1 /*
2  * Copyright (c) 2005-2011 Atheros Communications Inc.
3  * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17 
18 #include <linux/etherdevice.h>
19 #include "htt.h"
20 #include "mac.h"
21 #include "hif.h"
22 #include "txrx.h"
23 #include "debug.h"
24 
25 static u8 ath10k_htt_tx_txq_calc_size(size_t count)
26 {
27 	int exp;
28 	int factor;
29 
30 	exp = 0;
31 	factor = count >> 7;
32 
33 	while (factor >= 64 && exp < 4) {
34 		factor >>= 3;
35 		exp++;
36 	}
37 
38 	if (exp == 4)
39 		return 0xff;
40 
41 	if (count > 0)
42 		factor = max(1, factor);
43 
44 	return SM(exp, HTT_TX_Q_STATE_ENTRY_EXP) |
45 	       SM(factor, HTT_TX_Q_STATE_ENTRY_FACTOR);
46 }
47 
48 static void __ath10k_htt_tx_txq_recalc(struct ieee80211_hw *hw,
49 				       struct ieee80211_txq *txq)
50 {
51 	struct ath10k *ar = hw->priv;
52 	struct ath10k_sta *arsta;
53 	struct ath10k_vif *arvif = (void *)txq->vif->drv_priv;
54 	unsigned long frame_cnt;
55 	unsigned long byte_cnt;
56 	int idx;
57 	u32 bit;
58 	u16 peer_id;
59 	u8 tid;
60 	u8 count;
61 
62 	lockdep_assert_held(&ar->htt.tx_lock);
63 
64 	if (!ar->htt.tx_q_state.enabled)
65 		return;
66 
67 	if (ar->htt.tx_q_state.mode != HTT_TX_MODE_SWITCH_PUSH_PULL)
68 		return;
69 
70 	if (txq->sta) {
71 		arsta = (void *)txq->sta->drv_priv;
72 		peer_id = arsta->peer_id;
73 	} else {
74 		peer_id = arvif->peer_id;
75 	}
76 
77 	tid = txq->tid;
78 	bit = BIT(peer_id % 32);
79 	idx = peer_id / 32;
80 
81 	ieee80211_txq_get_depth(txq, &frame_cnt, &byte_cnt);
82 	count = ath10k_htt_tx_txq_calc_size(byte_cnt);
83 
84 	if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) ||
85 	    unlikely(tid >= ar->htt.tx_q_state.num_tids)) {
86 		ath10k_warn(ar, "refusing to update txq for peer_id %hu tid %hhu due to out of bounds\n",
87 			    peer_id, tid);
88 		return;
89 	}
90 
91 	ar->htt.tx_q_state.vaddr->count[tid][peer_id] = count;
92 	ar->htt.tx_q_state.vaddr->map[tid][idx] &= ~bit;
93 	ar->htt.tx_q_state.vaddr->map[tid][idx] |= count ? bit : 0;
94 
95 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx txq state update peer_id %hu tid %hhu count %hhu\n",
96 		   peer_id, tid, count);
97 }
98 
99 static void __ath10k_htt_tx_txq_sync(struct ath10k *ar)
100 {
101 	u32 seq;
102 	size_t size;
103 
104 	lockdep_assert_held(&ar->htt.tx_lock);
105 
106 	if (!ar->htt.tx_q_state.enabled)
107 		return;
108 
109 	if (ar->htt.tx_q_state.mode != HTT_TX_MODE_SWITCH_PUSH_PULL)
110 		return;
111 
112 	seq = le32_to_cpu(ar->htt.tx_q_state.vaddr->seq);
113 	seq++;
114 	ar->htt.tx_q_state.vaddr->seq = cpu_to_le32(seq);
115 
116 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx txq state update commit seq %u\n",
117 		   seq);
118 
119 	size = sizeof(*ar->htt.tx_q_state.vaddr);
120 	dma_sync_single_for_device(ar->dev,
121 				   ar->htt.tx_q_state.paddr,
122 				   size,
123 				   DMA_TO_DEVICE);
124 }
125 
126 void ath10k_htt_tx_txq_recalc(struct ieee80211_hw *hw,
127 			      struct ieee80211_txq *txq)
128 {
129 	struct ath10k *ar = hw->priv;
130 
131 	spin_lock_bh(&ar->htt.tx_lock);
132 	__ath10k_htt_tx_txq_recalc(hw, txq);
133 	spin_unlock_bh(&ar->htt.tx_lock);
134 }
135 
136 void ath10k_htt_tx_txq_sync(struct ath10k *ar)
137 {
138 	spin_lock_bh(&ar->htt.tx_lock);
139 	__ath10k_htt_tx_txq_sync(ar);
140 	spin_unlock_bh(&ar->htt.tx_lock);
141 }
142 
143 void ath10k_htt_tx_txq_update(struct ieee80211_hw *hw,
144 			      struct ieee80211_txq *txq)
145 {
146 	struct ath10k *ar = hw->priv;
147 
148 	spin_lock_bh(&ar->htt.tx_lock);
149 	__ath10k_htt_tx_txq_recalc(hw, txq);
150 	__ath10k_htt_tx_txq_sync(ar);
151 	spin_unlock_bh(&ar->htt.tx_lock);
152 }
153 
154 void ath10k_htt_tx_dec_pending(struct ath10k_htt *htt)
155 {
156 	lockdep_assert_held(&htt->tx_lock);
157 
158 	htt->num_pending_tx--;
159 	if (htt->num_pending_tx == htt->max_num_pending_tx - 1)
160 		ath10k_mac_tx_unlock(htt->ar, ATH10K_TX_PAUSE_Q_FULL);
161 }
162 
163 int ath10k_htt_tx_inc_pending(struct ath10k_htt *htt)
