1 /* 2 * Copyright (c) 2005-2011 Atheros Communications Inc. 3 * Copyright (c) 2011-2017 Qualcomm Atheros, Inc. 4 * Copyright (c) 2018, The Linux Foundation. All rights reserved. 5 * 6 * Permission to use, copy, modify, and/or distribute this software for any 7 * purpose with or without fee is hereby granted, provided that the above 8 * copyright notice and this permission notice appear in all copies. 9 * 10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 17 */ 18 19 #include "core.h" 20 #include "htc.h" 21 #include "htt.h" 22 #include "txrx.h" 23 #include "debug.h" 24 #include "trace.h" 25 #include "mac.h" 26 27 #include <linux/log2.h> 28 #include <linux/bitfield.h> 29 30 /* when under memory pressure rx ring refill may fail and needs a retry */ 31 #define HTT_RX_RING_REFILL_RETRY_MS 50 32 33 #define HTT_RX_RING_REFILL_RESCHED_MS 5 34 35 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb); 36 37 static struct sk_buff * 38 ath10k_htt_rx_find_skb_paddr(struct ath10k *ar, u64 paddr) 39 { 40 struct ath10k_skb_rxcb *rxcb; 41 42 hash_for_each_possible(ar->htt.rx_ring.skb_table, rxcb, hlist, paddr) 43 if (rxcb->paddr == paddr) 44 return ATH10K_RXCB_SKB(rxcb); 45 46 WARN_ON_ONCE(1); 47 return NULL; 48 } 49 50 static void ath10k_htt_rx_ring_free(struct ath10k_htt *htt) 51 { 52 struct sk_buff *skb; 53 struct ath10k_skb_rxcb *rxcb; 54 struct hlist_node *n; 55 int i; 56 57 if (htt->rx_ring.in_ord_rx) { 58 hash_for_each_safe(htt->rx_ring.skb_table, i, n, rxcb, hlist) { 59 skb = ATH10K_RXCB_SKB(rxcb); 60 dma_unmap_single(htt->ar->dev, rxcb->paddr, 61 skb->len + skb_tailroom(skb), 62 DMA_FROM_DEVICE); 63 hash_del(&rxcb->hlist); 64 dev_kfree_skb_any(skb); 65 } 66 } else { 67 for (i = 0; i < htt->rx_ring.size; i++) { 68 skb = htt->rx_ring.netbufs_ring[i]; 69 if (!skb) 70 continue; 71 72 rxcb = ATH10K_SKB_RXCB(skb); 73 dma_unmap_single(htt->ar->dev, rxcb->paddr, 74 skb->len + skb_tailroom(skb), 75 DMA_FROM_DEVICE); 76 dev_kfree_skb_any(skb); 77 } 78 } 79 80 htt->rx_ring.fill_cnt = 0; 81 hash_init(htt->rx_ring.skb_table); 82 memset(htt->rx_ring.netbufs_ring, 0, 83 htt->rx_ring.size * sizeof(htt->rx_ring.netbufs_ring[0])); 84 } 85 86 static size_t ath10k_htt_get_rx_ring_size_32(struct ath10k_htt *htt) 87 { 88 return htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring_32); 89 } 90 91 static size_t ath10k_htt_get_rx_ring_size_64(struct ath10k_htt *htt) 92 { 93 return htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring_64); 94 } 95 96 static void ath10k_htt_config_paddrs_ring_32(struct ath10k_htt *htt, 97 void *vaddr) 98 { 99 htt->rx_ring.paddrs_ring_32 = vaddr; 100 } 101 102 static void ath10k_htt_config_paddrs_ring_64(struct ath10k_htt *htt, 103 void *vaddr) 104 { 105 htt->rx_ring.paddrs_ring_64 = vaddr; 106 } 107 108 static void ath10k_htt_set_paddrs_ring_32(struct ath10k_htt *htt, 109 dma_addr_t paddr, int idx) 110 { 111 htt->rx_ring.paddrs_ring_32[idx] = __cpu_to_le32(paddr); 112 } 113 114 static void ath10k_htt_set_paddrs_ring_64(struct ath10k_htt *htt, 115 dma_addr_t paddr, int idx) 116 { 117 htt->rx_ring.paddrs_ring_64[idx] = __cpu_to_le64(paddr); 118 } 119 120 static void ath10k_htt_reset_paddrs_ring_32(struct ath10k_htt *htt, int idx) 121 { 122 htt->rx_ring.paddrs_ring_32[idx] = 0; 123 } 124 125 static void ath10k_htt_reset_paddrs_ring_64(struct ath10k_htt *htt, int idx) 126 { 127 htt->rx_ring.paddrs_ring_64[idx] = 0; 128 } 129 130 static void *ath10k_htt_get_vaddr_ring_32(struct ath10k_htt *htt) 131 { 132 return (void *)htt->rx_ring.paddrs_ring_32; 133 } 134 135 static void *ath10k_htt_get_vaddr_ring_64(struct ath10k_htt *htt) 136 { 137 return (void *)htt->rx_ring.paddrs_ring_64; 138 } 139 140 static int __ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num) 141 { 142 struct htt_rx_desc *rx_desc; 143 struct ath10k_skb_rxcb *rxcb; 144 struct sk_buff *skb; 145 dma_addr_t paddr; 146 int ret = 0, idx; 147 148 /* The Full Rx Reorder firmware has no way of telling the host 149 * implicitly when it copied HTT Rx Ring buffers to MAC Rx Ring. 150 * To keep things simple make sure ring is always half empty. This 151 * guarantees there'll be no replenishment overruns possible. 152 */ 153 BUILD_BUG_ON(HTT_RX_RING_FILL_LEVEL >= HTT_RX_RING_SIZE / 2); 154 155 idx = __le32_to_cpu(*htt->rx_ring.alloc_idx.vaddr); 156 while (num > 0) { 157 skb = dev_alloc_skb(HTT_RX_BUF_SIZE + HTT_RX_DESC_ALIGN); 158 if (!skb) { 159 ret = -ENOMEM; 160 goto fail; 161 } 162 163 if (!IS_ALIGNED((unsigned long)skb->data, HTT_RX_DESC_ALIGN)) 164 skb_pull(skb, 165 PTR_ALIGN(skb->data, HTT_RX_DESC_ALIGN) - 166 skb->data); 167 168 /* Clear rx_desc attention word before posting to Rx ring */ 169 rx_desc = (struct htt_rx_desc *)skb->data; 170 rx_desc->attention.flags = __cpu_to_le32(0); 171 172 paddr = dma_map_single(htt->ar->dev, skb->data, 173 skb->len + skb_tailroom(skb), 174 DMA_FROM_DEVICE); 175 176 if (unlikely(dma_mapping_error(htt->ar->dev, paddr))) { 177 dev_kfree_skb_any(skb); 178 ret = -ENOMEM; 179 goto fail; 180 } 181 182 rxcb = ATH10K_SKB_RXCB(skb); 183 rxcb->paddr = paddr; 184 htt->rx_ring.netbufs_ring[idx] = skb; 185 ath10k_htt_set_paddrs_ring(htt, paddr, idx); 186 htt->rx_ring.fill_cnt++; 187 188 if (htt->rx_ring.in_ord_rx) { 189 hash_add(htt->rx_ring.skb_table, 190 &ATH10K_SKB_RXCB(skb)->hlist, 191 paddr); 192 } 193 194 num--; 195 idx++; 196 idx &= htt->rx_ring.size_mask; 197 } 198 199 fail: 200 /* 201 * Make sure the rx buffer is updated before available buffer 202 * index to avoid any potential rx ring corruption. 203 */ 204 mb(); 205 *htt->rx_ring.alloc_idx.vaddr = __cpu_to_le32(idx); 206 return ret; 207 } 208 209 static int ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num) 210 { 211 lockdep_assert_held(&htt->rx_ring.lock); 212 return __ath10k_htt_rx_ring_fill_n(htt, num); 213 } 214 215 static void ath10k_htt_rx_msdu_buff_replenish(struct ath10k_htt *htt) 216 { 217 int ret, num_deficit, num_to_fill; 218 219 /* Refilling the whole RX ring buffer proves to be a bad idea. The 220 * reason is RX may take up significant amount of CPU cycles and starve 221 * other tasks, e.g. TX on an ethernet device while acting as a bridge 222 * with ath10k wlan interface. This ended up with very poor performance 223 * once CPU the host system was overwhelmed with RX on ath10k. 224 * 225 * By limiting the number of refills the replenishing occurs 226 * progressively. This in turns makes use of the fact tasklets are 227 * processed in FIFO order. This means actual RX processing can starve 228 * out refilling. If there's not enough buffers on RX ring FW will not 229 * report RX until it is refilled with enough buffers. This 230 * automatically balances load wrt to CPU power. 231 * 232 * This probably comes at a cost of lower maximum throughput but 233 * improves the average and stability. 234 */ 235 spin_lock_bh(&htt->rx_ring.lock); 236 num_deficit = htt->rx_ring.fill_level - htt->rx_ring.fill_cnt; 237 num_to_fill = min(ATH10K_HTT_MAX_NUM_REFILL, num_deficit); 238 num_deficit -= num_to_fill; 239 ret = ath10k_htt_rx_ring_fill_n(htt, num_to_fill); 240 if (ret == -ENOMEM) { 241 /* 242 * Failed to fill it to the desired level - 243 * we'll start a timer and try again next time. 244 * As long as enough buffers are left in the ring for 245 * another A-MPDU rx, no special recovery is needed. 246 */ 247 mod_timer(&htt->rx_ring.refill_retry_timer, jiffies + 248 msecs_to_jiffies(HTT_RX_RING_REFILL_RETRY_MS)); 249 } else if (num_deficit > 0) { 250 mod_timer(&htt->rx_ring.refill_retry_timer, jiffies + 251 msecs_to_jiffies(HTT_RX_RING_REFILL_RESCHED_MS)); 252 } 253 spin_unlock_bh(&htt->rx_ring.lock); 254 } 255 256 static void ath10k_htt_rx_ring_refill_retry(struct timer_list *t) 257 { 258 struct ath10k_htt *htt = from_timer(htt, t, rx_ring.refill_retry_timer); 259 260 ath10k_htt_rx_msdu_buff_replenish(htt); 261 } 262 263 int ath10k_htt_rx_ring_refill(struct ath10k *ar) 264 { 265 struct ath10k_htt *htt = &ar->htt; 266 int ret; 267 268 spin_lock_bh(&htt->rx_ring.lock); 269 ret = ath10k_htt_rx_ring_fill_n(htt, (htt->rx_ring.fill_level - 270 htt->rx_ring.fill_cnt)); 271 spin_unlock_bh(&htt->rx_ring.lock); 272 273 if (ret) 274 ath10k_htt_rx_ring_free(htt); 275 276 return ret; 277 } 278 279 void ath10k_htt_rx_free(struct ath10k_htt *htt) 280 { 281 del_timer_sync(&htt->rx_ring.refill_retry_timer); 282 283 skb_queue_purge(&htt->rx_msdus_q); 284 skb_queue_purge(&htt->rx_in_ord_compl_q); 285 skb_queue_purge(&htt->tx_fetch_ind_q); 286 287 ath10k_htt_rx_ring_free(htt); 288 289 dma_free_coherent(htt->ar->dev, 290 ath10k_htt_get_rx_ring_size(htt), 291 ath10k_htt_get_vaddr_ring(htt), 292 htt->rx_ring.base_paddr); 293 294 dma_free_coherent(htt->ar->dev, 295 sizeof(*htt->rx_ring.alloc_idx.vaddr), 296 htt->rx_ring.alloc_idx.vaddr, 297 htt->rx_ring.alloc_idx.paddr); 298 299 kfree(htt->rx_ring.netbufs_ring); 300 } 301 302 static inline struct sk_buff *ath10k_htt_rx_netbuf_pop(struct ath10k_htt *htt) 303 { 304 struct ath10k *ar = htt->ar; 305 int idx; 306 struct sk_buff *msdu; 307 308 lockdep_assert_held(&htt->rx_ring.lock); 309 310 if (htt->rx_ring.fill_cnt == 0) { 311 ath10k_warn(ar, "tried to pop sk_buff from an empty rx ring\n"); 312 return NULL; 313 } 314 315 idx = htt->rx_ring.sw_rd_idx.msdu_payld; 316 msdu = htt->rx_ring.netbufs_ring[idx]; 317 htt->rx_ring.netbufs_ring[idx] = NULL; 318 ath10k_htt_reset_paddrs_ring(htt, idx); 319 320 idx++; 321 idx &= htt->rx_ring.size_mask; 322 htt->rx_ring.sw_rd_idx.msdu_payld = idx; 323 htt->rx_ring.fill_cnt--; 324 325 dma_unmap_single(htt->ar->dev, 326 ATH10K_SKB_RXCB(msdu)->paddr, 327 msdu->len + skb_tailroom(msdu), 328 DMA_FROM_DEVICE); 329 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ", 330 msdu->data, msdu->len + skb_tailroom(msdu)); 331 332 return msdu; 333 } 334 335 /* return: < 0 fatal error, 0 - non chained msdu, 1 chained msdu */ 336 static int ath10k_htt_rx_amsdu_pop(struct ath10k_htt *htt, 337 struct sk_buff_head *amsdu) 338 { 339 struct ath10k *ar = htt->ar; 340 int msdu_len, msdu_chaining = 0; 341 struct sk_buff *msdu; 342 struct htt_rx_desc *rx_desc; 343 344 lockdep_assert_held(&htt->rx_ring.lock); 345 346 for (;;) { 347 int last_msdu, msdu_len_invalid, msdu_chained; 348 349 msdu = ath10k_htt_rx_netbuf_pop(htt); 350 if (!msdu) { 351 __skb_queue_purge(amsdu); 352 return -ENOENT; 353 } 354 355 __skb_queue_tail(amsdu, msdu); 356 357 rx_desc = (struct htt_rx_desc *)msdu->data; 358 359 /* FIXME: we must report msdu payload since this is what caller 360 * expects now 361 */ 362 skb_put(msdu, offsetof(struct htt_rx_desc, msdu_payload)); 363 skb_pull(msdu, offsetof(struct htt_rx_desc, msdu_payload)); 364 365 /* 366 * Sanity check - confirm the HW is finished filling in the 367 * rx data. 368 * If the HW and SW are working correctly, then it's guaranteed 369 * that the HW's MAC DMA is done before this point in the SW. 370 * To prevent the case that we handle a stale Rx descriptor, 371 * just assert for now until we have a way to recover. 372 */ 373 if (!(__le32_to_cpu(rx_desc->attention.flags) 374 & RX_ATTENTION_FLAGS_MSDU_DONE)) { 375 __skb_queue_purge(amsdu); 376 return -EIO; 377 } 378 379 msdu_len_invalid = !!