d\n", 2031 arvif->vdev_id, ret); 2032 return ret; 2033 } 2034 2035 ret = ath10k_peer_assoc_qos_ap(ar, arvif, sta); 2036 if (ret) { 2037 ath10k_warn(ar, "failed to set qos params for STA %pM for vdev %i: %d\n", 2038 sta->addr, arvif->vdev_id, ret); 2039 return ret; 2040 } 2041 2042 if (!sta->wme) { 2043 arvif->num_legacy_stations++; 2044 ret = ath10k_recalc_rtscts_prot(arvif); 2045 if (ret) { 2046 ath10k_warn(ar, "failed to recalculate rts/cts prot for vdev %d: %d\n", 2047 arvif->vdev_id, ret); 2048 return ret; 2049 } 2050 } 2051 2052 /* Plumb cached keys only for static WEP */ 2053 if (arvif->def_wep_key_idx != -1) { 2054 ret = ath10k_install_peer_wep_keys(arvif, sta->addr); 2055 if (ret) { 2056 ath10k_warn(ar, "failed to install peer wep keys for vdev %i: %d\n", 2057 arvif->vdev_id, ret); 2058 return ret; 2059 } 2060 } 2061 } 2062 2063 return ret; 2064 } 2065 2066 static int ath10k_station_disassoc(struct ath10k *ar, 2067 struct ieee80211_vif *vif, 2068 struct ieee80211_sta *sta) 2069 { 2070 struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif); 2071 int ret = 0; 2072 2073 lockdep_assert_held(&ar->conf_mutex); 2074 2075 if (!sta->wme) { 2076 arvif->num_legacy_stations--; 2077 ret = ath10k_recalc_rtscts_prot(arvif); 2078 if (ret) { 2079 ath10k_warn(ar, "failed to recalculate rts/cts prot for vdev %d: %d\n", 2080 arvif->vdev_id, ret); 2081 return ret; 2082 } 2083 } 2084 2085 ret = ath10k_clear_peer_keys(arvif, sta->addr); 2086 if (ret) { 2087 ath10k_warn(ar, "failed to clear all peer wep keys for vdev %i: %d\n", 2088 arvif->vdev_id, ret); 2089 return ret; 2090 } 2091 2092 return ret; 2093 } 2094 2095 /**************/ 2096 /* Regulatory */ 2097 /**************/ 2098 2099 static int ath10k_update_channel_list(struct ath10k *ar) 2100 { 2101 struct ieee80211_hw *hw = ar->hw; 2102 struct ieee80211_supported_band **bands; 2103 enum ieee80211_band band; 2104 struct ieee80211_channel *channel; 2105 struct wmi_scan_chan_list_arg arg = {0}; 2106 struct wmi_channel_arg *ch; 2107 bool passive; 2108 int len; 2109 int ret; 2110 int i; 2111 2112 lockdep_assert_held(&ar->conf_mutex); 2113 2114 bands = hw->wiphy->bands; 2115 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 2116 if (!bands[band]) 2117 continue; 2118 2119 for (i = 0; i < bands[band]->n_channels; i++) { 2120 if (bands[band]->channels[i].flags & 2121 IEEE80211_CHAN_DISABLED) 2122 continue; 2123 2124 arg.n_channels++; 2125 } 2126 } 2127 2128 len = sizeof(struct wmi_channel_arg) * arg.n_channels; 2129 arg.channels = kzalloc(len, GFP_KERNEL); 2130 if (!arg.channels) 2131 return -ENOMEM; 2132 2133 ch = arg.channels; 2134 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 2135 if (!bands[band]) 2136 continue; 2137 2138 for (i = 0; i < bands[band]->n_channels; i++) { 2139 channel = &bands[band]->channels[i]; 2140 2141 if (channel->flags & IEEE80211_CHAN_DISABLED) 2142 continue; 2143 2144 ch->allow_ht = true; 2145 2146 /* FIXME: when should we really allow VHT? */ 2147 ch->allow_vht = true; 2148 2149 ch->allow_ibss = 2150 !(channel->flags & IEEE80211_CHAN_NO_IR); 2151 2152 ch->ht40plus = 2153 !(channel->flags & IEEE80211_CHAN_NO_HT40PLUS); 2154 2155 ch->chan_radar = 2156 !!(channel->flags & IEEE80211_CHAN_RADAR); 2157 2158 passive = channel->flags & IEEE80211_CHAN_NO_IR; 2159 ch->passive = passive; 2160 2161 ch->freq = channel->center_freq; 2162 ch->band_center_freq1 = channel->center_freq; 2163 ch->min_power = 0; 2164 ch->max_power = channel->max_power * 2; 2165 ch->max_reg_power = channel->max_reg_power * 2; 2166 ch->max_antenna_gain = channel->max_antenna_gain * 2; 2167 ch->reg_class_id = 0; /* FIXME */ 2168 2169 /* FIXME: why use only legacy modes, why not any 2170 * HT/VHT modes? Would that even make any 2171 * difference? */ 2172 if (channel->band == IEEE80211_BAND_2GHZ) 2173 ch->mode = MODE_11G; 2174 else 2175 ch->mode = MODE_11A; 2176 2177 if (WARN_ON_ONCE(ch->mode == MODE_UNKNOWN)) 2178 continue; 2179 2180 ath10k_dbg(ar, ATH10K_DBG_WMI, 2181 "mac channel [%zd/%d] freq %d maxpower %d regpower %d antenna %d mode %d\n", 2182 ch - arg.channels, arg.n_channels, 2183 ch->freq, ch->max_power, ch->max_reg_power, 2184 ch->max_antenna_gain, ch->mode); 2185 2186 ch++; 2187 } 2188 } 2189 2190 ret = ath10k_wmi_scan_chan_list(ar, &arg); 2191 kfree(arg.channels); 2192 2193 return ret; 2194 } 2195 2196 static enum wmi_dfs_region 2197 ath10k_mac_get_dfs_region(enum nl80211_dfs_regions dfs_region) 2198 { 2199 switch (dfs_region) { 2200 case NL80211_DFS_UNSET: 2201 return WMI_UNINIT_DFS_DOMAIN; 2202 case NL80211_DFS_FCC: 2203 return WMI_FCC_DFS_DOMAIN; 2204 case NL80211_DFS_ETSI: 2205 return WMI_ETSI_DFS_DOMAIN; 2206 case NL80211_DFS_JP: 2207 return WMI_MKK4_DFS_DOMAIN; 2208 } 2209 return WMI_UNINIT_DFS_DOMAIN; 2210 } 2211 2212 static void ath10k_regd_update(struct ath10k *ar) 2213 { 2214 struct reg_dmn_pair_mapping *regpair; 2215 int ret; 2216 enum wmi_dfs_region wmi_dfs_reg; 2217 enum nl80211_dfs_regions nl_dfs_reg; 2218 2219 lockdep_assert_held(&ar->conf_mutex); 2220 2221 ret = ath10k_update_channel_list(ar); 2222 if (ret) 2223 ath10k_warn(ar, "failed to update channel list: %d\n", ret); 2224 2225 regpair = ar->ath_common.regulatory.regpair; 2226 2227 if (config_enabled(CONFIG_ATH10K_DFS_CERTIFIED) && ar->dfs_detector) { 2228 nl_dfs_reg = ar->dfs_detector->region; 2229 wmi_dfs_reg = ath10k_mac_get_dfs_region(nl_dfs_reg); 2230 } else { 2231 wmi_dfs_reg = WMI_UNINIT_DFS_DOMAIN; 2232 } 2233 2234 /* Target allows setting up per-band regdomain but ath_common provides 2235 * a combined one only */ 2236 ret = ath10k_wmi_pdev_set_regdomain(ar, 2237 regpair->reg_domain, 2238 regpair->reg_domain, /* 2ghz */ 2239 regpair->reg_domain, /* 5ghz */ 2240 regpair->reg_2ghz_ctl, 2241 regpair->reg_5ghz_ctl, 2242 wmi_dfs_reg); 2243 if (ret) 2244 ath10k_warn(ar, "failed to set pdev regdomain: %d\n", ret); 2245 } 2246 2247 static void ath10k_reg_notifier(struct wiphy *wiphy, 2248 struct regulatory_request *request) 2249 { 2250 struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy); 2251 struct ath10k *ar = hw->priv; 2252 bool result; 2253 2254 ath_reg_notifier_apply(wiphy, request, &ar->ath_common.regulatory); 2255 2256 if (config_enabled(CONFIG_ATH10K_DFS_CERTIFIED) && ar->dfs_detector) { 2257 ath10k_dbg(ar, ATH10K_DBG_REGULATORY, "dfs region 0x%x\n", 2258 request->dfs_region); 2259 result = ar->dfs_detector->set_dfs_domain(ar->dfs_detector, 2260 request->dfs_region); 2261 if (!result) 2262 ath10k_warn(ar, "DFS region 0x%X not supported, will trigger radar for every pulse\n", 2263 request->dfs_region); 2264 } 2265 2266 mutex_lock(&ar->conf_mutex); 2267 if (ar->state == ATH10K_STATE_ON) 2268 ath10k_regd_update(ar); 2269 mutex_unlock(&ar->conf_mutex); 2270 } 2271 2272 /***************/ 2273 /* TX handlers */ 2274 /***************/ 2275 2276 static u8 ath10k_tx_h_get_tid(struct ieee80211_hdr *hdr) 2277 { 2278 if (ieee80211_is_mgmt(hdr->frame_control)) 2279 return HTT_DATA_TX_EXT_TID_MGMT; 2280 2281 if (!ieee80211_is_data_qos(hdr->frame_control)) 2282 return HTT_DATA_TX_EXT_TID_NON_QOS_MCAST_BCAST; 2283 2284 if (!is_unicast_ether_addr(ieee80211_get_DA(hdr))) 2285 return HTT_DATA_TX_EXT_TID_NON_QOS_MCAST_BCAST; 2286 2287 return ieee80211_get_qos_ctl(hdr)[0] & IEEE80211_QOS_CTL_TID_MASK; 2288 } 2289 2290 static u8 ath10k_tx_h_get_vdev_id(struct ath10k *ar, struct ieee80211_vif *vif) 2291 { 2292 if (vif) 2293 return ath10k_vif_to_arvif(vif)->vdev_id; 2294 2295 if (ar->monitor_started) 2296 return ar->monitor_vdev_id; 2297 2298 ath10k_warn(ar, "failed to resolve vdev id\n"); 2299 return 0; 2300 } 2301 2302 /* HTT Tx uses Native Wifi tx mode which expects 802.11 frames without QoS 2303 * Control in the header. 2304 */ 2305 static void ath10k_tx_h_nwifi(struct ieee80211_hw *hw, struct sk_buff *skb) 2306 { 2307 struct ieee80211_hdr *hdr = (void *)skb->data; 2308 struct ath10k_skb_cb *cb = ATH10K_SKB_CB(skb); 2309 u8 *qos_ctl; 2310 2311 if (!ieee80211_is_data_qos(hdr->frame_control)) 2312 return; 2313 2314 qos_ctl = ieee80211_get_qos_ctl(hdr); 2315 memmove(skb->data + IEEE80211_QOS_CTL_LEN, 2316 skb->data, (void *)qos_ctl - (void *)skb->data); 2317 skb_pull(skb, IEEE80211_QOS_CTL_LEN); 2318 2319 /* Fw/Hw generates a corrupted QoS Control Field for QoS NullFunc 2320 * frames. Powersave is handled by the fw/hw so QoS NyllFunc frames are 2321 * used only for CQM purposes (e.g. hostapd station keepalive ping) so 2322 * it is safe to downgrade to NullFunc. 2323 */ 2324 hdr = (void *)skb->data; 2325 if (ieee80211_is_qos_nullfunc(hdr->frame_control)) { 2326 hdr->frame_control &= ~__cpu_to_le16(IEEE80211_STYPE_QOS_DATA); 2327 cb->htt.tid = HTT_DATA_TX_EXT_TID_NON_QOS_MCAST_BCAST; 2328 } 2329 } 2330 2331 static void ath10k_tx_h_add_p2p_noa_ie(struct ath10k *ar, 2332 struct ieee80211_vif *vif, 2333 struct sk_buff *skb) 2334 { 2335 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2336 struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif); 2337 2338 /* This is case only for P2P_GO */ 2339 if (arvif->vdev_type != WMI_VDEV_TYPE_AP || 2340 arvif->vdev_subtype != WMI_VDEV_SUBTYPE_P2P_GO) 2341 return; 2342 2343 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control))) { 2344 spin_lock_bh(&ar->data_lock); 2345 if (arvif->u.ap.noa_data) 2346 if (!pskb_expand_head(skb, 0, arvif->u.ap.noa_len, 2347 GFP_ATOMIC)) 2348 memcpy(skb_put(skb, arvif->u.ap.noa_len), 2349 arvif->u.ap.noa_data, 2350 arvif->u.ap.noa_len); 2351 spin_unlock_bh(&ar->data_lock); 2352 } 2353 } 2354 2355 static bool ath10k_mac_need_offchan_tx_work(struct ath10k *ar) 2356 { 2357 /* FIXME: Not really sure since when the behaviour changed. At some 2358 * point new firmware stopped requiring creation of peer entries for 2359 * offchannel tx (and actually creating them causes issues with wmi-htc 2360 * tx credit replenishment and reliability). Assuming it's at least 3.4 2361 * because that's when the `freq` was introduced to TX_FRM HTT command. 2362 */ 2363 return !(ar->htt.target_version_major >= 3 && 2364 ar->htt.target_version_minor >= 4); 2365 } 2366 2367 static void ath10k_tx_htt(struct ath10k *ar, struct sk_buff *skb) 2368 { 2369 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2370 int ret = 0; 2371 2372 if (ar->htt.target_version_major >= 3) { 2373 /* Since HTT 3.0 there is no separate mgmt tx command */ 2374 ret = ath10k_htt_tx(&ar->htt, skb); 2375 goto exit; 2376 } 2377 2378 if (ieee80211_is_mgmt(hdr->frame_control)) { 2379 if (test_bit(ATH10K_FW_FEATURE_HAS_WMI_MGMT_TX, 2380 ar->fw_features)) { 2381 if (skb_queue_len(&ar->wmi_mgmt_tx_queue) >= 2382 ATH10K_MAX_NUM_MGMT_PENDING) { 2383 ath10k_warn(ar, "reached WMI management transmit queue limit\n"); 2384 ret = -EBUSY; 2385 goto exit; 2386 } 2387 2388 skb_queue_tail(&ar->wmi_mgmt_tx_queue, skb); 2389 ieee80211_queue_work(ar->hw, &ar->wmi_mgmt_tx_work); 2390 } else { 2391 ret = ath10k_htt_mgmt_tx(&ar->htt, skb); 2392 } 2393 } else if (!test_bit(ATH10K_FW_FEATURE_HAS_WMI_MGMT_TX, 2394 ar->fw_features) && 2395 ieee80211_is_nullfunc(hdr->frame_control)) { 2396 /* FW does not report tx status properly for NullFunc frames 2397 * unless they are sent through mgmt tx path. mac80211 sends 2398 * those frames when it detects link/beacon loss and depends 2399 * on the tx status to be correct. */ 2400 ret = ath10k_htt_mgmt_tx(&ar->htt, skb); 2401 } else { 2402 ret = ath10k_htt_tx(&ar->htt, skb); 2403 } 2404 2405 exit: 2406 if (ret) { 2407 ath10k_warn(ar, "failed to transmit packet, dropping: %d\n", 2408 ret); 2409 ieee80211_free_txskb(ar->hw, skb); 2410 } 2411 } 2412 2413 void ath10k_offchan_tx_purge(struct ath10k *ar) 2414 { 2415 struct sk_buff *skb; 2416 2417 for (;;) { 2418 skb = skb_dequeue(&ar->offchan_tx_queue); 2419 if (!skb) 2420 break; 2421 2422 ieee80211_free_txskb(ar->hw, skb); 2423 } 2424 } 2425 2426 void ath10k_offchan_tx_work(struct work_struct *work) 2427 { 2428 struct ath10k *ar = container_of(work, struct ath10k, offchan_tx_work); 2429 struct ath10k_peer *peer; 2430 struct ieee80211_hdr *hdr; 2431 struct sk_buff *skb; 2432 const u8 *peer_addr; 2433 int vdev_id; 2434 int ret; 2435 2436 /* FW requirement: We must create a peer before FW will send out 2437 * an offchannel frame. Otherwise the frame will be stuck and 2438 * never transmitted. We delete the peer upon tx completion. 