1 // SPDX-License-Identifier: ISC 2 /* 3 * Copyright (c) 2005-2011 Atheros Communications Inc. 4 * Copyright (c) 2011-2017 Qualcomm Atheros, Inc. 5 * Copyright (c) 2018, The Linux Foundation. All rights reserved. 6 */ 7 8 #include "core.h" 9 #include "htc.h" 10 #include "htt.h" 11 #include "txrx.h" 12 #include "debug.h" 13 #include "trace.h" 14 #include "mac.h" 15 16 #include <linux/log2.h> 17 #include <linux/bitfield.h> 18 19 /* when under memory pressure rx ring refill may fail and needs a retry */ 20 #define HTT_RX_RING_REFILL_RETRY_MS 50 21 22 #define HTT_RX_RING_REFILL_RESCHED_MS 5 23 24 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb); 25 26 static struct sk_buff * 27 ath10k_htt_rx_find_skb_paddr(struct ath10k *ar, u64 paddr) 28 { 29 struct ath10k_skb_rxcb *rxcb; 30 31 hash_for_each_possible(ar->htt.rx_ring.skb_table, rxcb, hlist, paddr) 32 if (rxcb->paddr == paddr) 33 return ATH10K_RXCB_SKB(rxcb); 34 35 WARN_ON_ONCE(1); 36 return NULL; 37 } 38 39 static void ath10k_htt_rx_ring_free(struct ath10k_htt *htt) 40 { 41 struct sk_buff *skb; 42 struct ath10k_skb_rxcb *rxcb; 43 struct hlist_node *n; 44 int i; 45 46 if (htt->rx_ring.in_ord_rx) { 47 hash_for_each_safe(htt->rx_ring.skb_table, i, n, rxcb, hlist) { 48 skb = ATH10K_RXCB_SKB(rxcb); 49 dma_unmap_single(htt->ar->dev, rxcb->paddr, 50 skb->len + skb_tailroom(skb), 51 DMA_FROM_DEVICE); 52 hash_del(&rxcb->hlist); 53 dev_kfree_skb_any(skb); 54 } 55 } else { 56 for (i = 0; i < htt->rx_ring.size; i++) { 57 skb = htt->rx_ring.netbufs_ring[i]; 58 if (!skb) 59 continue; 60 61 rxcb = ATH10K_SKB_RXCB(skb); 62 dma_unmap_single(htt->ar->dev, rxcb->paddr, 63 skb->len + skb_tailroom(skb), 64 DMA_FROM_DEVICE); 65 dev_kfree_skb_any(skb); 66 } 67 } 68 69 htt->rx_ring.fill_cnt = 0; 70 hash_init(htt->rx_ring.skb_table); 71 memset(htt->rx_ring.netbufs_ring, 0, 72 htt->rx_ring.size * sizeof(htt->rx_ring.netbufs_ring[0])); 73 } 74 75 static size_t ath10k_htt_get_rx_ring_size_32(struct ath10k_htt *htt) 76 { 77 return htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring_32); 78 } 79 80 static size_t ath10k_htt_get_rx_ring_size_64(struct ath10k_htt *htt) 81 { 82 return htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring_64); 83 } 84 85 static void ath10k_htt_config_paddrs_ring_32(struct ath10k_htt *htt, 86 void *vaddr) 87 { 88 htt->rx_ring.paddrs_ring_32 = vaddr; 89 } 90 91 static void ath10k_htt_config_paddrs_ring_64(struct ath10k_htt *htt, 92 void *vaddr) 93 { 94 htt->rx_ring.paddrs_ring_64 = vaddr; 95 } 96 97 static void ath10k_htt_set_paddrs_ring_32(struct ath10k_htt *htt, 98 dma_addr_t paddr, int idx) 99 { 100 htt->rx_ring.paddrs_ring_32[idx] = __cpu_to_le32(paddr); 101 } 102 103 static void ath10k_htt_set_paddrs_ring_64(struct ath10k_htt *htt, 104 dma_addr_t paddr, int idx) 105 { 106 htt->rx_ring.paddrs_ring_64[idx] = __cpu_to_le64(paddr); 107 } 108 109 static void ath10k_htt_reset_paddrs_ring_32(struct ath10k_htt *htt, int idx) 110 { 111 htt->rx_ring.paddrs_ring_32[idx] = 0; 112 } 113 114 static void ath10k_htt_reset_paddrs_ring_64(struct ath10k_htt *htt, int idx) 115 { 116 htt->rx_ring.paddrs_ring_64[idx] = 0; 117 } 118 119 static void *ath10k_htt_get_vaddr_ring_32(struct ath10k_htt *htt) 120 { 121 return (void *)htt->rx_ring.paddrs_ring_32; 122 } 123 124 static void *ath10k_htt_get_vaddr_ring_64(struct ath10k_htt *htt) 125 { 126 return (void *)htt->rx_ring.paddrs_ring_64; 127 } 128 129 static int __ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num) 130 { 131 struct htt_rx_desc *rx_desc; 132 struct ath10k_skb_rxcb *rxcb; 133 struct sk_buff *skb; 134 dma_addr_t paddr; 135 int ret = 0, idx; 136 137 /* The Full Rx Reorder firmware has no way of telling the host 138 * implicitly when it copied HTT Rx Ring buffers to MAC Rx Ring. 139 * To keep things simple make sure ring is always half empty. This 140 * guarantees there'll be no replenishment overruns possible. 141 */ 142 BUILD_BUG_ON(HTT_RX_RING_FILL_LEVEL >= HTT_RX_RING_SIZE / 2); 143 144 idx = __le32_to_cpu(*htt->rx_ring.alloc_idx.vaddr); 145 146 if (idx < 0 || idx >= htt->rx_ring.size) { 147 ath10k_err(htt->ar, "rx ring index is not valid, firmware malfunctioning?\n"); 148 idx &= htt->rx_ring.size_mask; 149 ret = -ENOMEM; 150 goto fail; 151 } 152 153 while (num > 0) { 154 skb = dev_alloc_skb(HTT_RX_BUF_SIZE + HTT_RX_DESC_ALIGN); 155 if (!skb) { 156 ret = -ENOMEM; 157 goto fail; 158 } 159 160 if (!IS_ALIGNED((unsigned long)skb->data, HTT_RX_DESC_ALIGN)) 161 skb_pull(skb, 162 PTR_ALIGN(skb->data, HTT_RX_DESC_ALIGN) - 163 skb->data); 164 165 /* Clear rx_desc attention word before posting to Rx ring */ 166 rx_desc = (struct htt_rx_desc *)skb->data; 167 rx_desc->attention.flags = __cpu_to_le32(0); 168 169 paddr = dma_map_single(htt->ar->dev, skb->data, 170 skb->len + skb_tailroom(skb), 171 DMA_FROM_DEVICE); 172 173 if (unlikely(dma_mapping_error(htt->ar->dev, paddr))) { 174 dev_kfree_skb_any(skb); 175 ret = -ENOMEM; 176 goto fail; 177 } 178 179 rxcb = ATH10K_SKB_RXCB(skb); 180 rxcb->paddr = paddr; 181 htt->rx_ring.netbufs_ring[idx] = skb; 182 ath10k_htt_set_paddrs_ring(htt, paddr, idx); 183 htt->rx_ring.fill_cnt++; 184 185 if (htt->rx_ring.in_ord_rx) { 186 hash_add(htt->rx_ring.skb_table, 187 &ATH10K_SKB_RXCB(skb)->hlist, 188 paddr); 189 } 190 191 num--; 192 idx++; 193 idx &= htt->rx_ring.size_mask; 194 } 195 196 fail: 197 /* 198 * Make sure the rx buffer is updated before available buffer 199 * index to avoid any potential rx ring corruption. 200 */ 201 mb(); 202 *htt->rx_ring.alloc_idx.vaddr = __cpu_to_le32(idx); 203 return ret; 204 } 205 206 static int ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num) 207 { 208 lockdep_assert_held(&htt->rx_ring.lock); 209 return __ath10k_htt_rx_ring_fill_n(htt, num); 210 } 211 212 static void ath10k_htt_rx_msdu_buff_replenish(struct ath10k_htt *htt) 213 { 214 int ret, num_deficit, num_to_fill; 215 216 /* Refilling the whole RX ring buffer proves to be a bad idea. The 217 * reason is RX may take up significant amount of CPU cycles and starve 218 * other tasks, e.g. TX on an ethernet device while acting as a bridge 219 * with ath10k wlan interface. This ended up with very poor performance 220 * once CPU the host system was overwhelmed with RX on ath10k. 221 * 222 * By limiting the number of refills the replenishing occurs 223 * progressively. This in turns makes use of the fact tasklets are 224 * processed in FIFO order. This means actual RX processing can starve 225 * out refilling. If there's not enough buffers on RX ring FW will not 226 * report RX until it is refilled with enough buffers. This 227 * automatically balances load wrt to CPU power. 228 * 229 * This probably comes at a cost of lower maximum throughput but 230 * improves the average and stability. 231 */ 232 spin_lock_bh(&htt->rx_ring.lock); 233 num_deficit = htt->rx_ring.fill_level - htt->rx_ring.fill_cnt; 234 num_to_fill = min(ATH10K_HTT_MAX_NUM_REFILL, num_deficit); 235 num_deficit -= num_to_fill; 236 ret = ath10k_htt_rx_ring_fill_n(htt, num_to_fill); 237 if (ret == -ENOMEM) { 238 /* 239 * Failed to fill it to the desired level - 240 * we'll start a timer and try again next time. 241 * As long as enough buffers are left in the ring for 242 * another A-MPDU rx, no special recovery is needed. 243 */ 244 mod_timer(&htt->rx_ring.refill_retry_timer, jiffies + 245 msecs_to_jiffies(HTT_RX_RING_REFILL_RETRY_MS)); 246 } else if (num_deficit > 0) { 247 mod_timer(&htt->rx_ring.refill_retry_timer, jiffies + 248 msecs_to_jiffies(HTT_RX_RING_REFILL_RESCHED_MS)); 249 } 250 spin_unlock_bh(&htt->rx_ring.lock); 251 } 252 253 static void ath10k_htt_rx_ring_refill_retry(struct timer_list *t) 254 { 255 struct ath10k_htt *htt = from_timer(htt, t, rx_ring.refill_retry_timer); 256 257 ath10k_htt_rx_msdu_buff_replenish(htt); 258 } 259 260 int ath10k_htt_rx_ring_refill(struct ath10k *ar) 261 { 262 struct ath10k_htt *htt = &ar->htt; 263 int ret; 264 265 if (ar->bus_param.dev_type == ATH10K_DEV_TYPE_HL) 266 return 0; 267 268 spin_lock_bh(&htt->rx_ring.lock); 269 ret = ath10k_htt_rx_ring_fill_n(htt, (htt->rx_ring.fill_level - 270 htt->rx_ring.fill_cnt)); 271 272 if (ret) 273 ath10k_htt_rx_ring_free(htt); 274 275 spin_unlock_bh(&htt->rx_ring.lock); 276 277 return ret; 278 } 279 280 void ath10k_htt_rx_free(struct ath10k_htt *htt) 281 { 282 if (htt->ar->bus_param.dev_type == ATH10K_DEV_TYPE_HL) 283 return; 284 285 del_timer_sync(&htt->rx_ring.refill_retry_timer); 286 287 skb_queue_purge(&htt->rx_msdus_q); 288 skb_queue_purge(&htt->rx_in_ord_compl_q); 289 skb_queue_purge(&htt->tx_fetch_ind_q); 290 291 spin_lock_bh(&htt->rx_ring.lock); 292 ath10k_htt_rx_ring_free(htt); 293 spin_unlock_bh(&htt->rx_ring.lock); 294 295 dma_free_coherent(htt->ar->dev, 296 ath10k_htt_get_rx_ring_size(htt), 297 ath10k_htt_get_vaddr_ring(htt), 298 htt->rx_ring.base_paddr); 299 300 dma_free_coherent(htt->ar->dev, 301 sizeof(*htt->rx_ring.alloc_idx.vaddr), 302 htt->rx_ring.alloc_idx.vaddr, 303 htt->rx_ring.alloc_idx.paddr); 304 305 kfree(htt->rx_ring.netbufs_ring); 306 } 307 308 static inline struct sk_buff *ath10k_htt_rx_netbuf_pop(struct ath10k_htt *htt) 309 { 310 struct ath10k *ar = htt->ar; 311 int idx; 312 struct sk_buff *msdu; 313 314 lockdep_assert_held(&htt->rx_ring.lock); 315 316 if (htt->rx_ring.fill_cnt == 0) { 317 ath10k_warn(ar, "tried to pop sk_buff from an empty rx ring\n"); 318 return NULL; 319 } 320 321 idx = htt->rx_ring.sw_rd_idx.msdu_payld; 322 msdu = htt->rx_ring.netbufs_ring[idx]; 323 htt->rx_ring.netbufs_ring[idx] = NULL; 324 ath10k_htt_reset_paddrs_ring(htt, idx); 325 326 idx++; 327 idx &= htt->rx_ring.size_mask; 328 htt->rx_ring.sw_rd_idx.msdu_payld = idx; 329 htt->rx_ring.fill_cnt--; 330 331 dma_unmap_single(htt->ar->dev, 332 ATH10K_SKB_RXCB(msdu)->paddr, 333 msdu->len + skb_tailroom(msdu), 334 DMA_FROM_DEVICE); 335 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ", 336 msdu->data, msdu->len + skb_tailroom(msdu)); 337 338 return msdu; 339 } 340 341 /* return: < 0 fatal error, 0 - non chained msdu, 1 chained msdu */ 342 static int ath10k_htt_rx_amsdu_pop(struct ath10k_htt *htt, 343 struct sk_buff_head *amsdu) 344 { 345 struct ath10k *ar = htt->ar; 346 int msdu_len, msdu_chaining = 0; 347 struct sk_buff *msdu; 348 struct htt_rx_desc *rx_desc; 349 350 lockdep_assert_held(&htt->rx_ring.lock); 351 352 for (;;) { 353 int last_msdu, msdu_len_invalid, msdu_chained; 354 355 msdu = ath10k_htt_rx_netbuf_pop(htt); 356 if (!msdu) { 357 __skb_queue_purge(amsdu); 358 return -ENOENT; 359 } 360 361 __skb_queue_tail(amsdu, msdu); 362 363 rx_desc = (struct htt_rx_desc *)msdu->data; 364 365 /* FIXME: we must report msdu payload since this is what caller 366 * expects now 367 */ 368 skb_put(msdu, offsetof(struct htt_rx_desc, msdu_payload)); 369 skb_pull(msdu, offsetof(struct htt_rx_desc, msdu_payload)); 370 371 /* 372 * Sanity check - confirm the HW is finished filling in the 373 * rx data. 374 * If the HW and SW are working correctly, then it's guaranteed 375 * that the HW's MAC DMA is done before this point in the SW. 376 * To prevent the case that we handle a stale Rx descriptor, 377 * just assert for now until we have a way to recover. 378 */ 379 if (!(__le32_to_cpu(rx_desc->attention.flags) 380 & RX_ATTENTION_FLAGS_MSDU_DONE)) { 381 __skb_queue_purge(amsdu); 382 return -EIO; 383 } 384 385 msdu_len_invalid = !!(__le32_to_cpu(rx_desc->attention.flags) 386 & (RX_ATTENTION_FLAGS_MPDU_LENGTH_ERR | 387 RX_ATTENTION_FLAGS_MSDU_LENGTH_ERR)); 388 msdu_len = MS(__le32_to_cpu(rx_desc->msdu_start.common.info0), 389 RX_MSDU_START_INFO0_MSDU_LENGTH); 390 msdu_chained = rx_desc->frag_info.ring2_more_count; 391 392 if (msdu_len_invalid) 393 msdu_len = 0; 394 395 skb_trim(msdu, 0); 396 skb_put(msdu, min(msdu_len, HTT_RX_MSDU_SIZE)); 397 msdu_len -= msdu->len; 398 399 /* Note: Chained buffers do not contain rx descriptor */ 400 while (msdu_chained--) { 401 msdu = ath10k_htt_rx_netbuf_pop(htt); 402 if (!msdu) { 403 __skb_queue_purge(amsdu); 404 return -ENOENT; 405 } 406 407 __skb_queue_tail(amsdu, msdu); 408 skb_trim(msdu, 0); 409 skb_put(msdu, min(msdu_len, HTT_RX_BUF_SIZE)); 410 msdu_len -= msdu->len; 411 msdu_chaining = 1; 412 } 413 414 last_msdu = __le32_to_cpu(rx_desc->msdu_end.common.info0) & 415 RX_MSDU_END_INFO0_LAST_MSDU; 416 417 trace_ath10k_htt_rx_desc(ar, &rx_desc->attention, 418 sizeof(*rx_desc) - sizeof(u32)); 419 420 if (last_msdu) 421 break; 422 } 423 424 if (skb_queue_empty(amsdu)) 425 msdu_chaining = -1; 426 427 /* 428 * Don't refill the ring yet. 429 * 430 * First, the elements popped here are still in use - it is not 431 * safe to overwrite them until the matching call to 432 * mpdu_desc_list_next. Second, for efficiency it is preferable to 433 * refill the rx ring with 1 PPDU's worth of rx buffers (something 434 * like 32 x 3 buffers), rather than one MPDU's worth of rx buffers 435 * (something like 3 buffers). Consequently, we'll rely on the txrx 436 * SW to tell us when it is done pulling all the PPDU's rx buffers 437 * out of the rx ring, and then refill it just once. 438 */ 439 440 return msdu_chaining; 441 } 442 443 static struct sk_buff *ath10k_htt_rx_pop_paddr(struct ath10k_htt *htt, 444 u64 paddr) 445 { 446 struct ath10k *ar = htt->ar; 447 struct ath10k_skb_rxcb *rxcb; 448 struct sk_buff *msdu; 449 450 lockdep_assert_held(&htt->rx_ring.lock); 451 452 msdu = ath10k_htt_rx_find_skb_paddr(ar, paddr); 453 if (!msdu) 454 return NULL; 455 456 rxcb = ATH10K_SKB_RXCB(msdu); 457 hash_del(&rxcb->hlist); 458 htt->rx_ring.fill_cnt--; 459 460 dma_unmap_single(htt->ar->dev, rxcb->paddr, 461 msdu->len + skb_tailroom(msdu), 462 DMA_FROM_DEVICE); 463 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ", 464 msdu->data, msdu->len + skb_tailroom(msdu)); 465 466 return msdu; 467 } 468 469 static inline void ath10k_htt_append_frag_list(struct sk_buff *skb_head, 470 struct sk_buff *frag_list, 471 unsigned int frag_len) 472 { 473 skb_shinfo(skb_head)->frag_list = frag_list; 474 skb_head->data_len = frag_len; 475 skb_head->len += skb_head->data_len; 476 } 477 478 static int ath10k_htt_rx_handle_amsdu_mon_32(struct ath10k_htt *htt, 479 struct sk_buff *msdu, 480 struct htt_rx_in_ord_msdu_desc **msdu_desc) 481 { 482 struct ath10k *ar = htt->ar; 483 u32 paddr; 484 struct sk_buff *frag_buf; 485 struct sk_buff *prev_frag_buf; 486 u8 last_frag; 487 struct htt_rx_in_ord_msdu_desc *ind_desc = *msdu_desc; 488 struct htt_rx_desc *rxd; 489 int amsdu_len = __le16_to_cpu(ind_desc->msdu_len); 490 491 rxd = (void *)msdu->data; 492 trace_ath10k_htt_rx_desc(ar, rxd, sizeof(*rxd)); 493 494 skb_put(msdu, sizeof(struct htt_rx_desc)); 495 skb_pull(msdu, sizeof(struct htt_rx_desc)); 496 skb_put(msdu, min(amsdu_len, HTT_RX_MSDU_SIZE)); 497 amsdu_len -= msdu->len; 498 499 last_frag = ind_desc->reserved; 500 if (last_frag) { 501 if (amsdu_len) { 502 ath10k_warn(ar, "invalid amsdu len %u, left %d", 503 __le16_to_cpu(ind_desc->msdu_len), 504 amsdu_len); 505 } 506 return 0; 507 } 508 509 ind_desc++; 510 paddr = __le32_to_cpu(ind_desc->msdu_paddr); 511 frag_buf = ath10k_htt_rx_pop_paddr(htt, paddr); 512 if (!frag_buf) { 513 ath10k_warn(ar, "failed to pop frag-1 paddr: 0x%x", paddr); 514 return -ENOENT; 515 } 516 517 skb_put(frag_buf, min(amsdu_len, HTT_RX_BUF_SIZE)); 518 ath10k_htt_append_frag_list(msdu, frag_buf, amsdu_len); 519 520 amsdu_len -= frag_buf->len; 521 prev_frag_buf = frag_buf; 522 last_frag = ind_desc->reserved; 523 while (!last_frag) { 524 ind_desc++; 525 paddr = __le32_to_cpu(ind_desc->msdu_paddr); 526 frag_buf = ath10k_htt_rx_pop_paddr(htt, paddr); 527 if (!frag_buf) { 528 ath10k_warn(ar, "failed to pop frag-n paddr: 0x%x", 529 paddr); 530 prev_frag_buf->next = NULL; 531 return -ENOENT; 532 } 533 534 skb_put(frag_buf, min(amsdu_len, HTT_RX_BUF_SIZE)); 535 last_frag = ind_desc->reserved; 536 amsdu_len -= frag_buf->len; 537 538 prev_frag_buf->next = frag_buf; 539 prev_frag_buf = frag_buf; 540 } 541 542 if (amsdu_len) { 543 ath10k_warn(ar, "invalid amsdu len %u, left %d", 544 __le16_to_cpu(ind_desc->msdu_len), amsdu_len); 545 } 546 547 *msdu_desc = ind_desc; 548 549 