1 // SPDX-License-Identifier: ISC 2 /* 3 * Copyright (c) 2014-2017 Qualcomm Atheros, Inc. 4 */ 5 6 #include <linux/types.h> 7 #include <linux/bitops.h> 8 #include <linux/bitfield.h> 9 #include "core.h" 10 #include "hw.h" 11 #include "hif.h" 12 #include "wmi-ops.h" 13 #include "bmi.h" 14 15 const struct ath10k_hw_regs qca988x_regs = { 16 .rtc_soc_base_address = 0x00004000, 17 .rtc_wmac_base_address = 0x00005000, 18 .soc_core_base_address = 0x00009000, 19 .wlan_mac_base_address = 0x00020000, 20 .ce_wrapper_base_address = 0x00057000, 21 .ce0_base_address = 0x00057400, 22 .ce1_base_address = 0x00057800, 23 .ce2_base_address = 0x00057c00, 24 .ce3_base_address = 0x00058000, 25 .ce4_base_address = 0x00058400, 26 .ce5_base_address = 0x00058800, 27 .ce6_base_address = 0x00058c00, 28 .ce7_base_address = 0x00059000, 29 .soc_reset_control_si0_rst_mask = 0x00000001, 30 .soc_reset_control_ce_rst_mask = 0x00040000, 31 .soc_chip_id_address = 0x000000ec, 32 .scratch_3_address = 0x00000030, 33 .fw_indicator_address = 0x00009030, 34 .pcie_local_base_address = 0x00080000, 35 .ce_wrap_intr_sum_host_msi_lsb = 0x00000008, 36 .ce_wrap_intr_sum_host_msi_mask = 0x0000ff00, 37 .pcie_intr_fw_mask = 0x00000400, 38 .pcie_intr_ce_mask_all = 0x0007f800, 39 .pcie_intr_clr_address = 0x00000014, 40 }; 41 42 const struct ath10k_hw_regs qca6174_regs = { 43 .rtc_soc_base_address = 0x00000800, 44 .rtc_wmac_base_address = 0x00001000, 45 .soc_core_base_address = 0x0003a000, 46 .wlan_mac_base_address = 0x00010000, 47 .ce_wrapper_base_address = 0x00034000, 48 .ce0_base_address = 0x00034400, 49 .ce1_base_address = 0x00034800, 50 .ce2_base_address = 0x00034c00, 51 .ce3_base_address = 0x00035000, 52 .ce4_base_address = 0x00035400, 53 .ce5_base_address = 0x00035800, 54 .ce6_base_address = 0x00035c00, 55 .ce7_base_address = 0x00036000, 56 .soc_reset_control_si0_rst_mask = 0x00000000, 57 .soc_reset_control_ce_rst_mask = 0x00000001, 58 .soc_chip_id_address = 0x000000f0, 59 .scratch_3_address = 0x00000028, 60 .fw_indicator_address = 0x0003a028, 61 .pcie_local_base_address = 0x00080000, 62 .ce_wrap_intr_sum_host_msi_lsb = 0x00000008, 63 .ce_wrap_intr_sum_host_msi_mask = 0x0000ff00, 64 .pcie_intr_fw_mask = 0x00000400, 65 .pcie_intr_ce_mask_all = 0x0007f800, 66 .pcie_intr_clr_address = 0x00000014, 67 .cpu_pll_init_address = 0x00404020, 68 .cpu_speed_address = 0x00404024, 69 .core_clk_div_address = 0x00404028, 70 }; 71 72 const struct ath10k_hw_regs qca99x0_regs = { 73 .rtc_soc_base_address = 0x00080000, 74 .rtc_wmac_base_address = 0x00000000, 75 .soc_core_base_address = 0x00082000, 76 .wlan_mac_base_address = 0x00030000, 77 .ce_wrapper_base_address = 0x0004d000, 78 .ce0_base_address = 0x0004a000, 79 .ce1_base_address = 0x0004a400, 80 .ce2_base_address = 0x0004a800, 81 .ce3_base_address = 0x0004ac00, 82 .ce4_base_address = 0x0004b000, 83 .ce5_base_address = 0x0004b400, 84 .ce6_base_address = 0x0004b800, 85 .ce7_base_address = 0x0004bc00, 86 /* Note: qca99x0 supports upto 12 Copy Engines. Other than address of 87 * CE0 and CE1 no other copy engine is directly referred in the code. 88 * It is not really necessary to assign address for newly supported 89 * CEs in this address table. 90 * Copy Engine Address 91 * CE8 0x0004c000 92 * CE9 0x0004c400 93 * CE10 0x0004c800 94 * CE11 0x0004cc00 95 */ 96 .soc_reset_control_si0_rst_mask = 0x00000001, 97 .soc_reset_control_ce_rst_mask = 0x00000100, 98 .soc_chip_id_address = 0x000000ec, 99 .scratch_3_address = 0x00040050, 100 .fw_indicator_address = 0x00040050, 101 .pcie_local_base_address = 0x00000000, 102 .ce_wrap_intr_sum_host_msi_lsb = 0x0000000c, 103 .ce_wrap_intr_sum_host_msi_mask = 0x00fff000, 104 .pcie_intr_fw_mask = 0x00100000, 105 .pcie_intr_ce_mask_all = 0x000fff00, 106 .pcie_intr_clr_address = 0x00000010, 107 }; 108 109 const struct ath10k_hw_regs qca4019_regs = { 110 .rtc_soc_base_address = 0x00080000, 111 .soc_core_base_address = 0x00082000, 112 .wlan_mac_base_address = 0x00030000, 113 .ce_wrapper_base_address = 0x0004d000, 114 .ce0_base_address = 0x0004a000, 115 .ce1_base_address = 0x0004a400, 116 .ce2_base_address = 0x0004a800, 117 .ce3_base_address = 0x0004ac00, 118 .ce4_base_address = 0x0004b000, 119 .ce5_base_address = 0x0004b400, 120 .ce6_base_address = 0x0004b800, 121 .ce7_base_address = 0x0004bc00, 122 /* qca4019 supports upto 12 copy engines. Since base address 123 * of ce8 to ce11 are not directly referred in the code, 124 * no need have them in separate members in this table. 