2439 * It is unlikely that a peer for offchannel tx will already be 2440 * present. However it may be in some rare cases so account for that. 2441 * Otherwise we might remove a legitimate peer and break stuff. */ 2442 2443 for (;;) { 2444 skb = skb_dequeue(&ar->offchan_tx_queue); 2445 if (!skb) 2446 break; 2447 2448 mutex_lock(&ar->conf_mutex); 2449 2450 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac offchannel skb %p\n", 2451 skb); 2452 2453 hdr = (struct ieee80211_hdr *)skb->data; 2454 peer_addr = ieee80211_get_DA(hdr); 2455 vdev_id = ATH10K_SKB_CB(skb)->vdev_id; 2456 2457 spin_lock_bh(&ar->data_lock); 2458 peer = ath10k_peer_find(ar, vdev_id, peer_addr); 2459 spin_unlock_bh(&ar->data_lock); 2460 2461 if (peer) 2462 /* FIXME: should this use ath10k_warn()? */ 2463 ath10k_dbg(ar, ATH10K_DBG_MAC, "peer %pM on vdev %d already present\n", 2464 peer_addr, vdev_id); 2465 2466 if (!peer) { 2467 ret = ath10k_peer_create(ar, vdev_id, peer_addr); 2468 if (ret) 2469 ath10k_warn(ar, "failed to create peer %pM on vdev %d: %d\n", 2470 peer_addr, vdev_id, ret); 2471 } 2472 2473 spin_lock_bh(&ar->data_lock); 2474 reinit_completion(&ar->offchan_tx_completed); 2475 ar->offchan_tx_skb = skb; 2476 spin_unlock_bh(&ar->data_lock); 2477 2478 ath10k_tx_htt(ar, skb); 2479 2480 ret = wait_for_completion_timeout(&ar->offchan_tx_completed, 2481 3 * HZ); 2482 if (ret == 0) 2483 ath10k_warn(ar, "timed out waiting for offchannel skb %p\n", 2484 skb); 2485 2486 if (!peer) { 2487 ret = ath10k_peer_delete(ar, vdev_id, peer_addr); 2488 if (ret) 2489 ath10k_warn(ar, "failed to delete peer %pM on vdev %d: %d\n", 2490 peer_addr, vdev_id, ret); 2491 } 2492 2493 mutex_unlock(&ar->conf_mutex); 2494 } 2495 } 2496 2497 void ath10k_mgmt_over_wmi_tx_purge(struct ath10k *ar) 2498 { 2499 struct sk_buff *skb; 2500 2501 for (;;) { 2502 skb = skb_dequeue(&ar->wmi_mgmt_tx_queue); 2503 if (!skb) 2504 break; 2505 2506 ieee80211_free_txskb(ar->hw, skb); 2507 } 2508 } 2509 2510 void ath10k_mgmt_over_wmi_tx_work(struct work_struct *work) 2511 { 2512 struct ath10k *ar = container_of(work, struct ath10k, wmi_mgmt_tx_work); 2513 struct sk_buff *skb; 2514 int ret; 2515 2516 for (;;) { 2517 skb = skb_dequeue(&ar->wmi_mgmt_tx_queue); 2518 if (!skb) 2519 break; 2520 2521 ret = ath10k_wmi_mgmt_tx(ar, skb); 2522 if (ret) { 2523 ath10k_warn(ar, "failed to transmit management frame via WMI: %d\n", 2524 ret); 2525 ieee80211_free_txskb(ar->hw, skb); 2526 } 2527 } 2528 } 2529 2530 /************/ 2531 /* Scanning */ 2532 /************/ 2533 2534 void __ath10k_scan_finish(struct ath10k *ar) 2535 { 2536 lockdep_assert_held(&ar->data_lock); 2537 2538 switch (ar->scan.state) { 2539 case ATH10K_SCAN_IDLE: 2540 break; 2541 case ATH10K_SCAN_RUNNING: 2542 if (ar->scan.is_roc) 2543 ieee80211_remain_on_channel_expired(ar->hw); 2544 /* fall through */ 2545 case ATH10K_SCAN_ABORTING: 2546 if (!ar->scan.is_roc) 2547 ieee80211_scan_completed(ar->hw, 2548 (ar->scan.state == 2549 ATH10K_SCAN_ABORTING)); 2550 /* fall through */ 2551 case ATH10K_SCAN_STARTING: 2552 ar->scan.state = ATH10K_SCAN_IDLE; 2553 ar->scan_channel = NULL; 2554 ath10k_offchan_tx_purge(ar); 2555 cancel_delayed_work(&ar->scan.timeout); 2556 complete_all(&ar->scan.completed); 2557 break; 2558 } 2559 } 2560 2561 void ath10k_scan_finish(struct ath10k *ar) 2562 { 2563 spin_lock_bh(&ar->data_lock); 2564 __ath10k_scan_finish(ar); 2565 spin_unlock_bh(&ar->data_lock); 2566 } 2567 2568 static int ath10k_scan_stop(struct ath10k *ar) 2569 { 2570 struct wmi_stop_scan_arg arg = { 2571 .req_id = 1, /* FIXME */ 2572 .req_type = WMI_SCAN_STOP_ONE, 2573 .u.scan_id = ATH10K_SCAN_ID, 2574 }; 2575 int ret; 2576 2577 lockdep_assert_held(&ar->conf_mutex); 2578 2579 ret = ath10k_wmi_stop_scan(ar, &arg); 2580 if (ret) { 2581 ath10k_warn(ar, "failed to stop wmi scan: %d\n", ret); 2582 goto out; 2583 } 2584 2585 ret = wait_for_completion_timeout(&ar->scan.completed, 3*HZ); 2586 if (ret == 0) { 2587 ath10k_warn(ar, "failed to receive scan abortion completion: timed out\n"); 2588 ret = -ETIMEDOUT; 2589 } else if (ret > 0) { 2590 ret = 0; 2591 } 2592 2593 out: 2594 /* Scan state should be updated upon scan completion but in case 2595 * firmware fails to deliver the event (for whatever reason) it is 2596 * desired to clean up scan state anyway. Firmware may have just 2597 * dropped the scan completion event delivery due to transport pipe 2598 * being overflown with data and/or it can recover on its own before 2599 * next scan request is submitted. 2600 */ 2601 spin_lock_bh(&ar->data_lock); 2602 if (ar->scan.state != ATH10K_SCAN_IDLE) 2603 __ath10k_scan_finish(ar); 2604 spin_unlock_bh(&ar->data_lock); 2605 2606 return ret; 2607 } 2608 2609 static void ath10k_scan_abort(struct ath10k *ar) 2610 { 2611 int ret; 2612 2613 lockdep_assert_held(&ar->conf_mutex); 2614 2615 spin_lock_bh(&ar->data_lock); 2616 2617 switch (ar->scan.state) { 2618 case ATH10K_SCAN_IDLE: 2619 /* This can happen if timeout worker kicked in and called 2620 * abortion while scan completion was being processed. 2621 */ 2622 break; 2623 case ATH10K_SCAN_STARTING: 2624 case ATH10K_SCAN_ABORTING: 2625 ath10k_warn(ar, "refusing scan abortion due to invalid scan state: %s (%d)\n", 2626 ath10k_scan_state_str(ar->scan.state), 2627 ar->scan.state); 2628 break; 2629 case ATH10K_SCAN_RUNNING: 2630 ar->scan.state = ATH10K_SCAN_ABORTING; 2631 spin_unlock_bh(&ar->data_lock); 2632 2633 ret = ath10k_scan_stop(ar); 2634 if (ret) 2635 ath10k_warn(ar, "failed to abort scan: %d\n", ret); 2636 2637 spin_lock_bh(&ar->data_lock); 2638 break; 2639 } 2640 2641 spin_unlock_bh(&ar->data_lock); 2642 } 2643 2644 void ath10k_scan_timeout_work(struct work_struct *work) 2645 { 2646 struct ath10k *ar = container_of(work, struct ath10k, 2647 scan.timeout.work); 2648 2649 mutex_lock(&ar->conf_mutex); 2650 ath10k_scan_abort(ar); 2651 mutex_unlock(&ar->conf_mutex); 2652 } 2653 2654 static int ath10k_start_scan(struct ath10k *ar, 2655 const struct wmi_start_scan_arg *arg) 2656 { 2657 int ret; 2658 2659 lockdep_assert_held(&ar->conf_mutex); 2660 2661 ret = ath10k_wmi_start_scan(ar, arg); 2662 if (ret) 2663 return ret; 2664 2665 ret = wait_for_completion_timeout(&ar->scan.started, 1*HZ); 2666 if (ret == 0) { 2667 ret = ath10k_scan_stop(ar); 2668 if (ret) 2669 ath10k_warn(ar, "failed to stop scan: %d\n", ret); 2670 2671 return -ETIMEDOUT; 2672 } 2673 2674 /* If we failed to start the scan, return error code at 2675 * this point. This is probably due to some issue in the 2676 * firmware, but no need to wedge the driver due to that... 2677 */ 2678 spin_lock_bh(&ar->data_lock); 2679 if (ar->scan.state == ATH10K_SCAN_IDLE) { 2680 spin_unlock_bh(&ar->data_lock); 2681 return -EINVAL; 2682 } 2683 spin_unlock_bh(&ar->data_lock); 2684 2685 /* Add a 200ms margin to account for event/command processing */ 2686 ieee80211_queue_delayed_work(ar->hw, &ar->scan.timeout, 2687 msecs_to_jiffies(arg->max_scan_time+200)); 2688 return 0; 2689 } 2690 2691 /**********************/ 2692 /* mac80211 callbacks */ 2693 /**********************/ 2694 2695 static void ath10k_tx(struct ieee80211_hw *hw, 2696 struct ieee80211_tx_control *control, 2697 struct sk_buff *skb) 2698 { 2699 struct ath10k *ar = hw->priv; 2700 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 2701 struct ieee80211_vif *vif = info->control.vif; 2702 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2703 2704 /* We should disable CCK RATE due to P2P */ 2705 if (info->flags & IEEE80211_TX_CTL_NO_CCK_RATE) 2706 ath10k_dbg(ar, ATH10K_DBG_MAC, "IEEE80211_TX_CTL_NO_CCK_RATE\n"); 2707 2708 ATH10K_SKB_CB(skb)->htt.is_offchan = false; 2709 ATH10K_SKB_CB(skb)->htt.tid = ath10k_tx_h_get_tid(hdr); 2710 ATH10K_SKB_CB(skb)->vdev_id = ath10k_tx_h_get_vdev_id(ar, vif); 2711 2712 /* it makes no sense to process injected frames like that */ 2713 if (vif && vif->type != NL80211_IFTYPE_MONITOR) { 2714 ath10k_tx_h_nwifi(hw, skb); 2715 ath10k_tx_h_add_p2p_noa_ie(ar, vif, skb); 2716 ath10k_tx_h_seq_no(vif, skb); 2717 } 2718 2719 if (info->flags & IEEE80211_TX_CTL_TX_OFFCHAN) { 2720 spin_lock_bh(&ar->data_lock); 2721 ATH10K_SKB_CB(skb)->htt.freq = ar->scan.roc_freq; 2722 ATH10K_SKB_CB(skb)->vdev_id = ar->scan.vdev_id; 2723 spin_unlock_bh(&ar->data_lock); 2724 2725 if (ath10k_mac_need_offchan_tx_work(ar)) { 2726 ATH10K_SKB_CB(skb)->htt.freq = 0; 2727 ATH10K_SKB_CB(skb)->htt.is_offchan = true; 2728 2729 ath10k_dbg(ar, ATH10K_DBG_MAC, "queued offchannel skb %p\n", 2730 skb); 2731 2732 skb_queue_tail(&ar->offchan_tx_queue, skb); 2733 ieee80211_queue_work(hw, &ar->offchan_tx_work); 2734 return; 2735 } 2736 } 2737 2738 ath10k_tx_htt(ar, skb); 2739 } 2740 2741 /* Must not be called with conf_mutex held as workers can use that also. */ 2742 void ath10k_drain_tx(struct ath10k *ar) 2743 { 2744 /* make sure rcu-protected mac80211 tx path itself is drained */ 2745 synchronize_net(); 2746 2747 ath10k_offchan_tx_purge(ar); 2748 ath10k_mgmt_over_wmi_tx_purge(ar); 2749 2750 cancel_work_sync(&ar->offchan_tx_work); 2751 cancel_work_sync(&ar->wmi_mgmt_tx_work); 2752 } 2753 2754 void ath10k_halt(struct ath10k *ar) 2755 { 2756 struct ath10k_vif *arvif; 2757 2758 lockdep_assert_held(&ar->conf_mutex); 2759 2760 clear_bit(ATH10K_CAC_RUNNING, &ar->dev_flags); 2761 ar->filter_flags = 0; 2762 ar->monitor = false; 2763 2764 if (ar->monitor_started) 2765 ath10k_monitor_stop(ar); 2766 2767 ar->monitor_started = false; 2768 2769 ath10k_scan_finish(ar); 2770 ath10k_peer_cleanup_all(ar); 2771 ath10k_core_stop(ar); 2772 ath10k_hif_power_down(ar); 2773 2774 spin_lock_bh(&ar->data_lock); 2775 list_for_each_entry(arvif, &ar->arvifs, list) 2776 ath10k_mac_vif_beacon_cleanup(arvif); 2777 spin_unlock_bh(&ar->data_lock); 2778 } 2779 2780 static int ath10k_get_antenna(struct ieee80211_hw *hw, u32 *tx_ant, u32 *rx_ant) 2781 { 2782 struct ath10k *ar = hw->priv; 2783 2784 mutex_lock(&ar->conf_mutex); 2785 2786 if (ar->cfg_tx_chainmask) { 2787 *tx_ant = ar->cfg_tx_chainmask; 2788 *rx_ant = ar->cfg_rx_chainmask; 2789 } else { 2790 *tx_ant = ar->supp_tx_chainmask; 2791 *rx_ant = ar->supp_rx_chainmask; 2792 } 2793 2794 mutex_unlock(&ar->conf_mutex); 2795 2796 return 0; 2797 } 2798 2799 static void ath10k_check_chain_mask(struct ath10k *ar, u32 cm, const char *dbg) 2800 { 2801 /* It is not clear that allowing gaps in chainmask 2802 * is helpful. Probably it will not do what user 2803 * is hoping for, so warn in that case. 2804 */ 2805 if (cm == 15 || cm == 7 || cm == 3 || cm == 1 || cm == 0) 2806 return; 2807 2808 ath10k_warn(ar, "mac %s antenna chainmask may be invalid: 0x%x. Suggested values: 15, 7, 3, 1 or 0.\n", 2809 dbg, cm); 2810 } 2811 2812 static int __ath10k_set_antenna(struct ath10k *ar, u32 tx_ant, u32 rx_ant) 2813 { 2814 int ret; 2815 2816 lockdep_assert_held(&ar->conf_mutex); 2817 2818 ath10k_check_chain_mask(ar, tx_ant, "tx"); 2819 ath10k_check_chain_mask(ar, rx_ant, "rx"); 2820 2821 ar->cfg_tx_chainmask = tx_ant; 2822 ar->cfg_rx_chainmask = rx_ant; 2823 2824 if ((ar->state != ATH10K_STATE_ON) && 2825 (ar->state != ATH10K_STATE_RESTARTED)) 2826 return 0; 2827 2828 ret = ath10k_wmi_pdev_set_param(ar, ar->wmi.pdev_param->tx_chain_mask, 2829 tx_ant); 2830 if (ret) { 2831 ath10k_warn(ar, "failed to set tx-chainmask: %d, req 0x%x\n", 2832 ret, tx_ant); 2833 return ret; 2834 } 2835 2836 ret = ath10k_wmi_pdev_set_param(ar, ar->wmi.pdev_param->rx_chain_mask, 2837 rx_ant); 2838 if (ret) { 2839 ath10k_warn(ar, "failed to set rx-chainmask: %d, req 0x%x\n", 2840 ret, rx_ant); 2841 return ret; 2842 } 2843 2844 return 0; 2845 } 2846 2847 static int ath10k_set_antenna(struct ieee80211_hw *hw, u32 tx_ant, u32 rx_ant) 2848 { 2849 struct ath10k *ar = hw->priv; 2850 int ret; 2851 2852 mutex_lock(&ar->conf_mutex); 2853 ret = __ath10k_set_antenna(ar, tx_ant, rx_ant); 2854 mutex_unlock(&ar->conf_mutex); 2855 return ret; 2856 } 2857 2858 static int ath10k_start(struct ieee80211_hw *hw) 2859 { 2860 struct ath10k *ar = hw->priv; 2861 int ret = 0; 2862 2863 /* 2864 * This makes sense only when restarting hw. It is harmless to call 2865 * uncoditionally. This is necessary to make sure no HTT/WMI tx 2866 * commands will be submitted while restarting. 2867 */ 2868 ath10k_drain_tx(ar); 2869 2870 mutex_lock(&ar->conf_mutex); 2871 2872 switch (ar->state) { 2873 case ATH10K_STATE_OFF: 2874 ar->state = ATH10K_STATE_ON; 2875 break; 2876 case ATH10K_STATE_RESTARTING: 2877 ath10k_halt(ar); 2878 ar->state = ATH10K_STATE_RESTARTED; 2879 break; 2880 case ATH10K_STATE_ON: 2881 case ATH10K_STATE_RESTARTED: 2882 case ATH10K_STATE_WEDGED: 2883 WARN_ON(1); 2884 ret = -EINVAL; 2885 goto err; 2886 case ATH10K_STATE_UTF: 2887 ret = -EBUSY; 2888 goto err; 2889 } 2890 2891 ret = ath10k_hif_power_up(ar); 2892 if (ret) { 2893 ath10k_err(ar, "Could not init hif: %d\n", ret); 2894 goto err_off; 2895 } 2896 2897 ret = ath10k_core_start(ar, ATH10K_FIRMWARE_MODE_NORMAL); 2898 if (ret) { 2899 ath10k_err(ar, "Could not init core: %d\n", ret); 2900 goto err_power_down; 2901 } 2902 2903 ret = ath10k_wmi_pdev_set_param(ar, ar->wmi.pdev_param->pmf_qos, 1); 2904 if (ret) { 2905 ath10k_warn(ar, "failed to enable PMF QOS: %d\n", ret); 2906 goto err_core_stop; 2907 } 2908 2909 ret = ath10k_wmi_pdev_set_param(ar, ar->wmi.pdev_param->dynamic_bw, 1); 2910 if (ret) { 2911 ath10k_warn(ar, "failed to enable dynamic BW: %d\n", ret); 2912 goto err_core_stop; 2913 } 2914 2915 if (ar->cfg_tx_chainmask) 2916 __ath10k_set_antenna(ar, ar->cfg_tx_chainmask, 2917 ar->cfg_rx_chainmask); 2918 2919 /* 2920 * By default FW set ARP frames ac to voice (6). In that case ARP 2921 * exchange is not working properly for UAPSD enabled AP. ARP requests 2922 * which arrives with access category 0 are processed by network stack 2923 * and send back with access category 0, but FW changes access category 2924 * to 6. Set ARP frames access category to best effort (0) solves 2925 * this problem. 