prev_frag_buf->next = NULL; 550 return 0; 551 } 552 553 static int 554 ath10k_htt_rx_handle_amsdu_mon_64(struct ath10k_htt *htt, 555 struct sk_buff *msdu, 556 struct htt_rx_in_ord_msdu_desc_ext **msdu_desc) 557 { 558 struct ath10k *ar = htt->ar; 559 u64 paddr; 560 struct sk_buff *frag_buf; 561 struct sk_buff *prev_frag_buf; 562 u8 last_frag; 563 struct htt_rx_in_ord_msdu_desc_ext *ind_desc = *msdu_desc; 564 struct htt_rx_desc *rxd; 565 int amsdu_len = __le16_to_cpu(ind_desc->msdu_len); 566 567 rxd = (void *)msdu->data; 568 trace_ath10k_htt_rx_desc(ar, rxd, sizeof(*rxd)); 569 570 skb_put(msdu, sizeof(struct htt_rx_desc)); 571 skb_pull(msdu, sizeof(struct htt_rx_desc)); 572 skb_put(msdu, min(amsdu_len, HTT_RX_MSDU_SIZE)); 573 amsdu_len -= msdu->len; 574 575 last_frag = ind_desc->reserved; 576 if (last_frag) { 577 if (amsdu_len) { 578 ath10k_warn(ar, "invalid amsdu len %u, left %d", 579 __le16_to_cpu(ind_desc->msdu_len), 580 amsdu_len); 581 } 582 return 0; 583 } 584 585 ind_desc++; 586 paddr = __le64_to_cpu(ind_desc->msdu_paddr); 587 frag_buf = ath10k_htt_rx_pop_paddr(htt, paddr); 588 if (!frag_buf) { 589 ath10k_warn(ar, "failed to pop frag-1 paddr: 0x%llx", paddr); 590 return -ENOENT; 591 } 592 593 skb_put(frag_buf, min(amsdu_len, HTT_RX_BUF_SIZE)); 594 ath10k_htt_append_frag_list(msdu, frag_buf, amsdu_len); 595 596 amsdu_len -= frag_buf->len; 597 prev_frag_buf = frag_buf; 598 last_frag = ind_desc->reserved; 599 while (!last_frag) { 600 ind_desc++; 601 paddr = __le64_to_cpu(ind_desc->msdu_paddr); 602 frag_buf = ath10k_htt_rx_pop_paddr(htt, paddr); 603 if (!frag_buf) { 604 ath10k_warn(ar, "failed to pop frag-n paddr: 0x%llx", 605 paddr); 606 prev_frag_buf->next = NULL; 607 return -ENOENT; 608 } 609 610 skb_put(frag_buf, min(amsdu_len, HTT_RX_BUF_SIZE)); 611 last_frag = ind_desc->reserved; 612 amsdu_len -= frag_buf->len; 613 614 prev_frag_buf->next = frag_buf; 615 prev_frag_buf = frag_buf; 616 } 617 618 if (amsdu_len) { 619 ath10k_warn(ar, "invalid amsdu len %u, left %d", 620 __le16_to_cpu(ind_desc->msdu_len), amsdu_len); 621 } 622 623 *msdu_desc = ind_desc; 624 625 prev_frag_buf->next = NULL; 626 return 0; 627 } 628 629 static int ath10k_htt_rx_pop_paddr32_list(struct ath10k_htt *htt, 630 struct htt_rx_in_ord_ind *ev, 631 struct sk_buff_head *list) 632 { 633 struct ath10k *ar = htt->ar; 634 struct htt_rx_in_ord_msdu_desc *msdu_desc = ev->msdu_descs32; 635 struct htt_rx_desc *rxd; 636 struct sk_buff *msdu; 637 int msdu_count, ret; 638 bool is_offload; 639 u32 paddr; 640 641 lockdep_assert_held(&htt->rx_ring.lock); 642 643 msdu_count = __le16_to_cpu(ev->msdu_count); 644 is_offload = !!(ev->info & HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK); 645 646 while (msdu_count--) { 647 paddr = __le32_to_cpu(msdu_desc->msdu_paddr); 648 649 msdu = ath10k_htt_rx_pop_paddr(htt, paddr); 650 if (!msdu) { 651 __skb_queue_purge(list); 652 return -ENOENT; 653 } 654 655 if (!is_offload && ar->monitor_arvif) { 656 ret = ath10k_htt_rx_handle_amsdu_mon_32(htt, msdu, 657 &msdu_desc); 658 if (ret) { 659 __skb_queue_purge(list); 660 return ret; 661 } 662 __skb_queue_tail(list, msdu); 663 msdu_desc++; 664 continue; 665 } 666 667 __skb_queue_tail(list, msdu); 668 669 if (!is_offload) { 670 rxd = (void *)msdu->data; 671 672 trace_ath10k_htt_rx_desc(ar, rxd, sizeof(*rxd)); 673 674 skb_put(msdu, sizeof(*rxd)); 675 skb_pull(msdu, sizeof(*rxd)); 676 skb_put(msdu, __le16_to_cpu(msdu_desc->msdu_len)); 677 678 if (!(__le32_to_cpu(rxd->attention.flags) & 679 RX_ATTENTION_FLAGS_MSDU_DONE)) { 680 ath10k_warn(htt->ar, "tried to pop an incomplete frame, oops!\n"); 681 return -EIO; 682 } 683 } 684 685 msdu_desc++; 686 } 687 688 return 0; 689 } 690 691 static int ath10k_htt_rx_pop_paddr64_list(struct ath10k_htt *htt, 692 struct htt_rx_in_ord_ind *ev, 693 struct sk_buff_head *list) 694 { 695 struct ath10k *ar = htt->ar; 696 struct htt_rx_in_ord_msdu_desc_ext *msdu_desc = ev->msdu_descs64; 697 struct htt_rx_desc *rxd; 698 struct sk_buff *msdu; 699 int msdu_count, ret; 700 bool is_offload; 701 u64 paddr; 702 703 lockdep_assert_held(&htt->rx_ring.lock); 704 705 msdu_count = __le16_to_cpu(ev->msdu_count); 706 is_offload = !!(ev->info & HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK); 707 708 while (msdu_count--) { 709 paddr = __le64_to_cpu(msdu_desc->msdu_paddr); 710 msdu = ath10k_htt_rx_pop_paddr(htt, paddr); 711 if (!msdu) { 712 __skb_queue_purge(list); 713 return -ENOENT; 714 } 715 716 if (!is_offload && ar->monitor_arvif) { 717 ret = ath10k_htt_rx_handle_amsdu_mon_64(htt, msdu, 718 &msdu_desc); 719 if (ret) { 720 __skb_queue_purge(list); 721 return ret; 722 } 723 __skb_queue_tail(list, msdu); 724 msdu_desc++; 725 continue; 726 } 727 728 __skb_queue_tail(list, msdu); 729 730 if (!is_offload) { 731 rxd = (void *)msdu->data; 732 733 trace_ath10k_htt_rx_desc(ar, rxd, sizeof(*rxd)); 734 735 skb_put(msdu, sizeof(*rxd)); 736 skb_pull(msdu, sizeof(*rxd)); 737 skb_put(msdu, __le16_to_cpu(msdu_desc->msdu_len)); 738 739 if (!(__le32_to_cpu(rxd->attention.flags) & 740 RX_ATTENTION_FLAGS_MSDU_DONE)) { 741 ath10k_warn(htt->ar, "tried to pop an incomplete frame, oops!\n"); 742 return -EIO; 743 } 744 } 745 746 msdu_desc++; 747 } 748 749 return 0; 750 } 751 752 int ath10k_htt_rx_alloc(struct ath10k_htt *htt) 753 { 754 struct ath10k *ar = htt->ar; 755 dma_addr_t paddr; 756 void *vaddr, *vaddr_ring; 757 size_t size; 758 struct timer_list *timer = &htt->rx_ring.refill_retry_timer; 759 760 if (ar->bus_param.dev_type == ATH10K_DEV_TYPE_HL) 761 return 0; 762 763 htt->rx_confused = false; 764 765 /* XXX: The fill level could be changed during runtime in response to 766 * the host processing latency. Is this really worth it? 767 */ 768 htt->rx_ring.size = HTT_RX_RING_SIZE; 769 htt->rx_ring.size_mask = htt->rx_ring.size - 1; 770 htt->rx_ring.fill_level = ar->hw_params.rx_ring_fill_level; 771 772 if (!is_power_of_2(htt->rx_ring.size)) { 773 ath10k_warn(ar, "htt rx ring size is not power of 2\n"); 774 return -EINVAL; 775 } 776 777 htt->rx_ring.netbufs_ring = 778 kcalloc(htt->rx_ring.size, sizeof(struct sk_buff *), 779 GFP_KERNEL); 780 if (!htt->rx_ring.netbufs_ring) 781 goto err_netbuf; 782 783 size = ath10k_htt_get_rx_ring_size(htt); 784 785 vaddr_ring = dma_alloc_coherent(htt->ar->dev, size, &paddr, GFP_KERNEL); 786 if (!vaddr_ring) 787 goto err_dma_ring; 788 789 ath10k_htt_config_paddrs_ring(htt, vaddr_ring); 790 htt->rx_ring.base_paddr = paddr; 791 792 vaddr = dma_alloc_coherent(htt->ar->dev, 793 sizeof(*htt->rx_ring.alloc_idx.vaddr), 794 &paddr, GFP_KERNEL); 795 if (!vaddr) 796 goto err_dma_idx; 797 798 htt->rx_ring.alloc_idx.vaddr = vaddr; 799 htt->rx_ring.alloc_idx.paddr = paddr; 800 htt->rx_ring.sw_rd_idx.msdu_payld = htt->rx_ring.size_mask; 801 *htt->rx_ring.alloc_idx.vaddr = 0; 802 803 /* Initialize the Rx refill retry timer */ 804 timer_setup(timer, ath10k_htt_rx_ring_refill_retry, 0); 805 806 spin_lock_init(&htt->rx_ring.lock); 807 808 htt->rx_ring.fill_cnt = 0; 809 htt->rx_ring.sw_rd_idx.msdu_payld = 0; 810 hash_init(htt->rx_ring.skb_table); 811 812 skb_queue_head_init(&htt->rx_msdus_q); 813 skb_queue_head_init(&htt->rx_in_ord_compl_q); 814 skb_queue_head_init(&htt->tx_fetch_ind_q); 815 atomic_set(&htt->num_mpdus_ready, 0); 816 817 ath10k_dbg(ar, ATH10K_DBG_BOOT, "htt rx ring size %d fill_level %d\n", 818 htt->rx_ring.size, htt->rx_ring.fill_level); 819 return 0; 820 821 err_dma_idx: 822 dma_free_coherent(htt->ar->dev, 823 ath10k_htt_get_rx_ring_size(htt), 824 vaddr_ring, 825 htt->rx_ring.base_paddr); 826 err_dma_ring: 827 kfree(htt->rx_ring.netbufs_ring); 828 err_netbuf: 829 return -ENOMEM; 830 } 831 832 static int ath10k_htt_rx_crypto_param_len(struct ath10k *ar, 833 enum htt_rx_mpdu_encrypt_type type) 834 { 835 switch (type) { 836 case HTT_RX_MPDU_ENCRYPT_NONE: 837 return 0; 838 case HTT_RX_MPDU_ENCRYPT_WEP40: 839 case HTT_RX_MPDU_ENCRYPT_WEP104: 840 return IEEE80211_WEP_IV_LEN; 841 case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC: 842 case HTT_RX_MPDU_ENCRYPT_TKIP_WPA: 843 return IEEE80211_TKIP_IV_LEN; 844 case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2: 845 return IEEE80211_CCMP_HDR_LEN; 846 case HTT_RX_MPDU_ENCRYPT_AES_CCM256_WPA2: 847 return IEEE80211_CCMP_256_HDR_LEN; 848 case HTT_RX_MPDU_ENCRYPT_AES_GCMP_WPA2: 849 case HTT_RX_MPDU_ENCRYPT_AES_GCMP256_WPA2: 850 return IEEE80211_GCMP_HDR_LEN; 851 case HTT_RX_MPDU_ENCRYPT_WEP128: 852 case HTT_RX_MPDU_ENCRYPT_WAPI: 853 break; 854 } 855 856 ath10k_warn(ar, "unsupported encryption type %d\n", type); 857 return 0; 858 } 859 860 #define MICHAEL_MIC_LEN 8 861 862 static int ath10k_htt_rx_crypto_mic_len(struct ath10k *ar, 863 enum htt_rx_mpdu_encrypt_type type) 864 { 865 switch (type) { 866 case HTT_RX_MPDU_ENCRYPT_NONE: 867 case HTT_RX_MPDU_ENCRYPT_WEP40: 868 case HTT_RX_MPDU_ENCRYPT_WEP104: 869 case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC: 870 case HTT_RX_MPDU_ENCRYPT_TKIP_WPA: 871 return 0; 872 case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2: 873 return IEEE80211_CCMP_MIC_LEN; 874 case HTT_RX_MPDU_ENCRYPT_AES_CCM256_WPA2: 875 return IEEE80211_CCMP_256_MIC_LEN; 876 case HTT_RX_MPDU_ENCRYPT_AES_GCMP_WPA2: 877 case HTT_RX_MPDU_ENCRYPT_AES_GCMP256_WPA2: 878 return IEEE80211_GCMP_MIC_LEN; 879 case HTT_RX_MPDU_ENCRYPT_WEP128: 880 case HTT_RX_MPDU_ENCRYPT_WAPI: 881 break; 882 } 883 884 ath10k_warn(ar, "unsupported encryption type %d\n", type); 885 return 0; 886 } 887 888 static int ath10k_htt_rx_crypto_icv_len(struct ath10k *ar, 889 enum htt_rx_mpdu_encrypt_type type) 890 { 891 switch (type) { 892 case HTT_RX_MPDU_ENCRYPT_NONE: 893 case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2: 894 case HTT_RX_MPDU_ENCRYPT_AES_CCM256_WPA2: 895 case HTT_RX_MPDU_ENCRYPT_AES_GCMP_WPA2: 896 case HTT_RX_MPDU_ENCRYPT_AES_GCMP256_WPA2: 897 return 0; 898 case HTT_RX_MPDU_ENCRYPT_WEP40: 899 case HTT_RX_MPDU_ENCRYPT_WEP104: 900 return IEEE80211_WEP_ICV_LEN; 901 case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC: 902 case HTT_RX_MPDU_ENCRYPT_TKIP_WPA: 903 return IEEE80211_TKIP_ICV_LEN; 904 case HTT_RX_MPDU_ENCRYPT_WEP128: 905 case HTT_RX_MPDU_ENCRYPT_WAPI: 906 break; 907 } 908 909 ath10k_warn(ar, "unsupported encryption type %d\n", type); 910 return 0; 911 } 912 913 struct amsdu_subframe_hdr { 914 u8 dst[ETH_ALEN]; 915 u8 src[ETH_ALEN]; 916 __be16 len; 917 } __packed; 918 919 #define GROUP_ID_IS_SU_MIMO(x) ((x) == 0 || (x) == 63) 920 921 static inline u8 ath10k_bw_to_mac80211_bw(u8 bw) 922 { 923 u8 ret = 0; 924 925 switch (bw) { 926 case 0: 927 ret = RATE_INFO_BW_20; 928 break; 929 case 1: 930 ret = RATE_INFO_BW_40; 931 break; 932 case 2: 933 ret = RATE_INFO_BW_80; 934 break; 935 case 3: 936 ret = RATE_INFO_BW_160; 937 break; 938 } 939 940 return ret; 941 } 942 943 static void ath10k_htt_rx_h_rates(struct ath10k *ar, 944 struct ieee80211_rx_status *status, 945 struct htt_rx_desc *rxd) 946 { 947 struct ieee80211_supported_band *sband; 948 u8 cck, rate, bw, sgi, mcs, nss; 949 u8 preamble = 0; 950 u8 group_id; 951 u32 info1, info2, info3; 952 u32 stbc, nsts_su; 953 954 info1 = __le32_to_cpu(rxd->ppdu_start.info1); 955 info2 = __le32_to_cpu(rxd->ppdu_start.info2); 956 info3 = __le32_to_cpu(rxd->ppdu_start.info3); 957 958 preamble = MS(info1, RX_PPDU_START_INFO1_PREAMBLE_TYPE); 959 960 switch (preamble) { 961 case HTT_RX_LEGACY: 962 /* To get legacy rate index band is required. Since band can't 963 * be undefined check if freq is non-zero. 964 */ 965 if (!status->freq) 966 return; 967 968 cck = info1 & RX_PPDU_START_INFO1_L_SIG_RATE_SELECT; 969 rate = MS(info1, RX_PPDU_START_INFO1_L_SIG_RATE); 970 rate &= ~RX_PPDU_START_RATE_FLAG; 971 972 sband = &ar->mac.sbands[status->band]; 973 status->rate_idx = ath10k_mac_hw_rate_to_idx(sband, rate, cck); 974 break; 975 case HTT_RX_HT: 976 case HTT_RX_HT_WITH_TXBF: 977 /* HT-SIG - Table 20-11 in info2 and info3 */ 978 mcs = info2 & 0x1F; 979 nss = mcs >> 3; 980 bw = (info2 >> 7) & 1; 981 sgi = (info3 >> 7) & 1; 982 983 status->rate_idx = mcs; 984 status->encoding = RX_ENC_HT; 985 if (sgi) 986 status->enc_flags |= RX_ENC_FLAG_SHORT_GI; 987 if (bw) 988 status->bw = RATE_INFO_BW_40; 989 break; 990 case HTT_RX_VHT: 991 case HTT_RX_VHT_WITH_TXBF: 992 /* VHT-SIG-A1 in info2, VHT-SIG-A2 in info3 993 * TODO check this 994 */ 995 bw = info2 & 3; 996 sgi = info3 & 1; 997 stbc = (info2 >> 3) & 1; 998 group_id = (info2 >> 4) & 0x3F; 999 1000 if (GROUP_ID_IS_SU_MIMO(group_id)) { 1001 mcs = (info3 >> 4) & 0x0F; 1002 nsts_su = ((info2 >> 10) & 0x07); 1003 if (stbc) 1004 nss = (nsts_su >> 2) + 1; 1005 else 1006 nss = (nsts_su + 1); 1007 } else { 1008 /* Hardware doesn't decode VHT-SIG-B into Rx descriptor 1009 * so it's impossible to decode MCS. Also since 1010 * firmware consumes Group Id Management frames host 1011 * has no knowledge regarding group/user position 1012 * mapping so it's impossible to pick the correct Nsts 1013 * from VHT-SIG-A1. 1014 * 1015 * Bandwidth and SGI are valid so report the rateinfo 1016 * on best-effort basis. 1017 */ 1018 mcs = 0; 1019 nss = 1; 1020 } 1021 1022 if (mcs > 0x09) { 1023 ath10k_warn(ar, "invalid MCS received %u\n", mcs); 1024 ath10k_warn(ar, "rxd %08x mpdu start %08x %08x msdu start %08x %08x ppdu start %08x %08x %08x %08x %08x\n", 1025 __le32_to_cpu(rxd->attention.flags), 1026 __le32_to_cpu(rxd->mpdu_start.info0), 1027 __le32_to_cpu(rxd->mpdu_start.info1), 1028 __le32_to_cpu(rxd->msdu_start.common.info0), 1029 __le32_to_cpu(rxd->msdu_start.common.info1), 1030 rxd->ppdu_start.info0, 1031 __le32_to_cpu(rxd->ppdu_start.info1), 1032 __le32_to_cpu(rxd->ppdu_start.info2), 1033 __le32_to_cpu(rxd->ppdu_start.info3), 1034 __le32_to_cpu(rxd->ppdu_start.info4)); 1035 1036 ath10k_warn(ar, "msdu end %08x mpdu end %08x\n", 1037 __le32_to_cpu(rxd->msdu_end.common.info0), 1038 __le32_to_cpu(rxd->mpdu_end.info0)); 1039 1040 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, 1041 "rx desc msdu payload: ", 1042 rxd->msdu_payload, 50); 1043 } 1044 1045 status->rate_idx = mcs; 1046 status->nss = nss; 1047 1048 if (sgi) 1049 status->enc_flags |= RX_ENC_FLAG_SHORT_GI; 1050 1051 status->bw = ath10k_bw_to_mac80211_bw(bw); 1052 status->encoding = RX_ENC_VHT; 1053 break; 1054 default: 1055 break; 1056 } 1057 } 1058 1059 static struct ieee80211_channel * 1060 ath10k_htt_rx_h_peer_channel(struct ath10k *ar, struct htt_rx_desc *rxd) 1061 { 1062 struct ath10k_peer *peer; 1063 struct ath10k_vif *arvif; 1064 struct cfg80211_chan_def def; 1065 u16 peer_id; 1066 1067 lockdep_assert_held(&ar->data_lock); 1068 1069 if (!rxd) 1070 return NULL; 1071 1072 if (rxd->attention.flags & 1073 __cpu_to_le32(RX_ATTENTION_FLAGS_PEER_IDX_INVALID)) 1074 return NULL; 1075 1076 if (!