125 * Copy Engine Address 126 * CE8 0x0004c000 127 * CE9 0x0004c400 128 * CE10 0x0004c800 129 * CE11 0x0004cc00 130 */ 131 .soc_reset_control_si0_rst_mask = 0x00000001, 132 .soc_reset_control_ce_rst_mask = 0x00000100, 133 .soc_chip_id_address = 0x000000ec, 134 .fw_indicator_address = 0x0004f00c, 135 .ce_wrap_intr_sum_host_msi_lsb = 0x0000000c, 136 .ce_wrap_intr_sum_host_msi_mask = 0x00fff000, 137 .pcie_intr_fw_mask = 0x00100000, 138 .pcie_intr_ce_mask_all = 0x000fff00, 139 .pcie_intr_clr_address = 0x00000010, 140 }; 141 142 const struct ath10k_hw_values qca988x_values = { 143 .rtc_state_val_on = 3, 144 .ce_count = 8, 145 .msi_assign_ce_max = 7, 146 .num_target_ce_config_wlan = 7, 147 .ce_desc_meta_data_mask = 0xFFFC, 148 .ce_desc_meta_data_lsb = 2, 149 }; 150 151 const struct ath10k_hw_values qca6174_values = { 152 .rtc_state_val_on = 3, 153 .ce_count = 8, 154 .msi_assign_ce_max = 7, 155 .num_target_ce_config_wlan = 7, 156 .ce_desc_meta_data_mask = 0xFFFC, 157 .ce_desc_meta_data_lsb = 2, 158 }; 159 160 const struct ath10k_hw_values qca99x0_values = { 161 .rtc_state_val_on = 7, 162 .ce_count = 12, 163 .msi_assign_ce_max = 12, 164 .num_target_ce_config_wlan = 10, 165 .ce_desc_meta_data_mask = 0xFFF0, 166 .ce_desc_meta_data_lsb = 4, 167 }; 168 169 const struct ath10k_hw_values qca9888_values = { 170 .rtc_state_val_on = 3, 171 .ce_count = 12, 172 .msi_assign_ce_max = 12, 173 .num_target_ce_config_wlan = 10, 174 .ce_desc_meta_data_mask = 0xFFF0, 175 .ce_desc_meta_data_lsb = 4, 176 }; 177 178 const struct ath10k_hw_values qca4019_values = { 179 .ce_count = 12, 180 .num_target_ce_config_wlan = 10, 181 .ce_desc_meta_data_mask = 0xFFF0, 182 .ce_desc_meta_data_lsb = 4, 183 }; 184 185 const struct ath10k_hw_regs wcn3990_regs = { 186 .rtc_soc_base_address = 0x00000000, 187 .rtc_wmac_base_address = 0x00000000, 188 .soc_core_base_address = 0x00000000, 189 .ce_wrapper_base_address = 0x0024C000, 190 .ce0_base_address = 0x00240000, 191 .ce1_base_address = 0x00241000, 192 .ce2_base_address = 0x00242000, 193 .ce3_base_address = 0x00243000, 194 .ce4_base_address = 0x00244000, 195 .ce5_base_address = 0x00245000, 196 .ce6_base_address = 0x00246000, 197 .ce7_base_address = 0x00247000, 198 .ce8_base_address = 0x00248000, 199 .ce9_base_address = 0x00249000, 200 .ce10_base_address = 0x0024A000, 201 .ce11_base_address = 0x0024B000, 202 .soc_chip_id_address = 0x000000f0, 203 .soc_reset_control_si0_rst_mask = 0x00000001, 204 .soc_reset_control_ce_rst_mask = 0x00000100, 205 .ce_wrap_intr_sum_host_msi_lsb = 0x0000000c, 206 .ce_wrap_intr_sum_host_msi_mask = 0x00fff000, 207 .pcie_intr_fw_mask = 0x00100000, 208 }; 209 210 static struct ath10k_hw_ce_regs_addr_map wcn3990_src_ring = { 211 .msb = 0x00000010, 212 .lsb = 0x00000010, 213 .mask = GENMASK(17, 17), 214 }; 215 216 static struct ath10k_hw_ce_regs_addr_map wcn3990_dst_ring = { 217 .msb = 0x00000012, 218 .lsb = 0x00000012, 219 .mask = GENMASK(18, 18), 220 }; 221 222 static struct ath10k_hw_ce_regs_addr_map wcn3990_dmax = { 223 .msb = 0x00000000, 224 .lsb = 0x00000000, 225 .mask = GENMASK(15, 0), 226 }; 227 228 static struct ath10k_hw_ce_ctrl1 wcn3990_ctrl1 = { 229 .addr = 0x00000018, 230 .src_ring = &wcn3990_src_ring, 231 .dst_ring = &wcn3990_dst_ring, 232 .dmax = &wcn3990_dmax, 233 }; 234 235 static struct ath10k_hw_ce_regs_addr_map wcn3990_host_ie_cc = { 236 .mask = GENMASK(0, 0), 237 }; 238 239 static struct ath10k_hw_ce_host_ie wcn3990_host_ie = { 240 .copy_complete = &wcn3990_host_ie_cc, 241 }; 242 243 static struct ath10k_hw_ce_host_wm_regs wcn3990_wm_reg = { 244 .dstr_lmask = 0x00000010, 245 .dstr_hmask = 0x00000008, 246 .srcr_lmask = 0x00000004, 247 .srcr_hmask = 0x00000002, 248 .cc_mask = 0x00000001, 249 .wm_mask = 0x0000001E, 250 .addr = 0x00000030, 251 }; 252 253 static struct ath10k_hw_ce_misc_regs wcn3990_misc_reg = { 254 .axi_err = 0x00000100, 255 .dstr_add_err = 0x00000200, 256 .srcr_len_err = 0x00000100, 257 .dstr_mlen_vio = 0x00000080, 258 .dstr_overflow = 0x00000040, 259 .srcr_overflow = 0x00000020, 260 .err_mask = 0x000003E0, 261 .addr = 0x00000038, 262 }; 263 264 static struct ath10k_hw_ce_regs_addr_map wcn3990_src_wm_low = { 265 .msb = 0x00000000, 266 .lsb = 0x00000010, 267 .mask = GENMASK(31, 16), 268 }; 269 270 static struct ath10k_hw_ce_regs_addr_map wcn3990_src_wm_high = { 271 .msb = 0x0000000f, 272 .lsb = 0x00000000, 273 .mask = GENMASK(15, 0), 274 }; 275 276 static struct ath10k_hw_ce_dst_src_wm_regs wcn3990_wm_src_ring = { 277 .addr = 0x0000004c, 278 .low_rst = 0x00000000, 279 .high_rst = 0x00000000, 280 .wm_low = &wcn3990_src_wm_low, 281 .wm_high = &wcn3990_src_wm_high, 282 }; 283 284 static struct ath10k_hw_ce_regs_addr_map wcn3990_dst_wm_low = { 285 .lsb = 0x00000010, 286 .mask = GENMASK(31, 16), 287 }; 288 289 static struct ath10k_hw_ce_regs_addr_map wcn3990_dst_wm_high = { 290 .msb = 0x0000000f, 291 .lsb = 0x00000000, 292 .mask = GENMASK(15, 0), 293 }; 294 295 static struct ath10k_hw_ce_dst_src_wm_regs wcn3990_wm_dst_ring = { 296 .addr = 0x00000050, 297 .low_rst = 0x00000000, 298 .high_rst = 0x00000000, 299 .wm_low = &wcn3990_dst_wm_low, 300 .wm_high = &wcn3990_dst_wm_high, 301 }; 302 303 static struct ath10k_hw_ce_ctrl1_upd wcn3990_ctrl1_upd = { 304 .shift = 19, 305 .mask = 0x00080000, 306 .enable = 0x00000000, 307 }; 308 309 const struct ath10k_hw_ce_regs wcn3990_ce_regs = { 310 .sr_base_addr_lo = 0x00000000, 311 .sr_base_addr_hi = 0x00000004, 312 .sr_size_addr = 0x00000008, 313 .dr_base_addr_lo = 0x0000000c, 314 .dr_base_addr_hi = 0x00000010, 315 .dr_size_addr = 0x00000014, 316 .misc_ie_addr = 0x00000034, 317 .sr_wr_index_addr = 0x0000003c, 318 .dst_wr_index_addr = 0x00000040, 319 .current_srri_addr = 0x00000044, 320 .current_drri_addr = 0x00000048, 321 .ce_rri_low = 0x0024C004, 322 .ce_rri_high = 0x0024C008, 323 .host_ie_addr = 0x0000002c, 324 .ctrl1_regs = &wcn3990_ctrl1, 325 .host_ie = &wcn3990_host_ie, 326 .wm_regs = &wcn3990_wm_reg, 327 .misc_regs = &wcn3990_misc_reg, 328 .wm_srcr = &wcn3990_wm_src_ring, 329 .wm_dstr = &wcn3990_wm_dst_ring, 330 .upd = &wcn3990_ctrl1_upd, 331 }; 332 333 const struct ath10k_hw_values wcn3990_values = { 334 .rtc_state_val_on = 5, 335 .ce_count = 12, 336 .msi_assign_ce_max = 12, 337 .num_target_ce_config_wlan = 12, 338 .ce_desc_meta_data_mask = 0xFFF0, 339 .ce_desc_meta_data_lsb = 4, 340 }; 341 342 static struct ath10k_hw_ce_regs_addr_map qcax_src_ring = { 343 .msb = 0x00000010, 344 .lsb = 0x00000010, 345 .mask = GENMASK(16, 16), 346 }; 347 348 static struct ath10k_hw_ce_regs_addr_map qcax_dst_ring = { 349 .msb = 0x00000011, 350 .lsb = 0x00000011, 351 .mask = GENMASK(17, 17), 352 }; 353 354 static struct ath10k_hw_ce_regs_addr_map qcax_dmax = { 355 .msb = 0x0000000f, 356 .lsb = 0x00000000, 357 .mask = GENMASK(15, 0), 358 }; 359 360 static struct ath10k_hw_ce_ctrl1 qcax_ctrl1 = { 361 .addr = 0x00000010, 362 .hw_mask = 0x0007ffff, 363 .sw_mask = 0x0007ffff, 364 .hw_wr_mask = 0x00000000, 365 .sw_wr_mask = 0x0007ffff, 366 .reset_mask = 0xffffffff, 367 .reset = 0x00000080, 368 .src_ring = &qcax_src_ring, 369 .dst_ring = &qcax_dst_ring, 370 .dmax = &qcax_dmax, 371 }; 372 373 static struct ath10k_hw_ce_regs_addr_map qcax_cmd_halt_status = { 374 .msb = 0x00000003, 375 .lsb = 0x00000003, 376 .mask = GENMASK(3, 3), 377 }; 378 379 static struct ath10k_hw_ce_cmd_halt qcax_cmd_halt = { 380 .msb = 0x00000000, 381 .mask = GENMASK(0, 0), 382 .status_reset = 0x00000000, 383 .status = &qcax_cmd_halt_status, 384 }; 385 386 static struct ath10k_hw_ce_regs_addr_map qcax_host_ie_cc = { 387 .msb = 0x00000000, 388 .lsb = 0x00000000, 389 .mask = GENMASK(0, 0), 390 }; 391 392 static struct ath10k_hw_ce_host_ie qcax_host_ie = { 393 .copy_complete_reset = 0x00000000, 394 .copy_complete = &qcax_host_ie_cc, 395 }; 396 397 static struct ath10k_hw_ce_host_wm_regs qcax_wm_reg = { 398 .dstr_lmask = 0x00000010, 399 .dstr_hmask = 0x00000008, 400 .srcr_lmask = 0x00000004, 401 .srcr_hmask = 0x00000002, 402 .cc_mask = 0x00000001, 403 .wm_mask = 0x0000001E, 404 .addr = 0x00000030, 405 }; 406 407 static struct ath10k_hw_ce_misc_regs qcax_misc_reg = { 408 .axi_err = 0x00000400, 409 .dstr_add_err = 0x00000200, 410 .srcr_len_err = 0x00000100, 411 .dstr_mlen_vio = 0x00000080, 412 .dstr_overflow = 0x00000040, 413 .srcr_overflow = 0x00000020, 414 .err_mask = 0x000007E0, 415 .addr = 0x00000038, 416 }; 417 418 static struct ath10k_hw_ce_regs_addr_map qcax_src_wm_low = { 419 .msb = 0x0000001f, 420 .lsb = 0x00000010, 421 .mask = GENMASK(31, 16), 422 }; 423 424 static struct ath10k_hw_ce_regs_addr_map qcax_src_wm_high = { 425 .msb = 0x0000000f, 426 .lsb = 0x00000000, 