164 {
165 	lockdep_assert_held(&htt->tx_lock);
166 
167 	if (htt->num_pending_tx >= htt->max_num_pending_tx)
168 		return -EBUSY;
169 
170 	htt->num_pending_tx++;
171 	if (htt->num_pending_tx == htt->max_num_pending_tx)
172 		ath10k_mac_tx_lock(htt->ar, ATH10K_TX_PAUSE_Q_FULL);
173 
174 	return 0;
175 }
176 
177 int ath10k_htt_tx_mgmt_inc_pending(struct ath10k_htt *htt, bool is_mgmt,
178 				   bool is_presp)
179 {
180 	struct ath10k *ar = htt->ar;
181 
182 	lockdep_assert_held(&htt->tx_lock);
183 
184 	if (!is_mgmt || !ar->hw_params.max_probe_resp_desc_thres)
185 		return 0;
186 
187 	if (is_presp &&
188 	    ar->hw_params.max_probe_resp_desc_thres < htt->num_pending_mgmt_tx)
189 		return -EBUSY;
190 
191 	htt->num_pending_mgmt_tx++;
192 
193 	return 0;
194 }
195 
196 void ath10k_htt_tx_mgmt_dec_pending(struct ath10k_htt *htt)
197 {
198 	lockdep_assert_held(&htt->tx_lock);
199 
200 	if (!htt->ar->hw_params.max_probe_resp_desc_thres)
201 		return;
202 
203 	htt->num_pending_mgmt_tx--;
204 }
205 
206 int ath10k_htt_tx_alloc_msdu_id(struct ath10k_htt *htt, struct sk_buff *skb)
207 {
208 	struct ath10k *ar = htt->ar;
209 	int ret;
210 
211 	lockdep_assert_held(&htt->tx_lock);
212 
213 	ret = idr_alloc(&htt->pending_tx, skb, 0,
214 			htt->max_num_pending_tx, GFP_ATOMIC);
215 
216 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx alloc msdu_id %d\n", ret);
217 
218 	return ret;
219 }
220 
221 void ath10k_htt_tx_free_msdu_id(struct ath10k_htt *htt, u16 msdu_id)
222 {
223 	struct ath10k *ar = htt->ar;
224 
225 	lockdep_assert_held(&htt->tx_lock);
226 
227 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx free msdu_id %hu\n", msdu_id);
228 
229 	idr_remove(&htt->pending_tx, msdu_id);
230 }
231 
232 static void ath10k_htt_tx_free_cont_frag_desc(struct ath10k_htt *htt)
233 {
234 	size_t size;
235 
236 	if (!htt->frag_desc.vaddr)
237 		return;
238 
239 	size = htt->max_num_pending_tx * sizeof(struct htt_msdu_ext_desc);
240 
241 	dma_free_coherent(htt->ar->dev,
242 			  size,
243 			  htt->frag_desc.vaddr,
244 			  htt->frag_desc.paddr);
245 }
246 
247 static int ath10k_htt_tx_alloc_cont_frag_desc(struct ath10k_htt *htt)
248 {
249 	struct ath10k *ar = htt->ar;
250 	size_t size;
251 
252 	if (!ar->hw_params.continuous_frag_desc)
253 		return 0;
254 
255 	size = htt->max_num_pending_tx * sizeof(struct htt_msdu_ext_desc);
256 	htt->frag_desc.vaddr = dma_alloc_coherent(ar->dev, size,
257 						  &htt->frag_desc.paddr,
258 						  GFP_KERNEL);
259 	if (!htt->frag_desc.vaddr) {
260 		ath10k_err(ar, "failed to alloc fragment desc memory\n");
261 		return -ENOMEM;
262 	}
263 
264 	return 0;
265 }
266 
267 static void ath10k_htt_tx_free_txq(struct ath10k_htt *htt)
268 {
269 	struct ath10k *ar = htt->ar;
270 	size_t size;
271 
272 	if (!test_bit(ATH10K_FW_FEATURE_PEER_FLOW_CONTROL,
273 		      ar->running_fw->fw_file.fw_features))
274 		return;
275 
276 	size = sizeof(*htt->tx_q_state.vaddr);
277 
278 	dma_unmap_single(ar->dev, htt->tx_q_state.paddr, size, DMA_TO_DEVICE);
279 	kfree(htt->tx_q_state.vaddr);
280 }
281 
282 static int ath10k_htt_tx_alloc_txq(struct ath10k_htt *htt)
283 {
284 	struct ath10k *ar = htt->ar;
285 	size_t size;
286 	int ret;
287 
288 	if (!test_bit(ATH10K_FW_FEATURE_PEER_FLOW_CONTROL,
289 		      ar->running_fw->fw_file.fw_features))
290 		return 0;
291 
292 	htt->tx_q_state.num_peers = HTT_TX_Q_STATE_NUM_PEERS;
293 	htt->tx_q_state.num_tids = HTT_TX_Q_STATE_NUM_TIDS;
294 	htt->tx_q_state.type = HTT_Q_DEPTH_TYPE_BYTES;
295 
296 	size = sizeof(*htt->tx_q_state.vaddr);
297 	htt->tx_q_state.vaddr = kzalloc(size, GFP_KERNEL);
298 	if (!htt->tx_q_state.vaddr)
299 		return -ENOMEM;
300 
301 	htt->tx_q_state.paddr = dma_map_single(ar->dev, htt->tx_q_state.vaddr,
302 					       size, DMA_TO_DEVICE);
303 	ret = dma_mapping_error(ar->dev, htt->tx_q_state.paddr);
304 	if (ret) {
305 		ath10k_warn(ar, "failed to dma map tx_q_state: %d\n", ret);