(rxd->msdu_end.common.info0 & 1077 __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU))) 1078 return NULL; 1079 1080 peer_id = MS(__le32_to_cpu(rxd->mpdu_start.info0), 1081 RX_MPDU_START_INFO0_PEER_IDX); 1082 1083 peer = ath10k_peer_find_by_id(ar, peer_id); 1084 if (!peer) 1085 return NULL; 1086 1087 arvif = ath10k_get_arvif(ar, peer->vdev_id); 1088 if (WARN_ON_ONCE(!arvif)) 1089 return NULL; 1090 1091 if (ath10k_mac_vif_chan(arvif->vif, &def)) 1092 return NULL; 1093 1094 return def.chan; 1095 } 1096 1097 static struct ieee80211_channel * 1098 ath10k_htt_rx_h_vdev_channel(struct ath10k *ar, u32 vdev_id) 1099 { 1100 struct ath10k_vif *arvif; 1101 struct cfg80211_chan_def def; 1102 1103 lockdep_assert_held(&ar->data_lock); 1104 1105 list_for_each_entry(arvif, &ar->arvifs, list) { 1106 if (arvif->vdev_id == vdev_id && 1107 ath10k_mac_vif_chan(arvif->vif, &def) == 0) 1108 return def.chan; 1109 } 1110 1111 return NULL; 1112 } 1113 1114 static void 1115 ath10k_htt_rx_h_any_chan_iter(struct ieee80211_hw *hw, 1116 struct ieee80211_chanctx_conf *conf, 1117 void *data) 1118 { 1119 struct cfg80211_chan_def *def = data; 1120 1121 *def = conf->def; 1122 } 1123 1124 static struct ieee80211_channel * 1125 ath10k_htt_rx_h_any_channel(struct ath10k *ar) 1126 { 1127 struct cfg80211_chan_def def = {}; 1128 1129 ieee80211_iter_chan_contexts_atomic(ar->hw, 1130 ath10k_htt_rx_h_any_chan_iter, 1131 &def); 1132 1133 return def.chan; 1134 } 1135 1136 static bool ath10k_htt_rx_h_channel(struct ath10k *ar, 1137 struct ieee80211_rx_status *status, 1138 struct htt_rx_desc *rxd, 1139 u32 vdev_id) 1140 { 1141 struct ieee80211_channel *ch; 1142 1143 spin_lock_bh(&ar->data_lock); 1144 ch = ar->scan_channel; 1145 if (!ch) 1146 ch = ar->rx_channel; 1147 if (!ch) 1148 ch = ath10k_htt_rx_h_peer_channel(ar, rxd); 1149 if (!ch) 1150 ch = ath10k_htt_rx_h_vdev_channel(ar, vdev_id); 1151 if (!ch) 1152 ch = ath10k_htt_rx_h_any_channel(ar); 1153 if (!ch) 1154 ch = ar->tgt_oper_chan; 1155 spin_unlock_bh(&ar->data_lock); 1156 1157 if (!ch) 1158 return false; 1159 1160 status->band = ch->band; 1161 status->freq = ch->center_freq; 1162 1163 return true; 1164 } 1165 1166 static void ath10k_htt_rx_h_signal(struct ath10k *ar, 1167 struct ieee80211_rx_status *status, 1168 struct htt_rx_desc *rxd) 1169 { 1170 int i; 1171 1172 for (i = 0; i < IEEE80211_MAX_CHAINS ; i++) { 1173 status->chains &= ~BIT(i); 1174 1175 if (rxd->ppdu_start.rssi_chains[i].pri20_mhz != 0x80) { 1176 status->chain_signal[i] = ATH10K_DEFAULT_NOISE_FLOOR + 1177 rxd->ppdu_start.rssi_chains[i].pri20_mhz; 1178 1179 status->chains |= BIT(i); 1180 } 1181 } 1182 1183 /* FIXME: Get real NF */ 1184 status->signal = ATH10K_DEFAULT_NOISE_FLOOR + 1185 rxd->ppdu_start.rssi_comb; 1186 status->flag &= ~RX_FLAG_NO_SIGNAL_VAL; 1187 } 1188 1189 static void ath10k_htt_rx_h_mactime(struct ath10k *ar, 1190 struct ieee80211_rx_status *status, 1191 struct htt_rx_desc *rxd) 1192 { 1193 /* FIXME: TSF is known only at the end of PPDU, in the last MPDU. This 1194 * means all prior MSDUs in a PPDU are reported to mac80211 without the 1195 * TSF. Is it worth holding frames until end of PPDU is known? 1196 * 1197 * FIXME: Can we get/compute 64bit TSF? 1198 */ 1199 status->mactime = __le32_to_cpu(rxd->ppdu_end.common.tsf_timestamp); 1200 status->flag |= RX_FLAG_MACTIME_END; 1201 } 1202 1203 static void ath10k_htt_rx_h_ppdu(struct ath10k *ar, 1204 struct sk_buff_head *amsdu, 1205 struct ieee80211_rx_status *status, 1206 u32 vdev_id) 1207 { 1208 struct sk_buff *first; 1209 struct htt_rx_desc *rxd; 1210 bool is_first_ppdu; 1211 bool is_last_ppdu; 1212 1213 if (skb_queue_empty(amsdu)) 1214 return; 1215 1216 first = skb_peek(amsdu); 1217 rxd = (void *)first->data - sizeof(*rxd); 1218 1219 is_first_ppdu = !!(rxd->attention.flags & 1220 __cpu_to_le32(RX_ATTENTION_FLAGS_FIRST_MPDU)); 1221 is_last_ppdu = !!(rxd->attention.flags & 1222 __cpu_to_le32(RX_ATTENTION_FLAGS_LAST_MPDU)); 1223 1224 if (is_first_ppdu) { 1225 /* New PPDU starts so clear out the old per-PPDU status. */ 1226 status->freq = 0; 1227 status->rate_idx = 0; 1228 status->nss = 0; 1229 status->encoding = RX_ENC_LEGACY; 1230 status->bw = RATE_INFO_BW_20; 1231 1232 status->flag &= ~RX_FLAG_MACTIME_END; 1233 status->flag |= RX_FLAG_NO_SIGNAL_VAL; 1234 1235 status->flag &= ~(RX_FLAG_AMPDU_IS_LAST); 1236 status->flag |= RX_FLAG_AMPDU_DETAILS | RX_FLAG_AMPDU_LAST_KNOWN; 1237 status->ampdu_reference = ar->ampdu_reference; 1238 1239 ath10k_htt_rx_h_signal(ar, status, rxd); 1240 ath10k_htt_rx_h_channel(ar, status, rxd, vdev_id); 1241 ath10k_htt_rx_h_rates(ar, status, rxd); 1242 } 1243 1244 if (is_last_ppdu) { 1245 ath10k_htt_rx_h_mactime(ar, status, rxd); 1246 1247 /* set ampdu last segment flag */ 1248 status->flag |= RX_FLAG_AMPDU_IS_LAST; 1249 ar->ampdu_reference++; 1250 } 1251 } 1252 1253 static const char * const tid_to_ac[] = { 1254 "BE", 1255 "BK", 1256 "BK", 1257 "BE", 1258 "VI", 1259 "VI", 1260 "VO", 1261 "VO", 1262 }; 1263 1264 static char *ath10k_get_tid(struct ieee80211_hdr *hdr, char *out, size_t size) 1265 { 1266 u8 *qc; 1267 int tid; 1268 1269 if (!ieee80211_is_data_qos(hdr->frame_control)) 1270 return ""; 1271 1272 qc = ieee80211_get_qos_ctl(hdr); 1273 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 1274 if (tid < 8) 1275 snprintf(out, size, "tid %d (%s)", tid, tid_to_ac[tid]); 1276 else 1277 snprintf(out, size, "tid %d", tid); 1278 1279 return out; 1280 } 1281 1282 static void ath10k_htt_rx_h_queue_msdu(struct ath10k *ar, 1283 struct ieee80211_rx_status *rx_status, 1284 struct sk_buff *skb) 1285 { 1286 struct ieee80211_rx_status *status; 1287 1288 status = IEEE80211_SKB_RXCB(skb); 1289 *status = *rx_status; 1290 1291 skb_queue_tail(&ar->htt.rx_msdus_q, skb); 1292 } 1293 1294 static void ath10k_process_rx(struct ath10k *ar, struct sk_buff *skb) 1295 { 1296 struct ieee80211_rx_status *status; 1297 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1298 char tid[32]; 1299 1300 status = IEEE80211_SKB_RXCB(skb); 1301 1302 if (!(ar->filter_flags & FIF_FCSFAIL) && 1303 status->flag & RX_FLAG_FAILED_FCS_CRC) { 1304 ar->stats.rx_crc_err_drop++; 1305 dev_kfree_skb_any(skb); 1306 return; 1307 } 1308 1309 ath10k_dbg(ar, ATH10K_DBG_DATA, 1310 "rx skb %pK len %u peer %pM %s %s sn %u %s%s%s%s%s%s %srate_idx %u vht_nss %u freq %u band %u flag 0x%x fcs-err %i mic-err %i amsdu-more %i\n", 1311 skb, 1312 skb->len, 1313 ieee80211_get_SA(hdr), 1314 ath10k_get_tid(hdr, tid, sizeof(tid)), 1315 is_multicast_ether_addr(ieee80211_get_DA(hdr)) ? 1316 "mcast" : "ucast", 1317 (__le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_SEQ) >> 4, 1318 (status->encoding == RX_ENC_LEGACY) ? "legacy" : "", 1319 (status->encoding == RX_ENC_HT) ? "ht" : "", 1320 (status->encoding == RX_ENC_VHT) ? "vht" : "", 1321 (status->bw == RATE_INFO_BW_40) ? "40" : "", 1322 (status->bw == RATE_INFO_BW_80) ? "80" : "", 1323 (status->bw == RATE_INFO_BW_160) ? "160" : "", 1324 status->enc_flags & RX_ENC_FLAG_SHORT_GI ? "sgi " : "", 1325 status->rate_idx, 1326 status->nss, 1327 status->freq, 1328 status->band, status->flag, 1329 !!(status->flag & RX_FLAG_FAILED_FCS_CRC), 1330 !!(status->flag & RX_FLAG_MMIC_ERROR), 1331 !!(status->flag & RX_FLAG_AMSDU_MORE)); 1332 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "rx skb: ", 1333 skb->data, skb->len); 1334 trace_ath10k_rx_hdr(ar, skb->data, skb->len); 1335 trace_ath10k_rx_payload(ar, skb->data, skb->len); 1336 1337 ieee80211_rx_napi(ar->hw, NULL, skb, &ar->napi); 1338 } 1339 1340 static int ath10k_htt_rx_nwifi_hdrlen(struct ath10k *ar, 1341 struct ieee80211_hdr *hdr) 1342 { 1343 int len = ieee80211_hdrlen(hdr->frame_control); 1344 1345 if (!test_bit(ATH10K_FW_FEATURE_NO_NWIFI_DECAP_4ADDR_PADDING, 1346 ar->running_fw->fw_file.fw_features)) 1347 len = round_up(len, 4); 1348 1349 return len; 1350 } 1351 1352 static void ath10k_htt_rx_h_undecap_raw(struct ath10k *ar, 1353 struct sk_buff *msdu, 1354 struct ieee80211_rx_status *status, 1355 enum htt_rx_mpdu_encrypt_type enctype, 1356 bool is_decrypted, 1357 const u8 first_hdr[64]) 1358 { 1359 struct ieee80211_hdr *hdr; 1360 struct htt_rx_desc *rxd; 1361 size_t hdr_len; 1362 size_t crypto_len; 1363 bool is_first; 1364 bool is_last; 1365 bool msdu_limit_err; 1366 int bytes_aligned = ar->hw_params.decap_align_bytes; 1367 u8 *qos; 1368 1369 rxd = (void *)msdu->data - sizeof(*rxd); 1370 is_first = !!(rxd->msdu_end.common.info0 & 1371 __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU)); 1372 is_last = !!(rxd->msdu_end.common.info0 & 1373 __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU)); 1374 1375 /* Delivered decapped frame: 1376 * [802.11 header] 1377 * [crypto param] <-- can be trimmed if !fcs_err && 1378 * !decrypt_err && !peer_idx_invalid 1379 * [amsdu header] <-- only if A-MSDU 1380 * [rfc1042/llc] 1381 * [payload] 1382 * [FCS] <-- at end, needs to be trimmed 1383 */ 1384 1385 /* Some hardwares(QCA99x0 variants) limit number of msdus in a-msdu when 1386 * deaggregate, so that unwanted MSDU-deaggregation is avoided for 1387 * error packets. If limit exceeds, hw sends all remaining MSDUs as 1388 * a single last MSDU with this msdu limit error set. 1389 */ 1390 msdu_limit_err = ath10k_rx_desc_msdu_limit_error(&ar->hw_params, rxd); 1391 1392 /* If MSDU limit error happens, then don't warn on, the partial raw MSDU 1393 * without first MSDU is expected in that case, and handled later here. 1394 */ 1395 /* This probably shouldn't happen but warn just in case */ 1396 if (WARN_ON_ONCE(!is_first && !msdu_limit_err)) 1397 return; 1398 1399 /* This probably shouldn't happen but warn just in case */ 1400 if (WARN_ON_ONCE(!(is_first && is_last) && !msdu_limit_err)) 1401 return; 1402 1403 skb_trim(msdu, msdu->len - FCS_LEN); 1404 1405 /* Push original 80211 header */ 1406 if (unlikely(msdu_limit_err)) { 1407 hdr = (struct ieee80211_hdr *)first_hdr; 1408 hdr_len = ieee80211_hdrlen(hdr->frame_control); 1409 crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype); 1410 1411 if (ieee80211_is_data_qos(hdr->frame_control)) { 1412 qos = ieee80211_get_qos_ctl(hdr); 1413 qos[0] |= IEEE80211_QOS_CTL_A_MSDU_PRESENT; 1414 } 1415 1416 if (crypto_len) 1417 memcpy(skb_push(msdu, crypto_len), 1418 (void *)hdr + round_up(hdr_len, bytes_aligned), 1419 crypto_len); 1420 1421 memcpy(skb_push(msdu, hdr_len), hdr, hdr_len); 1422 } 1423 1424 /* In most cases this will be true for sniffed frames. It makes sense 1425 * to deliver them as-is without stripping the crypto param. This is 1426 * necessary for software based decryption. 1427 * 1428 * If there's no error then the frame is decrypted. At least that is 1429 * the case for frames that come in via fragmented rx indication. 1430 */ 1431 if (!is_decrypted) 1432 return; 1433 1434 /* The payload is decrypted so strip crypto params. Start from tail 1435 * since hdr is used to compute some stuff. 1436 */ 1437 1438 hdr = (void *)msdu->data; 1439 1440 /* Tail */ 1441 if (status->flag & RX_FLAG_IV_STRIPPED) { 1442 skb_trim(msdu, msdu->len - 1443 ath10k_htt_rx_crypto_mic_len(ar, enctype)); 1444 1445 skb_trim(msdu, msdu->len - 1446 ath10k_htt_rx_crypto_icv_len(ar, enctype)); 1447 } else { 1448 /* MIC */ 1449 if (status->flag & RX_FLAG_MIC_STRIPPED) 1450 skb_trim(msdu, msdu->len - 1451 ath10k_htt_rx_crypto_mic_len(ar, enctype)); 1452 1453 /* ICV */ 1454 if (status->flag & RX_FLAG_ICV_STRIPPED) 1455 skb_trim(msdu, msdu->len - 1456 ath10k_htt_rx_crypto_icv_len(ar, enctype)); 1457 } 1458 1459 /* MMIC */ 1460 if ((status->flag & RX_FLAG_MMIC_STRIPPED) && 1461 !ieee80211_has_morefrags(hdr->frame_control) && 1462 enctype == HTT_RX_MPDU_ENCRYPT_TKIP_WPA) 1463 skb_trim(msdu, msdu->len - MICHAEL_MIC_LEN); 1464 1465 /* Head */ 1466 if (status->flag & RX_FLAG_IV_STRIPPED) { 1467 hdr_len = ieee80211_hdrlen(hdr->frame_control); 1468 crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype); 1469 1470 memmove((void *)msdu->data + crypto_len, 1471 (void *)msdu->data, hdr_len); 1472 skb_pull(msdu, crypto_len); 1473 } 1474 } 1475 1476 static void ath10k_htt_rx_h_undecap_nwifi(struct ath10k *ar, 1477 struct sk_buff *msdu, 1478 struct ieee80211_rx_status *status, 1479 const u8 first_hdr[64], 1480 enum htt_rx_mpdu_encrypt_type enctype) 1481 { 1482 struct ieee80211_hdr *hdr; 1483 struct htt_rx_desc *rxd; 1484 size_t hdr_len; 1485 u8 da[ETH_ALEN]; 1486 u8 sa[ETH_ALEN]; 1487 int l3_pad_bytes; 1488 int bytes_aligned = ar->hw_params.decap_align_bytes; 1489 1490 /* Delivered decapped frame: 1491 * [nwifi 802.11 header] <-- replaced with 802.11 hdr 1492 * [rfc1042/llc] 1493 * 1494 * Note: The nwifi header doesn't have QoS Control and is 1495 * (always?) a 3addr frame. 1496 * 1497 * Note2: There's no A-MSDU subframe header. Even if it's part 1498 * of an A-MSDU. 1499 */ 1500 1501 /* pull decapped header and copy SA & DA */ 1502 rxd = (void *)msdu->data - sizeof(*rxd); 1503 1504 l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd); 1505 skb_put(msdu, l3_pad_bytes); 1506 1507 hdr = (struct ieee80211_hdr *)(msdu->data + l3_pad_bytes); 1508 1509 hdr_len = ath10k_htt_rx_nwifi_hdrlen(ar, hdr); 1510 ether_addr_copy(da, ieee80211_get_DA(hdr)); 1511 ether_addr_copy(sa, ieee80211_get_SA(hdr)); 1512 skb_pull(msdu, hdr_len); 1513 1514 /* push original 802.11 header */ 1515 hdr = (struct ieee80211_hdr *)first_hdr; 1516 hdr_len = ieee80211_hdrlen(hdr->frame_control); 1517 1518 if (!(status->flag & RX_FLAG_IV_STRIPPED)) { 1519 memcpy(skb_push(msdu, 1520 ath10k_htt_rx_crypto_param_len(ar, enctype)), 1521 (void *)hdr + round_up(hdr_len, bytes_aligned), 1522 ath10k_htt_rx_crypto_param_len(ar, enctype)); 1523 } 1524 1525 memcpy(skb_push(msdu, hdr_len), hdr, hdr_len); 1526 1527 /* original 802.11 header has a different DA and in 1528 * case of 4addr it may also have different SA 1529 */ 1530 hdr = (struct ieee80211_hdr *)msdu->data; 1531 ether_addr_copy(ieee80211_get_DA(hdr), da); 1532 ether_addr_copy(ieee80211_get_SA(hdr), sa); 1533 } 1534 1535 static void *ath10k_htt_rx_h_find_rfc1042(struct ath10k *ar, 1536 struct sk_buff *msdu, 1537 enum htt_rx_mpdu_encrypt_type enctype) 1538 { 1539 struct ieee80211_hdr *hdr; 1540 struct htt_rx_desc *rxd; 1541 size_t hdr_len, crypto_len; 1542 void *rfc1042; 1543 bool is_first, is_last, is_amsdu; 1544 int bytes_aligned = ar->hw_params.decap_align_bytes; 1545 1546 rxd = (void *)msdu->data - sizeof(*rxd); 1547 hdr = (void *)rxd->rx_hdr_status; 1548 1549 is_first = !!(rxd->msdu_end.common.info0 & 1550 __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU)); 1551 is_last = !!(rxd->msdu_end.common.info0 & 1552 __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU)); 1553 is_amsdu = !(is_first && is_last); 1554 1555 rfc1042 = hdr; 1556 1557 if (is_first) { 1558 hdr_len = ieee80211_hdrlen(hdr->frame_control); 1559 crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype); 1560 1561 rfc1042 += round_up(hdr_len, bytes_aligned) + 1562 round_up(crypto_len, bytes_aligned); 1563 } 1564 1565 if (is_amsdu) 1566 rfc1042 += sizeof(struct amsdu_subframe_hdr); 1567 1568 return rfc1042; 1569 } 1570 1571 static void ath10k_htt_rx_h_undecap_eth(struct ath10k *ar, 1572 struct sk_buff *msdu, 1573 struct ieee80211_rx_status *status, 1574 const u8 first_hdr[64], 1575 enum htt_rx_mpdu_encrypt_type enctype) 1576 { 1577 struct ieee80211_hdr *hdr; 1578 struct ethhdr *eth; 1579 size_t hdr_len; 1580 void *rfc1042; 1581 u8 da[ETH_ALEN]; 1582 u8 sa[ETH_ALEN]; 1583 int l3_pad_bytes; 1584 struct htt_rx_desc *rxd; 1585 int bytes_aligned = ar->hw_params.decap_align_bytes; 1586 1587 /* Delivered decapped frame: 1588 * [eth header] <-- replaced with 802.11 hdr & rfc1042/llc 1589 * [payload] 1590 */ 1591 1592 rfc1042 = ath10k_htt_rx_h_find_rfc1042(ar, msdu, enctype); 1593 if (WARN_ON_ONCE(!rfc1042)) 1594 return; 1595 1596 rxd = (void *)msdu->data - sizeof(*rxd); 1597 l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd); 1598 skb_put(msdu, l3_pad_bytes); 1599 skb_pull(msdu, l3_pad_bytes); 1600 1601 /* pull decapped header and copy SA & DA */ 1602 eth = (struct ethhdr *)msdu->data; 1603 ether_addr_copy(da, eth->h_dest); 1604 ether_addr_copy(sa, eth->h_source); 1605 skb_pull(msdu, sizeof(struct ethhdr)); 1606 1607 /* push rfc1042/llc/snap */ 1608 memcpy(skb_push(msdu, sizeof(struct rfc1042_hdr)), rfc1042, 1609 sizeof(struct rfc1042_hdr)); 1610 1611 /* push original 802.11 header */ 1612 hdr = (struct ieee80211_hdr *)first_hdr; 1613 hdr_len = ieee80211_hdrlen(hdr->frame_control); 1614 1615 if (!(status->flag & RX_FLAG_IV_STRIPPED)) { 1616 memcpy(skb_push(msdu, 1617 ath10k_htt_rx_crypto_param_len(ar, enctype)), 1618 (void *)hdr + round_up(hdr_len, bytes_aligned), 1619 ath10k_htt_rx_crypto_param_len(ar, enctype)); 1620 } 1621 1622 memcpy(skb_push(msdu, hdr_len), hdr, hdr_len); 1623 1624 /* original 802.11 header has a different DA and in 1625 * case of 4addr it may also have different SA 1626 */ 1627 hdr = (struct ieee80211_hdr *)msdu->data; 1628 ether_addr_copy(ieee80211_get_DA(hdr), da); 1629 ether_addr_copy(ieee80211_get_SA(hdr), sa); 1630 } 1631 1632 static void ath10k_htt_rx_h_undecap_snap(struct ath10k *ar, 1633 struct sk_buff *msdu, 1634 struct ieee80211_rx_status *status, 1635 const u8 first_hdr[64], 1636 enum htt_rx_mpdu_encrypt_type enctype) 1637 { 1638 struct ieee80211_hdr *hdr; 1639 size_t hdr_len; 1640 int l3_pad_bytes; 1641 struct htt_rx_desc *rxd; 1642 int bytes_aligned = ar->hw_params.decap_align_bytes; 1643 1644 /* Delivered decapped frame: 1645 * [amsdu header] <-- replaced with 802.11 hdr 1646 * [rfc1042/llc] 1647 * [payload] 1648 */ 1649 1650 rxd = (void *)msdu->data - sizeof(*rxd); 1651 l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd); 1652 1653 skb_put(msdu, l3_pad_bytes); 1654 skb_pull(msdu, sizeof(struct amsdu_subframe_hdr) + l3_pad_bytes); 1655 1656 hdr = (struct ieee80211_hdr *)first_hdr; 1657 hdr_len = ieee80211_hdrlen(hdr->frame_control); 1658 1659 if (!