1 // SPDX-License-Identifier: ISC 2 /* 3 * Copyright (c) 2005-2011 Atheros Communications Inc. 4 * Copyright (c) 2011-2017 Qualcomm Atheros, Inc. 5 * Copyright (c) 2018-2019, The Linux Foundation. All rights reserved. 6 */ 7 8 #include "mac.h" 9 10 #include <net/cfg80211.h> 11 #include <net/mac80211.h> 12 #include <linux/etherdevice.h> 13 #include <linux/acpi.h> 14 #include <linux/of.h> 15 #include <linux/bitfield.h> 16 17 #include "hif.h" 18 #include "core.h" 19 #include "debug.h" 20 #include "wmi.h" 21 #include "htt.h" 22 #include "txrx.h" 23 #include "testmode.h" 24 #include "wmi-tlv.h" 25 #include "wmi-ops.h" 26 #include "wow.h" 27 28 /*********/ 29 /* Rates */ 30 /*********/ 31 32 static struct ieee80211_rate ath10k_rates[] = { 33 { .bitrate = 10, 34 .hw_value = ATH10K_HW_RATE_CCK_LP_1M }, 35 { .bitrate = 20, 36 .hw_value = ATH10K_HW_RATE_CCK_LP_2M, 37 .hw_value_short = ATH10K_HW_RATE_CCK_SP_2M, 38 .flags = IEEE80211_RATE_SHORT_PREAMBLE }, 39 { .bitrate = 55, 40 .hw_value = ATH10K_HW_RATE_CCK_LP_5_5M, 41 .hw_value_short = ATH10K_HW_RATE_CCK_SP_5_5M, 42 .flags = IEEE80211_RATE_SHORT_PREAMBLE }, 43 { .bitrate = 110, 44 .hw_value = ATH10K_HW_RATE_CCK_LP_11M, 45 .hw_value_short = ATH10K_HW_RATE_CCK_SP_11M, 46 .flags = IEEE80211_RATE_SHORT_PREAMBLE }, 47 48 { .bitrate = 60, .hw_value = ATH10K_HW_RATE_OFDM_6M }, 49 { .bitrate = 90, .hw_value = ATH10K_HW_RATE_OFDM_9M }, 50 { .bitrate = 120, .hw_value = ATH10K_HW_RATE_OFDM_12M }, 51 { .bitrate = 180, .hw_value = ATH10K_HW_RATE_OFDM_18M }, 52 { .bitrate = 240, .hw_value = ATH10K_HW_RATE_OFDM_24M }, 53 { .bitrate = 360, .hw_value = ATH10K_HW_RATE_OFDM_36M }, 54 { .bitrate = 480, .hw_value = ATH10K_HW_RATE_OFDM_48M }, 55 { .bitrate = 540, .hw_value = ATH10K_HW_RATE_OFDM_54M }, 56 }; 57 58 static struct ieee80211_rate ath10k_rates_rev2[] = { 59 { .bitrate = 10, 60 .hw_value = ATH10K_HW_RATE_REV2_CCK_LP_1M }, 61 { .bitrate = 20, 62 .hw_value = ATH10K_HW_RATE_REV2_CCK_LP_2M, 63 .hw_value_short = ATH10K_HW_RATE_REV2_CCK_SP_2M, 64 .flags = IEEE80211_RATE_SHORT_PREAMBLE }, 65 { .bitrate = 55, 66 .hw_value = ATH10K_HW_RATE_REV2_CCK_LP_5_5M, 67 .hw_value_short = ATH10K_HW_RATE_REV2_CCK_SP_5_5M, 68 .flags = IEEE80211_RATE_SHORT_PREAMBLE }, 69 { .bitrate = 110, 70 .hw_value = ATH10K_HW_RATE_REV2_CCK_LP_11M, 71 .hw_value_short = ATH10K_HW_RATE_REV2_CCK_SP_11M, 72 .flags = IEEE80211_RATE_SHORT_PREAMBLE }, 73 74 { .bitrate = 60, .hw_value = ATH10K_HW_RATE_OFDM_6M }, 75 { .bitrate = 90, .hw_value = ATH10K_HW_RATE_OFDM_9M }, 76 { .bitrate = 120, .hw_value = ATH10K_HW_RATE_OFDM_12M }, 77 { .bitrate = 180, .hw_value = ATH10K_HW_RATE_OFDM_18M }, 78 { .bitrate = 240, .hw_value = ATH10K_HW_RATE_OFDM_24M }, 79 { .bitrate = 360, .hw_value = ATH10K_HW_RATE_OFDM_36M }, 80 { .bitrate = 480, .hw_value = ATH10K_HW_RATE_OFDM_48M }, 81 { .bitrate = 540, .hw_value = ATH10K_HW_RATE_OFDM_54M }, 82 }; 83 84 static const struct cfg80211_sar_freq_ranges ath10k_sar_freq_ranges[] = { 85 {.start_freq = 2402, .end_freq = 2494 }, 86 {.start_freq = 5170, .end_freq = 5875 }, 87 }; 88 89 static const struct cfg80211_sar_capa ath10k_sar_capa = { 90 .type = NL80211_SAR_TYPE_POWER, 91 .num_freq_ranges = (ARRAY_SIZE(ath10k_sar_freq_ranges)), 92 .freq_ranges = &ath10k_sar_freq_ranges[0], 93 }; 94 95 #define ATH10K_MAC_FIRST_OFDM_RATE_IDX 4 96 97 #define ath10k_a_rates (ath10k_rates + ATH10K_MAC_FIRST_OFDM_RATE_IDX) 98 #define ath10k_a_rates_size (ARRAY_SIZE(ath10k_rates) - \ 99 ATH10K_MAC_FIRST_OFDM_RATE_IDX) 100 #define ath10k_g_rates (ath10k_rates + 0) 101 #define ath10k_g_rates_size (ARRAY_SIZE(ath10k_rates)) 102 103 #define ath10k_g_rates_rev2 (ath10k_rates_rev2 + 0) 104 #define ath10k_g_rates_rev2_size (ARRAY_SIZE(ath10k_rates_rev2)) 105 106 #define ath10k_wmi_legacy_rates ath10k_rates 107 108 static bool ath10k_mac_bitrate_is_cck(int bitrate) 109 { 110 switch (bitrate) { 111 case 10: 112 case 20: 113 case 55: 114 case 110: 115 return true; 116 } 117 118 return false; 119 } 120 121 static u8 ath10k_mac_bitrate_to_rate(int bitrate) 122 { 123 return DIV_ROUND_UP(bitrate, 5) | 124 (ath10k_mac_bitrate_is_cck(bitrate) ? BIT(7) : 0); 125 } 126 127 u8 ath10k_mac_hw_rate_to_idx(const struct ieee80211_supported_band *sband, 128 u8 hw_rate, bool cck) 129 { 130 const struct ieee80211_rate *rate; 131 int i; 132 133 for (i = 0; i < sband->n_bitrates; i++) { 134 rate = &sband->bitrates[i]; 135 136 if (ath10k_mac_bitrate_is_cck(rate->bitrate) != cck) 137 continue; 138 139 if (rate->hw_value == hw_rate) 140 return i; 141 else if (rate->flags & IEEE80211_RATE_SHORT_PREAMBLE && 142 rate->hw_value_short == hw_rate) 143 return i; 144 } 145 146 return 0; 147 } 148 149 u8 ath10k_mac_bitrate_to_idx(const struct ieee80211_supported_band *sband, 150 u32 bitrate) 151 { 152 int i; 153 154 for (i = 0; i < sband->n_bitrates; i++) 155 if (sband->bitrates[i].bitrate == bitrate) 156 return i; 157 158 return 0; 159 } 160 161 static int ath10k_mac_get_rate_hw_value(int bitrate) 162 { 163 int i; 164 u8 hw_value_prefix = 0; 165 166 if (ath10k_mac_bitrate_is_cck(bitrate)) 167 hw_value_prefix = WMI_RATE_PREAMBLE_CCK << 6; 168 169 for (i = 0; i < ARRAY_SIZE(ath10k_rates); i++) { 170 if (ath10k_rates[i].bitrate == bitrate) 171 return hw_value_prefix | ath10k_rates[i].hw_value; 172 } 173 174 return -EINVAL; 175 } 176 177 static int ath10k_mac_get_max_vht_mcs_map(u16 mcs_map, int nss) 178 { 179 switch ((mcs_map >> (2 * nss)) & 0x3) { 180 case IEEE80211_VHT_MCS_SUPPORT_0_7: return BIT(8) - 1; 181 case IEEE80211_VHT_MCS_SUPPORT_0_8: return BIT(9) - 1; 182 case IEEE80211_VHT_MCS_SUPPORT_0_9: return BIT(10) - 1; 183 } 184 return 0; 185 } 186 187 static u32 188 ath10k_mac_max_ht_nss(const u8 ht_mcs_mask[IEEE80211_HT_MCS_MASK_LEN]) 189 { 190 int nss; 191 192 for (nss = IEEE80211_HT_MCS_MASK_LEN - 1; nss >= 0; nss--) 193 if (ht_mcs_mask[nss]) 194 return nss + 1; 195 196 return 1; 197 } 198 199 static u32 200 ath10k_mac_max_vht_nss(const u16 vht_mcs_mask[NL80211_VHT_NSS_MAX]) 201 { 202 int nss; 203 204 for (nss = NL80211_VHT_NSS_MAX - 1; nss >= 0; nss--) 205 if (vht_mcs_mask[nss]) 206 return nss + 1; 207 208 return 1; 209 } 210 211 int ath10k_mac_ext_resource_config(struct ath10k *ar, u32 val) 212 { 213 enum wmi_host_platform_type platform_type; 214 int ret; 215 216 if (test_bit(WMI_SERVICE_TX_MODE_DYNAMIC, ar->wmi.svc_map)) 217 platform_type = WMI_HOST_PLATFORM_LOW_PERF; 218 else 219 platform_type = WMI_HOST_PLATFORM_HIGH_PERF; 220 221 ret = ath10k_wmi_ext_resource_config(ar, platform_type, val); 222 223 if (ret && ret != -EOPNOTSUPP) { 224 ath10k_warn(ar, "failed to configure ext resource: %d\n", ret); 225 return ret; 226 } 227 228 return 0; 229 } 230 231 /**********/ 232 /* Crypto */ 233 /**********/ 234 235 static int ath10k_send_key(struct ath10k_vif *arvif, 236 struct ieee80211_key_conf *key, 237 enum set_key_cmd cmd, 238 const u8 *macaddr, u32 flags) 239 { 240 struct ath10k *ar = arvif->ar; 241 struct wmi_vdev_install_key_arg arg = { 242 .vdev_id = arvif->vdev_id, 243 .key_idx = key->keyidx, 244 .key_len = key->keylen, 245 .key_data = key->key, 246 .key_flags = flags, 247 .macaddr = macaddr, 248 }; 249 250 lockdep_assert_held(&arvif->ar->conf_mutex); 251 252 switch (key->cipher) { 253 case WLAN_CIPHER_SUITE_CCMP: 254 arg.key_cipher = ar->wmi_key_cipher[WMI_CIPHER_AES_CCM]; 255 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV_MGMT; 256 break; 257 case WLAN_CIPHER_SUITE_TKIP: 258 arg.key_cipher = ar->wmi_key_cipher[WMI_CIPHER_TKIP]; 259 arg.key_txmic_len = 8; 260 arg.key_rxmic_len = 8; 261 break; 262 case WLAN_CIPHER_SUITE_WEP40: 263 case WLAN_CIPHER_SUITE_WEP104: 264 arg.key_cipher = ar->wmi_key_cipher[WMI_CIPHER_WEP]; 265 break; 266 case WLAN_CIPHER_SUITE_CCMP_256: 267 arg.key_cipher = ar->wmi_key_cipher[WMI_CIPHER_AES_CCM]; 268 break; 269 case WLAN_CIPHER_SUITE_GCMP: 270 case WLAN_CIPHER_SUITE_GCMP_256: 271 arg.key_cipher = ar->wmi_key_cipher[WMI_CIPHER_AES_GCM]; 272 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV_MGMT; 273 break; 274 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 275 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 276 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 277 case WLAN_CIPHER_SUITE_AES_CMAC: 278 WARN_ON(1); 279 return -EINVAL; 280 default: 281 ath10k_warn(ar, "cipher %d is not supported\n", key->cipher); 282 return -EOPNOTSUPP; 283 } 284 285 if (test_bit(ATH10K_FLAG_RAW_MODE, &ar->dev_flags)) 286 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV; 287 288 if (cmd == DISABLE_KEY) { 289 arg.key_cipher = ar->wmi_key_cipher[WMI_CIPHER_NONE]; 290 arg.key_data = NULL; 291 } 292 293 return ath10k_wmi_vdev_install_key(arvif->ar, &arg); 294 } 295 296 static int ath10k_install_key(struct ath10k_vif *arvif, 297 struct ieee80211_key_conf *key, 298 enum set_key_cmd cmd, 299 const u8 *macaddr, u32 flags) 300 { 301 struct ath10k *ar = arvif->ar; 302 int ret; 303 unsigned long time_left; 304 305 lockdep_assert_held(&ar->conf_mutex); 306 307 reinit_completion(&ar->install_key_done); 308 309 if (arvif->nohwcrypt) 310 return 1; 311 312 ret = ath10k_send_key(arvif, key, cmd, macaddr, flags); 313 if (ret) 314 return ret; 315 316 time_left = wait_for_completion_timeout(&ar->install_key_done, 3 * HZ); 317 if (time_left == 0) 318 return -ETIMEDOUT; 319 320 return 0; 321 } 322 323 static int ath10k_install_peer_wep_keys(struct ath10k_vif *arvif, 324 const u8 *addr) 325 { 326 struct ath10k *ar = arvif->ar; 327 struct ath10k_peer *peer; 328 int ret; 329 int i; 330 u32 flags; 331 332 lockdep_assert_held(&ar->conf_mutex); 333 334 if (WARN_ON(arvif->vif->type != NL80211_IFTYPE_AP && 335 arvif->vif->type != NL80211_IFTYPE_ADHOC && 336 arvif->vif->type != NL80211_IFTYPE_MESH_POINT)) 337 return -EINVAL; 338 339 spin_lock_bh(&ar->data_lock); 340 peer = ath10k_peer_find(ar, arvif->vdev_id, addr); 341 spin_unlock_bh(&ar->data_lock); 342 343 if (!peer) 344 return -ENOENT; 345 346 for (i = 0; i < ARRAY_SIZE(arvif->wep_keys); i++) { 347 if (arvif->wep_keys[i] == NULL) 348 continue; 349 350 switch (arvif->vif->type) { 351 case NL80211_IFTYPE_AP: 352 flags = WMI_KEY_PAIRWISE; 353 354 if (arvif->def_wep_key_idx == i) 355 flags |= WMI_KEY_TX_USAGE; 356 357 ret = ath10k_install_key(arvif, arvif->wep_keys[i], 358 SET_KEY, addr, flags); 359 if (ret < 0) 360 return ret; 361 break; 362 case NL80211_IFTYPE_ADHOC: 363 ret = ath10k_install_key(arvif, arvif->wep_keys[i], 364 SET_KEY, addr, 365 WMI_KEY_PAIRWISE); 366 if (ret < 0) 367 return ret; 368 369 ret = ath10k_install_key(arvif, arvif->wep_keys[i], 370 SET_KEY, addr, WMI_KEY_GROUP); 371 if (ret < 0) 372 return ret; 373 break; 374 default: 375 WARN_ON(1); 376 return -EINVAL; 377 } 378 379 spin_lock_bh(&ar->data_lock); 380 peer->keys[i] = arvif->wep_keys[i]; 381 spin_unlock_bh(&ar->data_lock); 382 } 383 384 /* In some cases (notably with static WEP IBSS with multiple keys) 385 * multicast Tx becomes broken. Both pairwise and groupwise keys are 386 * installed already. Using WMI_KEY_TX_USAGE in different combinations 387 * didn't seem help. Using def_keyid vdev parameter seems to be 388 * effective so use that. 389 * 390 * FIXME: Revisit. Perhaps this can be done in a less hacky way. 391 */ 392 if (arvif->vif->type != NL80211_IFTYPE_ADHOC) 393 return 0; 394 395 if (arvif->def_wep_key_idx == -1) 396 return 0; 397 398 ret = ath10k_wmi_vdev_set_param(arvif->ar, 399 arvif->vdev_id, 400 arvif->ar->wmi.vdev_param->def_keyid, 401 arvif->def_wep_key_idx); 402 if (ret) { 403 ath10k_warn(ar, "failed to re-set def wpa key idxon vdev %i: %d\n", 404 arvif->vdev_id, ret); 405 return ret; 406 } 407 408 return 0; 409 } 410 411 static int ath10k_clear_peer_keys(struct ath10k_vif *arvif, 412 const u8 *addr) 413 { 414 struct ath10k *ar = arvif->ar; 415 struct ath10k_peer *peer; 416 int first_errno = 0; 417 int ret; 418 int i; 419 u32 flags = 0; 420 421 lockdep_assert_held(&ar->conf_mutex); 422 423 spin_lock_bh(&ar->data_lock); 424 peer = ath10k_peer_find(ar, arvif->vdev_id, addr); 425 spin_unlock_bh(&ar->data_lock); 426 427 if (!peer) 428 return -ENOENT; 429 430 for (i = 0; i < ARRAY_SIZE(peer->keys); i++) { 431 if (peer->keys[i] == NULL) 432 continue; 433 434 /* key flags are not required to delete the key */ 435 ret = ath10k_install_key(arvif, peer->keys[i], 436 DISABLE_KEY, addr, flags); 437 if (ret < 0 && first_errno == 0) 438 first_errno = ret; 439 440 if (ret < 0) 441 ath10k_warn(ar, "failed to remove peer wep key %d: %d\n", 442 i, ret); 443 444 spin_lock_bh(&ar->data_lock); 445 peer->keys[i] = NULL; 446 spin_unlock_bh(&ar->data_lock); 447 } 448 449 return first_errno; 450 } 451 452 bool ath10k_mac_is_peer_wep_key_set(struct ath10k *ar, const u8 *addr, 453 u8 keyidx) 454 { 455 struct ath10k_peer *peer; 456 int i; 457 458 lockdep_assert_held(&ar->data_lock); 459 460 /* We don't know which vdev this peer belongs to, 461 * since WMI doesn't give us that information. 462 * 463 * FIXME: multi-bss needs to be handled. 464 */ 465 peer = ath10k_peer_find(ar, 0, addr); 466 if (!peer) 467 return false; 468 469 for (i = 0; i < ARRAY_SIZE(peer->keys); i++) { 470 if (peer->keys[i] && peer->keys[i]->keyidx == keyidx) 471 return true; 472 } 473 474 return false; 475 } 476 477 static int ath10k_clear_vdev_key(struct ath10k_vif *arvif, 478 struct ieee80211_key_conf *key) 479 { 480 struct ath10k *ar = arvif->ar; 481 struct ath10k_peer *peer; 482 u8 addr[ETH_ALEN]; 483 int first_errno = 0; 484 int ret; 485 int i; 486 u32 flags = 0; 487 488 lockdep_assert_held(&ar->conf_mutex); 489 490 for (;;) { 491 /* since ath10k_install_key we can't hold data_lock all the 492 * time, so we try to remove the keys incrementally 493 */ 494 spin_lock_bh(&ar->data_lock); 495 i = 0; 496 list_for_each_entry(peer, &ar->peers, list) { 497 for (i = 0; i < ARRAY_SIZE(peer->keys); i++) { 498 if (peer->keys[i] == key) { 499 ether_addr_copy(addr, peer->addr); 500 peer->keys[i] = NULL; 501 break; 502 } 503 } 504 505 if (i < ARRAY_SIZE(peer->keys)) 506 break; 507 } 508 spin_unlock_bh(&ar->data_lock); 509 510 if (i == ARRAY_SIZE(peer->keys)) 511 break; 512 /* key flags are not required to delete the key */ 513 ret = ath10k_install_key(arvif, key, DISABLE_KEY, addr, flags); 514 if (ret < 0 && first_errno == 0) 515 first_errno = ret; 516 517 if (ret) 518 ath10k_warn(ar, "failed to remove key for %pM: %d\n", 519 addr, ret); 520 } 521 522 return first_errno; 523 } 524 525 static int ath10k_mac_vif_update_wep_key(struct ath10k_vif *arvif, 526 struct ieee80211_key_conf *key) 527 { 528 struct ath10k *ar = arvif->ar; 529 struct ath10k_peer *peer; 530 int ret; 531 532 lockdep_assert_held(&ar->conf_mutex); 533 534 list_for_each_entry(peer, &ar->peers, list) { 535 if (ether_addr_equal(peer->addr, arvif->vif->addr)) 536 continue; 537 538 if (ether_addr_equal(peer->addr, arvif->bssid)) 539 continue; 540 541 if (peer->keys[key->keyidx] == key) 542 continue; 543 544 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vif vdev %i update key %i needs update\n", 545 arvif->vdev_id, key->keyidx); 546 547 ret = ath10k_install_peer_wep_keys(arvif, peer->addr); 548 if (ret) { 549 ath10k_warn(ar, "failed to update wep keys on vdev %i for peer %pM: %d\n", 550 arvif->vdev_id, peer->addr, ret); 551 return ret; 552 } 553 } 554 555 return 0; 556 } 557 558 /*********************/ 559 /* General utilities */ 560 /*********************/ 561 562 static inline enum wmi_phy_mode 563 chan_to_phymode(const struct cfg80211_chan_def *chandef) 564 { 565 enum wmi_phy_mode phymode = MODE_UNKNOWN; 566 567 switch (chandef->chan->band) { 568 case NL80211_BAND_2GHZ: 569 switch (chandef->width) { 570 case NL80211_CHAN_WIDTH_20_NOHT: 571 if (chandef->chan->flags & IEEE80211_CHAN_NO_OFDM) 572 phymode = MODE_11B; 573 else 574 phymode = MODE_11G; 575 break; 576 case NL80211_CHAN_WIDTH_20: 577 phymode = MODE_11NG_HT20; 578 break; 579 case NL80211_CHAN_WIDTH_40: 580 phymode = MODE_11NG_HT40; 581 break; 582 default: 583 phymode = MODE_UNKNOWN; 584 break; 585 } 586 break; 587 case NL80211_BAND_5GHZ: 588 switch (chandef->width) { 589 case NL80211_CHAN_WIDTH_20_NOHT: 590 phymode = MODE_11A; 591 break; 592 case NL80211_CHAN_WIDTH_20: 593 phymode = MODE_11NA_HT20; 594 break; 595 case NL80211_CHAN_WIDTH_40: 596 phymode = MODE_11NA_HT40; 597 break; 598 case NL80211_CHAN_WIDTH_80: 599 phymode = MODE_11AC_VHT80; 600 break; 601 case NL80211_CHAN_WIDTH_160: 602 phymode = MODE_11AC_VHT160; 603 break; 604 case NL80211_CHAN_WIDTH_80P80: 605 phymode = MODE_11AC_VHT80_80; 606 break; 607 default: 608 phymode = MODE_UNKNOWN; 609 break; 610 } 611 break; 612 default: 613 break; 614 } 615 616 WARN_ON(phymode == MODE_UNKNOWN); 617 return phymode; 618 } 619 620 static u8 ath10k_parse_mpdudensity(u8 mpdudensity) 621 { 622 /* 623 * 802.11n D2.0 defined values for "Minimum MPDU Start Spacing": 624 * 0 for no restriction 625 * 1 for 1/4 us 626 * 2 for 1/2 us 627 * 3 for 1 us 628 * 4 for 2 us 629 * 5 for 4 us 630 * 6 for 8 us 631 * 7 for 16 us 632 */ 633 switch (mpdudensity) { 634 case 0: 635 return 0; 636 case 1: 637 case 2: 638 case 3: 639 /* Our lower layer calculations limit our precision to 640 * 1 microsecond 641 */ 642 return 1; 643 case 4: 644 return 2; 645 case 5: 646 return 4; 647 case 6: 648 return 8; 649 case 7: 650 return 16; 651 default: 652 return 0; 653 } 654 } 655 656 int ath10k_mac_vif_chan(struct ieee80211_vif *vif, 657 struct cfg80211_chan_def *def) 658 { 659 struct ieee80211_chanctx_conf *conf; 660 661 rcu_read_lock(); 662 conf = rcu_dereference(vif->chanctx_conf); 663 if (!conf) { 664 rcu_read_unlock(); 665 return -ENOENT; 666 } 667 668 *def = conf->def; 669 rcu_read_unlock(); 670 671 return 0; 672 } 673 674 static void ath10k_mac_num_chanctxs_iter(struct ieee80211_hw *hw, 675 struct ieee80211_chanctx_conf *conf, 676 void *data) 677 { 678 int *num = data; 679 680 (*num)++; 681 } 682 683 static int ath10k_mac_num_chanctxs(struct ath10k *ar) 684 { 685 int num = 0; 686 687 ieee80211_iter_chan_contexts_atomic(ar->hw, 688 ath10k_mac_num_chanctxs_iter, 689 &num); 690 691 return num; 692 } 693 694 static void 695 ath10k_mac_get_any_chandef_iter(struct ieee80211_hw *hw, 696 struct ieee80211_chanctx_conf *conf, 697 void *data) 698 { 699 struct cfg80211_chan_def **def = data; 700 701 *def = &conf->def; 702 } 703 704 static void ath10k_wait_for_peer_delete_done(struct ath10k *ar, u32 vdev_id, 705 const u8 *addr) 706 { 707 unsigned long time_left; 708 int ret; 709 710 if (test_bit(WMI_SERVICE_SYNC_DELETE_CMDS, ar->wmi.svc_map)) { 711 ret = ath10k_wait_for_peer_deleted(ar, vdev_id, addr); 712 if (ret) { 713 ath10k_warn(ar, "failed wait for peer deleted"); 714 return; 715 } 716 717 time_left = wait_for_completion_timeout(&ar->peer_delete_done, 718 5 * HZ); 719 if (!time_left) 720 ath10k_warn(ar, "Timeout in receiving peer delete response\n"); 721 } 722 } 723 724 static int ath10k_peer_create(struct ath10k *ar, 725 struct ieee80211_vif *vif, 726 struct ieee80211_sta *sta, 727 u32 vdev_id, 728 const u8 *addr, 729 enum wmi_peer_type peer_type) 730 { 731 struct ath10k_vif *arvif; 732 struct ath10k_peer *peer; 733 int num_peers = 0; 734 int ret; 735 736 lockdep_assert_held(&ar->conf_mutex); 737 738 num_peers = ar->num_peers; 739 740 /* Each vdev consumes a peer entry as well */ 741 list_for_each_entry(arvif, &ar->arvifs, list) 742 num_peers++; 743 744 if (num_peers >= ar->max_num_peers) 745 return -ENOBUFS; 746 747 ret = ath10k_wmi_peer_create(ar, vdev_id, addr, peer_type); 748 if (ret) { 749 ath10k_warn(ar, "failed to create wmi peer %pM on vdev %i: %i\n", 750 addr, vdev_id, ret); 751 return ret; 752 } 753 754 ret = ath10k_wait_for_peer_created(ar, vdev_id, addr); 755 if (ret) { 756 ath10k_warn(ar, "failed to wait for created wmi peer %pM on vdev %i: %i\n", 757 addr, vdev_id, ret); 758 return ret; 759 } 760 761 spin_lock_bh(&ar->data_lock); 762 763 peer = ath10k_peer_find(ar, vdev_id, addr); 764 if (!peer) { 765 spin_unlock_bh(&ar->data_lock); 766 ath10k_warn(ar, "failed to find peer %pM on vdev %i after creation\n", 767 addr, vdev_id); 768 ath10k_wait_for_peer_delete_done(ar, vdev_id, addr); 769 return -ENOENT; 770 } 771 772 peer->vif = vif; 773 peer->sta = sta; 774 775 spin_unlock_bh(&ar->data_lock); 776 777 ar->num_peers++; 778 779 return 0; 780 } 781 782 static int ath10k_mac_set_kickout(struct ath10k_vif *arvif) 783 { 784 struct ath10k *ar = arvif->ar; 785 u32 param; 786 int ret; 787 788 param = ar->wmi.pdev_param->sta_kickout_th; 789 ret = ath10k_wmi_pdev_set_param(ar, param, 790 ATH10K_KICKOUT_THRESHOLD); 791 if (ret) { 792 ath10k_warn(ar, "failed to set kickout threshold on vdev %i: %d\n", 793 arvif->vdev_id, ret); 794 return ret; 795 } 796 797 param = ar->wmi.vdev_param->ap_keepalive_min_idle_inactive_time_secs; 798 ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, param, 799 ATH10K_KEEPALIVE_MIN_IDLE); 800 if (ret) { 801 ath10k_warn(ar, "failed to set keepalive minimum idle time on vdev %i: %d\n", 802 arvif->vdev_id, ret); 803 return ret; 804 } 805 806 param = ar->wmi.vdev_param->ap_keepalive_max_idle_inactive_time_secs; 807 ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, param, 808 ATH10K_KEEPALIVE_MAX_IDLE); 809 if (ret) { 810 ath10k_warn(ar, "failed to set keepalive maximum idle time on vdev %i: %d\n", 811 arvif->vdev_id, ret); 812 return ret; 813 } 814 815 param = ar->wmi.vdev_param->ap_keepalive_max_unresponsive_time_secs; 816 ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, param, 817 ATH10K_KEEPALIVE_MAX_UNRESPONSIVE); 818 if (ret) { 819 ath10k_warn(ar, "failed to set keepalive maximum unresponsive time on vdev %i: %d\n", 820 arvif->vdev_id, ret); 821 return ret; 822 } 823 824 return 0; 825 } 826 827 static int ath10k_mac_set_rts(struct ath10k_vif *arvif, u32 value) 828 { 829 struct ath10k *ar = arvif->ar; 830 u32 vdev_param; 831 832 vdev_param = ar->wmi.vdev_param->rts_threshold; 833 return ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, value); 834 } 835 836 static int ath10k_peer_delete(struct ath10k *ar, u32 vdev_id, const u8 *addr) 837 { 838 int ret; 839 840 lockdep_assert_held(&ar->conf_mutex); 841 842 ret = ath10k_wmi_peer_delete(ar, vdev_id, addr); 843 if (ret) 844 return ret; 845 846 ret = ath10k_wait_for_peer_deleted(ar, vdev_id, addr); 847 if (ret) 848 return ret; 849 850 if (test_bit(WMI_SERVICE_SYNC_DELETE_CMDS, ar->wmi.svc_map)) { 851 unsigned long time_left; 852 853 time_left = wait_for_completion_timeout 854 (&ar->peer_delete_done, 5 * HZ); 855 856 if (!time_left) { 857 ath10k_warn(ar, "Timeout in receiving peer delete response\n"); 858 return -ETIMEDOUT; 859 } 860 } 861 862 ar->num_peers--; 863 864 return 0; 865 } 866 867 static void ath10k_peer_cleanup(struct ath10k *ar, u32 vdev_id) 868 { 869 struct ath10k_peer *peer, *tmp; 870 int peer_id; 871 int i; 872 873 lockdep_assert_held(&ar->conf_mutex); 874 875 spin_lock_bh(&ar->data_lock); 876 list_for_each_entry_safe(peer, tmp, &ar->peers, list) { 877 if (peer->vdev_id != vdev_id) 878 continue; 879 880 ath10k_warn(ar, "removing stale peer %pM from vdev_id %d\n", 881 peer->addr, vdev_id); 882 883 for_each_set_bit(peer_id, peer->peer_ids, 884 ATH10K_MAX_NUM_PEER_IDS) { 885 ar->peer_map[peer_id] = NULL; 886 } 887 888 /* Double check that peer is properly un-referenced from 889 * the peer_map 890 */ 891 for (i = 0; i < ARRAY_SIZE(ar->peer_map); i++) { 892 if (ar->peer_map[i] == peer) { 893 ath10k_warn(ar, "removing stale peer_map entry for %pM (ptr %pK idx %d)\n", 894 peer->addr, peer, i); 895 ar->peer_map[i] = NULL; 896 } 897 } 898 899 list_del(&peer->list); 900 kfree(peer); 901 ar->num_peers--; 902 } 903 spin_unlock_bh(&ar->data_lock); 904 } 905 906 static void ath10k_peer_cleanup_all(struct ath10k *ar) 907 { 908 struct ath10k_peer *peer, *tmp; 909 int i; 910 911 lockdep_assert_held(&ar->conf_mutex); 912 913 spin_lock_bh(&ar->data_lock); 914 list_for_each_entry_safe(peer, tmp, &ar->peers, list) { 915 list_del(&peer->list); 916 kfree(peer); 917 } 918 919 for (i = 0; i < ARRAY_SIZE(ar->peer_map); i++) 920 ar->peer_map[i] = NULL; 921 922 spin_unlock_bh(&ar->data_lock); 923 924 ar->num_peers = 0; 925 ar->num_stations = 0; 926 } 927 928 static int ath10k_mac_tdls_peer_update(struct ath10k *ar, u32 vdev_id, 929 struct ieee80211_sta *sta, 930 enum wmi_tdls_peer_state state) 931 { 932 int ret; 933 struct wmi_tdls_peer_update_cmd_arg arg = {}; 934 struct wmi_tdls_peer_capab_arg cap = {}; 935 struct wmi_channel_arg chan_arg = {}; 936 937 lockdep_assert_held(&ar->conf_mutex); 938 939 arg.vdev_id = vdev_id; 940 arg.peer_state = state; 941 ether_addr_copy(arg.addr, sta->addr); 942 943 cap.peer_max_sp = sta->max_sp; 944 cap.peer_uapsd_queues = sta->uapsd_queues; 945 946 if (state == WMI_TDLS_PEER_STATE_CONNECTED && 947 !sta->tdls_initiator) 948 cap.is_peer_responder = 1; 949 950 ret = ath10k_wmi_tdls_peer_update(ar, &arg, &cap, &chan_arg); 951 if (ret) { 952 ath10k_warn(ar, "failed to update tdls peer %pM on vdev %i: %i\n", 953 arg.addr, vdev_id, ret); 954 return ret; 955 } 956 957 return 0; 958 } 959 960 /************************/ 961 /* Interface management */ 962 /************************/ 963 964 void ath10k_mac_vif_beacon_free(struct ath10k_vif *arvif) 965 { 966 struct ath10k *ar = arvif->ar; 967 968 lockdep_assert_held(&ar->data_lock); 969 970 if (!arvif->beacon) 971 return; 972 973 if (!arvif->beacon_buf) 974 dma_unmap_single(ar->dev, ATH10K_SKB_CB(arvif->beacon)->paddr, 975 arvif->beacon->len, DMA_TO_DEVICE); 976 977 if (WARN_ON(arvif->beacon_state != ATH10K_BEACON_SCHEDULED && 978 arvif->beacon_state != ATH10K_BEACON_SENT)) 979 return; 980 981 dev_kfree_skb_any(arvif->beacon); 982 983 arvif->beacon = NULL; 984 arvif->beacon_state = ATH10K_BEACON_SCHEDULED; 985 } 986 987 static void ath10k_mac_vif_beacon_cleanup(struct ath10k_vif *arvif) 988 { 989 struct ath10k *ar = arvif->ar; 990 991 lockdep_assert_held(&ar->data_lock); 992 993 ath10k_mac_vif_beacon_free(arvif); 994 995 if (arvif->beacon_buf) { 996 dma_free_coherent(ar->dev, IEEE80211_MAX_FRAME_LEN, 997 arvif->beacon_buf, arvif->beacon_paddr); 998 arvif->beacon_buf = NULL; 999 } 1000 } 1001 1002 static inline int ath10k_vdev_setup_sync(struct ath10k *ar) 1003 { 1004 unsigned long time_left; 1005 1006 lockdep_assert_held(&ar->conf_mutex); 1007 1008 if (test_bit(ATH10K_FLAG_CRASH_FLUSH, &ar->dev_flags)) 1009 return -ESHUTDOWN; 1010 1011 time_left = wait_for_completion_timeout(&ar->vdev_setup_done, 1012 ATH10K_VDEV_SETUP_TIMEOUT_HZ); 1013 if (time_left == 0) 1014 return -ETIMEDOUT; 1015 1016 return ar->last_wmi_vdev_start_status; 1017 } 1018 1019 static int ath10k_monitor_vdev_start(struct ath10k *ar, int vdev_id) 1020 { 1021 struct cfg80211_chan_def *chandef = NULL; 1022 struct ieee80211_channel *channel = NULL; 1023 struct wmi_vdev_start_request_arg arg = {}; 1024 int ret = 0; 1025 1026 lockdep_assert_held(&ar->conf_mutex); 1027 1028 ieee80211_iter_chan_contexts_atomic(ar->hw, 1029 ath10k_mac_get_any_chandef_iter, 1030 &chandef); 1031 if (WARN_ON_ONCE(!chandef)) 1032 return -ENOENT; 1033 1034 channel = chandef->chan; 1035 1036 arg.vdev_id = vdev_id; 1037 arg.channel.freq = channel->center_freq; 1038 arg.channel.band_center_freq1 = chandef->center_freq1; 1039 arg.channel.band_center_freq2 = chandef->center_freq2; 1040 1041 /* TODO setup this dynamically, what in case we 1042 * don't have any vifs? 1043 */ 1044 arg.channel.mode = chan_to_phymode(chandef); 1045 arg.channel.chan_radar = 1046 !!(channel->flags & IEEE80211_CHAN_RADAR); 1047 1048 arg.channel.min_power = 0; 1049 arg.channel.max_power = channel->max_power * 2; 1050 arg.channel.max_reg_power = channel->max_reg_power * 2; 1051 arg.channel.max_antenna_gain = channel->max_antenna_gain * 2; 1052 1053 reinit_completion(&ar->vdev_setup_done); 1054 reinit_completion(&ar->vdev_delete_done); 1055 1056 ret = ath10k_wmi_vdev_start(ar, &arg); 1057 if (ret) { 1058 ath10k_warn(ar, "failed to request monitor vdev %i start: %d\n", 1059 vdev_id, ret); 1060 return ret; 1061 } 1062 1063 ret = ath10k_vdev_setup_sync(ar); 1064 if (ret) { 1065 ath10k_warn(ar, "failed to synchronize setup for monitor vdev %i start: %d\n", 1066 vdev_id, ret); 1067 return ret; 1068 } 1069 1070 ret = ath10k_wmi_vdev_up(ar, vdev_id, 0, ar->mac_addr); 1071 if (ret) { 1072 ath10k_warn(ar, "failed to put up monitor vdev %i: %d\n", 1073 vdev_id, ret); 1074 goto vdev_stop; 1075 } 1076 1077 ar->monitor_vdev_id = vdev_id; 1078 1079 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac monitor vdev %i started\n", 1080 ar->monitor_vdev_id); 1081 return 0; 1082 1083 vdev_stop: 1084 ret = ath10k_wmi_vdev_stop(ar, ar->monitor_vdev_id); 1085 if (ret) 1086 ath10k_warn(ar, "failed to stop monitor vdev %i after start failure: %d\n", 1087 ar->monitor_vdev_id, ret); 1088 1089 return ret; 1090 } 1091 1092 static int ath10k_monitor_vdev_stop(struct ath10k *ar) 1093 { 1094 int ret = 0; 1095 1096 lockdep_assert_held(&ar->conf_mutex); 1097 1098 ret = ath10k_wmi_vdev_down(ar, ar->monitor_vdev_id); 1099 if (ret) 1100 ath10k_warn(ar, "failed to put down monitor vdev %i: %d\n", 1101 ar->monitor_vdev_id, ret); 1102 1103 reinit_completion(&ar->vdev_setup_done); 1104 reinit_completion(&ar->vdev_delete_done); 1105 1106 ret = ath10k_wmi_vdev_stop(ar, ar->monitor_vdev_id); 1107 if (ret) 1108 ath10k_warn(ar, "failed to request monitor vdev %i stop: %d\n", 1109 ar->monitor_vdev_id, ret); 1110 1111 ret = ath10k_vdev_setup_sync(ar); 1112 if (ret) 1113 ath10k_warn(ar, "failed to synchronize monitor vdev %i stop: %d\n", 1114 ar->monitor_vdev_id, ret); 1115 1116 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac monitor vdev %i stopped\n", 1117 ar->monitor_vdev_id); 1118 return ret; 1119 } 1120 1121 static int ath10k_monitor_vdev_create(struct ath10k *ar) 1122 { 1123 int bit, ret = 0; 1124 1125 lockdep_assert_held(&ar->conf_mutex); 1126 1127 if (ar->free_vdev_map == 0) { 1128 ath10k_warn(ar, "failed to find free vdev id for monitor vdev\n"); 1129 return -ENOMEM; 1130 } 1131 1132 bit = __ffs64(ar->free_vdev_map); 1133 1134 ar->monitor_vdev_id = bit; 1135 1136 ret = ath10k_wmi_vdev_create(ar, ar->monitor_vdev_id, 1137 WMI_VDEV_TYPE_MONITOR, 1138 0, ar->mac_addr); 1139 if (ret) { 1140 ath10k_warn(ar, "failed to request monitor vdev %i creation: %d\n", 1141 ar->monitor_vdev_id, ret); 1142 return ret; 1143 } 1144 1145 ar->free_vdev_map &= ~(1LL << ar->monitor_vdev_id); 1146 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac monitor vdev %d created\n", 1147 ar->monitor_vdev_id); 1148 1149 return 0; 1150 } 1151 1152 static int ath10k_monitor_vdev_delete(struct ath10k *ar) 1153 { 1154 int ret = 0; 1155 1156 lockdep_assert_held(&ar->conf_mutex); 1157 1158 ret = ath10k_wmi_vdev_delete(ar, ar->monitor_vdev_id); 1159 if (ret) { 1160 ath10k_warn(ar, "failed to request wmi monitor vdev %i removal: %d\n", 1161 ar->monitor_vdev_id, ret); 1162 return ret; 1163 } 1164 1165 ar->free_vdev_map |= 1LL << ar->monitor_vdev_id; 1166 1167 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac monitor vdev %d deleted\n", 1168 ar->monitor_vdev_id); 1169 return ret; 1170 } 1171 1172 static int ath10k_monitor_start(struct ath10k *ar) 1173 { 1174 int ret; 1175 1176 lockdep_assert_held(&ar->conf_mutex); 1177 1178 ret = ath10k_monitor_vdev_create(ar); 1179 if (ret) { 1180 ath10k_warn(ar, "failed to create monitor vdev: %d\n", ret); 1181 return ret; 1182 } 1183 1184 ret = ath10k_monitor_vdev_start(ar, ar->monitor_vdev_id); 1185 if (ret) { 1186 ath10k_warn(ar, "failed to start monitor vdev: %d\n", ret); 1187 ath10k_monitor_vdev_delete(ar); 1188 return ret; 1189 } 1190 1191 ar->monitor_started = true; 1192 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac monitor started\n"); 1193 1194 return 0; 1195 } 1196 1197 static int ath10k_monitor_stop(struct ath10k *ar) 1198 { 1199 int ret; 1200 1201 lockdep_assert_held(&ar->conf_mutex); 1202 1203 ret = ath10k_monitor_vdev_stop(ar); 1204 if (ret) { 1205 ath10k_warn(ar, "failed to stop monitor vdev: %d\n", ret); 1206 return ret; 1207 } 1208 1209 ret = ath10k_monitor_vdev_delete(ar); 1210 if (ret) { 1211 ath10k_warn(ar, "failed to delete monitor vdev: %d\n", ret); 1212 return ret; 1213 } 1214 1215 ar->monitor_started = false; 1216 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac monitor stopped\n"); 1217 1218 return 0; 1219 } 1220 1221 static bool ath10k_mac_monitor_vdev_is_needed(struct ath10k *ar) 1222 { 1223 int num_ctx; 1224 1225 /* At least one chanctx is required to derive a channel to start 1226 * monitor vdev on. 1227 */ 1228 num_ctx = ath10k_mac_num_chanctxs(ar); 1229 if (num_ctx == 0) 1230 return false; 1231 1232 /* If there's already an existing special monitor interface then don't 1233 * bother creating another monitor vdev. 1234 */ 1235 if (ar->monitor_arvif) 1236 return false; 1237 1238 return ar->monitor || 1239 (!test_bit(ATH10K_FW_FEATURE_ALLOWS_MESH_BCAST, 1240 ar->running_fw->fw_file.fw_features) && 1241 (ar->filter_flags & FIF_OTHER_BSS)) || 1242 test_bit(ATH10K_CAC_RUNNING, &ar->dev_flags); 1243 } 1244 1245 static bool ath10k_mac_monitor_vdev_is_allowed(struct ath10k *ar) 1246 { 1247 int num_ctx; 1248 1249 num_ctx = ath10k_mac_num_chanctxs(ar); 1250 1251 /* FIXME: Current interface combinations and cfg80211/mac80211 code 1252 * shouldn't allow this but make sure to prevent handling the following 1253 * case anyway since multi-channel DFS hasn't been tested at all. 1254 */ 1255 if (test_bit(ATH10K_CAC_RUNNING, &ar->dev_flags) && num_ctx > 1) 1256 return false; 1257 1258 return true; 1259 } 1260 1261 static int ath10k_monitor_recalc(struct ath10k *ar) 1262 { 1263 bool needed; 1264 bool allowed; 1265 int ret; 1266 1267 lockdep_assert_held(&ar->conf_mutex); 1268 1269 needed = ath10k_mac_monitor_vdev_is_needed(ar); 1270 allowed = ath10k_mac_monitor_vdev_is_allowed(ar); 1271 1272 ath10k_dbg(ar, ATH10K_DBG_MAC, 1273 "mac monitor recalc started? %d needed? %d allowed? %d\n", 1274 ar->monitor_started, needed, allowed); 1275 1276 if (WARN_ON(needed && !allowed)) { 1277 if (ar->monitor_started) { 1278 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac monitor stopping disallowed monitor\n"); 1279 1280 ret = ath10k_monitor_stop(ar); 1281 if (ret) 1282 ath10k_warn(ar, "failed to stop disallowed monitor: %d\n", 1283 ret); 1284 /* not serious */ 1285 } 1286 1287 return -EPERM; 1288 } 1289 1290 if (needed == ar->monitor_started) 1291 return 0; 1292 1293 if (needed) 1294 return ath10k_monitor_start(ar); 1295 else 1296 return ath10k_monitor_stop(ar); 1297 } 1298 1299 static bool ath10k_mac_can_set_cts_prot(struct ath10k_vif *arvif) 1300 { 1301 struct ath10k *ar = arvif->ar; 1302 1303 lockdep_assert_held(&ar->conf_mutex); 1304 1305 if (!arvif->is_started) { 1306 ath10k_dbg(ar, ATH10K_DBG_MAC, "defer cts setup, vdev is not ready yet\n"); 1307 return false; 1308 } 1309 1310 return true; 1311 } 1312 1313 static int ath10k_mac_set_cts_prot(struct ath10k_vif *arvif) 1314 { 1315 struct ath10k *ar = arvif->ar; 1316 u32 vdev_param; 1317 1318 lockdep_assert_held(&ar->conf_mutex); 1319 1320 vdev_param = ar->wmi.vdev_param->protection_mode; 1321 1322 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d cts_protection %d\n", 1323 arvif->vdev_id, arvif->use_cts_prot); 1324 1325 return ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, 1326 arvif->use_cts_prot ? 1 : 0); 1327 } 1328 1329 static int ath10k_recalc_rtscts_prot(struct ath10k_vif *arvif) 1330 { 1331 struct ath10k *ar = arvif->ar; 1332 u32 vdev_param, rts_cts = 0; 1333 1334 lockdep_assert_held(&ar->conf_mutex); 1335 1336 vdev_param = ar->wmi.vdev_param->enable_rtscts; 1337 1338 rts_cts |= SM(WMI_RTSCTS_ENABLED, WMI_RTSCTS_SET); 1339 1340 if (arvif->num_legacy_stations > 0) 1341 rts_cts |= SM(WMI_RTSCTS_ACROSS_SW_RETRIES, 1342 WMI_RTSCTS_PROFILE); 1343 else 1344 rts_cts |= SM(WMI_RTSCTS_FOR_SECOND_RATESERIES, 1345 WMI_RTSCTS_PROFILE); 1346 1347 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d recalc rts/cts prot %d\n", 1348 arvif->vdev_id, rts_cts); 1349 1350 return ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, 1351 rts_cts); 1352 } 1353 1354 static int ath10k_start_cac(struct ath10k *ar) 1355 { 1356 int ret; 1357 1358 lockdep_assert_held(&ar->conf_mutex); 1359 1360 set_bit(ATH10K_CAC_RUNNING, &ar->dev_flags); 1361 1362 ret = ath10k_monitor_recalc(ar); 1363 if (ret) { 1364 ath10k_warn(ar, "failed to start monitor (cac): %d\n", ret); 1365 clear_bit(ATH10K_CAC_RUNNING, &ar->dev_flags); 1366 return ret; 1367 } 1368 1369 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac cac start monitor vdev %d\n", 1370 ar->monitor_vdev_id); 1371 1372 return 0; 1373 } 1374 1375 static int ath10k_stop_cac(struct ath10k *ar) 1376 { 1377 lockdep_assert_held(&ar->conf_mutex); 1378 1379 /* CAC is not running - do nothing */ 1380 if (!test_bit(ATH10K_CAC_RUNNING, &ar->dev_flags)) 1381 return 0; 1382 1383 clear_bit(ATH10K_CAC_RUNNING, &ar->dev_flags); 1384 ath10k_monitor_stop(ar); 1385 1386 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac cac finished\n"); 1387 1388 return 0; 1389 } 1390 1391 static void ath10k_mac_has_radar_iter(struct ieee80211_hw *hw, 1392 struct ieee80211_chanctx_conf *conf, 1393 void *data) 1394 { 1395 bool *ret = data; 1396 1397 if (!