1 // SPDX-License-Identifier: ISC 2 /* 3 * Copyright (c) 2014-2017 Qualcomm Atheros, Inc. 4 */ 5 6 #include <linux/types.h> 7 #include <linux/bitops.h> 8 #include <linux/bitfield.h> 9 #include "core.h" 10 #include "hw.h" 11 #include "hif.h" 12 #include "wmi-ops.h" 13 #include "bmi.h" 14 #include "rx_desc.h" 15 16 const struct ath10k_hw_regs qca988x_regs = { 17 .rtc_soc_base_address = 0x00004000, 18 .rtc_wmac_base_address = 0x00005000, 19 .soc_core_base_address = 0x00009000, 20 .wlan_mac_base_address = 0x00020000, 21 .ce_wrapper_base_address = 0x00057000, 22 .ce0_base_address = 0x00057400, 23 .ce1_base_address = 0x00057800, 24 .ce2_base_address = 0x00057c00, 25 .ce3_base_address = 0x00058000, 26 .ce4_base_address = 0x00058400, 27 .ce5_base_address = 0x00058800, 28 .ce6_base_address = 0x00058c00, 29 .ce7_base_address = 0x00059000, 30 .soc_reset_control_si0_rst_mask = 0x00000001, 31 .soc_reset_control_ce_rst_mask = 0x00040000, 32 .soc_chip_id_address = 0x000000ec, 33 .scratch_3_address = 0x00000030, 34 .fw_indicator_address = 0x00009030, 35 .pcie_local_base_address = 0x00080000, 36 .ce_wrap_intr_sum_host_msi_lsb = 0x00000008, 37 .ce_wrap_intr_sum_host_msi_mask = 0x0000ff00, 38 .pcie_intr_fw_mask = 0x00000400, 39 .pcie_intr_ce_mask_all = 0x0007f800, 40 .pcie_intr_clr_address = 0x00000014, 41 }; 42 43 const struct ath10k_hw_regs qca6174_regs = { 44 .rtc_soc_base_address = 0x00000800, 45 .rtc_wmac_base_address = 0x00001000, 46 .soc_core_base_address = 0x0003a000, 47 .wlan_mac_base_address = 0x00010000, 48 .ce_wrapper_base_address = 0x00034000, 49 .ce0_base_address = 0x00034400, 50 .ce1_base_address = 0x00034800, 51 .ce2_base_address = 0x00034c00, 52 .ce3_base_address = 0x00035000, 53 .ce4_base_address = 0x00035400, 54 .ce5_base_address = 0x00035800, 55 .ce6_base_address = 0x00035c00, 56 .ce7_base_address = 0x00036000, 57 .soc_reset_control_si0_rst_mask = 0x00000000, 58 .soc_reset_control_ce_rst_mask = 0x00000001, 59 .soc_chip_id_address = 0x000000f0, 60 .scratch_3_address = 0x00000028, 61 .fw_indicator_address = 0x0003a028, 62 .pcie_local_base_address = 0x00080000, 63 .ce_wrap_intr_sum_host_msi_lsb = 0x00000008, 64 .ce_wrap_intr_sum_host_msi_mask = 0x0000ff00, 65 .pcie_intr_fw_mask = 0x00000400, 66 .pcie_intr_ce_mask_all = 0x0007f800, 67 .pcie_intr_clr_address = 0x00000014, 68 .cpu_pll_init_address = 0x00404020, 69 .cpu_speed_address = 0x00404024, 70 .core_clk_div_address = 0x00404028, 71 }; 72 73 const struct ath10k_hw_regs qca99x0_regs = { 74 .rtc_soc_base_address = 0x00080000, 75 .rtc_wmac_base_address = 0x00000000, 76 .soc_core_base_address = 0x00082000, 77 .wlan_mac_base_address = 0x00030000, 78 .ce_wrapper_base_address = 0x0004d000, 79 .ce0_base_address = 0x0004a000, 80 .ce1_base_address = 0x0004a400, 81 .ce2_base_address = 0x0004a800, 82 .ce3_base_address = 0x0004ac00, 83 .ce4_base_address = 0x0004b000, 84 .ce5_base_address = 0x0004b400, 85 .ce6_base_address = 0x0004b800, 86 .ce7_base_address = 0x0004bc00, 87 /* Note: qca99x0 supports upto 12 Copy Engines. Other than address of 88 * CE0 and CE1 no other copy engine is directly referred in the code. 89 * It is not really necessary to assign address for newly supported 90 * CEs in this address table. 91 * Copy Engine Address 92 * CE8 0x0004c000 93 * CE9 0x0004c400 94 * CE10 0x0004c800 95 * CE11 0x0004cc00 96 */ 97 .soc_reset_control_si0_rst_mask = 0x00000001, 98 .soc_reset_control_ce_rst_mask = 0x00000100, 99 .soc_chip_id_address = 0x000000ec, 100 .scratch_3_address = 0x00040050, 101 .fw_indicator_address = 0x00040050, 102 .pcie_local_base_address = 0x00000000, 103 .ce_wrap_intr_sum_host_msi_lsb = 0x0000000c, 104 .ce_wrap_intr_sum_host_msi_mask = 0x00fff000, 105 .pcie_intr_fw_mask = 0x00100000, 106 .pcie_intr_ce_mask_all = 0x000fff00, 107 .pcie_intr_clr_address = 0x00000010, 108 }; 109 110 const struct ath10k_hw_regs qca4019_regs = { 111 .rtc_soc_base_address = 0x00080000, 112 .soc_core_base_address = 0x00082000, 113 .wlan_mac_base_address = 0x00030000, 114 .ce_wrapper_base_address = 0x0004d000, 115 .ce0_base_address = 0x0004a000, 116 .ce1_base_address = 0x0004a400, 117 .ce2_base_address = 0x0004a800, 118 .ce3_base_address = 0x0004ac00, 119 .ce4_base_address = 0x0004b000, 120 .ce5_base_address = 0x0004b400, 121 .ce6_base_address = 0x0004b800, 122 .ce7_base_address = 0x0004bc00, 123 /* qca4019 supports upto 12 copy engines. Since base address 124 * of ce8 to ce11 are not directly referred in the code, 125 * no need have them in separate members in this table. 