2926 */ 2927 2928 ret = ath10k_wmi_pdev_set_param(ar, 2929 ar->wmi.pdev_param->arp_ac_override, 0); 2930 if (ret) { 2931 ath10k_warn(ar, "failed to set arp ac override parameter: %d\n", 2932 ret); 2933 goto err_core_stop; 2934 } 2935 2936 ar->num_started_vdevs = 0; 2937 ath10k_regd_update(ar); 2938 2939 ath10k_spectral_start(ar); 2940 2941 mutex_unlock(&ar->conf_mutex); 2942 return 0; 2943 2944 err_core_stop: 2945 ath10k_core_stop(ar); 2946 2947 err_power_down: 2948 ath10k_hif_power_down(ar); 2949 2950 err_off: 2951 ar->state = ATH10K_STATE_OFF; 2952 2953 err: 2954 mutex_unlock(&ar->conf_mutex); 2955 return ret; 2956 } 2957 2958 static void ath10k_stop(struct ieee80211_hw *hw) 2959 { 2960 struct ath10k *ar = hw->priv; 2961 2962 ath10k_drain_tx(ar); 2963 2964 mutex_lock(&ar->conf_mutex); 2965 if (ar->state != ATH10K_STATE_OFF) { 2966 ath10k_halt(ar); 2967 ar->state = ATH10K_STATE_OFF; 2968 } 2969 mutex_unlock(&ar->conf_mutex); 2970 2971 cancel_delayed_work_sync(&ar->scan.timeout); 2972 cancel_work_sync(&ar->restart_work); 2973 } 2974 2975 static int ath10k_config_ps(struct ath10k *ar) 2976 { 2977 struct ath10k_vif *arvif; 2978 int ret = 0; 2979 2980 lockdep_assert_held(&ar->conf_mutex); 2981 2982 list_for_each_entry(arvif, &ar->arvifs, list) { 2983 ret = ath10k_mac_vif_setup_ps(arvif); 2984 if (ret) { 2985 ath10k_warn(ar, "failed to setup powersave: %d\n", ret); 2986 break; 2987 } 2988 } 2989 2990 return ret; 2991 } 2992 2993 static const char *chandef_get_width(enum nl80211_chan_width width) 2994 { 2995 switch (width) { 2996 case NL80211_CHAN_WIDTH_20_NOHT: 2997 return "20 (noht)"; 2998 case NL80211_CHAN_WIDTH_20: 2999 return "20"; 3000 case NL80211_CHAN_WIDTH_40: 3001 return "40"; 3002 case NL80211_CHAN_WIDTH_80: 3003 return "80"; 3004 case NL80211_CHAN_WIDTH_80P80: 3005 return "80+80"; 3006 case NL80211_CHAN_WIDTH_160: 3007 return "160"; 3008 case NL80211_CHAN_WIDTH_5: 3009 return "5"; 3010 case NL80211_CHAN_WIDTH_10: 3011 return "10"; 3012 } 3013 return "?"; 3014 } 3015 3016 static void ath10k_config_chan(struct ath10k *ar) 3017 { 3018 struct ath10k_vif *arvif; 3019 int ret; 3020 3021 lockdep_assert_held(&ar->conf_mutex); 3022 3023 ath10k_dbg(ar, ATH10K_DBG_MAC, 3024 "mac config channel to %dMHz (cf1 %dMHz cf2 %dMHz width %s)\n", 3025 ar->chandef.chan->center_freq, 3026 ar->chandef.center_freq1, 3027 ar->chandef.center_freq2, 3028 chandef_get_width(ar->chandef.width)); 3029 3030 /* First stop monitor interface. Some FW versions crash if there's a 3031 * lone monitor interface. */ 3032 if (ar->monitor_started) 3033 ath10k_monitor_stop(ar); 3034 3035 list_for_each_entry(arvif, &ar->arvifs, list) { 3036 if (!arvif->is_started) 3037 continue; 3038 3039 if (!arvif->is_up) 3040 continue; 3041 3042 if (arvif->vdev_type == WMI_VDEV_TYPE_MONITOR) 3043 continue; 3044 3045 ret = ath10k_wmi_vdev_down(ar, arvif->vdev_id); 3046 if (ret) { 3047 ath10k_warn(ar, "failed to down vdev %d: %d\n", 3048 arvif->vdev_id, ret); 3049 continue; 3050 } 3051 } 3052 3053 /* all vdevs are downed now - attempt to restart and re-up them */ 3054 3055 list_for_each_entry(arvif, &ar->arvifs, list) { 3056 if (!arvif->is_started) 3057 continue; 3058 3059 if (arvif->vdev_type == WMI_VDEV_TYPE_MONITOR) 3060 continue; 3061 3062 ret = ath10k_vdev_restart(arvif); 3063 if (ret) { 3064 ath10k_warn(ar, "failed to restart vdev %d: %d\n", 3065 arvif->vdev_id, ret); 3066 continue; 3067 } 3068 3069 if (!arvif->is_up) 3070 continue; 3071 3072 ret = ath10k_wmi_vdev_up(arvif->ar, arvif->vdev_id, arvif->aid, 3073 arvif->bssid); 3074 if (ret) { 3075 ath10k_warn(ar, "failed to bring vdev up %d: %d\n", 3076 arvif->vdev_id, ret); 3077 continue; 3078 } 3079 } 3080 3081 ath10k_monitor_recalc(ar); 3082 } 3083 3084 static int ath10k_mac_txpower_setup(struct ath10k *ar, int txpower) 3085 { 3086 int ret; 3087 u32 param; 3088 3089 lockdep_assert_held(&ar->conf_mutex); 3090 3091 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac txpower %d\n", txpower); 3092 3093 param = ar->wmi.pdev_param->txpower_limit2g; 3094 ret = ath10k_wmi_pdev_set_param(ar, param, txpower * 2); 3095 if (ret) { 3096 ath10k_warn(ar, "failed to set 2g txpower %d: %d\n", 3097 txpower, ret); 3098 return ret; 3099 } 3100 3101 param = ar->wmi.pdev_param->txpower_limit5g; 3102 ret = ath10k_wmi_pdev_set_param(ar, param, txpower * 2); 3103 if (ret) { 3104 ath10k_warn(ar, "failed to set 5g txpower %d: %d\n", 3105 txpower, ret); 3106 return ret; 3107 } 3108 3109 return 0; 3110 } 3111 3112 static int ath10k_mac_txpower_recalc(struct ath10k *ar) 3113 { 3114 struct ath10k_vif *arvif; 3115 int ret, txpower = -1; 3116 3117 lockdep_assert_held(&ar->conf_mutex); 3118 3119 list_for_each_entry(arvif, &ar->arvifs, list) { 3120 WARN_ON(arvif->txpower < 0); 3121 3122 if (txpower == -1) 3123 txpower = arvif->txpower; 3124 else 3125 txpower = min(txpower, arvif->txpower); 3126 } 3127 3128 if (WARN_ON(txpower == -1)) 3129 return -EINVAL; 3130 3131 ret = ath10k_mac_txpower_setup(ar, txpower); 3132 if (ret) { 3133 ath10k_warn(ar, "failed to setup tx power %d: %d\n", 3134 txpower, ret); 3135 return ret; 3136 } 3137 3138 return 0; 3139 } 3140 3141 static int ath10k_config(struct ieee80211_hw *hw, u32 changed) 3142 { 3143 struct ath10k *ar = hw->priv; 3144 struct ieee80211_conf *conf = &hw->conf; 3145 int ret = 0; 3146 3147 mutex_lock(&ar->conf_mutex); 3148 3149 if (changed & IEEE80211_CONF_CHANGE_CHANNEL) { 3150 ath10k_dbg(ar, ATH10K_DBG_MAC, 3151 "mac config channel %dMHz flags 0x%x radar %d\n", 3152 conf->chandef.chan->center_freq, 3153 conf->chandef.chan->flags, 3154 conf->radar_enabled); 3155 3156 spin_lock_bh(&ar->data_lock); 3157 ar->rx_channel = conf->chandef.chan; 3158 spin_unlock_bh(&ar->data_lock); 3159 3160 ar->radar_enabled = conf->radar_enabled; 3161 ath10k_recalc_radar_detection(ar); 3162 3163 if (!cfg80211_chandef_identical(&ar->chandef, &conf->chandef)) { 3164 ar->chandef = conf->chandef; 3165 ath10k_config_chan(ar); 3166 } 3167 } 3168 3169 if (changed & IEEE80211_CONF_CHANGE_PS) 3170 ath10k_config_ps(ar); 3171 3172 if (changed & IEEE80211_CONF_CHANGE_MONITOR) { 3173 ar->monitor = conf->flags & IEEE80211_CONF_MONITOR; 3174 ret = ath10k_monitor_recalc(ar); 3175 if (ret) 3176 ath10k_warn(ar, "failed to recalc monitor: %d\n", ret); 3177 } 3178 3179 mutex_unlock(&ar->conf_mutex); 3180 return ret; 3181 } 3182 3183 static u32 get_nss_from_chainmask(u16 chain_mask) 3184 { 3185 if ((chain_mask & 0x15) == 0x15) 3186 return 4; 3187 else if ((chain_mask & 0x7) == 0x7) 3188 return 3; 3189 else if ((chain_mask & 0x3) == 0x3) 3190 return 2; 3191 return 1; 3192 } 3193 3194 /* 3195 * TODO: 3196 * Figure out how to handle WMI_VDEV_SUBTYPE_P2P_DEVICE, 3197 * because we will send mgmt frames without CCK. This requirement 3198 * for P2P_FIND/GO_NEG should be handled by checking CCK flag 3199 * in the TX packet. 3200 */ 3201 static int ath10k_add_interface(struct ieee80211_hw *hw, 3202 struct ieee80211_vif *vif) 3203 { 3204 struct ath10k *ar = hw->priv; 3205 struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif); 3206 enum wmi_sta_powersave_param param; 3207 int ret = 0; 3208 u32 value; 3209 int bit; 3210 u32 vdev_param; 3211 3212 vif->driver_flags |= IEEE80211_VIF_SUPPORTS_UAPSD; 3213 3214 mutex_lock(&ar->conf_mutex); 3215 3216 memset(arvif, 0, sizeof(*arvif)); 3217 3218 arvif->ar = ar; 3219 arvif->vif = vif; 3220 3221 INIT_LIST_HEAD(&arvif->list); 3222 3223 if (ar->free_vdev_map == 0) { 3224 ath10k_warn(ar, "Free vdev map is empty, no more interfaces allowed.\n"); 3225 ret = -EBUSY; 3226 goto err; 3227 } 3228 bit = __ffs64(ar->free_vdev_map); 3229 3230 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac create vdev %i map %llx\n", 3231 bit, ar->free_vdev_map); 3232 3233 arvif->vdev_id = bit; 3234 arvif->vdev_subtype = WMI_VDEV_SUBTYPE_NONE; 3235 3236 switch (vif->type) { 3237 case NL80211_IFTYPE_P2P_DEVICE: 3238 arvif->vdev_type = WMI_VDEV_TYPE_STA; 3239 arvif->vdev_subtype = WMI_VDEV_SUBTYPE_P2P_DEVICE; 3240 break; 3241 case NL80211_IFTYPE_UNSPECIFIED: 3242 case NL80211_IFTYPE_STATION: 3243 arvif->vdev_type = WMI_VDEV_TYPE_STA; 3244 if (vif->p2p) 3245 arvif->vdev_subtype = WMI_VDEV_SUBTYPE_P2P_CLIENT; 3246 break; 3247 case NL80211_IFTYPE_ADHOC: 3248 arvif->vdev_type = WMI_VDEV_TYPE_IBSS; 3249 break; 3250 case NL80211_IFTYPE_AP: 3251 arvif->vdev_type = WMI_VDEV_TYPE_AP; 3252 3253 if (vif->p2p) 3254 arvif->vdev_subtype = WMI_VDEV_SUBTYPE_P2P_GO; 3255 break; 3256 case NL80211_IFTYPE_MONITOR: 3257 arvif->vdev_type = WMI_VDEV_TYPE_MONITOR; 3258 break; 3259 default: 3260 WARN_ON(1); 3261 break; 3262 } 3263 3264 /* Some firmware revisions don't wait for beacon tx completion before 3265 * sending another SWBA event. This could lead to hardware using old 3266 * (freed) beacon data in some cases, e.g. tx credit starvation 3267 * combined with missed TBTT. This is very very rare. 3268 * 3269 * On non-IOMMU-enabled hosts this could be a possible security issue 3270 * because hw could beacon some random data on the air. On 3271 * IOMMU-enabled hosts DMAR faults would occur in most cases and target 3272 * device would crash. 3273 * 3274 * Since there are no beacon tx completions (implicit nor explicit) 3275 * propagated to host the only workaround for this is to allocate a 3276 * DMA-coherent buffer for a lifetime of a vif and use it for all 3277 * beacon tx commands. Worst case for this approach is some beacons may 3278 * become corrupted, e.g. have garbled IEs or out-of-date TIM bitmap. 3279 */ 3280 if (vif->type == NL80211_IFTYPE_ADHOC || 3281 vif->type == NL80211_IFTYPE_AP) { 3282 arvif->beacon_buf = dma_zalloc_coherent(ar->dev, 3283 IEEE80211_MAX_FRAME_LEN, 3284 &arvif->beacon_paddr, 3285 GFP_ATOMIC); 3286 if (!arvif->beacon_buf) { 3287 ret = -ENOMEM; 3288 ath10k_warn(ar, "failed to allocate beacon buffer: %d\n", 3289 ret); 3290 goto err; 3291 } 3292 } 3293 3294 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev create %d (add interface) type %d subtype %d bcnmode %s\n", 3295 arvif->vdev_id, arvif->vdev_type, arvif->vdev_subtype, 3296 arvif->beacon_buf ? "single-buf" : "per-skb"); 3297 3298 ret = ath10k_wmi_vdev_create(ar, arvif->vdev_id, arvif->vdev_type, 3299 arvif->vdev_subtype, vif->addr); 3300 if (ret) { 3301 ath10k_warn(ar, "failed to create WMI vdev %i: %d\n", 3302 arvif->vdev_id, ret); 3303 goto err; 3304 } 3305 3306 ar->free_vdev_map &= ~(1LL << arvif->vdev_id); 3307 list_add(&arvif->list, &ar->arvifs); 3308 3309 /* It makes no sense to have firmware do keepalives. mac80211 already 3310 * takes care of this with idle connection polling. 