*ret && conf->radar_enabled) 1398 *ret = true; 1399 } 1400 1401 static bool ath10k_mac_has_radar_enabled(struct ath10k *ar) 1402 { 1403 bool has_radar = false; 1404 1405 ieee80211_iter_chan_contexts_atomic(ar->hw, 1406 ath10k_mac_has_radar_iter, 1407 &has_radar); 1408 1409 return has_radar; 1410 } 1411 1412 static void ath10k_recalc_radar_detection(struct ath10k *ar) 1413 { 1414 int ret; 1415 1416 lockdep_assert_held(&ar->conf_mutex); 1417 1418 ath10k_stop_cac(ar); 1419 1420 if (!ath10k_mac_has_radar_enabled(ar)) 1421 return; 1422 1423 if (ar->num_started_vdevs > 0) 1424 return; 1425 1426 ret = ath10k_start_cac(ar); 1427 if (ret) { 1428 /* 1429 * Not possible to start CAC on current channel so starting 1430 * radiation is not allowed, make this channel DFS_UNAVAILABLE 1431 * by indicating that radar was detected. 1432 */ 1433 ath10k_warn(ar, "failed to start CAC: %d\n", ret); 1434 ieee80211_radar_detected(ar->hw); 1435 } 1436 } 1437 1438 static int ath10k_vdev_stop(struct ath10k_vif *arvif) 1439 { 1440 struct ath10k *ar = arvif->ar; 1441 int ret; 1442 1443 lockdep_assert_held(&ar->conf_mutex); 1444 1445 reinit_completion(&ar->vdev_setup_done); 1446 reinit_completion(&ar->vdev_delete_done); 1447 1448 ret = ath10k_wmi_vdev_stop(ar, arvif->vdev_id); 1449 if (ret) { 1450 ath10k_warn(ar, "failed to stop WMI vdev %i: %d\n", 1451 arvif->vdev_id, ret); 1452 return ret; 1453 } 1454 1455 ret = ath10k_vdev_setup_sync(ar); 1456 if (ret) { 1457 ath10k_warn(ar, "failed to synchronize setup for vdev %i: %d\n", 1458 arvif->vdev_id, ret); 1459 return ret; 1460 } 1461 1462 WARN_ON(ar->num_started_vdevs == 0); 1463 1464 if (ar->num_started_vdevs != 0) { 1465 ar->num_started_vdevs--; 1466 ath10k_recalc_radar_detection(ar); 1467 } 1468 1469 return ret; 1470 } 1471 1472 static int ath10k_vdev_start_restart(struct ath10k_vif *arvif, 1473 const struct cfg80211_chan_def *chandef, 1474 bool restart) 1475 { 1476 struct ath10k *ar = arvif->ar; 1477 struct wmi_vdev_start_request_arg arg = {}; 1478 int ret = 0; 1479 1480 lockdep_assert_held(&ar->conf_mutex); 1481 1482 reinit_completion(&ar->vdev_setup_done); 1483 reinit_completion(&ar->vdev_delete_done); 1484 1485 arg.vdev_id = arvif->vdev_id; 1486 arg.dtim_period = arvif->dtim_period; 1487 arg.bcn_intval = arvif->beacon_interval; 1488 1489 arg.channel.freq = chandef->chan->center_freq; 1490 arg.channel.band_center_freq1 = chandef->center_freq1; 1491 arg.channel.band_center_freq2 = chandef->center_freq2; 1492 arg.channel.mode = chan_to_phymode(chandef); 1493 1494 arg.channel.min_power = 0; 1495 arg.channel.max_power = chandef->chan->max_power * 2; 1496 arg.channel.max_reg_power = chandef->chan->max_reg_power * 2; 1497 arg.channel.max_antenna_gain = chandef->chan->max_antenna_gain * 2; 1498 1499 if (arvif->vdev_type == WMI_VDEV_TYPE_AP) { 1500 arg.ssid = arvif->u.ap.ssid; 1501 arg.ssid_len = arvif->u.ap.ssid_len; 1502 arg.hidden_ssid = arvif->u.ap.hidden_ssid; 1503 1504 /* For now allow DFS for AP mode */ 1505 arg.channel.chan_radar = 1506 !!(chandef->chan->flags & IEEE80211_CHAN_RADAR); 1507 } else if (arvif->vdev_type == WMI_VDEV_TYPE_IBSS) { 1508 arg.ssid = arvif->vif->bss_conf.ssid; 1509 arg.ssid_len = arvif->vif->bss_conf.ssid_len; 1510 } 1511 1512 ath10k_dbg(ar, ATH10K_DBG_MAC, 1513 "mac vdev %d start center_freq %d phymode %s\n", 1514 arg.vdev_id, arg.channel.freq, 1515 ath10k_wmi_phymode_str(arg.channel.mode)); 1516 1517 if (restart) 1518 ret = ath10k_wmi_vdev_restart(ar, &arg); 1519 else 1520 ret = ath10k_wmi_vdev_start(ar, &arg); 1521 1522 if (ret) { 1523 ath10k_warn(ar, "failed to start WMI vdev %i: %d\n", 1524 arg.vdev_id, ret); 1525 return ret; 1526 } 1527 1528 ret = ath10k_vdev_setup_sync(ar); 1529 if (ret) { 1530 ath10k_warn(ar, 1531 "failed to synchronize setup for vdev %i restart %d: %d\n", 1532 arg.vdev_id, restart, ret); 1533 return ret; 1534 } 1535 1536 ar->num_started_vdevs++; 1537 ath10k_recalc_radar_detection(ar); 1538 1539 return ret; 1540 } 1541 1542 static int ath10k_vdev_start(struct ath10k_vif *arvif, 1543 const struct cfg80211_chan_def *def) 1544 { 1545 return ath10k_vdev_start_restart(arvif, def, false); 1546 } 1547 1548 static int ath10k_vdev_restart(struct ath10k_vif *arvif, 1549 const struct cfg80211_chan_def *def) 1550 { 1551 return ath10k_vdev_start_restart(arvif, def, true); 1552 } 1553 1554 static int ath10k_mac_setup_bcn_p2p_ie(struct ath10k_vif *arvif, 1555 struct sk_buff *bcn) 1556 { 1557 struct ath10k *ar = arvif->ar; 1558 struct ieee80211_mgmt *mgmt; 1559 const u8 *p2p_ie; 1560 int ret; 1561 1562 if (arvif->vif->type != NL80211_IFTYPE_AP || !arvif->vif->p2p) 1563 return 0; 1564 1565 mgmt = (void *)bcn->data; 1566 p2p_ie = cfg80211_find_vendor_ie(WLAN_OUI_WFA, WLAN_OUI_TYPE_WFA_P2P, 1567 mgmt->u.beacon.variable, 1568 bcn->len - (mgmt->u.beacon.variable - 1569 bcn->data)); 1570 if (!p2p_ie) 1571 return -ENOENT; 1572 1573 ret = ath10k_wmi_p2p_go_bcn_ie(ar, arvif->vdev_id, p2p_ie); 1574 if (ret) { 1575 ath10k_warn(ar, "failed to submit p2p go bcn ie for vdev %i: %d\n", 1576 arvif->vdev_id, ret); 1577 return ret; 1578 } 1579 1580 return 0; 1581 } 1582 1583 static int ath10k_mac_remove_vendor_ie(struct sk_buff *skb, unsigned int oui, 1584 u8 oui_type, size_t ie_offset) 1585 { 1586 size_t len; 1587 const u8 *next; 1588 const u8 *end; 1589 u8 *ie; 1590 1591 if (WARN_ON(skb->len < ie_offset)) 1592 return -EINVAL; 1593 1594 ie = (u8 *)cfg80211_find_vendor_ie(oui, oui_type, 1595 skb->data + ie_offset, 1596 skb->len - ie_offset); 1597 if (!ie) 1598 return -ENOENT; 1599 1600 len = ie[1] + 2; 1601 end = skb->data + skb->len; 1602 next = ie + len; 1603 1604 if (WARN_ON(next > end)) 1605 return -EINVAL; 1606 1607 memmove(ie, next, end - next); 1608 skb_trim(skb, skb->len - len); 1609 1610 return 0; 1611 } 1612 1613 static int ath10k_mac_setup_bcn_tmpl(struct ath10k_vif *arvif) 1614 { 1615 struct ath10k *ar = arvif->ar; 1616 struct ieee80211_hw *hw = ar->hw; 1617 struct ieee80211_vif *vif = arvif->vif; 1618 struct ieee80211_mutable_offsets offs = {}; 1619 struct sk_buff *bcn; 1620 int ret; 1621 1622 if (!test_bit(WMI_SERVICE_BEACON_OFFLOAD, ar->wmi.svc_map)) 1623 return 0; 1624 1625 if (arvif->vdev_type != WMI_VDEV_TYPE_AP && 1626 arvif->vdev_type != WMI_VDEV_TYPE_IBSS) 1627 return 0; 1628 1629 bcn = ieee80211_beacon_get_template(hw, vif, &offs); 1630 if (!bcn) { 1631 ath10k_warn(ar, "failed to get beacon template from mac80211\n"); 1632 return -EPERM; 1633 } 1634 1635 ret = ath10k_mac_setup_bcn_p2p_ie(arvif, bcn); 1636 if (ret) { 1637 ath10k_warn(ar, "failed to setup p2p go bcn ie: %d\n", ret); 1638 kfree_skb(bcn); 1639 return ret; 1640 } 1641 1642 /* P2P IE is inserted by firmware automatically (as configured above) 1643 * so remove it from the base beacon template to avoid duplicate P2P 1644 * IEs in beacon frames. 1645 */ 1646 ath10k_mac_remove_vendor_ie(bcn, WLAN_OUI_WFA, WLAN_OUI_TYPE_WFA_P2P, 1647 offsetof(struct ieee80211_mgmt, 1648 u.beacon.variable)); 1649 1650 ret = ath10k_wmi_bcn_tmpl(ar, arvif->vdev_id, offs.tim_offset, bcn, 0, 1651 0, NULL, 0); 1652 kfree_skb(bcn); 1653 1654 if (ret) { 1655 ath10k_warn(ar, "failed to submit beacon template command: %d\n", 1656 ret); 1657 return ret; 1658 } 1659 1660 return 0; 1661 } 1662 1663 static int ath10k_mac_setup_prb_tmpl(struct ath10k_vif *arvif) 1664 { 1665 struct ath10k *ar = arvif->ar; 1666 struct ieee80211_hw *hw = ar->hw; 1667 struct ieee80211_vif *vif = arvif->vif; 1668 struct sk_buff *prb; 1669 int ret; 1670 1671 if (!test_bit(WMI_SERVICE_BEACON_OFFLOAD, ar->wmi.svc_map)) 1672 return 0; 1673 1674 if (arvif->vdev_type != WMI_VDEV_TYPE_AP) 1675 return 0; 1676 1677 /* For mesh, probe response and beacon share the same template */ 1678 if (ieee80211_vif_is_mesh(vif)) 1679 return 0; 1680 1681 prb = ieee80211_proberesp_get(hw, vif); 1682 if (!prb) { 1683 ath10k_warn(ar, "failed to get probe resp template from mac80211\n"); 1684 return -EPERM; 1685 } 1686 1687 ret = ath10k_wmi_prb_tmpl(ar, arvif->vdev_id, prb); 1688 kfree_skb(prb); 1689 1690 if (ret) { 1691 ath10k_warn(ar, "failed to submit probe resp template command: %d\n", 1692 ret); 1693 return ret; 1694 } 1695 1696 return 0; 1697 } 1698 1699 static int ath10k_mac_vif_fix_hidden_ssid(struct ath10k_vif *arvif) 1700 { 1701 struct ath10k *ar = arvif->ar; 1702 struct cfg80211_chan_def def; 1703 int ret; 1704 1705 /* When originally vdev is started during assign_vif_chanctx() some 1706 * information is missing, notably SSID. Firmware revisions with beacon 1707 * offloading require the SSID to be provided during vdev (re)start to 1708 * handle hidden SSID properly. 1709 * 1710 * Vdev restart must be done after vdev has been both started and 1711 * upped. Otherwise some firmware revisions (at least 10.2) fail to 1712 * deliver vdev restart response event causing timeouts during vdev 1713 * syncing in ath10k. 1714 * 1715 * Note: The vdev down/up and template reinstallation could be skipped 1716 * since only wmi-tlv firmware are known to have beacon offload and 1717 * wmi-tlv doesn't seem to misbehave like 10.2 wrt vdev restart 1718 * response delivery. It's probably more robust to keep it as is. 1719 */ 1720 if (!test_bit(WMI_SERVICE_BEACON_OFFLOAD, ar->wmi.svc_map)) 1721 return 0; 1722 1723 if (WARN_ON(!arvif->is_started)) 1724 return -EINVAL; 1725 1726 if (WARN_ON(!arvif->is_up)) 1727 return -EINVAL; 1728 1729 if (WARN_ON(ath10k_mac_vif_chan(arvif->vif, &def))) 1730 return -EINVAL; 1731 1732 ret = ath10k_wmi_vdev_down(ar, arvif->vdev_id); 1733 if (ret) { 1734 ath10k_warn(ar, "failed to bring down ap vdev %i: %d\n", 1735 arvif->vdev_id, ret); 1736 return ret; 1737 } 1738 1739 /* Vdev down reset beacon & presp templates. Reinstall them. Otherwise 1740 * firmware will crash upon vdev up. 1741 */ 1742 1743 ret = ath10k_mac_setup_bcn_tmpl(arvif); 1744 if (ret) { 1745 ath10k_warn(ar, "failed to update beacon template: %d\n", ret); 1746 return ret; 1747 } 1748 1749 ret = ath10k_mac_setup_prb_tmpl(arvif); 1750 if (ret) { 1751 ath10k_warn(ar, "failed to update presp template: %d\n", ret); 1752 return ret; 1753 } 1754 1755 ret = ath10k_vdev_restart(arvif, &def); 1756 if (ret) { 1757 ath10k_warn(ar, "failed to restart ap vdev %i: %d\n", 1758 arvif->vdev_id, ret); 1759 return ret; 1760 } 1761 1762 ret = ath10k_wmi_vdev_up(arvif->ar, arvif->vdev_id, arvif->aid, 1763 arvif->bssid); 1764 if (ret) { 1765 ath10k_warn(ar, "failed to bring up ap vdev %i: %d\n", 1766 arvif->vdev_id, ret); 1767 return ret; 1768 } 1769 1770 return 0; 1771 } 1772 1773 static void ath10k_control_beaconing(struct ath10k_vif *arvif, 1774 struct ieee80211_bss_conf *info) 1775 { 1776 struct ath10k *ar = arvif->ar; 1777 int ret = 0; 1778 1779 lockdep_assert_held(&arvif->ar->conf_mutex); 1780 1781 if (!info->enable_beacon) { 1782 ret = ath10k_wmi_vdev_down(ar, arvif->vdev_id); 1783 if (ret) 1784 ath10k_warn(ar, "failed to down vdev_id %i: %d\n", 1785 arvif->vdev_id, ret); 1786 1787 arvif->is_up = false; 1788 1789 spin_lock_bh(&arvif->ar->data_lock); 1790 ath10k_mac_vif_beacon_free(arvif); 1791 spin_unlock_bh(&arvif->ar->data_lock); 1792 1793 return; 1794 } 1795 1796 arvif->tx_seq_no = 0x1000; 1797 1798 arvif->aid = 0; 1799 ether_addr_copy(arvif->bssid, info->bssid); 1800 1801 ret = ath10k_wmi_vdev_up(arvif->ar, arvif->vdev_id, arvif->aid, 1802 arvif->bssid); 1803 if (ret) { 1804 ath10k_warn(ar, "failed to bring up vdev %d: %i\n", 1805 arvif->vdev_id, ret); 1806 return; 1807 } 1808 1809 arvif->is_up = true; 1810 1811 ret = ath10k_mac_vif_fix_hidden_ssid(arvif); 1812 if (ret) { 1813 ath10k_warn(ar, "failed to fix hidden ssid for vdev %i, expect trouble: %d\n", 1814 arvif->vdev_id, ret); 1815 return; 1816 } 1817 1818 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d up\n", arvif->vdev_id); 1819 } 1820 1821 static void ath10k_control_ibss(struct ath10k_vif *arvif, 1822 struct ieee80211_bss_conf *info, 1823 const u8 self_peer[ETH_ALEN]) 1824 { 1825 struct ath10k *ar = arvif->ar; 1826 u32 vdev_param; 1827 int ret = 0; 1828 1829 lockdep_assert_held(&arvif->ar->conf_mutex); 1830 1831 if (!info->ibss_joined) { 1832 if (is_zero_ether_addr(arvif->bssid)) 1833 return; 1834 1835 eth_zero_addr(arvif->bssid); 1836 1837 return; 1838 } 1839 1840 vdev_param = arvif->ar->wmi.vdev_param->atim_window; 1841 ret = ath10k_wmi_vdev_set_param(arvif->ar, arvif->vdev_id, vdev_param, 1842 ATH10K_DEFAULT_ATIM); 1843 if (ret) 1844 ath10k_warn(ar, "failed to set IBSS ATIM for vdev %d: %d\n", 1845 arvif->vdev_id, ret); 1846 } 1847 1848 static int ath10k_mac_vif_recalc_ps_wake_threshold(struct ath10k_vif *arvif) 1849 { 1850 struct ath10k *ar = arvif->ar; 1851 u32 param; 1852 u32 value; 1853 int ret; 1854 1855 lockdep_assert_held(&arvif->ar->conf_mutex); 1856 1857 if (arvif->u.sta.uapsd) 1858 value = WMI_STA_PS_TX_WAKE_THRESHOLD_NEVER; 1859 else 1860 value = WMI_STA_PS_TX_WAKE_THRESHOLD_ALWAYS; 1861 1862 param = WMI_STA_PS_PARAM_TX_WAKE_THRESHOLD; 1863 ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id, param, value); 1864 if (ret) { 1865 ath10k_warn(ar, "failed to submit ps wake threshold %u on vdev %i: %d\n", 1866 value, arvif->vdev_id, ret); 1867 return ret; 1868 } 1869 1870 return 0; 1871 } 1872 1873 static int ath10k_mac_vif_recalc_ps_poll_count(struct ath10k_vif *arvif) 1874 { 1875 struct ath10k *ar = arvif->ar; 1876 u32 param; 1877 u32 value; 1878 int ret; 1879 1880 lockdep_assert_held(&arvif->ar->conf_mutex); 1881 1882 if (arvif->u.sta.uapsd) 1883 value = WMI_STA_PS_PSPOLL_COUNT_UAPSD; 1884 else 1885 value = WMI_STA_PS_PSPOLL_COUNT_NO_MAX; 1886 1887 param = WMI_STA_PS_PARAM_PSPOLL_COUNT; 1888 ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id, 1889 param, value); 1890 if (ret) { 1891 ath10k_warn(ar, "failed to submit ps poll count %u on vdev %i: %d\n", 1892 value, arvif->vdev_id, ret); 1893 return ret; 1894 } 1895 1896 return 0; 1897 } 1898 1899 static int ath10k_mac_num_vifs_started(struct ath10k *ar) 1900 { 1901 struct ath10k_vif *arvif; 1902 int num = 0; 1903 1904 lockdep_assert_held(&ar->conf_mutex); 1905 1906 list_for_each_entry(arvif, &ar->arvifs, list) 1907 if (arvif->is_started) 1908 num++; 1909 1910 return num; 1911 } 1912 1913 static int ath10k_mac_vif_setup_ps(struct ath10k_vif *arvif) 1914 { 1915 struct ath10k *ar = arvif->ar; 1916 struct ieee80211_vif *vif = arvif->vif; 1917 struct ieee80211_conf *conf = &ar->hw->conf; 1918 enum wmi_sta_powersave_param param; 1919 enum wmi_sta_ps_mode psmode; 1920 int ret; 1921 int ps_timeout; 1922 bool enable_ps; 1923 1924 lockdep_assert_held(&arvif->ar->conf_mutex); 1925 1926 if (arvif->vif->type != NL80211_IFTYPE_STATION) 1927 return 0; 1928 1929 enable_ps = arvif->ps; 1930 1931 if (enable_ps && ath10k_mac_num_vifs_started(ar) > 1 && 1932 !test_bit(ATH10K_FW_FEATURE_MULTI_VIF_PS_SUPPORT, 1933 ar->running_fw->fw_file.fw_features)) { 1934 ath10k_warn(ar, "refusing to enable ps on vdev %i: not supported by fw\n", 1935 arvif->vdev_id); 1936 enable_ps = false; 1937 } 1938 1939 if (!arvif->is_started) { 1940 /* mac80211 can update vif powersave state while disconnected. 1941 * Firmware doesn't behave nicely and consumes more power than 1942 * necessary if PS is disabled on a non-started vdev. Hence 1943 * force-enable PS for non-running vdevs. 1944 */ 1945 psmode = WMI_STA_PS_MODE_ENABLED; 1946 } else if (enable_ps) { 1947 psmode = WMI_STA_PS_MODE_ENABLED; 1948 param = WMI_STA_PS_PARAM_INACTIVITY_TIME; 1949 1950 ps_timeout = conf->dynamic_ps_timeout; 1951 if (ps_timeout == 0) { 1952 /* Firmware doesn't like 0 */ 1953 ps_timeout = ieee80211_tu_to_usec( 1954 vif->bss_conf.beacon_int) / 1000; 1955 } 1956 1957 ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id, param, 1958 ps_timeout); 1959 if (ret) { 1960 ath10k_warn(ar, "failed to set inactivity time for vdev %d: %i\n", 1961 arvif->vdev_id, ret); 1962 return ret; 1963 } 1964 } else { 1965 psmode = WMI_STA_PS_MODE_DISABLED; 1966 } 1967 1968 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d psmode %s\n", 1969 arvif->vdev_id, psmode ? "enable" : "disable"); 1970 1971 ret = ath10k_wmi_set_psmode(ar, arvif->vdev_id, psmode); 1972 if (ret) { 1973 ath10k_warn(ar, "failed to set PS Mode %d for vdev %d: %d\n", 1974 psmode, arvif->vdev_id, ret); 1975 return ret; 1976 } 1977 1978 return 0; 1979 } 1980 1981 static int ath10k_mac_vif_disable_keepalive(struct ath10k_vif *arvif) 1982 { 1983 struct ath10k *ar = arvif->ar; 1984 struct wmi_sta_keepalive_arg arg = {}; 1985 int ret; 1986 1987 lockdep_assert_held(&arvif->ar->conf_mutex); 1988 1989 if (arvif->vdev_type != WMI_VDEV_TYPE_STA) 1990 return 0; 1991 1992 if (!test_bit(WMI_SERVICE_STA_KEEP_ALIVE, ar->wmi.svc_map)) 1993 return 0; 1994 1995 /* Some firmware revisions have a bug and ignore the `enabled` field. 1996 * Instead use the interval to disable the keepalive. 1997 */ 1998 arg.vdev_id = arvif->vdev_id; 1999 arg.enabled = 1; 2000 arg.method = WMI_STA_KEEPALIVE_METHOD_NULL_FRAME; 2001 arg.interval = WMI_STA_KEEPALIVE_INTERVAL_DISABLE; 2002 2003 ret = ath10k_wmi_sta_keepalive(ar, &arg); 2004 if (ret) { 2005 ath10k_warn(ar, "failed to submit keepalive on vdev %i: %d\n", 2006 arvif->vdev_id, ret); 2007 return ret; 2008 } 2009 2010 return 0; 2011 } 2012 2013 static void ath10k_mac_vif_ap_csa_count_down(struct ath10k_vif *arvif) 2014 { 2015 struct ath10k *ar = arvif->ar; 2016 struct ieee80211_vif *vif = arvif->vif; 2017 int ret; 2018 2019 lockdep_assert_held(&arvif->ar->conf_mutex); 2020 2021 if (WARN_ON(!test_bit(WMI_SERVICE_BEACON_OFFLOAD, ar->wmi.svc_map))) 2022 return; 2023 2024 if (arvif->vdev_type != WMI_VDEV_TYPE_AP) 2025 return; 2026 2027 if (!vif->csa_active) 2028 return; 2029 2030 if (!arvif->is_up) 2031 return; 2032 2033 if (!ieee80211_beacon_cntdwn_is_complete(vif)) { 2034 ieee80211_beacon_update_cntdwn(vif); 2035 2036 ret = ath10k_mac_setup_bcn_tmpl(arvif); 2037 if (ret) 2038 ath10k_warn(ar, "failed to update bcn tmpl during csa: %d\n", 2039 ret); 2040 2041 ret = ath10k_mac_setup_prb_tmpl(arvif); 2042 if (ret) 2043 ath10k_warn(ar, "failed to update prb tmpl during csa: %d\n", 2044 ret); 2045 } else { 2046 ieee80211_csa_finish(vif); 2047 } 2048 } 2049 2050 static void ath10k_mac_vif_ap_csa_work(struct work_struct *work) 2051 { 2052 struct ath10k_vif *arvif = container_of(work, struct ath10k_vif, 2053 ap_csa_work); 2054 struct ath10k *ar = arvif->ar; 2055 2056 mutex_lock(&ar->conf_mutex); 2057 ath10k_mac_vif_ap_csa_count_down(arvif); 2058 mutex_unlock(&ar->conf_mutex); 2059 } 2060 2061 static void ath10k_mac_handle_beacon_iter(void *data, u8 *mac, 2062 struct ieee80211_vif *vif) 2063 { 2064 struct sk_buff *skb = data; 2065 struct ieee80211_mgmt *mgmt = (void *)skb->data; 2066 struct ath10k_vif *arvif = (void *)vif->drv_priv; 2067 2068 if (vif->type != NL80211_IFTYPE_STATION) 2069 return; 2070 2071 if (!ether_addr_equal(mgmt->bssid, vif->bss_conf.bssid)) 2072 return; 2073 2074 cancel_delayed_work(&arvif->connection_loss_work); 2075 } 2076 2077 void ath10k_mac_handle_beacon(struct ath10k *ar, struct sk_buff *skb) 2078 { 2079 ieee80211_iterate_active_interfaces_atomic(ar->hw, 2080 ATH10K_ITER_NORMAL_FLAGS, 2081 ath10k_mac_handle_beacon_iter, 2082 skb); 2083 } 2084 2085 static void ath10k_mac_handle_beacon_miss_iter(void *data, u8 *mac, 2086 struct ieee80211_vif *vif) 2087 { 2088 u32 *vdev_id = data; 2089 struct ath10k_vif *arvif = (void *)vif->drv_priv; 2090 struct ath10k *ar = arvif->ar; 2091 struct ieee80211_hw *hw = ar->hw; 2092 2093 if (arvif->vdev_id != *vdev_id) 2094 return; 2095 2096 if (!arvif->is_up) 2097 return; 2098 2099 ieee80211_beacon_loss(vif); 2100 2101 /* Firmware doesn't report beacon loss events repeatedly. If AP probe 2102 * (done by mac80211) succeeds but beacons do not resume then it 2103 * doesn't make sense to continue operation. Queue connection loss work 2104 * which can be cancelled when beacon is received. 2105 */ 2106 ieee80211_queue_delayed_work(hw, &arvif->connection_loss_work, 2107 ATH10K_CONNECTION_LOSS_HZ); 2108 } 2109 2110 void ath10k_mac_handle_beacon_miss(struct ath10k *ar, u32 vdev_id) 2111 { 2112 ieee80211_iterate_active_interfaces_atomic(ar->hw, 2113 ATH10K_ITER_NORMAL_FLAGS, 2114 ath10k_mac_handle_beacon_miss_iter, 2115 &vdev_id); 2116 } 2117 2118 static void ath10k_mac_vif_sta_connection_loss_work(struct work_struct *work) 2119 { 2120 struct ath10k_vif *arvif = container_of(work, struct ath10k_vif, 2121 connection_loss_work.work); 2122 struct ieee80211_vif *vif = arvif->vif; 2123 2124 if (!arvif->is_up) 2125 return; 2126 2127 ieee80211_connection_loss(vif); 2128 } 2129 2130 /**********************/ 2131 /* Station management */ 2132 /**********************/ 2133 2134 static u32 ath10k_peer_assoc_h_listen_intval(struct ath10k *ar, 2135 struct ieee80211_vif *vif) 2136 { 2137 /* Some firmware revisions have unstable STA powersave when listen 2138 * interval is set too high (e.g. 5). The symptoms are firmware doesn't 2139 * generate NullFunc frames properly even if buffered frames have been 2140 * indicated in Beacon TIM. Firmware would seldom wake up to pull 2141 * buffered frames. Often pinging the device from AP would simply fail. 2142 * 2143 * As a workaround set it to 1. 2144 */ 2145 if (vif->type == NL80211_IFTYPE_STATION) 2146 return 1; 2147 2148 return ar->hw->conf.listen_interval; 2149 } 2150 2151 static void ath10k_peer_assoc_h_basic(struct ath10k *ar, 2152 struct ieee80211_vif *vif, 2153 struct ieee80211_sta *sta, 2154 struct wmi_peer_assoc_complete_arg *arg) 2155 { 2156 struct ath10k_vif *arvif = (void *)vif->drv_priv; 2157 u32 aid; 2158 2159 lockdep_assert_held(&ar->conf_mutex); 2160 2161 if (vif->type == NL80211_IFTYPE_STATION) 2162 aid = vif->bss_conf.aid; 2163 else 2164 aid = sta->aid; 2165 2166 ether_addr_copy(arg->addr, sta->addr); 2167 arg->vdev_id = arvif->vdev_id; 2168 arg->peer_aid = aid; 2169 arg->peer_flags |= arvif->ar->wmi.peer_flags->auth; 2170 arg->peer_listen_intval = ath10k_peer_assoc_h_listen_intval(ar, vif); 2171 arg->peer_num_spatial_streams = 1; 2172 arg->peer_caps = vif->bss_conf.assoc_capability; 2173 } 2174 2175 static void ath10k_peer_assoc_h_crypto(struct ath10k *ar, 2176 struct ieee80211_vif *vif, 2177 struct ieee80211_sta *sta, 2178 struct wmi_peer_assoc_complete_arg *arg) 2179 { 2180 struct ieee80211_bss_conf *info = &vif->bss_conf; 2181 struct cfg80211_chan_def def; 2182 struct cfg80211_bss *bss; 2183 const u8 *rsnie = NULL; 2184 const u8 *wpaie = NULL; 2185 2186 lockdep_assert_held(&ar->conf_mutex); 2187 2188 if (WARN_ON(ath10k_mac_vif_chan(vif, &def))) 2189 return; 2190 2191 bss = cfg80211_get_bss(ar->hw->wiphy, def.chan, info->bssid, 2192 info->ssid_len ? info->ssid : NULL, info->ssid_len, 2193 IEEE80211_BSS_TYPE_ANY, IEEE80211_PRIVACY_ANY); 2194 if (bss) { 2195 const struct cfg80211_bss_ies *ies; 2196 2197 rcu_read_lock(); 2198 rsnie = ieee80211_bss_get_ie(bss, WLAN_EID_RSN); 2199 2200 ies = rcu_dereference(bss->ies); 2201 2202 wpaie = cfg80211_find_vendor_ie(WLAN_OUI_MICROSOFT, 2203 WLAN_OUI_TYPE_MICROSOFT_WPA, 2204 ies->data, 2205 ies->len); 2206 rcu_read_unlock(); 2207 cfg80211_put_bss(ar->hw->wiphy, bss); 2208 } 2209 2210 /* FIXME: base on RSN IE/WPA IE is a correct idea? */ 2211 if (rsnie || wpaie) { 2212 ath10k_dbg(ar, ATH10K_DBG_WMI, "%s: rsn ie found\n", __func__); 2213 arg->peer_flags |= ar->wmi.peer_flags->need_ptk_4_way; 2214 } 2215 2216 if (wpaie) { 2217 ath10k_dbg(ar, ATH10K_DBG_WMI, "%s: wpa ie found\n", __func__); 2218 arg->peer_flags |= ar->wmi.peer_flags->need_gtk_2_way; 2219 } 2220 2221 if (sta->mfp && 2222 test_bit(ATH10K_FW_FEATURE_MFP_SUPPORT, 2223 ar->running_fw->fw_file.fw_features)) { 2224 arg->peer_flags |= ar->wmi.peer_flags->pmf; 2225 } 2226 } 2227 2228 static void ath10k_peer_assoc_h_rates(struct ath10k *ar, 2229 struct ieee80211_vif *vif, 2230 struct ieee80211_sta *sta, 2231 struct wmi_peer_assoc_complete_arg *arg) 2232 { 2233 struct ath10k_vif *arvif = (void *)vif->drv_priv; 2234 struct wmi_rate_set_arg *rateset = &arg->peer_legacy_rates; 2235 struct cfg80211_chan_def def; 2236 const struct ieee80211_supported_band *sband; 2237 const struct ieee80211_rate *rates; 2238 enum nl80211_band band; 2239 u32 ratemask; 2240 u8 rate; 2241 int i; 2242 2243 lockdep_assert_held(&ar->conf_mutex); 2244 2245 if (WARN_ON(ath10k_mac_vif_chan(vif, &def))) 2246 return; 2247 2248 band = def.chan->band; 2249 sband = ar->hw->wiphy->bands[band]; 2250 ratemask = sta->supp_rates[band]; 2251 ratemask &= arvif->bitrate_mask.control[band].legacy; 2252 rates = sband->bitrates; 2253 2254 rateset->num_rates = 0; 2255 2256 for (i = 0; i < 32; i++, ratemask >>= 1, rates++) { 2257 if (!(ratemask & 1)) 2258 continue; 2259 2260 rate = ath10k_mac_bitrate_to_rate(rates->bitrate); 2261 rateset->rates[rateset->num_rates] = rate; 2262 rateset->num_rates++; 2263 } 2264 } 2265 2266 static bool 2267 ath10k_peer_assoc_h_ht_masked(const u8 ht_mcs_mask[IEEE80211_HT_MCS_MASK_LEN]) 2268 { 2269 int nss; 2270 2271 for (nss = 0; nss < IEEE80211_HT_MCS_MASK_LEN; nss++) 2272 if (ht_mcs_mask[nss]) 2273 return false; 2274 2275 return true; 2276 } 2277 2278 static bool 2279 ath10k_peer_assoc_h_vht_masked(const u16 vht_mcs_mask[NL80211_VHT_NSS_MAX]) 2280 { 2281 int nss; 2282 2283 for (nss = 0; nss < NL80211_VHT_NSS_MAX; nss++) 2284 if (vht_mcs_mask[nss]) 2285 return false; 2286 2287 return true; 2288 } 2289 2290 static void ath10k_peer_assoc_h_ht(struct ath10k *ar, 2291 struct ieee80211_vif *vif, 2292 struct ieee80211_sta *sta, 2293 struct wmi_peer_assoc_complete_arg *arg) 2294 { 2295 const struct ieee80211_sta_ht_cap *ht_cap = &sta->ht_cap; 2296 struct ath10k_vif *arvif = (void *)vif->drv_priv; 2297 struct cfg80211_chan_def def; 2298 enum nl80211_band band; 2299 const u8 *ht_mcs_mask; 2300 const u16 *vht_mcs_mask; 2301 int i, n; 2302 u8 max_nss; 2303 u32 stbc; 2304 2305 lockdep_assert_held(&ar->conf_mutex); 2306 2307 if (WARN_ON(ath10k_mac_vif_chan(vif, &def))) 2308 return; 2309 2310 if (!ht_cap->ht_supported) 2311 return; 2312 2313 band = def.chan->band; 2314 ht_mcs_mask = arvif->bitrate_mask.control[band].ht_mcs; 2315 vht_mcs_mask = arvif->bitrate_mask.control[band].vht_mcs; 2316 2317 if (ath10k_peer_assoc_h_ht_masked(ht_mcs_mask) && 2318 ath10k_peer_assoc_h_vht_masked(vht_mcs_mask)) 2319 return; 2320 2321 arg->peer_flags |= ar->wmi.peer_flags->ht; 2322 arg->peer_max_mpdu = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR + 2323 ht_cap->ampdu_factor)) - 1; 2324 2325 arg->peer_mpdu_density = 2326 ath10k_parse_mpdudensity(ht_cap->ampdu_density); 2327 2328 arg->peer_ht_caps = ht_cap->cap; 2329 arg->peer_rate_caps |= WMI_RC_HT_FLAG; 2330 2331 if (ht_cap->cap & IEEE80211_HT_CAP_LDPC_CODING) 2332 arg->peer_flags |= ar->wmi.peer_flags->ldbc; 2333 2334 if (sta->bandwidth >= IEEE80211_STA_RX_BW_40) { 2335 arg->peer_flags |= ar->wmi.peer_flags->bw40; 2336 arg->peer_rate_caps |= WMI_RC_CW40_FLAG; 2337 } 2338 2339 if (arvif->bitrate_mask.control[band].gi != NL80211_TXRATE_FORCE_LGI) { 2340 if (ht_cap->cap & IEEE80211_HT_CAP_SGI_20) 2341 arg->peer_rate_caps |= WMI_RC_SGI_FLAG; 2342 2343 if (ht_cap->cap & IEEE80211_HT_CAP_SGI_40) 2344 arg->peer_rate_caps |= WMI_RC_SGI_FLAG; 2345 } 2346 2347 if (ht_cap->cap & IEEE80211_HT_CAP_TX_STBC) { 2348 arg->peer_rate_caps |= WMI_RC_TX_STBC_FLAG; 2349 arg->peer_flags |= ar->wmi.peer_flags->stbc; 2350 } 2351 2352 if (ht_cap->cap & IEEE80211_HT_CAP_RX_STBC) { 2353 stbc = ht_cap->cap & IEEE80211_HT_CAP_RX_STBC; 2354 stbc = stbc >> IEEE80211_HT_CAP_RX_STBC_SHIFT; 2355 stbc = stbc << WMI_RC_RX_STBC_FLAG_S; 2356 arg->peer_rate_caps |= stbc; 2357 arg->peer_flags |= ar->wmi.peer_flags->stbc; 2358 } 2359 2360 if (ht_cap->mcs.rx_mask[1] && ht_cap->mcs.rx_mask[2]) 2361 arg->peer_rate_caps |= WMI_RC_TS_FLAG; 2362 else if (ht_cap->mcs.rx_mask[1]) 2363 arg->peer_rate_caps |= WMI_RC_DS_FLAG; 2364 2365 for (i = 0, n = 0, max_nss = 0; i < IEEE80211_HT_MCS_MASK_LEN * 8; i++) 2366 if ((ht_cap->mcs.rx_mask[i / 8] & BIT(i % 8)) && 2367 (ht_mcs_mask[i / 8] & BIT(i % 8))) { 2368 max_nss = (i / 8) + 1; 2369 arg->peer_ht_rates.rates[n++] = i; 2370 } 2371 2372 /* 2373 * This is a workaround for HT-enabled STAs which break the spec 2374 * and have no HT capabilities RX mask (no HT RX MCS map). 2375 * 2376 * As per spec, in section 20.3.5 Modulation and coding scheme (MCS), 2377 * MCS 0 through 7 are mandatory in 20MHz with 800 ns GI at all STAs. 2378 * 2379 * Firmware asserts if such situation occurs. 2380 */ 2381 if (n == 0) { 2382 arg->peer_ht_rates.num_rates = 8; 2383 for (i = 0; i < arg->peer_ht_rates.num_rates; i++) 2384 arg->peer_ht_rates.rates[i] = i; 2385 } else { 2386 arg->peer_ht_rates.num_rates = n; 2387 arg->peer_num_spatial_streams = min(sta->rx_nss, max_nss); 2388 } 2389 2390 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac ht peer %pM mcs cnt %d nss %d\n", 2391 arg->addr, 2392 arg->peer_ht_rates.num_rates, 2393 arg->peer_num_spatial_streams); 2394 } 2395 2396 static int ath10k_peer_assoc_qos_ap(struct ath10k *ar, 2397 struct ath10k_vif *arvif, 2398 struct ieee80211_sta *sta) 2399 { 2400 u32 uapsd = 0; 2401 u32 max_sp = 0; 2402 int ret = 0; 2403 2404 lockdep_assert_held(&ar->conf_mutex); 2405 2406 if (sta->wme && sta->uapsd_queues) { 2407 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac uapsd_queues 0x%x max_sp %d\n", 2408 sta->uapsd_queues, sta->max_sp); 2409 2410 if (sta->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_VO) 2411 uapsd |= WMI_AP_PS_UAPSD_AC3_DELIVERY_EN | 2412 WMI_AP_PS_UAPSD_AC3_TRIGGER_EN; 2413 if (sta->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_VI) 2414 uapsd |= WMI_AP_PS_UAPSD_AC2_DELIVERY_EN | 2415 WMI_AP_PS_UAPSD_AC2_TRIGGER_EN; 2416 if (sta->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_BK) 2417 uapsd |= WMI_AP_PS_UAPSD_AC1_DELIVERY_EN | 2418 WMI_AP_PS_UAPSD_AC1_TRIGGER_EN; 2419 if (sta->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_BE) 2420 uapsd |= WMI_AP_PS_UAPSD_AC0_DELIVERY_EN | 2421 WMI_AP_PS_UAPSD_AC0_TRIGGER_EN; 2422 2423 if (sta->max_sp < MAX_WMI_AP_PS_PEER_PARAM_MAX_SP) 2424 max_sp = sta->max_sp; 2425 2426 ret = ath10k_wmi_set_ap_ps_param(ar, arvif->vdev_id, 2427 sta->addr, 2428 WMI_AP_PS_PEER_PARAM_UAPSD, 2429 uapsd); 2430 if (ret) { 2431 ath10k_warn(ar, "failed to set ap ps peer param uapsd for vdev %i: %d\n", 2432 arvif->vdev_id, ret); 2433 return ret; 2434 } 2435 2436 ret = ath10k_wmi_set_ap_ps_param(ar, arvif->vdev_id, 2437 sta->addr, 2438 WMI_AP_PS_PEER_PARAM_MAX_SP, 2439 max_sp); 2440 if (ret) { 2441 ath10k_warn(ar, "failed to set ap ps peer param max sp for vdev %i: %d\n", 2442 arvif->vdev_id, ret); 2443 return ret; 2444 } 2445 2446 /* TODO setup this based on STA listen interval and 2447 * beacon interval. Currently we don't know 2448 * sta->listen_interval - mac80211 patch required. 2449 * Currently use 10 seconds 2450 */ 2451 ret = ath10k_wmi_set_ap_ps_param(ar, arvif->vdev_id, sta->addr, 2452 WMI_AP_PS_PEER_PARAM_AGEOUT_TIME, 2453 10); 2454 if (ret) { 2455 ath10k_warn(ar, "failed to set ap ps peer param ageout time for vdev %i: %d\n", 2456 arvif->vdev_id, ret); 2457 return ret; 2458 } 2459 } 2460 2461 return 0; 2462 } 2463 2464 static u16 2465 ath10k_peer_assoc_h_vht_limit(u16 tx_mcs_set, 2466 const u16 vht_mcs_limit[NL80211_VHT_NSS_MAX]) 2467 { 2468 int idx_limit; 2469 int nss; 2470 u16 mcs_map; 2471 u16 mcs; 2472 2473 for (nss = 0; nss < NL80211_VHT_NSS_MAX; nss++) { 2474 mcs_map = ath10k_mac_get_max_vht_mcs_map(tx_mcs_set, nss) & 2475 vht_mcs_limit[nss]; 2476 2477 if (mcs_map) 2478 idx_limit = fls(mcs_map) - 1; 2479 else 2480 idx_limit = -1; 2481 2482 switch (idx_limit) { 2483 case 0: 2484 case 1: 2485 case 2: 2486 case 3: 2487 case 4: 2488 case 5: 2489 case 6: 2490 default: 2491 /* see ath10k_mac_can_set_bitrate_mask() */ 2492 WARN_ON(1); 2493 fallthrough; 2494 case -1: 2495 mcs = IEEE80211_VHT_MCS_NOT_SUPPORTED; 2496 break; 2497 case 7: 2498 mcs = IEEE80211_VHT_MCS_SUPPORT_0_7; 2499 break; 2500 case 8: 2501 mcs = IEEE80211_VHT_MCS_SUPPORT_0_8; 2502 break; 2503 case 9: 2504 mcs = IEEE80211_VHT_MCS_SUPPORT_0_9; 2505 break; 2506 } 2507 2508 tx_mcs_set &= ~(0x3 << (nss * 2)); 2509 tx_mcs_set |= mcs << (nss * 2); 2510 } 2511 2512 return tx_mcs_set; 2513 } 2514 2515 static u32 get_160mhz_nss_from_maxrate(int rate) 2516 { 2517 u32 nss; 2518 2519 switch (rate) { 2520 case 780: 2521 nss = 1; 2522 break; 2523 case 1560: 2524 nss = 2; 2525 break; 2526 case 2106: 2527 nss = 3; /* not support MCS9 from spec*/ 2528 break; 2529 case 3120: 2530 nss = 4; 2531 break; 2532 default: 2533 nss = 1; 2534 } 2535 2536 return nss; 2537 } 2538 2539 static void ath10k_peer_assoc_h_vht(struct ath10k *ar, 2540 struct ieee80211_vif *vif, 2541 struct ieee80211_sta *sta, 2542 struct wmi_peer_assoc_complete_arg *arg) 2543 { 2544 const struct ieee80211_sta_vht_cap *vht_cap = &sta->vht_cap; 2545 struct ath10k_vif *arvif = (void *)vif->drv_priv; 2546 struct ath10k_hw_params *hw = &ar->hw_params; 2547 struct cfg80211_chan_def def; 2548 enum nl80211_band band; 2549 const u16 *vht_mcs_mask; 2550 u8 ampdu_factor; 2551 u8 max_nss, vht_mcs; 2552 int i; 2553 2554 if (WARN_ON(ath10k_mac_vif_chan(vif, &def))) 2555 return; 2556 2557 if (!vht_cap->vht_supported) 2558 return; 2559 2560 band = def.chan->band; 2561 vht_mcs_mask = arvif->bitrate_mask.control[band].vht_mcs; 2562 2563 if (ath10k_peer_assoc_h_vht_masked(vht_mcs_mask)) 2564 return; 2565 2566 arg->peer_flags |= ar->wmi.peer_flags->vht; 2567 2568 if (def.chan->band == NL80211_BAND_2GHZ) 2569 arg->peer_flags |= ar->wmi.peer_flags->vht_2g; 2570 2571 arg->peer_vht_caps = vht_cap->cap; 2572 2573 ampdu_factor = (vht_cap->cap & 2574 IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK) >> 2575 IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT; 2576 2577 /* Workaround: Some Netgear/Linksys 11ac APs set Rx A-MPDU factor to 2578 * zero in VHT IE. Using it would result in degraded throughput. 2579 * arg->peer_max_mpdu at this point contains HT max_mpdu so keep 2580 * it if VHT max_mpdu is smaller. 2581 */ 2582 arg->peer_max_mpdu = max(arg->peer_max_mpdu, 2583 (1U << (IEEE80211_HT_MAX_AMPDU_FACTOR + 2584 ampdu_factor)) - 1); 2585 2586 if (sta->bandwidth == IEEE80211_STA_RX_BW_80) 2587 arg->peer_flags |= ar->wmi.peer_flags->bw80; 2588 2589 if (sta->bandwidth == IEEE80211_STA_RX_BW_160) 2590 arg->peer_flags |= ar->wmi.peer_flags->bw160; 2591 2592 /* Calculate peer NSS capability from VHT capabilities if STA 2593 * supports VHT. 2594 */ 2595 for (i = 0, max_nss = 0, vht_mcs = 0; i < NL80211_VHT_NSS_MAX; i++) { 2596 vht_mcs = __le16_to_cpu(vht_cap->vht_mcs.rx_mcs_map) >> 2597 (2 * i) & 3; 2598 2599 if ((vht_mcs != IEEE80211_VHT_MCS_NOT_SUPPORTED) && 2600 vht_mcs_mask[i]) 2601 max_nss = i + 1; 2602 } 2603 arg->peer_num_spatial_streams = min(sta->rx_nss, max_nss); 2604 arg->peer_vht_rates.rx_max_rate = 2605 __le16_to_cpu(vht_cap->vht_mcs.rx_highest); 2606 arg->peer_vht_rates.rx_mcs_set = 2607 __le16_to_cpu(vht_cap->vht_mcs.rx_mcs_map); 2608 arg->peer_vht_rates.tx_max_rate = 2609 __le16_to_cpu(vht_cap->vht_mcs.tx_highest); 2610 arg->peer_vht_rates.tx_mcs_set = ath10k_peer_assoc_h_vht_limit( 2611 __le16_to_cpu(vht_cap->vht_mcs.tx_mcs_map), vht_mcs_mask); 2612 2613 /* Configure bandwidth-NSS mapping to FW 2614 * for the chip's tx chains setting on 160Mhz bw 2615 */ 2616 if (arg->peer_phymode == MODE_11AC_VHT160 || 2617 arg->peer_phymode == MODE_11AC_VHT80_80) { 2618 u32 rx_nss; 2619 u32 max_rate; 2620 2621 max_rate = arg->peer_vht_rates.rx_max_rate; 2622 rx_nss = get_160mhz_nss_from_maxrate(max_rate); 2623 2624 if (rx_nss == 0) 2625 rx_nss = arg->peer_num_spatial_streams; 2626 else 2627 rx_nss = min(arg->peer_num_spatial_streams, rx_nss); 2628 2629 max_rate = hw->vht160_mcs_tx_highest; 2630 rx_nss = min(rx_nss, get_160mhz_nss_from_maxrate(max_rate)); 2631 2632 arg->peer_bw_rxnss_override = 2633 FIELD_PREP(WMI_PEER_NSS_MAP_ENABLE, 1) | 2634 FIELD_PREP(WMI_PEER_NSS_160MHZ_MASK, (rx_nss - 1)); 2635 2636 if (arg->peer_phymode == MODE_11AC_VHT80_80) { 2637 arg->peer_bw_rxnss_override |= 2638 FIELD_PREP(WMI_PEER_NSS_80_80MHZ_MASK, (rx_nss - 1)); 2639 } 2640 } 2641 ath10k_dbg(ar, ATH10K_DBG_MAC, 2642 "mac vht peer %pM max_mpdu %d flags 0x%x peer_rx_nss_override 0x%x\n", 2643 sta->addr, arg->peer_max_mpdu, 2644 arg->peer_flags, arg->peer_bw_rxnss_override); 2645 } 2646 2647 static void ath10k_peer_assoc_h_qos(struct ath10k *ar, 2648 struct ieee80211_vif *vif, 2649 struct ieee80211_sta *sta, 2650 struct wmi_peer_assoc_complete_arg *arg) 2651 { 2652 struct ath10k_vif *arvif = (void *)vif->drv_priv; 2653 2654 switch (arvif->vdev_type) { 2655 case WMI_VDEV_TYPE_AP: 2656 if (sta->wme) 2657 arg->peer_flags |= arvif->ar->wmi.peer_flags->qos; 2658 2659 if (sta->wme && sta->uapsd_queues) { 2660 arg->peer_flags |= arvif->ar->wmi.peer_flags->apsd; 2661 arg->peer_rate_caps |= WMI_RC_UAPSD_FLAG; 2662 } 2663 break; 2664 case WMI_VDEV_TYPE_STA: 2665 if (sta->wme) 2666 arg->peer_flags |= arvif->ar->wmi.peer_flags->qos; 2667 break; 2668 case WMI_VDEV_TYPE_IBSS: 2669 if (sta->wme) 2670 arg->peer_flags |= arvif->ar->wmi.peer_flags->qos; 2671 break; 2672 default: 2673 break; 2674 } 2675 2676 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac peer %pM qos %d\n", 2677 sta->addr, !!