126 * Copy Engine Address 127 * CE8 0x0004c000 128 * CE9 0x0004c400 129 * CE10 0x0004c800 130 * CE11 0x0004cc00 131 */ 132 .soc_reset_control_si0_rst_mask = 0x00000001, 133 .soc_reset_control_ce_rst_mask = 0x00000100, 134 .soc_chip_id_address = 0x000000ec, 135 .fw_indicator_address = 0x0004f00c, 136 .ce_wrap_intr_sum_host_msi_lsb = 0x0000000c, 137 .ce_wrap_intr_sum_host_msi_mask = 0x00fff000, 138 .pcie_intr_fw_mask = 0x00100000, 139 .pcie_intr_ce_mask_all = 0x000fff00, 140 .pcie_intr_clr_address = 0x00000010, 141 }; 142 143 const struct ath10k_hw_values qca988x_values = { 144 .rtc_state_val_on = 3, 145 .ce_count = 8, 146 .msi_assign_ce_max = 7, 147 .num_target_ce_config_wlan = 7, 148 .ce_desc_meta_data_mask = 0xFFFC, 149 .ce_desc_meta_data_lsb = 2, 150 }; 151 152 const struct ath10k_hw_values qca6174_values = { 153 .rtc_state_val_on = 3, 154 .ce_count = 8, 155 .msi_assign_ce_max = 7, 156 .num_target_ce_config_wlan = 7, 157 .ce_desc_meta_data_mask = 0xFFFC, 158 .ce_desc_meta_data_lsb = 2, 159 .rfkill_pin = 16, 160 .rfkill_cfg = 0, 161 .rfkill_on_level = 1, 162 }; 163 164 const struct ath10k_hw_values qca99x0_values = { 165 .rtc_state_val_on = 7, 166 .ce_count = 12, 167 .msi_assign_ce_max = 12, 168 .num_target_ce_config_wlan = 10, 169 .ce_desc_meta_data_mask = 0xFFF0, 170 .ce_desc_meta_data_lsb = 4, 171 }; 172 173 const struct ath10k_hw_values qca9888_values = { 174 .rtc_state_val_on = 3, 175 .ce_count = 12, 176 .msi_assign_ce_max = 12, 177 .num_target_ce_config_wlan = 10, 178 .ce_desc_meta_data_mask = 0xFFF0, 179 .ce_desc_meta_data_lsb = 4, 180 }; 181 182 const struct ath10k_hw_values qca4019_values = { 183 .ce_count = 12, 184 .num_target_ce_config_wlan = 10, 185 .ce_desc_meta_data_mask = 0xFFF0, 186 .ce_desc_meta_data_lsb = 4, 187 }; 188 189 const struct ath10k_hw_regs wcn3990_regs = { 190 .rtc_soc_base_address = 0x00000000, 191 .rtc_wmac_base_address = 0x00000000, 192 .soc_core_base_address = 0x00000000, 193 .ce_wrapper_base_address = 0x0024C000, 194 .ce0_base_address = 0x00240000, 195 .ce1_base_address = 0x00241000, 196 .ce2_base_address = 0x00242000, 197 .ce3_base_address = 0x00243000, 198 .ce4_base_address = 0x00244000, 199 .ce5_base_address = 0x00245000, 200 .ce6_base_address = 0x00246000, 201 .ce7_base_address = 0x00247000, 202 .ce8_base_address = 0x00248000, 203 .ce9_base_address = 0x00249000, 204 .ce10_base_address = 0x0024A000, 205 .ce11_base_address = 0x0024B000, 206 .soc_chip_id_address = 0x000000f0, 207 .soc_reset_control_si0_rst_mask = 0x00000001, 208 .soc_reset_control_ce_rst_mask = 0x00000100, 209 .ce_wrap_intr_sum_host_msi_lsb = 0x0000000c, 210 .ce_wrap_intr_sum_host_msi_mask = 0x00fff000, 211 .pcie_intr_fw_mask = 0x00100000, 212 }; 213 214 static struct ath10k_hw_ce_regs_addr_map wcn3990_src_ring = { 215 .msb = 0x00000010, 216 .lsb = 0x00000010, 217 .mask = GENMASK(17, 17), 218 }; 219 220 static struct ath10k_hw_ce_regs_addr_map wcn3990_dst_ring = { 221 .msb = 0x00000012, 222 .lsb = 0x00000012, 223 .mask = GENMASK(18, 18), 224 }; 225 226 static struct ath10k_hw_ce_regs_addr_map wcn3990_dmax = { 227 .msb = 0x00000000, 228 .lsb = 0x00000000, 229 .mask = GENMASK(15, 0), 230 }; 231 232 static struct ath10k_hw_ce_ctrl1 wcn3990_ctrl1 = { 233 .addr = 0x00000018, 234 .src_ring = &wcn3990_src_ring, 235 .dst_ring = &wcn3990_dst_ring, 236 .dmax = &wcn3990_dmax, 237 }; 238 239 static struct ath10k_hw_ce_regs_addr_map wcn3990_host_ie_cc = { 240 .mask = GENMASK(0, 0), 241 }; 242 243 static struct ath10k_hw_ce_host_ie wcn3990_host_ie = { 244 .copy_complete = &wcn3990_host_ie_cc, 245 }; 246 247 static struct ath10k_hw_ce_host_wm_regs wcn3990_wm_reg = { 248 .dstr_lmask = 0x00000010, 249 .dstr_hmask = 0x00000008, 250 .srcr_lmask = 0x00000004, 251 .srcr_hmask = 0x00000002, 252 .cc_mask = 0x00000001, 253 .wm_mask = 0x0000001E, 254 .addr = 0x00000030, 255 }; 256 257 static struct ath10k_hw_ce_misc_regs wcn3990_misc_reg = { 258 .axi_err = 0x00000100, 259 .dstr_add_err = 0x00000200, 260 .srcr_len_err = 0x00000100, 261 .dstr_mlen_vio = 0x00000080, 262 .dstr_overflow = 0x00000040, 263 .srcr_overflow = 0x00000020, 264 .err_mask = 0x000003E0, 