427 .mask = GENMASK(15, 0), 428 }; 429 430 static struct ath10k_hw_ce_dst_src_wm_regs qcax_wm_src_ring = { 431 .addr = 0x0000004c, 432 .low_rst = 0x00000000, 433 .high_rst = 0x00000000, 434 .wm_low = &qcax_src_wm_low, 435 .wm_high = &qcax_src_wm_high, 436 }; 437 438 static struct ath10k_hw_ce_regs_addr_map qcax_dst_wm_low = { 439 .lsb = 0x00000010, 440 .mask = GENMASK(31, 16), 441 }; 442 443 static struct ath10k_hw_ce_regs_addr_map qcax_dst_wm_high = { 444 .msb = 0x0000000f, 445 .lsb = 0x00000000, 446 .mask = GENMASK(15, 0), 447 }; 448 449 static struct ath10k_hw_ce_dst_src_wm_regs qcax_wm_dst_ring = { 450 .addr = 0x00000050, 451 .low_rst = 0x00000000, 452 .high_rst = 0x00000000, 453 .wm_low = &qcax_dst_wm_low, 454 .wm_high = &qcax_dst_wm_high, 455 }; 456 457 const struct ath10k_hw_ce_regs qcax_ce_regs = { 458 .sr_base_addr_lo = 0x00000000, 459 .sr_size_addr = 0x00000004, 460 .dr_base_addr_lo = 0x00000008, 461 .dr_size_addr = 0x0000000c, 462 .ce_cmd_addr = 0x00000018, 463 .misc_ie_addr = 0x00000034, 464 .sr_wr_index_addr = 0x0000003c, 465 .dst_wr_index_addr = 0x00000040, 466 .current_srri_addr = 0x00000044, 467 .current_drri_addr = 0x00000048, 468 .host_ie_addr = 0x0000002c, 469 .ctrl1_regs = &qcax_ctrl1, 470 .cmd_halt = &qcax_cmd_halt, 471 .host_ie = &qcax_host_ie, 472 .wm_regs = &qcax_wm_reg, 473 .misc_regs = &qcax_misc_reg, 474 .wm_srcr = &qcax_wm_src_ring, 475 .wm_dstr = &qcax_wm_dst_ring, 476 }; 477 478 const struct ath10k_hw_clk_params qca6174_clk[ATH10K_HW_REFCLK_COUNT] = { 479 { 480 .refclk = 48000000, 481 .div = 0xe, 482 .rnfrac = 0x2aaa8, 483 .settle_time = 2400, 484 .refdiv = 0, 485 .outdiv = 1, 486 }, 487 { 488 .refclk = 19200000, 489 .div = 0x24, 490 .rnfrac = 0x2aaa8, 491 .settle_time = 960, 492 .refdiv = 0, 493 .outdiv = 1, 494 }, 495 { 496 .refclk = 24000000, 497 .div = 0x1d, 498 .rnfrac = 0x15551, 499 .settle_time = 1200, 500 .refdiv = 0, 501 .outdiv = 1, 502 }, 503 { 504 .refclk = 26000000, 505 .div = 0x1b, 506 .rnfrac = 0x4ec4, 507 .settle_time = 1300, 508 .refdiv = 0, 509 .outdiv = 1, 510 }, 511 { 512 .refclk = 37400000, 513 .div = 0x12, 514 .rnfrac = 0x34b49, 515 .settle_time = 1870, 516 .refdiv = 0, 517 .outdiv = 1, 518 }, 519 { 520 .refclk = 38400000, 521 .div = 0x12, 522 .rnfrac = 0x15551, 523 .settle_time = 1920, 524 .refdiv = 0, 525 .outdiv = 1, 526 }, 527 { 528 .refclk = 40000000, 529 .div = 0x12, 530 .rnfrac = 0x26665, 531 .settle_time = 2000, 532 .refdiv = 0, 533 .outdiv = 1, 534 }, 535 { 536 .refclk = 52000000, 537 .div = 0x1b, 538 .rnfrac = 0x4ec4, 539 .settle_time = 2600, 540 .refdiv = 0, 541 .outdiv = 1, 542 }, 543 }; 544 545 void ath10k_hw_fill_survey_time(struct ath10k *ar, struct survey_info *survey, 546 u32 cc, u32 rcc, u32 cc_prev, u32 rcc_prev) 547 { 548 u32 cc_fix = 0; 549 u32 rcc_fix = 0; 550 enum ath10k_hw_cc_wraparound_type wraparound_type; 551 552 survey->filled |= SURVEY_INFO_TIME | 553 SURVEY_INFO_TIME_BUSY; 554 555 wraparound_type = ar->hw_params.cc_wraparound_type; 556 557 if (cc < cc_prev || rcc < rcc_prev) { 558 switch (wraparound_type) { 559 case ATH10K_HW_CC_WRAP_SHIFTED_ALL: 560 if (cc < cc_prev) { 561 cc_fix = 0x7fffffff; 562 survey->filled &= ~SURVEY_INFO_TIME_BUSY; 563 } 564 break; 565 case ATH10K_HW_CC_WRAP_SHIFTED_EACH: 566 if (cc < cc_prev) 567 cc_fix = 0x7fffffff; 568 569 if (rcc < rcc_prev) 570 rcc_fix = 0x7fffffff; 571 break; 572 case ATH10K_HW_CC_WRAP_DISABLED: 573 break; 574 } 575 } 576 577 cc -= cc_prev - cc_fix; 578 rcc -= rcc_prev - rcc_fix; 579 580 survey->time = CCNT_TO_MSEC(ar, cc); 581 survey->time_busy = CCNT_TO_MSEC(ar, rcc); 582 } 583 584 /* The firmware does not support setting the coverage class. Instead this 585 * function monitors and modifies the corresponding MAC registers. 586 */ 587 static void ath10k_hw_qca988x_set_coverage_class(struct ath10k *ar, 588 s16 value) 589 { 590 u32 slottime_reg; 591 u32 slottime; 592 u32 timeout_reg; 593 u32 ack_timeout; 594 u32 cts_timeout; 595 u32 phyclk_reg; 596 u32 phyclk; 597 u64 fw_dbglog_mask; 598 u32 fw_dbglog_level; 599 600 mutex_lock(&ar->conf_mutex); 601 602 /* Only modify registers if the core is started. */ 603 if ((ar->state != ATH10K_STATE_ON) && 604 (ar->state != ATH10K_STATE_RESTARTED)) { 605 spin_lock_bh(&ar->data_lock); 606 /* Store config value for when radio boots up */ 607 ar->fw_coverage.coverage_class = value; 608 spin_unlock_bh(&ar->data_lock); 609 goto unlock; 610 } 611 612 /* Retrieve the current values of the two registers that need to be 613 * adjusted. 