(arg->peer_flags & 2678 arvif->ar->wmi.peer_flags->qos)); 2679 } 2680 2681 static bool ath10k_mac_sta_has_ofdm_only(struct ieee80211_sta *sta) 2682 { 2683 return sta->supp_rates[NL80211_BAND_2GHZ] >> 2684 ATH10K_MAC_FIRST_OFDM_RATE_IDX; 2685 } 2686 2687 static enum wmi_phy_mode ath10k_mac_get_phymode_vht(struct ath10k *ar, 2688 struct ieee80211_sta *sta) 2689 { 2690 if (sta->bandwidth == IEEE80211_STA_RX_BW_160) { 2691 switch (sta->vht_cap.cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK) { 2692 case IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ: 2693 return MODE_11AC_VHT160; 2694 case IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ: 2695 return MODE_11AC_VHT80_80; 2696 default: 2697 /* not sure if this is a valid case? */ 2698 return MODE_11AC_VHT160; 2699 } 2700 } 2701 2702 if (sta->bandwidth == IEEE80211_STA_RX_BW_80) 2703 return MODE_11AC_VHT80; 2704 2705 if (sta->bandwidth == IEEE80211_STA_RX_BW_40) 2706 return MODE_11AC_VHT40; 2707 2708 if (sta->bandwidth == IEEE80211_STA_RX_BW_20) 2709 return MODE_11AC_VHT20; 2710 2711 return MODE_UNKNOWN; 2712 } 2713 2714 static void ath10k_peer_assoc_h_phymode(struct ath10k *ar, 2715 struct ieee80211_vif *vif, 2716 struct ieee80211_sta *sta, 2717 struct wmi_peer_assoc_complete_arg *arg) 2718 { 2719 struct ath10k_vif *arvif = (void *)vif->drv_priv; 2720 struct cfg80211_chan_def def; 2721 enum nl80211_band band; 2722 const u8 *ht_mcs_mask; 2723 const u16 *vht_mcs_mask; 2724 enum wmi_phy_mode phymode = MODE_UNKNOWN; 2725 2726 if (WARN_ON(ath10k_mac_vif_chan(vif, &def))) 2727 return; 2728 2729 band = def.chan->band; 2730 ht_mcs_mask = arvif->bitrate_mask.control[band].ht_mcs; 2731 vht_mcs_mask = arvif->bitrate_mask.control[band].vht_mcs; 2732 2733 switch (band) { 2734 case NL80211_BAND_2GHZ: 2735 if (sta->vht_cap.vht_supported && 2736 !ath10k_peer_assoc_h_vht_masked(vht_mcs_mask)) { 2737 if (sta->bandwidth == IEEE80211_STA_RX_BW_40) 2738 phymode = MODE_11AC_VHT40; 2739 else 2740 phymode = MODE_11AC_VHT20; 2741 } else if (sta->ht_cap.ht_supported && 2742 !ath10k_peer_assoc_h_ht_masked(ht_mcs_mask)) { 2743 if (sta->bandwidth == IEEE80211_STA_RX_BW_40) 2744 phymode = MODE_11NG_HT40; 2745 else 2746 phymode = MODE_11NG_HT20; 2747 } else if (ath10k_mac_sta_has_ofdm_only(sta)) { 2748 phymode = MODE_11G; 2749 } else { 2750 phymode = MODE_11B; 2751 } 2752 2753 break; 2754 case NL80211_BAND_5GHZ: 2755 /* 2756 * Check VHT first. 2757 */ 2758 if (sta->vht_cap.vht_supported && 2759 !ath10k_peer_assoc_h_vht_masked(vht_mcs_mask)) { 2760 phymode = ath10k_mac_get_phymode_vht(ar, sta); 2761 } else if (sta->ht_cap.ht_supported && 2762 !ath10k_peer_assoc_h_ht_masked(ht_mcs_mask)) { 2763 if (sta->bandwidth >= IEEE80211_STA_RX_BW_40) 2764 phymode = MODE_11NA_HT40; 2765 else 2766 phymode = MODE_11NA_HT20; 2767 } else { 2768 phymode = MODE_11A; 2769 } 2770 2771 break; 2772 default: 2773 break; 2774 } 2775 2776 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac peer %pM phymode %s\n", 2777 sta->addr, ath10k_wmi_phymode_str(phymode)); 2778 2779 arg->peer_phymode = phymode; 2780 WARN_ON(phymode == MODE_UNKNOWN); 2781 } 2782 2783 static int ath10k_peer_assoc_prepare(struct ath10k *ar, 2784 struct ieee80211_vif *vif, 2785 struct ieee80211_sta *sta, 2786 struct wmi_peer_assoc_complete_arg *arg) 2787 { 2788 lockdep_assert_held(&ar->conf_mutex); 2789 2790 memset(arg, 0, sizeof(*arg)); 2791 2792 ath10k_peer_assoc_h_basic(ar, vif, sta, arg); 2793 ath10k_peer_assoc_h_crypto(ar, vif, sta, arg); 2794 ath10k_peer_assoc_h_rates(ar, vif, sta, arg); 2795 ath10k_peer_assoc_h_ht(ar, vif, sta, arg); 2796 ath10k_peer_assoc_h_phymode(ar, vif, sta, arg); 2797 ath10k_peer_assoc_h_vht(ar, vif, sta, arg); 2798 ath10k_peer_assoc_h_qos(ar, vif, sta, arg); 2799 2800 return 0; 2801 } 2802 2803 static const u32 ath10k_smps_map[] = { 2804 [WLAN_HT_CAP_SM_PS_STATIC] = WMI_PEER_SMPS_STATIC, 2805 [WLAN_HT_CAP_SM_PS_DYNAMIC] = WMI_PEER_SMPS_DYNAMIC, 2806 [WLAN_HT_CAP_SM_PS_INVALID] = WMI_PEER_SMPS_PS_NONE, 2807 [WLAN_HT_CAP_SM_PS_DISABLED] = WMI_PEER_SMPS_PS_NONE, 2808 }; 2809 2810 static int ath10k_setup_peer_smps(struct ath10k *ar, struct ath10k_vif *arvif, 2811 const u8 *addr, 2812 const struct ieee80211_sta_ht_cap *ht_cap) 2813 { 2814 int smps; 2815 2816 if (!ht_cap->ht_supported) 2817 return 0; 2818 2819 smps = ht_cap->cap & IEEE80211_HT_CAP_SM_PS; 2820 smps >>= IEEE80211_HT_CAP_SM_PS_SHIFT; 2821 2822 if (smps >= ARRAY_SIZE(ath10k_smps_map)) 2823 return -EINVAL; 2824 2825 return ath10k_wmi_peer_set_param(ar, arvif->vdev_id, addr, 2826 ar->wmi.peer_param->smps_state, 2827 ath10k_smps_map[smps]); 2828 } 2829 2830 static int ath10k_mac_vif_recalc_txbf(struct ath10k *ar, 2831 struct ieee80211_vif *vif, 2832 struct ieee80211_sta_vht_cap vht_cap) 2833 { 2834 struct ath10k_vif *arvif = (void *)vif->drv_priv; 2835 int ret; 2836 u32 param; 2837 u32 value; 2838 2839 if (ath10k_wmi_get_txbf_conf_scheme(ar) != WMI_TXBF_CONF_AFTER_ASSOC) 2840 return 0; 2841 2842 if (!(ar->vht_cap_info & 2843 (IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE | 2844 IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE | 2845 IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE | 2846 IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE))) 2847 return 0; 2848 2849 param = ar->wmi.vdev_param->txbf; 2850 value = 0; 2851 2852 if (WARN_ON(param == WMI_VDEV_PARAM_UNSUPPORTED)) 2853 return 0; 2854 2855 /* The following logic is correct. If a remote STA advertises support 2856 * for being a beamformer then we should enable us being a beamformee. 2857 */ 2858 2859 if (ar->vht_cap_info & 2860 (IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE | 2861 IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE)) { 2862 if (vht_cap.cap & IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE) 2863 value |= WMI_VDEV_PARAM_TXBF_SU_TX_BFEE; 2864 2865 if (vht_cap.cap & IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE) 2866 value |= WMI_VDEV_PARAM_TXBF_MU_TX_BFEE; 2867 } 2868 2869 if (ar->vht_cap_info & 2870 (IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE | 2871 IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE)) { 2872 if (vht_cap.cap & IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE) 2873 value |= WMI_VDEV_PARAM_TXBF_SU_TX_BFER; 2874 2875 if (vht_cap.cap & IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE) 2876 value |= WMI_VDEV_PARAM_TXBF_MU_TX_BFER; 2877 } 2878 2879 if (value & WMI_VDEV_PARAM_TXBF_MU_TX_BFEE) 2880 value |= WMI_VDEV_PARAM_TXBF_SU_TX_BFEE; 2881 2882 if (value & WMI_VDEV_PARAM_TXBF_MU_TX_BFER) 2883 value |= WMI_VDEV_PARAM_TXBF_SU_TX_BFER; 2884 2885 ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, param, value); 2886 if (ret) { 2887 ath10k_warn(ar, "failed to submit vdev param txbf 0x%x: %d\n", 2888 value, ret); 2889 return ret; 2890 } 2891 2892 return 0; 2893 } 2894 2895 static bool ath10k_mac_is_connected(struct ath10k *ar) 2896 { 2897 struct ath10k_vif *arvif; 2898 2899 list_for_each_entry(arvif, &ar->arvifs, list) { 2900 if (arvif->is_up && arvif->vdev_type == WMI_VDEV_TYPE_STA) 2901 return true; 2902 } 2903 2904 return false; 2905 } 2906 2907 static int ath10k_mac_txpower_setup(struct ath10k *ar, int txpower) 2908 { 2909 int ret; 2910 u32 param; 2911 int tx_power_2g, tx_power_5g; 2912 bool connected; 2913 2914 lockdep_assert_held(&ar->conf_mutex); 2915 2916 /* ath10k internally uses unit of 0.5 dBm so multiply by 2 */ 2917 tx_power_2g = txpower * 2; 2918 tx_power_5g = txpower * 2; 2919 2920 connected = ath10k_mac_is_connected(ar); 2921 2922 if (connected && ar->tx_power_2g_limit) 2923 if (tx_power_2g > ar->tx_power_2g_limit) 2924 tx_power_2g = ar->tx_power_2g_limit; 2925 2926 if (connected && ar->tx_power_5g_limit) 2927 if (tx_power_5g > ar->tx_power_5g_limit) 2928 tx_power_5g = ar->tx_power_5g_limit; 2929 2930 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac txpower 2g: %d, 5g: %d\n", 2931 tx_power_2g, tx_power_5g); 2932 2933 param = ar->wmi.pdev_param->txpower_limit2g; 2934 ret = ath10k_wmi_pdev_set_param(ar, param, tx_power_2g); 2935 if (ret) { 2936 ath10k_warn(ar, "failed to set 2g txpower %d: %d\n", 2937 tx_power_2g, ret); 2938 return ret; 2939 } 2940 2941 param = ar->wmi.pdev_param->txpower_limit5g; 2942 ret = ath10k_wmi_pdev_set_param(ar, param, tx_power_5g); 2943 if (ret) { 2944 ath10k_warn(ar, "failed to set 5g txpower %d: %d\n", 2945 tx_power_5g, ret); 2946 return ret; 2947 } 2948 2949 return 0; 2950 } 2951 2952 static int ath10k_mac_txpower_recalc(struct ath10k *ar) 2953 { 2954 struct ath10k_vif *arvif; 2955 int ret, txpower = -1; 2956 2957 lockdep_assert_held(&ar->conf_mutex); 2958 2959 list_for_each_entry(arvif, &ar->arvifs, list) { 2960 /* txpower not initialized yet? */ 2961 if (arvif->txpower == INT_MIN) 2962 continue; 2963 2964 if (txpower == -1) 2965 txpower = arvif->txpower; 2966 else 2967 txpower = min(txpower, arvif->txpower); 2968 } 2969 2970 if (txpower == -1) 2971 return 0; 2972 2973 ret = ath10k_mac_txpower_setup(ar, txpower); 2974 if (ret) { 2975 ath10k_warn(ar, "failed to setup tx power %d: %d\n", 2976 txpower, ret); 2977 return ret; 2978 } 2979 2980 return 0; 2981 } 2982 2983 static int ath10k_mac_set_sar_power(struct ath10k *ar) 2984 { 2985 if (!ar->hw_params.dynamic_sar_support) 2986 return -EOPNOTSUPP; 2987 2988 if (!ath10k_mac_is_connected(ar)) 2989 return 0; 2990 2991 /* if connected, then arvif->txpower must be valid */ 2992 return ath10k_mac_txpower_recalc(ar); 2993 } 2994 2995 static int ath10k_mac_set_sar_specs(struct ieee80211_hw *hw, 2996 const struct cfg80211_sar_specs *sar) 2997 { 2998 const struct cfg80211_sar_sub_specs *sub_specs; 2999 struct ath10k *ar = hw->priv; 3000 u32 i; 3001 int ret; 3002 3003 mutex_lock(&ar->conf_mutex); 3004 3005 if (!ar->hw_params.dynamic_sar_support) { 3006 ret = -EOPNOTSUPP; 3007 goto err; 3008 } 3009 3010 if (!sar || sar->type != NL80211_SAR_TYPE_POWER || 3011 sar->num_sub_specs == 0) { 3012 ret = -EINVAL; 3013 goto err; 3014 } 3015 3016 sub_specs = sar->sub_specs; 3017 3018 /* 0dbm is not a practical value for ath10k, so use 0 3019 * as no SAR limitation on it. 3020 */ 3021 ar->tx_power_2g_limit = 0; 3022 ar->tx_power_5g_limit = 0; 3023 3024 /* note the power is in 0.25dbm unit, while ath10k uses 3025 * 0.5dbm unit. 3026 */ 3027 for (i = 0; i < sar->num_sub_specs; i++) { 3028 if (sub_specs->freq_range_index == 0) 3029 ar->tx_power_2g_limit = sub_specs->power / 2; 3030 else if (sub_specs->freq_range_index == 1) 3031 ar->tx_power_5g_limit = sub_specs->power / 2; 3032 3033 sub_specs++; 3034 } 3035 3036 ret = ath10k_mac_set_sar_power(ar); 3037 if (ret) { 3038 ath10k_warn(ar, "failed to set sar power: %d", ret); 3039 goto err; 3040 } 3041 3042 err: 3043 mutex_unlock(&ar->conf_mutex); 3044 return ret; 3045 } 3046 3047 /* can be called only in mac80211 callbacks due to `key_count` usage */ 3048 static void ath10k_bss_assoc(struct ieee80211_hw *hw, 3049 struct ieee80211_vif *vif, 3050 struct ieee80211_bss_conf *bss_conf) 3051 { 3052 struct ath10k *ar = hw->priv; 3053 struct ath10k_vif *arvif = (void *)vif->drv_priv; 3054 struct ieee80211_sta_ht_cap ht_cap; 3055 struct ieee80211_sta_vht_cap vht_cap; 3056 struct wmi_peer_assoc_complete_arg peer_arg; 3057 struct ieee80211_sta *ap_sta; 3058 int ret; 3059 3060 lockdep_assert_held(&ar->conf_mutex); 3061 3062 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %i assoc bssid %pM aid %d\n", 3063 arvif->vdev_id, arvif->bssid, arvif->aid); 3064 3065 rcu_read_lock(); 3066 3067 ap_sta = ieee80211_find_sta(vif, bss_conf->bssid); 3068 if (!ap_sta) { 3069 ath10k_warn(ar, "failed to find station entry for bss %pM vdev %i\n", 3070 bss_conf->bssid, arvif->vdev_id); 3071 rcu_read_unlock(); 3072 return; 3073 } 3074 3075 /* ap_sta must be accessed only within rcu section which must be left 3076 * before calling ath10k_setup_peer_smps() which might sleep. 3077 */ 3078 ht_cap = ap_sta->ht_cap; 3079 vht_cap = ap_sta->vht_cap; 3080 3081 ret = ath10k_peer_assoc_prepare(ar, vif, ap_sta, &peer_arg); 3082 if (ret) { 3083 ath10k_warn(ar, "failed to prepare peer assoc for %pM vdev %i: %d\n", 3084 bss_conf->bssid, arvif->vdev_id, ret); 3085 rcu_read_unlock(); 3086 return; 3087 } 3088 3089 rcu_read_unlock(); 3090 3091 ret = ath10k_wmi_peer_assoc(ar, &peer_arg); 3092 if (ret) { 3093 ath10k_warn(ar, "failed to run peer assoc for %pM vdev %i: %d\n", 3094 bss_conf->bssid, arvif->vdev_id, ret); 3095 return; 3096 } 3097 3098 ret = ath10k_setup_peer_smps(ar, arvif, bss_conf->bssid, &ht_cap); 3099 if (ret) { 3100 ath10k_warn(ar, "failed to setup peer SMPS for vdev %i: %d\n", 3101 arvif->vdev_id, ret); 3102 return; 3103 } 3104 3105 ret = ath10k_mac_vif_recalc_txbf(ar, vif, vht_cap); 3106 if (ret) { 3107 ath10k_warn(ar, "failed to recalc txbf for vdev %i on bss %pM: %d\n", 3108 arvif->vdev_id, bss_conf->bssid, ret); 3109 return; 3110 } 3111 3112 ath10k_dbg(ar, ATH10K_DBG_MAC, 3113 "mac vdev %d up (associated) bssid %pM aid %d\n", 3114 arvif->vdev_id, bss_conf->bssid, bss_conf->aid); 3115 3116 WARN_ON(arvif->is_up); 3117 3118 arvif->aid = bss_conf->aid; 3119 ether_addr_copy(arvif->bssid, bss_conf->bssid); 3120 3121 ret = ath10k_wmi_pdev_set_param(ar, 3122 ar->wmi.pdev_param->peer_stats_info_enable, 1); 3123 if (ret) 3124 ath10k_warn(ar, "failed to enable peer stats info: %d\n", ret); 3125 3126 ret = ath10k_wmi_vdev_up(ar, arvif->vdev_id, arvif->aid, arvif->bssid); 3127 if (ret) { 3128 ath10k_warn(ar, "failed to set vdev %d up: %d\n", 3129 arvif->vdev_id, ret); 3130 return; 3131 } 3132 3133 arvif->is_up = true; 3134 3135 ath10k_mac_set_sar_power(ar); 3136 3137 /* Workaround: Some firmware revisions (tested with qca6174 3138 * WLAN.RM.2.0-00073) have buggy powersave state machine and must be 3139 * poked with peer param command. 3140 */ 3141 ret = ath10k_wmi_peer_set_param(ar, arvif->vdev_id, arvif->bssid, 3142 ar->wmi.peer_param->dummy_var, 1); 3143 if (ret) { 3144 ath10k_warn(ar, "failed to poke peer %pM param for ps workaround on vdev %i: %d\n", 3145 arvif->bssid, arvif->vdev_id, ret); 3146 return; 3147 } 3148 } 3149 3150 static void ath10k_bss_disassoc(struct ieee80211_hw *hw, 3151 struct ieee80211_vif *vif) 3152 { 3153 struct ath10k *ar = hw->priv; 3154 struct ath10k_vif *arvif = (void *)vif->drv_priv; 3155 struct ieee80211_sta_vht_cap vht_cap = {}; 3156 int ret; 3157 3158 lockdep_assert_held(&ar->conf_mutex); 3159 3160 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %i disassoc bssid %pM\n", 3161 arvif->vdev_id, arvif->bssid); 3162 3163 ret = ath10k_wmi_vdev_down(ar, arvif->vdev_id); 3164 if (ret) 3165 ath10k_warn(ar, "failed to down vdev %i: %d\n", 3166 arvif->vdev_id, ret); 3167 3168 arvif->def_wep_key_idx = -1; 3169 3170 ret = ath10k_mac_vif_recalc_txbf(ar, vif, vht_cap); 3171 if (ret) { 3172 ath10k_warn(ar, "failed to recalc txbf for vdev %i: %d\n", 3173 arvif->vdev_id, ret); 3174 return; 3175 } 3176 3177 arvif->is_up = false; 3178 3179 ath10k_mac_txpower_recalc(ar); 3180 3181 cancel_delayed_work_sync(&arvif->connection_loss_work); 3182 } 3183 3184 static int ath10k_new_peer_tid_config(struct ath10k *ar, 3185 struct ieee80211_sta *sta, 3186 struct ath10k_vif *arvif) 3187 { 3188 struct wmi_per_peer_per_tid_cfg_arg arg = {}; 3189 struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv; 3190 bool config_apply; 3191 int ret, i; 3192 3193 for (i = 0; i < ATH10K_TID_MAX; i++) { 3194 config_apply = false; 3195 if (arvif->retry_long[i] || arvif->ampdu[i] || 3196 arvif->rate_ctrl[i] || arvif->rtscts[i]) { 3197 config_apply = true; 3198 arg.tid = i; 3199 arg.vdev_id = arvif->vdev_id; 3200 arg.retry_count = arvif->retry_long[i]; 3201 arg.aggr_control = arvif->ampdu[i]; 3202 arg.rate_ctrl = arvif->rate_ctrl[i]; 3203 arg.rcode_flags = arvif->rate_code[i]; 3204 3205 if (arvif->rtscts[i]) 3206 arg.ext_tid_cfg_bitmap = 3207 WMI_EXT_TID_RTS_CTS_CONFIG; 3208 else 3209 arg.ext_tid_cfg_bitmap = 0; 3210 3211 arg.rtscts_ctrl = arvif->rtscts[i]; 3212 } 3213 3214 if (arvif->noack[i]) { 3215 arg.ack_policy = arvif->noack[i]; 3216 arg.rate_ctrl = WMI_TID_CONFIG_RATE_CONTROL_DEFAULT_LOWEST_RATE; 3217 arg.aggr_control = WMI_TID_CONFIG_AGGR_CONTROL_DISABLE; 3218 config_apply = true; 3219 } 3220 3221 /* Assign default value(-1) to newly connected station. 3222 * This is to identify station specific tid configuration not 3223 * configured for the station. 3224 */ 3225 arsta->retry_long[i] = -1; 3226 arsta->noack[i] = -1; 3227 arsta->ampdu[i] = -1; 3228 3229 if (!config_apply) 3230 continue; 3231 3232 ether_addr_copy(arg.peer_macaddr.addr, sta->addr); 3233 3234 ret = ath10k_wmi_set_per_peer_per_tid_cfg(ar, &arg); 3235 if (ret) { 3236 ath10k_warn(ar, "failed to set per tid retry/aggr config for sta %pM: %d\n", 3237 sta->addr, ret); 3238 return ret; 3239 } 3240 3241 memset(&arg, 0, sizeof(arg)); 3242 } 3243 3244 return 0; 3245 } 3246 3247 static int ath10k_station_assoc(struct ath10k *ar, 3248 struct ieee80211_vif *vif, 3249 struct ieee80211_sta *sta, 3250 bool reassoc) 3251 { 3252 struct ath10k_vif *arvif = (void *)vif->drv_priv; 3253 struct wmi_peer_assoc_complete_arg peer_arg; 3254 int ret = 0; 3255 3256 lockdep_assert_held(&ar->conf_mutex); 3257 3258 ret = ath10k_peer_assoc_prepare(ar, vif, sta, &peer_arg); 3259 if (ret) { 3260 ath10k_warn(ar, "failed to prepare WMI peer assoc for %pM vdev %i: %i\n", 3261 sta->addr, arvif->vdev_id, ret); 3262 return ret; 3263 } 3264 3265 ret = ath10k_wmi_peer_assoc(ar, &peer_arg); 3266 if (ret) { 3267 ath10k_warn(ar, "failed to run peer assoc for STA %pM vdev %i: %d\n", 3268 sta->addr, arvif->vdev_id, ret); 3269 return ret; 3270 } 3271 3272 /* Re-assoc is run only to update supported rates for given station. It 3273 * doesn't make much sense to reconfigure the peer completely. 3274 */ 3275 if (!reassoc) { 3276 ret = ath10k_setup_peer_smps(ar, arvif, sta->addr, 3277 &sta->ht_cap); 3278 if (ret) { 3279 ath10k_warn(ar, "failed to setup peer SMPS for vdev %d: %d\n", 3280 arvif->vdev_id, ret); 3281 return ret; 3282 } 3283 3284 ret = ath10k_peer_assoc_qos_ap(ar, arvif, sta); 3285 if (ret) { 3286 ath10k_warn(ar, "failed to set qos params for STA %pM for vdev %i: %d\n", 3287 sta->addr, arvif->vdev_id, ret); 3288 return ret; 3289 } 3290 3291 if (!sta->wme) { 3292 arvif->num_legacy_stations++; 3293 ret = ath10k_recalc_rtscts_prot(arvif); 3294 if (ret) { 3295 ath10k_warn(ar, "failed to recalculate rts/cts prot for vdev %d: %d\n", 3296 arvif->vdev_id, ret); 3297 return ret; 3298 } 3299 } 3300 3301 /* Plumb cached keys only for static WEP */ 3302 if ((arvif->def_wep_key_idx != -1) && (!sta->tdls)) { 3303 ret = ath10k_install_peer_wep_keys(arvif, sta->addr); 3304 if (ret) { 3305 ath10k_warn(ar, "failed to install peer wep keys for vdev %i: %d\n", 3306 arvif->vdev_id, ret); 3307 return ret; 3308 } 3309 } 3310 } 3311 3312 if (!test_bit(WMI_SERVICE_PEER_TID_CONFIGS_SUPPORT, ar->wmi.svc_map)) 3313 return ret; 3314 3315 return ath10k_new_peer_tid_config(ar, sta, arvif); 3316 } 3317 3318 static int ath10k_station_disassoc(struct ath10k *ar, 3319 struct ieee80211_vif *vif, 3320 struct ieee80211_sta *sta) 3321 { 3322 struct ath10k_vif *arvif = (void *)vif->drv_priv; 3323 int ret = 0; 3324 3325 lockdep_assert_held(&ar->conf_mutex); 3326 3327 if (!sta->wme) { 3328 arvif->num_legacy_stations--; 3329 ret = ath10k_recalc_rtscts_prot(arvif); 3330 if (ret) { 3331 ath10k_warn(ar, "failed to recalculate rts/cts prot for vdev %d: %d\n", 3332 arvif->vdev_id, ret); 3333 return ret; 3334 } 3335 } 3336 3337 ret = ath10k_clear_peer_keys(arvif, sta->addr); 3338 if (ret) { 3339 ath10k_warn(ar, "failed to clear all peer wep keys for vdev %i: %d\n", 3340 arvif->vdev_id, ret); 3341 return ret; 3342 } 3343 3344 return ret; 3345 } 3346 3347 /**************/ 3348 /* Regulatory */ 3349 /**************/ 3350 3351 static int ath10k_update_channel_list(struct ath10k *ar) 3352 { 3353 struct ieee80211_hw *hw = ar->hw; 3354 struct ieee80211_supported_band **bands; 3355 enum nl80211_band band; 3356 struct ieee80211_channel *channel; 3357 struct wmi_scan_chan_list_arg arg = {0}; 3358 struct wmi_channel_arg *ch; 3359 bool passive; 3360 int len; 3361 int ret; 3362 int i; 3363 3364 lockdep_assert_held(&ar->conf_mutex); 3365 3366 bands = hw->wiphy->bands; 3367 for (band = 0; band < NUM_NL80211_BANDS; band++) { 3368 if (!bands[band]) 3369 continue; 3370 3371 for (i = 0; i < bands[band]->n_channels; i++) { 3372 if (bands[band]->channels[i].flags & 3373 IEEE80211_CHAN_DISABLED) 3374 continue; 3375 3376 arg.n_channels++; 3377 } 3378 } 3379 3380 len = sizeof(struct wmi_channel_arg) * arg.n_channels; 3381 arg.channels = kzalloc(len, GFP_KERNEL); 3382 if (!arg.channels) 3383 return -ENOMEM; 3384 3385 ch = arg.channels; 3386 for (band = 0; band < NUM_NL80211_BANDS; band++) { 3387 if (!bands[band]) 3388 continue; 3389 3390 for (i = 0; i < bands[band]->n_channels; i++) { 3391 channel = &bands[band]->channels[i]; 3392 3393 if (channel->flags & IEEE80211_CHAN_DISABLED) 3394 continue; 3395 3396 ch->allow_ht = true; 3397 3398 /* FIXME: when should we really allow VHT? */ 3399 ch->allow_vht = true; 3400 3401 ch->allow_ibss = 3402 !(channel->flags & IEEE80211_CHAN_NO_IR); 3403 3404 ch->ht40plus = 3405 !(channel->flags & IEEE80211_CHAN_NO_HT40PLUS); 3406 3407 ch->chan_radar = 3408 !!(channel->flags & IEEE80211_CHAN_RADAR); 3409 3410 passive = channel->flags & IEEE80211_CHAN_NO_IR; 3411 ch->passive = passive; 3412 3413 /* the firmware is ignoring the "radar" flag of the 3414 * channel and is scanning actively using Probe Requests 3415 * on "Radar detection"/DFS channels which are not 3416 * marked as "available" 3417 */ 3418 ch->passive |= ch->chan_radar; 3419 3420 ch->freq = channel->center_freq; 3421 ch->band_center_freq1 = channel->center_freq; 3422 ch->min_power = 0; 3423 ch->max_power = channel->max_power * 2; 3424 ch->max_reg_power = channel->max_reg_power * 2; 3425 ch->max_antenna_gain = channel->max_antenna_gain * 2; 3426 ch->reg_class_id = 0; /* FIXME */ 3427 3428 /* FIXME: why use only legacy modes, why not any 3429 * HT/VHT modes? Would that even make any 3430 * difference? 3431 */ 3432 if (channel->band == NL80211_BAND_2GHZ) 3433 ch->mode = MODE_11G; 3434 else 3435 ch->mode = MODE_11A; 3436 3437 if (WARN_ON_ONCE(ch->mode == MODE_UNKNOWN)) 3438 continue; 3439 3440 ath10k_dbg(ar, ATH10K_DBG_WMI, 3441 "mac channel [%zd/%d] freq %d maxpower %d regpower %d antenna %d mode %d\n", 3442 ch - arg.channels, arg.n_channels, 3443 ch->freq, ch->max_power, ch->max_reg_power, 3444 ch->max_antenna_gain, ch->mode); 3445 3446 ch++; 3447 } 3448 } 3449 3450 ret = ath10k_wmi_scan_chan_list(ar, &arg); 3451 kfree(arg.channels); 3452 3453 return ret; 3454 } 3455 3456 static enum wmi_dfs_region 3457 ath10k_mac_get_dfs_region(enum nl80211_dfs_regions dfs_region) 3458 { 3459 switch (dfs_region) { 3460 case NL80211_DFS_UNSET: 3461 return WMI_UNINIT_DFS_DOMAIN; 3462 case NL80211_DFS_FCC: 3463 return WMI_FCC_DFS_DOMAIN; 3464 case NL80211_DFS_ETSI: 3465 return WMI_ETSI_DFS_DOMAIN; 3466 case NL80211_DFS_JP: 3467 return WMI_MKK4_DFS_DOMAIN; 3468 } 3469 return WMI_UNINIT_DFS_DOMAIN; 3470 } 3471 3472 static void ath10k_regd_update(struct ath10k *ar) 3473 { 3474 struct reg_dmn_pair_mapping *regpair; 3475 int ret; 3476 enum wmi_dfs_region wmi_dfs_reg; 3477 enum nl80211_dfs_regions nl_dfs_reg; 3478 3479 lockdep_assert_held(&ar->conf_mutex); 3480 3481 ret = ath10k_update_channel_list(ar); 3482 if (ret) 3483 ath10k_warn(ar, "failed to update channel list: %d\n", ret); 3484 3485 regpair = ar->ath_common.regulatory.regpair; 3486 3487 if (IS_ENABLED(CONFIG_ATH10K_DFS_CERTIFIED) && ar->dfs_detector) { 3488 nl_dfs_reg = ar->dfs_detector->region; 3489 wmi_dfs_reg = ath10k_mac_get_dfs_region(nl_dfs_reg); 3490 } else { 3491 wmi_dfs_reg = WMI_UNINIT_DFS_DOMAIN; 3492 } 3493 3494 /* Target allows setting up per-band regdomain but ath_common provides 3495 * a combined one only 3496 */ 3497 ret = ath10k_wmi_pdev_set_regdomain(ar, 3498 regpair->reg_domain, 3499 regpair->reg_domain, /* 2ghz */ 3500 regpair->reg_domain, /* 5ghz */ 3501 regpair->reg_2ghz_ctl, 3502 regpair->reg_5ghz_ctl, 3503 wmi_dfs_reg); 3504 if (ret) 3505 ath10k_warn(ar, "failed to set pdev regdomain: %d\n", ret); 3506 } 3507 3508 static void ath10k_mac_update_channel_list(struct ath10k *ar, 3509 struct ieee80211_supported_band *band) 3510 { 3511 int i; 3512 3513 if (ar->low_5ghz_chan && ar->high_5ghz_chan) { 3514 for (i = 0; i < band->n_channels; i++) { 3515 if (band->channels[i].center_freq < ar->low_5ghz_chan || 3516 band->channels[i].center_freq > ar->high_5ghz_chan) 3517 band->channels[i].flags |= 3518 IEEE80211_CHAN_DISABLED; 3519 } 3520 } 3521 } 3522 3523 static void ath10k_reg_notifier(struct wiphy *wiphy, 3524 struct regulatory_request *request) 3525 { 3526 struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy); 3527 struct ath10k *ar = hw->priv; 3528 bool result; 3529 3530 ath_reg_notifier_apply(wiphy, request, &ar->ath_common.regulatory); 3531 3532 if (IS_ENABLED(CONFIG_ATH10K_DFS_CERTIFIED) && ar->dfs_detector) { 3533 ath10k_dbg(ar, ATH10K_DBG_REGULATORY, "dfs region 0x%x\n", 3534 request->dfs_region); 3535 result = ar->dfs_detector->set_dfs_domain(ar->dfs_detector, 3536 request->dfs_region); 3537 if (!result) 3538 ath10k_warn(ar, "DFS region 0x%X not supported, will trigger radar for every pulse\n", 3539 request->dfs_region); 3540 } 3541 3542 mutex_lock(&ar->conf_mutex); 3543 if (ar->state == ATH10K_STATE_ON) 3544 ath10k_regd_update(ar); 3545 mutex_unlock(&ar->conf_mutex); 3546 3547 if (ar->phy_capability & WHAL_WLAN_11A_CAPABILITY) 3548 ath10k_mac_update_channel_list(ar, 3549 ar->hw->wiphy->bands[NL80211_BAND_5GHZ]); 3550 } 3551 3552 static void ath10k_stop_radar_confirmation(struct ath10k *ar) 3553 { 3554 spin_lock_bh(&ar->data_lock); 3555 ar->radar_conf_state = ATH10K_RADAR_CONFIRMATION_STOPPED; 3556 spin_unlock_bh(&ar->data_lock); 3557 3558 cancel_work_sync(&ar->radar_confirmation_work); 3559 } 3560 3561 /***************/ 3562 /* TX handlers */ 3563 /***************/ 3564 3565 enum ath10k_mac_tx_path { 3566 ATH10K_MAC_TX_HTT, 3567 ATH10K_MAC_TX_HTT_MGMT, 3568 ATH10K_MAC_TX_WMI_MGMT, 3569 ATH10K_MAC_TX_UNKNOWN, 3570 }; 3571 3572 void ath10k_mac_tx_lock(struct ath10k *ar, int reason) 3573 { 3574 lockdep_assert_held(&ar->htt.tx_lock); 3575 3576 WARN_ON(reason >= ATH10K_TX_PAUSE_MAX); 3577 ar->tx_paused |= BIT(reason); 3578 ieee80211_stop_queues(ar->hw); 3579 } 3580 3581 static void ath10k_mac_tx_unlock_iter(void *data, u8 *mac, 3582 struct ieee80211_vif *vif) 3583 { 3584 struct ath10k *ar = data; 3585 struct ath10k_vif *arvif = (void *)vif->drv_priv; 3586 3587 if (arvif->tx_paused) 3588 return; 3589 3590 ieee80211_wake_queue(ar->hw, arvif->vdev_id); 3591 } 3592 3593 void ath10k_mac_tx_unlock(struct ath10k *ar, int reason) 3594 { 3595 lockdep_assert_held(&ar->htt.tx_lock); 3596 3597 WARN_ON(reason >= ATH10K_TX_PAUSE_MAX); 3598 ar->tx_paused &= ~BIT(reason); 3599 3600 if (ar->tx_paused) 3601 return; 3602 3603 ieee80211_iterate_active_interfaces_atomic(ar->hw, 3604 ATH10K_ITER_RESUME_FLAGS, 3605 ath10k_mac_tx_unlock_iter, 3606 ar); 3607 3608 ieee80211_wake_queue(ar->hw, ar->hw->offchannel_tx_hw_queue); 3609 } 3610 3611 void ath10k_mac_vif_tx_lock(struct ath10k_vif *arvif, int reason) 3612 { 3613 struct ath10k *ar = arvif->ar; 3614 3615 lockdep_assert_held(&ar->htt.tx_lock); 3616 3617 WARN_ON(reason >= BITS_PER_LONG); 3618 arvif->tx_paused |= BIT(reason); 3619 ieee80211_stop_queue(ar->hw, arvif->vdev_id); 3620 } 3621 3622 void ath10k_mac_vif_tx_unlock(struct ath10k_vif *arvif, int reason) 3623 { 3624 struct ath10k *ar = arvif->ar; 3625 3626 lockdep_assert_held(&ar->htt.tx_lock); 3627 3628 WARN_ON(reason >= BITS_PER_LONG); 3629 arvif->tx_paused &= ~BIT(reason); 3630 3631 if (ar->tx_paused) 3632 return; 3633 3634 if (arvif->tx_paused) 3635 return; 3636 3637 ieee80211_wake_queue(ar->hw, arvif->vdev_id); 3638 } 3639 3640 static void ath10k_mac_vif_handle_tx_pause(struct ath10k_vif *arvif, 3641 enum wmi_tlv_tx_pause_id pause_id, 3642 enum wmi_tlv_tx_pause_action action) 3643 { 3644 struct ath10k *ar = arvif->ar; 3645 3646 lockdep_assert_held(&ar->htt.tx_lock); 3647 3648 switch (action) { 3649 case WMI_TLV_TX_PAUSE_ACTION_STOP: 3650 ath10k_mac_vif_tx_lock(arvif, pause_id); 3651 break; 3652 case WMI_TLV_TX_PAUSE_ACTION_WAKE: 3653 ath10k_mac_vif_tx_unlock(arvif, pause_id); 3654 break; 3655 default: 3656 ath10k_dbg(ar, ATH10K_DBG_BOOT, 3657 "received unknown tx pause action %d on vdev %i, ignoring\n", 3658 action, arvif->vdev_id); 3659 break; 3660 } 3661 } 3662 3663 struct ath10k_mac_tx_pause { 3664 u32 vdev_id; 3665 enum wmi_tlv_tx_pause_id pause_id; 3666 enum wmi_tlv_tx_pause_action action; 3667 }; 3668 3669 static void ath10k_mac_handle_tx_pause_iter(void *data, u8 *mac, 3670 struct ieee80211_vif *vif) 3671 { 3672 struct ath10k_vif *arvif = (void *)vif->drv_priv; 3673 struct ath10k_mac_tx_pause *arg = data; 3674 3675 if (arvif->vdev_id != arg->vdev_id) 3676 return; 3677 3678 ath10k_mac_vif_handle_tx_pause(arvif, arg->pause_id, arg->action); 3679 } 3680 3681 void ath10k_mac_handle_tx_pause_vdev(struct ath10k *ar, u32 vdev_id, 3682 enum wmi_tlv_tx_pause_id pause_id, 3683 enum wmi_tlv_tx_pause_action action) 3684 { 3685 struct ath10k_mac_tx_pause arg = { 3686 .vdev_id = vdev_id, 3687 .pause_id = pause_id, 3688 .action = action, 3689 }; 3690 3691 spin_lock_bh(&ar->htt.tx_lock); 3692 ieee80211_iterate_active_interfaces_atomic(ar->hw, 3693 ATH10K_ITER_RESUME_FLAGS, 3694 ath10k_mac_handle_tx_pause_iter, 3695 &arg); 3696 spin_unlock_bh(&ar->htt.tx_lock); 3697 } 3698 3699 static enum ath10k_hw_txrx_mode 3700 ath10k_mac_tx_h_get_txmode(struct ath10k *ar, 3701 struct ieee80211_vif *vif, 3702 struct ieee80211_sta *sta, 3703 struct sk_buff *skb) 3704 { 3705 const struct ieee80211_hdr *hdr = (void *)skb->data; 3706 const struct ath10k_skb_cb *skb_cb = ATH10K_SKB_CB(skb); 3707 __le16 fc = hdr->frame_control; 3708 3709 if (!vif || vif->type == NL80211_IFTYPE_MONITOR) 3710 return ATH10K_HW_TXRX_RAW; 3711 3712 if (ieee80211_is_mgmt(fc)) 3713 return ATH10K_HW_TXRX_MGMT; 3714 3715 /* Workaround: 3716 * 3717 * NullFunc frames are mostly used to ping if a client or AP are still 3718 * reachable and responsive. This implies tx status reports must be 3719 * accurate - otherwise either mac80211 or userspace (e.g. hostapd) can 3720 * come to a conclusion that the other end disappeared and tear down 3721 * BSS connection or it can never disconnect from BSS/client (which is 3722 * the case). 3723 * 3724 * Firmware with HTT older than 3.0 delivers incorrect tx status for 3725 * NullFunc frames to driver. However there's a HTT Mgmt Tx command 3726 * which seems to deliver correct tx reports for NullFunc frames. The 3727 * downside of using it is it ignores client powersave state so it can 3728 * end up disconnecting sleeping clients in AP mode. It should fix STA 3729 * mode though because AP don't sleep. 3730 */ 3731 if (ar->htt.target_version_major < 3 && 3732 (ieee80211_is_nullfunc(fc) || ieee80211_is_qos_nullfunc(fc)) && 3733 !test_bit(ATH10K_FW_FEATURE_HAS_WMI_MGMT_TX, 3734 ar->running_fw->fw_file.fw_features)) 3735 return ATH10K_HW_TXRX_MGMT; 3736 3737 /* Workaround: 3738 * 3739 * Some wmi-tlv firmwares for qca6174 have broken Tx key selection for 3740 * NativeWifi txmode - it selects AP key instead of peer key. It seems 3741 * to work with Ethernet txmode so use it. 3742 * 3743 * FIXME: Check if raw mode works with TDLS. 3744 */ 3745 if (ieee80211_is_data_present(fc) && sta && sta->tdls) 3746 return ATH10K_HW_TXRX_ETHERNET; 3747 3748 if (test_bit(ATH10K_FLAG_RAW_MODE, &ar->dev_flags) || 3749 skb_cb->flags & ATH10K_SKB_F_RAW_TX) 3750 return ATH10K_HW_TXRX_RAW; 3751 3752 return ATH10K_HW_TXRX_NATIVE_WIFI; 3753 } 3754 3755 static bool ath10k_tx_h_use_hwcrypto(struct ieee80211_vif *vif, 3756 struct sk_buff *skb) 3757 { 3758 const struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 3759 const struct ieee80211_hdr *hdr = (void *)skb->data; 3760 const u32 mask = IEEE80211_TX_INTFL_DONT_ENCRYPT | 3761 IEEE80211_TX_CTL_INJECTED; 3762 3763 if (!ieee80211_has_protected(hdr->frame_control)) 3764 return false; 3765 3766 if ((info->flags & mask) == mask) 3767 return false; 3768 3769 if (vif) 3770 return !((struct ath10k_vif *)vif->drv_priv)->nohwcrypt; 3771 3772 return true; 3773 } 3774 3775 /* HTT Tx uses Native Wifi tx mode which expects 802.11 frames without QoS 3776 * Control in the header. 3777 */ 3778 static void ath10k_tx_h_nwifi(struct ieee80211_hw *hw, struct sk_buff *skb) 3779 { 3780 struct ieee80211_hdr *hdr = (void *)skb->data; 3781 struct ath10k_skb_cb *cb = ATH10K_SKB_CB(skb); 3782 u8 *qos_ctl; 3783 3784 if (!ieee80211_is_data_qos(hdr->frame_control)) 3785 return; 3786 3787 qos_ctl = ieee80211_get_qos_ctl(hdr); 3788 memmove(skb->data + IEEE80211_QOS_CTL_LEN, 3789 skb->data, (void *)qos_ctl - (void *)skb->data); 3790 skb_pull(skb, IEEE80211_QOS_CTL_LEN); 3791 3792 /* Some firmware revisions don't handle sending QoS NullFunc well. 3793 * These frames are mainly used for CQM purposes so it doesn't really 3794 * matter whether QoS NullFunc or NullFunc are sent. 3795 */ 3796 hdr = (void *)skb->data; 3797 if (ieee80211_is_qos_nullfunc(hdr->frame_control)) 3798 cb->flags &= ~ATH10K_SKB_F_QOS; 3799 3800 hdr->frame_control &= ~__cpu_to_le16(IEEE80211_STYPE_QOS_DATA); 3801 } 3802 3803 static void ath10k_tx_h_8023(struct sk_buff *skb) 3804 { 3805 struct ieee80211_hdr *hdr; 3806 struct rfc1042_hdr *rfc1042; 3807 struct ethhdr *eth; 3808 size_t hdrlen; 3809 u8 da[ETH_ALEN]; 3810 u8 sa[ETH_ALEN]; 3811 __be16 type; 3812 3813 hdr = (void *)skb->data; 3814 hdrlen = ieee80211_hdrlen(hdr->frame_control); 3815 rfc1042 = (void *)skb->data + hdrlen; 3816 3817 ether_addr_copy(da, ieee80211_get_DA(hdr)); 3818 ether_addr_copy(sa, ieee80211_get_SA(hdr)); 3819 type = rfc1042->snap_type; 3820 3821 skb_pull(skb, hdrlen + sizeof(*rfc1042)); 3822 skb_push(skb, sizeof(*eth)); 3823 3824 eth = (void *)skb->data; 3825 ether_addr_copy(eth->h_dest, da); 3826 ether_addr_copy(eth->h_source, sa); 3827 eth->h_proto = type; 3828 } 3829 3830 static void ath10k_tx_h_add_p2p_noa_ie(struct ath10k *ar, 3831 struct ieee80211_vif *vif, 3832 struct sk_buff *skb) 3833 { 3834 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 3835 struct ath10k_vif *arvif = (void *)vif->drv_priv; 3836 3837 /* This is case only for P2P_GO */ 3838 if (vif->type != NL80211_IFTYPE_AP || !vif->p2p) 3839 return; 3840 3841 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control))) { 3842 spin_lock_bh(&ar->data_lock); 3843 if (arvif->u.ap.noa_data) 3844 if (!pskb_expand_head(skb, 0, arvif->u.ap.noa_len, 3845 GFP_ATOMIC)) 3846 skb_put_data(skb, arvif->u.ap.noa_data, 3847 arvif->u.ap.noa_len); 3848 spin_unlock_bh(&ar->data_lock); 3849 } 3850 } 3851 3852 static void ath10k_mac_tx_h_fill_cb(struct ath10k *ar, 3853 struct ieee80211_vif *vif, 3854 struct ieee80211_txq *txq, 3855 struct ieee80211_sta *sta, 3856 struct sk_buff *skb, u16 airtime) 3857 { 3858 struct ieee80211_hdr *hdr = (void *)skb->data; 3859 struct ath10k_skb_cb *cb = ATH10K_SKB_CB(skb); 3860 const struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 3861 bool is_data = ieee80211_is_data(hdr->frame_control) || 3862 ieee80211_is_data_qos(hdr->frame_control); 3863 struct ath10k_vif *arvif = (void *)vif->drv_priv; 3864 struct ath10k_sta *arsta; 3865 u8 tid, *qos_ctl; 3866 bool noack = false; 3867 3868 cb->flags = 0; 3869 if (!ath10k_tx_h_use_hwcrypto(vif, skb)) 3870 cb->flags |= ATH10K_SKB_F_NO_HWCRYPT; 3871 3872 if (ieee80211_is_mgmt(hdr->frame_control)) 3873 cb->flags |= ATH10K_SKB_F_MGMT; 3874 3875 if (ieee80211_is_data_qos(hdr->frame_control)) { 3876 cb->flags |= ATH10K_SKB_F_QOS; 3877 qos_ctl = ieee80211_get_qos_ctl(hdr); 3878 tid = (*qos_ctl) & IEEE80211_QOS_CTL_TID_MASK; 3879 3880 if (arvif->noack[tid] == WMI_PEER_TID_CONFIG_NOACK) 3881 noack = true; 3882 3883 if (sta) { 3884 arsta = (struct ath10k_sta *)sta->drv_priv; 3885 3886 if (arsta->noack[tid] == WMI_PEER_TID_CONFIG_NOACK) 3887 noack = true; 3888 3889 if (arsta->noack[tid] == WMI_PEER_TID_CONFIG_ACK) 3890 noack = false; 3891 } 3892 3893 if (noack) 3894 cb->flags |= ATH10K_SKB_F_NOACK_TID; 3895 } 3896 3897 /* Data frames encrypted in software will be posted to firmware 3898 * with tx encap mode set to RAW. Ex: Multicast traffic generated 3899 * for a specific VLAN group will always be encrypted in software. 3900 */ 3901 if (is_data && ieee80211_has_protected(hdr->frame_control) && 3902 !info->control.hw_key) { 3903 cb->flags |= ATH10K_SKB_F_NO_HWCRYPT; 3904 cb->flags |= ATH10K_SKB_F_RAW_TX; 3905 } 3906 3907 cb->vif = vif; 3908 cb->txq = txq; 3909 cb->airtime_est = airtime; 3910 if (sta) { 3911 arsta = (struct ath10k_sta *)sta->drv_priv; 3912 spin_lock_bh(&ar->data_lock); 3913 cb->ucast_cipher = arsta->ucast_cipher; 3914 spin_unlock_bh(&ar->data_lock); 3915 } 3916 } 3917 3918 bool ath10k_mac_tx_frm_has_freq(struct ath10k *ar) 3919 { 3920 /* FIXME: Not really sure since when the behaviour changed. At some 3921 * point new firmware stopped requiring creation of peer entries for 3922 * offchannel tx (and actually creating them causes issues with wmi-htc 3923 * tx credit replenishment and reliability). Assuming it's at least 3.4 3924 * because that's when the `freq` was introduced to TX_FRM HTT command. 