(__le32_to_cpu(rx_desc->attention.flags) 380 & (RX_ATTENTION_FLAGS_MPDU_LENGTH_ERR | 381 RX_ATTENTION_FLAGS_MSDU_LENGTH_ERR)); 382 msdu_len = MS(__le32_to_cpu(rx_desc->msdu_start.common.info0), 383 RX_MSDU_START_INFO0_MSDU_LENGTH); 384 msdu_chained = rx_desc->frag_info.ring2_more_count; 385 386 if (msdu_len_invalid) 387 msdu_len = 0; 388 389 skb_trim(msdu, 0); 390 skb_put(msdu, min(msdu_len, HTT_RX_MSDU_SIZE)); 391 msdu_len -= msdu->len; 392 393 /* Note: Chained buffers do not contain rx descriptor */ 394 while (msdu_chained--) { 395 msdu = ath10k_htt_rx_netbuf_pop(htt); 396 if (!msdu) { 397 __skb_queue_purge(amsdu); 398 return -ENOENT; 399 } 400 401 __skb_queue_tail(amsdu, msdu); 402 skb_trim(msdu, 0); 403 skb_put(msdu, min(msdu_len, HTT_RX_BUF_SIZE)); 404 msdu_len -= msdu->len; 405 msdu_chaining = 1; 406 } 407 408 last_msdu = __le32_to_cpu(rx_desc->msdu_end.common.info0) & 409 RX_MSDU_END_INFO0_LAST_MSDU; 410 411 trace_ath10k_htt_rx_desc(ar, &rx_desc->attention, 412 sizeof(*rx_desc) - sizeof(u32)); 413 414 if (last_msdu) 415 break; 416 } 417 418 if (skb_queue_empty(amsdu)) 419 msdu_chaining = -1; 420 421 /* 422 * Don't refill the ring yet. 423 * 424 * First, the elements popped here are still in use - it is not 425 * safe to overwrite them until the matching call to 426 * mpdu_desc_list_next. Second, for efficiency it is preferable to 427 * refill the rx ring with 1 PPDU's worth of rx buffers (something 428 * like 32 x 3 buffers), rather than one MPDU's worth of rx buffers 429 * (something like 3 buffers). Consequently, we'll rely on the txrx 430 * SW to tell us when it is done pulling all the PPDU's rx buffers 431 * out of the rx ring, and then refill it just once. 432 */ 433 434 return msdu_chaining; 435 } 436 437 static struct sk_buff *ath10k_htt_rx_pop_paddr(struct ath10k_htt *htt, 438 u64 paddr) 439 { 440 struct ath10k *ar = htt->ar; 441 struct ath10k_skb_rxcb *rxcb; 442 struct sk_buff *msdu; 443 444 lockdep_assert_held(&htt->rx_ring.lock); 445 446 msdu = ath10k_htt_rx_find_skb_paddr(ar, paddr); 447 if (!msdu) 448 return NULL; 449 450 rxcb = ATH10K_SKB_RXCB(msdu); 451 hash_del(&rxcb->hlist); 452 htt->rx_ring.fill_cnt--; 453 454 dma_unmap_single(htt->ar->dev, rxcb->paddr, 455 msdu->len + skb_tailroom(msdu), 456 DMA_FROM_DEVICE); 457 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ", 458 msdu->data, msdu->len + skb_tailroom(msdu)); 459 460 return msdu; 461 } 462 463 static int ath10k_htt_rx_pop_paddr32_list(struct ath10k_htt *htt, 464 struct htt_rx_in_ord_ind *ev, 465 struct sk_buff_head *list) 466 { 467 struct ath10k *ar = htt->ar; 468 struct htt_rx_in_ord_msdu_desc *msdu_desc = ev->msdu_descs32; 469 struct htt_rx_desc *rxd; 470 struct sk_buff *msdu; 471 int msdu_count; 472 bool is_offload; 473 u32 paddr; 474 475 lockdep_assert_held(&htt->rx_ring.lock); 476 477 msdu_count = __le16_to_cpu(ev->msdu_count); 478 is_offload = !!(ev->info & HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK); 479 480 while (msdu_count--) { 481 paddr = __le32_to_cpu(msdu_desc->msdu_paddr); 482 483 msdu = ath10k_htt_rx_pop_paddr(htt, paddr); 484 if (!msdu) { 485 __skb_queue_purge(list); 486 return -ENOENT; 487 } 488 489 __skb_queue_tail(list, msdu); 490 491 if (!is_offload) { 492 rxd = (void *)msdu->data; 493 494 trace_ath10k_htt_rx_desc(ar, rxd, sizeof(*rxd)); 495 496 skb_put(msdu, sizeof(*rxd)); 497 skb_pull(msdu, sizeof(*rxd)); 498 skb_put(msdu, __le16_to_cpu(msdu_desc->msdu_len)); 499 500 if (!(__le32_to_cpu(rxd->attention.flags) & 501 RX_ATTENTION_FLAGS_MSDU_DONE)) { 502 ath10k_warn(htt->ar, "tried to pop an incomplete frame, oops!\n"); 503 return -EIO; 504 } 505 } 506 507 msdu_desc++; 508 } 509 510 return 0; 511 } 512 513 static int ath10k_htt_rx_pop_paddr64_list(struct ath10k_htt *htt, 514 struct htt_rx_in_ord_ind *ev, 515 struct sk_buff_head *list) 516 { 517 struct ath10k *ar = htt->ar; 518 struct htt_rx_in_ord_msdu_desc_ext *msdu_desc = ev->msdu_descs64; 519 struct htt_rx_desc *rxd; 520 struct sk_buff *msdu; 521 int msdu_count; 522 bool is_offload; 523 u64 paddr; 524 525 lockdep_assert_held(&htt->rx_ring.lock); 526 527 msdu_count = __le16_to_cpu(ev->msdu_count); 528 is_offload = !!(ev->info & HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK); 529 530 while (msdu_count--) { 531 paddr = __le64_to_cpu(msdu_desc->msdu_paddr); 532 msdu = ath10k_htt_rx_pop_paddr(htt, paddr); 533 if (!msdu) { 534 __skb_queue_purge(list); 535 return -ENOENT; 536 } 537 538 __skb_queue_tail(list, msdu); 539 540 if (!is_offload) { 541 rxd = (void *)msdu->data; 542 543 trace_ath10k_htt_rx_desc(ar, rxd, sizeof(*rxd)); 544 545 skb_put(msdu, sizeof(*rxd)); 546 skb_pull(msdu, sizeof(*rxd)); 547 skb_put(msdu, __le16_to_cpu(msdu_desc->msdu_len)); 548 549 if (!(__le32_to_cpu(rxd->attention.flags) & 550 RX_ATTENTION_FLAGS_MSDU_DONE)) { 551 ath10k_warn(htt->ar, "tried to pop an incomplete frame, oops!\n"); 552 return -EIO; 553 } 554 } 555 556 msdu_desc++; 557 } 558 559 return 0; 560 } 561 562 int ath10k_htt_rx_alloc(struct ath10k_htt *htt) 563 { 564 struct ath10k *ar = htt->ar; 565 dma_addr_t paddr; 566 void *vaddr, *vaddr_ring; 567 size_t size; 568 struct timer_list *timer = &htt->rx_ring.refill_retry_timer; 569 570 htt->rx_confused = false; 571 572 /* XXX: The fill level could be changed during runtime in response to 573 * the host processing latency. Is this really worth it? 574 */ 575 htt->rx_ring.size = HTT_RX_RING_SIZE; 576 htt->rx_ring.size_mask = htt->rx_ring.size - 1; 577 htt->rx_ring.fill_level = ar->hw_params.rx_ring_fill_level; 578 579 if (!is_power_of_2(htt->rx_ring.size)) { 580 ath10k_warn(ar, "htt rx ring size is not power of 2\n"); 581 return -EINVAL; 582 } 583 584 htt->rx_ring.netbufs_ring = 585 kcalloc(htt->rx_ring.size, sizeof(struct sk_buff *), 586 GFP_KERNEL); 587 if (!htt->rx_ring.netbufs_ring) 588 goto err_netbuf; 589 590 size = ath10k_htt_get_rx_ring_size(htt); 591 592 vaddr_ring = dma_alloc_coherent(htt->ar->dev, size, &paddr, GFP_KERNEL); 593 if (!vaddr_ring) 594 goto err_dma_ring; 595 596 ath10k_htt_config_paddrs_ring(htt, vaddr_ring); 597 htt->rx_ring.base_paddr = paddr; 598 599 vaddr = dma_alloc_coherent(htt->ar->dev, 600 sizeof(*htt->rx_ring.alloc_idx.vaddr), 601 &paddr, GFP_KERNEL); 602 if (!vaddr) 603 goto err_dma_idx; 604 605 htt->rx_ring.alloc_idx.vaddr = vaddr; 606 htt->rx_ring.alloc_idx.paddr = paddr; 607 htt->rx_ring.sw_rd_idx.msdu_payld = htt->rx_ring.size_mask; 608 *htt->rx_ring.alloc_idx.vaddr = 0; 609 610 /* Initialize the Rx refill retry timer */ 611 timer_setup(timer, ath10k_htt_rx_ring_refill_retry, 0); 612 613 spin_lock_init(&htt->rx_ring.lock); 614 615 htt->rx_ring.fill_cnt = 0; 616 htt->rx_ring.sw_rd_idx.msdu_payld = 0; 617 hash_init(htt->rx_ring.skb_table); 618 619 skb_queue_head_init(&htt->rx_msdus_q); 620 skb_queue_head_init(&htt->rx_in_ord_compl_q); 621 skb_queue_head_init(&htt->tx_fetch_ind_q); 622 atomic_set(&htt->num_mpdus_ready, 0); 623 624 ath10k_dbg(ar, ATH10K_DBG_BOOT, "htt rx ring size %d fill_level %d\n", 625 htt->rx_ring.size, htt->rx_ring.fill_level); 626 return 0; 627 628 err_dma_idx: 629 dma_free_coherent(htt->ar->dev, 630 ath10k_htt_get_rx_ring_size(htt), 631 vaddr_ring, 632 htt->rx_ring.base_paddr); 633 err_dma_ring: 634 kfree(htt->rx_ring.netbufs_ring); 635 err_netbuf: 636 return -ENOMEM; 637 } 638 639 static int ath10k_htt_rx_crypto_param_len(struct ath10k *ar, 640 enum htt_rx_mpdu_encrypt_type type) 641 { 642 switch (type) { 643 case HTT_RX_MPDU_ENCRYPT_NONE: 644 return 0; 645 case HTT_RX_MPDU_ENCRYPT_WEP40: 646 case HTT_RX_MPDU_ENCRYPT_WEP104: 647 return IEEE80211_WEP_IV_LEN; 648 case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC: 649 case HTT_RX_MPDU_ENCRYPT_TKIP_WPA: 650 return IEEE80211_TKIP_IV_LEN; 651 case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2: 652 return IEEE80211_CCMP_HDR_LEN; 653 case HTT_RX_MPDU_ENCRYPT_AES_CCM256_WPA2: 654 return IEEE80211_CCMP_256_HDR_LEN; 655 case HTT_RX_MPDU_ENCRYPT_AES_GCMP_WPA2: 656 case HTT_RX_MPDU_ENCRYPT_AES_GCMP256_WPA2: 657 return IEEE80211_GCMP_HDR_LEN; 658 case HTT_RX_MPDU_ENCRYPT_WEP128: 659 case HTT_RX_MPDU_ENCRYPT_WAPI: 660 break; 661 } 662 663 ath10k_warn(ar, "unsupported encryption type %d\n", type); 664 return 0; 665 } 666 667 #define MICHAEL_MIC_LEN 8 668 669 static int ath10k_htt_rx_crypto_mic_len(struct ath10k *ar, 670 enum htt_rx_mpdu_encrypt_type type) 671 { 672 switch (type) { 673 case HTT_RX_MPDU_ENCRYPT_NONE: 674 case HTT_RX_MPDU_ENCRYPT_WEP40: 675 case HTT_RX_MPDU_ENCRYPT_WEP104: 676 case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC: 677 case HTT_RX_MPDU_ENCRYPT_TKIP_WPA: 678 return 0; 679 case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2: 680 return IEEE80211_CCMP_MIC_LEN; 681 case HTT_RX_MPDU_ENCRYPT_AES_CCM256_WPA2: 682 return IEEE80211_CCMP_256_MIC_LEN; 683 case HTT_RX_MPDU_ENCRYPT_AES_GCMP_WPA2: 684 case HTT_RX_MPDU_ENCRYPT_AES_GCMP256_WPA2: 685 return IEEE80211_GCMP_MIC_LEN; 686 case HTT_RX_MPDU_ENCRYPT_WEP128: 687 case HTT_RX_MPDU_ENCRYPT_WAPI: 688 break; 689 } 690 691 ath10k_warn(ar, "unsupported encryption type %d\n", type); 692 return 0; 693 } 694 695 static int ath10k_htt_rx_crypto_icv_len(struct ath10k *ar, 696 enum htt_rx_mpdu_encrypt_type type) 697 { 698 switch (type) { 699 case HTT_RX_MPDU_ENCRYPT_NONE: 700 case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2: 701 case HTT_RX_MPDU_ENCRYPT_AES_CCM256_WPA2: 702 case HTT_RX_MPDU_ENCRYPT_AES_GCMP_WPA2: 703 case HTT_RX_MPDU_ENCRYPT_AES_GCMP256_WPA2: 704 return 0; 705 case HTT_RX_MPDU_ENCRYPT_WEP40: 706 case HTT_RX_MPDU_ENCRYPT_WEP104: 707 return IEEE80211_WEP_ICV_LEN; 708 case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC: 709 case HTT_RX_MPDU_ENCRYPT_TKIP_WPA: 710 return IEEE80211_TKIP_ICV_LEN; 711 case HTT_RX_MPDU_ENCRYPT_WEP128: 712 case HTT_RX_MPDU_ENCRYPT_WAPI: 713 break; 714 } 715 716 ath10k_warn(ar, "unsupported encryption type %d\n", type); 717 return 0; 718 } 719 720 struct amsdu_subframe_hdr { 721 u8 dst[ETH_ALEN]; 722 u8 src[ETH_ALEN]; 723 __be16 len; 724 } __packed; 725 726 #define GROUP_ID_IS_SU_MIMO(x) ((x) == 0 || (x) == 63) 727 728 static inline u8 ath10k_bw_to_mac80211_bw(u8 bw) 729 { 730 u8 ret = 0; 731 732 switch (bw) { 733 case 0: 734 ret = RATE_INFO_BW_20; 735 break; 736 case 1: 737 ret = RATE_INFO_BW_40; 738 break; 739 case 2: 740 ret = RATE_INFO_BW_80; 741 break; 742 case 3: 743 ret = RATE_INFO_BW_160; 744 break; 745 } 746 747 return ret; 748 } 749 750 static void ath10k_htt_rx_h_rates(struct ath10k *ar, 751 struct ieee80211_rx_status *status, 752 struct htt_rx_desc *rxd) 753 { 754 struct ieee80211_supported_band *sband; 755 u8 cck, rate, bw, sgi, mcs, nss; 756 u8 preamble = 0; 757 u8 group_id; 758 u32 info1, info2, info3; 759 760 info1 = __le32_to_cpu(rxd->ppdu_start.info1); 761 info2 = __le32_to_cpu(rxd->ppdu_start.info2); 762 info3 = __le32_to_cpu(rxd->ppdu_start.info3); 763 764 preamble = MS(info1, RX_PPDU_START_INFO1_PREAMBLE_TYPE); 765 766 switch (preamble) { 767 case HTT_RX_LEGACY: 768 /* To get legacy rate index band is required. Since band can't 769 * be undefined check if freq is non-zero. 770 */ 771 if (!status->freq) 772 return; 773 774 cck = info1 & RX_PPDU_START_INFO1_L_SIG_RATE_SELECT; 775 rate = MS(info1, RX_PPDU_START_INFO1_L_SIG_RATE); 776 rate &= ~RX_PPDU_START_RATE_FLAG; 777 778 sband = &ar->mac.sbands[status->band]; 779 status->rate_idx = ath10k_mac_hw_rate_to_idx(sband, rate, cck); 780 break; 781 case HTT_RX_HT: 782 case HTT_RX_HT_WITH_TXBF: 783 /* HT-SIG - Table 20-11 in info2 and info3 */ 784 mcs = info2 & 0x1F; 785 nss = mcs >> 3; 786 bw = (info2 >> 7) & 1; 787 sgi = (info3 >> 7) & 1; 788 789 status->rate_idx = mcs; 790 status->encoding = RX_ENC_HT; 791 if (sgi) 792 status->enc_flags |= RX_ENC_FLAG_SHORT_GI; 793 if (bw) 794 status->bw = RATE_INFO_BW_40; 795 break; 796 case HTT_RX_VHT: 797 case HTT_RX_VHT_WITH_TXBF: 798 /* VHT-SIG-A1 in info2, VHT-SIG-A2 in info3 799 * TODO check this 800 */ 801 bw = info2 & 3; 802 sgi = info3 & 1; 803 group_id = (info2 >> 4) & 0x3F; 804 805 if (GROUP_ID_IS_SU_MIMO(group_id)) { 806 mcs = (info3 >> 4) & 0x0F; 807 nss = ((info2 >> 10) & 0x07) + 1; 808 } else { 809 /* Hardware doesn't decode VHT-SIG-B into Rx descriptor 810 * so it's impossible to decode MCS. Also since 811 * firmware consumes Group Id Management frames host 812 * has no knowledge regarding group/user position 813 * mapping so it's impossible to pick the correct Nsts 814 * from VHT-SIG-A1. 