265 .addr = 0x00000038, 266 }; 267 268 static struct ath10k_hw_ce_regs_addr_map wcn3990_src_wm_low = { 269 .msb = 0x00000000, 270 .lsb = 0x00000010, 271 .mask = GENMASK(31, 16), 272 }; 273 274 static struct ath10k_hw_ce_regs_addr_map wcn3990_src_wm_high = { 275 .msb = 0x0000000f, 276 .lsb = 0x00000000, 277 .mask = GENMASK(15, 0), 278 }; 279 280 static struct ath10k_hw_ce_dst_src_wm_regs wcn3990_wm_src_ring = { 281 .addr = 0x0000004c, 282 .low_rst = 0x00000000, 283 .high_rst = 0x00000000, 284 .wm_low = &wcn3990_src_wm_low, 285 .wm_high = &wcn3990_src_wm_high, 286 }; 287 288 static struct ath10k_hw_ce_regs_addr_map wcn3990_dst_wm_low = { 289 .lsb = 0x00000010, 290 .mask = GENMASK(31, 16), 291 }; 292 293 static struct ath10k_hw_ce_regs_addr_map wcn3990_dst_wm_high = { 294 .msb = 0x0000000f, 295 .lsb = 0x00000000, 296 .mask = GENMASK(15, 0), 297 }; 298 299 static struct ath10k_hw_ce_dst_src_wm_regs wcn3990_wm_dst_ring = { 300 .addr = 0x00000050, 301 .low_rst = 0x00000000, 302 .high_rst = 0x00000000, 303 .wm_low = &wcn3990_dst_wm_low, 304 .wm_high = &wcn3990_dst_wm_high, 305 }; 306 307 static struct ath10k_hw_ce_ctrl1_upd wcn3990_ctrl1_upd = { 308 .shift = 19, 309 .mask = 0x00080000, 310 .enable = 0x00000000, 311 }; 312 313 const struct ath10k_hw_ce_regs wcn3990_ce_regs = { 314 .sr_base_addr_lo = 0x00000000, 315 .sr_base_addr_hi = 0x00000004, 316 .sr_size_addr = 0x00000008, 317 .dr_base_addr_lo = 0x0000000c, 318 .dr_base_addr_hi = 0x00000010, 319 .dr_size_addr = 0x00000014, 320 .misc_ie_addr = 0x00000034, 321 .sr_wr_index_addr = 0x0000003c, 322 .dst_wr_index_addr = 0x00000040, 323 .current_srri_addr = 0x00000044, 324 .current_drri_addr = 0x00000048, 325 .ce_rri_low = 0x0024C004, 326 .ce_rri_high = 0x0024C008, 327 .host_ie_addr = 0x0000002c, 328 .ctrl1_regs = &wcn3990_ctrl1, 329 .host_ie = &wcn3990_host_ie, 330 .wm_regs = &wcn3990_wm_reg, 331 .misc_regs = &wcn3990_misc_reg, 332 .wm_srcr = &wcn3990_wm_src_ring, 333 .wm_dstr = &wcn3990_wm_dst_ring, 334 .upd = &wcn3990_ctrl1_upd, 335 }; 336 337 const struct ath10k_hw_values wcn3990_values = { 338 .rtc_state_val_on = 5, 339 .ce_count = 12, 340 .msi_assign_ce_max = 12, 341 .num_target_ce_config_wlan = 12, 342 .ce_desc_meta_data_mask = 0xFFF0, 343 .ce_desc_meta_data_lsb = 4, 344 }; 345 346 static struct ath10k_hw_ce_regs_addr_map qcax_src_ring = { 347 .msb = 0x00000010, 348 .lsb = 0x00000010, 349 .mask = GENMASK(16, 16), 350 }; 351 352 static struct ath10k_hw_ce_regs_addr_map qcax_dst_ring = { 353 .msb = 0x00000011, 354 .lsb = 0x00000011, 355 .mask = GENMASK(17, 17), 356 }; 357 358 static struct ath10k_hw_ce_regs_addr_map qcax_dmax = { 359 .msb = 0x0000000f, 360 .lsb = 0x00000000, 361 .mask = GENMASK(15, 0), 362 }; 363 364 static struct ath10k_hw_ce_ctrl1 qcax_ctrl1 = { 365 .addr = 0x00000010, 366 .hw_mask = 0x0007ffff, 367 .sw_mask = 0x0007ffff, 368 .hw_wr_mask = 0x00000000, 369 .sw_wr_mask = 0x0007ffff, 370 .reset_mask = 0xffffffff, 371 .reset = 0x00000080, 372 .src_ring = &qcax_src_ring, 373 .dst_ring = &qcax_dst_ring, 374 .dmax = &qcax_dmax, 375 }; 376 377 static struct ath10k_hw_ce_regs_addr_map qcax_cmd_halt_status = { 378 .msb = 0x00000003, 379 .lsb = 0x00000003, 380 .mask = GENMASK(3, 3), 381 }; 382 383 static struct ath10k_hw_ce_cmd_halt qcax_cmd_halt = { 384 .msb = 0x00000000, 385 .mask = GENMASK(0, 0), 386 .status_reset = 0x00000000, 387 .status = &qcax_cmd_halt_status, 388 }; 389 390 static struct ath10k_hw_ce_regs_addr_map qcax_host_ie_cc = { 391 .msb = 0x00000000, 392 .lsb = 0x00000000, 393 .mask = GENMASK(0, 0), 394 }; 395 396 static struct ath10k_hw_ce_host_ie qcax_host_ie = { 397 .copy_complete_reset = 0x00000000, 398 .copy_complete = &qcax_host_ie_cc, 399 }; 400 401 static struct ath10k_hw_ce_host_wm_regs qcax_wm_reg = { 402 .dstr_lmask = 0x00000010, 403 .dstr_hmask = 0x00000008, 404 .srcr_lmask = 0x00000004, 405 .srcr_hmask = 0x00000002, 406 .cc_mask = 0x00000001, 407 .wm_mask = 0x0000001E, 408 .addr = 0x00000030, 409 }; 410 411 static struct ath10k_hw_ce_misc_regs qcax_misc_reg = { 412 .axi_err = 0x00000400, 413 .dstr_add_err = 0x00000200, 414 .srcr_len_err = 0x00000100, 415 .dstr_mlen_vio = 0x00000080, 416 .dstr_overflow = 0x00000040, 417 .srcr_overflow = 0x00000020, 418 .err_mask = 0x000007E0, 419 .addr = 0x00000038, 420 }; 421 422 static struct ath10k_hw_ce_regs_addr_map