3925 */ 3926 return (ar->htt.target_version_major >= 3 && 3927 ar->htt.target_version_minor >= 4 && 3928 ar->running_fw->fw_file.htt_op_version == ATH10K_FW_HTT_OP_VERSION_TLV); 3929 } 3930 3931 static int ath10k_mac_tx_wmi_mgmt(struct ath10k *ar, struct sk_buff *skb) 3932 { 3933 struct sk_buff_head *q = &ar->wmi_mgmt_tx_queue; 3934 3935 if (skb_queue_len_lockless(q) >= ATH10K_MAX_NUM_MGMT_PENDING) { 3936 ath10k_warn(ar, "wmi mgmt tx queue is full\n"); 3937 return -ENOSPC; 3938 } 3939 3940 skb_queue_tail(q, skb); 3941 ieee80211_queue_work(ar->hw, &ar->wmi_mgmt_tx_work); 3942 3943 return 0; 3944 } 3945 3946 static enum ath10k_mac_tx_path 3947 ath10k_mac_tx_h_get_txpath(struct ath10k *ar, 3948 struct sk_buff *skb, 3949 enum ath10k_hw_txrx_mode txmode) 3950 { 3951 switch (txmode) { 3952 case ATH10K_HW_TXRX_RAW: 3953 case ATH10K_HW_TXRX_NATIVE_WIFI: 3954 case ATH10K_HW_TXRX_ETHERNET: 3955 return ATH10K_MAC_TX_HTT; 3956 case ATH10K_HW_TXRX_MGMT: 3957 if (test_bit(ATH10K_FW_FEATURE_HAS_WMI_MGMT_TX, 3958 ar->running_fw->fw_file.fw_features) || 3959 test_bit(WMI_SERVICE_MGMT_TX_WMI, 3960 ar->wmi.svc_map)) 3961 return ATH10K_MAC_TX_WMI_MGMT; 3962 else if (ar->htt.target_version_major >= 3) 3963 return ATH10K_MAC_TX_HTT; 3964 else 3965 return ATH10K_MAC_TX_HTT_MGMT; 3966 } 3967 3968 return ATH10K_MAC_TX_UNKNOWN; 3969 } 3970 3971 static int ath10k_mac_tx_submit(struct ath10k *ar, 3972 enum ath10k_hw_txrx_mode txmode, 3973 enum ath10k_mac_tx_path txpath, 3974 struct sk_buff *skb) 3975 { 3976 struct ath10k_htt *htt = &ar->htt; 3977 int ret = -EINVAL; 3978 3979 switch (txpath) { 3980 case ATH10K_MAC_TX_HTT: 3981 ret = ath10k_htt_tx(htt, txmode, skb); 3982 break; 3983 case ATH10K_MAC_TX_HTT_MGMT: 3984 ret = ath10k_htt_mgmt_tx(htt, skb); 3985 break; 3986 case ATH10K_MAC_TX_WMI_MGMT: 3987 ret = ath10k_mac_tx_wmi_mgmt(ar, skb); 3988 break; 3989 case ATH10K_MAC_TX_UNKNOWN: 3990 WARN_ON_ONCE(1); 3991 ret = -EINVAL; 3992 break; 3993 } 3994 3995 if (ret) { 3996 ath10k_warn(ar, "failed to transmit packet, dropping: %d\n", 3997 ret); 3998 ieee80211_free_txskb(ar->hw, skb); 3999 } 4000 4001 return ret; 4002 } 4003 4004 /* This function consumes the sk_buff regardless of return value as far as 4005 * caller is concerned so no freeing is necessary afterwards. 4006 */ 4007 static int ath10k_mac_tx(struct ath10k *ar, 4008 struct ieee80211_vif *vif, 4009 enum ath10k_hw_txrx_mode txmode, 4010 enum ath10k_mac_tx_path txpath, 4011 struct sk_buff *skb, bool noque_offchan) 4012 { 4013 struct ieee80211_hw *hw = ar->hw; 4014 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 4015 const struct ath10k_skb_cb *skb_cb = ATH10K_SKB_CB(skb); 4016 int ret; 4017 4018 /* We should disable CCK RATE due to P2P */ 4019 if (info->flags & IEEE80211_TX_CTL_NO_CCK_RATE) 4020 ath10k_dbg(ar, ATH10K_DBG_MAC, "IEEE80211_TX_CTL_NO_CCK_RATE\n"); 4021 4022 switch (txmode) { 4023 case ATH10K_HW_TXRX_MGMT: 4024 case ATH10K_HW_TXRX_NATIVE_WIFI: 4025 ath10k_tx_h_nwifi(hw, skb); 4026 ath10k_tx_h_add_p2p_noa_ie(ar, vif, skb); 4027 ath10k_tx_h_seq_no(vif, skb); 4028 break; 4029 case ATH10K_HW_TXRX_ETHERNET: 4030 ath10k_tx_h_8023(skb); 4031 break; 4032 case ATH10K_HW_TXRX_RAW: 4033 if (!test_bit(ATH10K_FLAG_RAW_MODE, &ar->dev_flags) && 4034 !(skb_cb->flags & ATH10K_SKB_F_RAW_TX)) { 4035 WARN_ON_ONCE(1); 4036 ieee80211_free_txskb(hw, skb); 4037 return -ENOTSUPP; 4038 } 4039 } 4040 4041 if (!noque_offchan && info->flags & IEEE80211_TX_CTL_TX_OFFCHAN) { 4042 if (!ath10k_mac_tx_frm_has_freq(ar)) { 4043 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac queued offchannel skb %pK len %d\n", 4044 skb, skb->len); 4045 4046 skb_queue_tail(&ar->offchan_tx_queue, skb); 4047 ieee80211_queue_work(hw, &ar->offchan_tx_work); 4048 return 0; 4049 } 4050 } 4051 4052 ret = ath10k_mac_tx_submit(ar, txmode, txpath, skb); 4053 if (ret) { 4054 ath10k_warn(ar, "failed to submit frame: %d\n", ret); 4055 return ret; 4056 } 4057 4058 return 0; 4059 } 4060 4061 void ath10k_offchan_tx_purge(struct ath10k *ar) 4062 { 4063 struct sk_buff *skb; 4064 4065 for (;;) { 4066 skb = skb_dequeue(&ar->offchan_tx_queue); 4067 if (!skb) 4068 break; 4069 4070 ieee80211_free_txskb(ar->hw, skb); 4071 } 4072 } 4073 4074 void ath10k_offchan_tx_work(struct work_struct *work) 4075 { 4076 struct ath10k *ar = container_of(work, struct ath10k, offchan_tx_work); 4077 struct ath10k_peer *peer; 4078 struct ath10k_vif *arvif; 4079 enum ath10k_hw_txrx_mode txmode; 4080 enum ath10k_mac_tx_path txpath; 4081 struct ieee80211_hdr *hdr; 4082 struct ieee80211_vif *vif; 4083 struct ieee80211_sta *sta; 4084 struct sk_buff *skb; 4085 const u8 *peer_addr; 4086 int vdev_id; 4087 int ret; 4088 unsigned long time_left; 4089 bool tmp_peer_created = false; 4090 4091 /* FW requirement: We must create a peer before FW will send out 4092 * an offchannel frame. Otherwise the frame will be stuck and 4093 * never transmitted. We delete the peer upon tx completion. 4094 * It is unlikely that a peer for offchannel tx will already be 4095 * present. However it may be in some rare cases so account for that. 4096 * Otherwise we might remove a legitimate peer and break stuff. 4097 */ 4098 4099 for (;;) { 4100 skb = skb_dequeue(&ar->offchan_tx_queue); 4101 if (!skb) 4102 break; 4103 4104 mutex_lock(&ar->conf_mutex); 4105 4106 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac offchannel skb %pK len %d\n", 4107 skb, skb->len); 4108 4109 hdr = (struct ieee80211_hdr *)skb->data; 4110 peer_addr = ieee80211_get_DA(hdr); 4111 4112 spin_lock_bh(&ar->data_lock); 4113 vdev_id = ar->scan.vdev_id; 4114 peer = ath10k_peer_find(ar, vdev_id, peer_addr); 4115 spin_unlock_bh(&ar->data_lock); 4116 4117 if (peer) 4118 ath10k_warn(ar, "peer %pM on vdev %d already present\n", 4119 peer_addr, vdev_id); 4120 4121 if (!peer) { 4122 ret = ath10k_peer_create(ar, NULL, NULL, vdev_id, 4123 peer_addr, 4124 WMI_PEER_TYPE_DEFAULT); 4125 if (ret) 4126 ath10k_warn(ar, "failed to create peer %pM on vdev %d: %d\n", 4127 peer_addr, vdev_id, ret); 4128 tmp_peer_created = (ret == 0); 4129 } 4130 4131 spin_lock_bh(&ar->data_lock); 4132 reinit_completion(&ar->offchan_tx_completed); 4133 ar->offchan_tx_skb = skb; 4134 spin_unlock_bh(&ar->data_lock); 4135 4136 /* It's safe to access vif and sta - conf_mutex guarantees that 4137 * sta_state() and remove_interface() are locked exclusively 4138 * out wrt to this offchannel worker. 4139 */ 4140 arvif = ath10k_get_arvif(ar, vdev_id); 4141 if (arvif) { 4142 vif = arvif->vif; 4143 sta = ieee80211_find_sta(vif, peer_addr); 4144 } else { 4145 vif = NULL; 4146 sta = NULL; 4147 } 4148 4149 txmode = ath10k_mac_tx_h_get_txmode(ar, vif, sta, skb); 4150 txpath = ath10k_mac_tx_h_get_txpath(ar, skb, txmode); 4151 4152 ret = ath10k_mac_tx(ar, vif, txmode, txpath, skb, true); 4153 if (ret) { 4154 ath10k_warn(ar, "failed to transmit offchannel frame: %d\n", 4155 ret); 4156 /* not serious */ 4157 } 4158 4159 time_left = 4160 wait_for_completion_timeout(&ar->offchan_tx_completed, 3 * HZ); 4161 if (time_left == 0) 4162 ath10k_warn(ar, "timed out waiting for offchannel skb %pK, len: %d\n", 4163 skb, skb->len); 4164 4165 if (!peer && tmp_peer_created) { 4166 ret = ath10k_peer_delete(ar, vdev_id, peer_addr); 4167 if (ret) 4168 ath10k_warn(ar, "failed to delete peer %pM on vdev %d: %d\n", 4169 peer_addr, vdev_id, ret); 4170 } 4171 4172 mutex_unlock(&ar->conf_mutex); 4173 } 4174 } 4175 4176 void ath10k_mgmt_over_wmi_tx_purge(struct ath10k *ar) 4177 { 4178 struct sk_buff *skb; 4179 4180 for (;;) { 4181 skb = skb_dequeue(&ar->wmi_mgmt_tx_queue); 4182 if (!skb) 4183 break; 4184 4185 ieee80211_free_txskb(ar->hw, skb); 4186 } 4187 } 4188 4189 void ath10k_mgmt_over_wmi_tx_work(struct work_struct *work) 4190 { 4191 struct ath10k *ar = container_of(work, struct ath10k, wmi_mgmt_tx_work); 4192 struct sk_buff *skb; 4193 dma_addr_t paddr; 4194 int ret; 4195 4196 for (;;) { 4197 skb = skb_dequeue(&ar->wmi_mgmt_tx_queue); 4198 if (!skb) 4199 break; 4200 4201 if (test_bit(ATH10K_FW_FEATURE_MGMT_TX_BY_REF, 4202 ar->running_fw->fw_file.fw_features)) { 4203 paddr = dma_map_single(ar->dev, skb->data, 4204 skb->len, DMA_TO_DEVICE); 4205 if (dma_mapping_error(ar->dev, paddr)) { 4206 ieee80211_free_txskb(ar->hw, skb); 4207 continue; 4208 } 4209 ret = ath10k_wmi_mgmt_tx_send(ar, skb, paddr); 4210 if (ret) { 4211 ath10k_warn(ar, "failed to transmit management frame by ref via WMI: %d\n", 4212 ret); 4213 /* remove this msdu from idr tracking */ 4214 ath10k_wmi_cleanup_mgmt_tx_send(ar, skb); 4215 4216 dma_unmap_single(ar->dev, paddr, skb->len, 4217 DMA_TO_DEVICE); 4218 ieee80211_free_txskb(ar->hw, skb); 4219 } 4220 } else { 4221 ret = ath10k_wmi_mgmt_tx(ar, skb); 4222 if (ret) { 4223 ath10k_warn(ar, "failed to transmit management frame via WMI: %d\n", 4224 ret); 4225 ieee80211_free_txskb(ar->hw, skb); 4226 } 4227 } 4228 } 4229 } 4230 4231 static void ath10k_mac_txq_init(struct ieee80211_txq *txq) 4232 { 4233 struct ath10k_txq *artxq; 4234 4235 if (!txq) 4236 return; 4237 4238 artxq = (void *)txq->drv_priv; 4239 INIT_LIST_HEAD(&artxq->list); 4240 } 4241 4242 static void ath10k_mac_txq_unref(struct ath10k *ar, struct ieee80211_txq *txq) 4243 { 4244 struct ath10k_skb_cb *cb; 4245 struct sk_buff *msdu; 4246 int msdu_id; 4247 4248 if (!txq) 4249 return; 4250 4251 spin_lock_bh(&ar->htt.tx_lock); 4252 idr_for_each_entry(&ar->htt.pending_tx, msdu, msdu_id) { 4253 cb = ATH10K_SKB_CB(msdu); 4254 if (cb->txq == txq) 4255 cb->txq = NULL; 4256 } 4257 spin_unlock_bh(&ar->htt.tx_lock); 4258 } 4259 4260 struct ieee80211_txq *ath10k_mac_txq_lookup(struct ath10k *ar, 4261 u16 peer_id, 4262 u8 tid) 4263 { 4264 struct ath10k_peer *peer; 4265 4266 lockdep_assert_held(&ar->data_lock); 4267 4268 peer = ar->peer_map[peer_id]; 4269 if (!peer) 4270 return NULL; 4271 4272 if (peer->removed) 4273 return NULL; 4274 4275 if (peer->sta) 4276 return peer->sta->txq[tid]; 4277 else if (peer->vif) 4278 return peer->vif->txq; 4279 else 4280 return NULL; 4281 } 4282 4283 static bool ath10k_mac_tx_can_push(struct ieee80211_hw *hw, 4284 struct ieee80211_txq *txq) 4285 { 4286 struct ath10k *ar = hw->priv; 4287 struct ath10k_txq *artxq = (void *)txq->drv_priv; 4288 4289 /* No need to get locks */ 4290 if (ar->htt.tx_q_state.mode == HTT_TX_MODE_SWITCH_PUSH) 4291 return true; 4292 4293 if (ar->htt.num_pending_tx < ar->htt.tx_q_state.num_push_allowed) 4294 return true; 4295 4296 if (artxq->num_fw_queued < artxq->num_push_allowed) 4297 return true; 4298 4299 return false; 4300 } 4301 4302 /* Return estimated airtime in microsecond, which is calculated using last 4303 * reported TX rate. This is just a rough estimation because host driver has no 4304 * knowledge of the actual transmit rate, retries or aggregation. If actual 4305 * airtime can be reported by firmware, then delta between estimated and actual 4306 * airtime can be adjusted from deficit. 4307 */ 4308 #define IEEE80211_ATF_OVERHEAD 100 /* IFS + some slot time */ 4309 #define IEEE80211_ATF_OVERHEAD_IFS 16 /* IFS only */ 4310 static u16 ath10k_mac_update_airtime(struct ath10k *ar, 4311 struct ieee80211_txq *txq, 4312 struct sk_buff *skb) 4313 { 4314 struct ath10k_sta *arsta; 4315 u32 pktlen; 4316 u16 airtime = 0; 4317 4318 if (!txq || !txq->sta) 4319 return airtime; 4320 4321 if (test_bit(WMI_SERVICE_REPORT_AIRTIME, ar->wmi.svc_map)) 4322 return airtime; 4323 4324 spin_lock_bh(&ar->data_lock); 4325 arsta = (struct ath10k_sta *)txq->sta->drv_priv; 4326 4327 pktlen = skb->len + 38; /* Assume MAC header 30, SNAP 8 for most case */ 4328 if (arsta->last_tx_bitrate) { 4329 /* airtime in us, last_tx_bitrate in 100kbps */ 4330 airtime = (pktlen * 8 * (1000 / 100)) 4331 / arsta->last_tx_bitrate; 4332 /* overhead for media access time and IFS */ 4333 airtime += IEEE80211_ATF_OVERHEAD_IFS; 4334 } else { 4335 /* This is mostly for throttle excessive BC/MC frames, and the 4336 * airtime/rate doesn't need be exact. Airtime of BC/MC frames 4337 * in 2G get some discount, which helps prevent very low rate 4338 * frames from being blocked for too long. 4339 */ 4340 airtime = (pktlen * 8 * (1000 / 100)) / 60; /* 6M */ 4341 airtime += IEEE80211_ATF_OVERHEAD; 4342 } 4343 spin_unlock_bh(&ar->data_lock); 4344 4345 return airtime; 4346 } 4347 4348 int ath10k_mac_tx_push_txq(struct ieee80211_hw *hw, 4349 struct ieee80211_txq *txq) 4350 { 4351 struct ath10k *ar = hw->priv; 4352 struct ath10k_htt *htt = &ar->htt; 4353 struct ath10k_txq *artxq = (void *)txq->drv_priv; 4354 struct ieee80211_vif *vif = txq->vif; 4355 struct ieee80211_sta *sta = txq->sta; 4356 enum ath10k_hw_txrx_mode txmode; 4357 enum ath10k_mac_tx_path txpath; 4358 struct sk_buff *skb; 4359 struct ieee80211_hdr *hdr; 4360 size_t skb_len; 4361 bool is_mgmt, is_presp; 4362 int ret; 4363 u16 airtime; 4364 4365 spin_lock_bh(&ar->htt.tx_lock); 4366 ret = ath10k_htt_tx_inc_pending(htt); 4367 spin_unlock_bh(&ar->htt.tx_lock); 4368 4369 if (ret) 4370 return ret; 4371 4372 skb = ieee80211_tx_dequeue_ni(hw, txq); 4373 if (!skb) { 4374 spin_lock_bh(&ar->htt.tx_lock); 4375 ath10k_htt_tx_dec_pending(htt); 4376 spin_unlock_bh(&ar->htt.tx_lock); 4377 4378 return -ENOENT; 4379 } 4380 4381 airtime = ath10k_mac_update_airtime(ar, txq, skb); 4382 ath10k_mac_tx_h_fill_cb(ar, vif, txq, sta, skb, airtime); 4383 4384 skb_len = skb->len; 4385 txmode = ath10k_mac_tx_h_get_txmode(ar, vif, sta, skb); 4386 txpath = ath10k_mac_tx_h_get_txpath(ar, skb, txmode); 4387 is_mgmt = (txpath == ATH10K_MAC_TX_HTT_MGMT); 4388 4389 if (is_mgmt) { 4390 hdr = (struct ieee80211_hdr *)skb->data; 4391 is_presp = ieee80211_is_probe_resp(hdr->frame_control); 4392 4393 spin_lock_bh(&ar->htt.tx_lock); 4394 ret = ath10k_htt_tx_mgmt_inc_pending(htt, is_mgmt, is_presp); 4395 4396 if (ret) { 4397 ath10k_htt_tx_dec_pending(htt); 4398 spin_unlock_bh(&ar->htt.tx_lock); 4399 return ret; 4400 } 4401 spin_unlock_bh(&ar->htt.tx_lock); 4402 } 4403 4404 ret = ath10k_mac_tx(ar, vif, txmode, txpath, skb, false); 4405 if (unlikely(ret)) { 4406 ath10k_warn(ar, "failed to push frame: %d\n", ret); 4407 4408 spin_lock_bh(&ar->htt.tx_lock); 4409 ath10k_htt_tx_dec_pending(htt); 4410 if (is_mgmt) 4411 ath10k_htt_tx_mgmt_dec_pending(htt); 4412 spin_unlock_bh(&ar->htt.tx_lock); 4413 4414 return ret; 4415 } 4416 4417 spin_lock_bh(&ar->htt.tx_lock); 4418 artxq->num_fw_queued++; 4419 spin_unlock_bh(&ar->htt.tx_lock); 4420 4421 return skb_len; 4422 } 4423 4424 static int ath10k_mac_schedule_txq(struct ieee80211_hw *hw, u32 ac) 4425 { 4426 struct ieee80211_txq *txq; 4427 int ret = 0; 4428 4429 ieee80211_txq_schedule_start(hw, ac); 4430 while ((txq = ieee80211_next_txq(hw, ac))) { 4431 while (ath10k_mac_tx_can_push(hw, txq)) { 4432 ret = ath10k_mac_tx_push_txq(hw, txq); 4433 if (ret < 0) 4434 break; 4435 } 4436 ieee80211_return_txq(hw, txq, false); 4437 ath10k_htt_tx_txq_update(hw, txq); 4438 if (ret == -EBUSY) 4439 break; 4440 } 4441 ieee80211_txq_schedule_end(hw, ac); 4442 4443 return ret; 4444 } 4445 4446 void ath10k_mac_tx_push_pending(struct ath10k *ar) 4447 { 4448 struct ieee80211_hw *hw = ar->hw; 4449 u32 ac; 4450 4451 if (ar->htt.tx_q_state.mode != HTT_TX_MODE_SWITCH_PUSH) 4452 return; 4453 4454 if (ar->htt.num_pending_tx >= (ar->htt.max_num_pending_tx / 2)) 4455 return; 4456 4457 rcu_read_lock(); 4458 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 4459 if (ath10k_mac_schedule_txq(hw, ac) == -EBUSY) 4460 break; 4461 } 4462 rcu_read_unlock(); 4463 } 4464 EXPORT_SYMBOL(ath10k_mac_tx_push_pending); 4465 4466 /************/ 4467 /* Scanning */ 4468 /************/ 4469 4470 void __ath10k_scan_finish(struct ath10k *ar) 4471 { 4472 lockdep_assert_held(&ar->data_lock); 4473 4474 switch (ar->scan.state) { 4475 case ATH10K_SCAN_IDLE: 4476 break; 4477 case ATH10K_SCAN_RUNNING: 4478 case ATH10K_SCAN_ABORTING: 4479 if (!ar->scan.is_roc) { 4480 struct cfg80211_scan_info info = { 4481 .aborted = (ar->scan.state == 4482 ATH10K_SCAN_ABORTING), 4483 }; 4484 4485 ieee80211_scan_completed(ar->hw, &info); 4486 } else if (ar->scan.roc_notify) { 4487 ieee80211_remain_on_channel_expired(ar->hw); 4488 } 4489 fallthrough; 4490 case ATH10K_SCAN_STARTING: 4491 ar->scan.state = ATH10K_SCAN_IDLE; 4492 ar->scan_channel = NULL; 4493 ar->scan.roc_freq = 0; 4494 ath10k_offchan_tx_purge(ar); 4495 cancel_delayed_work(&ar->scan.timeout); 4496 complete(&ar->scan.completed); 4497 break; 4498 } 4499 } 4500 4501 void ath10k_scan_finish(struct ath10k *ar) 4502 { 4503 spin_lock_bh(&ar->data_lock); 4504 __ath10k_scan_finish(ar); 4505 spin_unlock_bh(&ar->data_lock); 4506 } 4507 4508 static int ath10k_scan_stop(struct ath10k *ar) 4509 { 4510 struct wmi_stop_scan_arg arg = { 4511 .req_id = 1, /* FIXME */ 4512 .req_type = WMI_SCAN_STOP_ONE, 4513 .u.scan_id = ATH10K_SCAN_ID, 4514 }; 4515 int ret; 4516 4517 lockdep_assert_held(&ar->conf_mutex); 4518 4519 ret = ath10k_wmi_stop_scan(ar, &arg); 4520 if (ret) { 4521 ath10k_warn(ar, "failed to stop wmi scan: %d\n", ret); 4522 goto out; 4523 } 4524 4525 ret = wait_for_completion_timeout(&ar->scan.completed, 3 * HZ); 4526 if (ret == 0) { 4527 ath10k_warn(ar, "failed to receive scan abortion completion: timed out\n"); 4528 ret = -ETIMEDOUT; 4529 } else if (ret > 0) { 4530 ret = 0; 4531 } 4532 4533 out: 4534 /* Scan state should be updated upon scan completion but in case 4535 * firmware fails to deliver the event (for whatever reason) it is 4536 * desired to clean up scan state anyway. Firmware may have just 4537 * dropped the scan completion event delivery due to transport pipe 4538 * being overflown with data and/or it can recover on its own before 4539 * next scan request is submitted. 4540 */ 4541 spin_lock_bh(&ar->data_lock); 4542 if (ar->scan.state != ATH10K_SCAN_IDLE) 4543 __ath10k_scan_finish(ar); 4544 spin_unlock_bh(&ar->data_lock); 4545 4546 return ret; 4547 } 4548 4549 static void ath10k_scan_abort(struct ath10k *ar) 4550 { 4551 int ret; 4552 4553 lockdep_assert_held(&ar->conf_mutex); 4554 4555 spin_lock_bh(&ar->data_lock); 4556 4557 switch (ar->scan.state) { 4558 case ATH10K_SCAN_IDLE: 4559 /* This can happen if timeout worker kicked in and called 4560 * abortion while scan completion was being processed. 4561 */ 4562 break; 4563 case ATH10K_SCAN_STARTING: 4564 case ATH10K_SCAN_ABORTING: 4565 ath10k_warn(ar, "refusing scan abortion due to invalid scan state: %s (%d)\n", 4566 ath10k_scan_state_str(ar->scan.state), 4567 ar->scan.state); 4568 break; 4569 case ATH10K_SCAN_RUNNING: 4570 ar->scan.state = ATH10K_SCAN_ABORTING; 4571 spin_unlock_bh(&ar->data_lock); 4572 4573 ret = ath10k_scan_stop(ar); 4574 if (ret) 4575 ath10k_warn(ar, "failed to abort scan: %d\n", ret); 4576 4577 spin_lock_bh(&ar->data_lock); 4578 break; 4579 } 4580 4581 spin_unlock_bh(&ar->data_lock); 4582 } 4583 4584 void ath10k_scan_timeout_work(struct work_struct *work) 4585 { 4586 struct ath10k *ar = container_of(work, struct ath10k, 4587 scan.timeout.work); 4588 4589 mutex_lock(&ar->conf_mutex); 4590 ath10k_scan_abort(ar); 4591 mutex_unlock(&ar->conf_mutex); 4592 } 4593 4594 static int ath10k_start_scan(struct ath10k *ar, 4595 const struct wmi_start_scan_arg *arg) 4596 { 4597 int ret; 4598 4599 lockdep_assert_held(&ar->conf_mutex); 4600 4601 ret = ath10k_wmi_start_scan(ar, arg); 4602 if (ret) 4603 return ret; 4604 4605 ret = wait_for_completion_timeout(&ar->scan.started, 1 * HZ); 4606 if (ret == 0) { 4607 ret = ath10k_scan_stop(ar); 4608 if (ret) 4609 ath10k_warn(ar, "failed to stop scan: %d\n", ret); 4610 4611 return -ETIMEDOUT; 4612 } 4613 4614 /* If we failed to start the scan, return error code at 4615 * this point. This is probably due to some issue in the 4616 * firmware, but no need to wedge the driver due to that... 4617 */ 4618 spin_lock_bh(&ar->data_lock); 4619 if (ar->scan.state == ATH10K_SCAN_IDLE) { 4620 spin_unlock_bh(&ar->data_lock); 4621 return -EINVAL; 4622 } 4623 spin_unlock_bh(&ar->data_lock); 4624 4625 return 0; 4626 } 4627 4628 /**********************/ 4629 /* mac80211 callbacks */ 4630 /**********************/ 4631 4632 static void ath10k_mac_op_tx(struct ieee80211_hw *hw, 4633 struct ieee80211_tx_control *control, 4634 struct sk_buff *skb) 4635 { 4636 struct ath10k *ar = hw->priv; 4637 struct ath10k_htt *htt = &ar->htt; 4638 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 4639 struct ieee80211_vif *vif = info->control.vif; 4640 struct ieee80211_sta *sta = control->sta; 4641 struct ieee80211_txq *txq = NULL; 4642 struct ieee80211_hdr *hdr = (void *)skb->data; 4643 enum ath10k_hw_txrx_mode txmode; 4644 enum ath10k_mac_tx_path txpath; 4645 bool is_htt; 4646 bool is_mgmt; 4647 bool is_presp; 4648 int ret; 4649 u16 airtime; 4650 4651 airtime = ath10k_mac_update_airtime(ar, txq, skb); 4652 ath10k_mac_tx_h_fill_cb(ar, vif, txq, sta, skb, airtime); 4653 4654 txmode = ath10k_mac_tx_h_get_txmode(ar, vif, sta, skb); 4655 txpath = ath10k_mac_tx_h_get_txpath(ar, skb, txmode); 4656 is_htt = (txpath == ATH10K_MAC_TX_HTT || 4657 txpath == ATH10K_MAC_TX_HTT_MGMT); 4658 is_mgmt = (txpath == ATH10K_MAC_TX_HTT_MGMT); 4659 4660 if (is_htt) { 4661 spin_lock_bh(&ar->htt.tx_lock); 4662 is_presp = ieee80211_is_probe_resp(hdr->frame_control); 4663 4664 ret = ath10k_htt_tx_inc_pending(htt); 4665 if (ret) { 4666 ath10k_warn(ar, "failed to increase tx pending count: %d, dropping\n", 4667 ret); 4668 spin_unlock_bh(&ar->htt.tx_lock); 4669 ieee80211_free_txskb(ar->hw, skb); 4670 return; 4671 } 4672 4673 ret = ath10k_htt_tx_mgmt_inc_pending(htt, is_mgmt, is_presp); 4674 if (ret) { 4675 ath10k_dbg(ar, ATH10K_DBG_MAC, "failed to increase tx mgmt pending count: %d, dropping\n", 4676 ret); 4677 ath10k_htt_tx_dec_pending(htt); 4678 spin_unlock_bh(&ar->htt.tx_lock); 4679 ieee80211_free_txskb(ar->hw, skb); 4680 return; 4681 } 4682 spin_unlock_bh(&ar->htt.tx_lock); 4683 } 4684 4685 ret = ath10k_mac_tx(ar, vif, txmode, txpath, skb, false); 4686 if (ret) { 4687 ath10k_warn(ar, "failed to transmit frame: %d\n", ret); 4688 if (is_htt) { 4689 spin_lock_bh(&ar->htt.tx_lock); 4690 ath10k_htt_tx_dec_pending(htt); 4691 if (is_mgmt) 4692 ath10k_htt_tx_mgmt_dec_pending(htt); 4693 spin_unlock_bh(&ar->htt.tx_lock); 4694 } 4695 return; 4696 } 4697 } 4698 4699 static void ath10k_mac_op_wake_tx_queue(struct ieee80211_hw *hw, 4700 struct ieee80211_txq *txq) 4701 { 4702 struct ath10k *ar = hw->priv; 4703 int ret; 4704 u8 ac; 4705 4706 ath10k_htt_tx_txq_update(hw, txq); 4707 if (ar->htt.tx_q_state.mode != HTT_TX_MODE_SWITCH_PUSH) 4708 return; 4709 4710 ac = txq->ac; 4711 ieee80211_txq_schedule_start(hw, ac); 4712 txq = ieee80211_next_txq(hw, ac); 4713 if (!txq) 4714 goto out; 4715 4716 while (ath10k_mac_tx_can_push(hw, txq)) { 4717 ret = ath10k_mac_tx_push_txq(hw, txq); 4718 if (ret < 0) 4719 break; 4720 } 4721 ieee80211_return_txq(hw, txq, false); 4722 ath10k_htt_tx_txq_update(hw, txq); 4723 out: 4724 ieee80211_txq_schedule_end(hw, ac); 4725 } 4726 4727 /* Must not be called with conf_mutex held as workers can use that also. */ 4728 void ath10k_drain_tx(struct ath10k *ar) 4729 { 4730 /* make sure rcu-protected mac80211 tx path itself is drained */ 4731 synchronize_net(); 4732 4733 ath10k_offchan_tx_purge(ar); 4734 ath10k_mgmt_over_wmi_tx_purge(ar); 4735 4736 cancel_work_sync(&ar->offchan_tx_work); 4737 cancel_work_sync(&ar->wmi_mgmt_tx_work); 4738 } 4739 4740 void ath10k_halt(struct ath10k *ar) 4741 { 4742 struct ath10k_vif *arvif; 4743 4744 lockdep_assert_held(&ar->conf_mutex); 4745 4746 clear_bit(ATH10K_CAC_RUNNING, &ar->dev_flags); 4747 ar->filter_flags = 0; 4748 ar->monitor = false; 4749 ar->monitor_arvif = NULL; 4750 4751 if (ar->monitor_started) 4752 ath10k_monitor_stop(ar); 4753 4754 ar->monitor_started = false; 4755 ar->tx_paused = 0; 4756 4757 ath10k_scan_finish(ar); 4758 ath10k_peer_cleanup_all(ar); 4759 ath10k_stop_radar_confirmation(ar); 4760 ath10k_core_stop(ar); 4761 ath10k_hif_power_down(ar); 4762 4763 spin_lock_bh(&ar->data_lock); 4764 list_for_each_entry(arvif, &ar->arvifs, list) 4765 ath10k_mac_vif_beacon_cleanup(arvif); 4766 spin_unlock_bh(&ar->data_lock); 4767 } 4768 4769 static int ath10k_get_antenna(struct ieee80211_hw *hw, u32 *tx_ant, u32 *rx_ant) 4770 { 4771 struct ath10k *ar = hw->priv; 4772 4773 mutex_lock(&ar->conf_mutex); 4774 4775 *tx_ant = ar->cfg_tx_chainmask; 4776 *rx_ant = ar->cfg_rx_chainmask; 4777 4778 mutex_unlock(&ar->conf_mutex); 4779 4780 return 0; 4781 } 4782 4783 static bool ath10k_check_chain_mask(struct ath10k *ar, u32 cm, const char *dbg) 4784 { 4785 /* It is not clear that allowing gaps in chainmask 4786 * is helpful. Probably it will not do what user 4787 * is hoping for, so warn in that case. 4788 */ 4789 if (cm == 15 || cm == 7 || cm == 3 || cm == 1 || cm == 0) 4790 return true; 4791 4792 ath10k_warn(ar, "mac %s antenna chainmask is invalid: 0x%x. Suggested values: 15, 7, 3, 1 or 0.\n", 4793 dbg, cm); 4794 return false; 4795 } 4796 4797 static int ath10k_mac_get_vht_cap_bf_sts(struct ath10k *ar) 4798 { 4799 int nsts = ar->vht_cap_info; 4800 4801 nsts &= IEEE80211_VHT_CAP_BEAMFORMEE_STS_MASK; 4802 nsts >>= IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT; 4803 4804 /* If firmware does not deliver to host number of space-time 4805 * streams supported, assume it support up to 4 BF STS and return 4806 * the value for VHT CAP: nsts-1) 4807 */ 4808 if (nsts == 0) 4809 return 3; 4810 4811 return nsts; 4812 } 4813 4814 static int ath10k_mac_get_vht_cap_bf_sound_dim(struct ath10k *ar) 4815 { 4816 int sound_dim = ar->vht_cap_info; 4817 4818 sound_dim &= IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK; 4819 sound_dim >>= IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_SHIFT; 4820 4821 /* If the sounding dimension is not advertised by the firmware, 4822 * let's use a default value of 1 4823 */ 4824 if (sound_dim == 0) 4825 return 1; 4826 4827 return sound_dim; 4828 } 4829 4830 static struct ieee80211_sta_vht_cap ath10k_create_vht_cap(struct ath10k *ar) 4831 { 4832 struct ieee80211_sta_vht_cap vht_cap = {0}; 4833 struct ath10k_hw_params *hw = &ar->hw_params; 4834 u16 mcs_map; 4835 u32 val; 4836 int i; 4837 4838 vht_cap.vht_supported = 1; 4839 vht_cap.cap = ar->vht_cap_info; 4840 4841 if (ar->vht_cap_info & (IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE | 4842 IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE)) { 4843 val = ath10k_mac_get_vht_cap_bf_sts(ar); 4844 val <<= IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT; 4845 val &= IEEE80211_VHT_CAP_BEAMFORMEE_STS_MASK; 4846 4847 vht_cap.cap |= val; 4848 } 4849 4850 if (ar->vht_cap_info & (IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE | 4851 IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE)) { 4852 val = ath10k_mac_get_vht_cap_bf_sound_dim(ar); 4853 val <<= IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_SHIFT; 4854 val &= IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK; 4855 4856 vht_cap.cap |= val; 4857 } 4858 4859 mcs_map = 0; 4860 for (i = 0; i < 8; i++) { 4861 if ((i < ar->num_rf_chains) && (ar->cfg_tx_chainmask & BIT(i))) 4862 mcs_map |= IEEE80211_VHT_MCS_SUPPORT_0_9 << (i * 2); 4863 else 4864 mcs_map |= IEEE80211_VHT_MCS_NOT_SUPPORTED << (i * 2); 4865 } 4866 4867 if (ar->cfg_tx_chainmask <= 1) 4868 vht_cap.cap &= ~IEEE80211_VHT_CAP_TXSTBC; 4869 4870 vht_cap.vht_mcs.rx_mcs_map = cpu_to_le16(mcs_map); 4871 vht_cap.vht_mcs.tx_mcs_map = cpu_to_le16(mcs_map); 4872 4873 /* If we are supporting 160Mhz or 80+80, then the NIC may be able to do 4874 * a restricted NSS for 160 or 80+80 vs what it can do for 80Mhz. Give 4875 * user-space a clue if that is the case. 4876 */ 4877 if ((vht_cap.cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK) && 4878 (hw->vht160_mcs_rx_highest != 0 || 4879 hw->vht160_mcs_tx_highest != 0)) { 4880 vht_cap.vht_mcs.rx_highest = cpu_to_le16(hw->vht160_mcs_rx_highest); 4881 vht_cap.vht_mcs.tx_highest = cpu_to_le16(hw->vht160_mcs_tx_highest); 4882 } 4883 4884 return vht_cap; 4885 } 4886 4887 static struct ieee80211_sta_ht_cap ath10k_get_ht_cap(struct ath10k *ar) 4888 { 4889 int i; 4890 struct ieee80211_sta_ht_cap ht_cap = {0}; 4891 4892 if (!(ar->ht_cap_info & WMI_HT_CAP_ENABLED)) 4893 return ht_cap; 4894 4895 ht_cap.ht_supported = 1; 4896 ht_cap.ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K; 4897 ht_cap.ampdu_density = IEEE80211_HT_MPDU_DENSITY_8; 4898 ht_cap.cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40; 4899 ht_cap.cap |= IEEE80211_HT_CAP_DSSSCCK40; 4900 ht_cap.cap |= 4901 WLAN_HT_CAP_SM_PS_DISABLED << IEEE80211_HT_CAP_SM_PS_SHIFT; 4902 4903 if (ar->ht_cap_info & WMI_HT_CAP_HT20_SGI) 4904 ht_cap.cap |= IEEE80211_HT_CAP_SGI_20; 4905 4906 if (ar->ht_cap_info & WMI_HT_CAP_HT40_SGI) 4907 ht_cap.cap |= IEEE80211_HT_CAP_SGI_40; 4908 4909 if (ar->ht_cap_info & WMI_HT_CAP_DYNAMIC_SMPS) { 4910 u32 smps; 4911 4912 smps = WLAN_HT_CAP_SM_PS_DYNAMIC; 4913 smps <<= IEEE80211_HT_CAP_SM_PS_SHIFT; 4914 4915 ht_cap.cap |= smps; 4916 } 4917 4918 if (ar->ht_cap_info & WMI_HT_CAP_TX_STBC && (ar->cfg_tx_chainmask > 1)) 4919 ht_cap.cap |= IEEE80211_HT_CAP_TX_STBC; 4920 4921 if (ar->ht_cap_info & WMI_HT_CAP_RX_STBC) { 4922 u32 stbc; 4923 4924 stbc = ar->ht_cap_info; 4925 stbc &= WMI_HT_CAP_RX_STBC; 4926 stbc >>= WMI_HT_CAP_RX_STBC_MASK_SHIFT; 4927 stbc <<= IEEE80211_HT_CAP_RX_STBC_SHIFT; 4928 stbc &= IEEE80211_HT_CAP_RX_STBC; 4929 4930 ht_cap.cap |= stbc; 4931 } 4932 4933 if (ar->ht_cap_info & WMI_HT_CAP_LDPC || (ar->ht_cap_info & 4934 WMI_HT_CAP_RX_LDPC && (ar->ht_cap_info & WMI_HT_CAP_TX_LDPC))) 4935 ht_cap.cap |= IEEE80211_HT_CAP_LDPC_CODING; 4936 4937 if (ar->ht_cap_info & WMI_HT_CAP_L_SIG_TXOP_PROT) 4938 ht_cap.cap |= IEEE80211_HT_CAP_LSIG_TXOP_PROT; 4939 4940 /* max AMSDU is implicitly taken from vht_cap_info */ 4941 if (ar->vht_cap_info & WMI_VHT_CAP_MAX_MPDU_LEN_MASK) 4942 ht_cap.cap |= IEEE80211_HT_CAP_MAX_AMSDU; 4943 4944 for (i = 0; i < ar->num_rf_chains; i++) { 4945 if (ar->cfg_rx_chainmask & BIT(i)) 4946 ht_cap.mcs.rx_mask[i] = 0xFF; 4947 } 4948 4949 ht_cap.mcs.tx_params |= IEEE80211_HT_MCS_TX_DEFINED; 4950 4951 return ht_cap; 4952 } 4953 4954 static void ath10k_mac_setup_ht_vht_cap(struct ath10k *ar) 4955 { 4956 struct ieee80211_supported_band *band; 4957 struct ieee80211_sta_vht_cap vht_cap; 4958 struct ieee80211_sta_ht_cap ht_cap; 4959 4960 ht_cap = ath10k_get_ht_cap(ar); 4961 vht_cap = ath10k_create_vht_cap(ar); 4962 4963 if (ar->phy_capability & WHAL_WLAN_11G_CAPABILITY) { 4964 band = &ar->mac.sbands[NL80211_BAND_2GHZ]; 4965 band->ht_cap = ht_cap; 4966 } 4967 if (ar->phy_capability & WHAL_WLAN_11A_CAPABILITY) { 4968 band = &ar->mac.sbands[NL80211_BAND_5GHZ]; 4969 band->ht_cap = ht_cap; 4970 band->vht_cap = vht_cap; 4971 } 4972 } 4973 4974 static int __ath10k_set_antenna(struct ath10k *ar, u32 tx_ant, u32 rx_ant) 4975 { 4976 int ret; 4977 bool is_valid_tx_chain_mask, is_valid_rx_chain_mask; 4978 4979 lockdep_assert_held(&ar->conf_mutex); 4980 4981 is_valid_tx_chain_mask = ath10k_check_chain_mask(ar, tx_ant, "tx"); 4982 is_valid_rx_chain_mask = ath10k_check_chain_mask(ar, rx_ant, "rx"); 4983 4984 if (!is_valid_tx_chain_mask || !is_valid_rx_chain_mask) 4985 return -EINVAL; 4986 4987 ar->cfg_tx_chainmask = tx_ant; 4988 ar->cfg_rx_chainmask = rx_ant; 4989 4990 if ((ar->state != ATH10K_STATE_ON) && 4991 (ar->state != ATH10K_STATE_RESTARTED)) 4992 return 0; 4993 4994 ret = ath10k_wmi_pdev_set_param(ar, ar->wmi.pdev_param->tx_chain_mask, 4995 tx_ant); 4996 if (ret) { 4997 ath10k_warn(ar, "failed to set tx-chainmask: %d, req 0x%x\n", 4998 ret, tx_ant); 4999 return ret; 5000 } 5001 5002 ret = ath10k_wmi_pdev_set_param(ar, ar->wmi.pdev_param->rx_chain_mask, 5003 rx_ant); 5004 if (ret) { 5005 ath10k_warn(ar, "failed to set rx-chainmask: %d, req 0x%x\n", 5006 ret, rx_ant); 5007 return ret; 5008 } 5009 5010 /* Reload HT/VHT capability */ 5011 ath10k_mac_setup_ht_vht_cap(ar); 5012 5013 return 0; 5014 } 5015 5016 static int ath10k_set_antenna(struct ieee80211_hw *hw, u32 tx_ant, u32 rx_ant) 5017 { 5018 struct ath10k *ar = hw->priv; 5019 int ret; 5020 5021 mutex_lock(&ar->conf_mutex); 5022 ret = __ath10k_set_antenna(ar, tx_ant, rx_ant); 5023 mutex_unlock(&ar->conf_mutex); 5024 return ret; 5025 } 5026 5027 static int __ath10k_fetch_bb_timing_dt(struct ath10k *ar, 5028 struct wmi_bb_timing_cfg_arg *bb_timing) 5029 { 5030 struct device_node *node; 5031 const char *fem_name; 5032 int ret; 5033 5034 node = ar->dev->of_node; 5035 if (!node) 5036 return -ENOENT; 5037 5038 ret = of_property_read_string_index(node, "ext-fem-name", 0, &fem_name); 5039 if (ret) 5040 return -ENOENT; 5041 5042 /* 5043 * If external Front End module used in hardware, then default base band timing 5044 * parameter cannot be used since they were fine tuned for reference hardware, 5045 * so choosing different value suitable for that external FEM. 5046 */ 5047 if (!strcmp("microsemi-lx5586", fem_name)) { 5048 bb_timing->bb_tx_timing = 0x00; 5049 bb_timing->bb_xpa_timing = 0x0101; 5050 } else { 5051 return -ENOENT; 5052 } 5053 5054 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot bb_tx_timing 0x%x bb_xpa_timing 0x%x\n", 5055 bb_timing->bb_tx_timing, bb_timing->bb_xpa_timing); 5056 return 0; 5057 } 5058 5059 static int ath10k_mac_rfkill_config(struct ath10k *ar) 5060 { 5061 u32 param; 5062 int ret; 5063 5064 if (ar->hw_values->rfkill_pin == 0) { 5065 ath10k_warn(ar, "ath10k does not support hardware rfkill with this device\n"); 5066 return -EOPNOTSUPP; 5067 } 5068 5069 ath10k_dbg(ar, ATH10K_DBG_MAC, 5070 "mac rfkill_pin %d rfkill_cfg %d rfkill_on_level %d", 5071 ar->hw_values->rfkill_pin, ar->hw_values->rfkill_cfg, 5072 ar->hw_values->rfkill_on_level); 5073 5074 param = FIELD_PREP(WMI_TLV_RFKILL_CFG_RADIO_LEVEL, 5075 ar->hw_values->rfkill_on_level) | 5076 FIELD_PREP(WMI_TLV_RFKILL_CFG_GPIO_PIN_NUM, 5077 ar->hw_values->rfkill_pin) | 5078 FIELD_PREP(WMI_TLV_RFKILL_CFG_PIN_AS_GPIO, 5079 ar->hw_values->rfkill_cfg); 5080 5081 ret = ath10k_wmi_pdev_set_param(ar, 5082 ar->wmi.pdev_param->rfkill_config, 5083 param); 5084 if (ret) { 5085 ath10k_warn(ar, 5086 "failed to set rfkill config 0x%x: %d\n", 5087 param, ret); 5088 return ret; 5089 } 5090 return 0; 5091 } 5092 5093 int ath10k_mac_rfkill_enable_radio(struct ath10k *ar, bool enable) 5094 { 5095 enum wmi_tlv_rfkill_enable_radio param; 5096 int ret; 5097 5098 if (enable) 5099 param = WMI_TLV_RFKILL_ENABLE_RADIO_ON; 5100 else 5101 param = WMI_TLV_RFKILL_ENABLE_RADIO_OFF; 5102 5103 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac rfkill enable %d", param); 5104 5105 ret = ath10k_wmi_pdev_set_param(ar, ar->wmi.pdev_param->rfkill_enable, 5106 param); 5107 if (ret) { 5108 ath10k_warn(ar, "failed to set rfkill enable param %d: %d\n", 5109 param, ret); 5110 return ret; 5111 } 5112 5113 return 0; 5114 } 5115 5116 static int ath10k_start(struct ieee80211_hw *hw) 5117 { 5118 struct ath10k *ar = hw->priv; 5119 u32 param; 5120 int ret = 0; 5121 struct wmi_bb_timing_cfg_arg bb_timing = {0}; 5122 5123 /* 5124 * This makes sense only when restarting hw. It is harmless to call 5125 * unconditionally. This is necessary to make sure no HTT/WMI tx 5126 * commands will be submitted while restarting. 5127 */ 5128 ath10k_drain_tx(ar); 5129 5130 mutex_lock(&ar->conf_mutex); 5131 5132 switch (ar->state) { 5133 case ATH10K_STATE_OFF: 5134 ar->state = ATH10K_STATE_ON; 5135 break; 5136 case ATH10K_STATE_RESTARTING: 5137 ar->state = ATH10K_STATE_RESTARTED; 5138 break; 5139 case ATH10K_STATE_ON: 5140 case ATH10K_STATE_RESTARTED: 5141 case ATH10K_STATE_WEDGED: 5142 WARN_ON(1); 5143 ret = -EINVAL; 5144 goto err; 5145 case ATH10K_STATE_UTF: 5146 ret = -EBUSY; 5147 goto err; 5148 } 5149 5150 spin_lock_bh(&ar->data_lock); 5151 5152 if (ar->hw_rfkill_on) { 5153 ar->hw_rfkill_on = false; 5154 spin_unlock_bh(&ar->data_lock); 5155 goto err; 5156 } 5157 5158 spin_unlock_bh(&ar->data_lock); 5159 5160 ret = ath10k_hif_power_up(ar, ATH10K_FIRMWARE_MODE_NORMAL); 5161 if (ret) { 5162 ath10k_err(ar, "Could not init hif: %d\n", ret); 5163 goto err_off; 5164 } 5165 5166 ret = ath10k_core_start(ar, ATH10K_FIRMWARE_MODE_NORMAL, 5167 &ar->normal_mode_fw); 5168 if (ret) { 5169 ath10k_err(ar, "Could not init core: %d\n", ret); 5170 goto err_power_down; 5171 } 5172 5173 if (ar->sys_cap_info & WMI_TLV_SYS_CAP_INFO_RFKILL) { 5174 ret = ath10k_mac_rfkill_config(ar); 5175 if (ret && ret != -EOPNOTSUPP) { 5176 ath10k_warn(ar, "failed to configure rfkill: %d", ret); 5177 goto err_core_stop; 5178 } 5179 } 5180 5181 param = ar->wmi.pdev_param->pmf_qos; 5182 ret = ath10k_wmi_pdev_set_param(ar, param, 1); 5183 if (ret) { 5184 ath10k_warn(ar, "failed to enable PMF QOS: %d\n", ret); 5185 goto err_core_stop; 5186 } 5187 5188 param = ar->wmi.pdev_param->dynamic_bw; 5189 ret = ath10k_wmi_pdev_set_param(ar, param, 1); 5190 if (ret) { 5191 ath10k_warn(ar, "failed to enable dynamic BW: %d\n", ret); 5192 goto err_core_stop; 5193 } 5194 5195 if (test_bit(WMI_SERVICE_SPOOF_MAC_SUPPORT, ar->wmi.svc_map)) { 5196 ret = ath10k_wmi_scan_prob_req_oui(ar, ar->mac_addr); 5197 if (ret) { 5198 ath10k_err(ar, "failed to set prob req oui: %i\n", ret); 5199 goto err_core_stop; 5200 } 5201 } 5202 5203 if (test_bit(WMI_SERVICE_ADAPTIVE_OCS, ar->wmi.svc_map)) { 5204 ret = ath10k_wmi_adaptive_qcs(ar, true); 5205 if (ret) { 5206 ath10k_warn(ar, "failed to enable adaptive qcs: %d\n", 5207 ret); 5208 goto err_core_stop; 5209 } 5210 } 5211 5212 if (test_bit(WMI_SERVICE_BURST, ar->wmi.svc_map)) { 5213 param = ar->wmi.pdev_param->burst_enable; 5214 ret = ath10k_wmi_pdev_set_param(ar, param, 0); 5215 if (ret) { 5216 ath10k_warn(ar, "failed to disable burst: %d\n", ret); 5217 goto err_core_stop; 5218 } 5219 } 5220 5221 param = ar->wmi.pdev_param->idle_ps_config; 5222 ret = ath10k_wmi_pdev_set_param(ar, param, 1); 5223 if (ret && ret != -EOPNOTSUPP) { 5224 ath10k_warn(ar, "failed to enable idle_ps_config: %d\n", ret); 5225 goto err_core_stop; 5226 } 5227 5228 __ath10k_set_antenna(ar, ar->cfg_tx_chainmask, ar->cfg_rx_chainmask); 5229 5230 /* 5231 * By default FW set ARP frames ac to voice (6). In that case ARP 5232 * exchange is not working properly for UAPSD enabled AP. ARP requests 5233 * which arrives with access category 0 are processed by network stack 5234 * and send back with access category 0, but FW changes access category 5235 * to 6. Set ARP frames access category to best effort (0) solves 5236 * this problem. 