815 * 816 * Bandwidth and SGI are valid so report the rateinfo 817 * on best-effort basis. 818 */ 819 mcs = 0; 820 nss = 1; 821 } 822 823 if (mcs > 0x09) { 824 ath10k_warn(ar, "invalid MCS received %u\n", mcs); 825 ath10k_warn(ar, "rxd %08x mpdu start %08x %08x msdu start %08x %08x ppdu start %08x %08x %08x %08x %08x\n", 826 __le32_to_cpu(rxd->attention.flags), 827 __le32_to_cpu(rxd->mpdu_start.info0), 828 __le32_to_cpu(rxd->mpdu_start.info1), 829 __le32_to_cpu(rxd->msdu_start.common.info0), 830 __le32_to_cpu(rxd->msdu_start.common.info1), 831 rxd->ppdu_start.info0, 832 __le32_to_cpu(rxd->ppdu_start.info1), 833 __le32_to_cpu(rxd->ppdu_start.info2), 834 __le32_to_cpu(rxd->ppdu_start.info3), 835 __le32_to_cpu(rxd->ppdu_start.info4)); 836 837 ath10k_warn(ar, "msdu end %08x mpdu end %08x\n", 838 __le32_to_cpu(rxd->msdu_end.common.info0), 839 __le32_to_cpu(rxd->mpdu_end.info0)); 840 841 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, 842 "rx desc msdu payload: ", 843 rxd->msdu_payload, 50); 844 } 845 846 status->rate_idx = mcs; 847 status->nss = nss; 848 849 if (sgi) 850 status->enc_flags |= RX_ENC_FLAG_SHORT_GI; 851 852 status->bw = ath10k_bw_to_mac80211_bw(bw); 853 status->encoding = RX_ENC_VHT; 854 break; 855 default: 856 break; 857 } 858 } 859 860 static struct ieee80211_channel * 861 ath10k_htt_rx_h_peer_channel(struct ath10k *ar, struct htt_rx_desc *rxd) 862 { 863 struct ath10k_peer *peer; 864 struct ath10k_vif *arvif; 865 struct cfg80211_chan_def def; 866 u16 peer_id; 867 868 lockdep_assert_held(&ar->data_lock); 869 870 if (!rxd) 871 return NULL; 872 873 if (rxd->attention.flags & 874 __cpu_to_le32(RX_ATTENTION_FLAGS_PEER_IDX_INVALID)) 875 return NULL; 876 877 if (!(rxd->msdu_end.common.info0 & 878 __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU))) 879 return NULL; 880 881 peer_id = MS(__le32_to_cpu(rxd->mpdu_start.info0), 882 RX_MPDU_START_INFO0_PEER_IDX); 883 884 peer = ath10k_peer_find_by_id(ar, peer_id); 885 if (!peer) 886 return NULL; 887 888 arvif = ath10k_get_arvif(ar, peer->vdev_id); 889 if (WARN_ON_ONCE(!arvif)) 890 return NULL; 891 892 if (ath10k_mac_vif_chan(arvif->vif, &def)) 893 return NULL; 894 895 return def.chan; 896 } 897 898 static struct ieee80211_channel * 899 ath10k_htt_rx_h_vdev_channel(struct ath10k *ar, u32 vdev_id) 900 { 901 struct ath10k_vif *arvif; 902 struct cfg80211_chan_def def; 903 904 lockdep_assert_held(&ar->data_lock); 905 906 list_for_each_entry(arvif, &ar->arvifs, list) { 907 if (arvif->vdev_id == vdev_id && 908 ath10k_mac_vif_chan(arvif->vif, &def) == 0) 909 return def.chan; 910 } 911 912 return NULL; 913 } 914 915 static void 916 ath10k_htt_rx_h_any_chan_iter(struct ieee80211_hw *hw, 917 struct ieee80211_chanctx_conf *conf, 918 void *data) 919 { 920 struct cfg80211_chan_def *def = data; 921 922 *def = conf->def; 923 } 924 925 static struct ieee80211_channel * 926 ath10k_htt_rx_h_any_channel(struct ath10k *ar) 927 { 928 struct cfg80211_chan_def def = {}; 929 930 ieee80211_iter_chan_contexts_atomic(ar->hw, 931 ath10k_htt_rx_h_any_chan_iter, 932 &def); 933 934 return def.chan; 935 } 936 937 static bool ath10k_htt_rx_h_channel(struct ath10k *ar, 938 struct ieee80211_rx_status *status, 939 struct htt_rx_desc *rxd, 940 u32 vdev_id) 941 { 942 struct ieee80211_channel *ch; 943 944 spin_lock_bh(&ar->data_lock); 945 ch = ar->scan_channel; 946 if (!ch) 947 ch = ar->rx_channel; 948 if (!ch) 949 ch = ath10k_htt_rx_h_peer_channel(ar, rxd); 950 if (!ch) 951 ch = ath10k_htt_rx_h_vdev_channel(ar, vdev_id); 952 if (!ch) 953 ch = ath10k_htt_rx_h_any_channel(ar); 954 if (!ch) 955 ch = ar->tgt_oper_chan; 956 spin_unlock_bh(&ar->data_lock); 957 958 if (!ch) 959 return false; 960 961 status->band = ch->band; 962 status->freq = ch->center_freq; 963 964 return true; 965 } 966 967 static void ath10k_htt_rx_h_signal(struct ath10k *ar, 968 struct ieee80211_rx_status *status, 969 struct htt_rx_desc *rxd) 970 { 971 int i; 972 973 for (i = 0; i < IEEE80211_MAX_CHAINS ; i++) { 974 status->chains &= ~BIT(i); 975 976 if (rxd->ppdu_start.rssi_chains[i].pri20_mhz != 0x80) { 977 status->chain_signal[i] = ATH10K_DEFAULT_NOISE_FLOOR + 978 rxd->ppdu_start.rssi_chains[i].pri20_mhz; 979 980 status->chains |= BIT(i); 981 } 982 } 983 984 /* FIXME: Get real NF */ 985 status->signal = ATH10K_DEFAULT_NOISE_FLOOR + 986 rxd->ppdu_start.rssi_comb; 987 status->flag &= ~RX_FLAG_NO_SIGNAL_VAL; 988 } 989 990 static void ath10k_htt_rx_h_mactime(struct ath10k *ar, 991 struct ieee80211_rx_status *status, 992 struct htt_rx_desc *rxd) 993 { 994 /* FIXME: TSF is known only at the end of PPDU, in the last MPDU. This 995 * means all prior MSDUs in a PPDU are reported to mac80211 without the 996 * TSF. Is it worth holding frames until end of PPDU is known? 997 * 998 * FIXME: Can we get/compute 64bit TSF? 999 */ 1000 status->mactime = __le32_to_cpu(rxd->ppdu_end.common.tsf_timestamp); 1001 status->flag |= RX_FLAG_MACTIME_END; 1002 } 1003 1004 static void ath10k_htt_rx_h_ppdu(struct ath10k *ar, 1005 struct sk_buff_head *amsdu, 1006 struct ieee80211_rx_status *status, 1007 u32 vdev_id) 1008 { 1009 struct sk_buff *first; 1010 struct htt_rx_desc *rxd; 1011 bool is_first_ppdu; 1012 bool is_last_ppdu; 1013 1014 if (skb_queue_empty(amsdu)) 1015 return; 1016 1017 first = skb_peek(amsdu); 1018 rxd = (void *)first->data - sizeof(*rxd); 1019 1020 is_first_ppdu = !!(rxd->attention.flags & 1021 __cpu_to_le32(RX_ATTENTION_FLAGS_FIRST_MPDU)); 1022 is_last_ppdu = !!(rxd->attention.flags & 1023 __cpu_to_le32(RX_ATTENTION_FLAGS_LAST_MPDU)); 1024 1025 if (is_first_ppdu) { 1026 /* New PPDU starts so clear out the old per-PPDU status. */ 1027 status->freq = 0; 1028 status->rate_idx = 0; 1029 status->nss = 0; 1030 status->encoding = RX_ENC_LEGACY; 1031 status->bw = RATE_INFO_BW_20; 1032 1033 status->flag &= ~RX_FLAG_MACTIME_END; 1034 status->flag |= RX_FLAG_NO_SIGNAL_VAL; 1035 1036 status->flag &= ~(RX_FLAG_AMPDU_IS_LAST); 1037 status->flag |= RX_FLAG_AMPDU_DETAILS | RX_FLAG_AMPDU_LAST_KNOWN; 1038 status->ampdu_reference = ar->ampdu_reference; 1039 1040 ath10k_htt_rx_h_signal(ar, status, rxd); 1041 ath10k_htt_rx_h_channel(ar, status, rxd, vdev_id); 1042 ath10k_htt_rx_h_rates(ar, status, rxd); 1043 } 1044 1045 if (is_last_ppdu) { 1046 ath10k_htt_rx_h_mactime(ar, status, rxd); 1047 1048 /* set ampdu last segment flag */ 1049 status->flag |= RX_FLAG_AMPDU_IS_LAST; 1050 ar->ampdu_reference++; 1051 } 1052 } 1053 1054 static const char * const tid_to_ac[] = { 1055 "BE", 1056 "BK", 1057 "BK", 1058 "BE", 1059 "VI", 1060 "VI", 1061 "VO", 1062 "VO", 1063 }; 1064 1065 static char *ath10k_get_tid(struct ieee80211_hdr *hdr, char *out, size_t size) 1066 { 1067 u8 *qc; 1068 int tid; 1069 1070 if (!ieee80211_is_data_qos(hdr->frame_control)) 1071 return ""; 1072 1073 qc = ieee80211_get_qos_ctl(hdr); 1074 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 1075 if (tid < 8) 1076 snprintf(out, size, "tid %d (%s)", tid, tid_to_ac[tid]); 1077 else 1078 snprintf(out, size, "tid %d", tid); 1079 1080 return out; 1081 } 1082 1083 static void ath10k_htt_rx_h_queue_msdu(struct ath10k *ar, 1084 struct ieee80211_rx_status *rx_status, 1085 struct sk_buff *skb) 1086 { 1087 struct ieee80211_rx_status *status; 1088 1089 status = IEEE80211_SKB_RXCB(skb); 1090 *status = *rx_status; 1091 1092 __skb_queue_tail(&ar->htt.rx_msdus_q, skb); 1093 } 1094 1095 static void ath10k_process_rx(struct ath10k *ar, struct sk_buff *skb) 1096 { 1097 struct ieee80211_rx_status *status; 1098 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1099 char tid[32]; 1100 1101 status = IEEE80211_SKB_RXCB(skb); 1102 1103 ath10k_dbg(ar, ATH10K_DBG_DATA, 1104 "rx skb %pK len %u peer %pM %s %s sn %u %s%s%s%s%s%s %srate_idx %u vht_nss %u freq %u band %u flag 0x%x fcs-err %i mic-err %i amsdu-more %i\n", 1105 skb, 1106 skb->len, 1107 ieee80211_get_SA(hdr), 1108 ath10k_get_tid(hdr, tid, sizeof(tid)), 1109 is_multicast_ether_addr(ieee80211_get_DA(hdr)) ? 1110 "mcast" : "ucast", 1111 (__le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_SEQ) >> 4, 1112 (status->encoding == RX_ENC_LEGACY) ? "legacy" : "", 1113 (status->encoding == RX_ENC_HT) ? "ht" : "", 1114 (status->encoding == RX_ENC_VHT) ? "vht" : "", 1115 (status->bw == RATE_INFO_BW_40) ? "40" : "", 1116 (status->bw == RATE_INFO_BW_80) ? "80" : "", 1117 (status->bw == RATE_INFO_BW_160) ? "160" : "", 1118 status->enc_flags & RX_ENC_FLAG_SHORT_GI ? "sgi " : "", 1119 status->rate_idx, 1120 status->nss, 1121 status->freq, 1122 status->band, status->flag, 1123 !!(status->flag & RX_FLAG_FAILED_FCS_CRC), 1124 !!(status->flag & RX_FLAG_MMIC_ERROR), 1125 !!(status->flag & RX_FLAG_AMSDU_MORE)); 1126 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "rx skb: ", 1127 skb->data, skb->len); 1128 trace_ath10k_rx_hdr(ar, skb->data, skb->len); 1129 trace_ath10k_rx_payload(ar, skb->data, skb->len); 1130 1131 ieee80211_rx_napi(ar->hw, NULL, skb, &ar->napi); 1132 } 1133 1134 static int ath10k_htt_rx_nwifi_hdrlen(struct ath10k *ar, 1135 struct ieee80211_hdr *hdr) 1136 { 1137 int len = ieee80211_hdrlen(hdr->frame_control); 1138 1139 if (!test_bit(ATH10K_FW_FEATURE_NO_NWIFI_DECAP_4ADDR_PADDING, 1140 ar->running_fw->fw_file.fw_features)) 1141 len = round_up(len, 4); 1142 1143 return len; 1144 } 1145 1146 static void ath10k_htt_rx_h_undecap_raw(struct ath10k *ar, 1147 struct sk_buff *msdu, 1148 struct ieee80211_rx_status *status, 1149 enum htt_rx_mpdu_encrypt_type enctype, 1150 bool is_decrypted) 1151 { 1152 struct ieee80211_hdr *hdr; 1153 struct htt_rx_desc *rxd; 1154 size_t hdr_len; 1155 size_t crypto_len; 1156 bool is_first; 1157 bool is_last; 1158 1159 rxd = (void *)msdu->data - sizeof(*rxd); 1160 is_first = !!(rxd->msdu_end.common.info0 & 1161 __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU)); 1162 is_last = !!(rxd->msdu_end.common.info0 & 1163 __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU)); 1164 1165 /* Delivered decapped frame: 1166 * [802.11 header] 1167 * [crypto param] <-- can be trimmed if !fcs_err && 1168 * !decrypt_err && !peer_idx_invalid 1169 * [amsdu header] <-- only if A-MSDU 1170 * [rfc1042/llc] 1171 * [payload] 1172 * [FCS] <-- at end, needs to be trimmed 1173 */ 1174 1175 /* This probably shouldn't happen but warn just in case */ 1176 if (unlikely(WARN_ON_ONCE(!is_first))) 1177 return; 1178 1179 /* This probably shouldn't happen but warn just in case */ 1180 if (unlikely(WARN_ON_ONCE(!