qcax_src_wm_low = { 423 .msb = 0x0000001f, 424 .lsb = 0x00000010, 425 .mask = GENMASK(31, 16), 426 }; 427 428 static struct ath10k_hw_ce_regs_addr_map qcax_src_wm_high = { 429 .msb = 0x0000000f, 430 .lsb = 0x00000000, 431 .mask = GENMASK(15, 0), 432 }; 433 434 static struct ath10k_hw_ce_dst_src_wm_regs qcax_wm_src_ring = { 435 .addr = 0x0000004c, 436 .low_rst = 0x00000000, 437 .high_rst = 0x00000000, 438 .wm_low = &qcax_src_wm_low, 439 .wm_high = &qcax_src_wm_high, 440 }; 441 442 static struct ath10k_hw_ce_regs_addr_map qcax_dst_wm_low = { 443 .lsb = 0x00000010, 444 .mask = GENMASK(31, 16), 445 }; 446 447 static struct ath10k_hw_ce_regs_addr_map qcax_dst_wm_high = { 448 .msb = 0x0000000f, 449 .lsb = 0x00000000, 450 .mask = GENMASK(15, 0), 451 }; 452 453 static struct ath10k_hw_ce_dst_src_wm_regs qcax_wm_dst_ring = { 454 .addr = 0x00000050, 455 .low_rst = 0x00000000, 456 .high_rst = 0x00000000, 457 .wm_low = &qcax_dst_wm_low, 458 .wm_high = &qcax_dst_wm_high, 459 }; 460 461 const struct ath10k_hw_ce_regs qcax_ce_regs = { 462 .sr_base_addr_lo = 0x00000000, 463 .sr_size_addr = 0x00000004, 464 .dr_base_addr_lo = 0x00000008, 465 .dr_size_addr = 0x0000000c, 466 .ce_cmd_addr = 0x00000018, 467 .misc_ie_addr = 0x00000034, 468 .sr_wr_index_addr = 0x0000003c, 469 .dst_wr_index_addr = 0x00000040, 470 .current_srri_addr = 0x00000044, 471 .current_drri_addr = 0x00000048, 472 .host_ie_addr = 0x0000002c, 473 .ctrl1_regs = &qcax_ctrl1, 474 .cmd_halt = &qcax_cmd_halt, 475 .host_ie = &qcax_host_ie, 476 .wm_regs = &qcax_wm_reg, 477 .misc_regs = &qcax_misc_reg, 478 .wm_srcr = &qcax_wm_src_ring, 479 .wm_dstr = &qcax_wm_dst_ring, 480 }; 481 482 const struct ath10k_hw_clk_params qca6174_clk[ATH10K_HW_REFCLK_COUNT] = { 483 { 484 .refclk = 48000000, 485 .div = 0xe, 486 .rnfrac = 0x2aaa8, 487 .settle_time = 2400, 488 .refdiv = 0, 489 .outdiv = 1, 490 }, 491 { 492 .refclk = 19200000, 493 .div = 0x24, 494 .rnfrac = 0x2aaa8, 495 .settle_time = 960, 496 .refdiv = 0, 497 .outdiv = 1, 498 }, 499 { 500 .refclk = 24000000, 501 .div = 0x1d, 502 .rnfrac = 0x15551, 503 .settle_time = 1200, 504 .refdiv = 0, 505 .outdiv = 1, 506 }, 507 { 508 .refclk = 26000000, 509 .div = 0x1b, 510 .rnfrac = 0x4ec4, 511 .settle_time = 1300, 512 .refdiv = 0, 513 .outdiv = 1, 514 }, 515 { 516 .refclk = 37400000, 517 .div = 0x12, 518 .rnfrac = 0x34b49, 519 .settle_time = 1870, 520 .refdiv = 0, 521 .outdiv = 1, 522 }, 523 { 524 .refclk = 38400000, 525 .div = 0x12, 526 .rnfrac = 0x15551, 527 .settle_time = 1920, 528 .refdiv = 0, 529 .outdiv = 1, 530 }, 531 { 532 .refclk = 40000000, 533 .div = 0x12, 534 .rnfrac = 0x26665, 535 .settle_time = 2000, 536 .refdiv = 0, 537 .outdiv = 1, 538 }, 539 { 540 .refclk = 52000000, 541 .div = 0x1b, 542 .rnfrac = 0x4ec4, 543 .settle_time = 2600, 544 .refdiv = 0, 545 .outdiv = 1, 546 }, 547 }; 548 549 void ath10k_hw_fill_survey_time(struct ath10k *ar, struct survey_info *survey, 550 u32 cc, u32 rcc, u32 cc_prev, u32 rcc_prev) 551 { 552 u32 cc_fix = 0; 553 u32 rcc_fix = 0; 554 enum ath10k_hw_cc_wraparound_type wraparound_type; 555 556 survey->filled |= SURVEY_INFO_TIME | 557 SURVEY_INFO_TIME_BUSY; 558 559 wraparound_type = ar->hw_params.cc_wraparound_type; 560 561 if (cc < cc_prev || rcc < rcc_prev) { 562 switch (wraparound_type) { 563 case ATH10K_HW_CC_WRAP_SHIFTED_ALL: 564 if (cc < cc_prev) { 565 cc_fix = 0x7fffffff; 566 survey->filled &= ~SURVEY_INFO_TIME_BUSY; 567 } 568 break; 569 case ATH10K_HW_CC_WRAP_SHIFTED_EACH: 570 if (cc < cc_prev) 571 cc_fix = 0x7fffffff; 572 573 if (rcc < rcc_prev) 574 rcc_fix = 0x7fffffff; 575 break; 576 case ATH10K_HW_CC_WRAP_DISABLED: 577 break; 578 } 579 } 580 581 cc -= cc_prev - cc_fix; 582 rcc -= rcc_prev - rcc_fix; 583 584 survey->time = CCNT_TO_MSEC(ar, cc); 585 survey->time_busy = CCNT_TO_MSEC(ar, rcc); 586 } 587 588 /* The firmware does not support setting the coverage class. Instead this 589 * function monitors and modifies the corresponding MAC registers. 