3311 */ 3312 ret = ath10k_mac_vif_disable_keepalive(arvif); 3313 if (ret) { 3314 ath10k_warn(ar, "failed to disable keepalive on vdev %i: %d\n", 3315 arvif->vdev_id, ret); 3316 goto err_vdev_delete; 3317 } 3318 3319 arvif->def_wep_key_idx = -1; 3320 3321 vdev_param = ar->wmi.vdev_param->tx_encap_type; 3322 ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, 3323 ATH10K_HW_TXRX_NATIVE_WIFI); 3324 /* 10.X firmware does not support this VDEV parameter. Do not warn */ 3325 if (ret && ret != -EOPNOTSUPP) { 3326 ath10k_warn(ar, "failed to set vdev %i TX encapsulation: %d\n", 3327 arvif->vdev_id, ret); 3328 goto err_vdev_delete; 3329 } 3330 3331 if (ar->cfg_tx_chainmask) { 3332 u16 nss = get_nss_from_chainmask(ar->cfg_tx_chainmask); 3333 3334 vdev_param = ar->wmi.vdev_param->nss; 3335 ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, 3336 nss); 3337 if (ret) { 3338 ath10k_warn(ar, "failed to set vdev %i chainmask 0x%x, nss %i: %d\n", 3339 arvif->vdev_id, ar->cfg_tx_chainmask, nss, 3340 ret); 3341 goto err_vdev_delete; 3342 } 3343 } 3344 3345 if (arvif->vdev_type == WMI_VDEV_TYPE_AP) { 3346 ret = ath10k_peer_create(ar, arvif->vdev_id, vif->addr); 3347 if (ret) { 3348 ath10k_warn(ar, "failed to create vdev %i peer for AP: %d\n", 3349 arvif->vdev_id, ret); 3350 goto err_vdev_delete; 3351 } 3352 3353 ret = ath10k_mac_set_kickout(arvif); 3354 if (ret) { 3355 ath10k_warn(ar, "failed to set vdev %i kickout parameters: %d\n", 3356 arvif->vdev_id, ret); 3357 goto err_peer_delete; 3358 } 3359 } 3360 3361 if (arvif->vdev_type == WMI_VDEV_TYPE_STA) { 3362 param = WMI_STA_PS_PARAM_RX_WAKE_POLICY; 3363 value = WMI_STA_PS_RX_WAKE_POLICY_WAKE; 3364 ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id, 3365 param, value); 3366 if (ret) { 3367 ath10k_warn(ar, "failed to set vdev %i RX wake policy: %d\n", 3368 arvif->vdev_id, ret); 3369 goto err_peer_delete; 3370 } 3371 3372 ret = ath10k_mac_vif_recalc_ps_wake_threshold(arvif); 3373 if (ret) { 3374 ath10k_warn(ar, "failed to recalc ps wake threshold on vdev %i: %d\n", 3375 arvif->vdev_id, ret); 3376 goto err_peer_delete; 3377 } 3378 3379 ret = ath10k_mac_vif_recalc_ps_poll_count(arvif); 3380 if (ret) { 3381 ath10k_warn(ar, "failed to recalc ps poll count on vdev %i: %d\n", 3382 arvif->vdev_id, ret); 3383 goto err_peer_delete; 3384 } 3385 } 3386 3387 ret = ath10k_mac_set_rts(arvif, ar->hw->wiphy->rts_threshold); 3388 if (ret) { 3389 ath10k_warn(ar, "failed to set rts threshold for vdev %d: %d\n", 3390 arvif->vdev_id, ret); 3391 goto err_peer_delete; 3392 } 3393 3394 ret = ath10k_mac_set_frag(arvif, ar->hw->wiphy->frag_threshold); 3395 if (ret) { 3396 ath10k_warn(ar, "failed to set frag threshold for vdev %d: %d\n", 3397 arvif->vdev_id, ret); 3398 goto err_peer_delete; 3399 } 3400 3401 arvif->txpower = vif->bss_conf.txpower; 3402 ret = ath10k_mac_txpower_recalc(ar); 3403 if (ret) { 3404 ath10k_warn(ar, "failed to recalc tx power: %d\n", ret); 3405 goto err_peer_delete; 3406 } 3407 3408 mutex_unlock(&ar->conf_mutex); 3409 return 0; 3410 3411 err_peer_delete: 3412 if (arvif->vdev_type == WMI_VDEV_TYPE_AP) 3413 ath10k_wmi_peer_delete(ar, arvif->vdev_id, vif->addr); 3414 3415 err_vdev_delete: 3416 ath10k_wmi_vdev_delete(ar, arvif->vdev_id); 3417 ar->free_vdev_map |= 1LL << arvif->vdev_id; 3418 list_del(&arvif->list); 3419 3420 err: 3421 if (arvif->beacon_buf) { 3422 dma_free_coherent(ar->dev, IEEE80211_MAX_FRAME_LEN, 3423 arvif->beacon_buf, arvif->beacon_paddr); 3424 arvif->beacon_buf = NULL; 3425 } 3426 3427 mutex_unlock(&ar->conf_mutex); 3428 3429 return ret; 3430 } 3431 3432 static void ath10k_remove_interface(struct ieee80211_hw *hw, 3433 struct ieee80211_vif *vif) 3434 { 3435 struct ath10k *ar = hw->priv; 3436 struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif); 3437 int ret; 3438 3439 mutex_lock(&ar->conf_mutex); 3440 3441 spin_lock_bh(&ar->data_lock); 3442 ath10k_mac_vif_beacon_cleanup(arvif); 3443 spin_unlock_bh(&ar->data_lock); 3444 3445 ret = ath10k_spectral_vif_stop(arvif); 3446 if (ret) 3447 ath10k_warn(ar, "failed to stop spectral for vdev %i: %d\n", 3448 arvif->vdev_id, ret); 3449 3450 ar->free_vdev_map |= 1LL << arvif->vdev_id; 3451 list_del(&arvif->list); 3452 3453 if (arvif->vdev_type == WMI_VDEV_TYPE_AP) { 3454 ret = ath10k_wmi_peer_delete(arvif->ar, arvif->vdev_id, 3455 vif->addr); 3456 if (ret) 3457 ath10k_warn(ar, "failed to submit AP self-peer removal on vdev %i: %d\n", 3458 arvif->vdev_id, ret); 3459 3460 kfree(arvif->u.ap.noa_data); 3461 } 3462 3463 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %i delete (remove interface)\n", 3464 arvif->vdev_id); 3465 3466 ret = ath10k_wmi_vdev_delete(ar, arvif->vdev_id); 3467 if (ret) 3468 ath10k_warn(ar, "failed to delete WMI vdev %i: %d\n", 3469 arvif->vdev_id, ret); 3470 3471 /* Some firmware revisions don't notify host about self-peer removal 3472 * until after associated vdev is deleted. 3473 */ 3474 if (arvif->vdev_type == WMI_VDEV_TYPE_AP) { 3475 ret = ath10k_wait_for_peer_deleted(ar, arvif->vdev_id, 3476 vif->addr); 3477 if (ret) 3478 ath10k_warn(ar, "failed to remove AP self-peer on vdev %i: %d\n", 3479 arvif->vdev_id, ret); 3480 3481 spin_lock_bh(&ar->data_lock); 3482 ar->num_peers--; 3483 spin_unlock_bh(&ar->data_lock); 3484 } 3485 3486 ath10k_peer_cleanup(ar, arvif->vdev_id); 3487 3488 mutex_unlock(&ar->conf_mutex); 3489 } 3490 3491 /* 3492 * FIXME: Has to be verified. 3493 */ 3494 #define SUPPORTED_FILTERS \ 3495 (FIF_PROMISC_IN_BSS | \ 3496 FIF_ALLMULTI | \ 3497 FIF_CONTROL | \ 3498 FIF_PSPOLL | \ 3499 FIF_OTHER_BSS | \ 3500 FIF_BCN_PRBRESP_PROMISC | \ 3501 FIF_PROBE_REQ | \ 3502 FIF_FCSFAIL) 3503 3504 static void ath10k_configure_filter(struct ieee80211_hw *hw, 3505 unsigned int changed_flags, 3506 unsigned int *total_flags, 3507 u64 multicast) 3508 { 3509 struct ath10k *ar = hw->priv; 3510 int ret; 3511 3512 mutex_lock(&ar->conf_mutex); 3513 3514 changed_flags &= SUPPORTED_FILTERS; 3515 *total_flags &= SUPPORTED_FILTERS; 3516 ar->filter_flags = *total_flags; 3517 3518 ret = ath10k_monitor_recalc(ar); 3519 if (ret) 3520 ath10k_warn(ar, "failed to recalc montior: %d\n", ret); 3521 3522 mutex_unlock(&ar->conf_mutex); 3523 } 3524 3525 static void ath10k_bss_info_changed(struct ieee80211_hw *hw, 3526 struct ieee80211_vif *vif, 3527 struct ieee80211_bss_conf *info, 3528 u32 changed) 3529 { 3530 struct ath10k *ar = hw->priv; 3531 struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif); 3532 int ret = 0; 3533 u32 vdev_param, pdev_param, slottime, preamble; 3534 3535 mutex_lock(&ar->conf_mutex); 3536 3537 if (changed & BSS_CHANGED_IBSS) 3538 ath10k_control_ibss(arvif, info, vif->addr); 3539 3540 if (changed & BSS_CHANGED_BEACON_INT) { 3541 arvif->beacon_interval = info->beacon_int; 3542 vdev_param = ar->wmi.vdev_param->beacon_interval; 3543 ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, 3544 arvif->beacon_interval); 3545 ath10k_dbg(ar, ATH10K_DBG_MAC, 3546 "mac vdev %d beacon_interval %d\n", 3547 arvif->vdev_id, arvif->beacon_interval); 3548 3549 if (ret) 3550 ath10k_warn(ar, "failed to set beacon interval for vdev %d: %i\n", 3551 arvif->vdev_id, ret); 3552 } 3553 3554 if (changed & BSS_CHANGED_BEACON) { 3555 ath10k_dbg(ar, ATH10K_DBG_MAC, 3556 "vdev %d set beacon tx mode to staggered\n", 3557 arvif->vdev_id); 3558 3559 pdev_param = ar->wmi.pdev_param->beacon_tx_mode; 3560 ret = ath10k_wmi_pdev_set_param(ar, pdev_param, 3561 WMI_BEACON_STAGGERED_MODE); 3562 if (ret) 3563 ath10k_warn(ar, "failed to set beacon mode for vdev %d: %i\n", 3564 arvif->vdev_id, ret); 3565 3566 ret = ath10k_mac_setup_bcn_tmpl(arvif); 3567 if (ret) 3568 ath10k_warn(ar, "failed to update beacon template: %d\n", 3569 ret); 3570 } 3571 3572 if (changed & BSS_CHANGED_AP_PROBE_RESP) { 3573 ret = ath10k_mac_setup_prb_tmpl(arvif); 3574 if (ret) 3575 ath10k_warn(ar, "failed to setup probe resp template on vdev %i: %d\n", 3576 arvif->vdev_id, ret); 3577 } 3578 3579 if (changed & (BSS_CHANGED_BEACON_INFO | BSS_CHANGED_BEACON)) { 3580 arvif->dtim_period = info->dtim_period; 3581 3582 ath10k_dbg(ar, ATH10K_DBG_MAC, 3583 "mac vdev %d dtim_period %d\n", 3584 arvif->vdev_id, arvif->dtim_period); 3585 3586 vdev_param = ar->wmi.vdev_param->dtim_period; 3587 ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, 3588 arvif->dtim_period); 3589 if (ret) 3590 ath10k_warn(ar, "failed to set dtim period for vdev %d: %i\n", 3591 arvif->vdev_id, ret); 3592 } 3593 3594 if (changed & BSS_CHANGED_SSID && 3595 vif->type == NL80211_IFTYPE_AP) { 3596 arvif->u.ap.ssid_len = info->ssid_len; 3597 if (info->ssid_len) 3598 memcpy(arvif->u.ap.ssid, info->ssid, info->ssid_len); 3599 arvif->u.ap.hidden_ssid = info->hidden_ssid; 3600 } 3601 3602 if (changed & BSS_CHANGED_BSSID && !is_zero_ether_addr(info->bssid)) 3603 ether_addr_copy(arvif->bssid, info->bssid); 3604 3605 if (changed & BSS_CHANGED_BEACON_ENABLED) 3606 ath10k_control_beaconing(arvif, info); 3607 3608 if (changed & BSS_CHANGED_ERP_CTS_PROT) { 3609 arvif->use_cts_prot = info->use_cts_prot; 3610 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d cts_prot %d\n", 3611 arvif->vdev_id, info->use_cts_prot); 3612 3613 ret = ath10k_recalc_rtscts_prot(arvif); 3614 if (ret) 3615 ath10k_warn(ar, "failed to recalculate rts/cts prot for vdev %d: %d\n", 3616 arvif->vdev_id, ret); 3617 } 3618 3619 if (changed & BSS_CHANGED_ERP_SLOT) { 3620 if (info->use_short_slot) 3621 slottime = WMI_VDEV_SLOT_TIME_SHORT; /* 9us */ 3622 3623 else 3624 slottime = WMI_VDEV_SLOT_TIME_LONG; /* 20us */ 3625 3626 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d slot_time %d\n", 3627 arvif->vdev_id, slottime); 3628 3629 vdev_param = ar->wmi.vdev_param->slot_time; 3630 ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, 3631 slottime); 3632 if (ret) 3633 ath10k_warn(ar, "failed to set erp slot for vdev %d: %i\n", 3634 arvif->vdev_id, ret); 3635 } 3636 3637 if (changed & BSS_CHANGED_ERP_PREAMBLE) { 3638 if (info->use_short_preamble) 3639 preamble = WMI_VDEV_PREAMBLE_SHORT; 3640 else 3641 preamble = WMI_VDEV_PREAMBLE_LONG; 3642 3643 ath10k_dbg(ar, ATH10K_DBG_MAC, 3644 "mac vdev %d preamble %dn", 3645 arvif->vdev_id, preamble); 3646 3647 vdev_param = ar->wmi.vdev_param->preamble; 3648 ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, 3649 preamble); 3650 if (ret) 3651 ath10k_warn(ar, "failed to set preamble for vdev %d: %i\n", 3652 arvif->vdev_id, ret); 3653 } 3654 3655 if (changed & BSS_CHANGED_ASSOC) { 3656 if (info->assoc) { 3657 /* Workaround: Make sure monitor vdev is not running 3658 * when associating to prevent some firmware revisions 3659 * (e.g. 10.1 and 10.2) from crashing. 3660 */ 3661 if (ar->monitor_started) 3662 ath10k_monitor_stop(ar); 3663 ath10k_bss_assoc(hw, vif, info); 3664 ath10k_monitor_recalc(ar); 3665 } else { 3666 ath10k_bss_disassoc(hw, vif); 3667 } 3668 } 3669 3670 if (changed & BSS_CHANGED_TXPOWER) { 3671 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev_id %i txpower %d\n", 3672 arvif->vdev_id, info->txpower); 3673 3674 arvif->txpower = info->txpower; 3675 ret = ath10k_mac_txpower_recalc(ar); 3676 if (ret) 3677 ath10k_warn(ar, "failed to recalc tx power: %d\n", ret); 3678 } 3679 3680 if (changed & BSS_CHANGED_PS) { 3681 arvif->ps = vif->bss_conf.ps; 3682 3683 ret = ath10k_config_ps(ar); 3684 if (ret) 3685 ath10k_warn(ar, "failed to setup ps on vdev %i: %d\n", 3686 arvif->vdev_id, ret); 3687 } 3688 3689 mutex_unlock(&ar->conf_mutex); 3690 } 3691 3692 static int ath10k_hw_scan(struct ieee80211_hw *hw, 3693 struct ieee80211_vif *vif, 3694 struct ieee80211_scan_request *hw_req) 3695 { 3696 struct ath10k *ar = hw->priv; 3697 struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif); 3698 struct cfg80211_scan_request *req = &hw_req->req; 3699 struct wmi_start_scan_arg arg; 3700 int ret = 0; 3701 int i; 3702 3703 mutex_lock(&ar->conf_mutex); 3704 3705 spin_lock_bh(&ar->data_lock); 3706 switch (ar->scan.state) { 3707 case ATH10K_SCAN_IDLE: 3708 reinit_completion(&ar->scan.started); 3709 reinit_completion(&ar->scan.completed); 3710 ar->scan.state = ATH10K_SCAN_STARTING; 3711 ar->scan.is_roc = false; 3712 ar->scan.vdev_id = arvif->vdev_id; 3713 ret = 0; 3714 break; 3715 case ATH10K_SCAN_STARTING: 3716 case ATH10K_SCAN_RUNNING: 3717 case ATH10K_SCAN_ABORTING: 3718 ret = -EBUSY; 3719 break; 3720 } 3721 spin_unlock_bh(&ar->data_lock); 3722 3723 if (ret) 3724 goto exit; 3725 3726 memset(&arg, 0, sizeof(arg)); 3727 ath10k_wmi_start_scan_init(ar, &arg); 3728 arg.vdev_id = arvif->vdev_id; 3729 arg.scan_id = ATH10K_SCAN_ID; 3730 3731 if (!req->no_cck) 3732 arg.scan_ctrl_flags |= WMI_SCAN_ADD_CCK_RATES; 3733 3734 if (req->ie_len) { 3735 arg.ie_len = req->ie_len; 3736 memcpy(arg.ie, req->ie, arg.ie_len); 3737 } 3738 3739 if (req->n_ssids) { 3740 arg.n_ssids = req->n_ssids; 3741 for (i = 0; i < arg.n_ssids; i++) { 3742 arg.ssids[i].len = req->ssids[i].ssid_len; 3743 arg.ssids[i].ssid = req->ssids[i].ssid; 3744 } 3745 } else { 3746 arg.scan_ctrl_flags |= WMI_SCAN_FLAG_PASSIVE; 3747 } 3748 3749 if (req->n_channels) { 3750 arg.n_channels = req->n_channels; 3751 for (i = 0; i < arg.n_channels; i++) 3752 arg.channels[i] = req->channels[i]->center_freq; 3753 } 3754 3755 ret = ath10k_start_scan(ar, &arg); 3756 if (ret) { 3757 ath10k_warn(ar, "failed to start hw scan: %d\n", ret); 3758 spin_lock_bh(&ar->data_lock); 3759 ar->scan.state = ATH10K_SCAN_IDLE; 3760 spin_unlock_bh(&ar->data_lock); 3761 } 3762 3763 exit: 3764 mutex_unlock(&ar->conf_mutex); 3765 return ret; 3766 } 3767 3768 static void ath10k_cancel_hw_scan(struct ieee80211_hw *hw, 3769 struct ieee80211_vif *vif) 3770 { 3771 struct ath10k *ar = hw->priv; 3772 3773 mutex_lock(&ar->conf_mutex); 3774 ath10k_scan_abort(ar); 3775 mutex_unlock(&ar->conf_mutex); 3776 3777 cancel_delayed_work_sync(&ar->scan.timeout); 3778 } 3779 3780 static void ath10k_set_key_h_def_keyidx(struct ath10k *ar, 3781 struct ath10k_vif *arvif, 3782 enum set_key_cmd cmd, 3783 struct ieee80211_key_conf *key) 3784 { 3785 u32 vdev_param = arvif->ar->wmi.vdev_param->def_keyid; 3786 int ret; 3787 3788 /* 10.1 firmware branch requires default key index to be set to group 3789 * key index after installing it. Otherwise FW/HW Txes corrupted 3790 * frames with multi-vif APs. This is not required for main firmware 3791 * branch (e.g. 636). 