614 */ 615 slottime_reg = ath10k_hif_read32(ar, WLAN_MAC_BASE_ADDRESS + 616 WAVE1_PCU_GBL_IFS_SLOT); 617 timeout_reg = ath10k_hif_read32(ar, WLAN_MAC_BASE_ADDRESS + 618 WAVE1_PCU_ACK_CTS_TIMEOUT); 619 phyclk_reg = ath10k_hif_read32(ar, WLAN_MAC_BASE_ADDRESS + 620 WAVE1_PHYCLK); 621 phyclk = MS(phyclk_reg, WAVE1_PHYCLK_USEC) + 1; 622 623 if (value < 0) 624 value = ar->fw_coverage.coverage_class; 625 626 /* Break out if the coverage class and registers have the expected 627 * value. 628 */ 629 if (value == ar->fw_coverage.coverage_class && 630 slottime_reg == ar->fw_coverage.reg_slottime_conf && 631 timeout_reg == ar->fw_coverage.reg_ack_cts_timeout_conf && 632 phyclk_reg == ar->fw_coverage.reg_phyclk) 633 goto unlock; 634 635 /* Store new initial register values from the firmware. */ 636 if (slottime_reg != ar->fw_coverage.reg_slottime_conf) 637 ar->fw_coverage.reg_slottime_orig = slottime_reg; 638 if (timeout_reg != ar->fw_coverage.reg_ack_cts_timeout_conf) 639 ar->fw_coverage.reg_ack_cts_timeout_orig = timeout_reg; 640 ar->fw_coverage.reg_phyclk = phyclk_reg; 641 642 /* Calculate new value based on the (original) firmware calculation. */ 643 slottime_reg = ar->fw_coverage.reg_slottime_orig; 644 timeout_reg = ar->fw_coverage.reg_ack_cts_timeout_orig; 645 646 /* Do some sanity checks on the slottime register. */ 647 if (slottime_reg % phyclk) { 648 ath10k_warn(ar, 649 "failed to set coverage class: expected integer microsecond value in register\n"); 650 651 goto store_regs; 652 } 653 654 slottime = MS(slottime_reg, WAVE1_PCU_GBL_IFS_SLOT); 655 slottime = slottime / phyclk; 656 if (slottime != 9 && slottime != 20) { 657 ath10k_warn(ar, 658 "failed to set coverage class: expected slot time of 9 or 20us in HW register. It is %uus.\n", 659 slottime); 660 661 goto store_regs; 662 } 663 664 /* Recalculate the register values by adding the additional propagation 665 * delay (3us per coverage class). 666 */ 667 668 slottime = MS(slottime_reg, WAVE1_PCU_GBL_IFS_SLOT); 669 slottime += value * 3 * phyclk; 670 slottime = min_t(u32, slottime, WAVE1_PCU_GBL_IFS_SLOT_MAX); 671 slottime = SM(slottime, WAVE1_PCU_GBL_IFS_SLOT); 672 slottime_reg = (slottime_reg & ~WAVE1_PCU_GBL_IFS_SLOT_MASK) | slottime; 673 674 /* Update ack timeout (lower halfword). */ 675 ack_timeout = MS(timeout_reg, WAVE1_PCU_ACK_CTS_TIMEOUT_ACK); 676 ack_timeout += 3 * value * phyclk; 677 ack_timeout = min_t(u32, ack_timeout, WAVE1_PCU_ACK_CTS_TIMEOUT_MAX); 678 ack_timeout = SM(ack_timeout, WAVE1_PCU_ACK_CTS_TIMEOUT_ACK); 679 680 /* Update cts timeout (upper halfword). */ 681 cts_timeout = MS(timeout_reg, WAVE1_PCU_ACK_CTS_TIMEOUT_CTS); 682 cts_timeout += 3 * value * phyclk; 683 cts_timeout = min_t(u32, cts_timeout, WAVE1_PCU_ACK_CTS_TIMEOUT_MAX); 684 cts_timeout = SM(cts_timeout, WAVE1_PCU_ACK_CTS_TIMEOUT_CTS); 685 686 timeout_reg = ack_timeout | cts_timeout; 687 688 ath10k_hif_write32(ar, 689 WLAN_MAC_BASE_ADDRESS + WAVE1_PCU_GBL_IFS_SLOT, 690 slottime_reg); 691 ath10k_hif_write32(ar, 692 WLAN_MAC_BASE_ADDRESS + WAVE1_PCU_ACK_CTS_TIMEOUT, 693 timeout_reg); 694 695 /* Ensure we have a debug level of WARN set for the case that the 696 * coverage class is larger than 0. This is important as we need to 697 * set the registers again if the firmware does an internal reset and 698 * this way we will be notified of the event. 699 */ 700 fw_dbglog_mask = ath10k_debug_get_fw_dbglog_mask(ar); 701 fw_dbglog_level = ath10k_debug_get_fw_dbglog_level(ar); 702 703 if (value > 0) { 704 if (fw_dbglog_level > ATH10K_DBGLOG_LEVEL_WARN) 705 fw_dbglog_level = ATH10K_DBGLOG_LEVEL_WARN; 706 fw_dbglog_mask = ~0; 707 } 708 709 ath10k_wmi_dbglog_cfg(ar, fw_dbglog_mask, fw_dbglog_level); 710 711 store_regs: 712 /* After an error we will not retry setting the coverage class. */ 713 spin_lock_bh(&ar->data_lock); 714 ar->fw_coverage.coverage_class = value; 715 spin_unlock_bh(&ar->data_lock); 716 717 ar->fw_coverage.reg_slottime_conf = slottime_reg; 718 ar->fw_coverage.reg_ack_cts_timeout_conf = timeout_reg; 719 720 unlock: 721 mutex_unlock(&ar->conf_mutex); 722 } 723 724 /** 725 * ath10k_hw_qca6174_enable_pll_clock() - enable the qca6174 hw pll clock 726 * @ar: the ath10k blob 727 * 728 * This function is very hardware specific, the clock initialization 729 * steps is very sensitive and could lead to unknown crash, so they 730 * should be done in sequence. 