306 		kfree(htt->tx_q_state.vaddr);
307 		return -EIO;
308 	}
309 
310 	return 0;
311 }
312 
313 int ath10k_htt_tx_alloc(struct ath10k_htt *htt)
314 {
315 	struct ath10k *ar = htt->ar;
316 	int ret, size;
317 
318 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "htt tx max num pending tx %d\n",
319 		   htt->max_num_pending_tx);
320 
321 	spin_lock_init(&htt->tx_lock);
322 	idr_init(&htt->pending_tx);
323 
324 	size = htt->max_num_pending_tx * sizeof(struct ath10k_htt_txbuf);
325 	htt->txbuf.vaddr = dma_alloc_coherent(ar->dev, size,
326 						  &htt->txbuf.paddr,
327 						  GFP_KERNEL);
328 	if (!htt->txbuf.vaddr) {
329 		ath10k_err(ar, "failed to alloc tx buffer\n");
330 		ret = -ENOMEM;
331 		goto free_idr_pending_tx;
332 	}
333 
334 	ret = ath10k_htt_tx_alloc_cont_frag_desc(htt);
335 	if (ret) {
336 		ath10k_err(ar, "failed to alloc cont frag desc: %d\n", ret);
337 		goto free_txbuf;
338 	}
339 
340 	ret = ath10k_htt_tx_alloc_txq(htt);
341 	if (ret) {
342 		ath10k_err(ar, "failed to alloc txq: %d\n", ret);
343 		goto free_frag_desc;
344 	}
345 
346 	size = roundup_pow_of_two(htt->max_num_pending_tx);
347 	ret = kfifo_alloc(&htt->txdone_fifo, size, GFP_KERNEL);
348 	if (ret) {
349 		ath10k_err(ar, "failed to alloc txdone fifo: %d\n", ret);
350 		goto free_txq;
351 	}
352 
353 	return 0;
354 
355 free_txq:
356 	ath10k_htt_tx_free_txq(htt);
357 
358 free_frag_desc:
359 	ath10k_htt_tx_free_cont_frag_desc(htt);
360 
361 free_txbuf:
362 	size = htt->max_num_pending_tx *
363 			  sizeof(struct ath10k_htt_txbuf);
364 	dma_free_coherent(htt->ar->dev, size, htt->txbuf.vaddr,
365 			  htt->txbuf.paddr);
366 
367 free_idr_pending_tx:
368 	idr_destroy(&htt->pending_tx);
369 
370 	return ret;
371 }
372 
373 static int ath10k_htt_tx_clean_up_pending(int msdu_id, void *skb, void *ctx)
374 {
375 	struct ath10k *ar = ctx;
376 	struct ath10k_htt *htt = &ar->htt;
377 	struct htt_tx_done tx_done = {0};
378 
379 	ath10k_dbg(ar, ATH10K_DBG_HTT, "force cleanup msdu_id %hu\n", msdu_id);
380 
381 	tx_done.msdu_id = msdu_id;
382 	tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
383 
384 	ath10k_txrx_tx_unref(htt, &tx_done);
385 
386 	return 0;
387 }
388 
389 void ath10k_htt_tx_free(struct ath10k_htt *htt)
390 {
391 	int size;
392 
393 	idr_for_each(&htt->pending_tx, ath10k_htt_tx_clean_up_pending, htt->ar);
394 	idr_destroy(&htt->pending_tx);
395 
396 	if (htt->txbuf.vaddr) {
397 		size = htt->max_num_pending_tx *
398 				  sizeof(struct ath10k_htt_txbuf);
399 		dma_free_coherent(htt->ar->dev, size, htt->txbuf.vaddr,
400 				  htt->txbuf.paddr);
401 	}
402 
403 	ath10k_htt_tx_free_txq(htt);
404 	ath10k_htt_tx_free_cont_frag_desc(htt);
405 	WARN_ON(!kfifo_is_empty(&htt->txdone_fifo));
406 	kfifo_free(&htt->txdone_fifo);
407 }
408 
409 void ath10k_htt_htc_tx_complete(struct ath10k *ar, struct sk_buff *skb)
410 {
411 	dev_kfree_skb_any(skb);
412 }
413 
414 void ath10k_htt_hif_tx_complete(struct ath10k *ar, struct sk_buff *skb)
415 {
416 	dev_kfree_skb_any(skb);
417 }
418 EXPORT_SYMBOL(ath10k_htt_hif_tx_complete);
419 
420 int ath10k_htt_h2t_ver_req_msg(struct ath10k_htt *htt)
421 {
422 	struct ath10k *ar = htt->ar;
423 	struct sk_buff *skb;
424 	struct htt_cmd *cmd;
425 	int len = 0;
426 	int ret;
427 
428 	len += sizeof(cmd->hdr);
429 	len += sizeof(cmd->ver_req);
430 
431 	skb = ath10k_htc_alloc_skb(ar, len);
432 	if (!skb)
433 		return -ENOMEM;
434 
435 	skb_put(skb, len);
436 	cmd = (struct htt_cmd *)skb->data;
437 	cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_VERSION_REQ;
438 
439 	ret = ath10k_htc_send(&htt->ar->htc, htt->eid, skb);
440 	if (ret) {
441 		dev_kfree_skb_any(skb);
442 		return ret;
443 	}
444 
445 	return 0;
446 }
447 
448 int ath10k_htt_h2t_stats_req(struct ath10k_htt *htt, u8 mask, u64 cookie)
449 {
450 	struct ath10k *ar = htt->ar;
451 	struct htt_stats_req *req;
452 	struct sk_buff *skb;
453 	struct htt_cmd *cmd;
454 	int len = 0, ret;
455 