3792 * 3793 * FIXME: This has been tested only in AP. It remains unknown if this 3794 * is required for multi-vif STA interfaces on 10.1 */ 3795 3796 if (arvif->vdev_type != WMI_VDEV_TYPE_AP) 3797 return; 3798 3799 if (key->cipher == WLAN_CIPHER_SUITE_WEP40) 3800 return; 3801 3802 if (key->cipher == WLAN_CIPHER_SUITE_WEP104) 3803 return; 3804 3805 if (key->flags & IEEE80211_KEY_FLAG_PAIRWISE) 3806 return; 3807 3808 if (cmd != SET_KEY) 3809 return; 3810 3811 ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, 3812 key->keyidx); 3813 if (ret) 3814 ath10k_warn(ar, "failed to set vdev %i group key as default key: %d\n", 3815 arvif->vdev_id, ret); 3816 } 3817 3818 static int ath10k_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd, 3819 struct ieee80211_vif *vif, struct ieee80211_sta *sta, 3820 struct ieee80211_key_conf *key) 3821 { 3822 struct ath10k *ar = hw->priv; 3823 struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif); 3824 struct ath10k_peer *peer; 3825 const u8 *peer_addr; 3826 bool is_wep = key->cipher == WLAN_CIPHER_SUITE_WEP40 || 3827 key->cipher == WLAN_CIPHER_SUITE_WEP104; 3828 bool def_idx = false; 3829 int ret = 0; 3830 3831 if (key->keyidx > WMI_MAX_KEY_INDEX) 3832 return -ENOSPC; 3833 3834 mutex_lock(&ar->conf_mutex); 3835 3836 if (sta) 3837 peer_addr = sta->addr; 3838 else if (arvif->vdev_type == WMI_VDEV_TYPE_STA) 3839 peer_addr = vif->bss_conf.bssid; 3840 else 3841 peer_addr = vif->addr; 3842 3843 key->hw_key_idx = key->keyidx; 3844 3845 /* the peer should not disappear in mid-way (unless FW goes awry) since 3846 * we already hold conf_mutex. we just make sure its there now. */ 3847 spin_lock_bh(&ar->data_lock); 3848 peer = ath10k_peer_find(ar, arvif->vdev_id, peer_addr); 3849 spin_unlock_bh(&ar->data_lock); 3850 3851 if (!peer) { 3852 if (cmd == SET_KEY) { 3853 ath10k_warn(ar, "failed to install key for non-existent peer %pM\n", 3854 peer_addr); 3855 ret = -EOPNOTSUPP; 3856 goto exit; 3857 } else { 3858 /* if the peer doesn't exist there is no key to disable 3859 * anymore */ 3860 goto exit; 3861 } 3862 } 3863 3864 if (is_wep) { 3865 if (cmd == SET_KEY) 3866 arvif->wep_keys[key->keyidx] = key; 3867 else 3868 arvif->wep_keys[key->keyidx] = NULL; 3869 3870 if (cmd == DISABLE_KEY) 3871 ath10k_clear_vdev_key(arvif, key); 3872 } 3873 3874 /* set TX_USAGE flag for all the keys incase of dot1x-WEP. For 3875 * static WEP, do not set this flag for the keys whose key id 3876 * is greater than default key id. 3877 */ 3878 if (arvif->def_wep_key_idx == -1) 3879 def_idx = true; 3880 3881 ret = ath10k_install_key(arvif, key, cmd, peer_addr, def_idx); 3882 if (ret) { 3883 ath10k_warn(ar, "failed to install key for vdev %i peer %pM: %d\n", 3884 arvif->vdev_id, peer_addr, ret); 3885 goto exit; 3886 } 3887 3888 ath10k_set_key_h_def_keyidx(ar, arvif, cmd, key); 3889 3890 spin_lock_bh(&ar->data_lock); 3891 peer = ath10k_peer_find(ar, arvif->vdev_id, peer_addr); 3892 if (peer && cmd == SET_KEY) 3893 peer->keys[key->keyidx] = key; 3894 else if (peer && cmd == DISABLE_KEY) 3895 peer->keys[key->keyidx] = NULL; 3896 else if (peer == NULL) 3897 /* impossible unless FW goes crazy */ 3898 ath10k_warn(ar, "Peer %pM disappeared!\n", peer_addr); 3899 spin_unlock_bh(&ar->data_lock); 3900 3901 exit: 3902 mutex_unlock(&ar->conf_mutex); 3903 return ret; 3904 } 3905 3906 static void ath10k_set_default_unicast_key(struct ieee80211_hw *hw, 3907 struct ieee80211_vif *vif, 3908 int keyidx) 3909 { 3910 struct ath10k *ar = hw->priv; 3911 struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif); 3912 int ret; 3913 3914 mutex_lock(&arvif->ar->conf_mutex); 3915 3916 if (arvif->ar->state != ATH10K_STATE_ON) 3917 goto unlock; 3918 3919 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d set keyidx %d\n", 3920 arvif->vdev_id, keyidx); 3921 3922 ret = ath10k_wmi_vdev_set_param(arvif->ar, 3923 arvif->vdev_id, 3924 arvif->ar->wmi.vdev_param->def_keyid, 3925 keyidx); 3926 3927 if (ret) { 3928 ath10k_warn(ar, "failed to update wep key index for vdev %d: %d\n", 3929 arvif->vdev_id, 3930 ret); 3931 goto unlock; 3932 } 3933 3934 arvif->def_wep_key_idx = keyidx; 3935 unlock: 3936 mutex_unlock(&arvif->ar->conf_mutex); 3937 } 3938 3939 static void ath10k_sta_rc_update_wk(struct work_struct *wk) 3940 { 3941 struct ath10k *ar; 3942 struct ath10k_vif *arvif; 3943 struct ath10k_sta *arsta; 3944 struct ieee80211_sta *sta; 3945 u32 changed, bw, nss, smps; 3946 int err; 3947 3948 arsta = container_of(wk, struct ath10k_sta, update_wk); 3949 sta = container_of((void *)arsta, struct ieee80211_sta, drv_priv); 3950 arvif = arsta->arvif; 3951 ar = arvif->ar; 3952 3953 spin_lock_bh(&ar->data_lock); 3954 3955 changed = arsta->changed; 3956 arsta->changed = 0; 3957 3958 bw = arsta->bw; 3959 nss = arsta->nss; 3960 smps = arsta->smps; 3961 3962 spin_unlock_bh(&ar->data_lock); 3963 3964 mutex_lock(&ar->conf_mutex); 3965 3966 if (changed & IEEE80211_RC_BW_CHANGED) { 3967 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac update sta %pM peer bw %d\n", 3968 sta->addr, bw); 3969 3970 err = ath10k_wmi_peer_set_param(ar, arvif->vdev_id, sta->addr, 3971 WMI_PEER_CHAN_WIDTH, bw); 3972 if (err) 3973 ath10k_warn(ar, "failed to update STA %pM peer bw %d: %d\n", 3974 sta->addr, bw, err); 3975 } 3976 3977 if (changed & IEEE80211_RC_NSS_CHANGED) { 3978 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac update sta %pM nss %d\n", 3979 sta->addr, nss); 3980 3981 err = ath10k_wmi_peer_set_param(ar, arvif->vdev_id, sta->addr, 3982 WMI_PEER_NSS, nss); 3983 if (err) 3984 ath10k_warn(ar, "failed to update STA %pM nss %d: %d\n", 3985 sta->addr, nss, err); 3986 } 3987 3988 if (changed & IEEE80211_RC_SMPS_CHANGED) { 3989 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac update sta %pM smps %d\n", 3990 sta->addr, smps); 3991 3992 err = ath10k_wmi_peer_set_param(ar, arvif->vdev_id, sta->addr, 3993 WMI_PEER_SMPS_STATE, smps); 3994 if (err) 3995 ath10k_warn(ar, "failed to update STA %pM smps %d: %d\n", 3996 sta->addr, smps, err); 3997 } 3998 3999 if (changed & IEEE80211_RC_SUPP_RATES_CHANGED || 4000 changed & IEEE80211_RC_NSS_CHANGED) { 4001 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac update sta %pM supp rates/nss\n", 4002 sta->addr); 4003 4004 err = ath10k_station_assoc(ar, arvif->vif, sta, true); 4005 if (err) 4006 ath10k_warn(ar, "failed to reassociate station: %pM\n", 4007 sta->addr); 4008 } 4009 4010 mutex_unlock(&ar->conf_mutex); 4011 } 4012 4013 static int ath10k_mac_inc_num_stations(struct ath10k_vif *arvif) 4014 { 4015 struct ath10k *ar = arvif->ar; 4016 4017 lockdep_assert_held(&ar->conf_mutex); 4018 4019 if (arvif->vdev_type != WMI_VDEV_TYPE_AP && 4020 arvif->vdev_type != WMI_VDEV_TYPE_IBSS) 4021 return 0; 4022 4023 if (ar->num_stations >= ar->max_num_stations) 4024 return -ENOBUFS; 4025 4026 ar->num_stations++; 4027 4028 return 0; 4029 } 4030 4031 static void ath10k_mac_dec_num_stations(struct ath10k_vif *arvif) 4032 { 4033 struct ath10k *ar = arvif->ar; 4034 4035 lockdep_assert_held(&ar->conf_mutex); 4036 4037 if (arvif->vdev_type != WMI_VDEV_TYPE_AP && 4038 arvif->vdev_type != WMI_VDEV_TYPE_IBSS) 4039 return; 4040 4041 ar->num_stations--; 4042 } 4043 4044 static int ath10k_sta_state(struct ieee80211_hw *hw, 4045 struct ieee80211_vif *vif, 4046 struct ieee80211_sta *sta, 4047 enum ieee80211_sta_state old_state, 4048 enum ieee80211_sta_state new_state) 4049 { 4050 struct ath10k *ar = hw->priv; 4051 struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif); 4052 struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv; 4053 int ret = 0; 4054 4055 if (old_state == IEEE80211_STA_NOTEXIST && 4056 new_state == IEEE80211_STA_NONE) { 4057 memset(arsta, 0, sizeof(*arsta)); 4058 arsta->arvif = arvif; 4059 INIT_WORK(&arsta->update_wk, ath10k_sta_rc_update_wk); 4060 } 4061 4062 /* cancel must be done outside the mutex to avoid deadlock */ 4063 if ((old_state == IEEE80211_STA_NONE && 4064 new_state == IEEE80211_STA_NOTEXIST)) 4065 cancel_work_sync(&arsta->update_wk); 4066 4067 mutex_lock(&ar->conf_mutex); 4068 4069 if (old_state == IEEE80211_STA_NOTEXIST && 4070 new_state == IEEE80211_STA_NONE) { 4071 /* 4072 * New station addition. 4073 */ 4074 ath10k_dbg(ar, ATH10K_DBG_MAC, 4075 "mac vdev %d peer create %pM (new sta) sta %d / %d peer %d / %d\n", 4076 arvif->vdev_id, sta->addr, 4077 ar->num_stations + 1, ar->max_num_stations, 4078 ar->num_peers + 1, ar->max_num_peers); 4079 4080 ret = ath10k_mac_inc_num_stations(arvif); 4081 if (ret) { 4082 ath10k_warn(ar, "refusing to associate station: too many connected already (%d)\n", 4083 ar->max_num_stations); 4084 goto exit; 4085 } 4086 4087 ret = ath10k_peer_create(ar, arvif->vdev_id, sta->addr); 4088 if (ret) { 4089 ath10k_warn(ar, "failed to add peer %pM for vdev %d when adding a new sta: %i\n", 4090 sta->addr, arvif->vdev_id, ret); 4091 ath10k_mac_dec_num_stations(arvif); 4092 goto exit; 4093 } 4094 4095 if (vif->type == NL80211_IFTYPE_STATION) { 4096 WARN_ON(arvif->is_started); 4097 4098 ret = ath10k_vdev_start(arvif); 4099 if (ret) { 4100 ath10k_warn(ar, "failed to start vdev %i: %d\n", 4101 arvif->vdev_id, ret); 4102 WARN_ON(ath10k_peer_delete(ar, arvif->vdev_id, 4103 sta->addr)); 4104 ath10k_mac_dec_num_stations(arvif); 4105 goto exit; 4106 } 4107 4108 arvif->is_started = true; 4109 } 4110 } else if ((old_state == IEEE80211_STA_NONE && 4111 new_state == IEEE80211_STA_NOTEXIST)) { 4112 /* 4113 * Existing station deletion. 4114 */ 4115 ath10k_dbg(ar, ATH10K_DBG_MAC, 4116 "mac vdev %d peer delete %pM (sta gone)\n", 4117 arvif->vdev_id, sta->addr); 4118 4119 if (vif->type == NL80211_IFTYPE_STATION) { 4120 WARN_ON(!arvif->is_started); 4121 4122 ret = ath10k_vdev_stop(arvif); 4123 if (ret) 4124 ath10k_warn(ar, "failed to stop vdev %i: %d\n", 4125 arvif->vdev_id, ret); 4126 4127 arvif->is_started = false; 4128 } 4129 4130 ret = ath10k_peer_delete(ar, arvif->vdev_id, sta->addr); 4131 if (ret) 4132 ath10k_warn(ar, "failed to delete peer %pM for vdev %d: %i\n", 4133 sta->addr, arvif->vdev_id, ret); 4134 4135 ath10k_mac_dec_num_stations(arvif); 4136 } else if (old_state == IEEE80211_STA_AUTH && 4137 new_state == IEEE80211_STA_ASSOC && 4138 (vif->type == NL80211_IFTYPE_AP || 4139 vif->type == NL80211_IFTYPE_ADHOC)) { 4140 /* 4141 * New association. 4142 */ 4143 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac sta %pM associated\n", 4144 sta->addr); 4145 4146 ret = ath10k_station_assoc(ar, vif, sta, false); 4147 if (ret) 4148 ath10k_warn(ar, "failed to associate station %pM for vdev %i: %i\n", 4149 sta->addr, arvif->vdev_id, ret); 4150 } else if (old_state == IEEE80211_STA_ASSOC && 4151 new_state == IEEE80211_STA_AUTH && 4152 (vif->type == NL80211_IFTYPE_AP || 4153 vif->type == NL80211_IFTYPE_ADHOC)) { 4154 /* 4155 * Disassociation. 4156 */ 4157 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac sta %pM disassociated\n", 4158 sta->addr); 4159 4160 ret = ath10k_station_disassoc(ar, vif, sta); 4161 if (ret) 4162 ath10k_warn(ar, "failed to disassociate station: %pM vdev %i: %i\n", 4163 sta->addr, arvif->vdev_id, ret); 4164 } 4165 exit: 4166 mutex_unlock(&ar->conf_mutex); 4167 return ret; 4168 } 4169 4170 static int ath10k_conf_tx_uapsd(struct ath10k *ar, struct ieee80211_vif *vif, 4171 u16 ac, bool enable) 4172 { 4173 struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif); 4174 struct wmi_sta_uapsd_auto_trig_arg arg = {}; 4175 u32 prio = 0, acc = 0; 4176 u32 value = 0; 4177 int ret = 0; 4178 4179 lockdep_assert_held(&ar->conf_mutex); 4180 4181 if (arvif->vdev_type != WMI_VDEV_TYPE_STA) 4182 return 0; 4183 4184 switch (ac) { 4185 case IEEE80211_AC_VO: 4186 value = WMI_STA_PS_UAPSD_AC3_DELIVERY_EN | 4187 WMI_STA_PS_UAPSD_AC3_TRIGGER_EN; 4188 prio = 7; 4189 acc = 3; 4190 break; 4191 case IEEE80211_AC_VI: 4192 value = WMI_STA_PS_UAPSD_AC2_DELIVERY_EN | 4193 WMI_STA_PS_UAPSD_AC2_TRIGGER_EN; 4194 prio = 5; 4195 acc = 2; 4196 break; 4197 case IEEE80211_AC_BE: 4198 value = WMI_STA_PS_UAPSD_AC1_DELIVERY_EN | 4199 WMI_STA_PS_UAPSD_AC1_TRIGGER_EN; 4200 prio = 2; 4201 acc = 1; 4202 break; 4203 case IEEE80211_AC_BK: 4204 value = WMI_STA_PS_UAPSD_AC0_DELIVERY_EN | 4205 WMI_STA_PS_UAPSD_AC0_TRIGGER_EN; 4206 prio = 0; 4207 acc = 0; 4208 break; 4209 } 4210 4211 if (enable) 4212 arvif->u.sta.uapsd |= value; 4213 else 4214 arvif->u.sta.uapsd &= ~value; 4215 4216 ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id, 4217 WMI_STA_PS_PARAM_UAPSD, 4218 arvif->u.sta.uapsd); 4219 if (ret) { 4220 ath10k_warn(ar, "failed to set uapsd params: %d\n", ret); 4221 goto exit; 4222 } 4223 4224 if (arvif->u.sta.uapsd) 4225 value = WMI_STA_PS_RX_WAKE_POLICY_POLL_UAPSD; 4226 else 4227 value = WMI_STA_PS_RX_WAKE_POLICY_WAKE; 4228 4229 ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id, 4230 WMI_STA_PS_PARAM_RX_WAKE_POLICY, 4231 value); 4232 if (ret) 4233 ath10k_warn(ar, "failed to set rx wake param: %d\n", ret); 4234 4235 ret = ath10k_mac_vif_recalc_ps_wake_threshold(arvif); 4236 if (ret) { 4237 ath10k_warn(ar, "failed to recalc ps wake threshold on vdev %i: %d\n", 4238 arvif->vdev_id, ret); 4239 return ret; 4240 } 4241 4242 ret = ath10k_mac_vif_recalc_ps_poll_count(arvif); 4243 if (ret) { 4244 ath10k_warn(ar, "failed to recalc ps poll count on vdev %i: %d\n", 4245 arvif->vdev_id, ret); 4246 return ret; 4247 } 4248 4249 if (test_bit(WMI_SERVICE_STA_UAPSD_BASIC_AUTO_TRIG, ar->wmi.svc_map) || 4250 test_bit(WMI_SERVICE_STA_UAPSD_VAR_AUTO_TRIG, ar->wmi.svc_map)) { 4251 /* Only userspace can make an educated decision when to send 4252 * trigger frame. The following effectively disables u-UAPSD 4253 * autotrigger in firmware (which is enabled by default 4254 * provided the autotrigger service is available). 