5237 */ 5238 5239 param = ar->wmi.pdev_param->arp_ac_override; 5240 ret = ath10k_wmi_pdev_set_param(ar, param, 0); 5241 if (ret) { 5242 ath10k_warn(ar, "failed to set arp ac override parameter: %d\n", 5243 ret); 5244 goto err_core_stop; 5245 } 5246 5247 if (test_bit(ATH10K_FW_FEATURE_SUPPORTS_ADAPTIVE_CCA, 5248 ar->running_fw->fw_file.fw_features)) { 5249 ret = ath10k_wmi_pdev_enable_adaptive_cca(ar, 1, 5250 WMI_CCA_DETECT_LEVEL_AUTO, 5251 WMI_CCA_DETECT_MARGIN_AUTO); 5252 if (ret) { 5253 ath10k_warn(ar, "failed to enable adaptive cca: %d\n", 5254 ret); 5255 goto err_core_stop; 5256 } 5257 } 5258 5259 param = ar->wmi.pdev_param->ani_enable; 5260 ret = ath10k_wmi_pdev_set_param(ar, param, 1); 5261 if (ret) { 5262 ath10k_warn(ar, "failed to enable ani by default: %d\n", 5263 ret); 5264 goto err_core_stop; 5265 } 5266 5267 ar->ani_enabled = true; 5268 5269 if (ath10k_peer_stats_enabled(ar)) { 5270 param = ar->wmi.pdev_param->peer_stats_update_period; 5271 ret = ath10k_wmi_pdev_set_param(ar, param, 5272 PEER_DEFAULT_STATS_UPDATE_PERIOD); 5273 if (ret) { 5274 ath10k_warn(ar, 5275 "failed to set peer stats period : %d\n", 5276 ret); 5277 goto err_core_stop; 5278 } 5279 } 5280 5281 param = ar->wmi.pdev_param->enable_btcoex; 5282 if (test_bit(WMI_SERVICE_COEX_GPIO, ar->wmi.svc_map) && 5283 test_bit(ATH10K_FW_FEATURE_BTCOEX_PARAM, 5284 ar->running_fw->fw_file.fw_features) && 5285 ar->coex_support) { 5286 ret = ath10k_wmi_pdev_set_param(ar, param, 0); 5287 if (ret) { 5288 ath10k_warn(ar, 5289 "failed to set btcoex param: %d\n", ret); 5290 goto err_core_stop; 5291 } 5292 clear_bit(ATH10K_FLAG_BTCOEX, &ar->dev_flags); 5293 } 5294 5295 if (test_bit(WMI_SERVICE_BB_TIMING_CONFIG_SUPPORT, ar->wmi.svc_map)) { 5296 ret = __ath10k_fetch_bb_timing_dt(ar, &bb_timing); 5297 if (!ret) { 5298 ret = ath10k_wmi_pdev_bb_timing(ar, &bb_timing); 5299 if (ret) { 5300 ath10k_warn(ar, 5301 "failed to set bb timings: %d\n", 5302 ret); 5303 goto err_core_stop; 5304 } 5305 } 5306 } 5307 5308 ar->num_started_vdevs = 0; 5309 ath10k_regd_update(ar); 5310 5311 ath10k_spectral_start(ar); 5312 ath10k_thermal_set_throttling(ar); 5313 5314 ar->radar_conf_state = ATH10K_RADAR_CONFIRMATION_IDLE; 5315 5316 mutex_unlock(&ar->conf_mutex); 5317 return 0; 5318 5319 err_core_stop: 5320 ath10k_core_stop(ar); 5321 5322 err_power_down: 5323 ath10k_hif_power_down(ar); 5324 5325 err_off: 5326 ar->state = ATH10K_STATE_OFF; 5327 5328 err: 5329 mutex_unlock(&ar->conf_mutex); 5330 return ret; 5331 } 5332 5333 static void ath10k_stop(struct ieee80211_hw *hw) 5334 { 5335 struct ath10k *ar = hw->priv; 5336 5337 ath10k_drain_tx(ar); 5338 5339 mutex_lock(&ar->conf_mutex); 5340 if (ar->state != ATH10K_STATE_OFF) { 5341 if (!ar->hw_rfkill_on) 5342 ath10k_halt(ar); 5343 ar->state = ATH10K_STATE_OFF; 5344 } 5345 mutex_unlock(&ar->conf_mutex); 5346 5347 cancel_work_sync(&ar->set_coverage_class_work); 5348 cancel_delayed_work_sync(&ar->scan.timeout); 5349 cancel_work_sync(&ar->restart_work); 5350 } 5351 5352 static int ath10k_config_ps(struct ath10k *ar) 5353 { 5354 struct ath10k_vif *arvif; 5355 int ret = 0; 5356 5357 lockdep_assert_held(&ar->conf_mutex); 5358 5359 list_for_each_entry(arvif, &ar->arvifs, list) { 5360 ret = ath10k_mac_vif_setup_ps(arvif); 5361 if (ret) { 5362 ath10k_warn(ar, "failed to setup powersave: %d\n", ret); 5363 break; 5364 } 5365 } 5366 5367 return ret; 5368 } 5369 5370 static int ath10k_config(struct ieee80211_hw *hw, u32 changed) 5371 { 5372 struct ath10k *ar = hw->priv; 5373 struct ieee80211_conf *conf = &hw->conf; 5374 int ret = 0; 5375 5376 mutex_lock(&ar->conf_mutex); 5377 5378 if (changed & IEEE80211_CONF_CHANGE_PS) 5379 ath10k_config_ps(ar); 5380 5381 if (changed & IEEE80211_CONF_CHANGE_MONITOR) { 5382 ar->monitor = conf->flags & IEEE80211_CONF_MONITOR; 5383 ret = ath10k_monitor_recalc(ar); 5384 if (ret) 5385 ath10k_warn(ar, "failed to recalc monitor: %d\n", ret); 5386 } 5387 5388 mutex_unlock(&ar->conf_mutex); 5389 return ret; 5390 } 5391 5392 static u32 get_nss_from_chainmask(u16 chain_mask) 5393 { 5394 if ((chain_mask & 0xf) == 0xf) 5395 return 4; 5396 else if ((chain_mask & 0x7) == 0x7) 5397 return 3; 5398 else if ((chain_mask & 0x3) == 0x3) 5399 return 2; 5400 return 1; 5401 } 5402 5403 static int ath10k_mac_set_txbf_conf(struct ath10k_vif *arvif) 5404 { 5405 u32 value = 0; 5406 struct ath10k *ar = arvif->ar; 5407 int nsts; 5408 int sound_dim; 5409 5410 if (ath10k_wmi_get_txbf_conf_scheme(ar) != WMI_TXBF_CONF_BEFORE_ASSOC) 5411 return 0; 5412 5413 nsts = ath10k_mac_get_vht_cap_bf_sts(ar); 5414 if (ar->vht_cap_info & (IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE | 5415 IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE)) 5416 value |= SM(nsts, WMI_TXBF_STS_CAP_OFFSET); 5417 5418 sound_dim = ath10k_mac_get_vht_cap_bf_sound_dim(ar); 5419 if (ar->vht_cap_info & (IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE | 5420 IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE)) 5421 value |= SM(sound_dim, WMI_BF_SOUND_DIM_OFFSET); 5422 5423 if (!value) 5424 return 0; 5425 5426 if (ar->vht_cap_info & IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE) 5427 value |= WMI_VDEV_PARAM_TXBF_SU_TX_BFER; 5428 5429 if (ar->vht_cap_info & IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE) 5430 value |= (WMI_VDEV_PARAM_TXBF_MU_TX_BFER | 5431 WMI_VDEV_PARAM_TXBF_SU_TX_BFER); 5432 5433 if (ar->vht_cap_info & IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE) 5434 value |= WMI_VDEV_PARAM_TXBF_SU_TX_BFEE; 5435 5436 if (ar->vht_cap_info & IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE) 5437 value |= (WMI_VDEV_PARAM_TXBF_MU_TX_BFEE | 5438 WMI_VDEV_PARAM_TXBF_SU_TX_BFEE); 5439 5440 return ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, 5441 ar->wmi.vdev_param->txbf, value); 5442 } 5443 5444 /* 5445 * TODO: 5446 * Figure out how to handle WMI_VDEV_SUBTYPE_P2P_DEVICE, 5447 * because we will send mgmt frames without CCK. This requirement 5448 * for P2P_FIND/GO_NEG should be handled by checking CCK flag 5449 * in the TX packet. 5450 */ 5451 static int ath10k_add_interface(struct ieee80211_hw *hw, 5452 struct ieee80211_vif *vif) 5453 { 5454 struct ath10k *ar = hw->priv; 5455 struct ath10k_vif *arvif = (void *)vif->drv_priv; 5456 struct ath10k_peer *peer; 5457 enum wmi_sta_powersave_param param; 5458 int ret = 0; 5459 u32 value; 5460 int bit; 5461 int i; 5462 u32 vdev_param; 5463 5464 vif->driver_flags |= IEEE80211_VIF_SUPPORTS_UAPSD; 5465 5466 mutex_lock(&ar->conf_mutex); 5467 5468 memset(arvif, 0, sizeof(*arvif)); 5469 ath10k_mac_txq_init(vif->txq); 5470 5471 arvif->ar = ar; 5472 arvif->vif = vif; 5473 5474 INIT_LIST_HEAD(&arvif->list); 5475 INIT_WORK(&arvif->ap_csa_work, ath10k_mac_vif_ap_csa_work); 5476 INIT_DELAYED_WORK(&arvif->connection_loss_work, 5477 ath10k_mac_vif_sta_connection_loss_work); 5478 5479 for (i = 0; i < ARRAY_SIZE(arvif->bitrate_mask.control); i++) { 5480 arvif->bitrate_mask.control[i].legacy = 0xffffffff; 5481 memset(arvif->bitrate_mask.control[i].ht_mcs, 0xff, 5482 sizeof(arvif->bitrate_mask.control[i].ht_mcs)); 5483 memset(arvif->bitrate_mask.control[i].vht_mcs, 0xff, 5484 sizeof(arvif->bitrate_mask.control[i].vht_mcs)); 5485 } 5486 5487 if (ar->num_peers >= ar->max_num_peers) { 5488 ath10k_warn(ar, "refusing vdev creation due to insufficient peer entry resources in firmware\n"); 5489 ret = -ENOBUFS; 5490 goto err; 5491 } 5492 5493 if (ar->free_vdev_map == 0) { 5494 ath10k_warn(ar, "Free vdev map is empty, no more interfaces allowed.\n"); 5495 ret = -EBUSY; 5496 goto err; 5497 } 5498 bit = __ffs64(ar->free_vdev_map); 5499 5500 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac create vdev %i map %llx\n", 5501 bit, ar->free_vdev_map); 5502 5503 arvif->vdev_id = bit; 5504 arvif->vdev_subtype = 5505 ath10k_wmi_get_vdev_subtype(ar, WMI_VDEV_SUBTYPE_NONE); 5506 5507 switch (vif->type) { 5508 case NL80211_IFTYPE_P2P_DEVICE: 5509 arvif->vdev_type = WMI_VDEV_TYPE_STA; 5510 arvif->vdev_subtype = ath10k_wmi_get_vdev_subtype 5511 (ar, WMI_VDEV_SUBTYPE_P2P_DEVICE); 5512 break; 5513 case NL80211_IFTYPE_UNSPECIFIED: 5514 case NL80211_IFTYPE_STATION: 5515 arvif->vdev_type = WMI_VDEV_TYPE_STA; 5516 if (vif->p2p) 5517 arvif->vdev_subtype = ath10k_wmi_get_vdev_subtype 5518 (ar, WMI_VDEV_SUBTYPE_P2P_CLIENT); 5519 break; 5520 case NL80211_IFTYPE_ADHOC: 5521 arvif->vdev_type = WMI_VDEV_TYPE_IBSS; 5522 break; 5523 case NL80211_IFTYPE_MESH_POINT: 5524 if (test_bit(WMI_SERVICE_MESH_11S, ar->wmi.svc_map)) { 5525 arvif->vdev_subtype = ath10k_wmi_get_vdev_subtype 5526 (ar, WMI_VDEV_SUBTYPE_MESH_11S); 5527 } else if (!test_bit(ATH10K_FLAG_RAW_MODE, &ar->dev_flags)) { 5528 ret = -EINVAL; 5529 ath10k_warn(ar, "must load driver with rawmode=1 to add mesh interfaces\n"); 5530 goto err; 5531 } 5532 arvif->vdev_type = WMI_VDEV_TYPE_AP; 5533 break; 5534 case NL80211_IFTYPE_AP: 5535 arvif->vdev_type = WMI_VDEV_TYPE_AP; 5536 5537 if (vif->p2p) 5538 arvif->vdev_subtype = ath10k_wmi_get_vdev_subtype 5539 (ar, WMI_VDEV_SUBTYPE_P2P_GO); 5540 break; 5541 case NL80211_IFTYPE_MONITOR: 5542 arvif->vdev_type = WMI_VDEV_TYPE_MONITOR; 5543 break; 5544 default: 5545 WARN_ON(1); 5546 break; 5547 } 5548 5549 /* Using vdev_id as queue number will make it very easy to do per-vif 5550 * tx queue locking. This shouldn't wrap due to interface combinations 5551 * but do a modulo for correctness sake and prevent using offchannel tx 5552 * queues for regular vif tx. 5553 */ 5554 vif->cab_queue = arvif->vdev_id % (IEEE80211_MAX_QUEUES - 1); 5555 for (i = 0; i < ARRAY_SIZE(vif->hw_queue); i++) 5556 vif->hw_queue[i] = arvif->vdev_id % (IEEE80211_MAX_QUEUES - 1); 5557 5558 /* Some firmware revisions don't wait for beacon tx completion before 5559 * sending another SWBA event. This could lead to hardware using old 5560 * (freed) beacon data in some cases, e.g. tx credit starvation 5561 * combined with missed TBTT. This is very rare. 5562 * 5563 * On non-IOMMU-enabled hosts this could be a possible security issue 5564 * because hw could beacon some random data on the air. On 5565 * IOMMU-enabled hosts DMAR faults would occur in most cases and target 5566 * device would crash. 5567 * 5568 * Since there are no beacon tx completions (implicit nor explicit) 5569 * propagated to host the only workaround for this is to allocate a 5570 * DMA-coherent buffer for a lifetime of a vif and use it for all 5571 * beacon tx commands. Worst case for this approach is some beacons may 5572 * become corrupted, e.g. have garbled IEs or out-of-date TIM bitmap. 5573 */ 5574 if (vif->type == NL80211_IFTYPE_ADHOC || 5575 vif->type == NL80211_IFTYPE_MESH_POINT || 5576 vif->type == NL80211_IFTYPE_AP) { 5577 arvif->beacon_buf = dma_alloc_coherent(ar->dev, 5578 IEEE80211_MAX_FRAME_LEN, 5579 &arvif->beacon_paddr, 5580 GFP_ATOMIC); 5581 if (!arvif->beacon_buf) { 5582 ret = -ENOMEM; 5583 ath10k_warn(ar, "failed to allocate beacon buffer: %d\n", 5584 ret); 5585 goto err; 5586 } 5587 } 5588 if (test_bit(ATH10K_FLAG_HW_CRYPTO_DISABLED, &ar->dev_flags)) 5589 arvif->nohwcrypt = true; 5590 5591 if (arvif->nohwcrypt && 5592 !test_bit(ATH10K_FLAG_RAW_MODE, &ar->dev_flags)) { 5593 ath10k_warn(ar, "cryptmode module param needed for sw crypto\n"); 5594 goto err; 5595 } 5596 5597 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev create %d (add interface) type %d subtype %d bcnmode %s\n", 5598 arvif->vdev_id, arvif->vdev_type, arvif->vdev_subtype, 5599 arvif->beacon_buf ? "single-buf" : "per-skb"); 5600 5601 ret = ath10k_wmi_vdev_create(ar, arvif->vdev_id, arvif->vdev_type, 5602 arvif->vdev_subtype, vif->addr); 5603 if (ret) { 5604 ath10k_warn(ar, "failed to create WMI vdev %i: %d\n", 5605 arvif->vdev_id, ret); 5606 goto err; 5607 } 5608 5609 if (test_bit(WMI_SERVICE_VDEV_DISABLE_4_ADDR_SRC_LRN_SUPPORT, 5610 ar->wmi.svc_map)) { 5611 vdev_param = ar->wmi.vdev_param->disable_4addr_src_lrn; 5612 ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, 5613 WMI_VDEV_DISABLE_4_ADDR_SRC_LRN); 5614 if (ret && ret != -EOPNOTSUPP) { 5615 ath10k_warn(ar, "failed to disable 4addr src lrn vdev %i: %d\n", 5616 arvif->vdev_id, ret); 5617 } 5618 } 5619 5620 ar->free_vdev_map &= ~(1LL << arvif->vdev_id); 5621 spin_lock_bh(&ar->data_lock); 5622 list_add(&arvif->list, &ar->arvifs); 5623 spin_unlock_bh(&ar->data_lock); 5624 5625 /* It makes no sense to have firmware do keepalives. mac80211 already 5626 * takes care of this with idle connection polling. 5627 */ 5628 ret = ath10k_mac_vif_disable_keepalive(arvif); 5629 if (ret) { 5630 ath10k_warn(ar, "failed to disable keepalive on vdev %i: %d\n", 5631 arvif->vdev_id, ret); 5632 goto err_vdev_delete; 5633 } 5634 5635 arvif->def_wep_key_idx = -1; 5636 5637 vdev_param = ar->wmi.vdev_param->tx_encap_type; 5638 ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, 5639 ATH10K_HW_TXRX_NATIVE_WIFI); 5640 /* 10.X firmware does not support this VDEV parameter. Do not warn */ 5641 if (ret && ret != -EOPNOTSUPP) { 5642 ath10k_warn(ar, "failed to set vdev %i TX encapsulation: %d\n", 5643 arvif->vdev_id, ret); 5644 goto err_vdev_delete; 5645 } 5646 5647 /* Configuring number of spatial stream for monitor interface is causing 5648 * target assert in qca9888 and qca6174. 5649 */ 5650 if (ar->cfg_tx_chainmask && (vif->type != NL80211_IFTYPE_MONITOR)) { 5651 u16 nss = get_nss_from_chainmask(ar->cfg_tx_chainmask); 5652 5653 vdev_param = ar->wmi.vdev_param->nss; 5654 ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, 5655 nss); 5656 if (ret) { 5657 ath10k_warn(ar, "failed to set vdev %i chainmask 0x%x, nss %i: %d\n", 5658 arvif->vdev_id, ar->cfg_tx_chainmask, nss, 5659 ret); 5660 goto err_vdev_delete; 5661 } 5662 } 5663 5664 if (arvif->vdev_type == WMI_VDEV_TYPE_AP || 5665 arvif->vdev_type == WMI_VDEV_TYPE_IBSS) { 5666 ret = ath10k_peer_create(ar, vif, NULL, arvif->vdev_id, 5667 vif->addr, WMI_PEER_TYPE_DEFAULT); 5668 if (ret) { 5669 ath10k_warn(ar, "failed to create vdev %i peer for AP/IBSS: %d\n", 5670 arvif->vdev_id, ret); 5671 goto err_vdev_delete; 5672 } 5673 5674 spin_lock_bh(&ar->data_lock); 5675 5676 peer = ath10k_peer_find(ar, arvif->vdev_id, vif->addr); 5677 if (!peer) { 5678 ath10k_warn(ar, "failed to lookup peer %pM on vdev %i\n", 5679 vif->addr, arvif->vdev_id); 5680 spin_unlock_bh(&ar->data_lock); 5681 ret = -ENOENT; 5682 goto err_peer_delete; 5683 } 5684 5685 arvif->peer_id = find_first_bit(peer->peer_ids, 5686 ATH10K_MAX_NUM_PEER_IDS); 5687 5688 spin_unlock_bh(&ar->data_lock); 5689 } else { 5690 arvif->peer_id = HTT_INVALID_PEERID; 5691 } 5692 5693 if (arvif->vdev_type == WMI_VDEV_TYPE_AP) { 5694 ret = ath10k_mac_set_kickout(arvif); 5695 if (ret) { 5696 ath10k_warn(ar, "failed to set vdev %i kickout parameters: %d\n", 5697 arvif->vdev_id, ret); 5698 goto err_peer_delete; 5699 } 5700 } 5701 5702 if (arvif->vdev_type == WMI_VDEV_TYPE_STA) { 5703 param = WMI_STA_PS_PARAM_RX_WAKE_POLICY; 5704 value = WMI_STA_PS_RX_WAKE_POLICY_WAKE; 5705 ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id, 5706 param, value); 5707 if (ret) { 5708 ath10k_warn(ar, "failed to set vdev %i RX wake policy: %d\n", 5709 arvif->vdev_id, ret); 5710 goto err_peer_delete; 5711 } 5712 5713 ret = ath10k_mac_vif_recalc_ps_wake_threshold(arvif); 5714 if (ret) { 5715 ath10k_warn(ar, "failed to recalc ps wake threshold on vdev %i: %d\n", 5716 arvif->vdev_id, ret); 5717 goto err_peer_delete; 5718 } 5719 5720 ret = ath10k_mac_vif_recalc_ps_poll_count(arvif); 5721 if (ret) { 5722 ath10k_warn(ar, "failed to recalc ps poll count on vdev %i: %d\n", 5723 arvif->vdev_id, ret); 5724 goto err_peer_delete; 5725 } 5726 } 5727 5728 ret = ath10k_mac_set_txbf_conf(arvif); 5729 if (ret) { 5730 ath10k_warn(ar, "failed to set txbf for vdev %d: %d\n", 5731 arvif->vdev_id, ret); 5732 goto err_peer_delete; 5733 } 5734 5735 ret = ath10k_mac_set_rts(arvif, ar->hw->wiphy->rts_threshold); 5736 if (ret) { 5737 ath10k_warn(ar, "failed to set rts threshold for vdev %d: %d\n", 5738 arvif->vdev_id, ret); 5739 goto err_peer_delete; 5740 } 5741 5742 arvif->txpower = vif->bss_conf.txpower; 5743 ret = ath10k_mac_txpower_recalc(ar); 5744 if (ret) { 5745 ath10k_warn(ar, "failed to recalc tx power: %d\n", ret); 5746 goto err_peer_delete; 5747 } 5748 5749 if (test_bit(WMI_SERVICE_RTT_RESPONDER_ROLE, ar->wmi.svc_map)) { 5750 vdev_param = ar->wmi.vdev_param->rtt_responder_role; 5751 ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, 5752 arvif->ftm_responder); 5753 5754 /* It is harmless to not set FTM role. Do not warn */ 5755 if (ret && ret != -EOPNOTSUPP) 5756 ath10k_warn(ar, "failed to set vdev %i FTM Responder: %d\n", 5757 arvif->vdev_id, ret); 5758 } 5759 5760 if (vif->type == NL80211_IFTYPE_MONITOR) { 5761 ar->monitor_arvif = arvif; 5762 ret = ath10k_monitor_recalc(ar); 5763 if (ret) { 5764 ath10k_warn(ar, "failed to recalc monitor: %d\n", ret); 5765 goto err_peer_delete; 5766 } 5767 } 5768 5769 spin_lock_bh(&ar->htt.tx_lock); 5770 if (!ar->tx_paused) 5771 ieee80211_wake_queue(ar->hw, arvif->vdev_id); 5772 spin_unlock_bh(&ar->htt.tx_lock); 5773 5774 mutex_unlock(&ar->conf_mutex); 5775 return 0; 5776 5777 err_peer_delete: 5778 if (arvif->vdev_type == WMI_VDEV_TYPE_AP || 5779 arvif->vdev_type == WMI_VDEV_TYPE_IBSS) { 5780 ath10k_wmi_peer_delete(ar, arvif->vdev_id, vif->addr); 5781 ath10k_wait_for_peer_delete_done(ar, arvif->vdev_id, 5782 vif->addr); 5783 } 5784 5785 err_vdev_delete: 5786 ath10k_wmi_vdev_delete(ar, arvif->vdev_id); 5787 ar->free_vdev_map |= 1LL << arvif->vdev_id; 5788 spin_lock_bh(&ar->data_lock); 5789 list_del(&arvif->list); 5790 spin_unlock_bh(&ar->data_lock); 5791 5792 err: 5793 if (arvif->beacon_buf) { 5794 dma_free_coherent(ar->dev, IEEE80211_MAX_FRAME_LEN, 5795 arvif->beacon_buf, arvif->beacon_paddr); 5796 arvif->beacon_buf = NULL; 5797 } 5798 5799 mutex_unlock(&ar->conf_mutex); 5800 5801 return ret; 5802 } 5803 5804 static void ath10k_mac_vif_tx_unlock_all(struct ath10k_vif *arvif) 5805 { 5806 int i; 5807 5808 for (i = 0; i < BITS_PER_LONG; i++) 5809 ath10k_mac_vif_tx_unlock(arvif, i); 5810 } 5811 5812 static void ath10k_remove_interface(struct ieee80211_hw *hw, 5813 struct ieee80211_vif *vif) 5814 { 5815 struct ath10k *ar = hw->priv; 5816 struct ath10k_vif *arvif = (void *)vif->drv_priv; 5817 struct ath10k_peer *peer; 5818 unsigned long time_left; 5819 int ret; 5820 int i; 5821 5822 cancel_work_sync(&arvif->ap_csa_work); 5823 cancel_delayed_work_sync(&arvif->connection_loss_work); 5824 5825 mutex_lock(&ar->conf_mutex); 5826 5827 ret = ath10k_spectral_vif_stop(arvif); 5828 if (ret) 5829 ath10k_warn(ar, "failed to stop spectral for vdev %i: %d\n", 5830 arvif->vdev_id, ret); 5831 5832 ar->free_vdev_map |= 1LL << arvif->vdev_id; 5833 spin_lock_bh(&ar->data_lock); 5834 list_del(&arvif->list); 5835 spin_unlock_bh(&ar->data_lock); 5836 5837 if (arvif->vdev_type == WMI_VDEV_TYPE_AP || 5838 arvif->vdev_type == WMI_VDEV_TYPE_IBSS) { 5839 ret = ath10k_wmi_peer_delete(arvif->ar, arvif->vdev_id, 5840 vif->addr); 5841 if (ret) 5842 ath10k_warn(ar, "failed to submit AP/IBSS self-peer removal on vdev %i: %d\n", 5843 arvif->vdev_id, ret); 5844 5845 ath10k_wait_for_peer_delete_done(ar, arvif->vdev_id, 5846 vif->addr); 5847 kfree(arvif->u.ap.noa_data); 5848 } 5849 5850 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %i delete (remove interface)\n", 5851 arvif->vdev_id); 5852 5853 ret = ath10k_wmi_vdev_delete(ar, arvif->vdev_id); 5854 if (ret) 5855 ath10k_warn(ar, "failed to delete WMI vdev %i: %d\n", 5856 arvif->vdev_id, ret); 5857 5858 if (test_bit(WMI_SERVICE_SYNC_DELETE_CMDS, ar->wmi.svc_map)) { 5859 time_left = wait_for_completion_timeout(&ar->vdev_delete_done, 5860 ATH10K_VDEV_DELETE_TIMEOUT_HZ); 5861 if (time_left == 0) { 5862 ath10k_warn(ar, "Timeout in receiving vdev delete response\n"); 5863 goto out; 5864 } 5865 } 5866 5867 /* Some firmware revisions don't notify host about self-peer removal 5868 * until after associated vdev is deleted. 5869 */ 5870 if (arvif->vdev_type == WMI_VDEV_TYPE_AP || 5871 arvif->vdev_type == WMI_VDEV_TYPE_IBSS) { 5872 ret = ath10k_wait_for_peer_deleted(ar, arvif->vdev_id, 5873 vif->addr); 5874 if (ret) 5875 ath10k_warn(ar, "failed to remove AP self-peer on vdev %i: %d\n", 5876 arvif->vdev_id, ret); 5877 5878 spin_lock_bh(&ar->data_lock); 5879 ar->num_peers--; 5880 spin_unlock_bh(&ar->data_lock); 5881 } 5882 5883 spin_lock_bh(&ar->data_lock); 5884 for (i = 0; i < ARRAY_SIZE(ar->peer_map); i++) { 5885 peer = ar->peer_map[i]; 5886 if (!peer) 5887 continue; 5888 5889 if (peer->vif == vif) { 5890 ath10k_warn(ar, "found vif peer %pM entry on vdev %i after it was supposedly removed\n", 5891 vif->addr, arvif->vdev_id); 5892 peer->vif = NULL; 5893 } 5894 } 5895 5896 /* Clean this up late, less opportunity for firmware to access 5897 * DMA memory we have deleted. 5898 */ 5899 ath10k_mac_vif_beacon_cleanup(arvif); 5900 spin_unlock_bh(&ar->data_lock); 5901 5902 ath10k_peer_cleanup(ar, arvif->vdev_id); 5903 ath10k_mac_txq_unref(ar, vif->txq); 5904 5905 if (vif->type == NL80211_IFTYPE_MONITOR) { 5906 ar->monitor_arvif = NULL; 5907 ret = ath10k_monitor_recalc(ar); 5908 if (ret) 5909 ath10k_warn(ar, "failed to recalc monitor: %d\n", ret); 5910 } 5911 5912 ret = ath10k_mac_txpower_recalc(ar); 5913 if (ret) 5914 ath10k_warn(ar, "failed to recalc tx power: %d\n", ret); 5915 5916 spin_lock_bh(&ar->htt.tx_lock); 5917 ath10k_mac_vif_tx_unlock_all(arvif); 5918 spin_unlock_bh(&ar->htt.tx_lock); 5919 5920 ath10k_mac_txq_unref(ar, vif->txq); 5921 5922 out: 5923 mutex_unlock(&ar->conf_mutex); 5924 } 5925 5926 /* 5927 * FIXME: Has to be verified. 5928 */ 5929 #define SUPPORTED_FILTERS \ 5930 (FIF_ALLMULTI | \ 5931 FIF_CONTROL | \ 5932 FIF_PSPOLL | \ 5933 FIF_OTHER_BSS | \ 5934 FIF_BCN_PRBRESP_PROMISC | \ 5935 FIF_PROBE_REQ | \ 5936 FIF_FCSFAIL) 5937 5938 static void ath10k_configure_filter(struct ieee80211_hw *hw, 5939 unsigned int changed_flags, 5940 unsigned int *total_flags, 5941 u64 multicast) 5942 { 5943 struct ath10k *ar = hw->priv; 5944 int ret; 5945 5946 mutex_lock(&ar->conf_mutex); 5947 5948 changed_flags &= SUPPORTED_FILTERS; 5949 *total_flags &= SUPPORTED_FILTERS; 5950 ar->filter_flags = *total_flags; 5951 5952 ret = ath10k_monitor_recalc(ar); 5953 if (ret) 5954 ath10k_warn(ar, "failed to recalc monitor: %d\n", ret); 5955 5956 mutex_unlock(&ar->conf_mutex); 5957 } 5958 5959 static void ath10k_recalculate_mgmt_rate(struct ath10k *ar, 5960 struct ieee80211_vif *vif, 5961 struct cfg80211_chan_def *def) 5962 { 5963 struct ath10k_vif *arvif = (void *)vif->drv_priv; 5964 const struct ieee80211_supported_band *sband; 5965 u8 basic_rate_idx; 5966 int hw_rate_code; 5967 u32 vdev_param; 5968 u16 bitrate; 5969 int ret; 5970 5971 lockdep_assert_held(&ar->conf_mutex); 5972 5973 sband = ar->hw->wiphy->bands[def->chan->band]; 5974 basic_rate_idx = ffs(vif->bss_conf.basic_rates) - 1; 5975 bitrate = sband->bitrates[basic_rate_idx].bitrate; 5976 5977 hw_rate_code = ath10k_mac_get_rate_hw_value(bitrate); 5978 if (hw_rate_code < 0) { 5979 ath10k_warn(ar, "bitrate not supported %d\n", bitrate); 5980 return; 5981 } 5982 5983 vdev_param = ar->wmi.vdev_param->mgmt_rate; 5984 ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, 5985 hw_rate_code); 5986 if (ret) 5987 ath10k_warn(ar, "failed to set mgmt tx rate %d\n", ret); 5988 } 5989 5990 static void ath10k_bss_info_changed(struct ieee80211_hw *hw, 5991 struct ieee80211_vif *vif, 5992 struct ieee80211_bss_conf *info, 5993 u32 changed) 5994 { 5995 struct ath10k *ar = hw->priv; 5996 struct ath10k_vif *arvif = (void *)vif->drv_priv; 5997 struct cfg80211_chan_def def; 5998 u32 vdev_param, pdev_param, slottime, preamble; 5999 u16 bitrate, hw_value; 6000 u8 rate, rateidx; 6001 int ret = 0, mcast_rate; 6002 enum nl80211_band band; 6003 6004 mutex_lock(&ar->conf_mutex); 6005 6006 if (changed & BSS_CHANGED_IBSS) 6007 ath10k_control_ibss(arvif, info, vif->addr); 6008 6009 if (changed & BSS_CHANGED_BEACON_INT) { 6010 arvif->beacon_interval = info->beacon_int; 6011 vdev_param = ar->wmi.vdev_param->beacon_interval; 6012 ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, 6013 arvif->beacon_interval); 6014 ath10k_dbg(ar, ATH10K_DBG_MAC, 6015 "mac vdev %d beacon_interval %d\n", 6016 arvif->vdev_id, arvif->beacon_interval); 6017 6018 if (ret) 6019 ath10k_warn(ar, "failed to set beacon interval for vdev %d: %i\n", 6020 arvif->vdev_id, ret); 6021 } 6022 6023 if (changed & BSS_CHANGED_BEACON) { 6024 ath10k_dbg(ar, ATH10K_DBG_MAC, 6025 "vdev %d set beacon tx mode to staggered\n", 6026 arvif->vdev_id); 6027 6028 pdev_param = ar->wmi.pdev_param->beacon_tx_mode; 6029 ret = ath10k_wmi_pdev_set_param(ar, pdev_param, 6030 WMI_BEACON_STAGGERED_MODE); 6031 if (ret) 6032 ath10k_warn(ar, "failed to set beacon mode for vdev %d: %i\n", 6033 arvif->vdev_id, ret); 6034 6035 ret = ath10k_mac_setup_bcn_tmpl(arvif); 6036 if (ret) 6037 ath10k_warn(ar, "failed to update beacon template: %d\n", 6038 ret); 6039 6040 if (ieee80211_vif_is_mesh(vif)) { 6041 /* mesh doesn't use SSID but firmware needs it */ 6042 strncpy(arvif->u.ap.ssid, "mesh", 6043 sizeof(arvif->u.ap.ssid)); 6044 arvif->u.ap.ssid_len = 4; 6045 } 6046 } 6047 6048 if (changed & BSS_CHANGED_AP_PROBE_RESP) { 6049 ret = ath10k_mac_setup_prb_tmpl(arvif); 6050 if (ret) 6051 ath10k_warn(ar, "failed to setup probe resp template on vdev %i: %d\n", 6052 arvif->vdev_id, ret); 6053 } 6054 6055 if (changed & (BSS_CHANGED_BEACON_INFO | BSS_CHANGED_BEACON)) { 6056 arvif->dtim_period = info->dtim_period; 6057 6058 ath10k_dbg(ar, ATH10K_DBG_MAC, 6059 "mac vdev %d dtim_period %d\n", 6060 arvif->vdev_id, arvif->dtim_period); 6061 6062 vdev_param = ar->wmi.vdev_param->dtim_period; 6063 ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, 6064 arvif->dtim_period); 6065 if (ret) 6066 ath10k_warn(ar, "failed to set dtim period for vdev %d: %i\n", 6067 arvif->vdev_id, ret); 6068 } 6069 6070 if (changed & BSS_CHANGED_SSID && 6071 vif->type == NL80211_IFTYPE_AP) { 6072 arvif->u.ap.ssid_len = info->ssid_len; 6073 if (info->ssid_len) 6074 memcpy(arvif->u.ap.ssid, info->ssid, info->ssid_len); 6075 arvif->u.ap.hidden_ssid = info->hidden_ssid; 6076 } 6077 6078 if (changed & BSS_CHANGED_BSSID && !is_zero_ether_addr(info->bssid)) 6079 ether_addr_copy(arvif->bssid, info->bssid); 6080 6081 if (changed & BSS_CHANGED_FTM_RESPONDER && 6082 arvif->ftm_responder != info->ftm_responder && 6083 test_bit(WMI_SERVICE_RTT_RESPONDER_ROLE, ar->wmi.svc_map)) { 6084 arvif->ftm_responder = info->ftm_responder; 6085 6086 vdev_param = ar->wmi.vdev_param->rtt_responder_role; 6087 ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, 6088 arvif->ftm_responder); 6089 6090 ath10k_dbg(ar, ATH10K_DBG_MAC, 6091 "mac vdev %d ftm_responder %d:ret %d\n", 6092 arvif->vdev_id, arvif->ftm_responder, ret); 6093 } 6094 6095 if (changed & BSS_CHANGED_BEACON_ENABLED) 6096 ath10k_control_beaconing(arvif, info); 6097 6098 if (changed & BSS_CHANGED_ERP_CTS_PROT) { 6099 arvif->use_cts_prot = info->use_cts_prot; 6100 6101 ret = ath10k_recalc_rtscts_prot(arvif); 6102 if (ret) 6103 ath10k_warn(ar, "failed to recalculate rts/cts prot for vdev %d: %d\n", 6104 arvif->vdev_id, ret); 6105 6106 if (ath10k_mac_can_set_cts_prot(arvif)) { 6107 ret = ath10k_mac_set_cts_prot(arvif); 6108 if (ret) 6109 ath10k_warn(ar, "failed to set cts protection for vdev %d: %d\n", 6110 arvif->vdev_id, ret); 6111 } 6112 } 6113 6114 if (changed & BSS_CHANGED_ERP_SLOT) { 6115 if (info->use_short_slot) 6116 slottime = WMI_VDEV_SLOT_TIME_SHORT; /* 9us */ 6117 6118 else 6119 slottime = WMI_VDEV_SLOT_TIME_LONG; /* 20us */ 6120 6121 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d slot_time %d\n", 6122 arvif->vdev_id, slottime); 6123 6124 vdev_param = ar->wmi.vdev_param->slot_time; 6125 ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, 6126 slottime); 6127 if (ret) 6128 ath10k_warn(ar, "failed to set erp slot for vdev %d: %i\n", 6129 arvif->vdev_id, ret); 6130 } 6131 6132 if (changed & BSS_CHANGED_ERP_PREAMBLE) { 6133 if (info->use_short_preamble) 6134 preamble = WMI_VDEV_PREAMBLE_SHORT; 6135 else 6136 preamble = WMI_VDEV_PREAMBLE_LONG; 6137 6138 ath10k_dbg(ar, ATH10K_DBG_MAC, 6139 "mac vdev %d preamble %dn", 6140 arvif->vdev_id, preamble); 6141 6142 vdev_param = ar->wmi.vdev_param->preamble; 6143 ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, 6144 preamble); 6145 if (ret) 6146 ath10k_warn(ar, "failed to set preamble for vdev %d: %i\n", 6147 arvif->vdev_id, ret); 6148 } 6149 6150 if (changed & BSS_CHANGED_ASSOC) { 6151 if (info->assoc) { 6152 /* Workaround: Make sure monitor vdev is not running 6153 * when associating to prevent some firmware revisions 6154 * (e.g. 10.1 and 10.2) from crashing. 6155 */ 6156 if (ar->monitor_started) 6157 ath10k_monitor_stop(ar); 6158 ath10k_bss_assoc(hw, vif, info); 6159 ath10k_monitor_recalc(ar); 6160 } else { 6161 ath10k_bss_disassoc(hw, vif); 6162 } 6163 } 6164 6165 if (changed & BSS_CHANGED_TXPOWER) { 6166 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev_id %i txpower %d\n", 6167 arvif->vdev_id, info->txpower); 6168 6169 arvif->txpower = info->txpower; 6170 ret = ath10k_mac_txpower_recalc(ar); 6171 if (ret) 6172 ath10k_warn(ar, "failed to recalc tx power: %d\n", ret); 6173 } 6174 6175 if (changed & BSS_CHANGED_PS) { 6176 arvif->ps = vif->bss_conf.ps; 6177 6178 ret = ath10k_config_ps(ar); 6179 if (ret) 6180 ath10k_warn(ar, "failed to setup ps on vdev %i: %d\n", 6181 arvif->vdev_id, ret); 6182 } 6183 6184 if (changed & BSS_CHANGED_MCAST_RATE && 6185 !ath10k_mac_vif_chan(arvif->vif, &def)) { 6186 band = def.chan->band; 6187 mcast_rate = vif->bss_conf.mcast_rate[band]; 6188 if (mcast_rate > 0) 6189 rateidx = mcast_rate - 1; 6190 else 6191 rateidx = ffs(vif->bss_conf.basic_rates) - 1; 6192 6193 if (ar->phy_capability & WHAL_WLAN_11A_CAPABILITY) 6194 rateidx += ATH10K_MAC_FIRST_OFDM_RATE_IDX; 6195 6196 bitrate = ath10k_wmi_legacy_rates[rateidx].bitrate; 6197 hw_value = ath10k_wmi_legacy_rates[rateidx].hw_value; 6198 if (ath10k_mac_bitrate_is_cck(bitrate)) 6199 preamble = WMI_RATE_PREAMBLE_CCK; 6200 else 6201 preamble = WMI_RATE_PREAMBLE_OFDM; 6202 6203 rate = ATH10K_HW_RATECODE(hw_value, 0, preamble); 6204 6205 ath10k_dbg(ar, ATH10K_DBG_MAC, 6206 "mac vdev %d mcast_rate %x\n", 6207 arvif->vdev_id, rate); 6208 6209 vdev_param = ar->wmi.vdev_param->mcast_data_rate; 6210 ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, 6211 vdev_param, rate); 6212 if (ret) 6213 ath10k_warn(ar, 6214 "failed to set mcast rate on vdev %i: %d\n", 6215 arvif->vdev_id, ret); 6216 6217 vdev_param = ar->wmi.vdev_param->bcast_data_rate; 6218 ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, 6219 vdev_param, rate); 6220 if (ret) 6221 ath10k_warn(ar, 6222 "failed to set bcast rate on vdev %i: %d\n", 6223 arvif->vdev_id, ret); 6224 } 6225 6226 if (changed & BSS_CHANGED_BASIC_RATES && 6227 !ath10k_mac_vif_chan(arvif->vif, &def)) 6228 ath10k_recalculate_mgmt_rate(ar, vif, &def); 6229 6230 mutex_unlock(&ar->conf_mutex); 6231 } 6232 6233 static void ath10k_mac_op_set_coverage_class(struct ieee80211_hw *hw, s16 value) 6234 { 6235 struct ath10k *ar = hw->priv; 6236 6237 /* This function should never be called if setting the coverage class 6238 * is not supported on this hardware. 6239 */ 6240 if (!ar->hw_params.hw_ops->set_coverage_class) { 6241 WARN_ON_ONCE(1); 6242 return; 6243 } 6244 ar->hw_params.hw_ops->set_coverage_class(ar, value); 6245 } 6246 6247 struct ath10k_mac_tdls_iter_data { 6248 u32 num_tdls_stations; 6249 struct ieee80211_vif *curr_vif; 6250 }; 6251 6252 static void ath10k_mac_tdls_vif_stations_count_iter(void *data, 6253 struct ieee80211_sta *sta) 6254 { 6255 struct ath10k_mac_tdls_iter_data *iter_data = data; 6256 struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv; 6257 struct ieee80211_vif *sta_vif = arsta->arvif->vif; 6258 6259 if (sta->tdls && sta_vif == iter_data->curr_vif) 6260 iter_data->num_tdls_stations++; 6261 } 6262 6263 static int ath10k_mac_tdls_vif_stations_count(struct ieee80211_hw *hw, 6264 struct ieee80211_vif *vif) 6265 { 6266 struct ath10k_mac_tdls_iter_data data = {}; 6267 6268 data.curr_vif = vif; 6269 6270 ieee80211_iterate_stations_atomic(hw, 6271 ath10k_mac_tdls_vif_stations_count_iter, 6272 &data); 6273 return data.num_tdls_stations; 6274 } 6275 6276 static int ath10k_hw_scan(struct ieee80211_hw *hw, 6277 struct ieee80211_vif *vif, 6278 struct ieee80211_scan_request *hw_req) 6279 { 6280 struct ath10k *ar = hw->priv; 6281 struct ath10k_vif *arvif = (void *)vif->drv_priv; 6282 struct cfg80211_scan_request *req = &hw_req->req; 6283 struct wmi_start_scan_arg arg; 6284 int ret = 0; 6285 int i; 6286 u32 scan_timeout; 6287 6288 mutex_lock(&ar->conf_mutex); 6289 6290 if (ath10k_mac_tdls_vif_stations_count(hw, vif) > 0) { 6291 ret = -EBUSY; 6292 goto exit; 6293 } 6294 6295 spin_lock_bh(&ar->data_lock); 6296 switch (ar->scan.state) { 6297 case ATH10K_SCAN_IDLE: 6298 reinit_completion(&ar->scan.started); 6299 reinit_completion(&ar->scan.completed); 6300 ar->scan.state = ATH10K_SCAN_STARTING; 6301 ar->scan.is_roc = false; 6302 ar->scan.vdev_id = arvif->vdev_id; 6303 ret = 0; 6304 break; 6305 case ATH10K_SCAN_STARTING: 6306 case ATH10K_SCAN_RUNNING: 6307 case ATH10K_SCAN_ABORTING: 6308 ret = -EBUSY; 6309 break; 6310 } 6311 spin_unlock_bh(&ar->data_lock); 6312 6313 if (ret) 6314 goto exit; 6315 6316 memset(&arg, 0, sizeof(arg)); 6317 ath10k_wmi_start_scan_init(ar, &arg); 6318 arg.vdev_id = arvif->vdev_id; 6319 arg.scan_id = ATH10K_SCAN_ID; 6320 6321 if (req->ie_len) { 6322 arg.ie_len = req->ie_len; 6323 memcpy(arg.ie, req->ie, arg.ie_len); 6324 } 6325 6326 if (req->n_ssids) { 6327 arg.n_ssids = req->n_ssids; 6328 for (i = 0; i < arg.n_ssids; i++) { 6329 arg.ssids[i].len = req->ssids[i].ssid_len; 6330 arg.ssids[i].ssid = req->ssids[i].ssid; 6331 } 6332 } else { 6333 arg.scan_ctrl_flags |= WMI_SCAN_FLAG_PASSIVE; 6334 } 6335 6336 if (req->flags & NL80211_SCAN_FLAG_RANDOM_ADDR) { 6337 arg.scan_ctrl_flags |= WMI_SCAN_ADD_SPOOFED_MAC_IN_PROBE_REQ; 6338 ether_addr_copy(arg.mac_addr.addr, req->mac_addr); 6339 ether_addr_copy(arg.mac_mask.addr, req->mac_addr_mask); 6340 } 6341 6342 if (req->n_channels) { 6343 arg.n_channels = req->n_channels; 6344 for (i = 0; i < arg.n_channels; i++) 6345 arg.channels[i] = req->channels[i]->center_freq; 6346 } 6347 6348 /* if duration is set, default dwell times will be overwritten */ 6349 if (req->duration) { 6350 arg.dwell_time_active = req->duration; 6351 arg.dwell_time_passive = req->duration; 6352 arg.burst_duration_ms = req->duration; 6353 6354 scan_timeout = min_t(u32, arg.max_rest_time * 6355 (arg.n_channels - 1) + (req->duration + 6356 ATH10K_SCAN_CHANNEL_SWITCH_WMI_EVT_OVERHEAD) * 6357 arg.n_channels, arg.max_scan_time + 200); 6358 6359 } else { 6360 /* Add a 200ms margin to account for event/command processing */ 6361 scan_timeout = arg.max_scan_time + 200; 6362 } 6363 6364 ret = ath10k_start_scan(ar, &arg); 6365 if (ret) { 6366 ath10k_warn(ar, "failed to start hw scan: %d\n", ret); 6367 spin_lock_bh(&ar->data_lock); 6368 ar->scan.state = ATH10K_SCAN_IDLE; 6369 spin_unlock_bh(&ar->data_lock); 6370 } 6371 6372 ieee80211_queue_delayed_work(ar->hw, &ar->scan.timeout, 6373 msecs_to_jiffies(scan_timeout)); 6374 6375 exit: 6376 mutex_unlock(&ar->conf_mutex); 6377 return ret; 6378 } 6379 6380 static void ath10k_cancel_hw_scan(struct ieee80211_hw *hw, 6381 struct ieee80211_vif *vif) 6382 { 6383 struct ath10k *ar = hw->priv; 6384 6385 mutex_lock(&ar->conf_mutex); 6386 ath10k_scan_abort(ar); 6387 mutex_unlock(&ar->conf_mutex); 6388 6389 cancel_delayed_work_sync(&ar->scan.timeout); 6390 } 6391 6392 static void ath10k_set_key_h_def_keyidx(struct ath10k *ar, 6393 struct ath10k_vif *arvif, 6394 enum set_key_cmd cmd, 6395 struct ieee80211_key_conf *key) 6396 { 6397 u32 vdev_param = arvif->ar->wmi.vdev_param->def_keyid; 6398 int ret; 6399 6400 /* 10.1 firmware branch requires default key index to be set to group 6401 * key index after installing it. Otherwise FW/HW Txes corrupted 6402 * frames with multi-vif APs. This is not required for main firmware 6403 * branch (e.g. 636). 6404 * 6405 * This is also needed for 636 fw for IBSS-RSN to work more reliably. 6406 * 6407 * FIXME: It remains unknown if this is required for multi-vif STA 6408 * interfaces on 10.1. 