(status->flag & RX_FLAG_IV_STRIPPED)) { 1660 memcpy(skb_push(msdu, 1661 ath10k_htt_rx_crypto_param_len(ar, enctype)), 1662 (void *)hdr + round_up(hdr_len, bytes_aligned), 1663 ath10k_htt_rx_crypto_param_len(ar, enctype)); 1664 } 1665 1666 memcpy(skb_push(msdu, hdr_len), hdr, hdr_len); 1667 } 1668 1669 static void ath10k_htt_rx_h_undecap(struct ath10k *ar, 1670 struct sk_buff *msdu, 1671 struct ieee80211_rx_status *status, 1672 u8 first_hdr[64], 1673 enum htt_rx_mpdu_encrypt_type enctype, 1674 bool is_decrypted) 1675 { 1676 struct htt_rx_desc *rxd; 1677 enum rx_msdu_decap_format decap; 1678 1679 /* First msdu's decapped header: 1680 * [802.11 header] <-- padded to 4 bytes long 1681 * [crypto param] <-- padded to 4 bytes long 1682 * [amsdu header] <-- only if A-MSDU 1683 * [rfc1042/llc] 1684 * 1685 * Other (2nd, 3rd, ..) msdu's decapped header: 1686 * [amsdu header] <-- only if A-MSDU 1687 * [rfc1042/llc] 1688 */ 1689 1690 rxd = (void *)msdu->data - sizeof(*rxd); 1691 decap = MS(__le32_to_cpu(rxd->msdu_start.common.info1), 1692 RX_MSDU_START_INFO1_DECAP_FORMAT); 1693 1694 switch (decap) { 1695 case RX_MSDU_DECAP_RAW: 1696 ath10k_htt_rx_h_undecap_raw(ar, msdu, status, enctype, 1697 is_decrypted, first_hdr); 1698 break; 1699 case RX_MSDU_DECAP_NATIVE_WIFI: 1700 ath10k_htt_rx_h_undecap_nwifi(ar, msdu, status, first_hdr, 1701 enctype); 1702 break; 1703 case RX_MSDU_DECAP_ETHERNET2_DIX: 1704 ath10k_htt_rx_h_undecap_eth(ar, msdu, status, first_hdr, enctype); 1705 break; 1706 case RX_MSDU_DECAP_8023_SNAP_LLC: 1707 ath10k_htt_rx_h_undecap_snap(ar, msdu, status, first_hdr, 1708 enctype); 1709 break; 1710 } 1711 } 1712 1713 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb) 1714 { 1715 struct htt_rx_desc *rxd; 1716 u32 flags, info; 1717 bool is_ip4, is_ip6; 1718 bool is_tcp, is_udp; 1719 bool ip_csum_ok, tcpudp_csum_ok; 1720 1721 rxd = (void *)skb->data - sizeof(*rxd); 1722 flags = __le32_to_cpu(rxd->attention.flags); 1723 info = __le32_to_cpu(rxd->msdu_start.common.info1); 1724 1725 is_ip4 = !!(info & RX_MSDU_START_INFO1_IPV4_PROTO); 1726 is_ip6 = !!(info & RX_MSDU_START_INFO1_IPV6_PROTO); 1727 is_tcp = !!(info & RX_MSDU_START_INFO1_TCP_PROTO); 1728 is_udp = !!(info & RX_MSDU_START_INFO1_UDP_PROTO); 1729 ip_csum_ok = !(flags & RX_ATTENTION_FLAGS_IP_CHKSUM_FAIL); 1730 tcpudp_csum_ok = !(flags & RX_ATTENTION_FLAGS_TCP_UDP_CHKSUM_FAIL); 1731 1732 if (!is_ip4 && !is_ip6) 1733 return CHECKSUM_NONE; 1734 if (!is_tcp && !is_udp) 1735 return CHECKSUM_NONE; 1736 if (!ip_csum_ok) 1737 return CHECKSUM_NONE; 1738 if (!tcpudp_csum_ok) 1739 return CHECKSUM_NONE; 1740 1741 return CHECKSUM_UNNECESSARY; 1742 } 1743 1744 static void ath10k_htt_rx_h_csum_offload(struct sk_buff *msdu) 1745 { 1746 msdu->ip_summed = ath10k_htt_rx_get_csum_state(msdu); 1747 } 1748 1749 static void ath10k_htt_rx_h_mpdu(struct ath10k *ar, 1750 struct sk_buff_head *amsdu, 1751 struct ieee80211_rx_status *status, 1752 bool fill_crypt_header, 1753 u8 *rx_hdr, 1754 enum ath10k_pkt_rx_err *err) 1755 { 1756 struct sk_buff *first; 1757 struct sk_buff *last; 1758 struct sk_buff *msdu; 1759 struct htt_rx_desc *rxd; 1760 struct ieee80211_hdr *hdr; 1761 enum htt_rx_mpdu_encrypt_type enctype; 1762 u8 first_hdr[64]; 1763 u8 *qos; 1764 bool has_fcs_err; 1765 bool has_crypto_err; 1766 bool has_tkip_err; 1767 bool has_peer_idx_invalid; 1768 bool is_decrypted; 1769 bool is_mgmt; 1770 u32 attention; 1771 1772 if (skb_queue_empty(amsdu)) 1773 return; 1774 1775 first = skb_peek(amsdu); 1776 rxd = (void *)first->data - sizeof(*rxd); 1777 1778 is_mgmt = !!(rxd->attention.flags & 1779 __cpu_to_le32(RX_ATTENTION_FLAGS_MGMT_TYPE)); 1780 1781 enctype = MS(__le32_to_cpu(rxd->mpdu_start.info0), 1782 RX_MPDU_START_INFO0_ENCRYPT_TYPE); 1783 1784 /* First MSDU's Rx descriptor in an A-MSDU contains full 802.11 1785 * decapped header. It'll be used for undecapping of each MSDU. 1786 */ 1787 hdr = (void *)rxd->rx_hdr_status; 1788 memcpy(first_hdr, hdr, RX_HTT_HDR_STATUS_LEN); 1789 1790 if (rx_hdr) 1791 memcpy(rx_hdr, hdr, RX_HTT_HDR_STATUS_LEN); 1792 1793 /* Each A-MSDU subframe will use the original header as the base and be 1794 * reported as a separate MSDU so strip the A-MSDU bit from QoS Ctl. 1795 */ 1796 hdr = (void *)first_hdr; 1797 1798 if (ieee80211_is_data_qos(hdr->frame_control)) { 1799 qos = ieee80211_get_qos_ctl(hdr); 1800 qos[0] &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT; 1801 } 1802 1803 /* Some attention flags are valid only in the last MSDU. */ 1804 last = skb_peek_tail(amsdu); 1805 rxd = (void *)last->data - sizeof(*rxd); 1806 attention = __le32_to_cpu(rxd->attention.flags); 1807 1808 has_fcs_err = !!(attention & RX_ATTENTION_FLAGS_FCS_ERR); 1809 has_crypto_err = !!(attention & RX_ATTENTION_FLAGS_DECRYPT_ERR); 1810 has_tkip_err = !!(attention & RX_ATTENTION_FLAGS_TKIP_MIC_ERR); 1811 has_peer_idx_invalid = !!(attention & RX_ATTENTION_FLAGS_PEER_IDX_INVALID); 1812 1813 /* Note: If hardware captures an encrypted frame that it can't decrypt, 1814 * e.g. due to fcs error, missing peer or invalid key data it will 1815 * report the frame as raw. 1816 */ 1817 is_decrypted = (enctype != HTT_RX_MPDU_ENCRYPT_NONE && 1818 !has_fcs_err && 1819 !has_crypto_err && 1820 !has_peer_idx_invalid); 1821 1822 /* Clear per-MPDU flags while leaving per-PPDU flags intact. */ 1823 status->flag &= ~(RX_FLAG_FAILED_FCS_CRC | 1824 RX_FLAG_MMIC_ERROR | 1825 RX_FLAG_DECRYPTED | 1826 RX_FLAG_IV_STRIPPED | 1827 RX_FLAG_ONLY_MONITOR | 1828 RX_FLAG_MMIC_STRIPPED); 1829 1830 if (has_fcs_err) 1831 status->flag |= RX_FLAG_FAILED_FCS_CRC; 1832 1833 if (has_tkip_err) 1834 status->flag |= RX_FLAG_MMIC_ERROR; 1835 1836 if (err) { 1837 if (has_fcs_err) 1838 *err = ATH10K_PKT_RX_ERR_FCS; 1839 else if (has_tkip_err) 1840 *err = ATH10K_PKT_RX_ERR_TKIP; 1841 else if (has_crypto_err) 1842 *err = ATH10K_PKT_RX_ERR_CRYPT; 1843 else if (has_peer_idx_invalid) 1844 *err = ATH10K_PKT_RX_ERR_PEER_IDX_INVAL; 1845 } 1846 1847 /* Firmware reports all necessary management frames via WMI already. 1848 * They are not reported to monitor interfaces at all so pass the ones 1849 * coming via HTT to monitor interfaces instead. This simplifies 1850 * matters a lot. 1851 */ 1852 if (is_mgmt) 1853 status->flag |= RX_FLAG_ONLY_MONITOR; 1854 1855 if (is_decrypted) { 1856 status->flag |= RX_FLAG_DECRYPTED; 1857 1858 if (likely(!is_mgmt)) 1859 status->flag |= RX_FLAG_MMIC_STRIPPED; 1860 1861 if (fill_crypt_header) 1862 status->flag |= RX_FLAG_MIC_STRIPPED | 1863 RX_FLAG_ICV_STRIPPED; 1864 else 1865 status->flag |= RX_FLAG_IV_STRIPPED; 1866 } 1867 1868 skb_queue_walk(amsdu, msdu) { 1869 ath10k_htt_rx_h_csum_offload(msdu); 1870 ath10k_htt_rx_h_undecap(ar, msdu, status, first_hdr, enctype, 1871 is_decrypted); 1872 1873 /* Undecapping involves copying the original 802.11 header back 1874 * to sk_buff. If frame is protected and hardware has decrypted 1875 * it then remove the protected bit. 1876 */ 1877 if (!is_decrypted) 1878 continue; 1879 if (is_mgmt) 1880 continue; 1881 1882 if (fill_crypt_header) 1883 continue; 1884 1885 hdr = (void *)msdu->data; 1886 hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED); 1887 } 1888 } 1889 1890 static void ath10k_htt_rx_h_enqueue(struct ath10k *ar, 1891 struct sk_buff_head *amsdu, 1892 struct ieee80211_rx_status *status) 1893 { 1894 struct sk_buff *msdu; 1895 struct sk_buff *first_subframe; 1896 1897 first_subframe = skb_peek(amsdu); 1898 1899 while ((msdu = __skb_dequeue(amsdu))) { 1900 /* Setup per-MSDU flags */ 1901 if (skb_queue_empty(amsdu)) 1902 status->flag &= ~RX_FLAG_AMSDU_MORE; 1903 else 1904 status->flag |= RX_FLAG_AMSDU_MORE; 1905 1906 if (msdu == first_subframe) { 1907 first_subframe = NULL; 1908 status->flag &= ~RX_FLAG_ALLOW_SAME_PN; 1909 } else { 1910 status->flag |= RX_FLAG_ALLOW_SAME_PN; 1911 } 1912 1913 ath10k_htt_rx_h_queue_msdu(ar, status, msdu); 1914 } 1915 } 1916 1917 static int ath10k_unchain_msdu(struct sk_buff_head *amsdu, 1918 unsigned long *unchain_cnt) 1919 { 1920 struct sk_buff *skb, *first; 1921 int space; 1922 int total_len = 0; 1923 int amsdu_len = skb_queue_len(amsdu); 1924 1925 /* TODO: Might could optimize this by using 1926 * skb_try_coalesce or similar method to 1927 * decrease copying, or maybe get mac80211 to 1928 * provide a way to just receive a list of 1929 * skb? 1930 */ 1931 1932 first = __skb_dequeue(amsdu); 1933 1934 /* Allocate total length all at once. */ 1935 skb_queue_walk(amsdu, skb) 1936 total_len += skb->len; 1937 1938 space = total_len - skb_tailroom(first); 1939 if ((space > 0) && 1940 (pskb_expand_head(first, 0, space, GFP_ATOMIC) < 0)) { 1941 /* TODO: bump some rx-oom error stat */ 1942 /* put it back together so we can free the 1943 * whole list at once. 1944 */ 1945 __skb_queue_head(amsdu, first); 1946 return -1; 1947 } 1948 1949 /* Walk list again, copying contents into 1950 * msdu_head 1951 */ 1952 while ((skb = __skb_dequeue(amsdu))) { 1953 skb_copy_from_linear_data(skb, skb_put(first, skb->len), 1954 skb->len); 1955 dev_kfree_skb_any(skb); 1956 } 1957 1958 __skb_queue_head(amsdu, first); 1959 1960 *unchain_cnt += amsdu_len - 1; 1961 1962 return 0; 1963 } 1964 1965 static void ath10k_htt_rx_h_unchain(struct ath10k *ar, 1966 struct sk_buff_head *amsdu, 1967 unsigned long *drop_cnt, 1968 unsigned long *unchain_cnt) 1969 { 1970 struct sk_buff *first; 1971 struct htt_rx_desc *rxd; 1972 enum rx_msdu_decap_format decap; 1973 1974 first = skb_peek(amsdu); 1975 rxd = (void *)first->data - sizeof(*rxd); 1976 decap = MS(__le32_to_cpu(rxd->msdu_start.common.info1), 1977 RX_MSDU_START_INFO1_DECAP_FORMAT); 1978 1979 /* FIXME: Current unchaining logic can only handle simple case of raw 1980 * msdu chaining. If decapping is other than raw the chaining may be 1981 * more complex and this isn't handled by the current code. Don't even 1982 * try re-constructing such frames - it'll be pretty much garbage. 1983 */ 1984 if (decap != RX_MSDU_DECAP_RAW || 1985 skb_queue_len(amsdu) != 1 + rxd->frag_info.ring2_more_count) { 1986 *drop_cnt += skb_queue_len(amsdu); 1987 __skb_queue_purge(amsdu); 1988 return; 1989 } 1990 1991 ath10k_unchain_msdu(amsdu, unchain_cnt); 1992 } 1993 1994 static bool ath10k_htt_rx_amsdu_allowed(struct ath10k *ar, 1995 struct sk_buff_head *amsdu, 1996 struct ieee80211_rx_status *rx_status) 1997 { 1998 /* FIXME: It might be a good idea to do some fuzzy-testing to drop 1999 * invalid/dangerous frames. 2000 */ 2001 2002 if (!rx_status->freq) { 2003 ath10k_dbg(ar, ATH10K_DBG_HTT, "no channel configured; ignoring frame(s)!\n"); 2004 return false; 2005 } 2006 2007 if (test_bit(ATH10K_CAC_RUNNING, &ar->dev_flags)) { 2008 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx cac running\n"); 2009 return false; 2010 } 2011 2012 return true; 2013 } 2014 2015 static void ath10k_htt_rx_h_filter(struct ath10k *ar, 2016 struct sk_buff_head *amsdu, 2017 struct ieee80211_rx_status *rx_status, 2018 unsigned long *drop_cnt) 2019 { 2020 if (skb_queue_empty(amsdu)) 2021 return; 2022 2023 if (ath10k_htt_rx_amsdu_allowed(ar, amsdu, rx_status)) 2024 return; 2025 2026 if (drop_cnt) 2027 *drop_cnt += skb_queue_len(amsdu); 2028 2029 __skb_queue_purge(amsdu); 2030 } 2031 2032 static int ath10k_htt_rx_handle_amsdu(struct ath10k_htt *htt) 2033 { 2034 struct ath10k *ar = htt->ar; 2035 struct ieee80211_rx_status *rx_status = &htt->rx_status; 2036 struct sk_buff_head amsdu; 2037 int ret; 2038 unsigned long drop_cnt = 0; 2039 unsigned long unchain_cnt = 0; 2040 unsigned long drop_cnt_filter = 0; 2041 unsigned long msdus_to_queue, num_msdus; 2042 enum ath10k_pkt_rx_err err = ATH10K_PKT_RX_ERR_MAX; 2043 u8 first_hdr[RX_HTT_HDR_STATUS_LEN]; 2044 2045 __skb_queue_head_init(&amsdu); 2046 2047 spin_lock_bh(&htt->rx_ring.lock); 2048 if (htt->rx_confused) { 2049 spin_unlock_bh(&htt->rx_ring.lock); 2050 return -EIO; 2051 } 2052 ret = ath10k_htt_rx_amsdu_pop(htt, &amsdu); 2053 spin_unlock_bh(&htt->rx_ring.lock); 2054 2055 if (ret < 0) { 2056 ath10k_warn(ar, "rx ring became corrupted: %d\n", ret); 2057 __skb_queue_purge(&amsdu); 2058 /* FIXME: It's probably a good idea to reboot the 2059 * device instead of leaving it inoperable. 2060 */ 2061 htt->rx_confused = true; 2062 return ret; 2063 } 2064 2065 num_msdus = skb_queue_len(&amsdu); 2066 2067 ath10k_htt_rx_h_ppdu(ar, &amsdu, rx_status, 0xffff); 2068 2069 /* only for ret = 1 indicates chained msdus */ 2070 if (ret > 0) 2071 ath10k_htt_rx_h_unchain(ar, &amsdu, &drop_cnt, &unchain_cnt); 2072 2073 ath10k_htt_rx_h_filter(ar, &amsdu, rx_status, &drop_cnt_filter); 2074 ath10k_htt_rx_h_mpdu(ar, &amsdu, rx_status, true, first_hdr, &err); 2075 msdus_to_queue = skb_queue_len(&amsdu); 2076 ath10k_htt_rx_h_enqueue(ar, &amsdu, rx_status); 2077 2078 ath10k_sta_update_rx_tid_stats(ar, first_hdr, num_msdus, err, 2079 unchain_cnt, drop_cnt, drop_cnt_filter, 2080 msdus_to_queue); 2081 2082 return 0; 2083 } 2084 2085 static void ath10k_htt_rx_mpdu_desc_pn_hl(struct htt_hl_rx_desc *rx_desc, 2086 union htt_rx_pn_t *pn, 2087 int pn_len_bits) 2088 { 2089 switch (pn_len_bits) { 2090 case 48: 2091 pn->pn48 = __le32_to_cpu(rx_desc->pn_31_0) + 2092 ((u64)(__le32_to_cpu(rx_desc->u0.pn_63_32) & 0xFFFF) << 32); 2093 break; 2094 case 24: 2095 pn->pn24 = __le32_to_cpu(rx_desc->pn_31_0); 2096 break; 2097 } 2098 } 2099 2100 static bool ath10k_htt_rx_pn_cmp48(union htt_rx_pn_t *new_pn, 2101 union htt_rx_pn_t *old_pn) 2102 { 2103 return ((new_pn->pn48 & 0xffffffffffffULL) <= 2104 (old_pn->pn48 & 0xffffffffffffULL)); 2105 } 2106 2107 static bool ath10k_htt_rx_pn_check_replay_hl(struct ath10k *ar, 2108 struct ath10k_peer *peer, 2109 struct htt_rx_indication_hl *rx) 2110 { 2111 bool last_pn_valid, pn_invalid = false; 2112 enum htt_txrx_sec_cast_type sec_index; 2113 enum htt_security_types sec_type; 2114 union htt_rx_pn_t new_pn = {0}; 2115 struct htt_hl_rx_desc *rx_desc; 2116 union htt_rx_pn_t *last_pn; 2117 u32 rx_desc_info, tid; 2118 int num_mpdu_ranges; 2119 2120 lockdep_assert_held(&ar->data_lock); 2121 2122 if (!peer) 2123 return false; 2124 2125 if (!(rx->fw_desc.flags & FW_RX_DESC_FLAGS_FIRST_MSDU)) 2126 return false; 2127 2128 num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1), 2129 HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES); 2130 2131 rx_desc = (struct htt_hl_rx_desc *)&rx->mpdu_ranges[num_mpdu_ranges]; 2132 rx_desc_info = __le32_to_cpu(rx_desc->info); 2133 2134 if (!MS(rx_desc_info, HTT_RX_DESC_HL_INFO_ENCRYPTED)) 2135 return false; 2136 2137 tid = MS(rx->hdr.info0, HTT_RX_INDICATION_INFO0_EXT_TID); 2138 last_pn_valid = peer->tids_last_pn_valid[tid]; 2139 last_pn = &peer->tids_last_pn[tid]; 2140 2141 if (MS(rx_desc_info, HTT_RX_DESC_HL_INFO_MCAST_BCAST)) 2142 sec_index = HTT_TXRX_SEC_MCAST; 2143 else 2144 sec_index = HTT_TXRX_SEC_UCAST; 2145 2146 sec_type = peer->rx_pn[sec_index].sec_type; 2147 ath10k_htt_rx_mpdu_desc_pn_hl(rx_desc, &new_pn, peer->rx_pn[sec_index].pn_len); 2148 2149 if (sec_type != HTT_SECURITY_AES_CCMP && 2150 sec_type != HTT_SECURITY_TKIP && 2151 sec_type != HTT_SECURITY_TKIP_NOMIC) 2152 return false; 2153 2154 if (last_pn_valid) 2155 pn_invalid = ath10k_htt_rx_pn_cmp48(&new_pn, last_pn); 2156 else 2157 peer->tids_last_pn_valid[tid] = true; 2158 2159 if (!pn_invalid) 2160 last_pn->pn48 = new_pn.pn48; 2161 2162 return pn_invalid; 2163 } 2164 2165 static bool ath10k_htt_rx_proc_rx_ind_hl(struct ath10k_htt *htt, 2166 struct htt_rx_indication_hl *rx, 2167 struct sk_buff *skb, 2168 enum htt_rx_pn_check_type check_pn_type, 2169 enum htt_rx_tkip_demic_type tkip_mic_type) 2170 { 2171 struct ath10k *ar = htt->ar; 2172 struct ath10k_peer *peer; 2173 struct htt_rx_indication_mpdu_range *mpdu_ranges; 2174 struct fw_rx_desc_hl *fw_desc; 2175 enum htt_txrx_sec_cast_type sec_index; 2176 enum htt_security_types sec_type; 2177 union htt_rx_pn_t new_pn = {0}; 2178 struct htt_hl_rx_desc *rx_desc; 2179 struct ieee80211_hdr *hdr; 2180 struct ieee80211_rx_status *rx_status; 2181 u16 peer_id; 2182 u8 rx_desc_len; 2183 int num_mpdu_ranges; 2184 size_t tot_hdr_len; 2185 struct ieee80211_channel *ch; 2186 bool pn_invalid, qos, first_msdu; 2187 u32 tid, rx_desc_info; 2188 2189 peer_id = __le16_to_cpu(rx->hdr.peer_id); 2190 tid = MS(rx->hdr.info0, HTT_RX_INDICATION_INFO0_EXT_TID); 2191 2192 spin_lock_bh(&ar->data_lock); 2193 peer = ath10k_peer_find_by_id(ar, peer_id); 2194 spin_unlock_bh(&ar->data_lock); 2195 if (!peer && peer_id != HTT_INVALID_PEERID) 2196 ath10k_warn(ar, "Got RX ind from invalid peer: %u\n", peer_id); 2197 2198 if (!peer) 2199 return true; 2200 2201 num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1), 2202 HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES); 2203 mpdu_ranges = htt_rx_ind_get_mpdu_ranges_hl(rx); 2204 fw_desc = &rx->fw_desc; 2205 rx_desc_len = fw_desc->len; 2206 2207 /* I have not yet seen any case where num_mpdu_ranges > 1. 