4255 */ 4256 4257 arg.wmm_ac = acc; 4258 arg.user_priority = prio; 4259 arg.service_interval = 0; 4260 arg.suspend_interval = WMI_STA_UAPSD_MAX_INTERVAL_MSEC; 4261 arg.delay_interval = WMI_STA_UAPSD_MAX_INTERVAL_MSEC; 4262 4263 ret = ath10k_wmi_vdev_sta_uapsd(ar, arvif->vdev_id, 4264 arvif->bssid, &arg, 1); 4265 if (ret) { 4266 ath10k_warn(ar, "failed to set uapsd auto trigger %d\n", 4267 ret); 4268 return ret; 4269 } 4270 } 4271 4272 exit: 4273 return ret; 4274 } 4275 4276 static int ath10k_conf_tx(struct ieee80211_hw *hw, 4277 struct ieee80211_vif *vif, u16 ac, 4278 const struct ieee80211_tx_queue_params *params) 4279 { 4280 struct ath10k *ar = hw->priv; 4281 struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif); 4282 struct wmi_wmm_params_arg *p = NULL; 4283 int ret; 4284 4285 mutex_lock(&ar->conf_mutex); 4286 4287 switch (ac) { 4288 case IEEE80211_AC_VO: 4289 p = &arvif->wmm_params.ac_vo; 4290 break; 4291 case IEEE80211_AC_VI: 4292 p = &arvif->wmm_params.ac_vi; 4293 break; 4294 case IEEE80211_AC_BE: 4295 p = &arvif->wmm_params.ac_be; 4296 break; 4297 case IEEE80211_AC_BK: 4298 p = &arvif->wmm_params.ac_bk; 4299 break; 4300 } 4301 4302 if (WARN_ON(!p)) { 4303 ret = -EINVAL; 4304 goto exit; 4305 } 4306 4307 p->cwmin = params->cw_min; 4308 p->cwmax = params->cw_max; 4309 p->aifs = params->aifs; 4310 4311 /* 4312 * The channel time duration programmed in the HW is in absolute 4313 * microseconds, while mac80211 gives the txop in units of 4314 * 32 microseconds. 4315 */ 4316 p->txop = params->txop * 32; 4317 4318 if (ar->wmi.ops->gen_vdev_wmm_conf) { 4319 ret = ath10k_wmi_vdev_wmm_conf(ar, arvif->vdev_id, 4320 &arvif->wmm_params); 4321 if (ret) { 4322 ath10k_warn(ar, "failed to set vdev wmm params on vdev %i: %d\n", 4323 arvif->vdev_id, ret); 4324 goto exit; 4325 } 4326 } else { 4327 /* This won't work well with multi-interface cases but it's 4328 * better than nothing. 4329 */ 4330 ret = ath10k_wmi_pdev_set_wmm_params(ar, &arvif->wmm_params); 4331 if (ret) { 4332 ath10k_warn(ar, "failed to set wmm params: %d\n", ret); 4333 goto exit; 4334 } 4335 } 4336 4337 ret = ath10k_conf_tx_uapsd(ar, vif, ac, params->uapsd); 4338 if (ret) 4339 ath10k_warn(ar, "failed to set sta uapsd: %d\n", ret); 4340 4341 exit: 4342 mutex_unlock(&ar->conf_mutex); 4343 return ret; 4344 } 4345 4346 #define ATH10K_ROC_TIMEOUT_HZ (2*HZ) 4347 4348 static int ath10k_remain_on_channel(struct ieee80211_hw *hw, 4349 struct ieee80211_vif *vif, 4350 struct ieee80211_channel *chan, 4351 int duration, 4352 enum ieee80211_roc_type type) 4353 { 4354 struct ath10k *ar = hw->priv; 4355 struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif); 4356 struct wmi_start_scan_arg arg; 4357 int ret = 0; 4358 4359 mutex_lock(&ar->conf_mutex); 4360 4361 spin_lock_bh(&ar->data_lock); 4362 switch (ar->scan.state) { 4363 case ATH10K_SCAN_IDLE: 4364 reinit_completion(&ar->scan.started); 4365 reinit_completion(&ar->scan.completed); 4366 reinit_completion(&ar->scan.on_channel); 4367 ar->scan.state = ATH10K_SCAN_STARTING; 4368 ar->scan.is_roc = true; 4369 ar->scan.vdev_id = arvif->vdev_id; 4370 ar->scan.roc_freq = chan->center_freq; 4371 ret = 0; 4372 break; 4373 case ATH10K_SCAN_STARTING: 4374 case ATH10K_SCAN_RUNNING: 4375 case ATH10K_SCAN_ABORTING: 4376 ret = -EBUSY; 4377 break; 4378 } 4379 spin_unlock_bh(&ar->data_lock); 4380 4381 if (ret) 4382 goto exit; 4383 4384 duration = max(duration, WMI_SCAN_CHAN_MIN_TIME_MSEC); 4385 4386 memset(&arg, 0, sizeof(arg)); 4387 ath10k_wmi_start_scan_init(ar, &arg); 4388 arg.vdev_id = arvif->vdev_id; 4389 arg.scan_id = ATH10K_SCAN_ID; 4390 arg.n_channels = 1; 4391 arg.channels[0] = chan->center_freq; 4392 arg.dwell_time_active = duration; 4393 arg.dwell_time_passive = duration; 4394 arg.max_scan_time = 2 * duration; 4395 arg.scan_ctrl_flags |= WMI_SCAN_FLAG_PASSIVE; 4396 arg.scan_ctrl_flags |= WMI_SCAN_FILTER_PROBE_REQ; 4397 4398 ret = ath10k_start_scan(ar, &arg); 4399 if (ret) { 4400 ath10k_warn(ar, "failed to start roc scan: %d\n", ret); 4401 spin_lock_bh(&ar->data_lock); 4402 ar->scan.state = ATH10K_SCAN_IDLE; 4403 spin_unlock_bh(&ar->data_lock); 4404 goto exit; 4405 } 4406 4407 ret = wait_for_completion_timeout(&ar->scan.on_channel, 3*HZ); 4408 if (ret == 0) { 4409 ath10k_warn(ar, "failed to switch to channel for roc scan\n"); 4410 4411 ret = ath10k_scan_stop(ar); 4412 if (ret) 4413 ath10k_warn(ar, "failed to stop scan: %d\n", ret); 4414 4415 ret = -ETIMEDOUT; 4416 goto exit; 4417 } 4418 4419 ret = 0; 4420 exit: 4421 mutex_unlock(&ar->conf_mutex); 4422 return ret; 4423 } 4424 4425 static int ath10k_cancel_remain_on_channel(struct ieee80211_hw *hw) 4426 { 4427 struct ath10k *ar = hw->priv; 4428 4429 mutex_lock(&ar->conf_mutex); 4430 ath10k_scan_abort(ar); 4431 mutex_unlock(&ar->conf_mutex); 4432 4433 cancel_delayed_work_sync(&ar->scan.timeout); 4434 4435 return 0; 4436 } 4437 4438 /* 4439 * Both RTS and Fragmentation threshold are interface-specific 4440 * in ath10k, but device-specific in mac80211. 4441 */ 4442 4443 static int ath10k_set_rts_threshold(struct ieee80211_hw *hw, u32 value) 4444 { 4445 struct ath10k *ar = hw->priv; 4446 struct ath10k_vif *arvif; 4447 int ret = 0; 4448 4449 mutex_lock(&ar->conf_mutex); 4450 list_for_each_entry(arvif, &ar->arvifs, list) { 4451 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d rts threshold %d\n", 4452 arvif->vdev_id, value); 4453 4454 ret = ath10k_mac_set_rts(arvif, value); 4455 if (ret) { 4456 ath10k_warn(ar, "failed to set rts threshold for vdev %d: %d\n", 4457 arvif->vdev_id, ret); 4458 break; 4459 } 4460 } 4461 mutex_unlock(&ar->conf_mutex); 4462 4463 return ret; 4464 } 4465 4466 static void ath10k_flush(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 4467 u32 queues, bool drop) 4468 { 4469 struct ath10k *ar = hw->priv; 4470 bool skip; 4471 int ret; 4472 4473 /* mac80211 doesn't care if we really xmit queued frames or not 4474 * we'll collect those frames either way if we stop/delete vdevs */ 4475 if (drop) 4476 return; 4477 4478 mutex_lock(&ar->conf_mutex); 4479 4480 if (ar->state == ATH10K_STATE_WEDGED) 4481 goto skip; 4482 4483 ret = wait_event_timeout(ar->htt.empty_tx_wq, ({ 4484 bool empty; 4485 4486 spin_lock_bh(&ar->htt.tx_lock); 4487 empty = (ar->htt.num_pending_tx == 0); 4488 spin_unlock_bh(&ar->htt.tx_lock); 4489 4490 skip = (ar->state == ATH10K_STATE_WEDGED) || 4491 test_bit(ATH10K_FLAG_CRASH_FLUSH, 4492 &ar->dev_flags); 4493 4494 (empty || skip); 4495 }), ATH10K_FLUSH_TIMEOUT_HZ); 4496 4497 if (ret <= 0 || skip) 4498 ath10k_warn(ar, "failed to flush transmit queue (skip %i ar-state %i): %i\n", 4499 skip, ar->state, ret); 4500 4501 skip: 4502 mutex_unlock(&ar->conf_mutex); 4503 } 4504 4505 /* TODO: Implement this function properly 4506 * For now it is needed to reply to Probe Requests in IBSS mode. 4507 * Propably we need this information from FW. 4508 */ 4509 static int ath10k_tx_last_beacon(struct ieee80211_hw *hw) 4510 { 4511 return 1; 4512 } 4513 4514 #ifdef CONFIG_PM 4515 static int ath10k_suspend(struct ieee80211_hw *hw, 4516 struct cfg80211_wowlan *wowlan) 4517 { 4518 struct ath10k *ar = hw->priv; 4519 int ret; 4520 4521 mutex_lock(&ar->conf_mutex); 4522 4523 ret = ath10k_wait_for_suspend(ar, WMI_PDEV_SUSPEND); 4524 if (ret) { 4525 if (ret == -ETIMEDOUT) 4526 goto resume; 4527 ret = 1; 4528 goto exit; 4529 } 4530 4531 ret = ath10k_hif_suspend(ar); 4532 if (ret) { 4533 ath10k_warn(ar, "failed to suspend hif: %d\n", ret); 4534 goto resume; 4535 } 4536 4537 ret = 0; 4538 goto exit; 4539 resume: 4540 ret = ath10k_wmi_pdev_resume_target(ar); 4541 if (ret) 4542 ath10k_warn(ar, "failed to resume target: %d\n", ret); 4543 4544 ret = 1; 4545 exit: 4546 mutex_unlock(&ar->conf_mutex); 4547 return ret; 4548 } 4549 4550 static int ath10k_resume(struct ieee80211_hw *hw) 4551 { 4552 struct ath10k *ar = hw->priv; 4553 int ret; 4554 4555 mutex_lock(&ar->conf_mutex); 4556 4557 ret = ath10k_hif_resume(ar); 4558 if (ret) { 4559 ath10k_warn(ar, "failed to resume hif: %d\n", ret); 4560 ret = 1; 4561 goto exit; 4562 } 4563 4564 ret = ath10k_wmi_pdev_resume_target(ar); 4565 if (ret) { 4566 ath10k_warn(ar, "failed to resume target: %d\n", ret); 4567 ret = 1; 4568 goto exit; 4569 } 4570 4571 ret = 0; 4572 exit: 4573 mutex_unlock(&ar->conf_mutex); 4574 return ret; 4575 } 4576 #endif 4577 4578 static void ath10k_reconfig_complete(struct ieee80211_hw *hw, 4579 enum ieee80211_reconfig_type reconfig_type) 4580 { 4581 struct ath10k *ar = hw->priv; 4582 4583 if (reconfig_type != IEEE80211_RECONFIG_TYPE_RESTART) 4584 return; 4585 4586 mutex_lock(&ar->conf_mutex); 4587 4588 /* If device failed to restart it will be in a different state, e.g. 4589 * ATH10K_STATE_WEDGED */ 4590 if (ar->state == ATH10K_STATE_RESTARTED) { 4591 ath10k_info(ar, "device successfully recovered\n"); 4592 ar->state = ATH10K_STATE_ON; 4593 ieee80211_wake_queues(ar->hw); 4594 } 4595 4596 mutex_unlock(&ar->conf_mutex); 4597 } 4598 4599 static int ath10k_get_survey(struct ieee80211_hw *hw, int idx, 4600 struct survey_info *survey) 4601 { 4602 struct ath10k *ar = hw->priv; 4603 struct ieee80211_supported_band *sband; 4604 struct survey_info *ar_survey = &ar->survey[idx]; 4605 int ret = 0; 4606 4607 mutex_lock(&ar->conf_mutex); 4608 4609 sband = hw->wiphy->bands[IEEE80211_BAND_2GHZ]; 4610 if (sband && idx >= sband->n_channels) { 4611 idx -= sband->n_channels; 4612 sband = NULL; 4613 } 4614 4615 if (!sband) 4616 sband = hw->wiphy->bands[IEEE80211_BAND_5GHZ]; 4617 4618 if (!sband || idx >= sband->n_channels) { 4619 ret = -ENOENT; 4620 goto exit; 4621 } 4622 4623 spin_lock_bh(&ar->data_lock); 4624 memcpy(survey, ar_survey, sizeof(*survey)); 4625 spin_unlock_bh(&ar->data_lock); 4626 4627 survey->channel = &sband->channels[idx]; 4628 4629 if (ar->rx_channel == survey->channel) 4630 survey->filled |= SURVEY_INFO_IN_USE; 4631 4632 exit: 4633 mutex_unlock(&ar->conf_mutex); 4634 return ret; 4635 } 4636 4637 /* Helper table for legacy fixed_rate/bitrate_mask */ 4638 static const u8 cck_ofdm_rate[] = { 4639 /* CCK */ 4640 3, /* 1Mbps */ 4641 2, /* 2Mbps */ 4642 1, /* 5.5Mbps */ 4643 0, /* 11Mbps */ 4644 /* OFDM */ 4645 3, /* 6Mbps */ 4646 7, /* 9Mbps */ 4647 2, /* 12Mbps */ 4648 6, /* 18Mbps */ 4649 1, /* 24Mbps */ 4650 5, /* 36Mbps */ 4651 0, /* 48Mbps */ 4652 4, /* 54Mbps */ 4653 }; 4654 4655 /* Check if only one bit set */ 4656 static int ath10k_check_single_mask(u32 mask) 4657 { 4658 int bit; 4659 4660 bit = ffs(mask); 4661 if (!bit) 4662 return 0; 4663 4664 mask &= ~BIT(bit - 1); 4665 if (mask) 4666 return 2; 4667 4668 return 1; 4669 } 4670 4671 static bool 4672 ath10k_default_bitrate_mask(struct ath10k *ar, 4673 enum ieee80211_band band, 4674 const struct cfg80211_bitrate_mask *mask) 4675 { 4676 u32 legacy = 0x00ff; 4677 u8 ht = 0xff, i; 4678 u16 vht = 0x3ff; 4679 u16 nrf = ar->num_rf_chains; 4680 4681 if (ar->cfg_tx_chainmask) 4682 nrf = get_nss_from_chainmask(ar->cfg_tx_chainmask); 4683 4684 switch (band) { 4685 case IEEE80211_BAND_2GHZ: 4686 legacy = 0x00fff; 4687 vht = 0; 4688 break; 4689 case IEEE80211_BAND_5GHZ: 4690 break; 4691 default: 4692 return false; 4693 } 4694 4695 if (mask->control[band].legacy != legacy) 4696 return false; 4697 4698 for (i = 0; i < nrf; i++) 4699 if (mask->control[band].ht_mcs[i] != ht) 4700 return false; 4701 4702 for (i = 0; i < nrf; i++) 4703 if (mask->control[band].vht_mcs[i] != vht) 4704 return false; 4705 4706 return true; 4707 } 4708 4709 static bool 4710 ath10k_bitrate_mask_nss(const struct cfg80211_bitrate_mask *mask, 4711 enum ieee80211_band band, 4712 u8 *fixed_nss) 4713 { 4714 int ht_nss = 0, vht_nss = 0, i; 4715 4716 /* check legacy */ 4717 if (ath10k_check_single_mask(mask->control[band].legacy)) 4718 return false; 4719 4720 /* check HT */ 4721 for (i = 0; i < IEEE80211_HT_MCS_MASK_LEN; i++) { 4722 if (mask->control[band].ht_mcs[i] == 0xff) 4723 continue; 4724 else if (mask->control[band].ht_mcs[i] == 0x00) 4725 break; 4726 4727 return false; 4728 } 4729 4730 ht_nss = i; 4731 4732 /* check VHT */ 4733 for (i = 0; i < NL80211_VHT_NSS_MAX; i++) { 4734 if (mask->control[band].vht_mcs[i] == 0x03ff) 4735 continue; 4736 else if (mask->control[band].vht_mcs[i] == 0x0000) 4737 break; 4738 4739 return false; 4740 } 4741 4742 vht_nss = i; 4743 4744 if (ht_nss > 0 && vht_nss > 0) 4745 return false; 