6409 */ 6410 6411 if (arvif->vdev_type != WMI_VDEV_TYPE_AP && 6412 arvif->vdev_type != WMI_VDEV_TYPE_IBSS) 6413 return; 6414 6415 if (key->cipher == WLAN_CIPHER_SUITE_WEP40) 6416 return; 6417 6418 if (key->cipher == WLAN_CIPHER_SUITE_WEP104) 6419 return; 6420 6421 if (key->flags & IEEE80211_KEY_FLAG_PAIRWISE) 6422 return; 6423 6424 if (cmd != SET_KEY) 6425 return; 6426 6427 ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, 6428 key->keyidx); 6429 if (ret) 6430 ath10k_warn(ar, "failed to set vdev %i group key as default key: %d\n", 6431 arvif->vdev_id, ret); 6432 } 6433 6434 static int ath10k_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd, 6435 struct ieee80211_vif *vif, struct ieee80211_sta *sta, 6436 struct ieee80211_key_conf *key) 6437 { 6438 struct ath10k *ar = hw->priv; 6439 struct ath10k_vif *arvif = (void *)vif->drv_priv; 6440 struct ath10k_sta *arsta; 6441 struct ath10k_peer *peer; 6442 const u8 *peer_addr; 6443 bool is_wep = key->cipher == WLAN_CIPHER_SUITE_WEP40 || 6444 key->cipher == WLAN_CIPHER_SUITE_WEP104; 6445 int ret = 0; 6446 int ret2; 6447 u32 flags = 0; 6448 u32 flags2; 6449 6450 /* this one needs to be done in software */ 6451 if (key->cipher == WLAN_CIPHER_SUITE_AES_CMAC || 6452 key->cipher == WLAN_CIPHER_SUITE_BIP_GMAC_128 || 6453 key->cipher == WLAN_CIPHER_SUITE_BIP_GMAC_256 || 6454 key->cipher == WLAN_CIPHER_SUITE_BIP_CMAC_256) 6455 return 1; 6456 6457 if (arvif->nohwcrypt) 6458 return 1; 6459 6460 if (key->keyidx > WMI_MAX_KEY_INDEX) 6461 return -ENOSPC; 6462 6463 mutex_lock(&ar->conf_mutex); 6464 6465 if (sta) { 6466 arsta = (struct ath10k_sta *)sta->drv_priv; 6467 peer_addr = sta->addr; 6468 spin_lock_bh(&ar->data_lock); 6469 arsta->ucast_cipher = key->cipher; 6470 spin_unlock_bh(&ar->data_lock); 6471 } else if (arvif->vdev_type == WMI_VDEV_TYPE_STA) { 6472 peer_addr = vif->bss_conf.bssid; 6473 } else { 6474 peer_addr = vif->addr; 6475 } 6476 6477 key->hw_key_idx = key->keyidx; 6478 6479 if (is_wep) { 6480 if (cmd == SET_KEY) 6481 arvif->wep_keys[key->keyidx] = key; 6482 else 6483 arvif->wep_keys[key->keyidx] = NULL; 6484 } 6485 6486 /* the peer should not disappear in mid-way (unless FW goes awry) since 6487 * we already hold conf_mutex. we just make sure its there now. 6488 */ 6489 spin_lock_bh(&ar->data_lock); 6490 peer = ath10k_peer_find(ar, arvif->vdev_id, peer_addr); 6491 spin_unlock_bh(&ar->data_lock); 6492 6493 if (!peer) { 6494 if (cmd == SET_KEY) { 6495 ath10k_warn(ar, "failed to install key for non-existent peer %pM\n", 6496 peer_addr); 6497 ret = -EOPNOTSUPP; 6498 goto exit; 6499 } else { 6500 /* if the peer doesn't exist there is no key to disable anymore */ 6501 goto exit; 6502 } 6503 } 6504 6505 if (key->flags & IEEE80211_KEY_FLAG_PAIRWISE) 6506 flags |= WMI_KEY_PAIRWISE; 6507 else 6508 flags |= WMI_KEY_GROUP; 6509 6510 if (is_wep) { 6511 if (cmd == DISABLE_KEY) 6512 ath10k_clear_vdev_key(arvif, key); 6513 6514 /* When WEP keys are uploaded it's possible that there are 6515 * stations associated already (e.g. when merging) without any 6516 * keys. Static WEP needs an explicit per-peer key upload. 6517 */ 6518 if (vif->type == NL80211_IFTYPE_ADHOC && 6519 cmd == SET_KEY) 6520 ath10k_mac_vif_update_wep_key(arvif, key); 6521 6522 /* 802.1x never sets the def_wep_key_idx so each set_key() 6523 * call changes default tx key. 6524 * 6525 * Static WEP sets def_wep_key_idx via .set_default_unicast_key 6526 * after first set_key(). 6527 */ 6528 if (cmd == SET_KEY && arvif->def_wep_key_idx == -1) 6529 flags |= WMI_KEY_TX_USAGE; 6530 } 6531 6532 ret = ath10k_install_key(arvif, key, cmd, peer_addr, flags); 6533 if (ret) { 6534 WARN_ON(ret > 0); 6535 ath10k_warn(ar, "failed to install key for vdev %i peer %pM: %d\n", 6536 arvif->vdev_id, peer_addr, ret); 6537 goto exit; 6538 } 6539 6540 /* mac80211 sets static WEP keys as groupwise while firmware requires 6541 * them to be installed twice as both pairwise and groupwise. 6542 */ 6543 if (is_wep && !sta && vif->type == NL80211_IFTYPE_STATION) { 6544 flags2 = flags; 6545 flags2 &= ~WMI_KEY_GROUP; 6546 flags2 |= WMI_KEY_PAIRWISE; 6547 6548 ret = ath10k_install_key(arvif, key, cmd, peer_addr, flags2); 6549 if (ret) { 6550 WARN_ON(ret > 0); 6551 ath10k_warn(ar, "failed to install (ucast) key for vdev %i peer %pM: %d\n", 6552 arvif->vdev_id, peer_addr, ret); 6553 ret2 = ath10k_install_key(arvif, key, DISABLE_KEY, 6554 peer_addr, flags); 6555 if (ret2) { 6556 WARN_ON(ret2 > 0); 6557 ath10k_warn(ar, "failed to disable (mcast) key for vdev %i peer %pM: %d\n", 6558 arvif->vdev_id, peer_addr, ret2); 6559 } 6560 goto exit; 6561 } 6562 } 6563 6564 ath10k_set_key_h_def_keyidx(ar, arvif, cmd, key); 6565 6566 spin_lock_bh(&ar->data_lock); 6567 peer = ath10k_peer_find(ar, arvif->vdev_id, peer_addr); 6568 if (peer && cmd == SET_KEY) 6569 peer->keys[key->keyidx] = key; 6570 else if (peer && cmd == DISABLE_KEY) 6571 peer->keys[key->keyidx] = NULL; 6572 else if (peer == NULL) 6573 /* impossible unless FW goes crazy */ 6574 ath10k_warn(ar, "Peer %pM disappeared!\n", peer_addr); 6575 spin_unlock_bh(&ar->data_lock); 6576 6577 if (sta && sta->tdls) 6578 ath10k_wmi_peer_set_param(ar, arvif->vdev_id, sta->addr, 6579 ar->wmi.peer_param->authorize, 1); 6580 else if (sta && cmd == SET_KEY && (key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) 6581 ath10k_wmi_peer_set_param(ar, arvif->vdev_id, peer_addr, 6582 ar->wmi.peer_param->authorize, 1); 6583 6584 exit: 6585 mutex_unlock(&ar->conf_mutex); 6586 return ret; 6587 } 6588 6589 static void ath10k_set_default_unicast_key(struct ieee80211_hw *hw, 6590 struct ieee80211_vif *vif, 6591 int keyidx) 6592 { 6593 struct ath10k *ar = hw->priv; 6594 struct ath10k_vif *arvif = (void *)vif->drv_priv; 6595 int ret; 6596 6597 mutex_lock(&arvif->ar->conf_mutex); 6598 6599 if (arvif->ar->state != ATH10K_STATE_ON) 6600 goto unlock; 6601 6602 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d set keyidx %d\n", 6603 arvif->vdev_id, keyidx); 6604 6605 ret = ath10k_wmi_vdev_set_param(arvif->ar, 6606 arvif->vdev_id, 6607 arvif->ar->wmi.vdev_param->def_keyid, 6608 keyidx); 6609 6610 if (ret) { 6611 ath10k_warn(ar, "failed to update wep key index for vdev %d: %d\n", 6612 arvif->vdev_id, 6613 ret); 6614 goto unlock; 6615 } 6616 6617 arvif->def_wep_key_idx = keyidx; 6618 6619 unlock: 6620 mutex_unlock(&arvif->ar->conf_mutex); 6621 } 6622 6623 static void ath10k_sta_rc_update_wk(struct work_struct *wk) 6624 { 6625 struct ath10k *ar; 6626 struct ath10k_vif *arvif; 6627 struct ath10k_sta *arsta; 6628 struct ieee80211_sta *sta; 6629 struct cfg80211_chan_def def; 6630 enum nl80211_band band; 6631 const u8 *ht_mcs_mask; 6632 const u16 *vht_mcs_mask; 6633 u32 changed, bw, nss, smps; 6634 int err; 6635 6636 arsta = container_of(wk, struct ath10k_sta, update_wk); 6637 sta = container_of((void *)arsta, struct ieee80211_sta, drv_priv); 6638 arvif = arsta->arvif; 6639 ar = arvif->ar; 6640 6641 if (WARN_ON(ath10k_mac_vif_chan(arvif->vif, &def))) 6642 return; 6643 6644 band = def.chan->band; 6645 ht_mcs_mask = arvif->bitrate_mask.control[band].ht_mcs; 6646 vht_mcs_mask = arvif->bitrate_mask.control[band].vht_mcs; 6647 6648 spin_lock_bh(&ar->data_lock); 6649 6650 changed = arsta->changed; 6651 arsta->changed = 0; 6652 6653 bw = arsta->bw; 6654 nss = arsta->nss; 6655 smps = arsta->smps; 6656 6657 spin_unlock_bh(&ar->data_lock); 6658 6659 mutex_lock(&ar->conf_mutex); 6660 6661 nss = max_t(u32, 1, nss); 6662 nss = min(nss, max(ath10k_mac_max_ht_nss(ht_mcs_mask), 6663 ath10k_mac_max_vht_nss(vht_mcs_mask))); 6664 6665 if (changed & IEEE80211_RC_BW_CHANGED) { 6666 enum wmi_phy_mode mode; 6667 6668 mode = chan_to_phymode(&def); 6669 ath10k_dbg(ar, ATH10K_DBG_STA, "mac update sta %pM peer bw %d phymode %d\n", 6670 sta->addr, bw, mode); 6671 6672 err = ath10k_wmi_peer_set_param(ar, arvif->vdev_id, sta->addr, 6673 ar->wmi.peer_param->phymode, mode); 6674 if (err) { 6675 ath10k_warn(ar, "failed to update STA %pM peer phymode %d: %d\n", 6676 sta->addr, mode, err); 6677 goto exit; 6678 } 6679 6680 err = ath10k_wmi_peer_set_param(ar, arvif->vdev_id, sta->addr, 6681 ar->wmi.peer_param->chan_width, bw); 6682 if (err) 6683 ath10k_warn(ar, "failed to update STA %pM peer bw %d: %d\n", 6684 sta->addr, bw, err); 6685 } 6686 6687 if (changed & IEEE80211_RC_NSS_CHANGED) { 6688 ath10k_dbg(ar, ATH10K_DBG_STA, "mac update sta %pM nss %d\n", 6689 sta->addr, nss); 6690 6691 err = ath10k_wmi_peer_set_param(ar, arvif->vdev_id, sta->addr, 6692 ar->wmi.peer_param->nss, nss); 6693 if (err) 6694 ath10k_warn(ar, "failed to update STA %pM nss %d: %d\n", 6695 sta->addr, nss, err); 6696 } 6697 6698 if (changed & IEEE80211_RC_SMPS_CHANGED) { 6699 ath10k_dbg(ar, ATH10K_DBG_STA, "mac update sta %pM smps %d\n", 6700 sta->addr, smps); 6701 6702 err = ath10k_wmi_peer_set_param(ar, arvif->vdev_id, sta->addr, 6703 ar->wmi.peer_param->smps_state, smps); 6704 if (err) 6705 ath10k_warn(ar, "failed to update STA %pM smps %d: %d\n", 6706 sta->addr, smps, err); 6707 } 6708 6709 if (changed & IEEE80211_RC_SUPP_RATES_CHANGED) { 6710 ath10k_dbg(ar, ATH10K_DBG_STA, "mac update sta %pM supp rates\n", 6711 sta->addr); 6712 6713 err = ath10k_station_assoc(ar, arvif->vif, sta, true); 6714 if (err) 6715 ath10k_warn(ar, "failed to reassociate station: %pM\n", 6716 sta->addr); 6717 } 6718 6719 exit: 6720 mutex_unlock(&ar->conf_mutex); 6721 } 6722 6723 static int ath10k_mac_inc_num_stations(struct ath10k_vif *arvif, 6724 struct ieee80211_sta *sta) 6725 { 6726 struct ath10k *ar = arvif->ar; 6727 6728 lockdep_assert_held(&ar->conf_mutex); 6729 6730 if (arvif->vdev_type == WMI_VDEV_TYPE_STA && !sta->tdls) 6731 return 0; 6732 6733 if (ar->num_stations >= ar->max_num_stations) 6734 return -ENOBUFS; 6735 6736 ar->num_stations++; 6737 6738 return 0; 6739 } 6740 6741 static void ath10k_mac_dec_num_stations(struct ath10k_vif *arvif, 6742 struct ieee80211_sta *sta) 6743 { 6744 struct ath10k *ar = arvif->ar; 6745 6746 lockdep_assert_held(&ar->conf_mutex); 6747 6748 if (arvif->vdev_type == WMI_VDEV_TYPE_STA && !sta->tdls) 6749 return; 6750 6751 ar->num_stations--; 6752 } 6753 6754 static int ath10k_sta_set_txpwr(struct ieee80211_hw *hw, 6755 struct ieee80211_vif *vif, 6756 struct ieee80211_sta *sta) 6757 { 6758 struct ath10k *ar = hw->priv; 6759 struct ath10k_vif *arvif = (void *)vif->drv_priv; 6760 int ret = 0; 6761 s16 txpwr; 6762 6763 if (sta->txpwr.type == NL80211_TX_POWER_AUTOMATIC) { 6764 txpwr = 0; 6765 } else { 6766 txpwr = sta->txpwr.power; 6767 if (!txpwr) 6768 return -EINVAL; 6769 } 6770 6771 if (txpwr > ATH10K_TX_POWER_MAX_VAL || txpwr < ATH10K_TX_POWER_MIN_VAL) 6772 return -EINVAL; 6773 6774 mutex_lock(&ar->conf_mutex); 6775 6776 ret = ath10k_wmi_peer_set_param(ar, arvif->vdev_id, sta->addr, 6777 ar->wmi.peer_param->use_fixed_power, txpwr); 6778 if (ret) { 6779 ath10k_warn(ar, "failed to set tx power for station ret: %d\n", 6780 ret); 6781 goto out; 6782 } 6783 6784 out: 6785 mutex_unlock(&ar->conf_mutex); 6786 return ret; 6787 } 6788 6789 struct ath10k_mac_iter_tid_conf_data { 6790 struct ieee80211_vif *curr_vif; 6791 struct ath10k *ar; 6792 bool reset_config; 6793 }; 6794 6795 static bool 6796 ath10k_mac_bitrate_mask_has_single_rate(struct ath10k *ar, 6797 enum nl80211_band band, 6798 const struct cfg80211_bitrate_mask *mask, 6799 int *vht_num_rates) 6800 { 6801 int num_rates = 0; 6802 int i, tmp; 6803 6804 num_rates += hweight32(mask->control[band].legacy); 6805 6806 for (i = 0; i < ARRAY_SIZE(mask->control[band].ht_mcs); i++) 6807 num_rates += hweight8(mask->control[band].ht_mcs[i]); 6808 6809 *vht_num_rates = 0; 6810 for (i = 0; i < ARRAY_SIZE(mask->control[band].vht_mcs); i++) { 6811 tmp = hweight16(mask->control[band].vht_mcs[i]); 6812 num_rates += tmp; 6813 *vht_num_rates += tmp; 6814 } 6815 6816 return num_rates == 1; 6817 } 6818 6819 static int 6820 ath10k_mac_bitrate_mask_get_single_rate(struct ath10k *ar, 6821 enum nl80211_band band, 6822 const struct cfg80211_bitrate_mask *mask, 6823 u8 *rate, u8 *nss, bool vht_only) 6824 { 6825 int rate_idx; 6826 int i; 6827 u16 bitrate; 6828 u8 preamble; 6829 u8 hw_rate; 6830 6831 if (vht_only) 6832 goto next; 6833 6834 if (hweight32(mask->control[band].legacy) == 1) { 6835 rate_idx = ffs(mask->control[band].legacy) - 1; 6836 6837 if (ar->phy_capability & WHAL_WLAN_11A_CAPABILITY) 6838 rate_idx += ATH10K_MAC_FIRST_OFDM_RATE_IDX; 6839 6840 hw_rate = ath10k_wmi_legacy_rates[rate_idx].hw_value; 6841 bitrate = ath10k_wmi_legacy_rates[rate_idx].bitrate; 6842 6843 if (ath10k_mac_bitrate_is_cck(bitrate)) 6844 preamble = WMI_RATE_PREAMBLE_CCK; 6845 else 6846 preamble = WMI_RATE_PREAMBLE_OFDM; 6847 6848 *nss = 1; 6849 *rate = preamble << 6 | 6850 (*nss - 1) << 4 | 6851 hw_rate << 0; 6852 6853 return 0; 6854 } 6855 6856 for (i = 0; i < ARRAY_SIZE(mask->control[band].ht_mcs); i++) { 6857 if (hweight8(mask->control[band].ht_mcs[i]) == 1) { 6858 *nss = i + 1; 6859 *rate = WMI_RATE_PREAMBLE_HT << 6 | 6860 (*nss - 1) << 4 | 6861 (ffs(mask->control[band].ht_mcs[i]) - 1); 6862 6863 return 0; 6864 } 6865 } 6866 6867 next: 6868 for (i = 0; i < ARRAY_SIZE(mask->control[band].vht_mcs); i++) { 6869 if (hweight16(mask->control[band].vht_mcs[i]) == 1) { 6870 *nss = i + 1; 6871 *rate = WMI_RATE_PREAMBLE_VHT << 6 | 6872 (*nss - 1) << 4 | 6873 (ffs(mask->control[band].vht_mcs[i]) - 1); 6874 6875 return 0; 6876 } 6877 } 6878 6879 return -EINVAL; 6880 } 6881 6882 static int ath10k_mac_validate_rate_mask(struct ath10k *ar, 6883 struct ieee80211_sta *sta, 6884 u32 rate_ctrl_flag, u8 nss) 6885 { 6886 if (nss > sta->rx_nss) { 6887 ath10k_warn(ar, "Invalid nss field, configured %u limit %u\n", 6888 nss, sta->rx_nss); 6889 return -EINVAL; 6890 } 6891 6892 if (ATH10K_HW_PREAMBLE(rate_ctrl_flag) == WMI_RATE_PREAMBLE_VHT) { 6893 if (!sta->vht_cap.vht_supported) { 6894 ath10k_warn(ar, "Invalid VHT rate for sta %pM\n", 6895 sta->addr); 6896 return -EINVAL; 6897 } 6898 } else if (ATH10K_HW_PREAMBLE(rate_ctrl_flag) == WMI_RATE_PREAMBLE_HT) { 6899 if (!sta->ht_cap.ht_supported || sta->vht_cap.vht_supported) { 6900 ath10k_warn(ar, "Invalid HT rate for sta %pM\n", 6901 sta->addr); 6902 return -EINVAL; 6903 } 6904 } else { 6905 if (sta->ht_cap.ht_supported || sta->vht_cap.vht_supported) 6906 return -EINVAL; 6907 } 6908 6909 return 0; 6910 } 6911 6912 static int 6913 ath10k_mac_tid_bitrate_config(struct ath10k *ar, 6914 struct ieee80211_vif *vif, 6915 struct ieee80211_sta *sta, 6916 u32 *rate_ctrl_flag, u8 *rate_ctrl, 6917 enum nl80211_tx_rate_setting txrate_type, 6918 const struct cfg80211_bitrate_mask *mask) 6919 { 6920 struct cfg80211_chan_def def; 6921 enum nl80211_band band; 6922 u8 nss, rate; 6923 int vht_num_rates, ret; 6924 6925 if (WARN_ON(ath10k_mac_vif_chan(vif, &def))) 6926 return -EINVAL; 6927 6928 if (txrate_type == NL80211_TX_RATE_AUTOMATIC) { 6929 *rate_ctrl = WMI_TID_CONFIG_RATE_CONTROL_AUTO; 6930 *rate_ctrl_flag = 0; 6931 return 0; 6932 } 6933 6934 band = def.chan->band; 6935 6936 if (!ath10k_mac_bitrate_mask_has_single_rate(ar, band, mask, 6937 &vht_num_rates)) { 6938 return -EINVAL; 6939 } 6940 6941 ret = ath10k_mac_bitrate_mask_get_single_rate(ar, band, mask, 6942 &rate, &nss, false); 6943 if (ret) { 6944 ath10k_warn(ar, "failed to get single rate: %d\n", 6945 ret); 6946 return ret; 6947 } 6948 6949 *rate_ctrl_flag = rate; 6950 6951 if (sta && ath10k_mac_validate_rate_mask(ar, sta, *rate_ctrl_flag, nss)) 6952 return -EINVAL; 6953 6954 if (txrate_type == NL80211_TX_RATE_FIXED) 6955 *rate_ctrl = WMI_TID_CONFIG_RATE_CONTROL_FIXED_RATE; 6956 else if (txrate_type == NL80211_TX_RATE_LIMITED && 6957 (test_bit(WMI_SERVICE_EXT_PEER_TID_CONFIGS_SUPPORT, 6958 ar->wmi.svc_map))) 6959 *rate_ctrl = WMI_PEER_TID_CONFIG_RATE_UPPER_CAP; 6960 else 6961 return -EOPNOTSUPP; 6962 6963 return 0; 6964 } 6965 6966 static int ath10k_mac_set_tid_config(struct ath10k *ar, struct ieee80211_sta *sta, 6967 struct ieee80211_vif *vif, u32 changed, 6968 struct wmi_per_peer_per_tid_cfg_arg *arg) 6969 { 6970 struct ath10k_vif *arvif = (void *)vif->drv_priv; 6971 struct ath10k_sta *arsta; 6972 int ret; 6973 6974 if (sta) { 6975 if (!sta->wme) 6976 return -ENOTSUPP; 6977 6978 arsta = (struct ath10k_sta *)sta->drv_priv; 6979 6980 if (changed & BIT(NL80211_TID_CONFIG_ATTR_NOACK)) { 6981 if ((arsta->retry_long[arg->tid] > 0 || 6982 arsta->rate_code[arg->tid] > 0 || 6983 arsta->ampdu[arg->tid] == 6984 WMI_TID_CONFIG_AGGR_CONTROL_ENABLE) && 6985 arg->ack_policy == WMI_PEER_TID_CONFIG_NOACK) { 6986 changed &= ~BIT(NL80211_TID_CONFIG_ATTR_NOACK); 6987 arg->ack_policy = 0; 6988 arg->aggr_control = 0; 6989 arg->rate_ctrl = 0; 6990 arg->rcode_flags = 0; 6991 } 6992 } 6993 6994 if (changed & BIT(NL80211_TID_CONFIG_ATTR_AMPDU_CTRL)) { 6995 if (arsta->noack[arg->tid] == WMI_PEER_TID_CONFIG_NOACK || 6996 arvif->noack[arg->tid] == WMI_PEER_TID_CONFIG_NOACK) { 6997 arg->aggr_control = 0; 6998 changed &= ~BIT(NL80211_TID_CONFIG_ATTR_RETRY_LONG); 6999 } 7000 } 7001 7002 if (changed & (BIT(NL80211_TID_CONFIG_ATTR_TX_RATE) | 7003 BIT(NL80211_TID_CONFIG_ATTR_TX_RATE_TYPE))) { 7004 if (arsta->noack[arg->tid] == WMI_PEER_TID_CONFIG_NOACK || 7005 arvif->noack[arg->tid] == WMI_PEER_TID_CONFIG_NOACK) { 7006 arg->rate_ctrl = 0; 7007 arg->rcode_flags = 0; 7008 } 7009 } 7010 7011 ether_addr_copy(arg->peer_macaddr.addr, sta->addr); 7012 7013 ret = ath10k_wmi_set_per_peer_per_tid_cfg(ar, arg); 7014 if (ret) 7015 return ret; 7016 7017 /* Store the configured parameters in success case */ 7018 if (changed & BIT(NL80211_TID_CONFIG_ATTR_NOACK)) { 7019 arsta->noack[arg->tid] = arg->ack_policy; 7020 arg->ack_policy = 0; 7021 arg->aggr_control = 0; 7022 arg->rate_ctrl = 0; 7023 arg->rcode_flags = 0; 7024 } 7025 7026 if (changed & BIT(NL80211_TID_CONFIG_ATTR_RETRY_LONG)) { 7027 arsta->retry_long[arg->tid] = arg->retry_count; 7028 arg->retry_count = 0; 7029 } 7030 7031 if (changed & BIT(NL80211_TID_CONFIG_ATTR_AMPDU_CTRL)) { 7032 arsta->ampdu[arg->tid] = arg->aggr_control; 7033 arg->aggr_control = 0; 7034 } 7035 7036 if (changed & (BIT(NL80211_TID_CONFIG_ATTR_TX_RATE) | 7037 BIT(NL80211_TID_CONFIG_ATTR_TX_RATE_TYPE))) { 7038 arsta->rate_ctrl[arg->tid] = arg->rate_ctrl; 7039 arg->rate_ctrl = 0; 7040 arg->rcode_flags = 0; 7041 } 7042 7043 if (changed & BIT(NL80211_TID_CONFIG_ATTR_RTSCTS_CTRL)) { 7044 arsta->rtscts[arg->tid] = arg->rtscts_ctrl; 7045 arg->ext_tid_cfg_bitmap = 0; 7046 } 7047 } else { 7048 if (changed & BIT(NL80211_TID_CONFIG_ATTR_NOACK)) { 7049 if ((arvif->retry_long[arg->tid] || 7050 arvif->rate_code[arg->tid] || 7051 arvif->ampdu[arg->tid] == 7052 WMI_TID_CONFIG_AGGR_CONTROL_ENABLE) && 7053 arg->ack_policy == WMI_PEER_TID_CONFIG_NOACK) { 7054 changed &= ~BIT(NL80211_TID_CONFIG_ATTR_NOACK); 7055 } else { 7056 arvif->noack[arg->tid] = arg->ack_policy; 7057 arvif->ampdu[arg->tid] = arg->aggr_control; 7058 arvif->rate_ctrl[arg->tid] = arg->rate_ctrl; 7059 } 7060 } 7061 7062 if (changed & BIT(NL80211_TID_CONFIG_ATTR_RETRY_LONG)) { 7063 if (arvif->noack[arg->tid] == WMI_PEER_TID_CONFIG_NOACK) 7064 changed &= ~BIT(NL80211_TID_CONFIG_ATTR_RETRY_LONG); 7065 else 7066 arvif->retry_long[arg->tid] = arg->retry_count; 7067 } 7068 7069 if (changed & BIT(NL80211_TID_CONFIG_ATTR_AMPDU_CTRL)) { 7070 if (arvif->noack[arg->tid] == WMI_PEER_TID_CONFIG_NOACK) 7071 changed &= ~BIT(NL80211_TID_CONFIG_ATTR_AMPDU_CTRL); 7072 else 7073 arvif->ampdu[arg->tid] = arg->aggr_control; 7074 } 7075 7076 if (changed & (BIT(NL80211_TID_CONFIG_ATTR_TX_RATE) | 7077 BIT(NL80211_TID_CONFIG_ATTR_TX_RATE_TYPE))) { 7078 if (arvif->noack[arg->tid] == WMI_PEER_TID_CONFIG_NOACK) { 7079 changed &= ~(BIT(NL80211_TID_CONFIG_ATTR_TX_RATE) | 7080 BIT(NL80211_TID_CONFIG_ATTR_TX_RATE_TYPE)); 7081 } else { 7082 arvif->rate_ctrl[arg->tid] = arg->rate_ctrl; 7083 arvif->rate_code[arg->tid] = arg->rcode_flags; 7084 } 7085 } 7086 7087 if (changed & BIT(NL80211_TID_CONFIG_ATTR_RTSCTS_CTRL)) { 7088 arvif->rtscts[arg->tid] = arg->rtscts_ctrl; 7089 arg->ext_tid_cfg_bitmap = 0; 7090 } 7091 7092 if (changed) 7093 arvif->tid_conf_changed[arg->tid] |= changed; 7094 } 7095 7096 return 0; 7097 } 7098 7099 static int 7100 ath10k_mac_parse_tid_config(struct ath10k *ar, 7101 struct ieee80211_sta *sta, 7102 struct ieee80211_vif *vif, 7103 struct cfg80211_tid_cfg *tid_conf, 7104 struct wmi_per_peer_per_tid_cfg_arg *arg) 7105 { 7106 u32 changed = tid_conf->mask; 7107 int ret = 0, i = 0; 7108 7109 if (!changed) 7110 return -EINVAL; 7111 7112 while (i < ATH10K_TID_MAX) { 7113 if (!(tid_conf->tids & BIT(i))) { 7114 i++; 7115 continue; 7116 } 7117 7118 arg->tid = i; 7119 7120 if (changed & BIT(NL80211_TID_CONFIG_ATTR_NOACK)) { 7121 if (tid_conf->noack == NL80211_TID_CONFIG_ENABLE) { 7122 arg->ack_policy = WMI_PEER_TID_CONFIG_NOACK; 7123 arg->rate_ctrl = 7124 WMI_TID_CONFIG_RATE_CONTROL_DEFAULT_LOWEST_RATE; 7125 arg->aggr_control = 7126 WMI_TID_CONFIG_AGGR_CONTROL_DISABLE; 7127 } else { 7128 arg->ack_policy = 7129 WMI_PEER_TID_CONFIG_ACK; 7130 arg->rate_ctrl = 7131 WMI_TID_CONFIG_RATE_CONTROL_AUTO; 7132 arg->aggr_control = 7133 WMI_TID_CONFIG_AGGR_CONTROL_ENABLE; 7134 } 7135 } 7136 7137 if (changed & BIT(NL80211_TID_CONFIG_ATTR_RETRY_LONG)) 7138 arg->retry_count = tid_conf->retry_long; 7139 7140 if (changed & BIT(NL80211_TID_CONFIG_ATTR_AMPDU_CTRL)) { 7141 if (tid_conf->noack == NL80211_TID_CONFIG_ENABLE) 7142 arg->aggr_control = WMI_TID_CONFIG_AGGR_CONTROL_ENABLE; 7143 else 7144 arg->aggr_control = WMI_TID_CONFIG_AGGR_CONTROL_DISABLE; 7145 } 7146 7147 if (changed & (BIT(NL80211_TID_CONFIG_ATTR_TX_RATE) | 7148 BIT(NL80211_TID_CONFIG_ATTR_TX_RATE_TYPE))) { 7149 ret = ath10k_mac_tid_bitrate_config(ar, vif, sta, 7150 &arg->rcode_flags, 7151 &arg->rate_ctrl, 7152 tid_conf->txrate_type, 7153 &tid_conf->txrate_mask); 7154 if (ret) { 7155 ath10k_warn(ar, "failed to configure bitrate mask %d\n", 7156 ret); 7157 arg->rcode_flags = 0; 7158 arg->rate_ctrl = 0; 7159 } 7160 } 7161 7162 if (changed & BIT(NL80211_TID_CONFIG_ATTR_RTSCTS_CTRL)) { 7163 if (tid_conf->rtscts) 7164 arg->rtscts_ctrl = tid_conf->rtscts; 7165 7166 arg->ext_tid_cfg_bitmap = WMI_EXT_TID_RTS_CTS_CONFIG; 7167 } 7168 7169 ret = ath10k_mac_set_tid_config(ar, sta, vif, changed, arg); 7170 if (ret) 7171 return ret; 7172 i++; 7173 } 7174 7175 return ret; 7176 } 7177 7178 static int ath10k_mac_reset_tid_config(struct ath10k *ar, 7179 struct ieee80211_sta *sta, 7180 struct ath10k_vif *arvif, 7181 u8 tids) 7182 { 7183 struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv; 7184 struct wmi_per_peer_per_tid_cfg_arg arg; 7185 int ret = 0, i = 0; 7186 7187 arg.vdev_id = arvif->vdev_id; 7188 while (i < ATH10K_TID_MAX) { 7189 if (!(tids & BIT(i))) { 7190 i++; 7191 continue; 7192 } 7193 7194 arg.tid = i; 7195 arg.ack_policy = WMI_PEER_TID_CONFIG_ACK; 7196 arg.retry_count = ATH10K_MAX_RETRY_COUNT; 7197 arg.rate_ctrl = WMI_TID_CONFIG_RATE_CONTROL_AUTO; 7198 arg.aggr_control = WMI_TID_CONFIG_AGGR_CONTROL_ENABLE; 7199 arg.rtscts_ctrl = WMI_TID_CONFIG_RTSCTS_CONTROL_ENABLE; 7200 arg.ext_tid_cfg_bitmap = WMI_EXT_TID_RTS_CTS_CONFIG; 7201 7202 ether_addr_copy(arg.peer_macaddr.addr, sta->addr); 7203 7204 ret = ath10k_wmi_set_per_peer_per_tid_cfg(ar, &arg); 7205 if (ret) 7206 return ret; 7207 7208 if (!arvif->tids_rst) { 7209 arsta->retry_long[i] = -1; 7210 arsta->noack[i] = -1; 7211 arsta->ampdu[i] = -1; 7212 arsta->rate_code[i] = -1; 7213 arsta->rate_ctrl[i] = 0; 7214 arsta->rtscts[i] = -1; 7215 } else { 7216 arvif->retry_long[i] = 0; 7217 arvif->noack[i] = 0; 7218 arvif->ampdu[i] = 0; 7219 arvif->rate_code[i] = 0; 7220 arvif->rate_ctrl[i] = 0; 7221 arvif->rtscts[i] = 0; 7222 } 7223 7224 i++; 7225 } 7226 7227 return ret; 7228 } 7229 7230 static void ath10k_sta_tid_cfg_wk(struct work_struct *wk) 7231 { 7232 struct wmi_per_peer_per_tid_cfg_arg arg = {}; 7233 struct ieee80211_sta *sta; 7234 struct ath10k_sta *arsta; 7235 struct ath10k_vif *arvif; 7236 struct ath10k *ar; 7237 bool config_apply; 7238 int ret, i; 7239 u32 changed; 7240 u8 nss; 7241 7242 arsta = container_of(wk, struct ath10k_sta, tid_config_wk); 7243 sta = container_of((void *)arsta, struct ieee80211_sta, drv_priv); 7244 arvif = arsta->arvif; 7245 ar = arvif->ar; 7246 7247 mutex_lock(&ar->conf_mutex); 7248 7249 if (arvif->tids_rst) { 7250 ret = ath10k_mac_reset_tid_config(ar, sta, arvif, 7251 arvif->tids_rst); 7252 goto exit; 7253 } 7254 7255 ether_addr_copy(arg.peer_macaddr.addr, sta->addr); 7256 7257 for (i = 0; i < ATH10K_TID_MAX; i++) { 7258 config_apply = false; 7259 changed = arvif->tid_conf_changed[i]; 7260 7261 if (changed & BIT(NL80211_TID_CONFIG_ATTR_NOACK)) { 7262 if (arsta->noack[i] != -1) { 7263 arg.ack_policy = 0; 7264 } else { 7265 config_apply = true; 7266 arg.ack_policy = arvif->noack[i]; 7267 arg.aggr_control = arvif->ampdu[i]; 7268 arg.rate_ctrl = arvif->rate_ctrl[i]; 7269 } 7270 } 7271 7272 if (changed & BIT(NL80211_TID_CONFIG_ATTR_RETRY_LONG)) { 7273 if (arsta->retry_long[i] != -1 || 7274 arsta->noack[i] == WMI_PEER_TID_CONFIG_NOACK || 7275 arvif->noack[i] == WMI_PEER_TID_CONFIG_NOACK) { 7276 arg.retry_count = 0; 7277 } else { 7278 arg.retry_count = arvif->retry_long[i]; 7279 config_apply = true; 7280 } 7281 } 7282 7283 if (changed & BIT(NL80211_TID_CONFIG_ATTR_AMPDU_CTRL)) { 7284 if (arsta->ampdu[i] != -1 || 7285 arsta->noack[i] == WMI_PEER_TID_CONFIG_NOACK || 7286 arvif->noack[i] == WMI_PEER_TID_CONFIG_NOACK) { 7287 arg.aggr_control = 0; 7288 } else { 7289 arg.aggr_control = arvif->ampdu[i]; 7290 config_apply = true; 7291 } 7292 } 7293 7294 if (changed & (BIT(NL80211_TID_CONFIG_ATTR_TX_RATE) | 7295 BIT(NL80211_TID_CONFIG_ATTR_TX_RATE_TYPE))) { 7296 nss = ATH10K_HW_NSS(arvif->rate_code[i]); 7297 ret = ath10k_mac_validate_rate_mask(ar, sta, 7298 arvif->rate_code[i], 7299 nss); 7300 if (ret && 7301 arvif->rate_ctrl[i] > WMI_TID_CONFIG_RATE_CONTROL_AUTO) { 7302 arg.rate_ctrl = 0; 7303 arg.rcode_flags = 0; 7304 } 7305 7306 if (arsta->rate_ctrl[i] > 7307 WMI_TID_CONFIG_RATE_CONTROL_AUTO || 7308 arsta->noack[i] == WMI_PEER_TID_CONFIG_NOACK || 7309 arvif->noack[i] == WMI_PEER_TID_CONFIG_NOACK) { 7310 arg.rate_ctrl = 0; 7311 arg.rcode_flags = 0; 7312 } else { 7313 arg.rate_ctrl = arvif->rate_ctrl[i]; 7314 arg.rcode_flags = arvif->rate_code[i]; 7315 config_apply = true; 7316 } 7317 } 7318 7319 if (changed & BIT(NL80211_TID_CONFIG_ATTR_RTSCTS_CTRL)) { 7320 if (arsta->rtscts[i]) { 7321 arg.rtscts_ctrl = 0; 7322 arg.ext_tid_cfg_bitmap = 0; 7323 } else { 7324 arg.rtscts_ctrl = arvif->rtscts[i] - 1; 7325 arg.ext_tid_cfg_bitmap = 7326 WMI_EXT_TID_RTS_CTS_CONFIG; 7327 config_apply = true; 7328 } 7329 } 7330 7331 arg.tid = i; 7332 7333 if (config_apply) { 7334 ret = ath10k_wmi_set_per_peer_per_tid_cfg(ar, &arg); 7335 if (ret) 7336 ath10k_warn(ar, "failed to set per tid config for sta %pM: %d\n", 7337 sta->addr, ret); 7338 } 7339 7340 arg.ack_policy = 0; 7341 arg.retry_count = 0; 7342 arg.aggr_control = 0; 7343 arg.rate_ctrl = 0; 7344 arg.rcode_flags = 0; 7345 } 7346 7347 exit: 7348 mutex_unlock(&ar->conf_mutex); 7349 } 7350 7351 static void ath10k_mac_vif_stations_tid_conf(void *data, 7352 struct ieee80211_sta *sta) 7353 { 7354 struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv; 7355 struct ath10k_mac_iter_tid_conf_data *iter_data = data; 7356 struct ieee80211_vif *sta_vif = arsta->arvif->vif; 7357 7358 if (sta_vif != iter_data->curr_vif || !sta->wme) 7359 return; 7360 7361 ieee80211_queue_work(iter_data->ar->hw, &arsta->tid_config_wk); 7362 } 7363 7364 static int ath10k_sta_state(struct ieee80211_hw *hw, 7365 struct ieee80211_vif *vif, 7366 struct ieee80211_sta *sta, 7367 enum ieee80211_sta_state old_state, 7368 enum ieee80211_sta_state new_state) 7369 { 7370 struct ath10k *ar = hw->priv; 7371 struct ath10k_vif *arvif = (void *)vif->drv_priv; 7372 struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv; 7373 struct ath10k_peer *peer; 7374 int ret = 0; 7375 int i; 7376 7377 if (old_state == IEEE80211_STA_NOTEXIST && 7378 new_state == IEEE80211_STA_NONE) { 7379 memset(arsta, 0, sizeof(*arsta)); 7380 arsta->arvif = arvif; 7381 arsta->peer_ps_state = WMI_PEER_PS_STATE_DISABLED; 7382 INIT_WORK(&arsta->update_wk, ath10k_sta_rc_update_wk); 7383 INIT_WORK(&arsta->tid_config_wk, ath10k_sta_tid_cfg_wk); 7384 7385 for (i = 0; i < ARRAY_SIZE(sta->txq); i++) 7386 ath10k_mac_txq_init(sta->txq[i]); 7387 } 7388 7389 /* cancel must be done outside the mutex to avoid deadlock */ 7390 if ((old_state == IEEE80211_STA_NONE && 7391 new_state == IEEE80211_STA_NOTEXIST)) { 7392 cancel_work_sync(&arsta->update_wk); 7393 cancel_work_sync(&arsta->tid_config_wk); 7394 } 7395 7396 mutex_lock(&ar->conf_mutex); 7397 7398 if (old_state == IEEE80211_STA_NOTEXIST && 7399 new_state == IEEE80211_STA_NONE) { 7400 /* 7401 * New station addition. 7402 */ 7403 enum wmi_peer_type peer_type = WMI_PEER_TYPE_DEFAULT; 7404 u32 num_tdls_stations; 7405 7406 ath10k_dbg(ar, ATH10K_DBG_STA, 7407 "mac vdev %d peer create %pM (new sta) sta %d / %d peer %d / %d\n", 7408 arvif->vdev_id, sta->addr, 7409 ar->num_stations + 1, ar->max_num_stations, 7410 ar->num_peers + 1, ar->max_num_peers); 7411 7412 num_tdls_stations = ath10k_mac_tdls_vif_stations_count(hw, vif); 7413 7414 if (sta->tdls) { 7415 if (num_tdls_stations >= ar->max_num_tdls_vdevs) { 7416 ath10k_warn(ar, "vdev %i exceeded maximum number of tdls vdevs %i\n", 7417 arvif->vdev_id, 7418 ar->max_num_tdls_vdevs); 7419 ret = -ELNRNG; 7420 goto exit; 7421 } 7422 peer_type = WMI_PEER_TYPE_TDLS; 7423 } 7424 7425 ret = ath10k_mac_inc_num_stations(arvif, sta); 7426 if (ret) { 7427 ath10k_warn(ar, "refusing to associate station: too many connected already (%d)\n", 7428 ar->max_num_stations); 7429 goto exit; 7430 } 7431 7432 if (ath10k_debug_is_extd_tx_stats_enabled(ar)) { 7433 arsta->tx_stats = kzalloc(sizeof(*arsta->tx_stats), 7434 GFP_KERNEL); 7435 if (!arsta->tx_stats) { 7436 ath10k_mac_dec_num_stations(arvif, sta); 7437 ret = -ENOMEM; 7438 goto exit; 7439 } 7440 } 7441 7442 ret = ath10k_peer_create(ar, vif, sta, arvif->vdev_id, 7443 sta->addr, peer_type); 7444 if (ret) { 7445 ath10k_warn(ar, "failed to add peer %pM for vdev %d when adding a new sta: %i\n", 7446 sta->addr, arvif->vdev_id, ret); 7447 ath10k_mac_dec_num_stations(arvif, sta); 7448 kfree(arsta->tx_stats); 7449 goto exit; 7450 } 7451 7452 spin_lock_bh(&ar->data_lock); 7453 7454 peer = ath10k_peer_find(ar, arvif->vdev_id, sta->addr); 7455 if (!peer) { 7456 ath10k_warn(ar, "failed to lookup peer %pM on vdev %i\n", 7457 vif->addr, arvif->vdev_id); 7458 spin_unlock_bh(&ar->data_lock); 7459 ath10k_peer_delete(ar, arvif->vdev_id, sta->addr); 7460 ath10k_mac_dec_num_stations(arvif, sta); 7461 kfree(arsta->tx_stats); 7462 ret = -ENOENT; 7463 goto exit; 7464 } 7465 7466 arsta->peer_id = find_first_bit(peer->peer_ids, 7467 ATH10K_MAX_NUM_PEER_IDS); 7468 7469 spin_unlock_bh(&ar->data_lock); 7470 7471 if (!sta->tdls) 7472 goto exit; 7473 7474 ret = ath10k_wmi_update_fw_tdls_state(ar, arvif->vdev_id, 7475 WMI_TDLS_ENABLE_ACTIVE); 7476 if (ret) { 7477 ath10k_warn(ar, "failed to update fw tdls state on vdev %i: %i\n", 7478 arvif->vdev_id, ret); 7479 ath10k_peer_delete(ar, arvif->vdev_id, 7480 sta->addr); 7481 ath10k_mac_dec_num_stations(arvif, sta); 7482 kfree(arsta->tx_stats); 7483 goto exit; 7484 } 7485 7486 ret = ath10k_mac_tdls_peer_update(ar, arvif->vdev_id, sta, 7487 WMI_TDLS_PEER_STATE_PEERING); 7488 if (ret) { 7489 ath10k_warn(ar, 7490 "failed to update tdls peer %pM for vdev %d when adding a new sta: %i\n", 7491 sta->addr, arvif->vdev_id, ret); 7492 ath10k_peer_delete(ar, arvif->vdev_id, sta->addr); 7493 ath10k_mac_dec_num_stations(arvif, sta); 7494 kfree(arsta->tx_stats); 7495 7496 if (num_tdls_stations != 0) 7497 goto exit; 7498 ath10k_wmi_update_fw_tdls_state(ar, arvif->vdev_id, 7499 WMI_TDLS_DISABLE); 7500 } 7501 } else if ((old_state == IEEE80211_STA_NONE && 7502 new_state == IEEE80211_STA_NOTEXIST)) { 7503 /* 7504 * Existing station deletion. 7505 */ 7506 ath10k_dbg(ar, ATH10K_DBG_STA, 7507 "mac vdev %d peer delete %pM sta %pK (sta gone)\n", 7508 arvif->vdev_id, sta->addr, sta); 7509 7510 if (sta->tdls) { 7511 ret = ath10k_mac_tdls_peer_update(ar, arvif->vdev_id, 7512 sta, 7513 WMI_TDLS_PEER_STATE_TEARDOWN); 7514 if (ret) 7515 ath10k_warn(ar, "failed to update tdls peer state for %pM state %d: %i\n", 7516 sta->addr, 7517 WMI_TDLS_PEER_STATE_TEARDOWN, ret); 7518 } 7519 7520 ret = ath10k_peer_delete(ar, arvif->vdev_id, sta->addr); 7521 if (ret) 7522 ath10k_warn(ar, "failed to delete peer %pM for vdev %d: %i\n", 7523 sta->addr, arvif->vdev_id, ret); 7524 7525 ath10k_mac_dec_num_stations(arvif, sta); 7526 7527 spin_lock_bh(&ar->data_lock); 7528 for (i = 0; i < ARRAY_SIZE(ar->peer_map); i++) { 7529 peer = ar->peer_map[i]; 7530 if (!peer) 7531 continue; 7532 7533 if (peer->sta == sta) { 7534 ath10k_warn(ar, "found sta peer %pM (ptr %pK id %d) entry on vdev %i after it was supposedly removed\n", 7535 sta->addr, peer, i, arvif->vdev_id); 7536 peer->sta = NULL; 7537 7538 /* Clean up the peer object as well since we 7539 * must have failed to do this above. 7540 */ 7541 list_del(&peer->list); 7542 ar->peer_map[i] = NULL; 7543 kfree(peer); 7544 ar->num_peers--; 7545 } 7546 } 7547 spin_unlock_bh(&ar->data_lock); 7548 7549 if (ath10k_debug_is_extd_tx_stats_enabled(ar)) { 7550 kfree(arsta->tx_stats); 7551 arsta->tx_stats = NULL; 7552 } 7553 7554 for (i = 0; i < ARRAY_SIZE(sta->txq); i++) 7555 ath10k_mac_txq_unref(ar, sta->txq[i]); 7556 7557 if (!sta->tdls) 7558 goto exit; 7559 7560 if (ath10k_mac_tdls_vif_stations_count(hw, vif)) 7561 goto exit; 7562 7563 /* This was the last tdls peer in current vif */ 7564 ret = ath10k_wmi_update_fw_tdls_state(ar, arvif->vdev_id, 7565 WMI_TDLS_DISABLE); 7566 if (ret) { 7567 ath10k_warn(ar, "failed to update fw tdls state on vdev %i: %i\n", 7568 arvif->vdev_id, ret); 7569 } 7570 } else if (old_state == IEEE80211_STA_AUTH && 7571 new_state == IEEE80211_STA_ASSOC && 7572 (vif->type == NL80211_IFTYPE_AP || 7573 vif->type == NL80211_IFTYPE_MESH_POINT || 7574 vif->type == NL80211_IFTYPE_ADHOC)) { 7575 /* 7576 * New association. 7577 */ 7578 ath10k_dbg(ar, ATH10K_DBG_STA, "mac sta %pM associated\n", 7579 sta->addr); 7580 7581 ret = ath10k_station_assoc(ar, vif, sta, false); 7582 if (ret) 7583 ath10k_warn(ar, "failed to associate station %pM for vdev %i: %i\n", 7584 sta->addr, arvif->vdev_id, ret); 7585 } else if (old_state == IEEE80211_STA_ASSOC && 7586 new_state == IEEE80211_STA_AUTHORIZED && 7587 sta->tdls) { 7588 /* 7589 * Tdls station authorized. 7590 */ 7591 ath10k_dbg(ar, ATH10K_DBG_STA, "mac tdls sta %pM authorized\n", 7592 sta->addr); 7593 7594 ret = ath10k_station_assoc(ar, vif, sta, false); 7595 if (ret) { 7596 ath10k_warn(ar, "failed to associate tdls station %pM for vdev %i: %i\n", 7597 sta->addr, arvif->vdev_id, ret); 7598 goto exit; 7599 } 7600 7601 ret = ath10k_mac_tdls_peer_update(ar, arvif->vdev_id, sta, 7602 WMI_TDLS_PEER_STATE_CONNECTED); 7603 if (ret) 7604 ath10k_warn(ar, "failed to update tdls peer %pM for vdev %i: %i\n", 7605 sta->addr, arvif->vdev_id, ret); 7606 } else if (old_state == IEEE80211_STA_ASSOC && 7607 new_state == IEEE80211_STA_AUTH && 7608 (vif->type == NL80211_IFTYPE_AP || 7609 vif->type == NL80211_IFTYPE_MESH_POINT || 7610 vif->type == NL80211_IFTYPE_ADHOC)) { 7611 /* 7612 * Disassociation. 7613 */ 7614 ath10k_dbg(ar, ATH10K_DBG_STA, "mac sta %pM disassociated\n", 7615 sta->addr); 7616 7617 ret = ath10k_station_disassoc(ar, vif, sta); 7618 if (ret) 7619 ath10k_warn(ar, "failed to disassociate station: %pM vdev %i: %i\n", 7620 sta->addr, arvif->vdev_id, ret); 7621 } 7622 exit: 7623 mutex_unlock(&ar->conf_mutex); 7624 return ret; 7625 } 7626 7627 static int ath10k_conf_tx_uapsd(struct ath10k *ar, struct ieee80211_vif *vif, 7628 u16 ac, bool enable) 7629 { 7630 struct ath10k_vif *arvif = (void *)vif->drv_priv; 7631 struct wmi_sta_uapsd_auto_trig_arg arg = {}; 7632 u32 prio = 0, acc = 0; 7633 u32 value = 0; 7634 int ret = 0; 7635 7636 lockdep_assert_held(&ar->conf_mutex); 7637 7638 if (arvif->vdev_type != WMI_VDEV_TYPE_STA) 7639 return 0; 7640 7641 switch (ac) { 7642 case IEEE80211_AC_VO: 7643 value = WMI_STA_PS_UAPSD_AC3_DELIVERY_EN | 7644 WMI_STA_PS_UAPSD_AC3_TRIGGER_EN; 7645 prio = 7; 7646 acc = 3; 7647 break; 7648 case IEEE80211_AC_VI: 7649 value = WMI_STA_PS_UAPSD_AC2_DELIVERY_EN | 7650 WMI_STA_PS_UAPSD_AC2_TRIGGER_EN; 7651 prio = 5; 7652 acc = 2; 7653 break; 7654 case IEEE80211_AC_BE: 7655 value = WMI_STA_PS_UAPSD_AC1_DELIVERY_EN | 7656 WMI_STA_PS_UAPSD_AC1_TRIGGER_EN; 7657 prio = 2; 7658 acc = 1; 7659 break; 7660 case IEEE80211_AC_BK: 7661 value = WMI_STA_PS_UAPSD_AC0_DELIVERY_EN | 7662 WMI_STA_PS_UAPSD_AC0_TRIGGER_EN; 7663 prio = 0; 7664 acc = 0; 7665 break; 7666 } 7667 7668 if (enable) 7669 arvif->u.sta.uapsd |= value; 7670 else 7671 arvif->u.sta.uapsd &= ~value; 7672 7673 ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id, 7674 WMI_STA_PS_PARAM_UAPSD, 7675 arvif->u.sta.uapsd); 7676 if (ret) { 7677 ath10k_warn(ar, "failed to set uapsd params: %d\n", ret); 7678 goto exit; 7679 } 7680 7681 if (arvif->u.sta.uapsd) 7682 value = WMI_STA_PS_RX_WAKE_POLICY_POLL_UAPSD; 7683 else 7684 value = WMI_STA_PS_RX_WAKE_POLICY_WAKE; 7685 7686 ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id, 7687 WMI_STA_PS_PARAM_RX_WAKE_POLICY, 7688 value); 7689 if (ret) 7690 ath10k_warn(ar, "failed to set rx wake param: %d\n", ret); 7691 7692 ret = ath10k_mac_vif_recalc_ps_wake_threshold(arvif); 7693 if (ret) { 7694 ath10k_warn(ar, "failed to recalc ps wake threshold on vdev %i: %d\n", 7695 arvif->vdev_id, ret); 7696 return ret; 7697 } 7698 7699 ret = ath10k_mac_vif_recalc_ps_poll_count(arvif); 7700 if (ret) { 7701 ath10k_warn(ar, "failed to recalc ps poll count on vdev %i: %d\n", 7702 arvif->vdev_id, ret); 7703 return ret; 7704 } 7705 7706 if (test_bit(WMI_SERVICE_STA_UAPSD_BASIC_AUTO_TRIG, ar->wmi.svc_map) || 7707 test_bit(WMI_SERVICE_STA_UAPSD_VAR_AUTO_TRIG, ar->wmi.svc_map)) { 7708 /* Only userspace can make an educated decision when to send 7709 * trigger frame. The following effectively disables u-UAPSD 7710 * autotrigger in firmware (which is enabled by default 7711 * provided the autotrigger service is available). 