2208 * qcacld does not seem handle that case either, so we introduce the 2209 * same limitiation here as well. 2210 */ 2211 if (num_mpdu_ranges > 1) 2212 ath10k_warn(ar, 2213 "Unsupported number of MPDU ranges: %d, ignoring all but the first\n", 2214 num_mpdu_ranges); 2215 2216 if (mpdu_ranges->mpdu_range_status != 2217 HTT_RX_IND_MPDU_STATUS_OK && 2218 mpdu_ranges->mpdu_range_status != 2219 HTT_RX_IND_MPDU_STATUS_TKIP_MIC_ERR) { 2220 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt mpdu_range_status %d\n", 2221 mpdu_ranges->mpdu_range_status); 2222 goto err; 2223 } 2224 2225 rx_desc = (struct htt_hl_rx_desc *)&rx->mpdu_ranges[num_mpdu_ranges]; 2226 rx_desc_info = __le32_to_cpu(rx_desc->info); 2227 2228 if (MS(rx_desc_info, HTT_RX_DESC_HL_INFO_MCAST_BCAST)) 2229 sec_index = HTT_TXRX_SEC_MCAST; 2230 else 2231 sec_index = HTT_TXRX_SEC_UCAST; 2232 2233 sec_type = peer->rx_pn[sec_index].sec_type; 2234 first_msdu = rx->fw_desc.flags & FW_RX_DESC_FLAGS_FIRST_MSDU; 2235 2236 ath10k_htt_rx_mpdu_desc_pn_hl(rx_desc, &new_pn, peer->rx_pn[sec_index].pn_len); 2237 2238 if (check_pn_type == HTT_RX_PN_CHECK && tid >= IEEE80211_NUM_TIDS) { 2239 spin_lock_bh(&ar->data_lock); 2240 pn_invalid = ath10k_htt_rx_pn_check_replay_hl(ar, peer, rx); 2241 spin_unlock_bh(&ar->data_lock); 2242 2243 if (pn_invalid) 2244 goto err; 2245 } 2246 2247 /* Strip off all headers before the MAC header before delivery to 2248 * mac80211 2249 */ 2250 tot_hdr_len = sizeof(struct htt_resp_hdr) + sizeof(rx->hdr) + 2251 sizeof(rx->ppdu) + sizeof(rx->prefix) + 2252 sizeof(rx->fw_desc) + 2253 sizeof(*mpdu_ranges) * num_mpdu_ranges + rx_desc_len; 2254 2255 skb_pull(skb, tot_hdr_len); 2256 2257 hdr = (struct ieee80211_hdr *)skb->data; 2258 qos = ieee80211_is_data_qos(hdr->frame_control); 2259 2260 rx_status = IEEE80211_SKB_RXCB(skb); 2261 memset(rx_status, 0, sizeof(*rx_status)); 2262 2263 if (rx->ppdu.combined_rssi == 0) { 2264 /* SDIO firmware does not provide signal */ 2265 rx_status->signal = 0; 2266 rx_status->flag |= RX_FLAG_NO_SIGNAL_VAL; 2267 } else { 2268 rx_status->signal = ATH10K_DEFAULT_NOISE_FLOOR + 2269 rx->ppdu.combined_rssi; 2270 rx_status->flag &= ~RX_FLAG_NO_SIGNAL_VAL; 2271 } 2272 2273 spin_lock_bh(&ar->data_lock); 2274 ch = ar->scan_channel; 2275 if (!ch) 2276 ch = ar->rx_channel; 2277 if (!ch) 2278 ch = ath10k_htt_rx_h_any_channel(ar); 2279 if (!ch) 2280 ch = ar->tgt_oper_chan; 2281 spin_unlock_bh(&ar->data_lock); 2282 2283 if (ch) { 2284 rx_status->band = ch->band; 2285 rx_status->freq = ch->center_freq; 2286 } 2287 if (rx->fw_desc.flags & FW_RX_DESC_FLAGS_LAST_MSDU) 2288 rx_status->flag &= ~RX_FLAG_AMSDU_MORE; 2289 else 2290 rx_status->flag |= RX_FLAG_AMSDU_MORE; 2291 2292 /* Not entirely sure about this, but all frames from the chipset has 2293 * the protected flag set even though they have already been decrypted. 2294 * Unmasking this flag is necessary in order for mac80211 not to drop 2295 * the frame. 2296 * TODO: Verify this is always the case or find out a way to check 2297 * if there has been hw decryption. 2298 */ 2299 if (ieee80211_has_protected(hdr->frame_control)) { 2300 hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED); 2301 rx_status->flag |= RX_FLAG_DECRYPTED | 2302 RX_FLAG_IV_STRIPPED | 2303 RX_FLAG_MMIC_STRIPPED; 2304 2305 if (tid < IEEE80211_NUM_TIDS && 2306 first_msdu && 2307 check_pn_type == HTT_RX_PN_CHECK && 2308 (sec_type == HTT_SECURITY_AES_CCMP || 2309 sec_type == HTT_SECURITY_TKIP || 2310 sec_type == HTT_SECURITY_TKIP_NOMIC)) { 2311 u8 offset, *ivp, i; 2312 s8 keyidx = 0; 2313 __le64 pn48 = cpu_to_le64(new_pn.pn48); 2314 2315 hdr = (struct ieee80211_hdr *)skb->data; 2316 offset = ieee80211_hdrlen(hdr->frame_control); 2317 hdr->frame_control |= __cpu_to_le16(IEEE80211_FCTL_PROTECTED); 2318 rx_status->flag &= ~RX_FLAG_IV_STRIPPED; 2319 2320 memmove(skb->data - IEEE80211_CCMP_HDR_LEN, 2321 skb->data, offset); 2322 skb_push(skb, IEEE80211_CCMP_HDR_LEN); 2323 ivp = skb->data + offset; 2324 memset(skb->data + offset, 0, IEEE80211_CCMP_HDR_LEN); 2325 /* Ext IV */ 2326 ivp[IEEE80211_WEP_IV_LEN - 1] |= ATH10K_IEEE80211_EXTIV; 2327 2328 for (i = 0; i < ARRAY_SIZE(peer->keys); i++) { 2329 if (peer->keys[i] && 2330 peer->keys[i]->flags & IEEE80211_KEY_FLAG_PAIRWISE) 2331 keyidx = peer->keys[i]->keyidx; 2332 } 2333 2334 /* Key ID */ 2335 ivp[IEEE80211_WEP_IV_LEN - 1] |= keyidx << 6; 2336 2337 if (sec_type == HTT_SECURITY_AES_CCMP) { 2338 rx_status->flag |= RX_FLAG_MIC_STRIPPED; 2339 /* pn 0, pn 1 */ 2340 memcpy(skb->data + offset, &pn48, 2); 2341 /* pn 1, pn 3 , pn 34 , pn 5 */ 2342 memcpy(skb->data + offset + 4, ((u8 *)&pn48) + 2, 4); 2343 } else { 2344 rx_status->flag |= RX_FLAG_ICV_STRIPPED; 2345 /* TSC 0 */ 2346 memcpy(skb->data + offset + 2, &pn48, 1); 2347 /* TSC 1 */ 2348 memcpy(skb->data + offset, ((u8 *)&pn48) + 1, 1); 2349 /* TSC 2 , TSC 3 , TSC 4 , TSC 5*/ 2350 memcpy(skb->data + offset + 4, ((u8 *)&pn48) + 2, 4); 2351 } 2352 } 2353 } 2354 2355 if (tkip_mic_type == HTT_RX_TKIP_MIC) 2356 rx_status->flag &= ~RX_FLAG_IV_STRIPPED & 2357 ~RX_FLAG_MMIC_STRIPPED; 2358 2359 if (mpdu_ranges->mpdu_range_status == HTT_RX_IND_MPDU_STATUS_TKIP_MIC_ERR) 2360 rx_status->flag |= RX_FLAG_MMIC_ERROR; 2361 2362 if (!qos && tid < IEEE80211_NUM_TIDS) { 2363 u8 offset; 2364 __le16 qos_ctrl = 0; 2365 2366 hdr = (struct ieee80211_hdr *)skb->data; 2367 offset = ieee80211_hdrlen(hdr->frame_control); 2368 2369 hdr->frame_control |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA); 2370 memmove(skb->data - IEEE80211_QOS_CTL_LEN, skb->data, offset); 2371 skb_push(skb, IEEE80211_QOS_CTL_LEN); 2372 qos_ctrl = cpu_to_le16(tid); 2373 memcpy(skb->data + offset, &qos_ctrl, IEEE80211_QOS_CTL_LEN); 2374 } 2375 2376 if (ar->napi.dev) 2377 ieee80211_rx_napi(ar->hw, NULL, skb, &ar->napi); 2378 else 2379 ieee80211_rx_ni(ar->hw, skb); 2380 2381 /* We have delivered the skb to the upper layers (mac80211) so we 2382 * must not free it. 2383 */ 2384 return false; 2385 err: 2386 /* Tell the caller that it must free the skb since we have not 2387 * consumed it 2388 */ 2389 return true; 2390 } 2391 2392 static int ath10k_htt_rx_frag_tkip_decap_nomic(struct sk_buff *skb, 2393 u16 head_len, 2394 u16 hdr_len) 2395 { 2396 u8 *ivp, *orig_hdr; 2397 2398 orig_hdr = skb->data; 2399 ivp = orig_hdr + hdr_len + head_len; 2400 2401 /* the ExtIV bit is always set to 1 for TKIP */ 2402 if (!(ivp[IEEE80211_WEP_IV_LEN - 1] & ATH10K_IEEE80211_EXTIV)) 2403 return -EINVAL; 2404 2405 memmove(orig_hdr + IEEE80211_TKIP_IV_LEN, orig_hdr, head_len + hdr_len); 2406 skb_pull(skb, IEEE80211_TKIP_IV_LEN); 2407 skb_trim(skb, skb->len - ATH10K_IEEE80211_TKIP_MICLEN); 2408 return 0; 2409 } 2410 2411 static int ath10k_htt_rx_frag_tkip_decap_withmic(struct sk_buff *skb, 2412 u16 head_len, 2413 u16 hdr_len) 2414 { 2415 u8 *ivp, *orig_hdr; 2416 2417 orig_hdr = skb->data; 2418 ivp = orig_hdr + hdr_len + head_len; 2419 2420 /* the ExtIV bit is always set to 1 for TKIP */ 2421 if (!(ivp[IEEE80211_WEP_IV_LEN - 1] & ATH10K_IEEE80211_EXTIV)) 2422 return -EINVAL; 2423 2424 memmove(orig_hdr + IEEE80211_TKIP_IV_LEN, orig_hdr, head_len + hdr_len); 2425 skb_pull(skb, IEEE80211_TKIP_IV_LEN); 2426 skb_trim(skb, skb->len - IEEE80211_TKIP_ICV_LEN); 2427 return 0; 2428 } 2429 2430 static int ath10k_htt_rx_frag_ccmp_decap(struct sk_buff *skb, 2431 u16 head_len, 2432 u16 hdr_len) 2433 { 2434 u8 *ivp, *orig_hdr; 2435 2436 orig_hdr = skb->data; 2437 ivp = orig_hdr + hdr_len + head_len; 2438 2439 /* the ExtIV bit is always set to 1 for CCMP */ 2440 if (!(ivp[IEEE80211_WEP_IV_LEN - 1] & ATH10K_IEEE80211_EXTIV)) 2441 return -EINVAL; 2442 2443 skb_trim(skb, skb->len - IEEE80211_CCMP_MIC_LEN); 2444 memmove(orig_hdr + IEEE80211_CCMP_HDR_LEN, orig_hdr, head_len + hdr_len); 2445 skb_pull(skb, IEEE80211_CCMP_HDR_LEN); 2446 return 0; 2447 } 2448 2449 static int ath10k_htt_rx_frag_wep_decap(struct sk_buff *skb, 2450 u16 head_len, 2451 u16 hdr_len) 2452 { 2453 u8 *orig_hdr; 2454 2455 orig_hdr = skb->data; 2456 2457 memmove(orig_hdr + IEEE80211_WEP_IV_LEN, 2458 orig_hdr, head_len + hdr_len); 2459 skb_pull(skb, IEEE80211_WEP_IV_LEN); 2460 skb_trim(skb, skb->len - IEEE80211_WEP_ICV_LEN); 2461 return 0; 2462 } 2463 2464 static bool ath10k_htt_rx_proc_rx_frag_ind_hl(struct ath10k_htt *htt, 2465 struct htt_rx_fragment_indication *rx, 2466 struct sk_buff *skb) 2467 { 2468 struct ath10k *ar = htt->ar; 2469 enum htt_rx_tkip_demic_type tkip_mic = HTT_RX_NON_TKIP_MIC; 2470 enum htt_txrx_sec_cast_type sec_index; 2471 struct htt_rx_indication_hl *rx_hl; 2472 enum htt_security_types sec_type; 2473 u32 tid, frag, seq, rx_desc_info; 2474 union htt_rx_pn_t new_pn = {0}; 2475 struct htt_hl_rx_desc *rx_desc; 2476 u16 peer_id, sc, hdr_space; 2477 union htt_rx_pn_t *last_pn; 2478 struct ieee80211_hdr *hdr; 2479 int ret, num_mpdu_ranges; 2480 struct ath10k_peer *peer; 2481 struct htt_resp *resp; 2482 size_t tot_hdr_len; 2483 2484 resp = (struct htt_resp *)(skb->data + HTT_RX_FRAG_IND_INFO0_HEADER_LEN); 2485 skb_pull(skb, HTT_RX_FRAG_IND_INFO0_HEADER_LEN); 2486 skb_trim(skb, skb->len - FCS_LEN); 2487 2488 peer_id = __le16_to_cpu(rx->peer_id); 2489 rx_hl = (struct htt_rx_indication_hl *)(&resp->rx_ind_hl); 2490 2491 spin_lock_bh(&ar->data_lock); 2492 peer = ath10k_peer_find_by_id(ar, peer_id); 2493 if (!peer) { 2494 ath10k_dbg(ar, ATH10K_DBG_HTT, "invalid peer: %u\n", peer_id); 2495 goto err; 2496 } 2497 2498 num_mpdu_ranges = MS(__le32_to_cpu(rx_hl->hdr.info1), 2499 HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES); 2500 2501 tot_hdr_len = sizeof(struct htt_resp_hdr) + 2502 sizeof(rx_hl->hdr) + 2503 sizeof(rx_hl->ppdu) + 2504 sizeof(rx_hl->prefix) + 2505 sizeof(rx_hl->fw_desc) + 2506 sizeof(struct htt_rx_indication_mpdu_range) * num_mpdu_ranges; 2507 2508 tid = MS(rx_hl->hdr.info0, HTT_RX_INDICATION_INFO0_EXT_TID); 2509 rx_desc = (struct htt_hl_rx_desc *)(skb->data + tot_hdr_len); 2510 rx_desc_info = __le32_to_cpu(rx_desc->info); 2511 2512 if (!MS(rx_desc_info, HTT_RX_DESC_HL_INFO_ENCRYPTED)) { 2513 spin_unlock_bh(&ar->data_lock); 2514 return ath10k_htt_rx_proc_rx_ind_hl(htt, &resp->rx_ind_hl, skb, 2515 HTT_RX_NON_PN_CHECK, 2516 HTT_RX_NON_TKIP_MIC); 2517 } 2518 2519 hdr = (struct ieee80211_hdr *)((u8 *)rx_desc + rx_hl->fw_desc.len); 2520 2521 if (ieee80211_has_retry(hdr->frame_control)) 2522 goto err; 2523 2524 hdr_space = ieee80211_hdrlen(hdr->frame_control); 2525 sc = __le16_to_cpu(hdr->seq_ctrl); 2526 seq = (sc & IEEE80211_SCTL_SEQ) >> 4; 2527 frag = sc & IEEE80211_SCTL_FRAG; 2528 2529 sec_index = MS(rx_desc_info, HTT_RX_DESC_HL_INFO_MCAST_BCAST) ? 2530 HTT_TXRX_SEC_MCAST : HTT_TXRX_SEC_UCAST; 2531 sec_type = peer->rx_pn[sec_index].sec_type; 2532 ath10k_htt_rx_mpdu_desc_pn_hl(rx_desc, &new_pn, peer->rx_pn[sec_index].pn_len); 2533 2534 switch (sec_type) { 2535 case HTT_SECURITY_TKIP: 2536 tkip_mic = HTT_RX_TKIP_MIC; 2537 ret = ath10k_htt_rx_frag_tkip_decap_withmic(skb, 2538 tot_hdr_len + 2539 rx_hl->fw_desc.len, 2540 hdr_space); 2541 if (ret) 2542 goto err; 2543 break; 2544 case HTT_SECURITY_TKIP_NOMIC: 2545 ret = ath10k_htt_rx_frag_tkip_decap_nomic(skb, 2546 tot_hdr_len + 2547 rx_hl->fw_desc.len, 2548 hdr_space); 2549 if (ret) 2550 goto err; 2551 break; 2552 case HTT_SECURITY_AES_CCMP: 2553 ret = ath10k_htt_rx_frag_ccmp_decap(skb, 2554 tot_hdr_len + rx_hl->fw_desc.len, 2555 hdr_space); 2556 if (ret) 2557 goto err; 2558 break; 2559 case HTT_SECURITY_WEP128: 2560 case HTT_SECURITY_WEP104: 2561 case HTT_SECURITY_WEP40: 2562 ret = ath10k_htt_rx_frag_wep_decap(skb, 2563 tot_hdr_len + rx_hl->fw_desc.len, 2564 hdr_space); 2565 if (ret) 2566 goto err; 2567 break; 2568 default: 2569 break; 2570 } 2571 2572 resp = (struct htt_resp *)(skb->data); 2573 2574 if (sec_type != HTT_SECURITY_AES_CCMP && 2575 sec_type != HTT_SECURITY_TKIP && 2576 sec_type != HTT_SECURITY_TKIP_NOMIC) { 2577 spin_unlock_bh(&ar->data_lock); 2578 return ath10k_htt_rx_proc_rx_ind_hl(htt, &resp->rx_ind_hl, skb, 2579 HTT_RX_NON_PN_CHECK, 2580 HTT_RX_NON_TKIP_MIC); 2581 } 2582 2583 last_pn = &peer->frag_tids_last_pn[tid]; 2584 2585 if (frag == 0) { 2586 if (ath10k_htt_rx_pn_check_replay_hl(ar, peer, &resp->rx_ind_hl)) 2587 goto err; 2588 2589 last_pn->pn48 = new_pn.pn48; 2590 peer->frag_tids_seq[tid] = seq; 2591 } else if (sec_type == HTT_SECURITY_AES_CCMP) { 2592 if (seq != peer->frag_tids_seq[tid]) 2593 goto err; 2594 2595 if (new_pn.pn48 != last_pn->pn48 + 1) 2596 goto err; 2597 2598 last_pn->pn48 = new_pn.pn48; 2599 last_pn = &peer->tids_last_pn[tid]; 2600 last_pn->pn48 = new_pn.pn48; 2601 } 2602 2603 spin_unlock_bh(&ar->data_lock); 2604 2605 return ath10k_htt_rx_proc_rx_ind_hl(htt, &resp->rx_ind_hl, skb, 2606 HTT_RX_NON_PN_CHECK, tkip_mic); 2607 2608 err: 2609 spin_unlock_bh(&ar->data_lock); 2610 2611 /* Tell the caller that it must free the skb since we have not 2612 * consumed it 2613 */ 2614 return true; 2615 } 2616 2617 static void ath10k_htt_rx_proc_rx_ind_ll(struct ath10k_htt *htt, 2618 struct htt_rx_indication *rx) 2619 { 2620 struct ath10k *ar = htt->ar; 2621 struct htt_rx_indication_mpdu_range *mpdu_ranges; 2622 int num_mpdu_ranges; 2623 int i, mpdu_count = 0; 2624 u16 peer_id; 2625 u8 tid; 2626 2627 num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1), 2628 HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES); 2629 peer_id = __le16_to_cpu(rx->hdr.peer_id); 2630 tid = MS(rx->hdr.info0, HTT_RX_INDICATION_INFO0_EXT_TID); 2631 2632 mpdu_ranges = htt_rx_ind_get_mpdu_ranges(rx); 2633 2634 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx ind: ", 2635 rx, struct_size(rx, mpdu_ranges, num_mpdu_ranges)); 2636 2637 for (i = 0; i < num_mpdu_ranges; i++) 2638 mpdu_count += mpdu_ranges[i].mpdu_count; 2639 2640 atomic_add(mpdu_count, &htt->num_mpdus_ready); 2641 2642 ath10k_sta_update_rx_tid_stats_ampdu(ar, peer_id, tid, mpdu_ranges, 2643 num_mpdu_ranges); 2644 } 2645 2646 static void ath10k_htt_rx_tx_compl_ind(struct ath10k *ar, 2647 struct sk_buff *skb) 2648 { 2649 struct ath10k_htt *htt = &ar->htt; 2650 struct htt_resp *resp = (struct htt_resp *)skb->data; 2651 struct htt_tx_done tx_done = {}; 2652 int status = MS(resp->data_tx_completion.flags, HTT_DATA_TX_STATUS); 2653 __le16 msdu_id, *msdus; 2654 bool rssi_enabled = false; 2655 u8 msdu_count = 0, num_airtime_records, tid; 2656 int i, htt_pad = 0; 2657 struct htt_data_tx_compl_ppdu_dur *ppdu_info; 2658 struct ath10k_peer *peer; 2659 u16 ppdu_info_offset = 0, peer_id; 2660 u32 tx_duration; 2661 2662 switch (status) { 2663 case HTT_DATA_TX_STATUS_NO_ACK: 2664 tx_done.status = HTT_TX_COMPL_STATE_NOACK; 2665 break; 2666 case HTT_DATA_TX_STATUS_OK: 2667 tx_done.status = HTT_TX_COMPL_STATE_ACK; 2668 break; 2669 case HTT_DATA_TX_STATUS_DISCARD: 2670 case HTT_DATA_TX_STATUS_POSTPONE: 2671 case HTT_DATA_TX_STATUS_DOWNLOAD_FAIL: 2672 tx_done.status = HTT_TX_COMPL_STATE_DISCARD; 2673 break; 2674 default: 2675 ath10k_warn(ar, "unhandled tx completion status %d\n", status); 2676 tx_done.status = HTT_TX_COMPL_STATE_DISCARD; 2677 break; 2678 } 2679 2680 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx completion num_msdus %d\n", 2681 resp->data_tx_completion.num_msdus); 2682 2683 msdu_count = resp->data_tx_completion.num_msdus; 2684 msdus = resp->data_tx_completion.msdus; 2685 rssi_enabled = ath10k_is_rssi_enable(&ar->hw_params, resp); 2686 2687 if (rssi_enabled) 2688 htt_pad = ath10k_tx_data_rssi_get_pad_bytes(&ar->hw_params, 2689 resp); 2690 2691 for (i = 0; i < msdu_count; i++) { 2692 msdu_id = msdus[i]; 2693 tx_done.msdu_id = __le16_to_cpu(msdu_id); 2694 2695 if (rssi_enabled) { 2696 /* Total no of MSDUs should be even, 2697 * if odd MSDUs are sent firmware fills 2698 * last msdu id with 0xffff 2699 */ 2700 if (msdu_count & 0x01) { 2701 msdu_id = msdus[msdu_count + i + 1 + htt_pad]; 2702 tx_done.ack_rssi = __le16_to_cpu(msdu_id); 2703 } else { 2704 msdu_id = msdus[msdu_count + i + htt_pad]; 2705 tx_done.ack_rssi = __le16_to_cpu(msdu_id); 2706 } 2707 } 2708 2709 /* kfifo_put: In practice firmware shouldn't fire off per-CE 2710 * interrupt and main interrupt (MSI/-X range case) for the same 2711 * HTC service so it should be safe to use kfifo_put w/o lock. 2712 * 2713 * From kfifo_put() documentation: 2714 * Note that with only one concurrent reader and one concurrent 2715 * writer, you don't need extra locking to use these macro. 