456 	len += sizeof(cmd->hdr);
457 	len += sizeof(cmd->stats_req);
458 
459 	skb = ath10k_htc_alloc_skb(ar, len);
460 	if (!skb)
461 		return -ENOMEM;
462 
463 	skb_put(skb, len);
464 	cmd = (struct htt_cmd *)skb->data;
465 	cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_STATS_REQ;
466 
467 	req = &cmd->stats_req;
468 
469 	memset(req, 0, sizeof(*req));
470 
471 	/* currently we support only max 8 bit masks so no need to worry
472 	 * about endian support */
473 	req->upload_types[0] = mask;
474 	req->reset_types[0] = mask;
475 	req->stat_type = HTT_STATS_REQ_CFG_STAT_TYPE_INVALID;
476 	req->cookie_lsb = cpu_to_le32(cookie & 0xffffffff);
477 	req->cookie_msb = cpu_to_le32((cookie & 0xffffffff00000000ULL) >> 32);
478 
479 	ret = ath10k_htc_send(&htt->ar->htc, htt->eid, skb);
480 	if (ret) {
481 		ath10k_warn(ar, "failed to send htt type stats request: %d",
482 			    ret);
483 		dev_kfree_skb_any(skb);
484 		return ret;
485 	}
486 
487 	return 0;
488 }
489 
490 int ath10k_htt_send_frag_desc_bank_cfg(struct ath10k_htt *htt)
491 {
492 	struct ath10k *ar = htt->ar;
493 	struct sk_buff *skb;
494 	struct htt_cmd *cmd;
495 	struct htt_frag_desc_bank_cfg *cfg;
496 	int ret, size;
497 	u8 info;
498 
499 	if (!ar->hw_params.continuous_frag_desc)
500 		return 0;
501 
502 	if (!htt->frag_desc.paddr) {
503 		ath10k_warn(ar, "invalid frag desc memory\n");
504 		return -EINVAL;
505 	}
506 
507 	size = sizeof(cmd->hdr) + sizeof(cmd->frag_desc_bank_cfg);
508 	skb = ath10k_htc_alloc_skb(ar, size);
509 	if (!skb)
510 		return -ENOMEM;
511 
512 	skb_put(skb, size);
513 	cmd = (struct htt_cmd *)skb->data;
514 	cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_FRAG_DESC_BANK_CFG;
515 
516 	info = 0;
517 	info |= SM(htt->tx_q_state.type,
518 		   HTT_FRAG_DESC_BANK_CFG_INFO_Q_STATE_DEPTH_TYPE);
519 
520 	if (test_bit(ATH10K_FW_FEATURE_PEER_FLOW_CONTROL,
521 		     ar->running_fw->fw_file.fw_features))
522 		info |= HTT_FRAG_DESC_BANK_CFG_INFO_Q_STATE_VALID;
523 
524 	cfg = &cmd->frag_desc_bank_cfg;
525 	cfg->info = info;
526 	cfg->num_banks = 1;
527 	cfg->desc_size = sizeof(struct htt_msdu_ext_desc);
528 	cfg->bank_base_addrs[0] = __cpu_to_le32(htt->frag_desc.paddr);
529 	cfg->bank_id[0].bank_min_id = 0;
530 	cfg->bank_id[0].bank_max_id = __cpu_to_le16(htt->max_num_pending_tx -
531 						    1);
532 
533 	cfg->q_state.paddr = cpu_to_le32(htt->tx_q_state.paddr);
534 	cfg->q_state.num_peers = cpu_to_le16(htt->tx_q_state.num_peers);
535 	cfg->q_state.num_tids = cpu_to_le16(htt->tx_q_state.num_tids);
536 	cfg->q_state.record_size = HTT_TX_Q_STATE_ENTRY_SIZE;
537 	cfg->q_state.record_multiplier = HTT_TX_Q_STATE_ENTRY_MULTIPLIER;
538 
539 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt frag desc bank cmd\n");
540 
541 	ret = ath10k_htc_send(&htt->ar->htc, htt->eid, skb);
542 	if (ret) {
543 		ath10k_warn(ar, "failed to send frag desc bank cfg request: %d\n",
544 			    ret);
545 		dev_kfree_skb_any(skb);
546 		return ret;
547 	}
548 
549 	return 0;
550 }
551 
552 int ath10k_htt_send_rx_ring_cfg_ll(struct ath10k_htt *htt)
553 {
554 	struct ath10k *ar = htt->ar;
555 	struct sk_buff *skb;
556 	struct htt_cmd *cmd;
557 	struct htt_rx_ring_setup_ring *ring;
558 	const int num_rx_ring = 1;
559 	u16 flags;
560 	u32 fw_idx;
561 	int len;
562 	int ret;
563 
564 	/*
565 	 * the HW expects the buffer to be an integral number of 4-byte
566 	 * "words"
567 	 */
568 	BUILD_BUG_ON(!IS_ALIGNED(HTT_RX_BUF_SIZE, 4));
569 	BUILD_BUG_ON((HTT_RX_BUF_SIZE & HTT_MAX_CACHE_LINE_SIZE_MASK) != 0);
570 
571 	len = sizeof(cmd->hdr) + sizeof(cmd->rx_setup.hdr)
572 	    + (sizeof(*ring) * num_rx_ring);
573 	skb = ath10k_htc_alloc_skb(ar, len);
574 	if (!skb)
575 		return -ENOMEM;
576 
577 	skb_put(skb, len);
578 
579 	cmd = (struct htt_cmd *)skb->data;
580 	ring = &cmd->rx_setup.rings[0];
581 
582 	cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_RX_RING_CFG;
583 	cmd->rx_setup.hdr.num_rings = 1;
584 