7712 */ 7713 7714 arg.wmm_ac = acc; 7715 arg.user_priority = prio; 7716 arg.service_interval = 0; 7717 arg.suspend_interval = WMI_STA_UAPSD_MAX_INTERVAL_MSEC; 7718 arg.delay_interval = WMI_STA_UAPSD_MAX_INTERVAL_MSEC; 7719 7720 ret = ath10k_wmi_vdev_sta_uapsd(ar, arvif->vdev_id, 7721 arvif->bssid, &arg, 1); 7722 if (ret) { 7723 ath10k_warn(ar, "failed to set uapsd auto trigger %d\n", 7724 ret); 7725 return ret; 7726 } 7727 } 7728 7729 exit: 7730 return ret; 7731 } 7732 7733 static int ath10k_conf_tx(struct ieee80211_hw *hw, 7734 struct ieee80211_vif *vif, u16 ac, 7735 const struct ieee80211_tx_queue_params *params) 7736 { 7737 struct ath10k *ar = hw->priv; 7738 struct ath10k_vif *arvif = (void *)vif->drv_priv; 7739 struct wmi_wmm_params_arg *p = NULL; 7740 int ret; 7741 7742 mutex_lock(&ar->conf_mutex); 7743 7744 switch (ac) { 7745 case IEEE80211_AC_VO: 7746 p = &arvif->wmm_params.ac_vo; 7747 break; 7748 case IEEE80211_AC_VI: 7749 p = &arvif->wmm_params.ac_vi; 7750 break; 7751 case IEEE80211_AC_BE: 7752 p = &arvif->wmm_params.ac_be; 7753 break; 7754 case IEEE80211_AC_BK: 7755 p = &arvif->wmm_params.ac_bk; 7756 break; 7757 } 7758 7759 if (WARN_ON(!p)) { 7760 ret = -EINVAL; 7761 goto exit; 7762 } 7763 7764 p->cwmin = params->cw_min; 7765 p->cwmax = params->cw_max; 7766 p->aifs = params->aifs; 7767 7768 /* 7769 * The channel time duration programmed in the HW is in absolute 7770 * microseconds, while mac80211 gives the txop in units of 7771 * 32 microseconds. 7772 */ 7773 p->txop = params->txop * 32; 7774 7775 if (ar->wmi.ops->gen_vdev_wmm_conf) { 7776 ret = ath10k_wmi_vdev_wmm_conf(ar, arvif->vdev_id, 7777 &arvif->wmm_params); 7778 if (ret) { 7779 ath10k_warn(ar, "failed to set vdev wmm params on vdev %i: %d\n", 7780 arvif->vdev_id, ret); 7781 goto exit; 7782 } 7783 } else { 7784 /* This won't work well with multi-interface cases but it's 7785 * better than nothing. 7786 */ 7787 ret = ath10k_wmi_pdev_set_wmm_params(ar, &arvif->wmm_params); 7788 if (ret) { 7789 ath10k_warn(ar, "failed to set wmm params: %d\n", ret); 7790 goto exit; 7791 } 7792 } 7793 7794 ret = ath10k_conf_tx_uapsd(ar, vif, ac, params->uapsd); 7795 if (ret) 7796 ath10k_warn(ar, "failed to set sta uapsd: %d\n", ret); 7797 7798 exit: 7799 mutex_unlock(&ar->conf_mutex); 7800 return ret; 7801 } 7802 7803 static int ath10k_remain_on_channel(struct ieee80211_hw *hw, 7804 struct ieee80211_vif *vif, 7805 struct ieee80211_channel *chan, 7806 int duration, 7807 enum ieee80211_roc_type type) 7808 { 7809 struct ath10k *ar = hw->priv; 7810 struct ath10k_vif *arvif = (void *)vif->drv_priv; 7811 struct wmi_start_scan_arg arg; 7812 int ret = 0; 7813 u32 scan_time_msec; 7814 7815 mutex_lock(&ar->conf_mutex); 7816 7817 if (ath10k_mac_tdls_vif_stations_count(hw, vif) > 0) { 7818 ret = -EBUSY; 7819 goto exit; 7820 } 7821 7822 spin_lock_bh(&ar->data_lock); 7823 switch (ar->scan.state) { 7824 case ATH10K_SCAN_IDLE: 7825 reinit_completion(&ar->scan.started); 7826 reinit_completion(&ar->scan.completed); 7827 reinit_completion(&ar->scan.on_channel); 7828 ar->scan.state = ATH10K_SCAN_STARTING; 7829 ar->scan.is_roc = true; 7830 ar->scan.vdev_id = arvif->vdev_id; 7831 ar->scan.roc_freq = chan->center_freq; 7832 ar->scan.roc_notify = true; 7833 ret = 0; 7834 break; 7835 case ATH10K_SCAN_STARTING: 7836 case ATH10K_SCAN_RUNNING: 7837 case ATH10K_SCAN_ABORTING: 7838 ret = -EBUSY; 7839 break; 7840 } 7841 spin_unlock_bh(&ar->data_lock); 7842 7843 if (ret) 7844 goto exit; 7845 7846 scan_time_msec = ar->hw->wiphy->max_remain_on_channel_duration * 2; 7847 7848 memset(&arg, 0, sizeof(arg)); 7849 ath10k_wmi_start_scan_init(ar, &arg); 7850 arg.vdev_id = arvif->vdev_id; 7851 arg.scan_id = ATH10K_SCAN_ID; 7852 arg.n_channels = 1; 7853 arg.channels[0] = chan->center_freq; 7854 arg.dwell_time_active = scan_time_msec; 7855 arg.dwell_time_passive = scan_time_msec; 7856 arg.max_scan_time = scan_time_msec; 7857 arg.scan_ctrl_flags |= WMI_SCAN_FLAG_PASSIVE; 7858 arg.scan_ctrl_flags |= WMI_SCAN_FILTER_PROBE_REQ; 7859 arg.burst_duration_ms = duration; 7860 7861 ret = ath10k_start_scan(ar, &arg); 7862 if (ret) { 7863 ath10k_warn(ar, "failed to start roc scan: %d\n", ret); 7864 spin_lock_bh(&ar->data_lock); 7865 ar->scan.state = ATH10K_SCAN_IDLE; 7866 spin_unlock_bh(&ar->data_lock); 7867 goto exit; 7868 } 7869 7870 ret = wait_for_completion_timeout(&ar->scan.on_channel, 3 * HZ); 7871 if (ret == 0) { 7872 ath10k_warn(ar, "failed to switch to channel for roc scan\n"); 7873 7874 ret = ath10k_scan_stop(ar); 7875 if (ret) 7876 ath10k_warn(ar, "failed to stop scan: %d\n", ret); 7877 7878 ret = -ETIMEDOUT; 7879 goto exit; 7880 } 7881 7882 ieee80211_queue_delayed_work(ar->hw, &ar->scan.timeout, 7883 msecs_to_jiffies(duration)); 7884 7885 ret = 0; 7886 exit: 7887 mutex_unlock(&ar->conf_mutex); 7888 return ret; 7889 } 7890 7891 static int ath10k_cancel_remain_on_channel(struct ieee80211_hw *hw, 7892 struct ieee80211_vif *vif) 7893 { 7894 struct ath10k *ar = hw->priv; 7895 7896 mutex_lock(&ar->conf_mutex); 7897 7898 spin_lock_bh(&ar->data_lock); 7899 ar->scan.roc_notify = false; 7900 spin_unlock_bh(&ar->data_lock); 7901 7902 ath10k_scan_abort(ar); 7903 7904 mutex_unlock(&ar->conf_mutex); 7905 7906 cancel_delayed_work_sync(&ar->scan.timeout); 7907 7908 return 0; 7909 } 7910 7911 /* 7912 * Both RTS and Fragmentation threshold are interface-specific 7913 * in ath10k, but device-specific in mac80211. 7914 */ 7915 7916 static int ath10k_set_rts_threshold(struct ieee80211_hw *hw, u32 value) 7917 { 7918 struct ath10k *ar = hw->priv; 7919 struct ath10k_vif *arvif; 7920 int ret = 0; 7921 7922 mutex_lock(&ar->conf_mutex); 7923 list_for_each_entry(arvif, &ar->arvifs, list) { 7924 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d rts threshold %d\n", 7925 arvif->vdev_id, value); 7926 7927 ret = ath10k_mac_set_rts(arvif, value); 7928 if (ret) { 7929 ath10k_warn(ar, "failed to set rts threshold for vdev %d: %d\n", 7930 arvif->vdev_id, ret); 7931 break; 7932 } 7933 } 7934 mutex_unlock(&ar->conf_mutex); 7935 7936 return ret; 7937 } 7938 7939 static int ath10k_mac_op_set_frag_threshold(struct ieee80211_hw *hw, u32 value) 7940 { 7941 /* Even though there's a WMI enum for fragmentation threshold no known 7942 * firmware actually implements it. Moreover it is not possible to rely 7943 * frame fragmentation to mac80211 because firmware clears the "more 7944 * fragments" bit in frame control making it impossible for remote 7945 * devices to reassemble frames. 7946 * 7947 * Hence implement a dummy callback just to say fragmentation isn't 7948 * supported. This effectively prevents mac80211 from doing frame 7949 * fragmentation in software. 7950 */ 7951 return -EOPNOTSUPP; 7952 } 7953 7954 void ath10k_mac_wait_tx_complete(struct ath10k *ar) 7955 { 7956 bool skip; 7957 long time_left; 7958 7959 /* mac80211 doesn't care if we really xmit queued frames or not 7960 * we'll collect those frames either way if we stop/delete vdevs 7961 */ 7962 7963 if (ar->state == ATH10K_STATE_WEDGED) 7964 return; 7965 7966 time_left = wait_event_timeout(ar->htt.empty_tx_wq, ({ 7967 bool empty; 7968 7969 spin_lock_bh(&ar->htt.tx_lock); 7970 empty = (ar->htt.num_pending_tx == 0); 7971 spin_unlock_bh(&ar->htt.tx_lock); 7972 7973 skip = (ar->state == ATH10K_STATE_WEDGED) || 7974 test_bit(ATH10K_FLAG_CRASH_FLUSH, 7975 &ar->dev_flags); 7976 7977 (empty || skip); 7978 }), ATH10K_FLUSH_TIMEOUT_HZ); 7979 7980 if (time_left == 0 || skip) 7981 ath10k_warn(ar, "failed to flush transmit queue (skip %i ar-state %i): %ld\n", 7982 skip, ar->state, time_left); 7983 } 7984 7985 static void ath10k_flush(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 7986 u32 queues, bool drop) 7987 { 7988 struct ath10k *ar = hw->priv; 7989 struct ath10k_vif *arvif; 7990 u32 bitmap; 7991 7992 if (drop) { 7993 if (vif && vif->type == NL80211_IFTYPE_STATION) { 7994 bitmap = ~(1 << WMI_MGMT_TID); 7995 list_for_each_entry(arvif, &ar->arvifs, list) { 7996 if (arvif->vdev_type == WMI_VDEV_TYPE_STA) 7997 ath10k_wmi_peer_flush(ar, arvif->vdev_id, 7998 arvif->bssid, bitmap); 7999 } 8000 ath10k_htt_flush_tx(&ar->htt); 8001 } 8002 return; 8003 } 8004 8005 mutex_lock(&ar->conf_mutex); 8006 ath10k_mac_wait_tx_complete(ar); 8007 mutex_unlock(&ar->conf_mutex); 8008 } 8009 8010 /* TODO: Implement this function properly 8011 * For now it is needed to reply to Probe Requests in IBSS mode. 8012 * Propably we need this information from FW. 8013 */ 8014 static int ath10k_tx_last_beacon(struct ieee80211_hw *hw) 8015 { 8016 return 1; 8017 } 8018 8019 static void ath10k_reconfig_complete(struct ieee80211_hw *hw, 8020 enum ieee80211_reconfig_type reconfig_type) 8021 { 8022 struct ath10k *ar = hw->priv; 8023 8024 if (reconfig_type != IEEE80211_RECONFIG_TYPE_RESTART) 8025 return; 8026 8027 mutex_lock(&ar->conf_mutex); 8028 8029 /* If device failed to restart it will be in a different state, e.g. 8030 * ATH10K_STATE_WEDGED 8031 */ 8032 if (ar->state == ATH10K_STATE_RESTARTED) { 8033 ath10k_info(ar, "device successfully recovered\n"); 8034 ar->state = ATH10K_STATE_ON; 8035 ieee80211_wake_queues(ar->hw); 8036 clear_bit(ATH10K_FLAG_RESTARTING, &ar->dev_flags); 8037 } 8038 8039 mutex_unlock(&ar->conf_mutex); 8040 } 8041 8042 static void 8043 ath10k_mac_update_bss_chan_survey(struct ath10k *ar, 8044 struct ieee80211_channel *channel) 8045 { 8046 int ret; 8047 enum wmi_bss_survey_req_type type = WMI_BSS_SURVEY_REQ_TYPE_READ; 8048 8049 lockdep_assert_held(&ar->conf_mutex); 8050 8051 if (!test_bit(WMI_SERVICE_BSS_CHANNEL_INFO_64, ar->wmi.svc_map) || 8052 (ar->rx_channel != channel)) 8053 return; 8054 8055 if (ar->scan.state != ATH10K_SCAN_IDLE) { 8056 ath10k_dbg(ar, ATH10K_DBG_MAC, "ignoring bss chan info request while scanning..\n"); 8057 return; 8058 } 8059 8060 reinit_completion(&ar->bss_survey_done); 8061 8062 ret = ath10k_wmi_pdev_bss_chan_info_request(ar, type); 8063 if (ret) { 8064 ath10k_warn(ar, "failed to send pdev bss chan info request\n"); 8065 return; 8066 } 8067 8068 ret = wait_for_completion_timeout(&ar->bss_survey_done, 3 * HZ); 8069 if (!ret) { 8070 ath10k_warn(ar, "bss channel survey timed out\n"); 8071 return; 8072 } 8073 } 8074 8075 static int ath10k_get_survey(struct ieee80211_hw *hw, int idx, 8076 struct survey_info *survey) 8077 { 8078 struct ath10k *ar = hw->priv; 8079 struct ieee80211_supported_band *sband; 8080 struct survey_info *ar_survey = &ar->survey[idx]; 8081 int ret = 0; 8082 8083 mutex_lock(&ar->conf_mutex); 8084 8085 sband = hw->wiphy->bands[NL80211_BAND_2GHZ]; 8086 if (sband && idx >= sband->n_channels) { 8087 idx -= sband->n_channels; 8088 sband = NULL; 8089 } 8090 8091 if (!sband) 8092 sband = hw->wiphy->bands[NL80211_BAND_5GHZ]; 8093 8094 if (!sband || idx >= sband->n_channels) { 8095 ret = -ENOENT; 8096 goto exit; 8097 } 8098 8099 ath10k_mac_update_bss_chan_survey(ar, &sband->channels[idx]); 8100 8101 spin_lock_bh(&ar->data_lock); 8102 memcpy(survey, ar_survey, sizeof(*survey)); 8103 spin_unlock_bh(&ar->data_lock); 8104 8105 survey->channel = &sband->channels[idx]; 8106 8107 if (ar->rx_channel == survey->channel) 8108 survey->filled |= SURVEY_INFO_IN_USE; 8109 8110 exit: 8111 mutex_unlock(&ar->conf_mutex); 8112 return ret; 8113 } 8114 8115 static bool 8116 ath10k_mac_bitrate_mask_get_single_nss(struct ath10k *ar, 8117 enum nl80211_band band, 8118 const struct cfg80211_bitrate_mask *mask, 8119 int *nss) 8120 { 8121 struct ieee80211_supported_band *sband = &ar->mac.sbands[band]; 8122 u16 vht_mcs_map = le16_to_cpu(sband->vht_cap.vht_mcs.tx_mcs_map); 8123 u8 ht_nss_mask = 0; 8124 u8 vht_nss_mask = 0; 8125 int i; 8126 8127 if (mask->control[band].legacy) 8128 return false; 8129 8130 for (i = 0; i < ARRAY_SIZE(mask->control[band].ht_mcs); i++) { 8131 if (mask->control[band].ht_mcs[i] == 0) 8132 continue; 8133 else if (mask->control[band].ht_mcs[i] == 8134 sband->ht_cap.mcs.rx_mask[i]) 8135 ht_nss_mask |= BIT(i); 8136 else 8137 return false; 8138 } 8139 8140 for (i = 0; i < ARRAY_SIZE(mask->control[band].vht_mcs); i++) { 8141 if (mask->control[band].vht_mcs[i] == 0) 8142 continue; 8143 else if (mask->control[band].vht_mcs[i] == 8144 ath10k_mac_get_max_vht_mcs_map(vht_mcs_map, i)) 8145 vht_nss_mask |= BIT(i); 8146 else 8147 return false; 8148 } 8149 8150 if (ht_nss_mask != vht_nss_mask) 8151 return false; 8152 8153 if (ht_nss_mask == 0) 8154 return false; 8155 8156 if (BIT(fls(ht_nss_mask)) - 1 != ht_nss_mask) 8157 return false; 8158 8159 *nss = fls(ht_nss_mask); 8160 8161 return true; 8162 } 8163 8164 static int ath10k_mac_set_fixed_rate_params(struct ath10k_vif *arvif, 8165 u8 rate, u8 nss, u8 sgi, u8 ldpc) 8166 { 8167 struct ath10k *ar = arvif->ar; 8168 u32 vdev_param; 8169 int ret; 8170 8171 lockdep_assert_held(&ar->conf_mutex); 8172 8173 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac set fixed rate params vdev %i rate 0x%02x nss %u sgi %u\n", 8174 arvif->vdev_id, rate, nss, sgi); 8175 8176 vdev_param = ar->wmi.vdev_param->fixed_rate; 8177 ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, rate); 8178 if (ret) { 8179 ath10k_warn(ar, "failed to set fixed rate param 0x%02x: %d\n", 8180 rate, ret); 8181 return ret; 8182 } 8183 8184 vdev_param = ar->wmi.vdev_param->nss; 8185 ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, nss); 8186 if (ret) { 8187 ath10k_warn(ar, "failed to set nss param %d: %d\n", nss, ret); 8188 return ret; 8189 } 8190 8191 vdev_param = ar->wmi.vdev_param->sgi; 8192 ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, sgi); 8193 if (ret) { 8194 ath10k_warn(ar, "failed to set sgi param %d: %d\n", sgi, ret); 8195 return ret; 8196 } 8197 8198 vdev_param = ar->wmi.vdev_param->ldpc; 8199 ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, ldpc); 8200 if (ret) { 8201 ath10k_warn(ar, "failed to set ldpc param %d: %d\n", ldpc, ret); 8202 return ret; 8203 } 8204 8205 return 0; 8206 } 8207 8208 static bool 8209 ath10k_mac_can_set_bitrate_mask(struct ath10k *ar, 8210 enum nl80211_band band, 8211 const struct cfg80211_bitrate_mask *mask, 8212 bool allow_pfr) 8213 { 8214 int i; 8215 u16 vht_mcs; 8216 8217 /* Due to firmware limitation in WMI_PEER_ASSOC_CMDID it is impossible 8218 * to express all VHT MCS rate masks. Effectively only the following 8219 * ranges can be used: none, 0-7, 0-8 and 0-9. 8220 */ 8221 for (i = 0; i < NL80211_VHT_NSS_MAX; i++) { 8222 vht_mcs = mask->control[band].vht_mcs[i]; 8223 8224 switch (vht_mcs) { 8225 case 0: 8226 case BIT(8) - 1: 8227 case BIT(9) - 1: 8228 case BIT(10) - 1: 8229 break; 8230 default: 8231 if (!allow_pfr) 8232 ath10k_warn(ar, "refusing bitrate mask with missing 0-7 VHT MCS rates\n"); 8233 return false; 8234 } 8235 } 8236 8237 return true; 8238 } 8239 8240 static bool ath10k_mac_set_vht_bitrate_mask_fixup(struct ath10k *ar, 8241 struct ath10k_vif *arvif, 8242 struct ieee80211_sta *sta) 8243 { 8244 int err; 8245 u8 rate = arvif->vht_pfr; 8246 8247 /* skip non vht and multiple rate peers */ 8248 if (!sta->vht_cap.vht_supported || arvif->vht_num_rates != 1) 8249 return false; 8250 8251 err = ath10k_wmi_peer_set_param(ar, arvif->vdev_id, sta->addr, 8252 WMI_PEER_PARAM_FIXED_RATE, rate); 8253 if (err) 8254 ath10k_warn(ar, "failed to enable STA %pM peer fixed rate: %d\n", 8255 sta->addr, err); 8256 8257 return true; 8258 } 8259 8260 static void ath10k_mac_set_bitrate_mask_iter(void *data, 8261 struct ieee80211_sta *sta) 8262 { 8263 struct ath10k_vif *arvif = data; 8264 struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv; 8265 struct ath10k *ar = arvif->ar; 8266 8267 if (arsta->arvif != arvif) 8268 return; 8269 8270 if (ath10k_mac_set_vht_bitrate_mask_fixup(ar, arvif, sta)) 8271 return; 8272 8273 spin_lock_bh(&ar->data_lock); 8274 arsta->changed |= IEEE80211_RC_SUPP_RATES_CHANGED; 8275 spin_unlock_bh(&ar->data_lock); 8276 8277 ieee80211_queue_work(ar->hw, &arsta->update_wk); 8278 } 8279 8280 static void ath10k_mac_clr_bitrate_mask_iter(void *data, 8281 struct ieee80211_sta *sta) 8282 { 8283 struct ath10k_vif *arvif = data; 8284 struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv; 8285 struct ath10k *ar = arvif->ar; 8286 int err; 8287 8288 /* clear vht peers only */ 8289 if (arsta->arvif != arvif || !sta->vht_cap.vht_supported) 8290 return; 8291 8292 err = ath10k_wmi_peer_set_param(ar, arvif->vdev_id, sta->addr, 8293 WMI_PEER_PARAM_FIXED_RATE, 8294 WMI_FIXED_RATE_NONE); 8295 if (err) 8296 ath10k_warn(ar, "failed to clear STA %pM peer fixed rate: %d\n", 8297 sta->addr, err); 8298 } 8299 8300 static int ath10k_mac_op_set_bitrate_mask(struct ieee80211_hw *hw, 8301 struct ieee80211_vif *vif, 8302 const struct cfg80211_bitrate_mask *mask) 8303 { 8304 struct ath10k_vif *arvif = (void *)vif->drv_priv; 8305 struct cfg80211_chan_def def; 8306 struct ath10k *ar = arvif->ar; 8307 enum nl80211_band band; 8308 const u8 *ht_mcs_mask; 8309 const u16 *vht_mcs_mask; 8310 u8 rate; 8311 u8 nss; 8312 u8 sgi; 8313 u8 ldpc; 8314 int single_nss; 8315 int ret; 8316 int vht_num_rates, allow_pfr; 8317 u8 vht_pfr; 8318 bool update_bitrate_mask = true; 8319 8320 if (ath10k_mac_vif_chan(vif, &def)) 8321 return -EPERM; 8322 8323 band = def.chan->band; 8324 ht_mcs_mask = mask->control[band].ht_mcs; 8325 vht_mcs_mask = mask->control[band].vht_mcs; 8326 ldpc = !!(ar->ht_cap_info & WMI_HT_CAP_LDPC); 8327 8328 sgi = mask->control[band].gi; 8329 if (sgi == NL80211_TXRATE_FORCE_LGI) 8330 return -EINVAL; 8331 8332 allow_pfr = test_bit(ATH10K_FW_FEATURE_PEER_FIXED_RATE, 8333 ar->normal_mode_fw.fw_file.fw_features); 8334 if (allow_pfr) { 8335 mutex_lock(&ar->conf_mutex); 8336 ieee80211_iterate_stations_atomic(ar->hw, 8337 ath10k_mac_clr_bitrate_mask_iter, 8338 arvif); 8339 mutex_unlock(&ar->conf_mutex); 8340 } 8341 8342 if (ath10k_mac_bitrate_mask_has_single_rate(ar, band, mask, 8343 &vht_num_rates)) { 8344 ret = ath10k_mac_bitrate_mask_get_single_rate(ar, band, mask, 8345 &rate, &nss, 8346 false); 8347 if (ret) { 8348 ath10k_warn(ar, "failed to get single rate for vdev %i: %d\n", 8349 arvif->vdev_id, ret); 8350 return ret; 8351 } 8352 } else if (ath10k_mac_bitrate_mask_get_single_nss(ar, band, mask, 8353 &single_nss)) { 8354 rate = WMI_FIXED_RATE_NONE; 8355 nss = single_nss; 8356 } else { 8357 rate = WMI_FIXED_RATE_NONE; 8358 nss = min(ar->num_rf_chains, 8359 max(ath10k_mac_max_ht_nss(ht_mcs_mask), 8360 ath10k_mac_max_vht_nss(vht_mcs_mask))); 8361 8362 if (!ath10k_mac_can_set_bitrate_mask(ar, band, mask, 8363 allow_pfr)) { 8364 u8 vht_nss; 8365 8366 if (!allow_pfr || vht_num_rates != 1) 8367 return -EINVAL; 8368 8369 /* Reach here, firmware supports peer fixed rate and has 8370 * single vht rate, and don't update vif birate_mask, as 8371 * the rate only for specific peer. 8372 */ 8373 ath10k_mac_bitrate_mask_get_single_rate(ar, band, mask, 8374 &vht_pfr, 8375 &vht_nss, 8376 true); 8377 update_bitrate_mask = false; 8378 } else { 8379 vht_pfr = 0; 8380 } 8381 8382 mutex_lock(&ar->conf_mutex); 8383 8384 if (update_bitrate_mask) 8385 arvif->bitrate_mask = *mask; 8386 arvif->vht_num_rates = vht_num_rates; 8387 arvif->vht_pfr = vht_pfr; 8388 ieee80211_iterate_stations_atomic(ar->hw, 8389 ath10k_mac_set_bitrate_mask_iter, 8390 arvif); 8391 8392 mutex_unlock(&ar->conf_mutex); 8393 } 8394 8395 mutex_lock(&ar->conf_mutex); 8396 8397 ret = ath10k_mac_set_fixed_rate_params(arvif, rate, nss, sgi, ldpc); 8398 if (ret) { 8399 ath10k_warn(ar, "failed to set fixed rate params on vdev %i: %d\n", 8400 arvif->vdev_id, ret); 8401 goto exit; 8402 } 8403 8404 exit: 8405 mutex_unlock(&ar->conf_mutex); 8406 8407 return ret; 8408 } 8409 8410 static void ath10k_sta_rc_update(struct ieee80211_hw *hw, 8411 struct ieee80211_vif *vif, 8412 struct ieee80211_sta *sta, 8413 u32 changed) 8414 { 8415 struct ath10k *ar = hw->priv; 8416 struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv; 8417 struct ath10k_vif *arvif = (void *)vif->drv_priv; 8418 struct ath10k_peer *peer; 8419 u32 bw, smps; 8420 8421 spin_lock_bh(&ar->data_lock); 8422 8423 peer = ath10k_peer_find(ar, arvif->vdev_id, sta->addr); 8424 if (!peer) { 8425 spin_unlock_bh(&ar->data_lock); 8426 ath10k_warn(ar, "mac sta rc update failed to find peer %pM on vdev %i\n", 8427 sta->addr, arvif->vdev_id); 8428 return; 8429 } 8430 8431 ath10k_dbg(ar, ATH10K_DBG_STA, 8432 "mac sta rc update for %pM changed %08x bw %d nss %d smps %d\n", 8433 sta->addr, changed, sta->bandwidth, sta->rx_nss, 8434 sta->smps_mode); 8435 8436 if (changed & IEEE80211_RC_BW_CHANGED) { 8437 bw = WMI_PEER_CHWIDTH_20MHZ; 8438 8439 switch (sta->bandwidth) { 8440 case IEEE80211_STA_RX_BW_20: 8441 bw = WMI_PEER_CHWIDTH_20MHZ; 8442 break; 8443 case IEEE80211_STA_RX_BW_40: 8444 bw = WMI_PEER_CHWIDTH_40MHZ; 8445 break; 8446 case IEEE80211_STA_RX_BW_80: 8447 bw = WMI_PEER_CHWIDTH_80MHZ; 8448 break; 8449 case IEEE80211_STA_RX_BW_160: 8450 bw = WMI_PEER_CHWIDTH_160MHZ; 8451 break; 8452 default: 8453 ath10k_warn(ar, "Invalid bandwidth %d in rc update for %pM\n", 8454 sta->bandwidth, sta->addr); 8455 bw = WMI_PEER_CHWIDTH_20MHZ; 8456 break; 8457 } 8458 8459 arsta->bw = bw; 8460 } 8461 8462 if (changed & IEEE80211_RC_NSS_CHANGED) 8463 arsta->nss = sta->rx_nss; 8464 8465 if (changed & IEEE80211_RC_SMPS_CHANGED) { 8466 smps = WMI_PEER_SMPS_PS_NONE; 8467 8468 switch (sta->smps_mode) { 8469 case IEEE80211_SMPS_AUTOMATIC: 8470 case IEEE80211_SMPS_OFF: 8471 smps = WMI_PEER_SMPS_PS_NONE; 8472 break; 8473 case IEEE80211_SMPS_STATIC: 8474 smps = WMI_PEER_SMPS_STATIC; 8475 break; 8476 case IEEE80211_SMPS_DYNAMIC: 8477 smps = WMI_PEER_SMPS_DYNAMIC; 8478 break; 8479 case IEEE80211_SMPS_NUM_MODES: 8480 ath10k_warn(ar, "Invalid smps %d in sta rc update for %pM\n", 8481 sta->smps_mode, sta->addr); 8482 smps = WMI_PEER_SMPS_PS_NONE; 8483 break; 8484 } 8485 8486 arsta->smps = smps; 8487 } 8488 8489 arsta->changed |= changed; 8490 8491 spin_unlock_bh(&ar->data_lock); 8492 8493 ieee80211_queue_work(hw, &arsta->update_wk); 8494 } 8495 8496 static void ath10k_offset_tsf(struct ieee80211_hw *hw, 8497 struct ieee80211_vif *vif, s64 tsf_offset) 8498 { 8499 struct ath10k *ar = hw->priv; 8500 struct ath10k_vif *arvif = (void *)vif->drv_priv; 8501 u32 offset, vdev_param; 8502 int ret; 8503 8504 if (tsf_offset < 0) { 8505 vdev_param = ar->wmi.vdev_param->dec_tsf; 8506 offset = -tsf_offset; 8507 } else { 8508 vdev_param = ar->wmi.vdev_param->inc_tsf; 8509 offset = tsf_offset; 8510 } 8511 8512 ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, 8513 vdev_param, offset); 8514 8515 if (ret && ret != -EOPNOTSUPP) 8516 ath10k_warn(ar, "failed to set tsf offset %d cmd %d: %d\n", 8517 offset, vdev_param, ret); 8518 } 8519 8520 static int ath10k_ampdu_action(struct ieee80211_hw *hw, 8521 struct ieee80211_vif *vif, 8522 struct ieee80211_ampdu_params *params) 8523 { 8524 struct ath10k *ar = hw->priv; 8525 struct ath10k_vif *arvif = (void *)vif->drv_priv; 8526 struct ieee80211_sta *sta = params->sta; 8527 enum ieee80211_ampdu_mlme_action action = params->action; 8528 u16 tid = params->tid; 8529 8530 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac ampdu vdev_id %i sta %pM tid %u action %d\n", 8531 arvif->vdev_id, sta->addr, tid, action); 8532 8533 switch (action) { 8534 case IEEE80211_AMPDU_RX_START: 8535 case IEEE80211_AMPDU_RX_STOP: 8536 /* HTT AddBa/DelBa events trigger mac80211 Rx BA session 8537 * creation/removal. Do we need to verify this? 8538 */ 8539 return 0; 8540 case IEEE80211_AMPDU_TX_START: 8541 case IEEE80211_AMPDU_TX_STOP_CONT: 8542 case IEEE80211_AMPDU_TX_STOP_FLUSH: 8543 case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT: 8544 case IEEE80211_AMPDU_TX_OPERATIONAL: 8545 /* Firmware offloads Tx aggregation entirely so deny mac80211 8546 * Tx aggregation requests. 8547 */ 8548 return -EOPNOTSUPP; 8549 } 8550 8551 return -EINVAL; 8552 } 8553 8554 static void 8555 ath10k_mac_update_rx_channel(struct ath10k *ar, 8556 struct ieee80211_chanctx_conf *ctx, 8557 struct ieee80211_vif_chanctx_switch *vifs, 8558 int n_vifs) 8559 { 8560 struct cfg80211_chan_def *def = NULL; 8561 8562 /* Both locks are required because ar->rx_channel is modified. This 8563 * allows readers to hold either lock. 8564 */ 8565 lockdep_assert_held(&ar->conf_mutex); 8566 lockdep_assert_held(&ar->data_lock); 8567 8568 WARN_ON(ctx && vifs); 8569 WARN_ON(vifs && !n_vifs); 8570 8571 /* FIXME: Sort of an optimization and a workaround. Peers and vifs are 8572 * on a linked list now. Doing a lookup peer -> vif -> chanctx for each 8573 * ppdu on Rx may reduce performance on low-end systems. It should be 8574 * possible to make tables/hashmaps to speed the lookup up (be vary of 8575 * cpu data cache lines though regarding sizes) but to keep the initial 8576 * implementation simple and less intrusive fallback to the slow lookup 8577 * only for multi-channel cases. Single-channel cases will remain to 8578 * use the old channel derival and thus performance should not be 8579 * affected much. 8580 */ 8581 rcu_read_lock(); 8582 if (!ctx && ath10k_mac_num_chanctxs(ar) == 1) { 8583 ieee80211_iter_chan_contexts_atomic(ar->hw, 8584 ath10k_mac_get_any_chandef_iter, 8585 &def); 8586 8587 if (vifs) 8588 def = &vifs[0].new_ctx->def; 8589 8590 ar->rx_channel = def->chan; 8591 } else if ((ctx && ath10k_mac_num_chanctxs(ar) == 0) || 8592 (ctx && (ar->state == ATH10K_STATE_RESTARTED))) { 8593 /* During driver restart due to firmware assert, since mac80211 8594 * already has valid channel context for given radio, channel 8595 * context iteration return num_chanctx > 0. So fix rx_channel 8596 * when restart is in progress. 8597 */ 8598 ar->rx_channel = ctx->def.chan; 8599 } else { 8600 ar->rx_channel = NULL; 8601 } 8602 rcu_read_unlock(); 8603 } 8604 8605 static void 8606 ath10k_mac_update_vif_chan(struct ath10k *ar, 8607 struct ieee80211_vif_chanctx_switch *vifs, 8608 int n_vifs) 8609 { 8610 struct ath10k_vif *arvif; 8611 int ret; 8612 int i; 8613 8614 lockdep_assert_held(&ar->conf_mutex); 8615 8616 /* First stop monitor interface. Some FW versions crash if there's a 8617 * lone monitor interface. 8618 */ 8619 if (ar->monitor_started) 8620 ath10k_monitor_stop(ar); 8621 8622 for (i = 0; i < n_vifs; i++) { 8623 arvif = (void *)vifs[i].vif->drv_priv; 8624 8625 ath10k_dbg(ar, ATH10K_DBG_MAC, 8626 "mac chanctx switch vdev_id %i freq %u->%u width %d->%d\n", 8627 arvif->vdev_id, 8628 vifs[i].old_ctx->def.chan->center_freq, 8629 vifs[i].new_ctx->def.chan->center_freq, 8630 vifs[i].old_ctx->def.width, 8631 vifs[i].new_ctx->def.width); 8632 8633 if (WARN_ON(!arvif->is_started)) 8634 continue; 8635 8636 if (WARN_ON(!arvif->is_up)) 8637 continue; 8638 8639 ret = ath10k_wmi_vdev_down(ar, arvif->vdev_id); 8640 if (ret) { 8641 ath10k_warn(ar, "failed to down vdev %d: %d\n", 8642 arvif->vdev_id, ret); 8643 continue; 8644 } 8645 } 8646 8647 /* All relevant vdevs are downed and associated channel resources 8648 * should be available for the channel switch now. 8649 */ 8650 8651 spin_lock_bh(&ar->data_lock); 8652 ath10k_mac_update_rx_channel(ar, NULL, vifs, n_vifs); 8653 spin_unlock_bh(&ar->data_lock); 8654 8655 for (i = 0; i < n_vifs; i++) { 8656 arvif = (void *)vifs[i].vif->drv_priv; 8657 8658 if (WARN_ON(!arvif->is_started)) 8659 continue; 8660 8661 if (WARN_ON(!arvif->is_up)) 8662 continue; 8663 8664 ret = ath10k_mac_setup_bcn_tmpl(arvif); 8665 if (ret) 8666 ath10k_warn(ar, "failed to update bcn tmpl during csa: %d\n", 8667 ret); 8668 8669 ret = ath10k_mac_setup_prb_tmpl(arvif); 8670 if (ret) 8671 ath10k_warn(ar, "failed to update prb tmpl during csa: %d\n", 8672 ret); 8673 8674 ret = ath10k_vdev_restart(arvif, &vifs[i].new_ctx->def); 8675 if (ret) { 8676 ath10k_warn(ar, "failed to restart vdev %d: %d\n", 8677 arvif->vdev_id, ret); 8678 continue; 8679 } 8680 8681 ret = ath10k_wmi_vdev_up(arvif->ar, arvif->vdev_id, arvif->aid, 8682 arvif->bssid); 8683 if (ret) { 8684 ath10k_warn(ar, "failed to bring vdev up %d: %d\n", 8685 arvif->vdev_id, ret); 8686 continue; 8687 } 8688 } 8689 8690 ath10k_monitor_recalc(ar); 8691 } 8692 8693 static int 8694 ath10k_mac_op_add_chanctx(struct ieee80211_hw *hw, 8695 struct ieee80211_chanctx_conf *ctx) 8696 { 8697 struct ath10k *ar = hw->priv; 8698 8699 ath10k_dbg(ar, ATH10K_DBG_MAC, 8700 "mac chanctx add freq %u width %d ptr %pK\n", 8701 ctx->def.chan->center_freq, ctx->def.width, ctx); 8702 8703 mutex_lock(&ar->conf_mutex); 8704 8705 spin_lock_bh(&ar->data_lock); 8706 ath10k_mac_update_rx_channel(ar, ctx, NULL, 0); 8707 spin_unlock_bh(&ar->data_lock); 8708 8709 ath10k_recalc_radar_detection(ar); 8710 ath10k_monitor_recalc(ar); 8711 8712 mutex_unlock(&ar->conf_mutex); 8713 8714 return 0; 8715 } 8716 8717 static void 8718 ath10k_mac_op_remove_chanctx(struct ieee80211_hw *hw, 8719 struct ieee80211_chanctx_conf *ctx) 8720 { 8721 struct ath10k *ar = hw->priv; 8722 8723 ath10k_dbg(ar, ATH10K_DBG_MAC, 8724 "mac chanctx remove freq %u width %d ptr %pK\n", 8725 ctx->def.chan->center_freq, ctx->def.width, ctx); 8726 8727 mutex_lock(&ar->conf_mutex); 8728 8729 spin_lock_bh(&ar->data_lock); 8730 ath10k_mac_update_rx_channel(ar, NULL, NULL, 0); 8731 spin_unlock_bh(&ar->data_lock); 8732 8733 ath10k_recalc_radar_detection(ar); 8734 ath10k_monitor_recalc(ar); 8735 8736 mutex_unlock(&ar->conf_mutex); 8737 } 8738 8739 struct ath10k_mac_change_chanctx_arg { 8740 struct ieee80211_chanctx_conf *ctx; 8741 struct ieee80211_vif_chanctx_switch *vifs; 8742 int n_vifs; 8743 int next_vif; 8744 }; 8745 8746 static void 8747 ath10k_mac_change_chanctx_cnt_iter(void *data, u8 *mac, 8748 struct ieee80211_vif *vif) 8749 { 8750 struct ath10k_mac_change_chanctx_arg *arg = data; 8751 8752 if (rcu_access_pointer(vif->chanctx_conf) != arg->ctx) 8753 return; 8754 8755 arg->n_vifs++; 8756 } 8757 8758 static void 8759 ath10k_mac_change_chanctx_fill_iter(void *data, u8 *mac, 8760 struct ieee80211_vif *vif) 8761 { 8762 struct ath10k_mac_change_chanctx_arg *arg = data; 8763 struct ieee80211_chanctx_conf *ctx; 8764 8765 ctx = rcu_access_pointer(vif->chanctx_conf); 8766 if (ctx != arg->ctx) 8767 return; 8768 8769 if (WARN_ON(arg->next_vif == arg->n_vifs)) 8770 return; 8771 8772 arg->vifs[arg->next_vif].vif = vif; 8773 arg->vifs[arg->next_vif].old_ctx = ctx; 8774 arg->vifs[arg->next_vif].new_ctx = ctx; 8775 arg->next_vif++; 8776 } 8777 8778 static void 8779 ath10k_mac_op_change_chanctx(struct ieee80211_hw *hw, 8780 struct ieee80211_chanctx_conf *ctx, 8781 u32 changed) 8782 { 8783 struct ath10k *ar = hw->priv; 8784 struct ath10k_mac_change_chanctx_arg arg = { .ctx = ctx }; 8785 8786 mutex_lock(&ar->conf_mutex); 8787 8788 ath10k_dbg(ar, ATH10K_DBG_MAC, 8789 "mac chanctx change freq %u width %d ptr %pK changed %x\n", 8790 ctx->def.chan->center_freq, ctx->def.width, ctx, changed); 8791 8792 /* This shouldn't really happen because channel switching should use 8793 * switch_vif_chanctx(). 8794 */ 8795 if (WARN_ON(changed & IEEE80211_CHANCTX_CHANGE_CHANNEL)) 8796 goto unlock; 8797 8798 if (changed & IEEE80211_CHANCTX_CHANGE_WIDTH) { 8799 ieee80211_iterate_active_interfaces_atomic( 8800 hw, 8801 ATH10K_ITER_NORMAL_FLAGS, 8802 ath10k_mac_change_chanctx_cnt_iter, 8803 &arg); 8804 if (arg.n_vifs == 0) 8805 goto radar; 8806 8807 arg.vifs = kcalloc(arg.n_vifs, sizeof(arg.vifs[0]), 8808 GFP_KERNEL); 8809 if (!arg.vifs) 8810 goto radar; 8811 8812 ieee80211_iterate_active_interfaces_atomic( 8813 hw, 8814 ATH10K_ITER_NORMAL_FLAGS, 8815 ath10k_mac_change_chanctx_fill_iter, 8816 &arg); 8817 ath10k_mac_update_vif_chan(ar, arg.vifs, arg.n_vifs); 8818 kfree(arg.vifs); 8819 } 8820 8821 radar: 8822 ath10k_recalc_radar_detection(ar); 8823 8824 /* FIXME: How to configure Rx chains properly? */ 8825 8826 /* No other actions are actually necessary. Firmware maintains channel 8827 * definitions per vdev internally and there's no host-side channel 8828 * context abstraction to configure, e.g. channel width. 8829 */ 8830 8831 unlock: 8832 mutex_unlock(&ar->conf_mutex); 8833 } 8834 8835 static int 8836 ath10k_mac_op_assign_vif_chanctx(struct ieee80211_hw *hw, 8837 struct ieee80211_vif *vif, 8838 struct ieee80211_chanctx_conf *ctx) 8839 { 8840 struct ath10k *ar = hw->priv; 8841 struct ath10k_vif *arvif = (void *)vif->drv_priv; 8842 int ret; 8843 8844 mutex_lock(&ar->conf_mutex); 8845 8846 ath10k_dbg(ar, ATH10K_DBG_MAC, 8847 "mac chanctx assign ptr %pK vdev_id %i\n", 8848 ctx, arvif->vdev_id); 8849 8850 if (WARN_ON(arvif->is_started)) { 8851 mutex_unlock(&ar->conf_mutex); 8852 return -EBUSY; 8853 } 8854 8855 ret = ath10k_vdev_start(arvif, &ctx->def); 8856 if (ret) { 8857 ath10k_warn(ar, "failed to start vdev %i addr %pM on freq %d: %d\n", 8858 arvif->vdev_id, vif->addr, 8859 ctx->def.chan->center_freq, ret); 8860 goto err; 8861 } 8862 8863 arvif->is_started = true; 8864 8865 ret = ath10k_mac_vif_setup_ps(arvif); 8866 if (ret) { 8867 ath10k_warn(ar, "failed to update vdev %i ps: %d\n", 8868 arvif->vdev_id, ret); 8869 goto err_stop; 8870 } 8871 8872 if (vif->type == NL80211_IFTYPE_MONITOR) { 8873 ret = ath10k_wmi_vdev_up(ar, arvif->vdev_id, 0, vif->addr); 8874 if (ret) { 8875 ath10k_warn(ar, "failed to up monitor vdev %i: %d\n", 8876 arvif->vdev_id, ret); 8877 goto err_stop; 8878 } 8879 8880 arvif->is_up = true; 8881 } 8882 8883 if (ath10k_mac_can_set_cts_prot(arvif)) { 8884 ret = ath10k_mac_set_cts_prot(arvif); 8885 if (ret) 8886 ath10k_warn(ar, "failed to set cts protection for vdev %d: %d\n", 8887 arvif->vdev_id, ret); 8888 } 8889 8890 if (ath10k_peer_stats_enabled(ar) && 8891 ar->hw_params.tx_stats_over_pktlog) { 8892 ar->pktlog_filter |= ATH10K_PKTLOG_PEER_STATS; 8893 ret = ath10k_wmi_pdev_pktlog_enable(ar, 8894 ar->pktlog_filter); 8895 if (ret) { 8896 ath10k_warn(ar, "failed to enable pktlog %d\n", ret); 8897 goto err_stop; 8898 } 8899 } 8900 8901 mutex_unlock(&ar->conf_mutex); 8902 return 0; 8903 8904 err_stop: 8905 ath10k_vdev_stop(arvif); 8906 arvif->is_started = false; 8907 ath10k_mac_vif_setup_ps(arvif); 8908 8909 err: 8910 mutex_unlock(&ar->conf_mutex); 8911 return ret; 8912 } 8913 8914 static void 8915 ath10k_mac_op_unassign_vif_chanctx(struct ieee80211_hw *hw, 8916 struct ieee80211_vif *vif, 8917 struct ieee80211_chanctx_conf *ctx) 8918 { 8919 struct ath10k *ar = hw->priv; 8920 struct ath10k_vif *arvif = (void *)vif->drv_priv; 8921 int ret; 8922 8923 mutex_lock(&ar->conf_mutex); 8924 8925 ath10k_dbg(ar, ATH10K_DBG_MAC, 8926 "mac chanctx unassign ptr %pK vdev_id %i\n", 8927 ctx, arvif->vdev_id); 8928 8929 WARN_ON(!arvif->is_started); 8930 8931 if (vif->type == NL80211_IFTYPE_MONITOR) { 8932 WARN_ON(!arvif->is_up); 8933 8934 ret = ath10k_wmi_vdev_down(ar, arvif->vdev_id); 8935 if (ret) 8936 ath10k_warn(ar, "failed to down monitor vdev %i: %d\n", 8937 arvif->vdev_id, ret); 8938 8939 arvif->is_up = false; 8940 } 8941 8942 ret = ath10k_vdev_stop(arvif); 8943 if (ret) 8944 ath10k_warn(ar, "failed to stop vdev %i: %d\n", 8945 arvif->vdev_id, ret); 8946 8947 arvif->is_started = false; 8948 8949 mutex_unlock(&ar->conf_mutex); 8950 } 8951 8952 static int 8953 ath10k_mac_op_switch_vif_chanctx(struct ieee80211_hw *hw, 8954 struct ieee80211_vif_chanctx_switch *vifs, 8955 int n_vifs, 8956 enum ieee80211_chanctx_switch_mode mode) 8957 { 8958 struct ath10k *ar = hw->priv; 8959 8960 mutex_lock(&ar->conf_mutex); 8961 8962 ath10k_dbg(ar, ATH10K_DBG_MAC, 8963 "mac chanctx switch n_vifs %d mode %d\n", 8964 n_vifs, mode); 8965 ath10k_mac_update_vif_chan(ar, vifs, n_vifs); 8966 8967 mutex_unlock(&ar->conf_mutex); 8968 return 0; 8969 } 8970 8971 static void ath10k_mac_op_sta_pre_rcu_remove(struct ieee80211_hw *hw, 8972 struct ieee80211_vif *vif, 8973 struct ieee80211_sta *sta) 8974 { 8975 struct ath10k *ar; 8976 struct ath10k_peer *peer; 8977 8978 ar = hw->priv; 8979 8980 list_for_each_entry(peer, &ar->peers, list) 8981 if (peer->sta == sta) 8982 peer->removed = true; 8983 } 8984 8985 /* HT MCS parameters with Nss = 1 */ 8986 static const struct ath10k_index_ht_data_rate_type supported_ht_mcs_rate_nss1[] = { 8987 /* MCS L20 L40 S20 S40 */ 8988 {0, { 65, 135, 72, 150} }, 8989 {1, { 130, 270, 144, 300} }, 8990 {2, { 195, 405, 217, 450} }, 8991 {3, { 260, 540, 289, 600} }, 8992 {4, { 390, 810, 433, 900} }, 8993 {5, { 520, 1080, 578, 1200} }, 8994 {6, { 585, 1215, 650, 1350} }, 8995 {7, { 650, 1350, 722, 1500} } 8996 }; 8997 8998 /* HT MCS parameters with Nss = 2 */ 8999 static const struct ath10k_index_ht_data_rate_type supported_ht_mcs_rate_nss2[] = { 9000 /* MCS L20 L40 S20 S40 */ 9001 {0, {130, 270, 144, 300} }, 9002 {1, {260, 540, 289, 600} }, 9003 {2, {390, 810, 433, 900} }, 9004 {3, {520, 1080, 578, 1200} }, 9005 {4, {780, 1620, 867, 1800} }, 9006 {5, {1040, 2160, 1156, 2400} }, 9007 {6, {1170, 2430, 1300, 2700} }, 9008 {7, {1300, 2700, 1444, 3000} } 9009 }; 9010 9011 /* MCS parameters with Nss = 1 */ 9012 static const struct ath10k_index_vht_data_rate_type supported_vht_mcs_rate_nss1[] = { 9013 /* MCS L80 S80 L40 S40 L20 S20 */ 9014 {0, {293, 325}, {135, 150}, {65, 72} }, 9015 {1, {585, 650}, {270, 300}, {130, 144} }, 9016 {2, {878, 975}, {405, 450}, {195, 217} }, 9017 {3, {1170, 1300}, {540, 600}, {260, 289} }, 9018 {4, {1755, 1950}, {810, 900}, {390, 433} }, 9019 {5, {2340, 2600}, {1080, 1200}, {520, 578} }, 9020 {6, {2633, 2925}, {1215, 1350}, {585, 650} }, 9021 {7, {2925, 3250}, {1350, 1500}, {650, 722} }, 9022 {8, {3510, 3900}, {1620, 1800}, {780, 867} }, 9023 {9, {3900, 4333}, {1800, 2000}, {780, 867} } 9024 }; 9025 9026 /*MCS parameters with Nss = 2 */ 9027 static const struct ath10k_index_vht_data_rate_type supported_vht_mcs_rate_nss2[] = { 9028 /* MCS L80 S80 L40 S40 L20 S20 */ 9029 {0, {585, 650}, {270, 300}, {130, 144} }, 9030 {1, {1170, 1300}, {540, 600}, {260, 289} }, 9031 {2, {1755, 1950}, {810, 900}, {390, 433} }, 9032 {3, {2340, 2600}, {1080, 1200}, {520, 578} }, 9033 {4, {3510, 3900}, {1620, 1800}, {780, 867} }, 9034 {5, {4680, 5200}, {2160, 2400}, {1040, 1156} }, 9035 {6, {5265, 5850}, {2430, 2700}, {1170, 1300} }, 9036 {7, {5850, 6500}, {2700, 3000}, {1300, 1444} }, 9037 {8, {7020, 7800}, {3240, 3600}, {1560, 1733} }, 9038 {9, {7800, 8667}, {3600, 4000}, {1560, 1733} } 9039 }; 9040 9041 static void ath10k_mac_get_rate_flags_ht(struct ath10k *ar, u32 rate, u8 nss, u8 mcs, 9042 u8 *flags, u8 *bw) 9043 { 9044 struct ath10k_index_ht_data_rate_type *mcs_rate; 9045 u8 index; 9046 size_t len_nss1 = ARRAY_SIZE(supported_ht_mcs_rate_nss1); 9047 size_t len_nss2 = ARRAY_SIZE(supported_ht_mcs_rate_nss2); 9048 9049 if (mcs >= (len_nss1 + len_nss2)) { 9050 ath10k_warn(ar, "not supported mcs %d in current rate table", mcs); 9051 return; 9052 } 9053 9054 mcs_rate = (struct ath10k_index_ht_data_rate_type *) 9055 ((nss == 1) ? &supported_ht_mcs_rate_nss1 : 9056 &supported_ht_mcs_rate_nss2); 9057 9058 if (mcs >= len_nss1) 9059 index = mcs - len_nss1; 9060 else 9061 index = mcs; 9062 9063 if (rate == mcs_rate[index].supported_rate[0]) { 9064 *bw = RATE_INFO_BW_20; 9065 } else if (rate == mcs_rate[index].supported_rate[1]) { 9066 *bw |= RATE_INFO_BW_40; 9067 } else if (rate == mcs_rate[index].supported_rate[2]) { 9068 *bw |= RATE_INFO_BW_20; 9069 *flags |= RATE_INFO_FLAGS_SHORT_GI; 9070 } else if (rate == mcs_rate[index].supported_rate[3]) { 9071 *bw |= RATE_INFO_BW_40; 9072 *flags |= RATE_INFO_FLAGS_SHORT_GI; 9073 } else { 9074 ath10k_warn(ar, "invalid ht params rate %d 100kbps nss %d mcs %d", 9075 rate, nss, mcs); 9076 } 9077 } 9078 9079 static void ath10k_mac_get_rate_flags_vht(struct ath10k *ar, u32 rate, u8 nss, u8 mcs, 9080 u8 *flags, u8 *bw) 9081 { 9082 struct ath10k_index_vht_data_rate_type *mcs_rate; 9083 9084 mcs_rate = (struct ath10k_index_vht_data_rate_type *) 9085 ((nss == 1) ? &supported_vht_mcs_rate_nss1 : 9086 &supported_vht_mcs_rate_nss2); 9087 9088 if (rate == mcs_rate[mcs].supported_VHT80_rate[0]) { 9089 *bw = RATE_INFO_BW_80; 9090 } else if (rate == mcs_rate[mcs].supported_VHT80_rate[1]) { 9091 *bw = RATE_INFO_BW_80; 9092 *flags |= RATE_INFO_FLAGS_SHORT_GI; 9093 } else if (rate == mcs_rate[mcs].supported_VHT40_rate[0]) { 9094 *bw = RATE_INFO_BW_40; 9095 } else if (rate == mcs_rate[mcs].supported_VHT40_rate[1]) { 9096 *bw = RATE_INFO_BW_40; 9097 *flags |= RATE_INFO_FLAGS_SHORT_GI; 9098 } else if (rate == mcs_rate[mcs].supported_VHT20_rate[0]) { 9099 *bw = RATE_INFO_BW_20; 9100 } else if (rate == mcs_rate[mcs].supported_VHT20_rate[1]) { 9101 *bw = RATE_INFO_BW_20; 9102 *flags |= RATE_INFO_FLAGS_SHORT_GI; 9103 } else { 9104 ath10k_warn(ar, "invalid vht params rate %d 100kbps nss %d mcs %d", 9105 rate, nss, mcs); 9106 } 9107 } 9108 9109 static void ath10k_mac_get_rate_flags(struct ath10k *ar, u32 rate, 9110 enum ath10k_phy_mode mode, u8 nss, u8 mcs, 9111 u8 *flags, u8 *bw) 9112 { 9113 if (mode == ATH10K_PHY_MODE_HT) { 9114 *flags = RATE_INFO_FLAGS_MCS; 9115 ath10k_mac_get_rate_flags_ht(ar, rate, nss, mcs, flags, bw); 9116 } else if (mode == ATH10K_PHY_MODE_VHT) { 9117 *flags = RATE_INFO_FLAGS_VHT_MCS; 9118 ath10k_mac_get_rate_flags_vht(ar, rate, nss, mcs, flags, bw); 9119 } 9120 } 9121 9122 static void ath10k_mac_parse_bitrate(struct ath10k *ar, u32 rate_code, 9123 u32 bitrate_kbps, struct rate_info *rate) 9124 { 9125 enum ath10k_phy_mode mode = ATH10K_PHY_MODE_LEGACY; 9126 enum wmi_rate_preamble preamble = WMI_TLV_GET_HW_RC_PREAM_V1(rate_code); 9127 u8 nss = WMI_TLV_GET_HW_RC_NSS_V1(rate_code) + 1; 9128 u8 mcs = WMI_TLV_GET_HW_RC_RATE_V1(rate_code); 9129 u8 flags = 0, bw = 0; 9130 9131 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac parse rate code 0x%x bitrate %d kbps\n", 9132 rate_code, bitrate_kbps); 9133 9134 if (preamble == WMI_RATE_PREAMBLE_HT) 9135 mode = ATH10K_PHY_MODE_HT; 9136 else if (preamble == WMI_RATE_PREAMBLE_VHT) 9137 mode = ATH10K_PHY_MODE_VHT; 9138 9139 ath10k_mac_get_rate_flags(ar, bitrate_kbps / 100, mode, nss, mcs, &flags, &bw); 9140 9141 ath10k_dbg(ar, ATH10K_DBG_MAC, 9142 "mac parse bitrate preamble %d mode %d nss %d mcs %d flags %x bw %d\n", 9143 preamble, mode, nss, mcs, flags, bw); 9144 9145 rate->flags = flags; 9146 rate->bw = bw; 9147 rate->legacy = bitrate_kbps / 100; 9148 rate->nss = nss; 9149 rate->mcs = mcs; 9150 } 9151 9152 static void ath10k_mac_sta_get_peer_stats_info(struct ath10k *ar, 9153 struct ieee80211_sta *sta, 9154 struct station_info *sinfo) 9155 { 9156 struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv; 9157 struct ath10k_peer *peer; 9158 unsigned long time_left; 9159 int ret; 9160 9161 if (!