(is_first && is_last)))) 1181 return; 1182 1183 skb_trim(msdu, msdu->len - FCS_LEN); 1184 1185 /* In most cases this will be true for sniffed frames. It makes sense 1186 * to deliver them as-is without stripping the crypto param. This is 1187 * necessary for software based decryption. 1188 * 1189 * If there's no error then the frame is decrypted. At least that is 1190 * the case for frames that come in via fragmented rx indication. 1191 */ 1192 if (!is_decrypted) 1193 return; 1194 1195 /* The payload is decrypted so strip crypto params. Start from tail 1196 * since hdr is used to compute some stuff. 1197 */ 1198 1199 hdr = (void *)msdu->data; 1200 1201 /* Tail */ 1202 if (status->flag & RX_FLAG_IV_STRIPPED) { 1203 skb_trim(msdu, msdu->len - 1204 ath10k_htt_rx_crypto_mic_len(ar, enctype)); 1205 1206 skb_trim(msdu, msdu->len - 1207 ath10k_htt_rx_crypto_icv_len(ar, enctype)); 1208 } else { 1209 /* MIC */ 1210 if (status->flag & RX_FLAG_MIC_STRIPPED) 1211 skb_trim(msdu, msdu->len - 1212 ath10k_htt_rx_crypto_mic_len(ar, enctype)); 1213 1214 /* ICV */ 1215 if (status->flag & RX_FLAG_ICV_STRIPPED) 1216 skb_trim(msdu, msdu->len - 1217 ath10k_htt_rx_crypto_icv_len(ar, enctype)); 1218 } 1219 1220 /* MMIC */ 1221 if ((status->flag & RX_FLAG_MMIC_STRIPPED) && 1222 !ieee80211_has_morefrags(hdr->frame_control) && 1223 enctype == HTT_RX_MPDU_ENCRYPT_TKIP_WPA) 1224 skb_trim(msdu, msdu->len - MICHAEL_MIC_LEN); 1225 1226 /* Head */ 1227 if (status->flag & RX_FLAG_IV_STRIPPED) { 1228 hdr_len = ieee80211_hdrlen(hdr->frame_control); 1229 crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype); 1230 1231 memmove((void *)msdu->data + crypto_len, 1232 (void *)msdu->data, hdr_len); 1233 skb_pull(msdu, crypto_len); 1234 } 1235 } 1236 1237 static void ath10k_htt_rx_h_undecap_nwifi(struct ath10k *ar, 1238 struct sk_buff *msdu, 1239 struct ieee80211_rx_status *status, 1240 const u8 first_hdr[64], 1241 enum htt_rx_mpdu_encrypt_type enctype) 1242 { 1243 struct ieee80211_hdr *hdr; 1244 struct htt_rx_desc *rxd; 1245 size_t hdr_len; 1246 u8 da[ETH_ALEN]; 1247 u8 sa[ETH_ALEN]; 1248 int l3_pad_bytes; 1249 int bytes_aligned = ar->hw_params.decap_align_bytes; 1250 1251 /* Delivered decapped frame: 1252 * [nwifi 802.11 header] <-- replaced with 802.11 hdr 1253 * [rfc1042/llc] 1254 * 1255 * Note: The nwifi header doesn't have QoS Control and is 1256 * (always?) a 3addr frame. 1257 * 1258 * Note2: There's no A-MSDU subframe header. Even if it's part 1259 * of an A-MSDU. 1260 */ 1261 1262 /* pull decapped header and copy SA & DA */ 1263 rxd = (void *)msdu->data - sizeof(*rxd); 1264 1265 l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd); 1266 skb_put(msdu, l3_pad_bytes); 1267 1268 hdr = (struct ieee80211_hdr *)(msdu->data + l3_pad_bytes); 1269 1270 hdr_len = ath10k_htt_rx_nwifi_hdrlen(ar, hdr); 1271 ether_addr_copy(da, ieee80211_get_DA(hdr)); 1272 ether_addr_copy(sa, ieee80211_get_SA(hdr)); 1273 skb_pull(msdu, hdr_len); 1274 1275 /* push original 802.11 header */ 1276 hdr = (struct ieee80211_hdr *)first_hdr; 1277 hdr_len = ieee80211_hdrlen(hdr->frame_control); 1278 1279 if (!(status->flag & RX_FLAG_IV_STRIPPED)) { 1280 memcpy(skb_push(msdu, 1281 ath10k_htt_rx_crypto_param_len(ar, enctype)), 1282 (void *)hdr + round_up(hdr_len, bytes_aligned), 1283 ath10k_htt_rx_crypto_param_len(ar, enctype)); 1284 } 1285 1286 memcpy(skb_push(msdu, hdr_len), hdr, hdr_len); 1287 1288 /* original 802.11 header has a different DA and in 1289 * case of 4addr it may also have different SA 1290 */ 1291 hdr = (struct ieee80211_hdr *)msdu->data; 1292 ether_addr_copy(ieee80211_get_DA(hdr), da); 1293 ether_addr_copy(ieee80211_get_SA(hdr), sa); 1294 } 1295 1296 static void *ath10k_htt_rx_h_find_rfc1042(struct ath10k *ar, 1297 struct sk_buff *msdu, 1298 enum htt_rx_mpdu_encrypt_type enctype) 1299 { 1300 struct ieee80211_hdr *hdr; 1301 struct htt_rx_desc *rxd; 1302 size_t hdr_len, crypto_len; 1303 void *rfc1042; 1304 bool is_first, is_last, is_amsdu; 1305 int bytes_aligned = ar->hw_params.decap_align_bytes; 1306 1307 rxd = (void *)msdu->data - sizeof(*rxd); 1308 hdr = (void *)rxd->rx_hdr_status; 1309 1310 is_first = !!(rxd->msdu_end.common.info0 & 1311 __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU)); 1312 is_last = !!(rxd->msdu_end.common.info0 & 1313 __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU)); 1314 is_amsdu = !(is_first && is_last); 1315 1316 rfc1042 = hdr; 1317 1318 if (is_first) { 1319 hdr_len = ieee80211_hdrlen(hdr->frame_control); 1320 crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype); 1321 1322 rfc1042 += round_up(hdr_len, bytes_aligned) + 1323 round_up(crypto_len, bytes_aligned); 1324 } 1325 1326 if (is_amsdu) 1327 rfc1042 += sizeof(struct amsdu_subframe_hdr); 1328 1329 return rfc1042; 1330 } 1331 1332 static void ath10k_htt_rx_h_undecap_eth(struct ath10k *ar, 1333 struct sk_buff *msdu, 1334 struct ieee80211_rx_status *status, 1335 const u8 first_hdr[64], 1336 enum htt_rx_mpdu_encrypt_type enctype) 1337 { 1338 struct ieee80211_hdr *hdr; 1339 struct ethhdr *eth; 1340 size_t hdr_len; 1341 void *rfc1042; 1342 u8 da[ETH_ALEN]; 1343 u8 sa[ETH_ALEN]; 1344 int l3_pad_bytes; 1345 struct htt_rx_desc *rxd; 1346 int bytes_aligned = ar->hw_params.decap_align_bytes; 1347 1348 /* Delivered decapped frame: 1349 * [eth header] <-- replaced with 802.11 hdr & rfc1042/llc 1350 * [payload] 1351 */ 1352 1353 rfc1042 = ath10k_htt_rx_h_find_rfc1042(ar, msdu, enctype); 1354 if (WARN_ON_ONCE(!rfc1042)) 1355 return; 1356 1357 rxd = (void *)msdu->data - sizeof(*rxd); 1358 l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd); 1359 skb_put(msdu, l3_pad_bytes); 1360 skb_pull(msdu, l3_pad_bytes); 1361 1362 /* pull decapped header and copy SA & DA */ 1363 eth = (struct ethhdr *)msdu->data; 1364 ether_addr_copy(da, eth->h_dest); 1365 ether_addr_copy(sa, eth->h_source); 1366 skb_pull(msdu, sizeof(struct ethhdr)); 1367 1368 /* push rfc1042/llc/snap */ 1369 memcpy(skb_push(msdu, sizeof(struct rfc1042_hdr)), rfc1042, 1370 sizeof(struct rfc1042_hdr)); 1371 1372 /* push original 802.11 header */ 1373 hdr = (struct ieee80211_hdr *)first_hdr; 1374 hdr_len = ieee80211_hdrlen(hdr->frame_control); 1375 1376 if (!(status->flag & RX_FLAG_IV_STRIPPED)) { 1377 memcpy(skb_push(msdu, 1378 ath10k_htt_rx_crypto_param_len(ar, enctype)), 1379 (void *)hdr + round_up(hdr_len, bytes_aligned), 1380 ath10k_htt_rx_crypto_param_len(ar, enctype)); 1381 } 1382 1383 memcpy(skb_push(msdu, hdr_len), hdr, hdr_len); 1384 1385 /* original 802.11 header has a different DA and in 1386 * case of 4addr it may also have different SA 1387 */ 1388 hdr = (struct ieee80211_hdr *)msdu->data; 1389 ether_addr_copy(ieee80211_get_DA(hdr), da); 1390 ether_addr_copy(ieee80211_get_SA(hdr), sa); 1391 } 1392 1393 static void ath10k_htt_rx_h_undecap_snap(struct ath10k *ar, 1394 struct sk_buff *msdu, 1395 struct ieee80211_rx_status *status, 1396 const u8 first_hdr[64], 1397 enum htt_rx_mpdu_encrypt_type enctype) 1398 { 1399 struct ieee80211_hdr *hdr; 1400 size_t hdr_len; 1401 int l3_pad_bytes; 1402 struct htt_rx_desc *rxd; 1403 int bytes_aligned = ar->hw_params.decap_align_bytes; 1404 1405 /* Delivered decapped frame: 1406 * [amsdu header] <-- replaced with 802.11 hdr 1407 * [rfc1042/llc] 1408 * [payload] 1409 */ 1410 1411 rxd = (void *)msdu->data - sizeof(*rxd); 1412 l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd); 1413 1414 skb_put(msdu, l3_pad_bytes); 1415 skb_pull(msdu, sizeof(struct amsdu_subframe_hdr) + l3_pad_bytes); 1416 1417 hdr = (struct ieee80211_hdr *)first_hdr; 1418 hdr_len = ieee80211_hdrlen(hdr->frame_control); 1419 1420 if (!(status->flag & RX_FLAG_IV_STRIPPED)) { 1421 memcpy(skb_push(msdu, 1422 ath10k_htt_rx_crypto_param_len(ar, enctype)), 1423 (void *)hdr + round_up(hdr_len, bytes_aligned), 1424 ath10k_htt_rx_crypto_param_len(ar, enctype)); 1425 } 1426 1427 memcpy(skb_push(msdu, hdr_len), hdr, hdr_len); 1428 } 1429 1430 static void ath10k_htt_rx_h_undecap(struct ath10k *ar, 1431 struct sk_buff *msdu, 1432 struct ieee80211_rx_status *status, 1433 u8 first_hdr[64], 1434 enum htt_rx_mpdu_encrypt_type enctype, 1435 bool is_decrypted) 1436 { 1437 struct htt_rx_desc *rxd; 1438 enum rx_msdu_decap_format decap; 1439 1440 /* First msdu's decapped header: 1441 * [802.11 header] <-- padded to 4 bytes long 1442 * [crypto param] <-- padded to 4 bytes long 1443 * [amsdu header] <-- only if A-MSDU 1444 * [rfc1042/llc] 1445 * 1446 * Other (2nd, 3rd, ..) msdu's decapped header: 1447 * [amsdu header] <-- only if A-MSDU 1448 * [rfc1042/llc] 1449 */ 1450 1451 rxd = (void *)msdu->data - sizeof(*rxd); 1452 decap = MS(__le32_to_cpu(rxd->msdu_start.common.info1), 1453 RX_MSDU_START_INFO1_DECAP_FORMAT); 1454 1455 switch (decap) { 1456 case RX_MSDU_DECAP_RAW: 1457 ath10k_htt_rx_h_undecap_raw(ar, msdu, status, enctype, 1458 is_decrypted); 1459 break; 1460 case RX_MSDU_DECAP_NATIVE_WIFI: 1461 ath10k_htt_rx_h_undecap_nwifi(ar, msdu, status, first_hdr, 1462 enctype); 1463 break; 1464 case RX_MSDU_DECAP_ETHERNET2_DIX: 1465 ath10k_htt_rx_h_undecap_eth(ar, msdu, status, first_hdr, enctype); 1466 break; 1467 case RX_MSDU_DECAP_8023_SNAP_LLC: 1468 ath10k_htt_rx_h_undecap_snap(ar, msdu, status, first_hdr, 1469 enctype); 1470 break; 1471 } 1472 } 1473 1474 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb) 1475 { 1476 struct htt_rx_desc *rxd; 1477 u32 flags, info; 1478 bool is_ip4, is_ip6; 1479 bool is_tcp, is_udp; 1480 bool ip_csum_ok, tcpudp_csum_ok; 1481 1482 rxd = (void *)skb->data - sizeof(*rxd); 1483 flags = __le32_to_cpu(rxd->attention.flags); 1484 info = __le32_to_cpu(rxd->msdu_start.common.info1); 1485 1486 is_ip4 = !!(info & RX_MSDU_START_INFO1_IPV4_PROTO); 1487 is_ip6 = !!(info & RX_MSDU_START_INFO1_IPV6_PROTO); 1488 is_tcp = !!(info & RX_MSDU_START_INFO1_TCP_PROTO); 1489 is_udp = !!(info & RX_MSDU_START_INFO1_UDP_PROTO); 1490 ip_csum_ok = !(flags & RX_ATTENTION_FLAGS_IP_CHKSUM_FAIL); 1491 tcpudp_csum_ok = !(flags & RX_ATTENTION_FLAGS_TCP_UDP_CHKSUM_FAIL); 1492 1493 if (!is_ip4 && !is_ip6) 1494 return CHECKSUM_NONE; 1495 if (!is_tcp && !is_udp) 1496 return CHECKSUM_NONE; 1497 if (!ip_csum_ok) 1498 return CHECKSUM_NONE; 1499 if (!tcpudp_csum_ok) 1500 return CHECKSUM_NONE; 1501 1502 return CHECKSUM_UNNECESSARY; 1503 } 1504 1505 static void ath10k_htt_rx_h_csum_offload(struct sk_buff *msdu) 1506 { 1507 msdu->ip_summed = ath10k_htt_rx_get_csum_state(msdu); 1508 } 1509 1510 static void ath10k_htt_rx_h_mpdu(struct ath10k *ar, 1511 struct sk_buff_head *amsdu, 1512 struct ieee80211_rx_status *status, 1513 bool fill_crypt_header, 1514 u8 *rx_hdr, 1515 enum ath10k_pkt_rx_err *err) 1516 { 1517 struct sk_buff *first; 1518 struct sk_buff *last; 1519 struct sk_buff *msdu; 1520 struct htt_rx_desc *rxd; 1521 struct ieee80211_hdr *hdr; 1522 enum htt_rx_mpdu_encrypt_type enctype; 1523 u8 first_hdr[64]; 1524 u8 *qos; 1525 bool has_fcs_err; 1526 bool has_crypto_err; 1527 bool has_tkip_err; 1528 bool has_peer_idx_invalid; 1529 bool is_decrypted; 1530 bool is_mgmt; 1531 u32 attention; 1532 1533 if (skb_queue_empty(amsdu)) 1534 return; 1535 1536 first = skb_peek(amsdu); 1537 rxd = (void *)first->data - sizeof(*rxd); 1538 1539 is_mgmt = !!