585 	/* FIXME: do we need all of this? */
586 	flags = 0;
587 	flags |= HTT_RX_RING_FLAGS_MAC80211_HDR;
588 	flags |= HTT_RX_RING_FLAGS_MSDU_PAYLOAD;
589 	flags |= HTT_RX_RING_FLAGS_PPDU_START;
590 	flags |= HTT_RX_RING_FLAGS_PPDU_END;
591 	flags |= HTT_RX_RING_FLAGS_MPDU_START;
592 	flags |= HTT_RX_RING_FLAGS_MPDU_END;
593 	flags |= HTT_RX_RING_FLAGS_MSDU_START;
594 	flags |= HTT_RX_RING_FLAGS_MSDU_END;
595 	flags |= HTT_RX_RING_FLAGS_RX_ATTENTION;
596 	flags |= HTT_RX_RING_FLAGS_FRAG_INFO;
597 	flags |= HTT_RX_RING_FLAGS_UNICAST_RX;
598 	flags |= HTT_RX_RING_FLAGS_MULTICAST_RX;
599 	flags |= HTT_RX_RING_FLAGS_CTRL_RX;
600 	flags |= HTT_RX_RING_FLAGS_MGMT_RX;
601 	flags |= HTT_RX_RING_FLAGS_NULL_RX;
602 	flags |= HTT_RX_RING_FLAGS_PHY_DATA_RX;
603 
604 	fw_idx = __le32_to_cpu(*htt->rx_ring.alloc_idx.vaddr);
605 
606 	ring->fw_idx_shadow_reg_paddr =
607 		__cpu_to_le32(htt->rx_ring.alloc_idx.paddr);
608 	ring->rx_ring_base_paddr = __cpu_to_le32(htt->rx_ring.base_paddr);
609 	ring->rx_ring_len = __cpu_to_le16(htt->rx_ring.size);
610 	ring->rx_ring_bufsize = __cpu_to_le16(HTT_RX_BUF_SIZE);
611 	ring->flags = __cpu_to_le16(flags);
612 	ring->fw_idx_init_val = __cpu_to_le16(fw_idx);
613 
614 #define desc_offset(x) (offsetof(struct htt_rx_desc, x) / 4)
615 
616 	ring->mac80211_hdr_offset = __cpu_to_le16(desc_offset(rx_hdr_status));
617 	ring->msdu_payload_offset = __cpu_to_le16(desc_offset(msdu_payload));
618 	ring->ppdu_start_offset = __cpu_to_le16(desc_offset(ppdu_start));
619 	ring->ppdu_end_offset = __cpu_to_le16(desc_offset(ppdu_end));
620 	ring->mpdu_start_offset = __cpu_to_le16(desc_offset(mpdu_start));
621 	ring->mpdu_end_offset = __cpu_to_le16(desc_offset(mpdu_end));
622 	ring->msdu_start_offset = __cpu_to_le16(desc_offset(msdu_start));
623 	ring->msdu_end_offset = __cpu_to_le16(desc_offset(msdu_end));
624 	ring->rx_attention_offset = __cpu_to_le16(desc_offset(attention));
625 	ring->frag_info_offset = __cpu_to_le16(desc_offset(frag_info));
626 
627 #undef desc_offset
628 
629 	ret = ath10k_htc_send(&htt->ar->htc, htt->eid, skb);
630 	if (ret) {
631 		dev_kfree_skb_any(skb);
632 		return ret;
633 	}
634 
635 	return 0;
636 }
637 
638 int ath10k_htt_h2t_aggr_cfg_msg(struct ath10k_htt *htt,
639 				u8 max_subfrms_ampdu,
640 				u8 max_subfrms_amsdu)
641 {
642 	struct ath10k *ar = htt->ar;
643 	struct htt_aggr_conf *aggr_conf;
644 	struct sk_buff *skb;
645 	struct htt_cmd *cmd;
646 	int len;
647 	int ret;
648 
649 	/* Firmware defaults are: amsdu = 3 and ampdu = 64 */
650 
651 	if (max_subfrms_ampdu == 0 || max_subfrms_ampdu > 64)
652 		return -EINVAL;
653 
654 	if (max_subfrms_amsdu == 0 || max_subfrms_amsdu > 31)
655 		return -EINVAL;
656 
657 	len = sizeof(cmd->hdr);
658 	len += sizeof(cmd->aggr_conf);
659 
660 	skb = ath10k_htc_alloc_skb(ar, len);
661 	if (!skb)
662 		return -ENOMEM;
663 
664 	skb_put(skb, len);
665 	cmd = (struct htt_cmd *)skb->data;
666 	cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_AGGR_CFG;
667 
668 	aggr_conf = &cmd->aggr_conf;
669 	aggr_conf->max_num_ampdu_subframes = max_subfrms_ampdu;
670 	aggr_conf->max_num_amsdu_subframes = max_subfrms_amsdu;
671 
672 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt h2t aggr cfg msg amsdu %d ampdu %d",
673 		   aggr_conf->max_num_amsdu_subframes,
674 		   aggr_conf->max_num_ampdu_subframes);
675 
676 	ret = ath10k_htc_send(&htt->ar->htc, htt->eid, skb);
677 	if (ret) {
678 		dev_kfree_skb_any(skb);
679 		return ret;
680 	}
681 
682 	return 0;
683 }
684 
685 int ath10k_htt_tx_fetch_resp(struct ath10k *ar,
686 			     __le32 token,
687 			     __le16 fetch_seq_num,
688 			     struct htt_tx_fetch_record *records,
689 			     size_t num_records)
690 {
691 	struct sk_buff *skb;
692 	struct htt_cmd *cmd;
693 	const u16 resp_id = 0;
694 	int len = 0;
695 	int ret;
696 
697 	/* Response IDs are echo-ed back only for host driver convienence
698 	 * purposes. They aren't used for anything in the driver yet so use 0.