2716 */ 2717 if (ar->bus_param.dev_type == ATH10K_DEV_TYPE_HL) { 2718 ath10k_txrx_tx_unref(htt, &tx_done); 2719 } else if (!kfifo_put(&htt->txdone_fifo, tx_done)) { 2720 ath10k_warn(ar, "txdone fifo overrun, msdu_id %d status %d\n", 2721 tx_done.msdu_id, tx_done.status); 2722 ath10k_txrx_tx_unref(htt, &tx_done); 2723 } 2724 } 2725 2726 if (!(resp->data_tx_completion.flags2 & HTT_TX_CMPL_FLAG_PPDU_DURATION_PRESENT)) 2727 return; 2728 2729 ppdu_info_offset = (msdu_count & 0x01) ? msdu_count + 1 : msdu_count; 2730 2731 if (rssi_enabled) 2732 ppdu_info_offset += ppdu_info_offset; 2733 2734 if (resp->data_tx_completion.flags2 & 2735 (HTT_TX_CMPL_FLAG_PPID_PRESENT | HTT_TX_CMPL_FLAG_PA_PRESENT)) 2736 ppdu_info_offset += 2; 2737 2738 ppdu_info = (struct htt_data_tx_compl_ppdu_dur *)&msdus[ppdu_info_offset]; 2739 num_airtime_records = FIELD_GET(HTT_TX_COMPL_PPDU_DUR_INFO0_NUM_ENTRIES_MASK, 2740 __le32_to_cpu(ppdu_info->info0)); 2741 2742 for (i = 0; i < num_airtime_records; i++) { 2743 struct htt_data_tx_ppdu_dur *ppdu_dur; 2744 u32 info0; 2745 2746 ppdu_dur = &ppdu_info->ppdu_dur[i]; 2747 info0 = __le32_to_cpu(ppdu_dur->info0); 2748 2749 peer_id = FIELD_GET(HTT_TX_PPDU_DUR_INFO0_PEER_ID_MASK, 2750 info0); 2751 rcu_read_lock(); 2752 spin_lock_bh(&ar->data_lock); 2753 2754 peer = ath10k_peer_find_by_id(ar, peer_id); 2755 if (!peer || !peer->sta) { 2756 spin_unlock_bh(&ar->data_lock); 2757 rcu_read_unlock(); 2758 continue; 2759 } 2760 2761 tid = FIELD_GET(HTT_TX_PPDU_DUR_INFO0_TID_MASK, info0) & 2762 IEEE80211_QOS_CTL_TID_MASK; 2763 tx_duration = __le32_to_cpu(ppdu_dur->tx_duration); 2764 2765 ieee80211_sta_register_airtime(peer->sta, tid, tx_duration, 0); 2766 2767 spin_unlock_bh(&ar->data_lock); 2768 rcu_read_unlock(); 2769 } 2770 } 2771 2772 static void ath10k_htt_rx_addba(struct ath10k *ar, struct htt_resp *resp) 2773 { 2774 struct htt_rx_addba *ev = &resp->rx_addba; 2775 struct ath10k_peer *peer; 2776 struct ath10k_vif *arvif; 2777 u16 info0, tid, peer_id; 2778 2779 info0 = __le16_to_cpu(ev->info0); 2780 tid = MS(info0, HTT_RX_BA_INFO0_TID); 2781 peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID); 2782 2783 ath10k_dbg(ar, ATH10K_DBG_HTT, 2784 "htt rx addba tid %hu peer_id %hu size %hhu\n", 2785 tid, peer_id, ev->window_size); 2786 2787 spin_lock_bh(&ar->data_lock); 2788 peer = ath10k_peer_find_by_id(ar, peer_id); 2789 if (!peer) { 2790 ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n", 2791 peer_id); 2792 spin_unlock_bh(&ar->data_lock); 2793 return; 2794 } 2795 2796 arvif = ath10k_get_arvif(ar, peer->vdev_id); 2797 if (!arvif) { 2798 ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n", 2799 peer->vdev_id); 2800 spin_unlock_bh(&ar->data_lock); 2801 return; 2802 } 2803 2804 ath10k_dbg(ar, ATH10K_DBG_HTT, 2805 "htt rx start rx ba session sta %pM tid %hu size %hhu\n", 2806 peer->addr, tid, ev->window_size); 2807 2808 ieee80211_start_rx_ba_session_offl(arvif->vif, peer->addr, tid); 2809 spin_unlock_bh(&ar->data_lock); 2810 } 2811 2812 static void ath10k_htt_rx_delba(struct ath10k *ar, struct htt_resp *resp) 2813 { 2814 struct htt_rx_delba *ev = &resp->rx_delba; 2815 struct ath10k_peer *peer; 2816 struct ath10k_vif *arvif; 2817 u16 info0, tid, peer_id; 2818 2819 info0 = __le16_to_cpu(ev->info0); 2820 tid = MS(info0, HTT_RX_BA_INFO0_TID); 2821 peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID); 2822 2823 ath10k_dbg(ar, ATH10K_DBG_HTT, 2824 "htt rx delba tid %hu peer_id %hu\n", 2825 tid, peer_id); 2826 2827 spin_lock_bh(&ar->data_lock); 2828 peer = ath10k_peer_find_by_id(ar, peer_id); 2829 if (!peer) { 2830 ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n", 2831 peer_id); 2832 spin_unlock_bh(&ar->data_lock); 2833 return; 2834 } 2835 2836 arvif = ath10k_get_arvif(ar, peer->vdev_id); 2837 if (!arvif) { 2838 ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n", 2839 peer->vdev_id); 2840 spin_unlock_bh(&ar->data_lock); 2841 return; 2842 } 2843 2844 ath10k_dbg(ar, ATH10K_DBG_HTT, 2845 "htt rx stop rx ba session sta %pM tid %hu\n", 2846 peer->addr, tid); 2847 2848 ieee80211_stop_rx_ba_session_offl(arvif->vif, peer->addr, tid); 2849 spin_unlock_bh(&ar->data_lock); 2850 } 2851 2852 static int ath10k_htt_rx_extract_amsdu(struct sk_buff_head *list, 2853 struct sk_buff_head *amsdu) 2854 { 2855 struct sk_buff *msdu; 2856 struct htt_rx_desc *rxd; 2857 2858 if (skb_queue_empty(list)) 2859 return -ENOBUFS; 2860 2861 if (WARN_ON(!skb_queue_empty(amsdu))) 2862 return -EINVAL; 2863 2864 while ((msdu = __skb_dequeue(list))) { 2865 __skb_queue_tail(amsdu, msdu); 2866 2867 rxd = (void *)msdu->data - sizeof(*rxd); 2868 if (rxd->msdu_end.common.info0 & 2869 __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU)) 2870 break; 2871 } 2872 2873 msdu = skb_peek_tail(amsdu); 2874 rxd = (void *)msdu->data - sizeof(*rxd); 2875 if (!(rxd->msdu_end.common.info0 & 2876 __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU))) { 2877 skb_queue_splice_init(amsdu, list); 2878 return -EAGAIN; 2879 } 2880 2881 return 0; 2882 } 2883 2884 static void ath10k_htt_rx_h_rx_offload_prot(struct ieee80211_rx_status *status, 2885 struct sk_buff *skb) 2886 { 2887 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2888 2889 if (!ieee80211_has_protected(hdr->frame_control)) 2890 return; 2891 2892 /* Offloaded frames are already decrypted but firmware insists they are 2893 * protected in the 802.11 header. Strip the flag. Otherwise mac80211 2894 * will drop the frame. 2895 */ 2896 2897 hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED); 2898 status->flag |= RX_FLAG_DECRYPTED | 2899 RX_FLAG_IV_STRIPPED | 2900 RX_FLAG_MMIC_STRIPPED; 2901 } 2902 2903 static void ath10k_htt_rx_h_rx_offload(struct ath10k *ar, 2904 struct sk_buff_head *list) 2905 { 2906 struct ath10k_htt *htt = &ar->htt; 2907 struct ieee80211_rx_status *status = &htt->rx_status; 2908 struct htt_rx_offload_msdu *rx; 2909 struct sk_buff *msdu; 2910 size_t offset; 2911 2912 while ((msdu = __skb_dequeue(list))) { 2913 /* Offloaded frames don't have Rx descriptor. Instead they have 2914 * a short meta information header. 2915 */ 2916 2917 rx = (void *)msdu->data; 2918 2919 skb_put(msdu, sizeof(*rx)); 2920 skb_pull(msdu, sizeof(*rx)); 2921 2922 if (skb_tailroom(msdu) < __le16_to_cpu(rx->msdu_len)) { 2923 ath10k_warn(ar, "dropping frame: offloaded rx msdu is too long!\n"); 2924 dev_kfree_skb_any(msdu); 2925 continue; 2926 } 2927 2928 skb_put(msdu, __le16_to_cpu(rx->msdu_len)); 2929 2930 /* Offloaded rx header length isn't multiple of 2 nor 4 so the 2931 * actual payload is unaligned. Align the frame. Otherwise 2932 * mac80211 complains. This shouldn't reduce performance much 2933 * because these offloaded frames are rare. 2934 */ 2935 offset = 4 - ((unsigned long)msdu->data & 3); 2936 skb_put(msdu, offset); 2937 memmove(msdu->data + offset, msdu->data, msdu->len); 2938 skb_pull(msdu, offset); 2939 2940 /* FIXME: The frame is NWifi. Re-construct QoS Control 2941 * if possible later. 2942 */ 2943 2944 memset(status, 0, sizeof(*status)); 2945 status->flag |= RX_FLAG_NO_SIGNAL_VAL; 2946 2947 ath10k_htt_rx_h_rx_offload_prot(status, msdu); 2948 ath10k_htt_rx_h_channel(ar, status, NULL, rx->vdev_id); 2949 ath10k_htt_rx_h_queue_msdu(ar, status, msdu); 2950 } 2951 } 2952 2953 static int ath10k_htt_rx_in_ord_ind(struct ath10k *ar, struct sk_buff *skb) 2954 { 2955 struct ath10k_htt *htt = &ar->htt; 2956 struct htt_resp *resp = (void *)skb->data; 2957 struct ieee80211_rx_status *status = &htt->rx_status; 2958 struct sk_buff_head list; 2959 struct sk_buff_head amsdu; 2960 u16 peer_id; 2961 u16 msdu_count; 2962 u8 vdev_id; 2963 u8 tid; 2964 bool offload; 2965 bool frag; 2966 int ret; 2967 2968 lockdep_assert_held(&htt->rx_ring.lock); 2969 2970 if (htt->rx_confused) 2971 return -EIO; 2972 2973 skb_pull(skb, sizeof(resp->hdr)); 2974 skb_pull(skb, sizeof(resp->rx_in_ord_ind)); 2975 2976 peer_id = __le16_to_cpu(resp->rx_in_ord_ind.peer_id); 2977 msdu_count = __le16_to_cpu(resp->rx_in_ord_ind.msdu_count); 2978 vdev_id = resp->rx_in_ord_ind.vdev_id; 2979 tid = SM(resp->rx_in_ord_ind.info, HTT_RX_IN_ORD_IND_INFO_TID); 2980 offload = !!(resp->rx_in_ord_ind.info & 2981 HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK); 2982 frag = !!(resp->rx_in_ord_ind.info & HTT_RX_IN_ORD_IND_INFO_FRAG_MASK); 2983 2984 ath10k_dbg(ar, ATH10K_DBG_HTT, 2985 "htt rx in ord vdev %i peer %i tid %i offload %i frag %i msdu count %i\n", 2986 vdev_id, peer_id, tid, offload, frag, msdu_count); 2987 2988 if (skb->len < msdu_count * sizeof(*resp->rx_in_ord_ind.msdu_descs32)) { 2989 ath10k_warn(ar, "dropping invalid in order rx indication\n"); 2990 return -EINVAL; 2991 } 2992 2993 /* The event can deliver more than 1 A-MSDU. Each A-MSDU is later 2994 * extracted and processed. 2995 */ 2996 __skb_queue_head_init(&list); 2997 if (ar->hw_params.target_64bit) 2998 ret = ath10k_htt_rx_pop_paddr64_list(htt, &resp->rx_in_ord_ind, 2999 &list); 3000 else 3001 ret = ath10k_htt_rx_pop_paddr32_list(htt, &resp->rx_in_ord_ind, 3002 &list); 3003 3004 if (ret < 0) { 3005 ath10k_warn(ar, "failed to pop paddr list: %d\n", ret); 3006 htt->rx_confused = true; 3007 return -EIO; 3008 } 3009 3010 /* Offloaded frames are very different and need to be handled 3011 * separately. 3012 */ 3013 if (offload) 3014 ath10k_htt_rx_h_rx_offload(ar, &list); 3015 3016 while (!skb_queue_empty(&list)) { 3017 __skb_queue_head_init(&amsdu); 3018 ret = ath10k_htt_rx_extract_amsdu(&list, &amsdu); 3019 switch (ret) { 3020 case 0: 3021 /* Note: The in-order indication may report interleaved 3022 * frames from different PPDUs meaning reported rx rate 3023 * to mac80211 isn't accurate/reliable. It's still 3024 * better to report something than nothing though. This 3025 * should still give an idea about rx rate to the user. 3026 */ 3027 ath10k_htt_rx_h_ppdu(ar, &amsdu, status, vdev_id); 3028 ath10k_htt_rx_h_filter(ar, &amsdu, status, NULL); 3029 ath10k_htt_rx_h_mpdu(ar, &amsdu, status, false, NULL, 3030 NULL); 3031 ath10k_htt_rx_h_enqueue(ar, &amsdu, status); 3032 break; 3033 case -EAGAIN: 3034 fallthrough; 3035 default: 3036 /* Should not happen. */ 3037 ath10k_warn(ar, "failed to extract amsdu: %d\n", ret); 3038 htt->rx_confused = true; 3039 __skb_queue_purge(&list); 3040 return -EIO; 3041 } 3042 } 3043 return ret; 3044 } 3045 3046 static void ath10k_htt_rx_tx_fetch_resp_id_confirm(struct ath10k *ar, 3047 const __le32 *resp_ids, 3048 int num_resp_ids) 3049 { 3050 int i; 3051 u32 resp_id; 3052 3053 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm num_resp_ids %d\n", 3054 num_resp_ids); 3055 3056 for (i = 0; i < num_resp_ids; i++) { 3057 resp_id = le32_to_cpu(resp_ids[i]); 3058 3059 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm resp_id %u\n", 3060 resp_id); 3061 3062 /* TODO: free resp_id */ 3063 } 3064 } 3065 3066 static void ath10k_htt_rx_tx_fetch_ind(struct ath10k *ar, struct sk_buff *skb) 3067 { 3068 struct ieee80211_hw *hw = ar->hw; 3069 struct ieee80211_txq *txq; 3070 struct htt_resp *resp = (struct htt_resp *)skb->data; 3071 struct htt_tx_fetch_record *record; 3072 size_t len; 3073 size_t max_num_bytes; 3074 size_t max_num_msdus; 3075 size_t num_bytes; 3076 size_t num_msdus; 3077 const __le32 *resp_ids; 3078 u16 num_records; 3079 u16 num_resp_ids; 3080 u16 peer_id; 3081 u8 tid; 3082 int ret; 3083 int i; 3084 bool may_tx; 3085 3086 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch ind\n"); 3087 3088 len = sizeof(resp->hdr) + sizeof(resp->tx_fetch_ind); 3089 if (unlikely(skb->len < len)) { 3090 ath10k_warn(ar, "received corrupted tx_fetch_ind event: buffer too short\n"); 3091 return; 3092 } 3093 3094 num_records = le16_to_cpu(resp->tx_fetch_ind.num_records); 3095 num_resp_ids = le16_to_cpu(resp->tx_fetch_ind.num_resp_ids); 3096 3097 len += sizeof(resp->tx_fetch_ind.records[0]) * num_records; 3098 len += sizeof(resp->tx_fetch_ind.resp_ids[0]) * num_resp_ids; 3099 3100 if (unlikely(skb->len < len)) { 3101 ath10k_warn(ar, "received corrupted tx_fetch_ind event: too many records/resp_ids\n"); 3102 return; 3103 } 3104 3105 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch ind num records %hu num resps %hu seq %hu\n", 3106 num_records, num_resp_ids, 3107 le16_to_cpu(resp->tx_fetch_ind.fetch_seq_num)); 3108 3109 if (!ar->htt.tx_q_state.enabled) { 3110 ath10k_warn(ar, "received unexpected tx_fetch_ind event: not enabled\n"); 3111 return; 3112 } 3113 3114 if (ar->htt.tx_q_state.mode == HTT_TX_MODE_SWITCH_PUSH) { 3115 ath10k_warn(ar, "received unexpected tx_fetch_ind event: in push mode\n"); 3116 return; 3117 } 3118 3119 rcu_read_lock(); 3120 3121 for (i = 0; i < num_records; i++) { 3122 record = &resp->tx_fetch_ind.records[i]; 3123 peer_id = MS(le16_to_cpu(record->info), 3124 HTT_TX_FETCH_RECORD_INFO_PEER_ID); 3125 tid = MS(le16_to_cpu(record->info), 3126 HTT_TX_FETCH_RECORD_INFO_TID); 3127 max_num_msdus = le16_to_cpu(record->num_msdus); 3128 max_num_bytes = le32_to_cpu(record->num_bytes); 3129 3130 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch record %i peer_id %hu tid %hhu msdus %zu bytes %zu\n", 3131 i, peer_id, tid, max_num_msdus, max_num_bytes); 3132 3133 if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) || 3134 unlikely(tid >= ar->htt.tx_q_state.num_tids)) { 3135 ath10k_warn(ar, "received out of range peer_id %hu tid %hhu\n", 3136 peer_id, tid); 3137 continue; 3138 } 3139 3140 spin_lock_bh(&ar->data_lock); 3141 txq = ath10k_mac_txq_lookup(ar, peer_id, tid); 3142 spin_unlock_bh(&ar->data_lock); 3143 3144 /* It is okay to release the lock and use txq because RCU read 3145 * lock is held. 3146 */ 3147 3148 if (unlikely(!txq)) { 3149 ath10k_warn(ar, "failed to lookup txq for peer_id %hu tid %hhu\n", 3150 peer_id, tid); 3151 continue; 3152 } 3153 3154 num_msdus = 0; 3155 num_bytes = 0; 3156 3157 ieee80211_txq_schedule_start(hw, txq->ac); 3158 may_tx = ieee80211_txq_may_transmit(hw, txq); 3159 while (num_msdus < max_num_msdus && 3160 num_bytes < max_num_bytes) { 3161 if (!may_tx) 3162 break; 3163 3164 ret = ath10k_mac_tx_push_txq(hw, txq); 3165 if (ret < 0) 3166 break; 3167 3168 num_msdus++; 3169 num_bytes += ret; 3170 } 3171 ieee80211_return_txq(hw, txq, false); 3172 ieee80211_txq_schedule_end(hw, txq->ac); 3173 3174 record->num_msdus = cpu_to_le16(num_msdus); 3175 record->num_bytes = cpu_to_le32(num_bytes); 3176 3177 ath10k_htt_tx_txq_recalc(hw, txq); 3178 } 3179 3180 rcu_read_unlock(); 3181 3182 resp_ids = ath10k_htt_get_tx_fetch_ind_resp_ids(&resp->tx_fetch_ind); 3183 ath10k_htt_rx_tx_fetch_resp_id_confirm(ar, resp_ids, num_resp_ids); 3184 3185 ret = ath10k_htt_tx_fetch_resp(ar, 3186 resp->tx_fetch_ind.token, 3187 resp->tx_fetch_ind.fetch_seq_num, 3188 resp->tx_fetch_ind.records, 3189 num_records); 3190 if (unlikely(ret)) { 3191 ath10k_warn(ar, "failed to submit tx fetch resp for token 0x%08x: %d\n", 3192 le32_to_cpu(resp->tx_fetch_ind.token), ret); 3193 /* FIXME: request fw restart */ 3194 } 3195 3196 ath10k_htt_tx_txq_sync(ar); 3197 } 3198 3199 static void ath10k_htt_rx_tx_fetch_confirm(struct ath10k *ar, 3200 struct sk_buff *skb) 3201 { 3202 const struct htt_resp *resp = (void *)skb->data; 3203 size_t len; 3204 int num_resp_ids; 3205 3206 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm\n"); 3207 3208 len = sizeof(resp->hdr) + sizeof(resp->tx_fetch_confirm); 3209 if (unlikely(skb->len < len)) { 3210 ath10k_warn(ar, "received corrupted tx_fetch_confirm event: buffer too short\n"); 3211 return; 3212 } 3213 3214 num_resp_ids = le16_to_cpu(resp->tx_fetch_confirm.num_resp_ids); 3215 len += sizeof(resp->tx_fetch_confirm.resp_ids[0]) * num_resp_ids; 3216 3217 if (unlikely(skb->len < len)) { 3218 ath10k_warn(ar, "received corrupted tx_fetch_confirm event: resp_ids buffer overflow\n"); 3219 return; 3220 } 3221 3222 ath10k_htt_rx_tx_fetch_resp_id_confirm(ar, 3223 resp->tx_fetch_confirm.resp_ids, 3224 num_resp_ids); 3225 } 3226 3227 static void ath10k_htt_rx_tx_mode_switch_ind(struct ath10k *ar, 3228 struct sk_buff *skb) 3229 { 3230 const struct htt_resp *resp = (void *)skb->data; 3231 const struct htt_tx_mode_switch_record *record; 3232 struct ieee80211_txq *txq; 3233 struct ath10k_txq *artxq; 3234 size_t len; 3235 size_t num_records; 3236 enum htt_tx_mode_switch_mode mode; 3237 bool enable; 3238 u16 info0; 3239 u16 info1; 3240 u16 threshold; 3241 u16 peer_id; 3242 u8 tid; 3243 int i; 3244 3245 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx mode switch ind\n"); 3246 3247 len = sizeof(resp->hdr) + sizeof(resp->tx_mode_switch_ind); 3248 if (unlikely(skb->len < len)) { 3249 ath10k_warn(ar, "received corrupted tx_mode_switch_ind event: buffer too short\n"); 3250 return; 3251 } 3252 3253 info0 = le16_to_cpu(resp->tx_mode_switch_ind.info0); 3254 info1 = le16_to_cpu(resp->tx_mode_switch_ind.info1); 3255 3256 enable = !!