731 * 732 * *** Be aware if you planned to refactor them. *** 733 * 734 * Return: 0 if successfully enable the pll, otherwise EINVAL 735 */ 736 static int ath10k_hw_qca6174_enable_pll_clock(struct ath10k *ar) 737 { 738 int ret, wait_limit; 739 u32 clk_div_addr, pll_init_addr, speed_addr; 740 u32 addr, reg_val, mem_val; 741 struct ath10k_hw_params *hw; 742 const struct ath10k_hw_clk_params *hw_clk; 743 744 hw = &ar->hw_params; 745 746 if (ar->regs->core_clk_div_address == 0 || 747 ar->regs->cpu_pll_init_address == 0 || 748 ar->regs->cpu_speed_address == 0) 749 return -EINVAL; 750 751 clk_div_addr = ar->regs->core_clk_div_address; 752 pll_init_addr = ar->regs->cpu_pll_init_address; 753 speed_addr = ar->regs->cpu_speed_address; 754 755 /* Read efuse register to find out the right hw clock configuration */ 756 addr = (RTC_SOC_BASE_ADDRESS | EFUSE_OFFSET); 757 ret = ath10k_bmi_read_soc_reg(ar, addr, ®_val); 758 if (ret) 759 return -EINVAL; 760 761 /* sanitize if the hw refclk index is out of the boundary */ 762 if (MS(reg_val, EFUSE_XTAL_SEL) > ATH10K_HW_REFCLK_COUNT) 763 return -EINVAL; 764 765 hw_clk = &hw->hw_clk[MS(reg_val, EFUSE_XTAL_SEL)]; 766 767 /* Set the rnfrac and outdiv params to bb_pll register */ 768 addr = (RTC_SOC_BASE_ADDRESS | BB_PLL_CONFIG_OFFSET); 769 ret = ath10k_bmi_read_soc_reg(ar, addr, ®_val); 770 if (ret) 771 return -EINVAL; 772 773 reg_val &= ~(BB_PLL_CONFIG_FRAC_MASK | BB_PLL_CONFIG_OUTDIV_MASK); 774 reg_val |= (SM(hw_clk->rnfrac, BB_PLL_CONFIG_FRAC) | 775 SM(hw_clk->outdiv, BB_PLL_CONFIG_OUTDIV)); 776 ret = ath10k_bmi_write_soc_reg(ar, addr, reg_val); 777 if (ret) 778 return -EINVAL; 779 780 /* Set the correct settle time value to pll_settle register */ 781 addr = (RTC_WMAC_BASE_ADDRESS | WLAN_PLL_SETTLE_OFFSET); 782 ret = ath10k_bmi_read_soc_reg(ar, addr, ®_val); 783 if (ret) 784 return -EINVAL; 785 786 reg_val &= ~WLAN_PLL_SETTLE_TIME_MASK; 787 reg_val |= SM(hw_clk->settle_time, WLAN_PLL_SETTLE_TIME); 788 ret = ath10k_bmi_write_soc_reg(ar, addr, reg_val); 789 if (ret) 790 return -EINVAL; 791 792 /* Set the clock_ctrl div to core_clk_ctrl register */ 793 addr = (RTC_SOC_BASE_ADDRESS | SOC_CORE_CLK_CTRL_OFFSET); 794 ret = ath10k_bmi_read_soc_reg(ar, addr, ®_val); 795 if (ret) 796 return -EINVAL; 797 798 reg_val &= ~SOC_CORE_CLK_CTRL_DIV_MASK; 799 reg_val |= SM(1, SOC_CORE_CLK_CTRL_DIV); 800 ret = ath10k_bmi_write_soc_reg(ar, addr, reg_val); 801 if (ret) 802 return -EINVAL; 803 804 /* Set the clock_div register */ 805 mem_val = 1; 806 ret = ath10k_bmi_write_memory(ar, clk_div_addr, &mem_val, 807 sizeof(mem_val)); 808 if (ret) 809 return -EINVAL; 810 811 /* Configure the pll_control register */ 812 addr = (RTC_WMAC_BASE_ADDRESS | WLAN_PLL_CONTROL_OFFSET); 813 ret = ath10k_bmi_read_soc_reg(ar, addr, ®_val); 814 if (ret) 815 return -EINVAL; 816 817 reg_val |= (SM(hw_clk->refdiv, WLAN_PLL_CONTROL_REFDIV) | 818 SM(hw_clk->div, WLAN_PLL_CONTROL_DIV) | 819 SM(1, WLAN_PLL_CONTROL_NOPWD)); 820 ret = ath10k_bmi_write_soc_reg(ar, addr, reg_val); 821 if (ret) 822 return -EINVAL; 823 824 /* busy wait (max 1s) the rtc_sync status register indicate ready */ 825 wait_limit = 100000; 826 addr = (RTC_WMAC_BASE_ADDRESS | RTC_SYNC_STATUS_OFFSET); 827 do { 828 ret = ath10k_bmi_read_soc_reg(ar, addr, ®_val); 829 if (ret) 830 return -EINVAL; 831 832 if (!MS(reg_val, RTC_SYNC_STATUS_PLL_CHANGING)) 833 break; 834 835 wait_limit--; 836 udelay(10); 837 838 } while (wait_limit > 0); 839 840 if (MS(reg_val, RTC_SYNC_STATUS_PLL_CHANGING)) 841 return -EINVAL; 842 843 /* Unset the pll_bypass in pll_control register */ 844 addr = (RTC_WMAC_BASE_ADDRESS | WLAN_PLL_CONTROL_OFFSET); 845 ret = ath10k_bmi_read_soc_reg(ar, addr, ®_val); 846 if (ret) 847 return -EINVAL; 848 849 reg_val &= ~WLAN_PLL_CONTROL_BYPASS_MASK; 850 reg_val |= SM(0, WLAN_PLL_CONTROL_BYPASS); 851 ret = ath10k_bmi_write_soc_reg(ar, addr, reg_val); 852 if (ret) 853 return -EINVAL; 854 855 /* busy wait (max 1s) the rtc_sync status register indicate ready */ 856 wait_limit = 100000; 857 addr = (RTC_WMAC_BASE_ADDRESS | RTC_SYNC_STATUS_OFFSET); 858 do { 859 ret = ath10k_bmi_read_soc_reg(ar, addr, ®_val); 860 if (ret) 861 return -EINVAL; 862 863 if (!MS(reg_val, RTC_SYNC_STATUS_PLL_CHANGING)) 864 break; 865 866 wait_limit--; 867 udelay(10); 868 869 } while (wait_limit > 0); 870 871 if (MS(reg_val, RTC_SYNC_STATUS_PLL_CHANGING)) 872 return -EINVAL; 873 874 /* Enable the hardware cpu clock register */ 875 addr = (RTC_SOC_BASE_ADDRESS | SOC_CPU_CLOCK_OFFSET); 876 ret = ath10k_bmi_read_soc_reg(ar, addr, ®_val); 877 if (ret) 878 return -EINVAL; 879 880 reg_val &= ~SOC_CPU_CLOCK_STANDARD_MASK; 881 reg_val |= SM(1, SOC_CPU_CLOCK_STANDARD); 882 ret = ath10k_bmi_write_soc_reg(ar, addr, reg_val); 883 if (ret) 884 return -EINVAL; 885 886 /* unset the nopwd from pll_control register */ 887 addr = (RTC_WMAC_BASE_ADDRESS | WLAN_PLL_CONTROL_OFFSET); 888 ret = ath10k_bmi_read_soc_reg(ar, addr, ®_val); 889 if (ret) 890 return -EINVAL; 891 892 reg_val &= ~WLAN_PLL_CONTROL_NOPWD_MASK; 893 ret = ath10k_bmi_write_soc_reg(ar, addr, reg_val); 894 if (ret) 895 return -EINVAL; 896 897 /* enable the pll_init register */ 898 mem_val = 1; 899 ret = ath10k_bmi_write_memory(ar, pll_init_addr, &mem_val, 900 sizeof(mem_val)); 901 if (ret) 902 return -EINVAL; 903 904 /* set the target clock frequency to speed register */ 905 ret = ath10k_bmi_write_memory(ar, speed_addr, &hw->target_cpu_freq, 906 sizeof(hw->target_cpu_freq)); 907 if (ret) 908 return -EINVAL; 909 910 return 0; 911 } 912 913 /* Program CPU_ADDR_MSB to allow different memory 914 * region access. 915 */ 916 static void ath10k_hw_map_target_mem(struct ath10k *ar, u32 msb) 917 { 918 u32 address = SOC_CORE_BASE_ADDRESS + FW_RAM_CONFIG_ADDRESS; 919 920 ath10k_hif_write32(ar, address, msb); 921 } 922 923 /* 1. Write to memory region of target, such as IRAM adn DRAM. 924 * 2. Target address( 0 ~ 00100000 & 0x00400000~0x00500000) 925 * can be written directly. See ath10k_pci_targ_cpu_to_ce_addr() too. 926 * 3. In order to access the region other than the above, 927 * we need to set the value of register CPU_ADDR_MSB. 928 * 4. Target memory access space is limited to 1M size. If the size is larger 929 * than 1M, need to split it and program CPU_ADDR_MSB accordingly. 930 */ 931 static int ath10k_hw_diag_segment_msb_download(struct ath10k *ar, 932 const void *buffer, 933 u32 address, 934 u32 length) 935 { 936 u32 addr = address & REGION_ACCESS_SIZE_MASK; 937 int ret, remain_size, size; 938 const u8 *buf; 939 940 ath10k_hw_map_target_mem(ar, CPU_ADDR_MSB_REGION_VAL(address)); 941 942 if (addr + length > REGION_ACCESS_SIZE_LIMIT) { 943 size = REGION_ACCESS_SIZE_LIMIT - addr; 944 remain_size = length - size; 945 946 ret = ath10k_hif_diag_write(ar, address, buffer, size); 947 if (ret) { 948 ath10k_warn(ar, 949 "failed to download the first %d bytes segment to address:0x%x: %d\n", 950 size, address, ret); 951 goto done; 952 } 953 954 /* Change msb to the next memory region*/ 955 ath10k_hw_map_target_mem(ar, 956 CPU_ADDR_MSB_REGION_VAL(address) + 1); 957 buf = buffer + size; 958 ret = ath10k_hif_diag_write(ar, 959 address & ~REGION_ACCESS_SIZE_MASK, 960 buf, remain_size); 961 if (ret) { 962 ath10k_warn(ar, 963 "failed to download the second %d bytes segment to address:0x%x: %d\n", 964 remain_size, 965 address & ~REGION_ACCESS_SIZE_MASK, 966 ret); 967 goto done; 968 } 969 } else { 970 ret = ath10k_hif_diag_write(ar, address, buffer, length); 971 if (ret) { 972 ath10k_warn(ar, 973 "failed to download the only %d bytes segment to address:0x%x: %d\n", 974 length, address, ret); 975 goto done; 976 } 977 } 978 979 done: 980 /* Change msb to DRAM */ 981 ath10k_hw_map_target_mem(ar, 982 CPU_ADDR_MSB_REGION_VAL(DRAM_BASE_ADDRESS)); 983 return ret; 984 } 985 986 static int ath10k_hw_diag_segment_download(struct ath10k *ar, 987 const void *buffer, 988 u32 address, 989 u32 length) 990 { 991 if (address >= DRAM_BASE_ADDRESS + REGION_ACCESS_SIZE_LIMIT) 992 /* Needs to change MSB for memory write */ 993 return ath10k_hw_diag_segment_msb_download(ar, buffer, 994 address, length); 995 else 996 return ath10k_hif_diag_write(ar, address, buffer, length); 997 } 998 999 int ath10k_hw_diag_fast_download(struct ath10k *ar, 1000 u32 address, 1001 const void *buffer, 1002 u32 length) 1003 { 1004 const u8 *buf = buffer; 1005 bool sgmt_end = false; 1006 u32 base_addr = 0; 1007 u32 base_len = 0; 1008 u32 left = 0; 1009 struct bmi_segmented_file_header *hdr; 1010 struct bmi_segmented_metadata *metadata; 1011 int ret = 0; 1012 1013 if (length < sizeof(*hdr)) 1014 return -EINVAL; 1015 1016 /* check firmware header. If it has no correct magic number 1017 * or it's compressed, returns error. 