699 	 */
700 
701 	len += sizeof(cmd->hdr);
702 	len += sizeof(cmd->tx_fetch_resp);
703 	len += sizeof(cmd->tx_fetch_resp.records[0]) * num_records;
704 
705 	skb = ath10k_htc_alloc_skb(ar, len);
706 	if (!skb)
707 		return -ENOMEM;
708 
709 	skb_put(skb, len);
710 	cmd = (struct htt_cmd *)skb->data;
711 	cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_TX_FETCH_RESP;
712 	cmd->tx_fetch_resp.resp_id = cpu_to_le16(resp_id);
713 	cmd->tx_fetch_resp.fetch_seq_num = fetch_seq_num;
714 	cmd->tx_fetch_resp.num_records = cpu_to_le16(num_records);
715 	cmd->tx_fetch_resp.token = token;
716 
717 	memcpy(cmd->tx_fetch_resp.records, records,
718 	       sizeof(records[0]) * num_records);
719 
720 	ret = ath10k_htc_send(&ar->htc, ar->htt.eid, skb);
721 	if (ret) {
722 		ath10k_warn(ar, "failed to submit htc command: %d\n", ret);
723 		goto err_free_skb;
724 	}
725 
726 	return 0;
727 
728 err_free_skb:
729 	dev_kfree_skb_any(skb);
730 
731 	return ret;
732 }
733 
734 static u8 ath10k_htt_tx_get_vdev_id(struct ath10k *ar, struct sk_buff *skb)
735 {
736 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
737 	struct ath10k_skb_cb *cb = ATH10K_SKB_CB(skb);
738 	struct ath10k_vif *arvif;
739 
740 	if (info->flags & IEEE80211_TX_CTL_TX_OFFCHAN) {
741 		return ar->scan.vdev_id;
742 	} else if (cb->vif) {
743 		arvif = (void *)cb->vif->drv_priv;
744 		return arvif->vdev_id;
745 	} else if (ar->monitor_started) {
746 		return ar->monitor_vdev_id;
747 	} else {
748 		return 0;
749 	}
750 }
751 
752 static u8 ath10k_htt_tx_get_tid(struct sk_buff *skb, bool is_eth)
753 {
754 	struct ieee80211_hdr *hdr = (void *)skb->data;
755 	struct ath10k_skb_cb *cb = ATH10K_SKB_CB(skb);
756 
757 	if (!is_eth && ieee80211_is_mgmt(hdr->frame_control))
758 		return HTT_DATA_TX_EXT_TID_MGMT;
759 	else if (cb->flags & ATH10K_SKB_F_QOS)
760 		return skb->priority % IEEE80211_QOS_CTL_TID_MASK;
761 	else
762 		return HTT_DATA_TX_EXT_TID_NON_QOS_MCAST_BCAST;
763 }
764 
765 int ath10k_htt_mgmt_tx(struct ath10k_htt *htt, struct sk_buff *msdu)
766 {
767 	struct ath10k *ar = htt->ar;
768 	struct device *dev = ar->dev;
769 	struct sk_buff *txdesc = NULL;
770 	struct htt_cmd *cmd;
771 	struct ath10k_skb_cb *skb_cb = ATH10K_SKB_CB(msdu);
772 	u8 vdev_id = ath10k_htt_tx_get_vdev_id(ar, msdu);
773 	int len = 0;
774 	int msdu_id = -1;
775 	int res;
776 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)msdu->data;
777 
778 	len += sizeof(cmd->hdr);
779 	len += sizeof(cmd->mgmt_tx);
780 
781 	spin_lock_bh(&htt->tx_lock);
782 	res = ath10k_htt_tx_alloc_msdu_id(htt, msdu);
783 	spin_unlock_bh(&htt->tx_lock);
784 	if (res < 0)
785 		goto err;
786 
787 	msdu_id = res;
788 
789 	if ((ieee80211_is_action(hdr->frame_control) ||
790 	     ieee80211_is_deauth(hdr->frame_control) ||
791 	     ieee80211_is_disassoc(hdr->frame_control)) &&
792 	     ieee80211_has_protected(hdr->frame_control)) {
793 		skb_put(msdu, IEEE80211_CCMP_MIC_LEN);
794 	}
795 
796 	txdesc = ath10k_htc_alloc_skb(ar, len);
797 	if (!txdesc) {
798 		res = -ENOMEM;
799 		goto err_free_msdu_id;
800 	}
801 
802 	skb_cb->paddr = dma_map_single(dev, msdu->data, msdu->len,
803 				       DMA_TO_DEVICE);
804 	res = dma_mapping_error(dev, skb_cb->paddr);
805 	if (res) {
806 		res = -EIO;
807 		goto err_free_txdesc;
808 	}
809 
810 	skb_put(txdesc, len);
811 	cmd = (struct htt_cmd *)txdesc->data;
812 	memset(cmd, 0, len);
813 
814 	cmd->hdr.msg_type         = HTT_H2T_MSG_TYPE_MGMT_TX;
815 	cmd->mgmt_tx.msdu_paddr = __cpu_to_le32(ATH10K_SKB_CB(msdu)->paddr);
816 	cmd->mgmt_tx.len        = __cpu_to_le32(msdu->len);
817 	cmd->mgmt_tx.desc_id    = __cpu_to_le32(msdu_id);
818 	cmd->mgmt_tx.vdev_id    = __cpu_to_le32(vdev_id);
819 	memcpy(cmd->mgmt_tx.hdr, msdu->data,
820 	       min_t(int, msdu->len, HTT_MGMT_FRM_HDR_DOWNLOAD_LEN));
821 
822 	res = ath10k_htc_send(&htt->ar->htc, htt->eid, txdesc);
823 	if (res)
824 		goto err_unmap_msdu;
825 
826 	return 0;
827 