4746 4747 if (ht_nss) 4748 *fixed_nss = ht_nss; 4749 else if (vht_nss) 4750 *fixed_nss = vht_nss; 4751 else 4752 return false; 4753 4754 return true; 4755 } 4756 4757 static bool 4758 ath10k_bitrate_mask_correct(const struct cfg80211_bitrate_mask *mask, 4759 enum ieee80211_band band, 4760 enum wmi_rate_preamble *preamble) 4761 { 4762 int legacy = 0, ht = 0, vht = 0, i; 4763 4764 *preamble = WMI_RATE_PREAMBLE_OFDM; 4765 4766 /* check legacy */ 4767 legacy = ath10k_check_single_mask(mask->control[band].legacy); 4768 if (legacy > 1) 4769 return false; 4770 4771 /* check HT */ 4772 for (i = 0; i < IEEE80211_HT_MCS_MASK_LEN; i++) 4773 ht += ath10k_check_single_mask(mask->control[band].ht_mcs[i]); 4774 if (ht > 1) 4775 return false; 4776 4777 /* check VHT */ 4778 for (i = 0; i < NL80211_VHT_NSS_MAX; i++) 4779 vht += ath10k_check_single_mask(mask->control[band].vht_mcs[i]); 4780 if (vht > 1) 4781 return false; 4782 4783 /* Currently we support only one fixed_rate */ 4784 if ((legacy + ht + vht) != 1) 4785 return false; 4786 4787 if (ht) 4788 *preamble = WMI_RATE_PREAMBLE_HT; 4789 else if (vht) 4790 *preamble = WMI_RATE_PREAMBLE_VHT; 4791 4792 return true; 4793 } 4794 4795 static bool 4796 ath10k_bitrate_mask_rate(struct ath10k *ar, 4797 const struct cfg80211_bitrate_mask *mask, 4798 enum ieee80211_band band, 4799 u8 *fixed_rate, 4800 u8 *fixed_nss) 4801 { 4802 u8 rate = 0, pream = 0, nss = 0, i; 4803 enum wmi_rate_preamble preamble; 4804 4805 /* Check if single rate correct */ 4806 if (!ath10k_bitrate_mask_correct(mask, band, &preamble)) 4807 return false; 4808 4809 pream = preamble; 4810 4811 switch (preamble) { 4812 case WMI_RATE_PREAMBLE_CCK: 4813 case WMI_RATE_PREAMBLE_OFDM: 4814 i = ffs(mask->control[band].legacy) - 1; 4815 4816 if (band == IEEE80211_BAND_2GHZ && i < 4) 4817 pream = WMI_RATE_PREAMBLE_CCK; 4818 4819 if (band == IEEE80211_BAND_5GHZ) 4820 i += 4; 4821 4822 if (i >= ARRAY_SIZE(cck_ofdm_rate)) 4823 return false; 4824 4825 rate = cck_ofdm_rate[i]; 4826 break; 4827 case WMI_RATE_PREAMBLE_HT: 4828 for (i = 0; i < IEEE80211_HT_MCS_MASK_LEN; i++) 4829 if (mask->control[band].ht_mcs[i]) 4830 break; 4831 4832 if (i == IEEE80211_HT_MCS_MASK_LEN) 4833 return false; 4834 4835 rate = ffs(mask->control[band].ht_mcs[i]) - 1; 4836 nss = i; 4837 break; 4838 case WMI_RATE_PREAMBLE_VHT: 4839 for (i = 0; i < NL80211_VHT_NSS_MAX; i++) 4840 if (mask->control[band].vht_mcs[i]) 4841 break; 4842 4843 if (i == NL80211_VHT_NSS_MAX) 4844 return false; 4845 4846 rate = ffs(mask->control[band].vht_mcs[i]) - 1; 4847 nss = i; 4848 break; 4849 } 4850 4851 *fixed_nss = nss + 1; 4852 nss <<= 4; 4853 pream <<= 6; 4854 4855 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac fixed rate pream 0x%02x nss 0x%02x rate 0x%02x\n", 4856 pream, nss, rate); 4857 4858 *fixed_rate = pream | nss | rate; 4859 4860 return true; 4861 } 4862 4863 static bool ath10k_get_fixed_rate_nss(struct ath10k *ar, 4864 const struct cfg80211_bitrate_mask *mask, 4865 enum ieee80211_band band, 4866 u8 *fixed_rate, 4867 u8 *fixed_nss) 4868 { 4869 /* First check full NSS mask, if we can simply limit NSS */ 4870 if (ath10k_bitrate_mask_nss(mask, band, fixed_nss)) 4871 return true; 4872 4873 /* Next Check single rate is set */ 4874 return ath10k_bitrate_mask_rate(ar, mask, band, fixed_rate, fixed_nss); 4875 } 4876 4877 static int ath10k_set_fixed_rate_param(struct ath10k_vif *arvif, 4878 u8 fixed_rate, 4879 u8 fixed_nss, 4880 u8 force_sgi) 4881 { 4882 struct ath10k *ar = arvif->ar; 4883 u32 vdev_param; 4884 int ret = 0; 4885 4886 mutex_lock(&ar->conf_mutex); 4887 4888 if (arvif->fixed_rate == fixed_rate && 4889 arvif->fixed_nss == fixed_nss && 4890 arvif->force_sgi == force_sgi) 4891 goto exit; 4892 4893 if (fixed_rate == WMI_FIXED_RATE_NONE) 4894 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac disable fixed bitrate mask\n"); 4895 4896 if (force_sgi) 4897 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac force sgi\n"); 4898 4899 vdev_param = ar->wmi.vdev_param->fixed_rate; 4900 ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, 4901 vdev_param, fixed_rate); 4902 if (ret) { 4903 ath10k_warn(ar, "failed to set fixed rate param 0x%02x: %d\n", 4904 fixed_rate, ret); 4905 ret = -EINVAL; 4906 goto exit; 4907 } 4908 4909 arvif->fixed_rate = fixed_rate; 4910 4911 vdev_param = ar->wmi.vdev_param->nss; 4912 ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, 4913 vdev_param, fixed_nss); 4914 4915 if (ret) { 4916 ath10k_warn(ar, "failed to set fixed nss param %d: %d\n", 4917 fixed_nss, ret); 4918 ret = -EINVAL; 4919 goto exit; 4920 } 4921 4922 arvif->fixed_nss = fixed_nss; 4923 4924 vdev_param = ar->wmi.vdev_param->sgi; 4925 ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, 4926 force_sgi); 4927 4928 if (ret) { 4929 ath10k_warn(ar, "failed to set sgi param %d: %d\n", 4930 force_sgi, ret); 4931 ret = -EINVAL; 4932 goto exit; 4933 } 4934 4935 arvif->force_sgi = force_sgi; 4936 4937 exit: 4938 mutex_unlock(&ar->conf_mutex); 4939 return ret; 4940 } 4941 4942 static int ath10k_set_bitrate_mask(struct ieee80211_hw *hw, 4943 struct ieee80211_vif *vif, 4944 const struct cfg80211_bitrate_mask *mask) 4945 { 4946 struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif); 4947 struct ath10k *ar = arvif->ar; 4948 enum ieee80211_band band = ar->hw->conf.chandef.chan->band; 4949 u8 fixed_rate = WMI_FIXED_RATE_NONE; 4950 u8 fixed_nss = ar->num_rf_chains; 4951 u8 force_sgi; 4952 4953 if (ar->cfg_tx_chainmask) 4954 fixed_nss = get_nss_from_chainmask(ar->cfg_tx_chainmask); 4955 4956 force_sgi = mask->control[band].gi; 4957 if (force_sgi == NL80211_TXRATE_FORCE_LGI) 4958 return -EINVAL; 4959 4960 if (!ath10k_default_bitrate_mask(ar, band, mask)) { 4961 if (!ath10k_get_fixed_rate_nss(ar, mask, band, 4962 &fixed_rate, 4963 &fixed_nss)) 4964 return -EINVAL; 4965 } 4966 4967 if (fixed_rate == WMI_FIXED_RATE_NONE && force_sgi) { 4968 ath10k_warn(ar, "failed to force SGI usage for default rate settings\n"); 4969 return -EINVAL; 4970 } 4971 4972 return ath10k_set_fixed_rate_param(arvif, fixed_rate, 4973 fixed_nss, force_sgi); 4974 } 4975 4976 static void ath10k_sta_rc_update(struct ieee80211_hw *hw, 4977 struct ieee80211_vif *vif, 4978 struct ieee80211_sta *sta, 4979 u32 changed) 4980 { 4981 struct ath10k *ar = hw->priv; 4982 struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv; 4983 u32 bw, smps; 4984 4985 spin_lock_bh(&ar->data_lock); 4986 4987 ath10k_dbg(ar, ATH10K_DBG_MAC, 4988 "mac sta rc update for %pM changed %08x bw %d nss %d smps %d\n", 4989 sta->addr, changed, sta->bandwidth, sta->rx_nss, 4990 sta->smps_mode); 4991 4992 if (changed & IEEE80211_RC_BW_CHANGED) { 4993 bw = WMI_PEER_CHWIDTH_20MHZ; 4994 4995 switch (sta->bandwidth) { 4996 case IEEE80211_STA_RX_BW_20: 4997 bw = WMI_PEER_CHWIDTH_20MHZ; 4998 break; 4999 case IEEE80211_STA_RX_BW_40: 5000 bw = WMI_PEER_CHWIDTH_40MHZ; 5001 break; 5002 case IEEE80211_STA_RX_BW_80: 5003 bw = WMI_PEER_CHWIDTH_80MHZ; 5004 break; 5005 case IEEE80211_STA_RX_BW_160: 5006 ath10k_warn(ar, "Invalid bandwith %d in rc update for %pM\n", 5007 sta->bandwidth, sta->addr); 5008 bw = WMI_PEER_CHWIDTH_20MHZ; 5009 break; 5010 } 5011 5012 arsta->bw = bw; 5013 } 5014 5015 if (changed & IEEE80211_RC_NSS_CHANGED) 5016 arsta->nss = sta->rx_nss; 5017 5018 if (changed & IEEE80211_RC_SMPS_CHANGED) { 5019 smps = WMI_PEER_SMPS_PS_NONE; 5020 5021 switch (sta->smps_mode) { 5022 case IEEE80211_SMPS_AUTOMATIC: 5023 case IEEE80211_SMPS_OFF: 5024 smps = WMI_PEER_SMPS_PS_NONE; 5025 break; 5026 case IEEE80211_SMPS_STATIC: 5027 smps = WMI_PEER_SMPS_STATIC; 5028 break; 5029 case IEEE80211_SMPS_DYNAMIC: 5030 smps = WMI_PEER_SMPS_DYNAMIC; 5031 break; 5032 case IEEE80211_SMPS_NUM_MODES: 5033 ath10k_warn(ar, "Invalid smps %d in sta rc update for %pM\n", 5034 sta->smps_mode, sta->addr); 5035 smps = WMI_PEER_SMPS_PS_NONE; 5036 break; 5037 } 5038 5039 arsta->smps = smps; 5040 } 5041 5042 arsta->changed |= changed; 5043 5044 spin_unlock_bh(&ar->data_lock); 5045 5046 ieee80211_queue_work(hw, &arsta->update_wk); 5047 } 5048 5049 static u64 ath10k_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif) 5050 { 5051 /* 5052 * FIXME: Return 0 for time being. Need to figure out whether FW 5053 * has the API to fetch 64-bit local TSF 5054 */ 5055 5056 return 0; 5057 } 5058 5059 static int ath10k_ampdu_action(struct ieee80211_hw *hw, 5060 struct ieee80211_vif *vif, 5061 enum ieee80211_ampdu_mlme_action action, 5062 struct ieee80211_sta *sta, u16 tid, u16 *ssn, 5063 u8 buf_size) 5064 { 5065 struct ath10k *ar = hw->priv; 5066 struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif); 5067 5068 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac ampdu vdev_id %i sta %pM tid %hu action %d\n", 5069 arvif->vdev_id, sta->addr, tid, action); 5070 5071 switch (action) { 5072 case IEEE80211_AMPDU_RX_START: 5073 case IEEE80211_AMPDU_RX_STOP: 5074 /* HTT AddBa/DelBa events trigger mac80211 Rx BA session 5075 * creation/removal. Do we need to verify this? 5076 */ 5077 return 0; 5078 case IEEE80211_AMPDU_TX_START: 5079 case IEEE80211_AMPDU_TX_STOP_CONT: 5080 case IEEE80211_AMPDU_TX_STOP_FLUSH: 5081 case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT: 5082 case IEEE80211_AMPDU_TX_OPERATIONAL: 5083 /* Firmware offloads Tx aggregation entirely so deny mac80211 5084 * Tx aggregation requests. 5085 */ 5086 return -EOPNOTSUPP; 5087 } 5088 5089 return -EINVAL; 5090 } 5091 5092 static const struct ieee80211_ops ath10k_ops = { 5093 .tx = ath10k_tx, 5094 .start = ath10k_start, 5095 .stop = ath10k_stop, 5096 .config = ath10k_config, 5097 .add_interface = ath10k_add_interface, 5098 .remove_interface = ath10k_remove_interface, 5099 .configure_filter = ath10k_configure_filter, 5100 .bss_info_changed = ath10k_bss_info_changed, 5101 .hw_scan = ath10k_hw_scan, 5102 .cancel_hw_scan = ath10k_cancel_hw_scan, 5103 .set_key = ath10k_set_key, 5104 .set_default_unicast_key = ath10k_set_default_unicast_key, 5105 .sta_state = ath10k_sta_state, 5106 .conf_tx = ath10k_conf_tx, 5107 .remain_on_channel = ath10k_remain_on_channel, 5108 .cancel_remain_on_channel = ath10k_cancel_remain_on_channel, 5109 .set_rts_threshold = ath10k_set_rts_threshold, 5110 .flush = ath10k_flush, 5111 .tx_last_beacon = ath10k_tx_last_beacon, 5112 .set_antenna = ath10k_set_antenna, 5113 .get_antenna = ath10k_get_antenna, 5114 .reconfig_complete = ath10k_reconfig_complete, 5115 .get_survey = ath10k_get_survey, 5116 .set_bitrate_mask = ath10k_set_bitrate_mask, 5117 .sta_rc_update = ath10k_sta_rc_update, 5118 .get_tsf = ath10k_get_tsf, 5119 .ampdu_action = ath10k_ampdu_action, 5120 .get_et_sset_count = ath10k_debug_get_et_sset_count, 5121 .get_et_stats = ath10k_debug_get_et_stats, 5122 .get_et_strings = ath10k_debug_get_et_strings, 5123 5124 CFG80211_TESTMODE_CMD(ath10k_tm_cmd) 5125 5126 #ifdef CONFIG_PM 5127 .suspend = ath10k_suspend, 5128 .resume = ath10k_resume, 5129 #endif 5130 #ifdef CONFIG_MAC80211_DEBUGFS 5131 .sta_add_debugfs = ath10k_sta_add_debugfs, 5132 #endif 5133 }; 5134 5135 #define RATETAB_ENT(_rate, _rateid, _flags) { \ 5136 .bitrate = (_rate), \ 5137 .flags = (_flags), \ 5138 .hw_value = (_rateid), \ 5139 } 5140 5141 #define CHAN2G(_channel, _freq, _flags) { \ 5142 .band = IEEE80211_BAND_2GHZ, \ 5143 .hw_value = (_channel), \ 5144 .center_freq = (_freq), \ 5145 .flags = (_flags), \ 5146 .max_antenna_gain = 0, \ 5147 .max_power = 30, \ 5148 } 5149 5150 #define CHAN5G(_channel, _freq, _flags) { \ 5151 .band = IEEE80211_BAND_5GHZ, \ 5152 .hw_value = (_channel), \ 5153 .center_freq = (_freq), \ 5154 .flags = (_flags), \ 5155 .max_antenna_gain = 0, \ 5156 .max_power = 30, \ 5157 } 5158 5159 static const struct ieee80211_channel ath10k_2ghz_channels[] = { 5160 CHAN2G(1, 2412, 0), 5161 CHAN2G(2, 2417, 0), 5162 CHAN2G(3, 2422, 0), 5163 CHAN2G(4, 2427, 0), 5164 CHAN2G(5, 2432, 0), 5165 CHAN2G(6, 2437, 0), 5166 CHAN2G(7, 2442, 0), 5167 CHAN2G(8, 2447, 0), 5168 CHAN2G(9, 2452, 0), 5169 CHAN2G(10, 2457, 0), 5170 CHAN2G(11, 2462, 0), 5171 CHAN2G(12, 2467, 0), 5172 CHAN2G(13, 2472, 0), 5173 CHAN2G(14, 2484, 0), 5174 }; 5175 5176 static const struct ieee80211_channel ath10k_5ghz_channels[] = { 5177 CHAN5G(36, 5180, 0), 5178 CHAN5G(40, 5200, 0), 5179 CHAN5G(44, 5220, 0), 5180 CHAN5G(48, 5240, 0), 5181 CHAN5G(52, 5260, 0), 5182 CHAN5G(56, 5280, 0), 5183 CHAN5G(60, 5300, 0), 5184 CHAN5G(64, 5320, 0), 5185 CHAN5G(100, 5500, 0), 5186 CHAN5G(104, 5520, 0), 5187 CHAN5G(108, 5540, 0), 5188 CHAN5G(112, 5560, 0), 5189 CHAN5G(116, 5580, 0), 5190 CHAN5G(120, 5600, 0), 5191 CHAN5G(124, 5620, 0), 5192 CHAN5G(128, 5640, 0), 5193 CHAN5G(132, 5660, 0), 5194 CHAN5G(136, 5680, 0), 5195 CHAN5G(140, 5700, 0), 5196 CHAN5G(149, 5745, 0), 5197 CHAN5G(153, 5765, 0), 5198 CHAN5G(157, 5785, 0), 5199 CHAN5G(161, 5805, 0), 5200 CHAN5G(165, 5825, 0), 5201 }; 5202 5203 /* Note: Be careful if you re-order these. There is code which depends on this 5204 * ordering. 