590 */ 591 static void ath10k_hw_qca988x_set_coverage_class(struct ath10k *ar, 592 s16 value) 593 { 594 u32 slottime_reg; 595 u32 slottime; 596 u32 timeout_reg; 597 u32 ack_timeout; 598 u32 cts_timeout; 599 u32 phyclk_reg; 600 u32 phyclk; 601 u64 fw_dbglog_mask; 602 u32 fw_dbglog_level; 603 604 mutex_lock(&ar->conf_mutex); 605 606 /* Only modify registers if the core is started. */ 607 if ((ar->state != ATH10K_STATE_ON) && 608 (ar->state != ATH10K_STATE_RESTARTED)) { 609 spin_lock_bh(&ar->data_lock); 610 /* Store config value for when radio boots up */ 611 ar->fw_coverage.coverage_class = value; 612 spin_unlock_bh(&ar->data_lock); 613 goto unlock; 614 } 615 616 /* Retrieve the current values of the two registers that need to be 617 * adjusted. 618 */ 619 slottime_reg = ath10k_hif_read32(ar, WLAN_MAC_BASE_ADDRESS + 620 WAVE1_PCU_GBL_IFS_SLOT); 621 timeout_reg = ath10k_hif_read32(ar, WLAN_MAC_BASE_ADDRESS + 622 WAVE1_PCU_ACK_CTS_TIMEOUT); 623 phyclk_reg = ath10k_hif_read32(ar, WLAN_MAC_BASE_ADDRESS + 624 WAVE1_PHYCLK); 625 phyclk = MS(phyclk_reg, WAVE1_PHYCLK_USEC) + 1; 626 627 if (value < 0) 628 value = ar->fw_coverage.coverage_class; 629 630 /* Break out if the coverage class and registers have the expected 631 * value. 632 */ 633 if (value == ar->fw_coverage.coverage_class && 634 slottime_reg == ar->fw_coverage.reg_slottime_conf && 635 timeout_reg == ar->fw_coverage.reg_ack_cts_timeout_conf && 636 phyclk_reg == ar->fw_coverage.reg_phyclk) 637 goto unlock; 638 639 /* Store new initial register values from the firmware. */ 640 if (slottime_reg != ar->fw_coverage.reg_slottime_conf) 641 ar->fw_coverage.reg_slottime_orig = slottime_reg; 642 if (timeout_reg != ar->fw_coverage.reg_ack_cts_timeout_conf) 643 ar->fw_coverage.reg_ack_cts_timeout_orig = timeout_reg; 644 ar->fw_coverage.reg_phyclk = phyclk_reg; 645 646 /* Calculate new value based on the (original) firmware calculation. */ 647 slottime_reg = ar->fw_coverage.reg_slottime_orig; 648 timeout_reg = ar->fw_coverage.reg_ack_cts_timeout_orig; 649 650 /* Do some sanity checks on the slottime register. */ 651 if (slottime_reg % phyclk) { 652 ath10k_warn(ar, 653 "failed to set coverage class: expected integer microsecond value in register\n"); 654 655 goto store_regs; 656 } 657 658 slottime = MS(slottime_reg, WAVE1_PCU_GBL_IFS_SLOT); 659 slottime = slottime / phyclk; 660 if (slottime != 9 && slottime != 20) { 661 ath10k_warn(ar, 662 "failed to set coverage class: expected slot time of 9 or 20us in HW register. It is %uus.\n", 663 slottime); 664 665 goto store_regs; 666 } 667 668 /* Recalculate the register values by adding the additional propagation 669 * delay (3us per coverage class). 670 */ 671 672 slottime = MS(slottime_reg, WAVE1_PCU_GBL_IFS_SLOT); 673 slottime += value * 3 * phyclk; 674 slottime = min_t(u32, slottime, WAVE1_PCU_GBL_IFS_SLOT_MAX); 675 slottime = SM(slottime, WAVE1_PCU_GBL_IFS_SLOT); 676 slottime_reg = (slottime_reg & ~WAVE1_PCU_GBL_IFS_SLOT_MASK) | slottime; 677 678 /* Update ack timeout (lower halfword). */ 679 ack_timeout = MS(timeout_reg, WAVE1_PCU_ACK_CTS_TIMEOUT_ACK); 680 ack_timeout += 3 * value * phyclk; 681 ack_timeout = min_t(u32, ack_timeout, WAVE1_PCU_ACK_CTS_TIMEOUT_MAX); 682 ack_timeout = SM(ack_timeout, WAVE1_PCU_ACK_CTS_TIMEOUT_ACK); 683 684 /* Update cts timeout (upper halfword). */ 685 cts_timeout = MS(timeout_reg, WAVE1_PCU_ACK_CTS_TIMEOUT_CTS); 686 cts_timeout += 3 * value * phyclk; 687 cts_timeout = min_t(u32, cts_timeout, WAVE1_PCU_ACK_CTS_TIMEOUT_MAX); 688 cts_timeout = SM(cts_timeout, WAVE1_PCU_ACK_CTS_TIMEOUT_CTS); 689 690 timeout_reg = ack_timeout | cts_timeout; 691 692 ath10k_hif_write32(ar, 693 WLAN_MAC_BASE_ADDRESS + WAVE1_PCU_GBL_IFS_SLOT, 694 slottime_reg); 695 ath10k_hif_write32(ar, 696 WLAN_MAC_BASE_ADDRESS + WAVE1_PCU_ACK_CTS_TIMEOUT, 697 timeout_reg); 698 699 /* Ensure we have a debug level of WARN set for the case that the 700 * coverage class is larger than 0. This is important as we need to 701 * set the registers again if the firmware does an internal reset and 702 * this way we will be notified of the event. 703 */ 704 fw_dbglog_mask = ath10k_debug_get_fw_dbglog_mask(ar); 705 fw_dbglog_level = ath10k_debug_get_fw_dbglog_level(ar); 706 707 if (value > 0) { 708 if (fw_dbglog_level > ATH10K_DBGLOG_LEVEL_WARN) 709 fw_dbglog_level = ATH10K_DBGLOG_LEVEL_WARN; 710 fw_dbglog_mask = ~0; 711 } 712 713 ath10k_wmi_dbglog_cfg(ar, fw_dbglog_mask, fw_dbglog_level); 714 715 store_regs: 716 /* After an error we will not retry setting the coverage class. */ 717 spin_lock_bh(&ar->data_lock); 718 ar->fw_coverage.coverage_class = value; 719 spin_unlock_bh(&ar->data_lock); 720 721 ar->fw_coverage.reg_slottime_conf = slottime_reg; 722 ar->fw_coverage.reg_ack_cts_timeout_conf = timeout_reg; 723 724 unlock: 725 mutex_unlock(&ar->conf_mutex); 726 } 727 728 /** 729 * ath10k_hw_qca6174_enable_pll_clock() - enable the qca6174 hw pll clock 730 * @ar: the ath10k blob 731 * 732 * This function is very hardware specific, the clock initialization 733 * steps is very sensitive and could lead to unknown crash, so they 734 * should be done in sequence. 