828 err_unmap_msdu:
829 	dma_unmap_single(dev, skb_cb->paddr, msdu->len, DMA_TO_DEVICE);
830 err_free_txdesc:
831 	dev_kfree_skb_any(txdesc);
832 err_free_msdu_id:
833 	spin_lock_bh(&htt->tx_lock);
834 	ath10k_htt_tx_free_msdu_id(htt, msdu_id);
835 	spin_unlock_bh(&htt->tx_lock);
836 err:
837 	return res;
838 }
839 
840 int ath10k_htt_tx(struct ath10k_htt *htt, enum ath10k_hw_txrx_mode txmode,
841 		  struct sk_buff *msdu)
842 {
843 	struct ath10k *ar = htt->ar;
844 	struct device *dev = ar->dev;
845 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)msdu->data;
846 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(msdu);
847 	struct ath10k_skb_cb *skb_cb = ATH10K_SKB_CB(msdu);
848 	struct ath10k_hif_sg_item sg_items[2];
849 	struct ath10k_htt_txbuf *txbuf;
850 	struct htt_data_tx_desc_frag *frags;
851 	bool is_eth = (txmode == ATH10K_HW_TXRX_ETHERNET);
852 	u8 vdev_id = ath10k_htt_tx_get_vdev_id(ar, msdu);
853 	u8 tid = ath10k_htt_tx_get_tid(msdu, is_eth);
854 	int prefetch_len;
855 	int res;
856 	u8 flags0 = 0;
857 	u16 msdu_id, flags1 = 0;
858 	u16 freq = 0;
859 	u32 frags_paddr = 0;
860 	u32 txbuf_paddr;
861 	struct htt_msdu_ext_desc *ext_desc = NULL;
862 
863 	spin_lock_bh(&htt->tx_lock);
864 	res = ath10k_htt_tx_alloc_msdu_id(htt, msdu);
865 	spin_unlock_bh(&htt->tx_lock);
866 	if (res < 0)
867 		goto err;
868 
869 	msdu_id = res;
870 
871 	prefetch_len = min(htt->prefetch_len, msdu->len);
872 	prefetch_len = roundup(prefetch_len, 4);
873 
874 	txbuf = &htt->txbuf.vaddr[msdu_id];
875 	txbuf_paddr = htt->txbuf.paddr +
876 		      (sizeof(struct ath10k_htt_txbuf) * msdu_id);
877 
878 	if ((ieee80211_is_action(hdr->frame_control) ||
879 	     ieee80211_is_deauth(hdr->frame_control) ||
880 	     ieee80211_is_disassoc(hdr->frame_control)) &&
881 	     ieee80211_has_protected(hdr->frame_control)) {
882 		skb_put(msdu, IEEE80211_CCMP_MIC_LEN);
883 	} else if (!(skb_cb->flags & ATH10K_SKB_F_NO_HWCRYPT) &&
884 		   txmode == ATH10K_HW_TXRX_RAW &&
885 		   ieee80211_has_protected(hdr->frame_control)) {
886 		skb_put(msdu, IEEE80211_CCMP_MIC_LEN);
887 	}
888 
889 	skb_cb->paddr = dma_map_single(dev, msdu->data, msdu->len,
890 				       DMA_TO_DEVICE);
891 	res = dma_mapping_error(dev, skb_cb->paddr);
892 	if (res) {
893 		res = -EIO;
894 		goto err_free_msdu_id;
895 	}
896 
897 	if (unlikely(info->flags & IEEE80211_TX_CTL_TX_OFFCHAN))
898 		freq = ar->scan.roc_freq;
899 
900 	switch (txmode) {
901 	case ATH10K_HW_TXRX_RAW:
902 	case ATH10K_HW_TXRX_NATIVE_WIFI:
903 		flags0 |= HTT_DATA_TX_DESC_FLAGS0_MAC_HDR_PRESENT;
904 		/* pass through */
905 	case ATH10K_HW_TXRX_ETHERNET:
906 		if (ar->hw_params.continuous_frag_desc) {
907 			memset(&htt->frag_desc.vaddr[msdu_id], 0,
908 			       sizeof(struct htt_msdu_ext_desc));
909 			frags = (struct htt_data_tx_desc_frag *)
910 				&htt->frag_desc.vaddr[msdu_id].frags;
911 			ext_desc = &htt->frag_desc.vaddr[msdu_id];
912 			frags[0].tword_addr.paddr_lo =
913 				__cpu_to_le32(skb_cb->paddr);
914 			frags[0].tword_addr.paddr_hi = 0;
915 			frags[0].tword_addr.len_16 = __cpu_to_le16(msdu->len);
916 
917 			frags_paddr =  htt->frag_desc.paddr +
918 				(sizeof(struct htt_msdu_ext_desc) * msdu_id);
919 		} else {
920 			frags = txbuf->frags;
921 			frags[0].dword_addr.paddr =
922 				__cpu_to_le32(skb_cb->paddr);
923 			frags[0].dword_addr.len = __cpu_to_le32(msdu->len);
924 			frags[1].dword_addr.paddr = 0;
925 			frags[1].dword_addr.len = 0;
926 
927 			frags_paddr = txbuf_paddr;
928 		}
929 		flags0 |= SM(txmode, HTT_DATA_TX_DESC_FLAGS0_PKT_TYPE);
930 		break;
931 	case ATH10K_HW_TXRX_MGMT:
932 		flags0 |= SM(ATH10K_HW_TXRX_MGMT,
933 			     HTT_DATA_TX_DESC_FLAGS0_PKT_TYPE);
934 		flags0 |= HTT_DATA_TX_DESC_FLAGS0_MAC_HDR_PRESENT;
935 
936 		frags_paddr = skb_cb->paddr;
937 		break;
938 	}
939 
940 	/* Normally all commands go through HTC which manages tx credits for
941 	 * each endpoint and notifies when tx is completed.