5205 */ 5206 static struct ieee80211_rate ath10k_rates[] = { 5207 /* CCK */ 5208 RATETAB_ENT(10, 0x82, 0), 5209 RATETAB_ENT(20, 0x84, 0), 5210 RATETAB_ENT(55, 0x8b, 0), 5211 RATETAB_ENT(110, 0x96, 0), 5212 /* OFDM */ 5213 RATETAB_ENT(60, 0x0c, 0), 5214 RATETAB_ENT(90, 0x12, 0), 5215 RATETAB_ENT(120, 0x18, 0), 5216 RATETAB_ENT(180, 0x24, 0), 5217 RATETAB_ENT(240, 0x30, 0), 5218 RATETAB_ENT(360, 0x48, 0), 5219 RATETAB_ENT(480, 0x60, 0), 5220 RATETAB_ENT(540, 0x6c, 0), 5221 }; 5222 5223 #define ath10k_a_rates (ath10k_rates + 4) 5224 #define ath10k_a_rates_size (ARRAY_SIZE(ath10k_rates) - 4) 5225 #define ath10k_g_rates (ath10k_rates + 0) 5226 #define ath10k_g_rates_size (ARRAY_SIZE(ath10k_rates)) 5227 5228 struct ath10k *ath10k_mac_create(size_t priv_size) 5229 { 5230 struct ieee80211_hw *hw; 5231 struct ath10k *ar; 5232 5233 hw = ieee80211_alloc_hw(sizeof(struct ath10k) + priv_size, &ath10k_ops); 5234 if (!hw) 5235 return NULL; 5236 5237 ar = hw->priv; 5238 ar->hw = hw; 5239 5240 return ar; 5241 } 5242 5243 void ath10k_mac_destroy(struct ath10k *ar) 5244 { 5245 ieee80211_free_hw(ar->hw); 5246 } 5247 5248 static const struct ieee80211_iface_limit ath10k_if_limits[] = { 5249 { 5250 .max = 8, 5251 .types = BIT(NL80211_IFTYPE_STATION) 5252 | BIT(NL80211_IFTYPE_P2P_CLIENT) 5253 }, 5254 { 5255 .max = 3, 5256 .types = BIT(NL80211_IFTYPE_P2P_GO) 5257 }, 5258 { 5259 .max = 1, 5260 .types = BIT(NL80211_IFTYPE_P2P_DEVICE) 5261 }, 5262 { 5263 .max = 7, 5264 .types = BIT(NL80211_IFTYPE_AP) 5265 }, 5266 }; 5267 5268 static const struct ieee80211_iface_limit ath10k_10x_if_limits[] = { 5269 { 5270 .max = 8, 5271 .types = BIT(NL80211_IFTYPE_AP) 5272 }, 5273 }; 5274 5275 static const struct ieee80211_iface_combination ath10k_if_comb[] = { 5276 { 5277 .limits = ath10k_if_limits, 5278 .n_limits = ARRAY_SIZE(ath10k_if_limits), 5279 .max_interfaces = 8, 5280 .num_different_channels = 1, 5281 .beacon_int_infra_match = true, 5282 }, 5283 }; 5284 5285 static const struct ieee80211_iface_combination ath10k_10x_if_comb[] = { 5286 { 5287 .limits = ath10k_10x_if_limits, 5288 .n_limits = ARRAY_SIZE(ath10k_10x_if_limits), 5289 .max_interfaces = 8, 5290 .num_different_channels = 1, 5291 .beacon_int_infra_match = true, 5292 #ifdef CONFIG_ATH10K_DFS_CERTIFIED 5293 .radar_detect_widths = BIT(NL80211_CHAN_WIDTH_20_NOHT) | 5294 BIT(NL80211_CHAN_WIDTH_20) | 5295 BIT(NL80211_CHAN_WIDTH_40) | 5296 BIT(NL80211_CHAN_WIDTH_80), 5297 #endif 5298 }, 5299 }; 5300 5301 static struct ieee80211_sta_vht_cap ath10k_create_vht_cap(struct ath10k *ar) 5302 { 5303 struct ieee80211_sta_vht_cap vht_cap = {0}; 5304 u16 mcs_map; 5305 int i; 5306 5307 vht_cap.vht_supported = 1; 5308 vht_cap.cap = ar->vht_cap_info; 5309 5310 mcs_map = 0; 5311 for (i = 0; i < 8; i++) { 5312 if (i < ar->num_rf_chains) 5313 mcs_map |= IEEE80211_VHT_MCS_SUPPORT_0_9 << (i*2); 5314 else 5315 mcs_map |= IEEE80211_VHT_MCS_NOT_SUPPORTED << (i*2); 5316 } 5317 5318 vht_cap.vht_mcs.rx_mcs_map = cpu_to_le16(mcs_map); 5319 vht_cap.vht_mcs.tx_mcs_map = cpu_to_le16(mcs_map); 5320 5321 return vht_cap; 5322 } 5323 5324 static struct ieee80211_sta_ht_cap ath10k_get_ht_cap(struct ath10k *ar) 5325 { 5326 int i; 5327 struct ieee80211_sta_ht_cap ht_cap = {0}; 5328 5329 if (!(ar->ht_cap_info & WMI_HT_CAP_ENABLED)) 5330 return ht_cap; 5331 5332 ht_cap.ht_supported = 1; 5333 ht_cap.ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K; 5334 ht_cap.ampdu_density = IEEE80211_HT_MPDU_DENSITY_8; 5335 ht_cap.cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40; 5336 ht_cap.cap |= IEEE80211_HT_CAP_DSSSCCK40; 5337 ht_cap.cap |= WLAN_HT_CAP_SM_PS_STATIC << IEEE80211_HT_CAP_SM_PS_SHIFT; 5338 5339 if (ar->ht_cap_info & WMI_HT_CAP_HT20_SGI) 5340 ht_cap.cap |= IEEE80211_HT_CAP_SGI_20; 5341 5342 if (ar->ht_cap_info & WMI_HT_CAP_HT40_SGI) 5343 ht_cap.cap |= IEEE80211_HT_CAP_SGI_40; 5344 5345 if (ar->ht_cap_info & WMI_HT_CAP_DYNAMIC_SMPS) { 5346 u32 smps; 5347 5348 smps = WLAN_HT_CAP_SM_PS_DYNAMIC; 5349 smps <<= IEEE80211_HT_CAP_SM_PS_SHIFT; 5350 5351 ht_cap.cap |= smps; 5352 } 5353 5354 if (ar->ht_cap_info & WMI_HT_CAP_TX_STBC) 5355 ht_cap.cap |= IEEE80211_HT_CAP_TX_STBC; 5356 5357 if (ar->ht_cap_info & WMI_HT_CAP_RX_STBC) { 5358 u32 stbc; 5359 5360 stbc = ar->ht_cap_info; 5361 stbc &= WMI_HT_CAP_RX_STBC; 5362 stbc >>= WMI_HT_CAP_RX_STBC_MASK_SHIFT; 5363 stbc <<= IEEE80211_HT_CAP_RX_STBC_SHIFT; 5364 stbc &= IEEE80211_HT_CAP_RX_STBC; 5365 5366 ht_cap.cap |= stbc; 5367 } 5368 5369 if (ar->ht_cap_info & WMI_HT_CAP_LDPC) 5370 ht_cap.cap |= IEEE80211_HT_CAP_LDPC_CODING; 5371 5372 if (ar->ht_cap_info & WMI_HT_CAP_L_SIG_TXOP_PROT) 5373 ht_cap.cap |= IEEE80211_HT_CAP_LSIG_TXOP_PROT; 5374 5375 /* max AMSDU is implicitly taken from vht_cap_info */ 5376 if (ar->vht_cap_info & WMI_VHT_CAP_MAX_MPDU_LEN_MASK) 5377 ht_cap.cap |= IEEE80211_HT_CAP_MAX_AMSDU; 5378 5379 for (i = 0; i < ar->num_rf_chains; i++) 5380 ht_cap.mcs.rx_mask[i] = 0xFF; 5381 5382 ht_cap.mcs.tx_params |= IEEE80211_HT_MCS_TX_DEFINED; 5383 5384 return ht_cap; 5385 } 5386 5387 static void ath10k_get_arvif_iter(void *data, u8 *mac, 5388 struct ieee80211_vif *vif) 5389 { 5390 struct ath10k_vif_iter *arvif_iter = data; 5391 struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif); 5392 5393 if (arvif->vdev_id == arvif_iter->vdev_id) 5394 arvif_iter->arvif = arvif; 5395 } 5396 5397 struct ath10k_vif *ath10k_get_arvif(struct ath10k *ar, u32 vdev_id) 5398 { 5399 struct ath10k_vif_iter arvif_iter; 5400 u32 flags; 5401 5402 memset(&arvif_iter, 0, sizeof(struct ath10k_vif_iter)); 5403 arvif_iter.vdev_id = vdev_id; 5404 5405 flags = IEEE80211_IFACE_ITER_RESUME_ALL; 5406 ieee80211_iterate_active_interfaces_atomic(ar->hw, 5407 flags, 5408 ath10k_get_arvif_iter, 5409 &arvif_iter); 5410 if (!arvif_iter.arvif) { 5411 ath10k_warn(ar, "No VIF found for vdev %d\n", vdev_id); 5412 return NULL; 5413 } 5414 5415 return arvif_iter.arvif; 5416 } 5417 5418 int ath10k_mac_register(struct ath10k *ar) 5419 { 5420 static const u32 cipher_suites[] = { 5421 WLAN_CIPHER_SUITE_WEP40, 5422 WLAN_CIPHER_SUITE_WEP104, 5423 WLAN_CIPHER_SUITE_TKIP, 5424 WLAN_CIPHER_SUITE_CCMP, 5425 WLAN_CIPHER_SUITE_AES_CMAC, 5426 }; 5427 struct ieee80211_supported_band *band; 5428 struct ieee80211_sta_vht_cap vht_cap; 5429 struct ieee80211_sta_ht_cap ht_cap; 5430 void *channels; 5431 int ret; 5432 5433 SET_IEEE80211_PERM_ADDR(ar->hw, ar->mac_addr); 5434 5435 SET_IEEE80211_DEV(ar->hw, ar->dev); 5436 5437 ht_cap = ath10k_get_ht_cap(ar); 5438 vht_cap = ath10k_create_vht_cap(ar); 5439 5440 if (ar->phy_capability & WHAL_WLAN_11G_CAPABILITY) { 5441 channels = kmemdup(ath10k_2ghz_channels, 5442 sizeof(ath10k_2ghz_channels), 5443 GFP_KERNEL); 5444 if (!channels) { 5445 ret = -ENOMEM; 5446 goto err_free; 5447 } 5448 5449 band = &ar->mac.sbands[IEEE80211_BAND_2GHZ]; 5450 band->n_channels = ARRAY_SIZE(ath10k_2ghz_channels); 5451 band->channels = channels; 5452 band->n_bitrates = ath10k_g_rates_size; 5453 band->bitrates = ath10k_g_rates; 5454 band->ht_cap = ht_cap; 5455 5456 /* Enable the VHT support at 2.4 GHz */ 5457 band->vht_cap = vht_cap; 5458 5459 ar->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = band; 5460 } 5461 5462 if (ar->phy_capability & WHAL_WLAN_11A_CAPABILITY) { 5463 channels = kmemdup(ath10k_5ghz_channels, 5464 sizeof(ath10k_5ghz_channels), 5465 GFP_KERNEL); 5466 if (!channels) { 5467 ret = -ENOMEM; 5468 goto err_free; 5469 } 5470 5471 band = &ar->mac.sbands[IEEE80211_BAND_5GHZ]; 5472 band->n_channels = ARRAY_SIZE(ath10k_5ghz_channels); 5473 band->channels = channels; 5474 band->n_bitrates = ath10k_a_rates_size; 5475 band->bitrates = ath10k_a_rates; 5476 band->ht_cap = ht_cap; 5477 band->vht_cap = vht_cap; 5478 ar->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = band; 5479 } 5480 5481 ar->hw->wiphy->interface_modes = 5482 BIT(NL80211_IFTYPE_STATION) | 5483 BIT(NL80211_IFTYPE_AP); 5484 5485 ar->hw->wiphy->available_antennas_rx = ar->supp_rx_chainmask; 5486 ar->hw->wiphy->available_antennas_tx = ar->supp_tx_chainmask; 5487 5488 if (!test_bit(ATH10K_FW_FEATURE_NO_P2P, ar->fw_features)) 5489 ar->hw->wiphy->interface_modes |= 5490 BIT(NL80211_IFTYPE_P2P_DEVICE) | 5491 BIT(NL80211_IFTYPE_P2P_CLIENT) | 5492 BIT(NL80211_IFTYPE_P2P_GO); 5493 5494 ar->hw->flags = IEEE80211_HW_SIGNAL_DBM | 5495 IEEE80211_HW_SUPPORTS_PS | 5496 IEEE80211_HW_SUPPORTS_DYNAMIC_PS | 5497 IEEE80211_HW_MFP_CAPABLE | 5498 IEEE80211_HW_REPORTS_TX_ACK_STATUS | 5499 IEEE80211_HW_HAS_RATE_CONTROL | 5500 IEEE80211_HW_AP_LINK_PS | 5501 IEEE80211_HW_SPECTRUM_MGMT | 5502 IEEE80211_HW_SW_CRYPTO_CONTROL; 5503 5504 ar->hw->wiphy->features |= NL80211_FEATURE_STATIC_SMPS; 5505 5506 if (ar->ht_cap_info & WMI_HT_CAP_DYNAMIC_SMPS) 5507 ar->hw->wiphy->features |= NL80211_FEATURE_DYNAMIC_SMPS; 5508 5509 if (ar->ht_cap_info & WMI_HT_CAP_ENABLED) { 5510 ar->hw->flags |= IEEE80211_HW_AMPDU_AGGREGATION; 5511 ar->hw->flags |= IEEE80211_HW_TX_AMPDU_SETUP_IN_HW; 5512 } 5513 5514 ar->hw->wiphy->max_scan_ssids = WLAN_SCAN_PARAMS_MAX_SSID; 5515 ar->hw->wiphy->max_scan_ie_len = WLAN_SCAN_PARAMS_MAX_IE_LEN; 5516 5517 ar->hw->vif_data_size = sizeof(struct ath10k_vif); 5518 ar->hw->sta_data_size = sizeof(struct ath10k_sta); 5519 5520 ar->hw->max_listen_interval = ATH10K_MAX_HW_LISTEN_INTERVAL; 5521 5522 if (test_bit(WMI_SERVICE_BEACON_OFFLOAD, ar->wmi.svc_map)) { 5523 ar->hw->wiphy->flags |= WIPHY_FLAG_AP_PROBE_RESP_OFFLOAD; 5524 5525 /* Firmware delivers WPS/P2P Probe Requests frames to driver so 5526 * that userspace (e.g. wpa_supplicant/hostapd) can generate 5527 * correct Probe Responses. This is more of a hack advert.. 5528 */ 5529 ar->hw->wiphy->probe_resp_offload |= 5530 NL80211_PROBE_RESP_OFFLOAD_SUPPORT_WPS | 5531 NL80211_PROBE_RESP_OFFLOAD_SUPPORT_WPS2 | 5532 NL80211_PROBE_RESP_OFFLOAD_SUPPORT_P2P; 5533 } 5534 5535 ar->hw->wiphy->flags |= WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL; 5536 ar->hw->wiphy->flags |= WIPHY_FLAG_HAS_CHANNEL_SWITCH; 5537 ar->hw->wiphy->max_remain_on_channel_duration = 5000; 5538 5539 ar->hw->wiphy->flags |= WIPHY_FLAG_AP_UAPSD; 5540 ar->hw->wiphy->features |= NL80211_FEATURE_AP_MODE_CHAN_WIDTH_CHANGE; 5541 5542 /* 5543 * on LL hardware queues are managed entirely by the FW 5544 * so we only advertise to mac we can do the queues thing 5545 */ 5546 ar->hw->queues = 4; 5547 5548 switch (ar->wmi.op_version) { 5549 case ATH10K_FW_WMI_OP_VERSION_MAIN: 5550 case ATH10K_FW_WMI_OP_VERSION_TLV: 5551 ar->hw->wiphy->iface_combinations = ath10k_if_comb; 5552 ar->hw->wiphy->n_iface_combinations = 5553 ARRAY_SIZE(ath10k_if_comb); 5554 ar->hw->wiphy->interface_modes |= BIT(NL80211_IFTYPE_ADHOC); 5555 break; 5556 case ATH10K_FW_WMI_OP_VERSION_10_1: 5557 case ATH10K_FW_WMI_OP_VERSION_10_2: 5558 case ATH10K_FW_WMI_OP_VERSION_10_2_4: 5559 ar->hw->wiphy->iface_combinations = ath10k_10x_if_comb; 5560 ar->hw->wiphy->n_iface_combinations = 5561 ARRAY_SIZE(ath10k_10x_if_comb); 5562 break; 5563 case ATH10K_FW_WMI_OP_VERSION_UNSET: 5564 case ATH10K_FW_WMI_OP_VERSION_MAX: 5565 WARN_ON(1); 5566 ret = -EINVAL; 5567 goto err_free; 5568 } 5569 5570 ar->hw->netdev_features = NETIF_F_HW_CSUM; 5571 5572 if (config_enabled(CONFIG_ATH10K_DFS_CERTIFIED)) { 5573 /* Init ath dfs pattern detector */ 5574 ar->ath_common.debug_mask = ATH_DBG_DFS; 5575 ar->dfs_detector = dfs_pattern_detector_init(&ar->ath_common, 5576 NL80211_DFS_UNSET); 5577 5578 if (!ar->dfs_detector) 5579 ath10k_warn(ar, "failed to initialise DFS pattern detector\n"); 5580 } 5581 5582 ret = ath_regd_init(&ar->ath_common.regulatory, ar->hw->wiphy, 5583 ath10k_reg_notifier); 5584 if (ret) { 5585 ath10k_err(ar, "failed to initialise regulatory: %i\n", ret); 5586 goto err_free; 5587 } 5588 5589 ar->hw->wiphy->cipher_suites = cipher_suites; 5590 ar->hw->wiphy->n_cipher_suites = ARRAY_SIZE(cipher_suites); 5591 5592 ret = ieee80211_register_hw(ar->hw); 5593 if (ret) { 5594 ath10k_err(ar, "failed to register ieee80211: %d\n", ret); 5595 goto err_free; 5596 } 5597 5598 if (!ath_is_world_regd(&ar->ath_common.regulatory)) { 5599 ret = regulatory_hint(ar->hw->wiphy, 5600 ar->ath_common.regulatory.alpha2); 5601 if (ret) 5602 goto err_unregister; 5603 } 5604 5605 return 0; 5606 5607 err_unregister: 5608 ieee80211_unregister_hw(ar->hw); 5609 err_free: 5610 kfree(ar->mac.sbands[IEEE80211_BAND_2GHZ].channels); 5611 kfree(ar->mac.sbands[IEEE80211_BAND_5GHZ].channels); 5612 5613 return ret; 5614 } 5615 5616 void ath10k_mac_unregister(struct ath10k *ar) 5617 { 5618 ieee80211_unregister_hw(ar->hw); 5619 5620 if (config_enabled(CONFIG_ATH10K_DFS_CERTIFIED) && ar->dfs_detector) 5621 ar->dfs_detector->exit(ar->dfs_detector); 5622 5623 kfree(ar->mac.sbands[IEEE80211_BAND_2GHZ].channels); 5624 kfree(ar->mac.sbands[IEEE80211_BAND_5GHZ].channels); 5625 5626 SET_IEEE80211_DEV(ar->hw, NULL); 5627 } 5628