735 * 736 * *** Be aware if you planned to refactor them. *** 737 * 738 * Return: 0 if successfully enable the pll, otherwise EINVAL 739 */ 740 static int ath10k_hw_qca6174_enable_pll_clock(struct ath10k *ar) 741 { 742 int ret, wait_limit; 743 u32 clk_div_addr, pll_init_addr, speed_addr; 744 u32 addr, reg_val, mem_val; 745 struct ath10k_hw_params *hw; 746 const struct ath10k_hw_clk_params *hw_clk; 747 748 hw = &ar->hw_params; 749 750 if (ar->regs->core_clk_div_address == 0 || 751 ar->regs->cpu_pll_init_address == 0 || 752 ar->regs->cpu_speed_address == 0) 753 return -EINVAL; 754 755 clk_div_addr = ar->regs->core_clk_div_address; 756 pll_init_addr = ar->regs->cpu_pll_init_address; 757 speed_addr = ar->regs->cpu_speed_address; 758 759 /* Read efuse register to find out the right hw clock configuration */ 760 addr = (RTC_SOC_BASE_ADDRESS | EFUSE_OFFSET); 761 ret = ath10k_bmi_read_soc_reg(ar, addr, ®_val); 762 if (ret) 763 return -EINVAL; 764 765 /* sanitize if the hw refclk index is out of the boundary */ 766 if (MS(reg_val, EFUSE_XTAL_SEL) > ATH10K_HW_REFCLK_COUNT) 767 return -EINVAL; 768 769 hw_clk = &hw->hw_clk[MS(reg_val, EFUSE_XTAL_SEL)]; 770 771 /* Set the rnfrac and outdiv params to bb_pll register */ 772 addr = (RTC_SOC_BASE_ADDRESS | BB_PLL_CONFIG_OFFSET); 773 ret = ath10k_bmi_read_soc_reg(ar, addr, ®_val); 774 if (ret) 775 return -EINVAL; 776 777 reg_val &= ~(BB_PLL_CONFIG_FRAC_MASK | BB_PLL_CONFIG_OUTDIV_MASK); 778 reg_val |= (SM(hw_clk->rnfrac, BB_PLL_CONFIG_FRAC) | 779 SM(hw_clk->outdiv, BB_PLL_CONFIG_OUTDIV)); 780 ret = ath10k_bmi_write_soc_reg(ar, addr, reg_val); 781 if (ret) 782 return -EINVAL; 783 784 /* Set the correct settle time value to pll_settle register */ 785 addr = (RTC_WMAC_BASE_ADDRESS | WLAN_PLL_SETTLE_OFFSET); 786 ret = ath10k_bmi_read_soc_reg(ar, addr, ®_val); 787 if (ret) 788 return -EINVAL; 789 790 reg_val &= ~WLAN_PLL_SETTLE_TIME_MASK; 791 reg_val |= SM(hw_clk->settle_time, WLAN_PLL_SETTLE_TIME); 792 ret = ath10k_bmi_write_soc_reg(ar, addr, reg_val); 793 if (ret) 794 return -EINVAL; 795 796 /* Set the clock_ctrl div to core_clk_ctrl register */ 797 addr = (RTC_SOC_BASE_ADDRESS | SOC_CORE_CLK_CTRL_OFFSET); 798 ret = ath10k_bmi_read_soc_reg(ar, addr, ®_val); 799 if (ret) 800 return -EINVAL; 801 802 reg_val &= ~SOC_CORE_CLK_CTRL_DIV_MASK; 803 reg_val |= SM(1, SOC_CORE_CLK_CTRL_DIV); 804 ret = ath10k_bmi_write_soc_reg(ar, addr, reg_val); 805 if (ret) 806 return -EINVAL; 807 808 /* Set the clock_div register */ 809 mem_val = 1; 810 ret = ath10k_bmi_write_memory(ar, clk_div_addr, &mem_val, 811 sizeof(mem_val)); 812 if (ret) 813 return -EINVAL; 814 815 /* Configure the pll_control register */ 816 addr = (RTC_WMAC_BASE_ADDRESS | WLAN_PLL_CONTROL_OFFSET); 817 ret = ath10k_bmi_read_soc_reg(ar, addr, ®_val); 818 if (ret) 819 return -EINVAL; 820 821 reg_val |= (SM(hw_clk->refdiv, WLAN_PLL_CONTROL_REFDIV) | 822 SM(hw_clk->div, WLAN_PLL_CONTROL_DIV) | 823 SM(1, WLAN_PLL_CONTROL_NOPWD)); 824 ret = ath10k_bmi_write_soc_reg(ar, addr, reg_val); 825 if (ret) 826 return -EINVAL; 827 828 /* busy wait (max 1s) the rtc_sync status register indicate ready */ 829 wait_limit = 100000; 830 addr = (RTC_WMAC_BASE_ADDRESS | RTC_SYNC_STATUS_OFFSET); 831 do { 832 ret = ath10k_bmi_read_soc_reg(ar, addr, ®_val); 833 if (ret) 834 return -EINVAL; 835 836 if (!MS(reg_val, RTC_SYNC_STATUS_PLL_CHANGING)) 837 break; 838 839 wait_limit--; 840 udelay(10); 841 842 } while (wait_limit > 0); 843 844 if (MS(reg_val, RTC_SYNC_STATUS_PLL_CHANGING)) 845 return -EINVAL; 846 847 /* Unset the pll_bypass in pll_control register */ 848 addr = (RTC_WMAC_BASE_ADDRESS | WLAN_PLL_CONTROL_OFFSET); 849 ret = ath10k_bmi_read_soc_reg(ar, addr, ®_val); 850 if (ret) 851 return -EINVAL; 852 853 reg_val &= ~WLAN_PLL_CONTROL_BYPASS_MASK; 854 reg_val |= SM(0, WLAN_PLL_CONTROL_BYPASS); 855 ret = ath10k_bmi_write_soc_reg(ar, addr, reg_val); 856 if (ret) 857 return -EINVAL; 858 859 /* busy wait (max 1s) the rtc_sync status register indicate ready */ 860 wait_limit = 100000; 861 addr = (RTC_WMAC_BASE_ADDRESS | RTC_SYNC_STATUS_OFFSET); 862 do { 863 ret = ath10k_bmi_read_soc_reg(ar, addr, ®_val); 864 if (ret) 865 return -EINVAL; 866 867 if (!MS(reg_val, RTC_SYNC_STATUS_PLL_CHANGING)) 868 break; 869 870 wait_limit--; 871 udelay(10); 872 873 } while (wait_limit > 0); 874 875 if (MS(reg_val, RTC_SYNC_STATUS_PLL_CHANGING)) 876 return -EINVAL; 877 878 /* Enable the hardware cpu clock register */ 879 addr = (RTC_SOC_BASE_ADDRESS | SOC_CPU_CLOCK_OFFSET); 880 ret = ath10k_bmi_read_soc_reg(ar, addr, ®_val); 881 if (ret) 882 return -EINVAL; 883 884 reg_val &= ~SOC_CPU_CLOCK_STANDARD_MASK; 885 reg_val |= SM(1, SOC_CPU_CLOCK_STANDARD); 886 ret = ath10k_bmi_write_soc_reg(ar, addr, reg_val); 887 if (ret) 888 return -EINVAL; 889 890 /* unset the nopwd from pll_control register */ 891 addr = (RTC_WMAC_BASE_ADDRESS | WLAN_PLL_CONTROL_OFFSET); 892 ret = ath10k_bmi_read_soc_reg(ar, addr, ®_val); 893 if (ret) 894 return -EINVAL; 895 896 reg_val &= ~WLAN_PLL_CONTROL_NOPWD_MASK; 897 ret = ath10k_bmi_write_soc_reg(ar, addr, reg_val); 898 if (ret) 899 return -EINVAL; 900 901 /* enable the pll_init register */ 902 mem_val = 1; 903 ret = ath10k_bmi_write_memory(ar, pll_init_addr, &mem_val, 904 sizeof(mem_val)); 905 if (ret) 906 return -EINVAL; 907 908 /* set the target clock frequency to speed register */ 909 ret = ath10k_bmi_write_memory(ar, speed_addr, &hw->target_cpu_freq, 910 sizeof(hw->target_cpu_freq)); 911 if (ret) 912 return -EINVAL; 913 914 return 0; 915 } 916 917 /* Program CPU_ADDR_MSB to allow different memory 918 * region access. 919 */ 920 static void ath10k_hw_map_target_mem(struct ath10k *ar, u32 msb) 921 { 922 u32 address = SOC_CORE_BASE_ADDRESS + FW_RAM_CONFIG_ADDRESS; 923 924 ath10k_hif_write32(ar, address, msb); 925 } 926 927 /* 1. Write to memory region of target, such as IRAM adn DRAM. 928 * 2. Target address( 0 ~ 00100000 & 0x00400000~0x00500000) 929 * can be written directly. See ath10k_pci_targ_cpu_to_ce_addr() too. 930 * 3. In order to access the region other than the above, 931 * we need to set the value of register CPU_ADDR_MSB. 932 * 4. Target memory access space is limited to 1M size. If the size is larger 933 * than 1M, need to split it and program CPU_ADDR_MSB accordingly. 934 */ 935 static int ath10k_hw_diag_segment_msb_download(struct ath10k *ar, 936 const void *buffer, 937 u32 address, 938 u32 length) 939 { 940 u32 addr = address & REGION_ACCESS_SIZE_MASK; 941 int ret, remain_size, size; 942 const u8 *buf; 943 944 ath10k_hw_map_target_mem(ar, CPU_ADDR_MSB_REGION_VAL(address)); 945 946 if (addr + length > REGION_ACCESS_SIZE_LIMIT) { 947 size = REGION_ACCESS_SIZE_LIMIT - addr; 948 remain_size = length - size; 949 950 ret = ath10k_hif_diag_write(ar, address, buffer, size); 951 if (ret) { 952 ath10k_warn(ar, 953 "failed to download the first %d bytes segment to address:0x%x: %d\n", 954 size, address, ret); 955 goto done; 956 } 957 958 /* Change msb to the next memory region*/ 959 ath10k_hw_map_target_mem(ar, 960 CPU_ADDR_MSB_REGION_VAL(address) + 1); 961 buf = buffer + size; 962 ret = ath10k_hif_diag_write(ar, 963 address & ~REGION_ACCESS_SIZE_MASK, 964 buf, remain_size); 965 if (ret) { 966 ath10k_warn(ar, 967 "failed to download the second %d bytes segment to address:0x%x: %d\n", 968 remain_size, 969 address & ~REGION_ACCESS_SIZE_MASK, 970 ret); 971 goto done; 972 } 973 } else { 974 ret = ath10k_hif_diag_write(ar, address, buffer, length); 975 if (ret) { 976 ath10k_warn(ar, 977 "failed to download the only %d bytes segment to address:0x%x: %d\n", 978 length, address, ret); 979 goto done; 980 } 981 } 982 983 done: 984 /* Change msb to DRAM */ 985 ath10k_hw_map_target_mem(ar, 986 CPU_ADDR_MSB_REGION_VAL(DRAM_BASE_ADDRESS)); 987 return ret; 988 } 989 990 static int ath10k_hw_diag_segment_download(struct ath10k *ar, 991 const void *buffer, 992 u32 address, 993 u32 length) 994 { 995 if (address >= DRAM_BASE_ADDRESS + REGION_ACCESS_SIZE_LIMIT) 996 /* Needs to change MSB for memory write */ 997 return ath10k_hw_diag_segment_msb_download(ar, buffer, 998 address, length); 999 else 1000 return ath10k_hif_diag_write(ar, address, buffer, length); 1001 } 1002 1003 int ath10k_hw_diag_fast_download(struct ath10k *ar, 1004 u32 address, 1005 const void *buffer, 1006 u32 length) 1007 { 1008 const u8 *buf = buffer; 1009 bool sgmt_end = false; 1010 u32 base_addr = 0; 1011 u32 base_len = 0; 1012 u32 left = 0; 1013 struct bmi_segmented_file_header *hdr; 1014 struct bmi_segmented_metadata *metadata; 1015 int ret = 0; 1016 1017 if (length < sizeof(*hdr)) 1018 return -EINVAL; 1019 1020 /* check firmware header. If it has no correct magic number 1021 * or it's compressed, returns error. 