(rxd->attention.flags & 1540 __cpu_to_le32(RX_ATTENTION_FLAGS_MGMT_TYPE)); 1541 1542 enctype = MS(__le32_to_cpu(rxd->mpdu_start.info0), 1543 RX_MPDU_START_INFO0_ENCRYPT_TYPE); 1544 1545 /* First MSDU's Rx descriptor in an A-MSDU contains full 802.11 1546 * decapped header. It'll be used for undecapping of each MSDU. 1547 */ 1548 hdr = (void *)rxd->rx_hdr_status; 1549 memcpy(first_hdr, hdr, RX_HTT_HDR_STATUS_LEN); 1550 1551 if (rx_hdr) 1552 memcpy(rx_hdr, hdr, RX_HTT_HDR_STATUS_LEN); 1553 1554 /* Each A-MSDU subframe will use the original header as the base and be 1555 * reported as a separate MSDU so strip the A-MSDU bit from QoS Ctl. 1556 */ 1557 hdr = (void *)first_hdr; 1558 1559 if (ieee80211_is_data_qos(hdr->frame_control)) { 1560 qos = ieee80211_get_qos_ctl(hdr); 1561 qos[0] &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT; 1562 } 1563 1564 /* Some attention flags are valid only in the last MSDU. */ 1565 last = skb_peek_tail(amsdu); 1566 rxd = (void *)last->data - sizeof(*rxd); 1567 attention = __le32_to_cpu(rxd->attention.flags); 1568 1569 has_fcs_err = !!(attention & RX_ATTENTION_FLAGS_FCS_ERR); 1570 has_crypto_err = !!(attention & RX_ATTENTION_FLAGS_DECRYPT_ERR); 1571 has_tkip_err = !!(attention & RX_ATTENTION_FLAGS_TKIP_MIC_ERR); 1572 has_peer_idx_invalid = !!(attention & RX_ATTENTION_FLAGS_PEER_IDX_INVALID); 1573 1574 /* Note: If hardware captures an encrypted frame that it can't decrypt, 1575 * e.g. due to fcs error, missing peer or invalid key data it will 1576 * report the frame as raw. 1577 */ 1578 is_decrypted = (enctype != HTT_RX_MPDU_ENCRYPT_NONE && 1579 !has_fcs_err && 1580 !has_crypto_err && 1581 !has_peer_idx_invalid); 1582 1583 /* Clear per-MPDU flags while leaving per-PPDU flags intact. */ 1584 status->flag &= ~(RX_FLAG_FAILED_FCS_CRC | 1585 RX_FLAG_MMIC_ERROR | 1586 RX_FLAG_DECRYPTED | 1587 RX_FLAG_IV_STRIPPED | 1588 RX_FLAG_ONLY_MONITOR | 1589 RX_FLAG_MMIC_STRIPPED); 1590 1591 if (has_fcs_err) 1592 status->flag |= RX_FLAG_FAILED_FCS_CRC; 1593 1594 if (has_tkip_err) 1595 status->flag |= RX_FLAG_MMIC_ERROR; 1596 1597 if (err) { 1598 if (has_fcs_err) 1599 *err = ATH10K_PKT_RX_ERR_FCS; 1600 else if (has_tkip_err) 1601 *err = ATH10K_PKT_RX_ERR_TKIP; 1602 else if (has_crypto_err) 1603 *err = ATH10K_PKT_RX_ERR_CRYPT; 1604 else if (has_peer_idx_invalid) 1605 *err = ATH10K_PKT_RX_ERR_PEER_IDX_INVAL; 1606 } 1607 1608 /* Firmware reports all necessary management frames via WMI already. 1609 * They are not reported to monitor interfaces at all so pass the ones 1610 * coming via HTT to monitor interfaces instead. This simplifies 1611 * matters a lot. 1612 */ 1613 if (is_mgmt) 1614 status->flag |= RX_FLAG_ONLY_MONITOR; 1615 1616 if (is_decrypted) { 1617 status->flag |= RX_FLAG_DECRYPTED; 1618 1619 if (likely(!is_mgmt)) 1620 status->flag |= RX_FLAG_MMIC_STRIPPED; 1621 1622 if (fill_crypt_header) 1623 status->flag |= RX_FLAG_MIC_STRIPPED | 1624 RX_FLAG_ICV_STRIPPED; 1625 else 1626 status->flag |= RX_FLAG_IV_STRIPPED; 1627 } 1628 1629 skb_queue_walk(amsdu, msdu) { 1630 ath10k_htt_rx_h_csum_offload(msdu); 1631 ath10k_htt_rx_h_undecap(ar, msdu, status, first_hdr, enctype, 1632 is_decrypted); 1633 1634 /* Undecapping involves copying the original 802.11 header back 1635 * to sk_buff. If frame is protected and hardware has decrypted 1636 * it then remove the protected bit. 1637 */ 1638 if (!is_decrypted) 1639 continue; 1640 if (is_mgmt) 1641 continue; 1642 1643 if (fill_crypt_header) 1644 continue; 1645 1646 hdr = (void *)msdu->data; 1647 hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED); 1648 } 1649 } 1650 1651 static void ath10k_htt_rx_h_enqueue(struct ath10k *ar, 1652 struct sk_buff_head *amsdu, 1653 struct ieee80211_rx_status *status) 1654 { 1655 struct sk_buff *msdu; 1656 struct sk_buff *first_subframe; 1657 1658 first_subframe = skb_peek(amsdu); 1659 1660 while ((msdu = __skb_dequeue(amsdu))) { 1661 /* Setup per-MSDU flags */ 1662 if (skb_queue_empty(amsdu)) 1663 status->flag &= ~RX_FLAG_AMSDU_MORE; 1664 else 1665 status->flag |= RX_FLAG_AMSDU_MORE; 1666 1667 if (msdu == first_subframe) { 1668 first_subframe = NULL; 1669 status->flag &= ~RX_FLAG_ALLOW_SAME_PN; 1670 } else { 1671 status->flag |= RX_FLAG_ALLOW_SAME_PN; 1672 } 1673 1674 ath10k_htt_rx_h_queue_msdu(ar, status, msdu); 1675 } 1676 } 1677 1678 static int ath10k_unchain_msdu(struct sk_buff_head *amsdu, 1679 unsigned long int *unchain_cnt) 1680 { 1681 struct sk_buff *skb, *first; 1682 int space; 1683 int total_len = 0; 1684 int amsdu_len = skb_queue_len(amsdu); 1685 1686 /* TODO: Might could optimize this by using 1687 * skb_try_coalesce or similar method to 1688 * decrease copying, or maybe get mac80211 to 1689 * provide a way to just receive a list of 1690 * skb? 1691 */ 1692 1693 first = __skb_dequeue(amsdu); 1694 1695 /* Allocate total length all at once. */ 1696 skb_queue_walk(amsdu, skb) 1697 total_len += skb->len; 1698 1699 space = total_len - skb_tailroom(first); 1700 if ((space > 0) && 1701 (pskb_expand_head(first, 0, space, GFP_ATOMIC) < 0)) { 1702 /* TODO: bump some rx-oom error stat */ 1703 /* put it back together so we can free the 1704 * whole list at once. 1705 */ 1706 __skb_queue_head(amsdu, first); 1707 return -1; 1708 } 1709 1710 /* Walk list again, copying contents into 1711 * msdu_head 1712 */ 1713 while ((skb = __skb_dequeue(amsdu))) { 1714 skb_copy_from_linear_data(skb, skb_put(first, skb->len), 1715 skb->len); 1716 dev_kfree_skb_any(skb); 1717 } 1718 1719 __skb_queue_head(amsdu, first); 1720 1721 *unchain_cnt += amsdu_len - 1; 1722 1723 return 0; 1724 } 1725 1726 static void ath10k_htt_rx_h_unchain(struct ath10k *ar, 1727 struct sk_buff_head *amsdu, 1728 unsigned long int *drop_cnt, 1729 unsigned long int *unchain_cnt) 1730 { 1731 struct sk_buff *first; 1732 struct htt_rx_desc *rxd; 1733 enum rx_msdu_decap_format decap; 1734 1735 first = skb_peek(amsdu); 1736 rxd = (void *)first->data - sizeof(*rxd); 1737 decap = MS(__le32_to_cpu(rxd->msdu_start.common.info1), 1738 RX_MSDU_START_INFO1_DECAP_FORMAT); 1739 1740 /* FIXME: Current unchaining logic can only handle simple case of raw 1741 * msdu chaining. If decapping is other than raw the chaining may be 1742 * more complex and this isn't handled by the current code. Don't even 1743 * try re-constructing such frames - it'll be pretty much garbage. 1744 */ 1745 if (decap != RX_MSDU_DECAP_RAW || 1746 skb_queue_len(amsdu) != 1 + rxd->frag_info.ring2_more_count) { 1747 *drop_cnt += skb_queue_len(amsdu); 1748 __skb_queue_purge(amsdu); 1749 return; 1750 } 1751 1752 ath10k_unchain_msdu(amsdu, unchain_cnt); 1753 } 1754 1755 static bool ath10k_htt_rx_amsdu_allowed(struct ath10k *ar, 1756 struct sk_buff_head *amsdu, 1757 struct ieee80211_rx_status *rx_status) 1758 { 1759 /* FIXME: It might be a good idea to do some fuzzy-testing to drop 1760 * invalid/dangerous frames. 1761 */ 1762 1763 if (!rx_status->freq) { 1764 ath10k_dbg(ar, ATH10K_DBG_HTT, "no channel configured; ignoring frame(s)!\n"); 1765 return false; 1766 } 1767 1768 if (test_bit(ATH10K_CAC_RUNNING, &ar->dev_flags)) { 1769 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx cac running\n"); 1770 return false; 1771 } 1772 1773 return true; 1774 } 1775 1776 static void ath10k_htt_rx_h_filter(struct ath10k *ar, 1777 struct sk_buff_head *amsdu, 1778 struct ieee80211_rx_status *rx_status, 1779 unsigned long int *drop_cnt) 1780 { 1781 if (skb_queue_empty(amsdu)) 1782 return; 1783 1784 if (ath10k_htt_rx_amsdu_allowed(ar, amsdu, rx_status)) 1785 return; 1786 1787 if (drop_cnt) 1788 *drop_cnt += skb_queue_len(amsdu); 1789 1790 __skb_queue_purge(amsdu); 1791 } 1792 1793 static int ath10k_htt_rx_handle_amsdu(struct ath10k_htt *htt) 1794 { 1795 struct ath10k *ar = htt->ar; 1796 struct ieee80211_rx_status *rx_status = &htt->rx_status; 1797 struct sk_buff_head amsdu; 1798 int ret; 1799 unsigned long int drop_cnt = 0; 1800 unsigned long int unchain_cnt = 0; 1801 unsigned long int drop_cnt_filter = 0; 1802 unsigned long int msdus_to_queue, num_msdus; 1803 enum ath10k_pkt_rx_err err = ATH10K_PKT_RX_ERR_MAX; 1804 u8 first_hdr[RX_HTT_HDR_STATUS_LEN]; 1805 1806 __skb_queue_head_init(&amsdu); 1807 1808 spin_lock_bh(&htt->rx_ring.lock); 1809 if (htt->rx_confused) { 1810 spin_unlock_bh(&htt->rx_ring.lock); 1811 return -EIO; 1812 } 1813 ret = ath10k_htt_rx_amsdu_pop(htt, &amsdu); 1814 spin_unlock_bh(&htt->rx_ring.lock); 1815 1816 if (ret < 0) { 1817 ath10k_warn(ar, "rx ring became corrupted: %d\n", ret); 1818 __skb_queue_purge(&amsdu); 1819 /* FIXME: It's probably a good idea to reboot the 1820 * device instead of leaving it inoperable. 1821 */ 1822 htt->rx_confused = true; 1823 return ret; 1824 } 1825 1826 num_msdus = skb_queue_len(&amsdu); 1827 1828 ath10k_htt_rx_h_ppdu(ar, &amsdu, rx_status, 0xffff); 1829 1830 /* only for ret = 1 indicates chained msdus */ 1831 if (ret > 0) 1832 ath10k_htt_rx_h_unchain(ar, &amsdu, &drop_cnt, &unchain_cnt); 1833 1834 ath10k_htt_rx_h_filter(ar, &amsdu, rx_status, &drop_cnt_filter); 1835 ath10k_htt_rx_h_mpdu(ar, &amsdu, rx_status, true, first_hdr, &err); 1836 msdus_to_queue = skb_queue_len(&amsdu); 1837 ath10k_htt_rx_h_enqueue(ar, &amsdu, rx_status); 1838 1839 ath10k_sta_update_rx_tid_stats(ar, first_hdr, num_msdus, err, 1840 unchain_cnt, drop_cnt, drop_cnt_filter, 1841 msdus_to_queue); 1842 1843 return 0; 1844 } 1845 1846 static void ath10k_htt_rx_proc_rx_ind(struct ath10k_htt *htt, 1847 struct htt_rx_indication *rx) 1848 { 1849 struct ath10k *ar = htt->ar; 1850 struct htt_rx_indication_mpdu_range *mpdu_ranges; 1851 int num_mpdu_ranges; 1852 int i, mpdu_count = 0; 1853 u16 peer_id; 1854 u8 tid; 1855 1856 num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1), 1857 HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES); 1858 peer_id = __le16_to_cpu(rx->hdr.peer_id); 1859 tid = MS(rx->hdr.info0, HTT_RX_INDICATION_INFO0_EXT_TID); 1860 1861 mpdu_ranges = htt_rx_ind_get_mpdu_ranges(rx); 1862 1863 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx ind: ", 1864 rx, sizeof(*rx) + 1865 (sizeof(struct htt_rx_indication_mpdu_range) * 1866 num_mpdu_ranges)); 1867 1868 for (i = 0; i < num_mpdu_ranges; i++) 1869 mpdu_count += mpdu_ranges[i].mpdu_count; 1870 1871 atomic_add(mpdu_count, &htt->num_mpdus_ready); 1872 1873 ath10k_sta_update_rx_tid_stats_ampdu(ar, peer_id, tid, mpdu_ranges, 1874 num_mpdu_ranges); 1875 } 1876 1877 static void ath10k_htt_rx_tx_compl_ind(struct ath10k *ar, 1878 struct sk_buff *skb) 1879 { 1880 struct ath10k_htt *htt = &ar->htt; 1881 struct htt_resp *resp = (struct htt_resp *)skb->data; 1882 struct htt_tx_done tx_done = {}; 1883 int status = MS(resp->data_tx_completion.flags, HTT_DATA_TX_STATUS); 1884 __le16 msdu_id; 1885 int i; 1886 1887 switch (status) { 1888 case HTT_DATA_TX_STATUS_NO_ACK: 1889 tx_done.status = HTT_TX_COMPL_STATE_NOACK; 1890 break; 1891 case HTT_DATA_TX_STATUS_OK: 1892 tx_done.status = HTT_TX_COMPL_STATE_ACK; 1893 break; 1894 case HTT_DATA_TX_STATUS_DISCARD: 1895 case HTT_DATA_TX_STATUS_POSTPONE: 1896 case HTT_DATA_TX_STATUS_DOWNLOAD_FAIL: 1897 tx_done.status = HTT_TX_COMPL_STATE_DISCARD; 1898 break; 1899 default: 1900 ath10k_warn(ar, "unhandled tx completion status %d\n", status); 1901 tx_done.status = HTT_TX_COMPL_STATE_DISCARD; 1902 break; 1903 } 1904 1905 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx completion num_msdus %d\n", 1906 resp->data_tx_completion.num_msdus); 1907 1908 for (i = 0; i < resp->data_tx_completion.num_msdus; i++) { 1909 msdu_id = resp->data_tx_completion.msdus[i]; 1910 tx_done.msdu_id = __le16_to_cpu(msdu_id); 1911 1912 /* kfifo_put: In practice firmware shouldn't fire off per-CE 1913 * interrupt and main interrupt (MSI/-X range case) for the same 1914 * HTC service so it should be safe to use kfifo_put w/o lock. 1915 * 1916 * From kfifo_put() documentation: 1917 * Note that with only one concurrent reader and one concurrent 1918 * writer, you don't need extra locking to use these macro. 