1018 */ 1019 hdr = (struct bmi_segmented_file_header *)buf; 1020 if (__le32_to_cpu(hdr->magic_num) != BMI_SGMTFILE_MAGIC_NUM) { 1021 ath10k_dbg(ar, ATH10K_DBG_BOOT, 1022 "Not a supported firmware, magic_num:0x%x\n", 1023 hdr->magic_num); 1024 return -EINVAL; 1025 } 1026 1027 if (hdr->file_flags != 0) { 1028 ath10k_dbg(ar, ATH10K_DBG_BOOT, 1029 "Not a supported firmware, file_flags:0x%x\n", 1030 hdr->file_flags); 1031 return -EINVAL; 1032 } 1033 1034 metadata = (struct bmi_segmented_metadata *)hdr->data; 1035 left = length - sizeof(*hdr); 1036 1037 while (left > 0) { 1038 if (left < sizeof(*metadata)) { 1039 ath10k_warn(ar, "firmware segment is truncated: %d\n", 1040 left); 1041 ret = -EINVAL; 1042 break; 1043 } 1044 base_addr = __le32_to_cpu(metadata->addr); 1045 base_len = __le32_to_cpu(metadata->length); 1046 buf = metadata->data; 1047 left -= sizeof(*metadata); 1048 1049 switch (base_len) { 1050 case BMI_SGMTFILE_BEGINADDR: 1051 /* base_addr is the start address to run */ 1052 ret = ath10k_bmi_set_start(ar, base_addr); 1053 base_len = 0; 1054 break; 1055 case BMI_SGMTFILE_DONE: 1056 /* no more segment */ 1057 base_len = 0; 1058 sgmt_end = true; 1059 ret = 0; 1060 break; 1061 case BMI_SGMTFILE_BDDATA: 1062 case BMI_SGMTFILE_EXEC: 1063 ath10k_warn(ar, 1064 "firmware has unsupported segment:%d\n", 1065 base_len); 1066 ret = -EINVAL; 1067 break; 1068 default: 1069 if (base_len > left) { 1070 /* sanity check */ 1071 ath10k_warn(ar, 1072 "firmware has invalid segment length, %d > %d\n", 1073 base_len, left); 1074 ret = -EINVAL; 1075 break; 1076 } 1077 1078 ret = ath10k_hw_diag_segment_download(ar, 1079 buf, 1080 base_addr, 1081 base_len); 1082 1083 if (ret) 1084 ath10k_warn(ar, 1085 "failed to download firmware via diag interface:%d\n", 1086 ret); 1087 break; 1088 } 1089 1090 if (ret || sgmt_end) 1091 break; 1092 1093 metadata = (struct bmi_segmented_metadata *)(buf + base_len); 1094 left -= base_len; 1095 } 1096 1097 if (ret == 0) 1098 ath10k_dbg(ar, ATH10K_DBG_BOOT, 1099 "boot firmware fast diag download successfully.\n"); 1100 return ret; 1101 } 1102 1103 static int ath10k_htt_tx_rssi_enable(struct htt_resp *resp) 1104 { 1105 return (resp->data_tx_completion.flags2 & HTT_TX_CMPL_FLAG_DATA_RSSI); 1106 } 1107 1108 static int ath10k_htt_tx_rssi_enable_wcn3990(struct htt_resp *resp) 1109 { 1110 return (resp->data_tx_completion.flags2 & 1111 HTT_TX_DATA_RSSI_ENABLE_WCN3990); 1112 } 1113 1114 static int ath10k_get_htt_tx_data_rssi_pad(struct htt_resp *resp) 1115 { 1116 struct htt_data_tx_completion_ext extd; 1117 int pad_bytes = 0; 1118 1119 if (resp->data_tx_completion.flags2 & HTT_TX_DATA_APPEND_RETRIES) 1120 pad_bytes += sizeof(extd.a_retries) / 1121 sizeof(extd.msdus_rssi[0]); 1122 1123 if (resp->data_tx_completion.flags2 & HTT_TX_DATA_APPEND_TIMESTAMP) 1124 pad_bytes += sizeof(extd.t_stamp) / sizeof(extd.msdus_rssi[0]); 1125 1126 return pad_bytes; 1127 } 1128 1129 const struct ath10k_hw_ops qca988x_ops = { 1130 .set_coverage_class = ath10k_hw_qca988x_set_coverage_class, 1131 }; 1132 1133 static int ath10k_qca99x0_rx_desc_get_l3_pad_bytes(struct htt_rx_desc *rxd) 1134 { 1135 return MS(__le32_to_cpu(rxd->msdu_end.qca99x0.info1), 1136 RX_MSDU_END_INFO1_L3_HDR_PAD); 1137 } 1138 1139 static bool ath10k_qca99x0_rx_desc_msdu_limit_error(struct htt_rx_desc *rxd) 1140 { 1141 return !!(rxd->msdu_end.common.info0 & 1142 __cpu_to_le32(RX_MSDU_END_INFO0_MSDU_LIMIT_ERR)); 1143 } 1144 1145 const struct ath10k_hw_ops qca99x0_ops = { 1146 .rx_desc_get_l3_pad_bytes = ath10k_qca99x0_rx_desc_get_l3_pad_bytes, 1147 .rx_desc_get_msdu_limit_error = ath10k_qca99x0_rx_desc_msdu_limit_error, 1148 }; 1149 1150 const struct ath10k_hw_ops qca6174_ops = { 1151 .set_coverage_class = ath10k_hw_qca988x_set_coverage_class, 1152 .enable_pll_clk = ath10k_hw_qca6174_enable_pll_clock, 1153 .is_rssi_enable = ath10k_htt_tx_rssi_enable, 1154 }; 1155 1156 const struct ath10k_hw_ops qca6174_sdio_ops = { 1157 .enable_pll_clk = ath10k_hw_qca6174_enable_pll_clock, 1158 }; 1159 1160 const struct ath10k_hw_ops wcn3990_ops = { 1161 .tx_data_rssi_pad_bytes = ath10k_get_htt_tx_data_rssi_pad, 1162 .is_rssi_enable = ath10k_htt_tx_rssi_enable_wcn3990, 1163 }; 1164