(info0 & HTT_TX_MODE_SWITCH_IND_INFO0_ENABLE); 3257 num_records = MS(info0, HTT_TX_MODE_SWITCH_IND_INFO1_THRESHOLD); 3258 mode = MS(info1, HTT_TX_MODE_SWITCH_IND_INFO1_MODE); 3259 threshold = MS(info1, HTT_TX_MODE_SWITCH_IND_INFO1_THRESHOLD); 3260 3261 ath10k_dbg(ar, ATH10K_DBG_HTT, 3262 "htt rx tx mode switch ind info0 0x%04hx info1 0x%04hx enable %d num records %zd mode %d threshold %hu\n", 3263 info0, info1, enable, num_records, mode, threshold); 3264 3265 len += sizeof(resp->tx_mode_switch_ind.records[0]) * num_records; 3266 3267 if (unlikely(skb->len < len)) { 3268 ath10k_warn(ar, "received corrupted tx_mode_switch_mode_ind event: too many records\n"); 3269 return; 3270 } 3271 3272 switch (mode) { 3273 case HTT_TX_MODE_SWITCH_PUSH: 3274 case HTT_TX_MODE_SWITCH_PUSH_PULL: 3275 break; 3276 default: 3277 ath10k_warn(ar, "received invalid tx_mode_switch_mode_ind mode %d, ignoring\n", 3278 mode); 3279 return; 3280 } 3281 3282 if (!enable) 3283 return; 3284 3285 ar->htt.tx_q_state.enabled = enable; 3286 ar->htt.tx_q_state.mode = mode; 3287 ar->htt.tx_q_state.num_push_allowed = threshold; 3288 3289 rcu_read_lock(); 3290 3291 for (i = 0; i < num_records; i++) { 3292 record = &resp->tx_mode_switch_ind.records[i]; 3293 info0 = le16_to_cpu(record->info0); 3294 peer_id = MS(info0, HTT_TX_MODE_SWITCH_RECORD_INFO0_PEER_ID); 3295 tid = MS(info0, HTT_TX_MODE_SWITCH_RECORD_INFO0_TID); 3296 3297 if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) || 3298 unlikely(tid >= ar->htt.tx_q_state.num_tids)) { 3299 ath10k_warn(ar, "received out of range peer_id %hu tid %hhu\n", 3300 peer_id, tid); 3301 continue; 3302 } 3303 3304 spin_lock_bh(&ar->data_lock); 3305 txq = ath10k_mac_txq_lookup(ar, peer_id, tid); 3306 spin_unlock_bh(&ar->data_lock); 3307 3308 /* It is okay to release the lock and use txq because RCU read 3309 * lock is held. 3310 */ 3311 3312 if (unlikely(!txq)) { 3313 ath10k_warn(ar, "failed to lookup txq for peer_id %hu tid %hhu\n", 3314 peer_id, tid); 3315 continue; 3316 } 3317 3318 spin_lock_bh(&ar->htt.tx_lock); 3319 artxq = (void *)txq->drv_priv; 3320 artxq->num_push_allowed = le16_to_cpu(record->num_max_msdus); 3321 spin_unlock_bh(&ar->htt.tx_lock); 3322 } 3323 3324 rcu_read_unlock(); 3325 3326 ath10k_mac_tx_push_pending(ar); 3327 } 3328 3329 void ath10k_htt_htc_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb) 3330 { 3331 bool release; 3332 3333 release = ath10k_htt_t2h_msg_handler(ar, skb); 3334 3335 /* Free the indication buffer */ 3336 if (release) 3337 dev_kfree_skb_any(skb); 3338 } 3339 3340 static inline s8 ath10k_get_legacy_rate_idx(struct ath10k *ar, u8 rate) 3341 { 3342 static const u8 legacy_rates[] = {1, 2, 5, 11, 6, 9, 12, 3343 18, 24, 36, 48, 54}; 3344 int i; 3345 3346 for (i = 0; i < ARRAY_SIZE(legacy_rates); i++) { 3347 if (rate == legacy_rates[i]) 3348 return i; 3349 } 3350 3351 ath10k_warn(ar, "Invalid legacy rate %hhd peer stats", rate); 3352 return -EINVAL; 3353 } 3354 3355 static void 3356 ath10k_accumulate_per_peer_tx_stats(struct ath10k *ar, 3357 struct ath10k_sta *arsta, 3358 struct ath10k_per_peer_tx_stats *pstats, 3359 s8 legacy_rate_idx) 3360 { 3361 struct rate_info *txrate = &arsta->txrate; 3362 struct ath10k_htt_tx_stats *tx_stats; 3363 int idx, ht_idx, gi, mcs, bw, nss; 3364 unsigned long flags; 3365 3366 if (!arsta->tx_stats) 3367 return; 3368 3369 tx_stats = arsta->tx_stats; 3370 flags = txrate->flags; 3371 gi = test_bit(ATH10K_RATE_INFO_FLAGS_SGI_BIT, &flags); 3372 mcs = ATH10K_HW_MCS_RATE(pstats->ratecode); 3373 bw = txrate->bw; 3374 nss = txrate->nss; 3375 ht_idx = mcs + (nss - 1) * 8; 3376 idx = mcs * 8 + 8 * 10 * (nss - 1); 3377 idx += bw * 2 + gi; 3378 3379 #define STATS_OP_FMT(name) tx_stats->stats[ATH10K_STATS_TYPE_##name] 3380 3381 if (txrate->flags & RATE_INFO_FLAGS_VHT_MCS) { 3382 STATS_OP_FMT(SUCC).vht[0][mcs] += pstats->succ_bytes; 3383 STATS_OP_FMT(SUCC).vht[1][mcs] += pstats->succ_pkts; 3384 STATS_OP_FMT(FAIL).vht[0][mcs] += pstats->failed_bytes; 3385 STATS_OP_FMT(FAIL).vht[1][mcs] += pstats->failed_pkts; 3386 STATS_OP_FMT(RETRY).vht[0][mcs] += pstats->retry_bytes; 3387 STATS_OP_FMT(RETRY).vht[1][mcs] += pstats->retry_pkts; 3388 } else if (txrate->flags & RATE_INFO_FLAGS_MCS) { 3389 STATS_OP_FMT(SUCC).ht[0][ht_idx] += pstats->succ_bytes; 3390 STATS_OP_FMT(SUCC).ht[1][ht_idx] += pstats->succ_pkts; 3391 STATS_OP_FMT(FAIL).ht[0][ht_idx] += pstats->failed_bytes; 3392 STATS_OP_FMT(FAIL).ht[1][ht_idx] += pstats->failed_pkts; 3393 STATS_OP_FMT(RETRY).ht[0][ht_idx] += pstats->retry_bytes; 3394 STATS_OP_FMT(RETRY).ht[1][ht_idx] += pstats->retry_pkts; 3395 } else { 3396 mcs = legacy_rate_idx; 3397 3398 STATS_OP_FMT(SUCC).legacy[0][mcs] += pstats->succ_bytes; 3399 STATS_OP_FMT(SUCC).legacy[1][mcs] += pstats->succ_pkts; 3400 STATS_OP_FMT(FAIL).legacy[0][mcs] += pstats->failed_bytes; 3401 STATS_OP_FMT(FAIL).legacy[1][mcs] += pstats->failed_pkts; 3402 STATS_OP_FMT(RETRY).legacy[0][mcs] += pstats->retry_bytes; 3403 STATS_OP_FMT(RETRY).legacy[1][mcs] += pstats->retry_pkts; 3404 } 3405 3406 if (ATH10K_HW_AMPDU(pstats->flags)) { 3407 tx_stats->ba_fails += ATH10K_HW_BA_FAIL(pstats->flags); 3408 3409 if (txrate->flags & RATE_INFO_FLAGS_MCS) { 3410 STATS_OP_FMT(AMPDU).ht[0][ht_idx] += 3411 pstats->succ_bytes + pstats->retry_bytes; 3412 STATS_OP_FMT(AMPDU).ht[1][ht_idx] += 3413 pstats->succ_pkts + pstats->retry_pkts; 3414 } else { 3415 STATS_OP_FMT(AMPDU).vht[0][mcs] += 3416 pstats->succ_bytes + pstats->retry_bytes; 3417 STATS_OP_FMT(AMPDU).vht[1][mcs] += 3418 pstats->succ_pkts + pstats->retry_pkts; 3419 } 3420 STATS_OP_FMT(AMPDU).bw[0][bw] += 3421 pstats->succ_bytes + pstats->retry_bytes; 3422 STATS_OP_FMT(AMPDU).nss[0][nss - 1] += 3423 pstats->succ_bytes + pstats->retry_bytes; 3424 STATS_OP_FMT(AMPDU).gi[0][gi] += 3425 pstats->succ_bytes + pstats->retry_bytes; 3426 STATS_OP_FMT(AMPDU).rate_table[0][idx] += 3427 pstats->succ_bytes + pstats->retry_bytes; 3428 STATS_OP_FMT(AMPDU).bw[1][bw] += 3429 pstats->succ_pkts + pstats->retry_pkts; 3430 STATS_OP_FMT(AMPDU).nss[1][nss - 1] += 3431 pstats->succ_pkts + pstats->retry_pkts; 3432 STATS_OP_FMT(AMPDU).gi[1][gi] += 3433 pstats->succ_pkts + pstats->retry_pkts; 3434 STATS_OP_FMT(AMPDU).rate_table[1][idx] += 3435 pstats->succ_pkts + pstats->retry_pkts; 3436 } else { 3437 tx_stats->ack_fails += 3438 ATH10K_HW_BA_FAIL(pstats->flags); 3439 } 3440 3441 STATS_OP_FMT(SUCC).bw[0][bw] += pstats->succ_bytes; 3442 STATS_OP_FMT(SUCC).nss[0][nss - 1] += pstats->succ_bytes; 3443 STATS_OP_FMT(SUCC).gi[0][gi] += pstats->succ_bytes; 3444 3445 STATS_OP_FMT(SUCC).bw[1][bw] += pstats->succ_pkts; 3446 STATS_OP_FMT(SUCC).nss[1][nss - 1] += pstats->succ_pkts; 3447 STATS_OP_FMT(SUCC).gi[1][gi] += pstats->succ_pkts; 3448 3449 STATS_OP_FMT(FAIL).bw[0][bw] += pstats->failed_bytes; 3450 STATS_OP_FMT(FAIL).nss[0][nss - 1] += pstats->failed_bytes; 3451 STATS_OP_FMT(FAIL).gi[0][gi] += pstats->failed_bytes; 3452 3453 STATS_OP_FMT(FAIL).bw[1][bw] += pstats->failed_pkts; 3454 STATS_OP_FMT(FAIL).nss[1][nss - 1] += pstats->failed_pkts; 3455 STATS_OP_FMT(FAIL).gi[1][gi] += pstats->failed_pkts; 3456 3457 STATS_OP_FMT(RETRY).bw[0][bw] += pstats->retry_bytes; 3458 STATS_OP_FMT(RETRY).nss[0][nss - 1] += pstats->retry_bytes; 3459 STATS_OP_FMT(RETRY).gi[0][gi] += pstats->retry_bytes; 3460 3461 STATS_OP_FMT(RETRY).bw[1][bw] += pstats->retry_pkts; 3462 STATS_OP_FMT(RETRY).nss[1][nss - 1] += pstats->retry_pkts; 3463 STATS_OP_FMT(RETRY).gi[1][gi] += pstats->retry_pkts; 3464 3465 if (txrate->flags >= RATE_INFO_FLAGS_MCS) { 3466 STATS_OP_FMT(SUCC).rate_table[0][idx] += pstats->succ_bytes; 3467 STATS_OP_FMT(SUCC).rate_table[1][idx] += pstats->succ_pkts; 3468 STATS_OP_FMT(FAIL).rate_table[0][idx] += pstats->failed_bytes; 3469 STATS_OP_FMT(FAIL).rate_table[1][idx] += pstats->failed_pkts; 3470 STATS_OP_FMT(RETRY).rate_table[0][idx] += pstats->retry_bytes; 3471 STATS_OP_FMT(RETRY).rate_table[1][idx] += pstats->retry_pkts; 3472 } 3473 3474 tx_stats->tx_duration += pstats->duration; 3475 } 3476 3477 static void 3478 ath10k_update_per_peer_tx_stats(struct ath10k *ar, 3479 struct ieee80211_sta *sta, 3480 struct ath10k_per_peer_tx_stats *peer_stats) 3481 { 3482 struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv; 3483 struct ieee80211_chanctx_conf *conf = NULL; 3484 u8 rate = 0, sgi; 3485 s8 rate_idx = 0; 3486 bool skip_auto_rate; 3487 struct rate_info txrate; 3488 3489 lockdep_assert_held(&ar->data_lock); 3490 3491 txrate.flags = ATH10K_HW_PREAMBLE(peer_stats->ratecode); 3492 txrate.bw = ATH10K_HW_BW(peer_stats->flags); 3493 txrate.nss = ATH10K_HW_NSS(peer_stats->ratecode); 3494 txrate.mcs = ATH10K_HW_MCS_RATE(peer_stats->ratecode); 3495 sgi = ATH10K_HW_GI(peer_stats->flags); 3496 skip_auto_rate = ATH10K_FW_SKIPPED_RATE_CTRL(peer_stats->flags); 3497 3498 /* Firmware's rate control skips broadcast/management frames, 3499 * if host has configure fixed rates and in some other special cases. 3500 */ 3501 if (skip_auto_rate) 3502 return; 3503 3504 if (txrate.flags == WMI_RATE_PREAMBLE_VHT && txrate.mcs > 9) { 3505 ath10k_warn(ar, "Invalid VHT mcs %hhd peer stats", txrate.mcs); 3506 return; 3507 } 3508 3509 if (txrate.flags == WMI_RATE_PREAMBLE_HT && 3510 (txrate.mcs > 7 || txrate.nss < 1)) { 3511 ath10k_warn(ar, "Invalid HT mcs %hhd nss %hhd peer stats", 3512 txrate.mcs, txrate.nss); 3513 return; 3514 } 3515 3516 memset(&arsta->txrate, 0, sizeof(arsta->txrate)); 3517 memset(&arsta->tx_info.status, 0, sizeof(arsta->tx_info.status)); 3518 if (txrate.flags == WMI_RATE_PREAMBLE_CCK || 3519 txrate.flags == WMI_RATE_PREAMBLE_OFDM) { 3520 rate = ATH10K_HW_LEGACY_RATE(peer_stats->ratecode); 3521 /* This is hacky, FW sends CCK rate 5.5Mbps as 6 */ 3522 if (rate == 6 && txrate.flags == WMI_RATE_PREAMBLE_CCK) 3523 rate = 5; 3524 rate_idx = ath10k_get_legacy_rate_idx(ar, rate); 3525 if (rate_idx < 0) 3526 return; 3527 arsta->txrate.legacy = rate; 3528 } else if (txrate.flags == WMI_RATE_PREAMBLE_HT) { 3529 arsta->txrate.flags = RATE_INFO_FLAGS_MCS; 3530 arsta->txrate.mcs = txrate.mcs + 8 * (txrate.nss - 1); 3531 } else { 3532 arsta->txrate.flags = RATE_INFO_FLAGS_VHT_MCS; 3533 arsta->txrate.mcs = txrate.mcs; 3534 } 3535 3536 switch (txrate.flags) { 3537 case WMI_RATE_PREAMBLE_OFDM: 3538 if (arsta->arvif && arsta->arvif->vif) 3539 conf = rcu_dereference(arsta->arvif->vif->chanctx_conf); 3540 if (conf && conf->def.chan->band == NL80211_BAND_5GHZ) 3541 arsta->tx_info.status.rates[0].idx = rate_idx - 4; 3542 break; 3543 case WMI_RATE_PREAMBLE_CCK: 3544 arsta->tx_info.status.rates[0].idx = rate_idx; 3545 if (sgi) 3546 arsta->tx_info.status.rates[0].flags |= 3547 (IEEE80211_TX_RC_USE_SHORT_PREAMBLE | 3548 IEEE80211_TX_RC_SHORT_GI); 3549 break; 3550 case WMI_RATE_PREAMBLE_HT: 3551 arsta->tx_info.status.rates[0].idx = 3552 txrate.mcs + ((txrate.nss - 1) * 8); 3553 if (sgi) 3554 arsta->tx_info.status.rates[0].flags |= 3555 IEEE80211_TX_RC_SHORT_GI; 3556 arsta->tx_info.status.rates[0].flags |= IEEE80211_TX_RC_MCS; 3557 break; 3558 case WMI_RATE_PREAMBLE_VHT: 3559 ieee80211_rate_set_vht(&arsta->tx_info.status.rates[0], 3560 txrate.mcs, txrate.nss); 3561 if (sgi) 3562 arsta->tx_info.status.rates[0].flags |= 3563 IEEE80211_TX_RC_SHORT_GI; 3564 arsta->tx_info.status.rates[0].flags |= IEEE80211_TX_RC_VHT_MCS; 3565 break; 3566 } 3567 3568 arsta->txrate.nss = txrate.nss; 3569 arsta->txrate.bw = ath10k_bw_to_mac80211_bw(txrate.bw); 3570 arsta->last_tx_bitrate = cfg80211_calculate_bitrate(&arsta->txrate); 3571 if (sgi) 3572 arsta->txrate.flags |= RATE_INFO_FLAGS_SHORT_GI; 3573 3574 switch (arsta->txrate.bw) { 3575 case RATE_INFO_BW_40: 3576 arsta->tx_info.status.rates[0].flags |= 3577 IEEE80211_TX_RC_40_MHZ_WIDTH; 3578 break; 3579 case RATE_INFO_BW_80: 3580 arsta->tx_info.status.rates[0].flags |= 3581 IEEE80211_TX_RC_80_MHZ_WIDTH; 3582 break; 3583 } 3584 3585 if (peer_stats->succ_pkts) { 3586 arsta->tx_info.flags = IEEE80211_TX_STAT_ACK; 3587 arsta->tx_info.status.rates[0].count = 1; 3588 ieee80211_tx_rate_update(ar->hw, sta, &arsta->tx_info); 3589 } 3590 3591 if (ar->htt.disable_tx_comp) { 3592 arsta->tx_failed += peer_stats->failed_pkts; 3593 ath10k_dbg(ar, ATH10K_DBG_HTT, "tx failed %d\n", 3594 arsta->tx_failed); 3595 } 3596 3597 arsta->tx_retries += peer_stats->retry_pkts; 3598 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx retries %d", arsta->tx_retries); 3599 3600 if (ath10k_debug_is_extd_tx_stats_enabled(ar)) 3601 ath10k_accumulate_per_peer_tx_stats(ar, arsta, peer_stats, 3602 rate_idx); 3603 } 3604 3605 static void ath10k_htt_fetch_peer_stats(struct ath10k *ar, 3606 struct sk_buff *skb) 3607 { 3608 struct htt_resp *resp = (struct htt_resp *)skb->data; 3609 struct ath10k_per_peer_tx_stats *p_tx_stats = &ar->peer_tx_stats; 3610 struct htt_per_peer_tx_stats_ind *tx_stats; 3611 struct ieee80211_sta *sta; 3612 struct ath10k_peer *peer; 3613 int peer_id, i; 3614 u8 ppdu_len, num_ppdu; 3615 3616 num_ppdu = resp->peer_tx_stats.num_ppdu; 3617 ppdu_len = resp->peer_tx_stats.ppdu_len * sizeof(__le32); 3618 3619 if (skb->len < sizeof(struct htt_resp_hdr) + num_ppdu * ppdu_len) { 3620 ath10k_warn(ar, "Invalid peer stats buf length %d\n", skb->len); 3621 return; 3622 } 3623 3624 tx_stats = (struct htt_per_peer_tx_stats_ind *) 3625 (resp->peer_tx_stats.payload); 3626 peer_id = __le16_to_cpu(tx_stats->peer_id); 3627 3628 rcu_read_lock(); 3629 spin_lock_bh(&ar->data_lock); 3630 peer = ath10k_peer_find_by_id(ar, peer_id); 3631 if (!peer || !peer->sta) { 3632 ath10k_warn(ar, "Invalid peer id %d peer stats buffer\n", 3633 peer_id); 3634 goto out; 3635 } 3636 3637 sta = peer->sta; 3638 for (i = 0; i < num_ppdu; i++) { 3639 tx_stats = (struct htt_per_peer_tx_stats_ind *) 3640 (resp->peer_tx_stats.payload + i * ppdu_len); 3641 3642 p_tx_stats->succ_bytes = __le32_to_cpu(tx_stats->succ_bytes); 3643 p_tx_stats->retry_bytes = __le32_to_cpu(tx_stats->retry_bytes); 3644 p_tx_stats->failed_bytes = 3645 __le32_to_cpu(tx_stats->failed_bytes); 3646 p_tx_stats->ratecode = tx_stats->ratecode; 3647 p_tx_stats->flags = tx_stats->flags; 3648 p_tx_stats->succ_pkts = __le16_to_cpu(tx_stats->succ_pkts); 3649 p_tx_stats->retry_pkts = __le16_to_cpu(tx_stats->retry_pkts); 3650 p_tx_stats->failed_pkts = __le16_to_cpu(tx_stats->failed_pkts); 3651 p_tx_stats->duration = __le16_to_cpu(tx_stats->tx_duration); 3652 3653 ath10k_update_per_peer_tx_stats(ar, sta, p_tx_stats); 3654 } 3655 3656 out: 3657 spin_unlock_bh(&ar->data_lock); 3658 rcu_read_unlock(); 3659 } 3660 3661 static void ath10k_fetch_10_2_tx_stats(struct ath10k *ar, u8 *data) 3662 { 3663 struct ath10k_pktlog_hdr *hdr = (struct ath10k_pktlog_hdr *)data; 3664 struct ath10k_per_peer_tx_stats *p_tx_stats = &ar->peer_tx_stats; 3665 struct ath10k_10_2_peer_tx_stats *tx_stats; 3666 struct ieee80211_sta *sta; 3667 struct ath10k_peer *peer; 3668 u16 log_type = __le16_to_cpu(hdr->log_type); 3669 u32 peer_id = 0, i; 3670 3671 if (log_type != ATH_PKTLOG_TYPE_TX_STAT) 3672 return; 3673 3674 tx_stats = (struct ath10k_10_2_peer_tx_stats *)((hdr->payload) + 3675 ATH10K_10_2_TX_STATS_OFFSET); 3676 3677 if (!tx_stats->tx_ppdu_cnt) 3678 return; 3679 3680 peer_id = tx_stats->peer_id; 3681 3682 rcu_read_lock(); 3683 spin_lock_bh(&ar->data_lock); 3684 peer = ath10k_peer_find_by_id(ar, peer_id); 3685 if (!peer || !peer->sta) { 3686 ath10k_warn(ar, "Invalid peer id %d in peer stats buffer\n", 3687 peer_id); 3688 goto out; 3689 } 3690 3691 sta = peer->sta; 3692 for (i = 0; i < tx_stats->tx_ppdu_cnt; i++) { 3693 p_tx_stats->succ_bytes = 3694 __le16_to_cpu(tx_stats->success_bytes[i]); 3695 p_tx_stats->retry_bytes = 3696 __le16_to_cpu(tx_stats->retry_bytes[i]); 3697 p_tx_stats->failed_bytes = 3698 __le16_to_cpu(tx_stats->failed_bytes[i]); 3699 p_tx_stats->ratecode = tx_stats->ratecode[i]; 3700 p_tx_stats->flags = tx_stats->flags[i]; 3701 p_tx_stats->succ_pkts = tx_stats->success_pkts[i]; 3702 p_tx_stats->retry_pkts = tx_stats->retry_pkts[i]; 3703 p_tx_stats->failed_pkts = tx_stats->failed_pkts[i]; 3704 3705 ath10k_update_per_peer_tx_stats(ar, sta, p_tx_stats); 3706 } 3707 spin_unlock_bh(&ar->data_lock); 3708 rcu_read_unlock(); 3709 3710 return; 3711 3712 out: 3713 spin_unlock_bh(&ar->data_lock); 3714 rcu_read_unlock(); 3715 } 3716 3717 static int ath10k_htt_rx_pn_len(enum htt_security_types sec_type) 3718 { 3719 switch (sec_type) { 3720 case HTT_SECURITY_TKIP: 3721 case HTT_SECURITY_TKIP_NOMIC: 3722 case HTT_SECURITY_AES_CCMP: 3723 return 48; 3724 default: 3725 return 0; 3726 } 3727 } 3728 3729 static void ath10k_htt_rx_sec_ind_handler(struct ath10k *ar, 3730 struct htt_security_indication *ev) 3731 { 3732 enum htt_txrx_sec_cast_type sec_index; 3733 enum htt_security_types sec_type; 3734 struct ath10k_peer *peer; 3735 3736 spin_lock_bh(&ar->data_lock); 3737 3738 peer = ath10k_peer_find_by_id(ar, __le16_to_cpu(ev->peer_id)); 3739 if (!peer) { 3740 ath10k_warn(ar, "failed to find peer id %d for security indication", 3741 __le16_to_cpu(ev->peer_id)); 3742 goto out; 3743 } 3744 3745 sec_type = MS(ev->flags, HTT_SECURITY_TYPE); 3746 3747 if (ev->flags & HTT_SECURITY_IS_UNICAST) 3748 sec_index = HTT_TXRX_SEC_UCAST; 3749 else 3750 sec_index = HTT_TXRX_SEC_MCAST; 3751 3752 peer->rx_pn[sec_index].sec_type = sec_type; 3753 peer->rx_pn[sec_index].pn_len = ath10k_htt_rx_pn_len(sec_type); 3754 3755 memset(peer->tids_last_pn_valid, 0, sizeof(peer->tids_last_pn_valid)); 3756 memset(peer->tids_last_pn, 0, sizeof(peer->tids_last_pn)); 3757 3758 out: 3759 spin_unlock_bh(&ar->data_lock); 3760 } 3761 3762 bool ath10k_htt_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb) 3763 { 3764 struct ath10k_htt *htt = &ar->htt; 3765 struct htt_resp *resp = (struct htt_resp *)skb->data; 3766 enum htt_t2h_msg_type type; 3767 3768 /* confirm alignment */ 3769 if (!IS_ALIGNED((unsigned long)skb->data, 4)) 3770 ath10k_warn(ar, "unaligned htt message, expect trouble\n"); 3771 3772 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, msg_type: 0x%0X\n", 3773 resp->hdr.msg_type); 3774 3775 if (resp->hdr.msg_type >= ar->htt.t2h_msg_types_max) { 3776 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, unsupported msg_type: 0x%0X\n max: 0x%0X", 3777 resp->hdr.msg_type, ar->htt.t2h_msg_types_max); 3778 return true; 3779 } 3780 type = ar->htt.t2h_msg_types[resp->hdr.msg_type]; 3781 3782 switch (type) { 3783 case HTT_T2H_MSG_TYPE_VERSION_CONF: { 3784 htt->target_version_major = resp->ver_resp.major; 3785 htt->target_version_minor = resp->ver_resp.minor; 3786 complete(&htt->target_version_received); 3787 break; 3788 } 3789 case HTT_T2H_MSG_TYPE_RX_IND: 3790 if (ar->bus_param.dev_type != ATH10K_DEV_TYPE_HL) { 3791 ath10k_htt_rx_proc_rx_ind_ll(htt, &resp->rx_ind); 3792 } else { 3793 skb_queue_tail(&htt->rx_indication_head, skb); 3794 return false; 3795 } 3796 break; 3797 case HTT_T2H_MSG_TYPE_PEER_MAP: { 3798 struct htt_peer_map_event ev = { 3799 .vdev_id = resp->peer_map.vdev_id, 3800 .peer_id = __le16_to_cpu(resp->peer_map.peer_id), 3801 }; 3802 memcpy(ev.addr, resp->peer_map.addr, sizeof(ev.addr)); 3803 ath10k_peer_map_event(htt, &ev); 3804 break; 3805 } 3806 case HTT_T2H_MSG_TYPE_PEER_UNMAP: { 3807 struct htt_peer_unmap_event ev = { 3808 .peer_id = __le16_to_cpu(resp->peer_unmap.peer_id), 3809 }; 3810 ath10k_peer_unmap_event(htt, &ev); 3811 break; 3812 } 3813 case HTT_T2H_MSG_TYPE_MGMT_TX_COMPLETION: { 3814 struct htt_tx_done tx_done = {}; 3815 struct ath10k_htt *htt = &ar->htt; 3816 struct ath10k_htc *htc = &ar->htc; 3817 struct ath10k_htc_ep *ep = &ar->htc.endpoint[htt->eid]; 3818 int status = __le32_to_cpu(resp->mgmt_tx_completion.status); 3819 int info = __le32_to_cpu(resp->mgmt_tx_completion.info); 3820 3821 tx_done.msdu_id = __le32_to_cpu(resp->mgmt_tx_completion.desc_id); 3822 3823 switch (status) { 3824 case HTT_MGMT_TX_STATUS_OK: 3825 tx_done.status = HTT_TX_COMPL_STATE_ACK; 3826 if (test_bit(WMI_SERVICE_HTT_MGMT_TX_COMP_VALID_FLAGS, 3827 ar->wmi.svc_map) && 3828 (resp->mgmt_tx_completion.flags & 3829 HTT_MGMT_TX_CMPL_FLAG_ACK_RSSI)) { 3830 tx_done.ack_rssi = 3831 FIELD_GET(HTT_MGMT_TX_CMPL_INFO_ACK_RSSI_MASK, 3832 info); 3833 } 3834 break; 3835 case HTT_MGMT_TX_STATUS_RETRY: 3836 tx_done.status = HTT_TX_COMPL_STATE_NOACK; 3837 break; 3838 case HTT_MGMT_TX_STATUS_DROP: 3839 tx_done.status = HTT_TX_COMPL_STATE_DISCARD; 3840 break; 3841 } 3842 3843 if (htt->disable_tx_comp) { 3844 spin_lock_bh(&htc->tx_lock); 3845 ep->tx_credits++; 3846 spin_unlock_bh(&htc->tx_lock); 3847 } 3848 3849 status = ath10k_txrx_tx_unref(htt, &tx_done); 3850 if (!status) { 3851 spin_lock_bh(&htt->tx_lock); 3852 ath10k_htt_tx_mgmt_dec_pending(htt); 3853 spin_unlock_bh(&htt->tx_lock); 3854 } 3855 break; 3856 } 3857 case HTT_T2H_MSG_TYPE_TX_COMPL_IND: 3858 ath10k_htt_rx_tx_compl_ind(htt->ar, skb); 3859 break; 3860 case HTT_T2H_MSG_TYPE_SEC_IND: { 3861 struct ath10k *ar = htt->ar; 3862 struct htt_security_indication *ev = &resp->security_indication; 3863 3864 ath10k_htt_rx_sec_ind_handler(ar, ev); 3865 ath10k_dbg(ar, ATH10K_DBG_HTT, 3866 "sec ind peer_id %d unicast %d type %d\n", 3867 __le16_to_cpu(ev->peer_id), 3868 !!(ev->flags & HTT_SECURITY_IS_UNICAST), 3869 MS(ev->flags, HTT_SECURITY_TYPE)); 3870 complete(&ar->install_key_done); 3871 break; 3872 } 3873 case HTT_T2H_MSG_TYPE_RX_FRAG_IND: { 3874 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ", 3875 skb->data, skb->len); 3876 atomic_inc(&htt->num_mpdus_ready); 3877 3878 return ath10k_htt_rx_proc_rx_frag_ind(htt, 3879 &resp->rx_frag_ind, 3880 skb); 3881 break; 3882 } 3883 case HTT_T2H_MSG_TYPE_TEST: 3884 break; 3885 case HTT_T2H_MSG_TYPE_STATS_CONF: 3886 trace_ath10k_htt_stats(ar, skb->data, skb->len); 3887 break; 3888 case HTT_T2H_MSG_TYPE_TX_INSPECT_IND: 3889 /* Firmware can return tx frames if it's unable to fully 3890 * process them and suspects host may be able to fix it. ath10k 3891 * sends all tx frames as already inspected so this shouldn't 3892 * happen unless fw has a bug. 3893 */ 3894 ath10k_warn(ar, "received an unexpected htt tx inspect event\n"); 3895 break; 3896 case HTT_T2H_MSG_TYPE_RX_ADDBA: 3897 ath10k_htt_rx_addba(ar, resp); 3898 break; 3899 case HTT_T2H_MSG_TYPE_RX_DELBA: 3900 ath10k_htt_rx_delba(ar, resp); 3901 break; 3902 case HTT_T2H_MSG_TYPE_PKTLOG: { 3903 trace_ath10k_htt_pktlog(ar, resp->pktlog_msg.payload, 3904 skb->len - 3905 offsetof(struct htt_resp, 3906 pktlog_msg.payload)); 3907 3908 if (ath10k_peer_stats_enabled(ar)) 3909 ath10k_fetch_10_2_tx_stats(ar, 3910 resp->pktlog_msg.payload); 3911 break; 3912 } 3913 case HTT_T2H_MSG_TYPE_RX_FLUSH: { 3914 /* Ignore this event because mac80211 takes care of Rx 3915 * aggregation reordering. 3916 */ 3917 break; 3918 } 3919 case HTT_T2H_MSG_TYPE_RX_IN_ORD_PADDR_IND: { 3920 skb_queue_tail(&htt->rx_in_ord_compl_q, skb); 3921 return false; 3922 } 3923 case HTT_T2H_MSG_TYPE_TX_CREDIT_UPDATE_IND: { 3924 struct ath10k_htt *htt = &ar->htt; 3925 struct ath10k_htc *htc = &ar->htc; 3926 struct ath10k_htc_ep *ep = &ar->htc.endpoint[htt->eid]; 3927 u32 msg_word = __le32_to_cpu(*(__le32 *)resp); 3928 int htt_credit_delta; 3929 3930 htt_credit_delta = HTT_TX_CREDIT_DELTA_ABS_GET(msg_word); 3931 if (HTT_TX_CREDIT_SIGN_BIT_GET(msg_word)) 3932 htt_credit_delta = -htt_credit_delta; 3933 3934 ath10k_dbg(ar, ATH10K_DBG_HTT, 3935 "htt credit update delta %d\n", 3936 htt_credit_delta); 3937 3938 if (htt->disable_tx_comp) { 3939 spin_lock_bh(&htc->tx_lock); 3940 ep->tx_credits += htt_credit_delta; 3941 spin_unlock_bh(&htc->tx_lock); 3942 ath10k_dbg(ar, ATH10K_DBG_HTT, 3943 "htt credit total %d\n", 3944 ep->tx_credits); 3945 ep->ep_ops.ep_tx_credits(htc->ar); 3946 } 3947 break; 3948 } 3949 case HTT_T2H_MSG_TYPE_CHAN_CHANGE: { 3950 u32 phymode = __le32_to_cpu(resp->chan_change.phymode); 3951 u32 freq = __le32_to_cpu(resp->chan_change.freq); 3952 3953 ar->tgt_oper_chan = ieee80211_get_channel(ar->hw->wiphy, freq); 3954 ath10k_dbg(ar, ATH10K_DBG_HTT, 3955 "htt chan change freq %u phymode %s\n", 3956 freq, ath10k_wmi_phymode_str(phymode)); 3957 break; 3958 } 3959 case HTT_T2H_MSG_TYPE_AGGR_CONF: 3960 break; 3961 case HTT_T2H_MSG_TYPE_TX_FETCH_IND: { 3962 struct sk_buff *tx_fetch_ind = skb_copy(skb, GFP_ATOMIC); 3963 3964 if (!tx_fetch_ind) { 3965 ath10k_warn(ar, "failed to copy htt tx fetch ind\n"); 3966 break; 3967 } 3968 skb_queue_tail(&htt->tx_fetch_ind_q, tx_fetch_ind); 3969 break; 3970 } 3971 case HTT_T2H_MSG_TYPE_TX_FETCH_CONFIRM: 3972 ath10k_htt_rx_tx_fetch_confirm(ar, skb); 3973 break; 3974 case HTT_T2H_MSG_TYPE_TX_MODE_SWITCH_IND: 3975 ath10k_htt_rx_tx_mode_switch_ind(ar, skb); 3976 break; 3977 case HTT_T2H_MSG_TYPE_PEER_STATS: 3978 ath10k_htt_fetch_peer_stats(ar, skb); 3979 break; 3980 case HTT_T2H_MSG_TYPE_EN_STATS: 3981 default: 3982 ath10k_warn(ar, "htt event (%d) not handled\n", 3983 resp->hdr.msg_type); 3984 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ", 3985 skb->data, skb->len); 3986 break; 3987 } 3988 return true; 3989 } 3990 EXPORT_SYMBOL(ath10k_htt_t2h_msg_handler); 3991 3992 void ath10k_htt_rx_pktlog_completion_handler(struct ath10k *ar, 3993 struct sk_buff *skb) 3994 { 3995 trace_ath10k_htt_pktlog(ar, skb->data, skb->len); 3996 dev_kfree_skb_any(skb); 3997 } 3998 EXPORT_SYMBOL(ath10k_htt_rx_pktlog_completion_handler); 3999 4000 static int ath10k_htt_rx_deliver_msdu(struct ath10k *ar, int quota, int budget) 4001 { 4002 struct sk_buff *skb; 4003 4004 while (quota < budget) { 4005 if (skb_queue_empty(&ar->htt.rx_msdus_q)) 4006 break; 4007 4008 skb = skb_dequeue(&ar->htt.rx_msdus_q); 4009 if (!skb) 4010 break; 4011 ath10k_process_rx(ar, skb); 4012 quota++; 4013 } 4014 4015 return quota; 4016 } 4017 4018 int ath10k_htt_rx_hl_indication(struct ath10k *ar, int budget) 4019 { 4020 struct htt_resp *resp; 4021 struct ath10k_htt *htt = &ar->htt; 4022 struct sk_buff *skb; 4023 bool release; 4024 int quota; 4025 4026 for (quota = 0; quota < budget; quota++) { 4027 skb = skb_dequeue(&htt->rx_indication_head); 4028 if (!skb) 4029 break; 4030 4031 resp = (struct htt_resp *)skb->data; 4032 4033 release = ath10k_htt_rx_proc_rx_ind_hl(htt, 4034 &resp->rx_ind_hl, 4035 skb, 4036 HTT_RX_PN_CHECK, 4037 HTT_RX_NON_TKIP_MIC); 4038 4039 if (release) 4040 dev_kfree_skb_any(skb); 4041 4042 ath10k_dbg(ar, ATH10K_DBG_HTT, "rx indication poll pending count:%d\n", 4043 skb_queue_len(&htt->rx_indication_head)); 4044 } 4045 return quota; 4046 } 4047 EXPORT_SYMBOL(ath10k_htt_rx_hl_indication); 4048 4049 int ath10k_htt_txrx_compl_task(struct ath10k *ar, int budget) 4050 { 4051 struct ath10k_htt *htt = &ar->htt; 4052 struct htt_tx_done tx_done = {}; 4053 struct sk_buff_head tx_ind_q; 4054 struct sk_buff *skb; 4055 unsigned long flags; 4056 int quota = 0, done, ret; 4057 bool resched_napi = false; 4058 4059 __skb_queue_head_init(&tx_ind_q); 4060 4061 /* Process pending frames before dequeuing more data 4062 * from hardware. 4063 */ 4064 quota = ath10k_htt_rx_deliver_msdu(ar, quota, budget); 4065 if (quota == budget) { 4066 resched_napi = true; 4067 goto exit; 4068 } 4069 4070 while ((skb = skb_dequeue(&htt->rx_in_ord_compl_q))) { 4071 spin_lock_bh(&htt->rx_ring.lock); 4072 ret = ath10k_htt_rx_in_ord_ind(ar, skb); 4073 spin_unlock_bh(&htt->rx_ring.lock); 4074 4075 dev_kfree_skb_any(skb); 4076 if (ret == -EIO) { 4077 resched_napi = true; 4078 goto exit; 4079 } 4080 } 4081 4082 while (atomic_read(&htt->num_mpdus_ready)) { 4083 ret = ath10k_htt_rx_handle_amsdu(htt); 4084 if (ret == -EIO) { 4085 resched_napi = true; 4086 goto exit; 4087 } 4088 atomic_dec(&htt->num_mpdus_ready); 4089 } 4090 4091 /* Deliver received data after processing data from hardware */ 4092 quota = ath10k_htt_rx_deliver_msdu(ar, quota, budget); 4093 4094 /* From NAPI documentation: 4095 * The napi poll() function may also process TX completions, in which 4096 * case if it processes the entire TX ring then it should count that 4097 * work as the rest of the budget. 4098 */ 4099 if ((quota < budget) && !kfifo_is_empty(&htt->txdone_fifo)) 4100 quota = budget; 4101 4102 /* kfifo_get: called only within txrx_tasklet so it's neatly serialized. 4103 * From kfifo_get() documentation: 4104 * Note that with only one concurrent reader and one concurrent writer, 4105 * you don't need extra locking to use these macro. 4106 */ 4107 while (kfifo_get(&htt->txdone_fifo, &tx_done)) 4108 ath10k_txrx_tx_unref(htt, &tx_done); 4109 4110 ath10k_mac_tx_push_pending(ar); 4111 4112 spin_lock_irqsave(&htt->tx_fetch_ind_q.lock, flags); 4113 skb_queue_splice_init(&htt->tx_fetch_ind_q, &tx_ind_q); 4114 spin_unlock_irqrestore(&htt->tx_fetch_ind_q.lock, flags); 4115 4116 while ((skb = __skb_dequeue(&tx_ind_q))) { 4117 ath10k_htt_rx_tx_fetch_ind(ar, skb); 4118 dev_kfree_skb_any(skb); 4119 } 4120 4121 exit: 4122 ath10k_htt_rx_msdu_buff_replenish(htt); 4123 /* In case of rx failure or more data to read, report budget 4124 * to reschedule NAPI poll 4125 */ 4126 done = resched_napi ? budget : quota; 4127 4128 return done; 4129 } 4130 EXPORT_SYMBOL(ath10k_htt_txrx_compl_task); 4131 4132 static const struct ath10k_htt_rx_ops htt_rx_ops_32 = { 4133 .htt_get_rx_ring_size = ath10k_htt_get_rx_ring_size_32, 4134 .htt_config_paddrs_ring = ath10k_htt_config_paddrs_ring_32, 4135 .htt_set_paddrs_ring = ath10k_htt_set_paddrs_ring_32, 4136 .htt_get_vaddr_ring = ath10k_htt_get_vaddr_ring_32, 4137 .htt_reset_paddrs_ring = ath10k_htt_reset_paddrs_ring_32, 4138 }; 4139 4140 static const struct ath10k_htt_rx_ops htt_rx_ops_64 = { 4141 .htt_get_rx_ring_size = ath10k_htt_get_rx_ring_size_64, 4142 .htt_config_paddrs_ring = ath10k_htt_config_paddrs_ring_64, 4143 .htt_set_paddrs_ring = ath10k_htt_set_paddrs_ring_64, 4144 .htt_get_vaddr_ring = ath10k_htt_get_vaddr_ring_64, 4145 .htt_reset_paddrs_ring = ath10k_htt_reset_paddrs_ring_64, 4146 }; 4147 4148 static const struct ath10k_htt_rx_ops htt_rx_ops_hl = { 4149 .htt_rx_proc_rx_frag_ind = ath10k_htt_rx_proc_rx_frag_ind_hl, 4150 }; 4151 4152 void ath10k_htt_set_rx_ops(struct ath10k_htt *htt) 4153 { 4154 struct ath10k *ar = htt->ar; 4155 4156 if (ar->bus_param.dev_type == ATH10K_DEV_TYPE_HL) 4157 htt->rx_ops = &htt_rx_ops_hl; 4158 else if (ar->hw_params.target_64bit) 4159 htt->rx_ops = &htt_rx_ops_64; 4160 else 4161 htt->rx_ops = &htt_rx_ops_32; 4162 } 4163