1022 */ 1023 hdr = (struct bmi_segmented_file_header *)buf; 1024 if (__le32_to_cpu(hdr->magic_num) != BMI_SGMTFILE_MAGIC_NUM) { 1025 ath10k_dbg(ar, ATH10K_DBG_BOOT, 1026 "Not a supported firmware, magic_num:0x%x\n", 1027 hdr->magic_num); 1028 return -EINVAL; 1029 } 1030 1031 if (hdr->file_flags != 0) { 1032 ath10k_dbg(ar, ATH10K_DBG_BOOT, 1033 "Not a supported firmware, file_flags:0x%x\n", 1034 hdr->file_flags); 1035 return -EINVAL; 1036 } 1037 1038 metadata = (struct bmi_segmented_metadata *)hdr->data; 1039 left = length - sizeof(*hdr); 1040 1041 while (left > 0) { 1042 if (left < sizeof(*metadata)) { 1043 ath10k_warn(ar, "firmware segment is truncated: %d\n", 1044 left); 1045 ret = -EINVAL; 1046 break; 1047 } 1048 base_addr = __le32_to_cpu(metadata->addr); 1049 base_len = __le32_to_cpu(metadata->length); 1050 buf = metadata->data; 1051 left -= sizeof(*metadata); 1052 1053 switch (base_len) { 1054 case BMI_SGMTFILE_BEGINADDR: 1055 /* base_addr is the start address to run */ 1056 ret = ath10k_bmi_set_start(ar, base_addr); 1057 base_len = 0; 1058 break; 1059 case BMI_SGMTFILE_DONE: 1060 /* no more segment */ 1061 base_len = 0; 1062 sgmt_end = true; 1063 ret = 0; 1064 break; 1065 case BMI_SGMTFILE_BDDATA: 1066 case BMI_SGMTFILE_EXEC: 1067 ath10k_warn(ar, 1068 "firmware has unsupported segment:%d\n", 1069 base_len); 1070 ret = -EINVAL; 1071 break; 1072 default: 1073 if (base_len > left) { 1074 /* sanity check */ 1075 ath10k_warn(ar, 1076 "firmware has invalid segment length, %d > %d\n", 1077 base_len, left); 1078 ret = -EINVAL; 1079 break; 1080 } 1081 1082 ret = ath10k_hw_diag_segment_download(ar, 1083 buf, 1084 base_addr, 1085 base_len); 1086 1087 if (ret) 1088 ath10k_warn(ar, 1089 "failed to download firmware via diag interface:%d\n", 1090 ret); 1091 break; 1092 } 1093 1094 if (ret || sgmt_end) 1095 break; 1096 1097 metadata = (struct bmi_segmented_metadata *)(buf + base_len); 1098 left -= base_len; 1099 } 1100 1101 if (ret == 0) 1102 ath10k_dbg(ar, ATH10K_DBG_BOOT, 1103 "boot firmware fast diag download successfully.\n"); 1104 return ret; 1105 } 1106 1107 static int ath10k_htt_tx_rssi_enable(struct htt_resp *resp) 1108 { 1109 return (resp->data_tx_completion.flags2 & HTT_TX_CMPL_FLAG_DATA_RSSI); 1110 } 1111 1112 static int ath10k_htt_tx_rssi_enable_wcn3990(struct htt_resp *resp) 1113 { 1114 return (resp->data_tx_completion.flags2 & 1115 HTT_TX_DATA_RSSI_ENABLE_WCN3990); 1116 } 1117 1118 static int ath10k_get_htt_tx_data_rssi_pad(struct htt_resp *resp) 1119 { 1120 struct htt_data_tx_completion_ext extd; 1121 int pad_bytes = 0; 1122 1123 if (resp->data_tx_completion.flags2 & HTT_TX_DATA_APPEND_RETRIES) 1124 pad_bytes += sizeof(extd.a_retries) / 1125 sizeof(extd.msdus_rssi[0]); 1126 1127 if (resp->data_tx_completion.flags2 & HTT_TX_DATA_APPEND_TIMESTAMP) 1128 pad_bytes += sizeof(extd.t_stamp) / sizeof(extd.msdus_rssi[0]); 1129 1130 return pad_bytes; 1131 } 1132 1133 const struct ath10k_hw_ops qca988x_ops = { 1134 .set_coverage_class = ath10k_hw_qca988x_set_coverage_class, 1135 .is_rssi_enable = ath10k_htt_tx_rssi_enable, 1136 }; 1137 1138 const struct ath10k_hw_ops qca99x0_ops = { 1139 .is_rssi_enable = ath10k_htt_tx_rssi_enable, 1140 }; 1141 1142 const struct ath10k_hw_ops qca6174_ops = { 1143 .set_coverage_class = ath10k_hw_qca988x_set_coverage_class, 1144 .enable_pll_clk = ath10k_hw_qca6174_enable_pll_clock, 1145 .is_rssi_enable = ath10k_htt_tx_rssi_enable, 1146 }; 1147 1148 const struct ath10k_hw_ops qca6174_sdio_ops = { 1149 .enable_pll_clk = ath10k_hw_qca6174_enable_pll_clock, 1150 }; 1151 1152 const struct ath10k_hw_ops wcn3990_ops = { 1153 .tx_data_rssi_pad_bytes = ath10k_get_htt_tx_data_rssi_pad, 1154 .is_rssi_enable = ath10k_htt_tx_rssi_enable_wcn3990, 1155 }; 1156