942 	 *
943 	 * HTT endpoint is creditless so there's no need to care about HTC
944 	 * flags. In that case it is trivial to fill the HTC header here.
945 	 *
946 	 * MSDU transmission is considered completed upon HTT event. This
947 	 * implies no relevant resources can be freed until after the event is
948 	 * received. That's why HTC tx completion handler itself is ignored by
949 	 * setting NULL to transfer_context for all sg items.
950 	 *
951 	 * There is simply no point in pushing HTT TX_FRM through HTC tx path
952 	 * as it's a waste of resources. By bypassing HTC it is possible to
953 	 * avoid extra memory allocations, compress data structures and thus
954 	 * improve performance. */
955 
956 	txbuf->htc_hdr.eid = htt->eid;
957 	txbuf->htc_hdr.len = __cpu_to_le16(sizeof(txbuf->cmd_hdr) +
958 					   sizeof(txbuf->cmd_tx) +
959 					   prefetch_len);
960 	txbuf->htc_hdr.flags = 0;
961 
962 	if (skb_cb->flags & ATH10K_SKB_F_NO_HWCRYPT)
963 		flags0 |= HTT_DATA_TX_DESC_FLAGS0_NO_ENCRYPT;
964 
965 	flags1 |= SM((u16)vdev_id, HTT_DATA_TX_DESC_FLAGS1_VDEV_ID);
966 	flags1 |= SM((u16)tid, HTT_DATA_TX_DESC_FLAGS1_EXT_TID);
967 	if (msdu->ip_summed == CHECKSUM_PARTIAL &&
968 	    !test_bit(ATH10K_FLAG_RAW_MODE, &ar->dev_flags)) {
969 		flags1 |= HTT_DATA_TX_DESC_FLAGS1_CKSUM_L3_OFFLOAD;
970 		flags1 |= HTT_DATA_TX_DESC_FLAGS1_CKSUM_L4_OFFLOAD;
971 		if (ar->hw_params.continuous_frag_desc)
972 			ext_desc->flags |= HTT_MSDU_CHECKSUM_ENABLE;
973 	}
974 
975 	/* Prevent firmware from sending up tx inspection requests. There's
976 	 * nothing ath10k can do with frames requested for inspection so force
977 	 * it to simply rely a regular tx completion with discard status.
978 	 */
979 	flags1 |= HTT_DATA_TX_DESC_FLAGS1_POSTPONED;
980 
981 	txbuf->cmd_hdr.msg_type = HTT_H2T_MSG_TYPE_TX_FRM;
982 	txbuf->cmd_tx.flags0 = flags0;
983 	txbuf->cmd_tx.flags1 = __cpu_to_le16(flags1);
984 	txbuf->cmd_tx.len = __cpu_to_le16(msdu->len);
985 	txbuf->cmd_tx.id = __cpu_to_le16(msdu_id);
986 	txbuf->cmd_tx.frags_paddr = __cpu_to_le32(frags_paddr);
987 	if (ath10k_mac_tx_frm_has_freq(ar)) {
988 		txbuf->cmd_tx.offchan_tx.peerid =
989 				__cpu_to_le16(HTT_INVALID_PEERID);
990 		txbuf->cmd_tx.offchan_tx.freq =
991 				__cpu_to_le16(freq);
992 	} else {
993 		txbuf->cmd_tx.peerid =
994 				__cpu_to_le32(HTT_INVALID_PEERID);
995 	}
996 
997 	trace_ath10k_htt_tx(ar, msdu_id, msdu->len, vdev_id, tid);
998 	ath10k_dbg(ar, ATH10K_DBG_HTT,
999 		   "htt tx flags0 %hhu flags1 %hu len %d id %hu frags_paddr %08x, msdu_paddr %08x vdev %hhu tid %hhu freq %hu\n",
1000 		   flags0, flags1, msdu->len, msdu_id, frags_paddr,
1001 		   (u32)skb_cb->paddr, vdev_id, tid, freq);
1002 	ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt tx msdu: ",
1003 			msdu->data, msdu->len);
1004 	trace_ath10k_tx_hdr(ar, msdu->data, msdu->len);
1005 	trace_ath10k_tx_payload(ar, msdu->data, msdu->len);
1006 
1007 	sg_items[0].transfer_id = 0;
1008 	sg_items[0].transfer_context = NULL;
1009 	sg_items[0].vaddr = &txbuf->htc_hdr;
1010 	sg_items[0].paddr = txbuf_paddr +
1011 			    sizeof(txbuf->frags);
1012 	sg_items[0].len = sizeof(txbuf->htc_hdr) +
1013 			  sizeof(txbuf->cmd_hdr) +
1014 			  sizeof(txbuf->cmd_tx);
1015 
1016 	sg_items[1].transfer_id = 0;
1017 	sg_items[1].transfer_context = NULL;
1018 	sg_items[1].vaddr = msdu->data;
1019 	sg_items[1].paddr = skb_cb->paddr;
1020 	sg_items[1].len = prefetch_len;
1021 
1022 	res = ath10k_hif_tx_sg(htt->ar,
1023 			       htt->ar->htc.endpoint[htt->eid].ul_pipe_id,
1024 			       sg_items, ARRAY_SIZE(sg_items));
1025 	if (res)
1026 		goto err_unmap_msdu;
1027 
1028 	return 0;
1029 
1030 err_unmap_msdu:
1031 	dma_unmap_single(dev, skb_cb->paddr, msdu->len, DMA_TO_DEVICE);
1032 err_free_msdu_id:
1033 	ath10k_htt_tx_free_msdu_id(htt, msdu_id);
1034 err:
1035 	return res;
1036 }
1037