1919 */ 1920 if (!kfifo_put(&htt->txdone_fifo, tx_done)) { 1921 ath10k_warn(ar, "txdone fifo overrun, msdu_id %d status %d\n", 1922 tx_done.msdu_id, tx_done.status); 1923 ath10k_txrx_tx_unref(htt, &tx_done); 1924 } 1925 } 1926 } 1927 1928 static void ath10k_htt_rx_addba(struct ath10k *ar, struct htt_resp *resp) 1929 { 1930 struct htt_rx_addba *ev = &resp->rx_addba; 1931 struct ath10k_peer *peer; 1932 struct ath10k_vif *arvif; 1933 u16 info0, tid, peer_id; 1934 1935 info0 = __le16_to_cpu(ev->info0); 1936 tid = MS(info0, HTT_RX_BA_INFO0_TID); 1937 peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID); 1938 1939 ath10k_dbg(ar, ATH10K_DBG_HTT, 1940 "htt rx addba tid %hu peer_id %hu size %hhu\n", 1941 tid, peer_id, ev->window_size); 1942 1943 spin_lock_bh(&ar->data_lock); 1944 peer = ath10k_peer_find_by_id(ar, peer_id); 1945 if (!peer) { 1946 ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n", 1947 peer_id); 1948 spin_unlock_bh(&ar->data_lock); 1949 return; 1950 } 1951 1952 arvif = ath10k_get_arvif(ar, peer->vdev_id); 1953 if (!arvif) { 1954 ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n", 1955 peer->vdev_id); 1956 spin_unlock_bh(&ar->data_lock); 1957 return; 1958 } 1959 1960 ath10k_dbg(ar, ATH10K_DBG_HTT, 1961 "htt rx start rx ba session sta %pM tid %hu size %hhu\n", 1962 peer->addr, tid, ev->window_size); 1963 1964 ieee80211_start_rx_ba_session_offl(arvif->vif, peer->addr, tid); 1965 spin_unlock_bh(&ar->data_lock); 1966 } 1967 1968 static void ath10k_htt_rx_delba(struct ath10k *ar, struct htt_resp *resp) 1969 { 1970 struct htt_rx_delba *ev = &resp->rx_delba; 1971 struct ath10k_peer *peer; 1972 struct ath10k_vif *arvif; 1973 u16 info0, tid, peer_id; 1974 1975 info0 = __le16_to_cpu(ev->info0); 1976 tid = MS(info0, HTT_RX_BA_INFO0_TID); 1977 peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID); 1978 1979 ath10k_dbg(ar, ATH10K_DBG_HTT, 1980 "htt rx delba tid %hu peer_id %hu\n", 1981 tid, peer_id); 1982 1983 spin_lock_bh(&ar->data_lock); 1984 peer = ath10k_peer_find_by_id(ar, peer_id); 1985 if (!peer) { 1986 ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n", 1987 peer_id); 1988 spin_unlock_bh(&ar->data_lock); 1989 return; 1990 } 1991 1992 arvif = ath10k_get_arvif(ar, peer->vdev_id); 1993 if (!arvif) { 1994 ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n", 1995 peer->vdev_id); 1996 spin_unlock_bh(&ar->data_lock); 1997 return; 1998 } 1999 2000 ath10k_dbg(ar, ATH10K_DBG_HTT, 2001 "htt rx stop rx ba session sta %pM tid %hu\n", 2002 peer->addr, tid); 2003 2004 ieee80211_stop_rx_ba_session_offl(arvif->vif, peer->addr, tid); 2005 spin_unlock_bh(&ar->data_lock); 2006 } 2007 2008 static int ath10k_htt_rx_extract_amsdu(struct sk_buff_head *list, 2009 struct sk_buff_head *amsdu) 2010 { 2011 struct sk_buff *msdu; 2012 struct htt_rx_desc *rxd; 2013 2014 if (skb_queue_empty(list)) 2015 return -ENOBUFS; 2016 2017 if (WARN_ON(!skb_queue_empty(amsdu))) 2018 return -EINVAL; 2019 2020 while ((msdu = __skb_dequeue(list))) { 2021 __skb_queue_tail(amsdu, msdu); 2022 2023 rxd = (void *)msdu->data - sizeof(*rxd); 2024 if (rxd->msdu_end.common.info0 & 2025 __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU)) 2026 break; 2027 } 2028 2029 msdu = skb_peek_tail(amsdu); 2030 rxd = (void *)msdu->data - sizeof(*rxd); 2031 if (!(rxd->msdu_end.common.info0 & 2032 __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU))) { 2033 skb_queue_splice_init(amsdu, list); 2034 return -EAGAIN; 2035 } 2036 2037 return 0; 2038 } 2039 2040 static void ath10k_htt_rx_h_rx_offload_prot(struct ieee80211_rx_status *status, 2041 struct sk_buff *skb) 2042 { 2043 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2044 2045 if (!ieee80211_has_protected(hdr->frame_control)) 2046 return; 2047 2048 /* Offloaded frames are already decrypted but firmware insists they are 2049 * protected in the 802.11 header. Strip the flag. Otherwise mac80211 2050 * will drop the frame. 2051 */ 2052 2053 hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED); 2054 status->flag |= RX_FLAG_DECRYPTED | 2055 RX_FLAG_IV_STRIPPED | 2056 RX_FLAG_MMIC_STRIPPED; 2057 } 2058 2059 static void ath10k_htt_rx_h_rx_offload(struct ath10k *ar, 2060 struct sk_buff_head *list) 2061 { 2062 struct ath10k_htt *htt = &ar->htt; 2063 struct ieee80211_rx_status *status = &htt->rx_status; 2064 struct htt_rx_offload_msdu *rx; 2065 struct sk_buff *msdu; 2066 size_t offset; 2067 2068 while ((msdu = __skb_dequeue(list))) { 2069 /* Offloaded frames don't have Rx descriptor. Instead they have 2070 * a short meta information header. 2071 */ 2072 2073 rx = (void *)msdu->data; 2074 2075 skb_put(msdu, sizeof(*rx)); 2076 skb_pull(msdu, sizeof(*rx)); 2077 2078 if (skb_tailroom(msdu) < __le16_to_cpu(rx->msdu_len)) { 2079 ath10k_warn(ar, "dropping frame: offloaded rx msdu is too long!\n"); 2080 dev_kfree_skb_any(msdu); 2081 continue; 2082 } 2083 2084 skb_put(msdu, __le16_to_cpu(rx->msdu_len)); 2085 2086 /* Offloaded rx header length isn't multiple of 2 nor 4 so the 2087 * actual payload is unaligned. Align the frame. Otherwise 2088 * mac80211 complains. This shouldn't reduce performance much 2089 * because these offloaded frames are rare. 2090 */ 2091 offset = 4 - ((unsigned long)msdu->data & 3); 2092 skb_put(msdu, offset); 2093 memmove(msdu->data + offset, msdu->data, msdu->len); 2094 skb_pull(msdu, offset); 2095 2096 /* FIXME: The frame is NWifi. Re-construct QoS Control 2097 * if possible later. 2098 */ 2099 2100 memset(status, 0, sizeof(*status)); 2101 status->flag |= RX_FLAG_NO_SIGNAL_VAL; 2102 2103 ath10k_htt_rx_h_rx_offload_prot(status, msdu); 2104 ath10k_htt_rx_h_channel(ar, status, NULL, rx->vdev_id); 2105 ath10k_htt_rx_h_queue_msdu(ar, status, msdu); 2106 } 2107 } 2108 2109 static int ath10k_htt_rx_in_ord_ind(struct ath10k *ar, struct sk_buff *skb) 2110 { 2111 struct ath10k_htt *htt = &ar->htt; 2112 struct htt_resp *resp = (void *)skb->data; 2113 struct ieee80211_rx_status *status = &htt->rx_status; 2114 struct sk_buff_head list; 2115 struct sk_buff_head amsdu; 2116 u16 peer_id; 2117 u16 msdu_count; 2118 u8 vdev_id; 2119 u8 tid; 2120 bool offload; 2121 bool frag; 2122 int ret; 2123 2124 lockdep_assert_held(&htt->rx_ring.lock); 2125 2126 if (htt->rx_confused) 2127 return -EIO; 2128 2129 skb_pull(skb, sizeof(resp->hdr)); 2130 skb_pull(skb, sizeof(resp->rx_in_ord_ind)); 2131 2132 peer_id = __le16_to_cpu(resp->rx_in_ord_ind.peer_id); 2133 msdu_count = __le16_to_cpu(resp->rx_in_ord_ind.msdu_count); 2134 vdev_id = resp->rx_in_ord_ind.vdev_id; 2135 tid = SM(resp->rx_in_ord_ind.info, HTT_RX_IN_ORD_IND_INFO_TID); 2136 offload = !!(resp->rx_in_ord_ind.info & 2137 HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK); 2138 frag = !!(resp->rx_in_ord_ind.info & HTT_RX_IN_ORD_IND_INFO_FRAG_MASK); 2139 2140 ath10k_dbg(ar, ATH10K_DBG_HTT, 2141 "htt rx in ord vdev %i peer %i tid %i offload %i frag %i msdu count %i\n", 2142 vdev_id, peer_id, tid, offload, frag, msdu_count); 2143 2144 if (skb->len < msdu_count * sizeof(*resp->rx_in_ord_ind.msdu_descs32)) { 2145 ath10k_warn(ar, "dropping invalid in order rx indication\n"); 2146 return -EINVAL; 2147 } 2148 2149 /* The event can deliver more than 1 A-MSDU. Each A-MSDU is later 2150 * extracted and processed. 2151 */ 2152 __skb_queue_head_init(&list); 2153 if (ar->hw_params.target_64bit) 2154 ret = ath10k_htt_rx_pop_paddr64_list(htt, &resp->rx_in_ord_ind, 2155 &list); 2156 else 2157 ret = ath10k_htt_rx_pop_paddr32_list(htt, &resp->rx_in_ord_ind, 2158 &list); 2159 2160 if (ret < 0) { 2161 ath10k_warn(ar, "failed to pop paddr list: %d\n", ret); 2162 htt->rx_confused = true; 2163 return -EIO; 2164 } 2165 2166 /* Offloaded frames are very different and need to be handled 2167 * separately. 2168 */ 2169 if (offload) 2170 ath10k_htt_rx_h_rx_offload(ar, &list); 2171 2172 while (!skb_queue_empty(&list)) { 2173 __skb_queue_head_init(&amsdu); 2174 ret = ath10k_htt_rx_extract_amsdu(&list, &amsdu); 2175 switch (ret) { 2176 case 0: 2177 /* Note: The in-order indication may report interleaved 2178 * frames from different PPDUs meaning reported rx rate 2179 * to mac80211 isn't accurate/reliable. It's still 2180 * better to report something than nothing though. This 2181 * should still give an idea about rx rate to the user. 2182 */ 2183 ath10k_htt_rx_h_ppdu(ar, &amsdu, status, vdev_id); 2184 ath10k_htt_rx_h_filter(ar, &amsdu, status, NULL); 2185 ath10k_htt_rx_h_mpdu(ar, &amsdu, status, false, NULL, 2186 NULL); 2187 ath10k_htt_rx_h_enqueue(ar, &amsdu, status); 2188 break; 2189 case -EAGAIN: 2190 /* fall through */ 2191 default: 2192 /* Should not happen. */ 2193 ath10k_warn(ar, "failed to extract amsdu: %d\n", ret); 2194 htt->rx_confused = true; 2195 __skb_queue_purge(&list); 2196 return -EIO; 2197 } 2198 } 2199 return ret; 2200 } 2201 2202 static void ath10k_htt_rx_tx_fetch_resp_id_confirm(struct ath10k *ar, 2203 const __le32 *resp_ids, 2204 int num_resp_ids) 2205 { 2206 int i; 2207 u32 resp_id; 2208 2209 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm num_resp_ids %d\n", 2210 num_resp_ids); 2211 2212 for (i = 0; i < num_resp_ids; i++) { 2213 resp_id = le32_to_cpu(resp_ids[i]); 2214 2215 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm resp_id %u\n", 2216 resp_id); 2217 2218 /* TODO: free resp_id */ 2219 } 2220 } 2221 2222 static void ath10k_htt_rx_tx_fetch_ind(struct ath10k *ar, struct sk_buff *skb) 2223 { 2224 struct ieee80211_hw *hw = ar->hw; 2225 struct ieee80211_txq *txq; 2226 struct htt_resp *resp = (struct htt_resp *)skb->data; 2227 struct htt_tx_fetch_record *record; 2228 size_t len; 2229 size_t max_num_bytes; 2230 size_t max_num_msdus; 2231 size_t num_bytes; 2232 size_t num_msdus; 2233 const __le32 *resp_ids; 2234 u16 num_records; 2235 u16 num_resp_ids; 2236 u16 peer_id; 2237 u8 tid; 2238 int ret; 2239 int i; 2240 2241 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch ind\n"); 2242 2243 len = sizeof(resp->hdr) + sizeof(resp->tx_fetch_ind); 2244 if (unlikely(skb->len < len)) { 2245 ath10k_warn(ar, "received corrupted tx_fetch_ind event: buffer too short\n"); 2246 return; 2247 } 2248 2249 num_records = le16_to_cpu(resp->tx_fetch_ind.num_records); 2250 num_resp_ids = le16_to_cpu(resp->tx_fetch_ind.num_resp_ids); 2251 2252 len += sizeof(resp->tx_fetch_ind.records[0]) * num_records; 2253 len += sizeof(resp->tx_fetch_ind.resp_ids[0]) * num_resp_ids; 2254 2255 if (unlikely(skb->len < len)) { 2256 ath10k_warn(ar, "received corrupted tx_fetch_ind event: too many records/resp_ids\n"); 2257 return; 2258 } 2259 2260 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch ind num records %hu num resps %hu seq %hu\n", 2261 num_records, num_resp_ids, 2262 le16_to_cpu(resp->tx_fetch_ind.fetch_seq_num)); 2263 2264 if (!ar->htt.tx_q_state.enabled) { 2265 ath10k_warn(ar, "received unexpected tx_fetch_ind event: not enabled\n"); 2266 return; 2267 } 2268 2269 if (ar->htt.tx_q_state.mode == HTT_TX_MODE_SWITCH_PUSH) { 2270 ath10k_warn(ar, "received unexpected tx_fetch_ind event: in push mode\n"); 2271 return; 2272 } 2273 2274 rcu_read_lock(); 2275 2276 for (i = 0; i < num_records; i++) { 2277 record = &resp->tx_fetch_ind.records[i]; 2278 peer_id = MS(le16_to_cpu(record->info), 2279 HTT_TX_FETCH_RECORD_INFO_PEER_ID); 2280 tid = MS(le16_to_cpu(record->info), 2281 HTT_TX_FETCH_RECORD_INFO_TID); 2282 max_num_msdus = le16_to_cpu(record->num_msdus); 2283 max_num_bytes = le32_to_cpu(record->num_bytes); 2284 2285 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch record %i peer_id %hu tid %hhu msdus %zu bytes %zu\n", 2286 i, peer_id, tid, max_num_msdus, max_num_bytes); 2287 2288 if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) || 2289 unlikely(tid >= ar->htt.tx_q_state.num_tids)) { 2290 ath10k_warn(ar, "received out of range peer_id %hu tid %hhu\n", 2291 peer_id, tid); 2292 continue; 2293 } 2294 2295 spin_lock_bh(&ar->data_lock); 2296 txq = ath10k_mac_txq_lookup(ar, peer_id, tid); 2297 spin_unlock_bh(&ar->data_lock); 2298 2299 /* It is okay to release the lock and use txq because RCU read 2300 * lock is held. 2301 */ 2302 2303 if (unlikely(!txq)) { 2304 ath10k_warn(ar, "failed to lookup txq for peer_id %hu tid %hhu\n", 2305 peer_id, tid); 2306 continue; 2307 } 2308 2309 num_msdus = 0; 2310 num_bytes = 0; 2311 2312 while (num_msdus < max_num_msdus && 2313 num_bytes < max_num_bytes) { 2314 ret = ath10k_mac_tx_push_txq(hw, txq); 2315 if (ret < 0) 2316 break; 2317 2318 num_msdus++; 2319 num_bytes += ret; 2320 } 2321 2322 record->num_msdus = cpu_to_le16(num_msdus); 2323 record->num_bytes = cpu_to_le32(num_bytes); 2324 2325 ath10k_htt_tx_txq_recalc(hw, txq); 2326 } 2327 2328 rcu_read_unlock(); 2329 2330 resp_ids = ath10k_htt_get_tx_fetch_ind_resp_ids(&resp->tx_fetch_ind); 2331 ath10k_htt_rx_tx_fetch_resp_id_confirm(ar, resp_ids, num_resp_ids); 2332 2333 ret = ath10k_htt_tx_fetch_resp(ar, 2334 resp->tx_fetch_ind.token, 2335 resp->tx_fetch_ind.fetch_seq_num, 2336 resp->tx_fetch_ind.records, 2337 num_records); 2338 if (unlikely(ret)) { 2339 ath10k_warn(ar, "failed to submit tx fetch resp for token 0x%08x: %d\n", 2340 le32_to_cpu(resp->tx_fetch_ind.token), ret); 2341 /* FIXME: request fw restart */ 2342 } 2343 2344 ath10k_htt_tx_txq_sync(ar); 2345 } 2346 2347 static void ath10k_htt_rx_tx_fetch_confirm(struct ath10k *ar, 2348 struct sk_buff *skb) 2349 { 2350 const struct htt_resp *resp = (void *)skb->data; 2351 size_t len; 2352 int num_resp_ids; 2353 2354 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm\n"); 2355 2356 len = sizeof(resp->hdr) + sizeof(resp->tx_fetch_confirm); 2357 if (unlikely(skb->len < len)) { 2358 ath10k_warn(ar, "received corrupted tx_fetch_confirm event: buffer too short\n"); 2359 return; 2360 } 2361 2362 num_resp_ids = le16_to_cpu(resp->tx_fetch_confirm.num_resp_ids); 2363 len += sizeof(resp->tx_fetch_confirm.resp_ids[0]) * num_resp_ids; 2364 2365 if (unlikely(skb->len < len)) { 2366 ath10k_warn(ar, "received corrupted tx_fetch_confirm event: resp_ids buffer overflow\n"); 2367 return; 2368 } 2369 2370 ath10k_htt_rx_tx_fetch_resp_id_confirm(ar, 2371 resp->tx_fetch_confirm.resp_ids, 2372 num_resp_ids); 2373 } 2374 2375 static void ath10k_htt_rx_tx_mode_switch_ind(struct ath10k *ar, 2376 struct sk_buff *skb) 2377 { 2378 const struct htt_resp *resp = (void *)skb->data; 2379 const struct htt_tx_mode_switch_record *record; 2380 struct ieee80211_txq *txq; 2381 struct ath10k_txq *artxq; 2382 size_t len; 2383 size_t num_records; 2384 enum htt_tx_mode_switch_mode mode; 2385 bool enable; 2386 u16 info0; 2387 u16 info1; 2388 u16 threshold; 2389 u16 peer_id; 2390 u8 tid; 2391 int i; 2392 2393 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx mode switch ind\n"); 2394 2395 len = sizeof(resp->hdr) + sizeof(resp->tx_mode_switch_ind); 2396 if (unlikely(skb->len < len)) { 2397 ath10k_warn(ar, "received corrupted tx_mode_switch_ind event: buffer too short\n"); 2398 return; 2399 } 2400 2401 info0 = le16_to_cpu(resp->tx_mode_switch_ind.info0); 2402 info1 = le16_to_cpu(resp->tx_mode_switch_ind.info1); 2403 2404 enable = !!(info0 & HTT_TX_MODE_SWITCH_IND_INFO0_ENABLE); 2405 num_records = MS(info0, HTT_TX_MODE_SWITCH_IND_INFO1_THRESHOLD); 2406 mode = MS(info1, HTT_TX_MODE_SWITCH_IND_INFO1_MODE); 2407 threshold = MS(info1, HTT_TX_MODE_SWITCH_IND_INFO1_THRESHOLD); 2408 2409 ath10k_dbg(ar, ATH10K_DBG_HTT, 2410 "htt rx tx mode switch ind info0 0x%04hx info1 0x%04hx enable %d num records %zd mode %d threshold %hu\n", 2411 info0, info1, enable, num_records, mode, threshold); 2412 2413 len += sizeof(resp->tx_mode_switch_ind.records[0]) * num_records; 2414 2415 if (unlikely(skb->len < len)) { 2416 ath10k_warn(ar, "received corrupted tx_mode_switch_mode_ind event: too many records\n"); 2417 return; 2418 } 2419 2420 switch (mode) { 2421 case HTT_TX_MODE_SWITCH_PUSH: 2422 case HTT_TX_MODE_SWITCH_PUSH_PULL: 2423 break; 2424 default: 2425 ath10k_warn(ar, "received invalid tx_mode_switch_mode_ind mode %d, ignoring\n", 2426 mode); 2427 return; 2428 } 2429 2430 if (!enable) 2431 return; 2432 2433 ar->htt.tx_q_state.enabled = enable; 2434 ar->htt.tx_q_state.mode = mode; 2435 ar->htt.tx_q_state.num_push_allowed = threshold; 2436 2437 rcu_read_lock(); 2438 2439 for (i = 0; i < num_records; i++) { 2440 record = &resp->tx_mode_switch_ind.records[i]; 2441 info0 = le16_to_cpu(record->info0); 2442 peer_id = MS(info0, HTT_TX_MODE_SWITCH_RECORD_INFO0_PEER_ID); 2443 tid = MS(info0, HTT_TX_MODE_SWITCH_RECORD_INFO0_TID); 2444 2445 if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) || 2446 unlikely(tid >= ar->htt.tx_q_state.num_tids)) { 2447 ath10k_warn(ar, "received out of range peer_id %hu tid %hhu\n", 2448 peer_id, tid); 2449 continue; 2450 } 2451 2452 spin_lock_bh(&ar->data_lock); 2453 txq = ath10k_mac_txq_lookup(ar, peer_id, tid); 2454 spin_unlock_bh(&ar->data_lock); 2455 2456 /* It is okay to release the lock and use txq because RCU read 2457 * lock is held. 2458 */ 2459 2460 if (unlikely(!txq)) { 2461 ath10k_warn(ar, "failed to lookup txq for peer_id %hu tid %hhu\n", 2462 peer_id, tid); 2463 continue; 2464 } 2465 2466 spin_lock_bh(&ar->htt.tx_lock); 2467 artxq = (void *)txq->drv_priv; 2468 artxq->num_push_allowed = le16_to_cpu(record->num_max_msdus); 2469 spin_unlock_bh(&ar->htt.tx_lock); 2470 } 2471 2472 rcu_read_unlock(); 2473 2474 ath10k_mac_tx_push_pending(ar); 2475 } 2476 2477 void ath10k_htt_htc_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb) 2478 { 2479 bool release; 2480 2481 release = ath10k_htt_t2h_msg_handler(ar, skb); 2482 2483 /* Free the indication buffer */ 2484 if (release) 2485 dev_kfree_skb_any(skb); 2486 } 2487 2488 static inline bool is_valid_legacy_rate(u8 rate) 2489 { 2490 static const u8 legacy_rates[] = {1, 2, 5, 11, 6, 9, 12, 2491 18, 24, 36, 48, 54}; 2492 int i; 2493 2494 for (i = 0; i < ARRAY_SIZE(legacy_rates); i++) { 2495 if (rate == legacy_rates[i]) 2496 return true; 2497 } 2498 2499 return false; 2500 } 2501 2502 static void 2503 ath10k_update_per_peer_tx_stats(struct ath10k *ar, 2504 struct ieee80211_sta *sta, 2505 struct ath10k_per_peer_tx_stats *peer_stats) 2506 { 2507 struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv; 2508 u8 rate = 0, sgi; 2509 struct rate_info txrate; 2510 2511 lockdep_assert_held(&ar->data_lock); 2512 2513 txrate.flags = ATH10K_HW_PREAMBLE(peer_stats->ratecode); 2514 txrate.bw = ATH10K_HW_BW(peer_stats->flags); 2515 txrate.nss = ATH10K_HW_NSS(peer_stats->ratecode); 2516 txrate.mcs = ATH10K_HW_MCS_RATE(peer_stats->ratecode); 2517 sgi = ATH10K_HW_GI(peer_stats->flags); 2518 2519 if (txrate.flags == WMI_RATE_PREAMBLE_VHT && txrate.mcs > 9) { 2520 ath10k_warn(ar, "Invalid VHT mcs %hhd peer stats", txrate.mcs); 2521 return; 2522 } 2523 2524 if (txrate.flags == WMI_RATE_PREAMBLE_HT && 2525 (txrate.mcs > 7 || txrate.nss < 1)) { 2526 ath10k_warn(ar, "Invalid HT mcs %hhd nss %hhd peer stats", 2527 txrate.mcs, txrate.nss); 2528 return; 2529 } 2530 2531 memset(&arsta->txrate, 0, sizeof(arsta->txrate)); 2532 2533 if (txrate.flags == WMI_RATE_PREAMBLE_CCK || 2534 txrate.flags == WMI_RATE_PREAMBLE_OFDM) { 2535 rate = ATH10K_HW_LEGACY_RATE(peer_stats->ratecode); 2536 2537 if (!is_valid_legacy_rate(rate)) { 2538 ath10k_warn(ar, "Invalid legacy rate %hhd peer stats", 2539 rate); 2540 return; 2541 } 2542 2543 /* This is hacky, FW sends CCK rate 5.5Mbps as 6 */ 2544 rate *= 10; 2545 if (rate == 60 && txrate.flags == WMI_RATE_PREAMBLE_CCK) 2546 rate = rate - 5; 2547 arsta->txrate.legacy = rate; 2548 } else if (txrate.flags == WMI_RATE_PREAMBLE_HT) { 2549 arsta->txrate.flags = RATE_INFO_FLAGS_MCS; 2550 arsta->txrate.mcs = txrate.mcs + 8 * (txrate.nss - 1); 2551 } else { 2552 arsta->txrate.flags = RATE_INFO_FLAGS_VHT_MCS; 2553 arsta->txrate.mcs = txrate.mcs; 2554 } 2555 2556 if (sgi) 2557 arsta->txrate.flags |= RATE_INFO_FLAGS_SHORT_GI; 2558 2559 arsta->txrate.nss = txrate.nss; 2560 arsta->txrate.bw = ath10k_bw_to_mac80211_bw(txrate.bw); 2561 } 2562 2563 static void ath10k_htt_fetch_peer_stats(struct ath10k *ar, 2564 struct sk_buff *skb) 2565 { 2566 struct htt_resp *resp = (struct htt_resp *)skb->data; 2567 struct ath10k_per_peer_tx_stats *p_tx_stats = &ar->peer_tx_stats; 2568 struct htt_per_peer_tx_stats_ind *tx_stats; 2569 struct ieee80211_sta *sta; 2570 struct ath10k_peer *peer; 2571 int peer_id, i; 2572 u8 ppdu_len, num_ppdu; 2573 2574 num_ppdu = resp->peer_tx_stats.num_ppdu; 2575 ppdu_len = resp->peer_tx_stats.ppdu_len * sizeof(__le32); 2576 2577 if (skb->len < sizeof(struct htt_resp_hdr) + num_ppdu * ppdu_len) { 2578 ath10k_warn(ar, "Invalid peer stats buf length %d\n", skb->len); 2579 return; 2580 } 2581 2582 tx_stats = (struct htt_per_peer_tx_stats_ind *) 2583 (resp->peer_tx_stats.payload); 2584 peer_id = __le16_to_cpu(tx_stats->peer_id); 2585 2586 rcu_read_lock(); 2587 spin_lock_bh(&ar->data_lock); 2588 peer = ath10k_peer_find_by_id(ar, peer_id); 2589 if (!peer) { 2590 ath10k_warn(ar, "Invalid peer id %d peer stats buffer\n", 2591 peer_id); 2592 goto out; 2593 } 2594 2595 sta = peer->sta; 2596 for (i = 0; i < num_ppdu; i++) { 2597 tx_stats = (struct htt_per_peer_tx_stats_ind *) 2598 (resp->peer_tx_stats.payload + i * ppdu_len); 2599 2600 p_tx_stats->succ_bytes = __le32_to_cpu(tx_stats->succ_bytes); 2601 p_tx_stats->retry_bytes = __le32_to_cpu(tx_stats->retry_bytes); 2602 p_tx_stats->failed_bytes = 2603 __le32_to_cpu(tx_stats->failed_bytes); 2604 p_tx_stats->ratecode = tx_stats->ratecode; 2605 p_tx_stats->flags = tx_stats->flags; 2606 p_tx_stats->succ_pkts = __le16_to_cpu(tx_stats->succ_pkts); 2607 p_tx_stats->retry_pkts = __le16_to_cpu(tx_stats->retry_pkts); 2608 p_tx_stats->failed_pkts = __le16_to_cpu(tx_stats->failed_pkts); 2609 2610 ath10k_update_per_peer_tx_stats(ar, sta, p_tx_stats); 2611 } 2612 2613 out: 2614 spin_unlock_bh(&ar->data_lock); 2615 rcu_read_unlock(); 2616 } 2617 2618 static void ath10k_fetch_10_2_tx_stats(struct ath10k *ar, u8 *data) 2619 { 2620 struct ath10k_pktlog_hdr *hdr = (struct ath10k_pktlog_hdr *)data; 2621 struct ath10k_per_peer_tx_stats *p_tx_stats = &ar->peer_tx_stats; 2622 struct ath10k_10_2_peer_tx_stats *tx_stats; 2623 struct ieee80211_sta *sta; 2624 struct ath10k_peer *peer; 2625 u16 log_type = __le16_to_cpu(hdr->log_type); 2626 u32 peer_id = 0, i; 2627 2628 if (log_type != ATH_PKTLOG_TYPE_TX_STAT) 2629 return; 2630 2631 tx_stats = (struct ath10k_10_2_peer_tx_stats *)((hdr->payload) + 2632 ATH10K_10_2_TX_STATS_OFFSET); 2633 2634 if (!tx_stats->tx_ppdu_cnt) 2635 return; 2636 2637 peer_id = tx_stats->peer_id; 2638 2639 rcu_read_lock(); 2640 spin_lock_bh(&ar->data_lock); 2641 peer = ath10k_peer_find_by_id(ar, peer_id); 2642 if (!peer) { 2643 ath10k_warn(ar, "Invalid peer id %d in peer stats buffer\n", 2644 peer_id); 2645 goto out; 2646 } 2647 2648 sta = peer->sta; 2649 for (i = 0; i < tx_stats->tx_ppdu_cnt; i++) { 2650 p_tx_stats->succ_bytes = 2651 __le16_to_cpu(tx_stats->success_bytes[i]); 2652 p_tx_stats->retry_bytes = 2653 __le16_to_cpu(tx_stats->retry_bytes[i]); 2654 p_tx_stats->failed_bytes = 2655 __le16_to_cpu(tx_stats->failed_bytes[i]); 2656 p_tx_stats->ratecode = tx_stats->ratecode[i]; 2657 p_tx_stats->flags = tx_stats->flags[i]; 2658 p_tx_stats->succ_pkts = tx_stats->success_pkts[i]; 2659 p_tx_stats->retry_pkts = tx_stats->retry_pkts[i]; 2660 p_tx_stats->failed_pkts = tx_stats->failed_pkts[i]; 2661 2662 ath10k_update_per_peer_tx_stats(ar, sta, p_tx_stats); 2663 } 2664 spin_unlock_bh(&ar->data_lock); 2665 rcu_read_unlock(); 2666 2667 return; 2668 2669 out: 2670 spin_unlock_bh(&ar->data_lock); 2671 rcu_read_unlock(); 2672 } 2673 2674 bool ath10k_htt_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb) 2675 { 2676 struct ath10k_htt *htt = &ar->htt; 2677 struct htt_resp *resp = (struct htt_resp *)skb->data; 2678 enum htt_t2h_msg_type type; 2679 2680 /* confirm alignment */ 2681 if (!IS_ALIGNED((unsigned long)skb->data, 4)) 2682 ath10k_warn(ar, "unaligned htt message, expect trouble\n"); 2683 2684 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, msg_type: 0x%0X\n", 2685 resp->hdr.msg_type); 2686 2687 if (resp->hdr.msg_type >= ar->htt.t2h_msg_types_max) { 2688 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, unsupported msg_type: 0x%0X\n max: 0x%0X", 2689 resp->hdr.msg_type, ar->htt.t2h_msg_types_max); 2690 return true; 2691 } 2692 type = ar->htt.t2h_msg_types[resp->hdr.msg_type]; 2693 2694 switch (type) { 2695 case HTT_T2H_MSG_TYPE_VERSION_CONF: { 2696 htt->target_version_major = resp->ver_resp.major; 2697 htt->target_version_minor = resp->ver_resp.minor; 2698 complete(&htt->target_version_received); 2699 break; 2700 } 2701 case HTT_T2H_MSG_TYPE_RX_IND: 2702 ath10k_htt_rx_proc_rx_ind(htt, &resp->rx_ind); 2703 break; 2704 case HTT_T2H_MSG_TYPE_PEER_MAP: { 2705 struct htt_peer_map_event ev = { 2706 .vdev_id = resp->peer_map.vdev_id, 2707 .peer_id = __le16_to_cpu(resp->peer_map.peer_id), 2708 }; 2709 memcpy(ev.addr, resp->peer_map.addr, sizeof(ev.addr)); 2710 ath10k_peer_map_event(htt, &ev); 2711 break; 2712 } 2713 case HTT_T2H_MSG_TYPE_PEER_UNMAP: { 2714 struct htt_peer_unmap_event ev = { 2715 .peer_id = __le16_to_cpu(resp->peer_unmap.peer_id), 2716 }; 2717 ath10k_peer_unmap_event(htt, &ev); 2718 break; 2719 } 2720 case HTT_T2H_MSG_TYPE_MGMT_TX_COMPLETION: { 2721 struct htt_tx_done tx_done = {}; 2722 int status = __le32_to_cpu(resp->mgmt_tx_completion.status); 2723 int info = __le32_to_cpu(resp->mgmt_tx_completion.info); 2724 2725 tx_done.msdu_id = __le32_to_cpu(resp->mgmt_tx_completion.desc_id); 2726 2727 switch (status) { 2728 case HTT_MGMT_TX_STATUS_OK: 2729 tx_done.status = HTT_TX_COMPL_STATE_ACK; 2730 if (test_bit(WMI_SERVICE_HTT_MGMT_TX_COMP_VALID_FLAGS, 2731 ar->wmi.svc_map) && 2732 (resp->mgmt_tx_completion.flags & 2733 HTT_MGMT_TX_CMPL_FLAG_ACK_RSSI)) { 2734 tx_done.ack_rssi = 2735 FIELD_GET(HTT_MGMT_TX_CMPL_INFO_ACK_RSSI_MASK, 2736 info); 2737 } 2738 break; 2739 case HTT_MGMT_TX_STATUS_RETRY: 2740 tx_done.status = HTT_TX_COMPL_STATE_NOACK; 2741 break; 2742 case HTT_MGMT_TX_STATUS_DROP: 2743 tx_done.status = HTT_TX_COMPL_STATE_DISCARD; 2744 break; 2745 } 2746 2747 status = ath10k_txrx_tx_unref(htt, &tx_done); 2748 if (!status) { 2749 spin_lock_bh(&htt->tx_lock); 2750 ath10k_htt_tx_mgmt_dec_pending(htt); 2751 spin_unlock_bh(&htt->tx_lock); 2752 } 2753 break; 2754 } 2755 case HTT_T2H_MSG_TYPE_TX_COMPL_IND: 2756 ath10k_htt_rx_tx_compl_ind(htt->ar, skb); 2757 break; 2758 case HTT_T2H_MSG_TYPE_SEC_IND: { 2759 struct ath10k *ar = htt->ar; 2760 struct htt_security_indication *ev = &resp->security_indication; 2761 2762 ath10k_dbg(ar, ATH10K_DBG_HTT, 2763 "sec ind peer_id %d unicast %d type %d\n", 2764 __le16_to_cpu(ev->peer_id), 2765 !!(ev->flags & HTT_SECURITY_IS_UNICAST), 2766 MS(ev->flags, HTT_SECURITY_TYPE)); 2767 complete(&ar->install_key_done); 2768 break; 2769 } 2770 case HTT_T2H_MSG_TYPE_RX_FRAG_IND: { 2771 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ", 2772 skb->data, skb->len); 2773 atomic_inc(&htt->num_mpdus_ready); 2774 break; 2775 } 2776 case HTT_T2H_MSG_TYPE_TEST: 2777 break; 2778 case HTT_T2H_MSG_TYPE_STATS_CONF: 2779 trace_ath10k_htt_stats(ar, skb->data, skb->len); 2780 break; 2781 case HTT_T2H_MSG_TYPE_TX_INSPECT_IND: 2782 /* Firmware can return tx frames if it's unable to fully 2783 * process them and suspects host may be able to fix it. ath10k 2784 * sends all tx frames as already inspected so this shouldn't 2785 * happen unless fw has a bug. 2786 */ 2787 ath10k_warn(ar, "received an unexpected htt tx inspect event\n"); 2788 break; 2789 case HTT_T2H_MSG_TYPE_RX_ADDBA: 2790 ath10k_htt_rx_addba(ar, resp); 2791 break; 2792 case HTT_T2H_MSG_TYPE_RX_DELBA: 2793 ath10k_htt_rx_delba(ar, resp); 2794 break; 2795 case HTT_T2H_MSG_TYPE_PKTLOG: { 2796 trace_ath10k_htt_pktlog(ar, resp->pktlog_msg.payload, 2797 skb->len - 2798 offsetof(struct htt_resp, 2799 pktlog_msg.payload)); 2800 2801 if (ath10k_peer_stats_enabled(ar)) 2802 ath10k_fetch_10_2_tx_stats(ar, 2803 resp->pktlog_msg.payload); 2804 break; 2805 } 2806 case HTT_T2H_MSG_TYPE_RX_FLUSH: { 2807 /* Ignore this event because mac80211 takes care of Rx 2808 * aggregation reordering. 2809 */ 2810 break; 2811 } 2812 case HTT_T2H_MSG_TYPE_RX_IN_ORD_PADDR_IND: { 2813 __skb_queue_tail(&htt->rx_in_ord_compl_q, skb); 2814 return false; 2815 } 2816 case HTT_T2H_MSG_TYPE_TX_CREDIT_UPDATE_IND: 2817 break; 2818 case HTT_T2H_MSG_TYPE_CHAN_CHANGE: { 2819 u32 phymode = __le32_to_cpu(resp->chan_change.phymode); 2820 u32 freq = __le32_to_cpu(resp->chan_change.freq); 2821 2822 ar->tgt_oper_chan = ieee80211_get_channel(ar->hw->wiphy, freq); 2823 ath10k_dbg(ar, ATH10K_DBG_HTT, 2824 "htt chan change freq %u phymode %s\n", 2825 freq, ath10k_wmi_phymode_str(phymode)); 2826 break; 2827 } 2828 case HTT_T2H_MSG_TYPE_AGGR_CONF: 2829 break; 2830 case HTT_T2H_MSG_TYPE_TX_FETCH_IND: { 2831 struct sk_buff *tx_fetch_ind = skb_copy(skb, GFP_ATOMIC); 2832 2833 if (!tx_fetch_ind) { 2834 ath10k_warn(ar, "failed to copy htt tx fetch ind\n"); 2835 break; 2836 } 2837 skb_queue_tail(&htt->tx_fetch_ind_q, tx_fetch_ind); 2838 break; 2839 } 2840 case HTT_T2H_MSG_TYPE_TX_FETCH_CONFIRM: 2841 ath10k_htt_rx_tx_fetch_confirm(ar, skb); 2842 break; 2843 case HTT_T2H_MSG_TYPE_TX_MODE_SWITCH_IND: 2844 ath10k_htt_rx_tx_mode_switch_ind(ar, skb); 2845 break; 2846 case HTT_T2H_MSG_TYPE_PEER_STATS: 2847 ath10k_htt_fetch_peer_stats(ar, skb); 2848 break; 2849 case HTT_T2H_MSG_TYPE_EN_STATS: 2850 default: 2851 ath10k_warn(ar, "htt event (%d) not handled\n", 2852 resp->hdr.msg_type); 2853 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ", 2854 skb->data, skb->len); 2855 break; 2856 } 2857 return true; 2858 } 2859 EXPORT_SYMBOL(ath10k_htt_t2h_msg_handler); 2860 2861 void ath10k_htt_rx_pktlog_completion_handler(struct ath10k *ar, 2862 struct sk_buff *skb) 2863 { 2864 trace_ath10k_htt_pktlog(ar, skb->data, skb->len); 2865 dev_kfree_skb_any(skb); 2866 } 2867 EXPORT_SYMBOL(ath10k_htt_rx_pktlog_completion_handler); 2868 2869 static int ath10k_htt_rx_deliver_msdu(struct ath10k *ar, int quota, int budget) 2870 { 2871 struct sk_buff *skb; 2872 2873 while (quota < budget) { 2874 if (skb_queue_empty(&ar->htt.rx_msdus_q)) 2875 break; 2876 2877 skb = __skb_dequeue(&ar->htt.rx_msdus_q); 2878 if (!skb) 2879 break; 2880 ath10k_process_rx(ar, skb); 2881 quota++; 2882 } 2883 2884 return quota; 2885 } 2886 2887 int ath10k_htt_txrx_compl_task(struct ath10k *ar, int budget) 2888 { 2889 struct ath10k_htt *htt = &ar->htt; 2890 struct htt_tx_done tx_done = {}; 2891 struct sk_buff_head tx_ind_q; 2892 struct sk_buff *skb; 2893 unsigned long flags; 2894 int quota = 0, done, ret; 2895 bool resched_napi = false; 2896 2897 __skb_queue_head_init(&tx_ind_q); 2898 2899 /* Process pending frames before dequeuing more data 2900 * from hardware. 2901 */ 2902 quota = ath10k_htt_rx_deliver_msdu(ar, quota, budget); 2903 if (quota == budget) { 2904 resched_napi = true; 2905 goto exit; 2906 } 2907 2908 while ((skb = __skb_dequeue(&htt->rx_in_ord_compl_q))) { 2909 spin_lock_bh(&htt->rx_ring.lock); 2910 ret = ath10k_htt_rx_in_ord_ind(ar, skb); 2911 spin_unlock_bh(&htt->rx_ring.lock); 2912 2913 dev_kfree_skb_any(skb); 2914 if (ret == -EIO) { 2915 resched_napi = true; 2916 goto exit; 2917 } 2918 } 2919 2920 while (atomic_read(&htt->num_mpdus_ready)) { 2921 ret = ath10k_htt_rx_handle_amsdu(htt); 2922 if (ret == -EIO) { 2923 resched_napi = true; 2924 goto exit; 2925 } 2926 atomic_dec(&htt->num_mpdus_ready); 2927 } 2928 2929 /* Deliver received data after processing data from hardware */ 2930 quota = ath10k_htt_rx_deliver_msdu(ar, quota, budget); 2931 2932 /* From NAPI documentation: 2933 * The napi poll() function may also process TX completions, in which 2934 * case if it processes the entire TX ring then it should count that 2935 * work as the rest of the budget. 2936 */ 2937 if ((quota < budget) && !kfifo_is_empty(&htt->txdone_fifo)) 2938 quota = budget; 2939 2940 /* kfifo_get: called only within txrx_tasklet so it's neatly serialized. 2941 * From kfifo_get() documentation: 2942 * Note that with only one concurrent reader and one concurrent writer, 2943 * you don't need extra locking to use these macro. 2944 */ 2945 while (kfifo_get(&htt->txdone_fifo, &tx_done)) 2946 ath10k_txrx_tx_unref(htt, &tx_done); 2947 2948 ath10k_mac_tx_push_pending(ar); 2949 2950 spin_lock_irqsave(&htt->tx_fetch_ind_q.lock, flags); 2951 skb_queue_splice_init(&htt->tx_fetch_ind_q, &tx_ind_q); 2952 spin_unlock_irqrestore(&htt->tx_fetch_ind_q.lock, flags); 2953 2954 while ((skb = __skb_dequeue(&tx_ind_q))) { 2955 ath10k_htt_rx_tx_fetch_ind(ar, skb); 2956 dev_kfree_skb_any(skb); 2957 } 2958 2959 exit: 2960 ath10k_htt_rx_msdu_buff_replenish(htt); 2961 /* In case of rx failure or more data to read, report budget 2962 * to reschedule NAPI poll 2963 */ 2964 done = resched_napi ? budget : quota; 2965 2966 return done; 2967 } 2968 EXPORT_SYMBOL(ath10k_htt_txrx_compl_task); 2969 2970 static const struct ath10k_htt_rx_ops htt_rx_ops_32 = { 2971 .htt_get_rx_ring_size = ath10k_htt_get_rx_ring_size_32, 2972 .htt_config_paddrs_ring = ath10k_htt_config_paddrs_ring_32, 2973 .htt_set_paddrs_ring = ath10k_htt_set_paddrs_ring_32, 2974 .htt_get_vaddr_ring = ath10k_htt_get_vaddr_ring_32, 2975 .htt_reset_paddrs_ring = ath10k_htt_reset_paddrs_ring_32, 2976 }; 2977 2978 static const struct ath10k_htt_rx_ops htt_rx_ops_64 = { 2979 .htt_get_rx_ring_size = ath10k_htt_get_rx_ring_size_64, 2980 .htt_config_paddrs_ring = ath10k_htt_config_paddrs_ring_64, 2981 .htt_set_paddrs_ring = ath10k_htt_set_paddrs_ring_64, 2982 .htt_get_vaddr_ring = ath10k_htt_get_vaddr_ring_64, 2983 .htt_reset_paddrs_ring = ath10k_htt_reset_paddrs_ring_64, 2984 }; 2985 2986 void ath10k_htt_set_rx_ops(struct ath10k_htt *htt) 2987 { 2988 struct ath10k *ar = htt->ar; 2989 2990 if (ar->hw_params.target_64bit) 2991 htt->rx_ops = &htt_rx_ops_64; 2992 else 2993 htt->rx_ops = &htt_rx_ops_32; 2994 } 2995