(ar->hw_params.supports_peer_stats_info && 9162 arsta->arvif->vdev_type == WMI_VDEV_TYPE_STA)) 9163 return; 9164 9165 spin_lock_bh(&ar->data_lock); 9166 peer = ath10k_peer_find(ar, arsta->arvif->vdev_id, sta->addr); 9167 spin_unlock_bh(&ar->data_lock); 9168 if (!peer) 9169 return; 9170 9171 reinit_completion(&ar->peer_stats_info_complete); 9172 9173 ret = ath10k_wmi_request_peer_stats_info(ar, 9174 arsta->arvif->vdev_id, 9175 WMI_REQUEST_ONE_PEER_STATS_INFO, 9176 arsta->arvif->bssid, 9177 0); 9178 if (ret && ret != -EOPNOTSUPP) { 9179 ath10k_warn(ar, "could not request peer stats info: %d\n", ret); 9180 return; 9181 } 9182 9183 time_left = wait_for_completion_timeout(&ar->peer_stats_info_complete, 3 * HZ); 9184 if (time_left == 0) { 9185 ath10k_warn(ar, "timed out waiting peer stats info\n"); 9186 return; 9187 } 9188 9189 if (arsta->rx_rate_code != 0 && arsta->rx_bitrate_kbps != 0) { 9190 ath10k_mac_parse_bitrate(ar, arsta->rx_rate_code, 9191 arsta->rx_bitrate_kbps, 9192 &sinfo->rxrate); 9193 9194 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BITRATE); 9195 arsta->rx_rate_code = 0; 9196 arsta->rx_bitrate_kbps = 0; 9197 } 9198 9199 if (arsta->tx_rate_code != 0 && arsta->tx_bitrate_kbps != 0) { 9200 ath10k_mac_parse_bitrate(ar, arsta->tx_rate_code, 9201 arsta->tx_bitrate_kbps, 9202 &sinfo->txrate); 9203 9204 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BITRATE); 9205 arsta->tx_rate_code = 0; 9206 arsta->tx_bitrate_kbps = 0; 9207 } 9208 } 9209 9210 static void ath10k_sta_statistics(struct ieee80211_hw *hw, 9211 struct ieee80211_vif *vif, 9212 struct ieee80211_sta *sta, 9213 struct station_info *sinfo) 9214 { 9215 struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv; 9216 struct ath10k *ar = arsta->arvif->ar; 9217 9218 if (!ath10k_peer_stats_enabled(ar)) 9219 return; 9220 9221 mutex_lock(&ar->conf_mutex); 9222 ath10k_debug_fw_stats_request(ar); 9223 mutex_unlock(&ar->conf_mutex); 9224 9225 sinfo->rx_duration = arsta->rx_duration; 9226 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_DURATION); 9227 9228 if (arsta->txrate.legacy || arsta->txrate.nss) { 9229 if (arsta->txrate.legacy) { 9230 sinfo->txrate.legacy = arsta->txrate.legacy; 9231 } else { 9232 sinfo->txrate.mcs = arsta->txrate.mcs; 9233 sinfo->txrate.nss = arsta->txrate.nss; 9234 sinfo->txrate.bw = arsta->txrate.bw; 9235 } 9236 sinfo->txrate.flags = arsta->txrate.flags; 9237 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BITRATE); 9238 } 9239 9240 if (ar->htt.disable_tx_comp) { 9241 sinfo->tx_failed = arsta->tx_failed; 9242 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_FAILED); 9243 } 9244 9245 sinfo->tx_retries = arsta->tx_retries; 9246 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_RETRIES); 9247 9248 ath10k_mac_sta_get_peer_stats_info(ar, sta, sinfo); 9249 } 9250 9251 static int ath10k_mac_op_set_tid_config(struct ieee80211_hw *hw, 9252 struct ieee80211_vif *vif, 9253 struct ieee80211_sta *sta, 9254 struct cfg80211_tid_config *tid_config) 9255 { 9256 struct ath10k *ar = hw->priv; 9257 struct ath10k_vif *arvif = (void *)vif->drv_priv; 9258 struct ath10k_mac_iter_tid_conf_data data = {}; 9259 struct wmi_per_peer_per_tid_cfg_arg arg = {}; 9260 int ret, i; 9261 9262 mutex_lock(&ar->conf_mutex); 9263 arg.vdev_id = arvif->vdev_id; 9264 9265 arvif->tids_rst = 0; 9266 memset(arvif->tid_conf_changed, 0, sizeof(arvif->tid_conf_changed)); 9267 9268 for (i = 0; i < tid_config->n_tid_conf; i++) { 9269 ret = ath10k_mac_parse_tid_config(ar, sta, vif, 9270 &tid_config->tid_conf[i], 9271 &arg); 9272 if (ret) 9273 goto exit; 9274 } 9275 9276 ret = 0; 9277 9278 if (sta) 9279 goto exit; 9280 9281 arvif->tids_rst = 0; 9282 data.curr_vif = vif; 9283 data.ar = ar; 9284 9285 ieee80211_iterate_stations_atomic(hw, ath10k_mac_vif_stations_tid_conf, 9286 &data); 9287 9288 exit: 9289 mutex_unlock(&ar->conf_mutex); 9290 return ret; 9291 } 9292 9293 static int ath10k_mac_op_reset_tid_config(struct ieee80211_hw *hw, 9294 struct ieee80211_vif *vif, 9295 struct ieee80211_sta *sta, 9296 u8 tids) 9297 { 9298 struct ath10k_vif *arvif = (void *)vif->drv_priv; 9299 struct ath10k_mac_iter_tid_conf_data data = {}; 9300 struct ath10k *ar = hw->priv; 9301 int ret = 0; 9302 9303 mutex_lock(&ar->conf_mutex); 9304 9305 if (sta) { 9306 arvif->tids_rst = 0; 9307 ret = ath10k_mac_reset_tid_config(ar, sta, arvif, tids); 9308 goto exit; 9309 } 9310 9311 arvif->tids_rst = tids; 9312 data.curr_vif = vif; 9313 data.ar = ar; 9314 ieee80211_iterate_stations_atomic(hw, ath10k_mac_vif_stations_tid_conf, 9315 &data); 9316 9317 exit: 9318 mutex_unlock(&ar->conf_mutex); 9319 return ret; 9320 } 9321 9322 static const struct ieee80211_ops ath10k_ops = { 9323 .tx = ath10k_mac_op_tx, 9324 .wake_tx_queue = ath10k_mac_op_wake_tx_queue, 9325 .start = ath10k_start, 9326 .stop = ath10k_stop, 9327 .config = ath10k_config, 9328 .add_interface = ath10k_add_interface, 9329 .remove_interface = ath10k_remove_interface, 9330 .configure_filter = ath10k_configure_filter, 9331 .bss_info_changed = ath10k_bss_info_changed, 9332 .set_coverage_class = ath10k_mac_op_set_coverage_class, 9333 .hw_scan = ath10k_hw_scan, 9334 .cancel_hw_scan = ath10k_cancel_hw_scan, 9335 .set_key = ath10k_set_key, 9336 .set_default_unicast_key = ath10k_set_default_unicast_key, 9337 .sta_state = ath10k_sta_state, 9338 .sta_set_txpwr = ath10k_sta_set_txpwr, 9339 .conf_tx = ath10k_conf_tx, 9340 .remain_on_channel = ath10k_remain_on_channel, 9341 .cancel_remain_on_channel = ath10k_cancel_remain_on_channel, 9342 .set_rts_threshold = ath10k_set_rts_threshold, 9343 .set_frag_threshold = ath10k_mac_op_set_frag_threshold, 9344 .flush = ath10k_flush, 9345 .tx_last_beacon = ath10k_tx_last_beacon, 9346 .set_antenna = ath10k_set_antenna, 9347 .get_antenna = ath10k_get_antenna, 9348 .reconfig_complete = ath10k_reconfig_complete, 9349 .get_survey = ath10k_get_survey, 9350 .set_bitrate_mask = ath10k_mac_op_set_bitrate_mask, 9351 .sta_rc_update = ath10k_sta_rc_update, 9352 .offset_tsf = ath10k_offset_tsf, 9353 .ampdu_action = ath10k_ampdu_action, 9354 .get_et_sset_count = ath10k_debug_get_et_sset_count, 9355 .get_et_stats = ath10k_debug_get_et_stats, 9356 .get_et_strings = ath10k_debug_get_et_strings, 9357 .add_chanctx = ath10k_mac_op_add_chanctx, 9358 .remove_chanctx = ath10k_mac_op_remove_chanctx, 9359 .change_chanctx = ath10k_mac_op_change_chanctx, 9360 .assign_vif_chanctx = ath10k_mac_op_assign_vif_chanctx, 9361 .unassign_vif_chanctx = ath10k_mac_op_unassign_vif_chanctx, 9362 .switch_vif_chanctx = ath10k_mac_op_switch_vif_chanctx, 9363 .sta_pre_rcu_remove = ath10k_mac_op_sta_pre_rcu_remove, 9364 .sta_statistics = ath10k_sta_statistics, 9365 .set_tid_config = ath10k_mac_op_set_tid_config, 9366 .reset_tid_config = ath10k_mac_op_reset_tid_config, 9367 9368 CFG80211_TESTMODE_CMD(ath10k_tm_cmd) 9369 9370 #ifdef CONFIG_PM 9371 .suspend = ath10k_wow_op_suspend, 9372 .resume = ath10k_wow_op_resume, 9373 .set_wakeup = ath10k_wow_op_set_wakeup, 9374 #endif 9375 #ifdef CONFIG_MAC80211_DEBUGFS 9376 .sta_add_debugfs = ath10k_sta_add_debugfs, 9377 #endif 9378 .set_sar_specs = ath10k_mac_set_sar_specs, 9379 }; 9380 9381 #define CHAN2G(_channel, _freq, _flags) { \ 9382 .band = NL80211_BAND_2GHZ, \ 9383 .hw_value = (_channel), \ 9384 .center_freq = (_freq), \ 9385 .flags = (_flags), \ 9386 .max_antenna_gain = 0, \ 9387 .max_power = 30, \ 9388 } 9389 9390 #define CHAN5G(_channel, _freq, _flags) { \ 9391 .band = NL80211_BAND_5GHZ, \ 9392 .hw_value = (_channel), \ 9393 .center_freq = (_freq), \ 9394 .flags = (_flags), \ 9395 .max_antenna_gain = 0, \ 9396 .max_power = 30, \ 9397 } 9398 9399 static const struct ieee80211_channel ath10k_2ghz_channels[] = { 9400 CHAN2G(1, 2412, 0), 9401 CHAN2G(2, 2417, 0), 9402 CHAN2G(3, 2422, 0), 9403 CHAN2G(4, 2427, 0), 9404 CHAN2G(5, 2432, 0), 9405 CHAN2G(6, 2437, 0), 9406 CHAN2G(7, 2442, 0), 9407 CHAN2G(8, 2447, 0), 9408 CHAN2G(9, 2452, 0), 9409 CHAN2G(10, 2457, 0), 9410 CHAN2G(11, 2462, 0), 9411 CHAN2G(12, 2467, 0), 9412 CHAN2G(13, 2472, 0), 9413 CHAN2G(14, 2484, 0), 9414 }; 9415 9416 static const struct ieee80211_channel ath10k_5ghz_channels[] = { 9417 CHAN5G(36, 5180, 0), 9418 CHAN5G(40, 5200, 0), 9419 CHAN5G(44, 5220, 0), 9420 CHAN5G(48, 5240, 0), 9421 CHAN5G(52, 5260, 0), 9422 CHAN5G(56, 5280, 0), 9423 CHAN5G(60, 5300, 0), 9424 CHAN5G(64, 5320, 0), 9425 CHAN5G(100, 5500, 0), 9426 CHAN5G(104, 5520, 0), 9427 CHAN5G(108, 5540, 0), 9428 CHAN5G(112, 5560, 0), 9429 CHAN5G(116, 5580, 0), 9430 CHAN5G(120, 5600, 0), 9431 CHAN5G(124, 5620, 0), 9432 CHAN5G(128, 5640, 0), 9433 CHAN5G(132, 5660, 0), 9434 CHAN5G(136, 5680, 0), 9435 CHAN5G(140, 5700, 0), 9436 CHAN5G(144, 5720, 0), 9437 CHAN5G(149, 5745, 0), 9438 CHAN5G(153, 5765, 0), 9439 CHAN5G(157, 5785, 0), 9440 CHAN5G(161, 5805, 0), 9441 CHAN5G(165, 5825, 0), 9442 CHAN5G(169, 5845, 0), 9443 CHAN5G(173, 5865, 0), 9444 /* If you add more, you may need to change ATH10K_MAX_5G_CHAN */ 9445 /* And you will definitely need to change ATH10K_NUM_CHANS in core.h */ 9446 }; 9447 9448 struct ath10k *ath10k_mac_create(size_t priv_size) 9449 { 9450 struct ieee80211_hw *hw; 9451 struct ieee80211_ops *ops; 9452 struct ath10k *ar; 9453 9454 ops = kmemdup(&ath10k_ops, sizeof(ath10k_ops), GFP_KERNEL); 9455 if (!ops) 9456 return NULL; 9457 9458 hw = ieee80211_alloc_hw(sizeof(struct ath10k) + priv_size, ops); 9459 if (!hw) { 9460 kfree(ops); 9461 return NULL; 9462 } 9463 9464 ar = hw->priv; 9465 ar->hw = hw; 9466 ar->ops = ops; 9467 9468 return ar; 9469 } 9470 9471 void ath10k_mac_destroy(struct ath10k *ar) 9472 { 9473 struct ieee80211_ops *ops = ar->ops; 9474 9475 ieee80211_free_hw(ar->hw); 9476 kfree(ops); 9477 } 9478 9479 static const struct ieee80211_iface_limit ath10k_if_limits[] = { 9480 { 9481 .max = 8, 9482 .types = BIT(NL80211_IFTYPE_STATION) 9483 | BIT(NL80211_IFTYPE_P2P_CLIENT) 9484 }, 9485 { 9486 .max = 3, 9487 .types = BIT(NL80211_IFTYPE_P2P_GO) 9488 }, 9489 { 9490 .max = 1, 9491 .types = BIT(NL80211_IFTYPE_P2P_DEVICE) 9492 }, 9493 { 9494 .max = 7, 9495 .types = BIT(NL80211_IFTYPE_AP) 9496 #ifdef CONFIG_MAC80211_MESH 9497 | BIT(NL80211_IFTYPE_MESH_POINT) 9498 #endif 9499 }, 9500 }; 9501 9502 static const struct ieee80211_iface_limit ath10k_10x_if_limits[] = { 9503 { 9504 .max = 8, 9505 .types = BIT(NL80211_IFTYPE_AP) 9506 #ifdef CONFIG_MAC80211_MESH 9507 | BIT(NL80211_IFTYPE_MESH_POINT) 9508 #endif 9509 }, 9510 { 9511 .max = 1, 9512 .types = BIT(NL80211_IFTYPE_STATION) 9513 }, 9514 }; 9515 9516 static const struct ieee80211_iface_combination ath10k_if_comb[] = { 9517 { 9518 .limits = ath10k_if_limits, 9519 .n_limits = ARRAY_SIZE(ath10k_if_limits), 9520 .max_interfaces = 8, 9521 .num_different_channels = 1, 9522 .beacon_int_infra_match = true, 9523 }, 9524 }; 9525 9526 static const struct ieee80211_iface_combination ath10k_10x_if_comb[] = { 9527 { 9528 .limits = ath10k_10x_if_limits, 9529 .n_limits = ARRAY_SIZE(ath10k_10x_if_limits), 9530 .max_interfaces = 8, 9531 .num_different_channels = 1, 9532 .beacon_int_infra_match = true, 9533 .beacon_int_min_gcd = 1, 9534 #ifdef CONFIG_ATH10K_DFS_CERTIFIED 9535 .radar_detect_widths = BIT(NL80211_CHAN_WIDTH_20_NOHT) | 9536 BIT(NL80211_CHAN_WIDTH_20) | 9537 BIT(NL80211_CHAN_WIDTH_40) | 9538 BIT(NL80211_CHAN_WIDTH_80), 9539 #endif 9540 }, 9541 }; 9542 9543 static const struct ieee80211_iface_limit ath10k_tlv_if_limit[] = { 9544 { 9545 .max = 2, 9546 .types = BIT(NL80211_IFTYPE_STATION), 9547 }, 9548 { 9549 .max = 2, 9550 .types = BIT(NL80211_IFTYPE_AP) | 9551 #ifdef CONFIG_MAC80211_MESH 9552 BIT(NL80211_IFTYPE_MESH_POINT) | 9553 #endif 9554 BIT(NL80211_IFTYPE_P2P_CLIENT) | 9555 BIT(NL80211_IFTYPE_P2P_GO), 9556 }, 9557 { 9558 .max = 1, 9559 .types = BIT(NL80211_IFTYPE_P2P_DEVICE), 9560 }, 9561 }; 9562 9563 static const struct ieee80211_iface_limit ath10k_tlv_qcs_if_limit[] = { 9564 { 9565 .max = 2, 9566 .types = BIT(NL80211_IFTYPE_STATION), 9567 }, 9568 { 9569 .max = 2, 9570 .types = BIT(NL80211_IFTYPE_P2P_CLIENT), 9571 }, 9572 { 9573 .max = 1, 9574 .types = BIT(NL80211_IFTYPE_AP) | 9575 #ifdef CONFIG_MAC80211_MESH 9576 BIT(NL80211_IFTYPE_MESH_POINT) | 9577 #endif 9578 BIT(NL80211_IFTYPE_P2P_GO), 9579 }, 9580 { 9581 .max = 1, 9582 .types = BIT(NL80211_IFTYPE_P2P_DEVICE), 9583 }, 9584 }; 9585 9586 static const struct ieee80211_iface_limit ath10k_tlv_if_limit_ibss[] = { 9587 { 9588 .max = 1, 9589 .types = BIT(NL80211_IFTYPE_STATION), 9590 }, 9591 { 9592 .max = 1, 9593 .types = BIT(NL80211_IFTYPE_ADHOC), 9594 }, 9595 }; 9596 9597 /* FIXME: This is not thouroughly tested. These combinations may over- or 9598 * underestimate hw/fw capabilities. 9599 */ 9600 static struct ieee80211_iface_combination ath10k_tlv_if_comb[] = { 9601 { 9602 .limits = ath10k_tlv_if_limit, 9603 .num_different_channels = 1, 9604 .max_interfaces = 4, 9605 .n_limits = ARRAY_SIZE(ath10k_tlv_if_limit), 9606 }, 9607 { 9608 .limits = ath10k_tlv_if_limit_ibss, 9609 .num_different_channels = 1, 9610 .max_interfaces = 2, 9611 .n_limits = ARRAY_SIZE(ath10k_tlv_if_limit_ibss), 9612 }, 9613 }; 9614 9615 static struct ieee80211_iface_combination ath10k_tlv_qcs_if_comb[] = { 9616 { 9617 .limits = ath10k_tlv_if_limit, 9618 .num_different_channels = 1, 9619 .max_interfaces = 4, 9620 .n_limits = ARRAY_SIZE(ath10k_tlv_if_limit), 9621 }, 9622 { 9623 .limits = ath10k_tlv_qcs_if_limit, 9624 .num_different_channels = 2, 9625 .max_interfaces = 4, 9626 .n_limits = ARRAY_SIZE(ath10k_tlv_qcs_if_limit), 9627 }, 9628 { 9629 .limits = ath10k_tlv_if_limit_ibss, 9630 .num_different_channels = 1, 9631 .max_interfaces = 2, 9632 .n_limits = ARRAY_SIZE(ath10k_tlv_if_limit_ibss), 9633 }, 9634 }; 9635 9636 static const struct ieee80211_iface_limit ath10k_10_4_if_limits[] = { 9637 { 9638 .max = 1, 9639 .types = BIT(NL80211_IFTYPE_STATION), 9640 }, 9641 { 9642 .max = 16, 9643 .types = BIT(NL80211_IFTYPE_AP) 9644 #ifdef CONFIG_MAC80211_MESH 9645 | BIT(NL80211_IFTYPE_MESH_POINT) 9646 #endif 9647 }, 9648 }; 9649 9650 static const struct ieee80211_iface_combination ath10k_10_4_if_comb[] = { 9651 { 9652 .limits = ath10k_10_4_if_limits, 9653 .n_limits = ARRAY_SIZE(ath10k_10_4_if_limits), 9654 .max_interfaces = 16, 9655 .num_different_channels = 1, 9656 .beacon_int_infra_match = true, 9657 .beacon_int_min_gcd = 1, 9658 #ifdef CONFIG_ATH10K_DFS_CERTIFIED 9659 .radar_detect_widths = BIT(NL80211_CHAN_WIDTH_20_NOHT) | 9660 BIT(NL80211_CHAN_WIDTH_20) | 9661 BIT(NL80211_CHAN_WIDTH_40) | 9662 BIT(NL80211_CHAN_WIDTH_80) | 9663 BIT(NL80211_CHAN_WIDTH_80P80) | 9664 BIT(NL80211_CHAN_WIDTH_160), 9665 #endif 9666 }, 9667 }; 9668 9669 static const struct 9670 ieee80211_iface_combination ath10k_10_4_bcn_int_if_comb[] = { 9671 { 9672 .limits = ath10k_10_4_if_limits, 9673 .n_limits = ARRAY_SIZE(ath10k_10_4_if_limits), 9674 .max_interfaces = 16, 9675 .num_different_channels = 1, 9676 .beacon_int_infra_match = true, 9677 .beacon_int_min_gcd = 100, 9678 #ifdef CONFIG_ATH10K_DFS_CERTIFIED 9679 .radar_detect_widths = BIT(NL80211_CHAN_WIDTH_20_NOHT) | 9680 BIT(NL80211_CHAN_WIDTH_20) | 9681 BIT(NL80211_CHAN_WIDTH_40) | 9682 BIT(NL80211_CHAN_WIDTH_80) | 9683 BIT(NL80211_CHAN_WIDTH_80P80) | 9684 BIT(NL80211_CHAN_WIDTH_160), 9685 #endif 9686 }, 9687 }; 9688 9689 static void ath10k_get_arvif_iter(void *data, u8 *mac, 9690 struct ieee80211_vif *vif) 9691 { 9692 struct ath10k_vif_iter *arvif_iter = data; 9693 struct ath10k_vif *arvif = (void *)vif->drv_priv; 9694 9695 if (arvif->vdev_id == arvif_iter->vdev_id) 9696 arvif_iter->arvif = arvif; 9697 } 9698 9699 struct ath10k_vif *ath10k_get_arvif(struct ath10k *ar, u32 vdev_id) 9700 { 9701 struct ath10k_vif_iter arvif_iter; 9702 9703 memset(&arvif_iter, 0, sizeof(struct ath10k_vif_iter)); 9704 arvif_iter.vdev_id = vdev_id; 9705 9706 ieee80211_iterate_active_interfaces_atomic(ar->hw, 9707 ATH10K_ITER_RESUME_FLAGS, 9708 ath10k_get_arvif_iter, 9709 &arvif_iter); 9710 if (!arvif_iter.arvif) { 9711 ath10k_warn(ar, "No VIF found for vdev %d\n", vdev_id); 9712 return NULL; 9713 } 9714 9715 return arvif_iter.arvif; 9716 } 9717 9718 #define WRD_METHOD "WRDD" 9719 #define WRDD_WIFI (0x07) 9720 9721 static u32 ath10k_mac_wrdd_get_mcc(struct ath10k *ar, union acpi_object *wrdd) 9722 { 9723 union acpi_object *mcc_pkg; 9724 union acpi_object *domain_type; 9725 union acpi_object *mcc_value; 9726 u32 i; 9727 9728 if (wrdd->type != ACPI_TYPE_PACKAGE || 9729 wrdd->package.count < 2 || 9730 wrdd->package.elements[0].type != ACPI_TYPE_INTEGER || 9731 wrdd->package.elements[0].integer.value != 0) { 9732 ath10k_warn(ar, "ignoring malformed/unsupported wrdd structure\n"); 9733 return 0; 9734 } 9735 9736 for (i = 1; i < wrdd->package.count; ++i) { 9737 mcc_pkg = &wrdd->package.elements[i]; 9738 9739 if (mcc_pkg->type != ACPI_TYPE_PACKAGE) 9740 continue; 9741 if (mcc_pkg->package.count < 2) 9742 continue; 9743 if (mcc_pkg->package.elements[0].type != ACPI_TYPE_INTEGER || 9744 mcc_pkg->package.elements[1].type != ACPI_TYPE_INTEGER) 9745 continue; 9746 9747 domain_type = &mcc_pkg->package.elements[0]; 9748 if (domain_type->integer.value != WRDD_WIFI) 9749 continue; 9750 9751 mcc_value = &mcc_pkg->package.elements[1]; 9752 return mcc_value->integer.value; 9753 } 9754 return 0; 9755 } 9756 9757 static int ath10k_mac_get_wrdd_regulatory(struct ath10k *ar, u16 *rd) 9758 { 9759 acpi_handle root_handle; 9760 acpi_handle handle; 9761 struct acpi_buffer wrdd = {ACPI_ALLOCATE_BUFFER, NULL}; 9762 acpi_status status; 9763 u32 alpha2_code; 9764 char alpha2[3]; 9765 9766 root_handle = ACPI_HANDLE(ar->dev); 9767 if (!root_handle) 9768 return -EOPNOTSUPP; 9769 9770 status = acpi_get_handle(root_handle, (acpi_string)WRD_METHOD, &handle); 9771 if (ACPI_FAILURE(status)) { 9772 ath10k_dbg(ar, ATH10K_DBG_BOOT, 9773 "failed to get wrd method %d\n", status); 9774 return -EIO; 9775 } 9776 9777 status = acpi_evaluate_object(handle, NULL, NULL, &wrdd); 9778 if (ACPI_FAILURE(status)) { 9779 ath10k_dbg(ar, ATH10K_DBG_BOOT, 9780 "failed to call wrdc %d\n", status); 9781 return -EIO; 9782 } 9783 9784 alpha2_code = ath10k_mac_wrdd_get_mcc(ar, wrdd.pointer); 9785 kfree(wrdd.pointer); 9786 if (!alpha2_code) 9787 return -EIO; 9788 9789 alpha2[0] = (alpha2_code >> 8) & 0xff; 9790 alpha2[1] = (alpha2_code >> 0) & 0xff; 9791 alpha2[2] = '\0'; 9792 9793 ath10k_dbg(ar, ATH10K_DBG_BOOT, 9794 "regulatory hint from WRDD (alpha2-code): %s\n", alpha2); 9795 9796 *rd = ath_regd_find_country_by_name(alpha2); 9797 if (*rd == 0xffff) 9798 return -EIO; 9799 9800 *rd |= COUNTRY_ERD_FLAG; 9801 return 0; 9802 } 9803 9804 static int ath10k_mac_init_rd(struct ath10k *ar) 9805 { 9806 int ret; 9807 u16 rd; 9808 9809 ret = ath10k_mac_get_wrdd_regulatory(ar, &rd); 9810 if (ret) { 9811 ath10k_dbg(ar, ATH10K_DBG_BOOT, 9812 "fallback to eeprom programmed regulatory settings\n"); 9813 rd = ar->hw_eeprom_rd; 9814 } 9815 9816 ar->ath_common.regulatory.current_rd = rd; 9817 return 0; 9818 } 9819 9820 int ath10k_mac_register(struct ath10k *ar) 9821 { 9822 static const u32 cipher_suites[] = { 9823 WLAN_CIPHER_SUITE_WEP40, 9824 WLAN_CIPHER_SUITE_WEP104, 9825 WLAN_CIPHER_SUITE_TKIP, 9826 WLAN_CIPHER_SUITE_CCMP, 9827 9828 /* Do not add hardware supported ciphers before this line. 9829 * Allow software encryption for all chips. Don't forget to 9830 * update n_cipher_suites below. 9831 */ 9832 WLAN_CIPHER_SUITE_AES_CMAC, 9833 WLAN_CIPHER_SUITE_BIP_CMAC_256, 9834 WLAN_CIPHER_SUITE_BIP_GMAC_128, 9835 WLAN_CIPHER_SUITE_BIP_GMAC_256, 9836 9837 /* Only QCA99x0 and QCA4019 varients support GCMP-128, GCMP-256 9838 * and CCMP-256 in hardware. 9839 */ 9840 WLAN_CIPHER_SUITE_GCMP, 9841 WLAN_CIPHER_SUITE_GCMP_256, 9842 WLAN_CIPHER_SUITE_CCMP_256, 9843 }; 9844 struct ieee80211_supported_band *band; 9845 void *channels; 9846 int ret; 9847 9848 if (!is_valid_ether_addr(ar->mac_addr)) { 9849 ath10k_warn(ar, "invalid MAC address; choosing random\n"); 9850 eth_random_addr(ar->mac_addr); 9851 } 9852 SET_IEEE80211_PERM_ADDR(ar->hw, ar->mac_addr); 9853 9854 SET_IEEE80211_DEV(ar->hw, ar->dev); 9855 9856 BUILD_BUG_ON((ARRAY_SIZE(ath10k_2ghz_channels) + 9857 ARRAY_SIZE(ath10k_5ghz_channels)) != 9858 ATH10K_NUM_CHANS); 9859 9860 if (ar->phy_capability & WHAL_WLAN_11G_CAPABILITY) { 9861 channels = kmemdup(ath10k_2ghz_channels, 9862 sizeof(ath10k_2ghz_channels), 9863 GFP_KERNEL); 9864 if (!channels) { 9865 ret = -ENOMEM; 9866 goto err_free; 9867 } 9868 9869 band = &ar->mac.sbands[NL80211_BAND_2GHZ]; 9870 band->n_channels = ARRAY_SIZE(ath10k_2ghz_channels); 9871 band->channels = channels; 9872 9873 if (ar->hw_params.cck_rate_map_rev2) { 9874 band->n_bitrates = ath10k_g_rates_rev2_size; 9875 band->bitrates = ath10k_g_rates_rev2; 9876 } else { 9877 band->n_bitrates = ath10k_g_rates_size; 9878 band->bitrates = ath10k_g_rates; 9879 } 9880 9881 ar->hw->wiphy->bands[NL80211_BAND_2GHZ] = band; 9882 } 9883 9884 if (ar->phy_capability & WHAL_WLAN_11A_CAPABILITY) { 9885 channels = kmemdup(ath10k_5ghz_channels, 9886 sizeof(ath10k_5ghz_channels), 9887 GFP_KERNEL); 9888 if (!channels) { 9889 ret = -ENOMEM; 9890 goto err_free; 9891 } 9892 9893 band = &ar->mac.sbands[NL80211_BAND_5GHZ]; 9894 band->n_channels = ARRAY_SIZE(ath10k_5ghz_channels); 9895 band->channels = channels; 9896 band->n_bitrates = ath10k_a_rates_size; 9897 band->bitrates = ath10k_a_rates; 9898 ar->hw->wiphy->bands[NL80211_BAND_5GHZ] = band; 9899 } 9900 9901 wiphy_read_of_freq_limits(ar->hw->wiphy); 9902 ath10k_mac_setup_ht_vht_cap(ar); 9903 9904 ar->hw->wiphy->interface_modes = 9905 BIT(NL80211_IFTYPE_STATION) | 9906 BIT(NL80211_IFTYPE_AP) | 9907 BIT(NL80211_IFTYPE_MESH_POINT); 9908 9909 ar->hw->wiphy->available_antennas_rx = ar->cfg_rx_chainmask; 9910 ar->hw->wiphy->available_antennas_tx = ar->cfg_tx_chainmask; 9911 9912 if (!test_bit(ATH10K_FW_FEATURE_NO_P2P, ar->normal_mode_fw.fw_file.fw_features)) 9913 ar->hw->wiphy->interface_modes |= 9914 BIT(NL80211_IFTYPE_P2P_DEVICE) | 9915 BIT(NL80211_IFTYPE_P2P_CLIENT) | 9916 BIT(NL80211_IFTYPE_P2P_GO); 9917 9918 ieee80211_hw_set(ar->hw, SIGNAL_DBM); 9919 9920 if (!test_bit(ATH10K_FW_FEATURE_NO_PS, 9921 ar->running_fw->fw_file.fw_features)) { 9922 ieee80211_hw_set(ar->hw, SUPPORTS_PS); 9923 ieee80211_hw_set(ar->hw, SUPPORTS_DYNAMIC_PS); 9924 } 9925 9926 ieee80211_hw_set(ar->hw, MFP_CAPABLE); 9927 ieee80211_hw_set(ar->hw, REPORTS_TX_ACK_STATUS); 9928 ieee80211_hw_set(ar->hw, HAS_RATE_CONTROL); 9929 ieee80211_hw_set(ar->hw, AP_LINK_PS); 9930 ieee80211_hw_set(ar->hw, SPECTRUM_MGMT); 9931 ieee80211_hw_set(ar->hw, SUPPORT_FAST_XMIT); 9932 ieee80211_hw_set(ar->hw, CONNECTION_MONITOR); 9933 ieee80211_hw_set(ar->hw, SUPPORTS_PER_STA_GTK); 9934 ieee80211_hw_set(ar->hw, WANT_MONITOR_VIF); 9935 ieee80211_hw_set(ar->hw, CHANCTX_STA_CSA); 9936 ieee80211_hw_set(ar->hw, QUEUE_CONTROL); 9937 ieee80211_hw_set(ar->hw, SUPPORTS_TX_FRAG); 9938 ieee80211_hw_set(ar->hw, REPORTS_LOW_ACK); 9939 9940 if (!test_bit(ATH10K_FLAG_RAW_MODE, &ar->dev_flags)) 9941 ieee80211_hw_set(ar->hw, SW_CRYPTO_CONTROL); 9942 9943 ar->hw->wiphy->features |= NL80211_FEATURE_STATIC_SMPS; 9944 ar->hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN; 9945 9946 if (ar->ht_cap_info & WMI_HT_CAP_DYNAMIC_SMPS) 9947 ar->hw->wiphy->features |= NL80211_FEATURE_DYNAMIC_SMPS; 9948 9949 if (ar->ht_cap_info & WMI_HT_CAP_ENABLED) { 9950 ieee80211_hw_set(ar->hw, AMPDU_AGGREGATION); 9951 ieee80211_hw_set(ar->hw, TX_AMPDU_SETUP_IN_HW); 9952 } 9953 9954 ar->hw->wiphy->max_scan_ssids = WLAN_SCAN_PARAMS_MAX_SSID; 9955 ar->hw->wiphy->max_scan_ie_len = WLAN_SCAN_PARAMS_MAX_IE_LEN; 9956 9957 if (test_bit(WMI_SERVICE_NLO, ar->wmi.svc_map)) { 9958 ar->hw->wiphy->max_sched_scan_ssids = WMI_PNO_MAX_SUPP_NETWORKS; 9959 ar->hw->wiphy->max_match_sets = WMI_PNO_MAX_SUPP_NETWORKS; 9960 ar->hw->wiphy->max_sched_scan_ie_len = WMI_PNO_MAX_IE_LENGTH; 9961 ar->hw->wiphy->max_sched_scan_plans = WMI_PNO_MAX_SCHED_SCAN_PLANS; 9962 ar->hw->wiphy->max_sched_scan_plan_interval = 9963 WMI_PNO_MAX_SCHED_SCAN_PLAN_INT; 9964 ar->hw->wiphy->max_sched_scan_plan_iterations = 9965 WMI_PNO_MAX_SCHED_SCAN_PLAN_ITRNS; 9966 ar->hw->wiphy->features |= NL80211_FEATURE_ND_RANDOM_MAC_ADDR; 9967 } 9968 9969 ar->hw->vif_data_size = sizeof(struct ath10k_vif); 9970 ar->hw->sta_data_size = sizeof(struct ath10k_sta); 9971 ar->hw->txq_data_size = sizeof(struct ath10k_txq); 9972 9973 ar->hw->max_listen_interval = ATH10K_MAX_HW_LISTEN_INTERVAL; 9974 9975 if (test_bit(WMI_SERVICE_BEACON_OFFLOAD, ar->wmi.svc_map)) { 9976 ar->hw->wiphy->flags |= WIPHY_FLAG_AP_PROBE_RESP_OFFLOAD; 9977 9978 /* Firmware delivers WPS/P2P Probe Requests frames to driver so 9979 * that userspace (e.g. wpa_supplicant/hostapd) can generate 9980 * correct Probe Responses. This is more of a hack advert.. 9981 */ 9982 ar->hw->wiphy->probe_resp_offload |= 9983 NL80211_PROBE_RESP_OFFLOAD_SUPPORT_WPS | 9984 NL80211_PROBE_RESP_OFFLOAD_SUPPORT_WPS2 | 9985 NL80211_PROBE_RESP_OFFLOAD_SUPPORT_P2P; 9986 } 9987 9988 if (test_bit(WMI_SERVICE_TDLS, ar->wmi.svc_map) || 9989 test_bit(WMI_SERVICE_TDLS_EXPLICIT_MODE_ONLY, ar->wmi.svc_map)) { 9990 ar->hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_TDLS; 9991 if (test_bit(WMI_SERVICE_TDLS_WIDER_BANDWIDTH, ar->wmi.svc_map)) 9992 ieee80211_hw_set(ar->hw, TDLS_WIDER_BW); 9993 } 9994 9995 if (test_bit(WMI_SERVICE_TDLS_UAPSD_BUFFER_STA, ar->wmi.svc_map)) 9996 ieee80211_hw_set(ar->hw, SUPPORTS_TDLS_BUFFER_STA); 9997 9998 ar->hw->wiphy->flags |= WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL; 9999 ar->hw->wiphy->flags |= WIPHY_FLAG_HAS_CHANNEL_SWITCH; 10000 ar->hw->wiphy->max_remain_on_channel_duration = 5000; 10001 10002 ar->hw->wiphy->flags |= WIPHY_FLAG_AP_UAPSD; 10003 ar->hw->wiphy->features |= NL80211_FEATURE_AP_MODE_CHAN_WIDTH_CHANGE | 10004 NL80211_FEATURE_AP_SCAN; 10005 10006 ar->hw->wiphy->max_ap_assoc_sta = ar->max_num_stations; 10007 10008 ret = ath10k_wow_init(ar); 10009 if (ret) { 10010 ath10k_warn(ar, "failed to init wow: %d\n", ret); 10011 goto err_free; 10012 } 10013 10014 wiphy_ext_feature_set(ar->hw->wiphy, NL80211_EXT_FEATURE_VHT_IBSS); 10015 wiphy_ext_feature_set(ar->hw->wiphy, 10016 NL80211_EXT_FEATURE_SET_SCAN_DWELL); 10017 wiphy_ext_feature_set(ar->hw->wiphy, NL80211_EXT_FEATURE_AQL); 10018 10019 if (test_bit(WMI_SERVICE_TX_DATA_ACK_RSSI, ar->wmi.svc_map) || 10020 test_bit(WMI_SERVICE_HTT_MGMT_TX_COMP_VALID_FLAGS, ar->wmi.svc_map)) 10021 wiphy_ext_feature_set(ar->hw->wiphy, 10022 NL80211_EXT_FEATURE_ACK_SIGNAL_SUPPORT); 10023 10024 if (ath10k_peer_stats_enabled(ar) || 10025 test_bit(WMI_SERVICE_REPORT_AIRTIME, ar->wmi.svc_map)) 10026 wiphy_ext_feature_set(ar->hw->wiphy, 10027 NL80211_EXT_FEATURE_AIRTIME_FAIRNESS); 10028 10029 if (test_bit(WMI_SERVICE_RTT_RESPONDER_ROLE, ar->wmi.svc_map)) 10030 wiphy_ext_feature_set(ar->hw->wiphy, 10031 NL80211_EXT_FEATURE_ENABLE_FTM_RESPONDER); 10032 10033 if (test_bit(WMI_SERVICE_TX_PWR_PER_PEER, ar->wmi.svc_map)) 10034 wiphy_ext_feature_set(ar->hw->wiphy, 10035 NL80211_EXT_FEATURE_STA_TX_PWR); 10036 10037 if (test_bit(WMI_SERVICE_PEER_TID_CONFIGS_SUPPORT, ar->wmi.svc_map)) { 10038 ar->hw->wiphy->tid_config_support.vif |= 10039 BIT(NL80211_TID_CONFIG_ATTR_NOACK) | 10040 BIT(NL80211_TID_CONFIG_ATTR_RETRY_SHORT) | 10041 BIT(NL80211_TID_CONFIG_ATTR_RETRY_LONG) | 10042 BIT(NL80211_TID_CONFIG_ATTR_AMPDU_CTRL) | 10043 BIT(NL80211_TID_CONFIG_ATTR_TX_RATE) | 10044 BIT(NL80211_TID_CONFIG_ATTR_TX_RATE_TYPE); 10045 10046 if (test_bit(WMI_SERVICE_EXT_PEER_TID_CONFIGS_SUPPORT, 10047 ar->wmi.svc_map)) { 10048 ar->hw->wiphy->tid_config_support.vif |= 10049 BIT(NL80211_TID_CONFIG_ATTR_RTSCTS_CTRL); 10050 } 10051 10052 ar->hw->wiphy->tid_config_support.peer = 10053 ar->hw->wiphy->tid_config_support.vif; 10054 ar->hw->wiphy->max_data_retry_count = ATH10K_MAX_RETRY_COUNT; 10055 } else { 10056 ar->ops->set_tid_config = NULL; 10057 } 10058 /* 10059 * on LL hardware queues are managed entirely by the FW 10060 * so we only advertise to mac we can do the queues thing 10061 */ 10062 ar->hw->queues = IEEE80211_MAX_QUEUES; 10063 10064 /* vdev_ids are used as hw queue numbers. Make sure offchan tx queue is 10065 * something that vdev_ids can't reach so that we don't stop the queue 10066 * accidentally. 10067 */ 10068 ar->hw->offchannel_tx_hw_queue = IEEE80211_MAX_QUEUES - 1; 10069 10070 switch (ar->running_fw->fw_file.wmi_op_version) { 10071 case ATH10K_FW_WMI_OP_VERSION_MAIN: 10072 ar->hw->wiphy->iface_combinations = ath10k_if_comb; 10073 ar->hw->wiphy->n_iface_combinations = 10074 ARRAY_SIZE(ath10k_if_comb); 10075 ar->hw->wiphy->interface_modes |= BIT(NL80211_IFTYPE_ADHOC); 10076 break; 10077 case ATH10K_FW_WMI_OP_VERSION_TLV: 10078 if (test_bit(WMI_SERVICE_ADAPTIVE_OCS, ar->wmi.svc_map)) { 10079 ar->hw->wiphy->iface_combinations = 10080 ath10k_tlv_qcs_if_comb; 10081 ar->hw->wiphy->n_iface_combinations = 10082 ARRAY_SIZE(ath10k_tlv_qcs_if_comb); 10083 } else { 10084 ar->hw->wiphy->iface_combinations = ath10k_tlv_if_comb; 10085 ar->hw->wiphy->n_iface_combinations = 10086 ARRAY_SIZE(ath10k_tlv_if_comb); 10087 } 10088 ar->hw->wiphy->interface_modes |= BIT(NL80211_IFTYPE_ADHOC); 10089 break; 10090 case ATH10K_FW_WMI_OP_VERSION_10_1: 10091 case ATH10K_FW_WMI_OP_VERSION_10_2: 10092 case ATH10K_FW_WMI_OP_VERSION_10_2_4: 10093 ar->hw->wiphy->iface_combinations = ath10k_10x_if_comb; 10094 ar->hw->wiphy->n_iface_combinations = 10095 ARRAY_SIZE(ath10k_10x_if_comb); 10096 break; 10097 case ATH10K_FW_WMI_OP_VERSION_10_4: 10098 ar->hw->wiphy->iface_combinations = ath10k_10_4_if_comb; 10099 ar->hw->wiphy->n_iface_combinations = 10100 ARRAY_SIZE(ath10k_10_4_if_comb); 10101 if (test_bit(WMI_SERVICE_VDEV_DIFFERENT_BEACON_INTERVAL_SUPPORT, 10102 ar->wmi.svc_map)) { 10103 ar->hw->wiphy->iface_combinations = 10104 ath10k_10_4_bcn_int_if_comb; 10105 ar->hw->wiphy->n_iface_combinations = 10106 ARRAY_SIZE(ath10k_10_4_bcn_int_if_comb); 10107 } 10108 break; 10109 case ATH10K_FW_WMI_OP_VERSION_UNSET: 10110 case ATH10K_FW_WMI_OP_VERSION_MAX: 10111 WARN_ON(1); 10112 ret = -EINVAL; 10113 goto err_free; 10114 } 10115 10116 if (ar->hw_params.dynamic_sar_support) 10117 ar->hw->wiphy->sar_capa = &ath10k_sar_capa; 10118 10119 if (!test_bit(ATH10K_FLAG_RAW_MODE, &ar->dev_flags)) 10120 ar->hw->netdev_features = NETIF_F_HW_CSUM; 10121 10122 if (IS_ENABLED(CONFIG_ATH10K_DFS_CERTIFIED)) { 10123 /* Init ath dfs pattern detector */ 10124 ar->ath_common.debug_mask = ATH_DBG_DFS; 10125 ar->dfs_detector = dfs_pattern_detector_init(&ar->ath_common, 10126 NL80211_DFS_UNSET); 10127 10128 if (!ar->dfs_detector) 10129 ath10k_warn(ar, "failed to initialise DFS pattern detector\n"); 10130 } 10131 10132 ret = ath10k_mac_init_rd(ar); 10133 if (ret) { 10134 ath10k_err(ar, "failed to derive regdom: %d\n", ret); 10135 goto err_dfs_detector_exit; 10136 } 10137 10138 /* Disable set_coverage_class for chipsets that do not support it. */ 10139 if (!ar->hw_params.hw_ops->set_coverage_class) 10140 ar->ops->set_coverage_class = NULL; 10141 10142 ret = ath_regd_init(&ar->ath_common.regulatory, ar->hw->wiphy, 10143 ath10k_reg_notifier); 10144 if (ret) { 10145 ath10k_err(ar, "failed to initialise regulatory: %i\n", ret); 10146 goto err_dfs_detector_exit; 10147 } 10148 10149 if (test_bit(WMI_SERVICE_SPOOF_MAC_SUPPORT, ar->wmi.svc_map)) { 10150 ar->hw->wiphy->features |= 10151 NL80211_FEATURE_SCAN_RANDOM_MAC_ADDR; 10152 } 10153 10154 ar->hw->wiphy->cipher_suites = cipher_suites; 10155 10156 /* QCA988x and QCA6174 family chips do not support CCMP-256, GCMP-128 10157 * and GCMP-256 ciphers in hardware. Fetch number of ciphers supported 10158 * from chip specific hw_param table. 10159 */ 10160 if (!ar->hw_params.n_cipher_suites || 10161 ar->hw_params.n_cipher_suites > ARRAY_SIZE(cipher_suites)) { 10162 ath10k_err(ar, "invalid hw_params.n_cipher_suites %d\n", 10163 ar->hw_params.n_cipher_suites); 10164 ar->hw_params.n_cipher_suites = 8; 10165 } 10166 ar->hw->wiphy->n_cipher_suites = ar->hw_params.n_cipher_suites; 10167 10168 wiphy_ext_feature_set(ar->hw->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST); 10169 10170 ar->hw->weight_multiplier = ATH10K_AIRTIME_WEIGHT_MULTIPLIER; 10171 10172 ret = ieee80211_register_hw(ar->hw); 10173 if (ret) { 10174 ath10k_err(ar, "failed to register ieee80211: %d\n", ret); 10175 goto err_dfs_detector_exit; 10176 } 10177 10178 if (test_bit(WMI_SERVICE_PER_PACKET_SW_ENCRYPT, ar->wmi.svc_map)) { 10179 ar->hw->wiphy->interface_modes |= BIT(NL80211_IFTYPE_AP_VLAN); 10180 ar->hw->wiphy->software_iftypes |= BIT(NL80211_IFTYPE_AP_VLAN); 10181 } 10182 10183 if (!ath_is_world_regd(&ar->ath_common.regulatory)) { 10184 ret = regulatory_hint(ar->hw->wiphy, 10185 ar->ath_common.regulatory.alpha2); 10186 if (ret) 10187 goto err_unregister; 10188 } 10189 10190 return 0; 10191 10192 err_unregister: 10193 ieee80211_unregister_hw(ar->hw); 10194 10195 err_dfs_detector_exit: 10196 if (IS_ENABLED(CONFIG_ATH10K_DFS_CERTIFIED) && ar->dfs_detector) 10197 ar->dfs_detector->exit(ar->dfs_detector); 10198 10199 err_free: 10200 kfree(ar->mac.sbands[NL80211_BAND_2GHZ].channels); 10201 kfree(ar->mac.sbands[NL80211_BAND_5GHZ].channels); 10202 10203 SET_IEEE80211_DEV(ar->hw, NULL); 10204 return ret; 10205 } 10206 10207 void ath10k_mac_unregister(struct ath10k *ar) 10208 { 10209 ieee80211_unregister_hw(ar->hw); 10210 10211 if (IS_ENABLED(CONFIG_ATH10K_DFS_CERTIFIED) && ar->dfs_detector) 10212 ar->dfs_detector->exit(ar->dfs_detector); 10213 10214 kfree(ar->mac.sbands[NL80211_BAND_2GHZ].channels); 10215 kfree(ar->mac.sbands[NL80211_BAND_5GHZ].channels); 10216 10217 SET_IEEE80211_DEV(ar->hw, NULL); 10218 } 10219