1 /* 2 * Copyright (c) 2005-2011 Atheros Communications Inc. 3 * Copyright (c) 2011-2013 Qualcomm Atheros, Inc. 4 * 5 * Permission to use, copy, modify, and/or distribute this software for any 6 * purpose with or without fee is hereby granted, provided that the above 7 * copyright notice and this permission notice appear in all copies. 8 * 9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 16 */ 17 18 #include "core.h" 19 #include "htc.h" 20 #include "htt.h" 21 #include "txrx.h" 22 #include "debug.h" 23 24 #include <linux/log2.h> 25 26 /* slightly larger than one large A-MPDU */ 27 #define HTT_RX_RING_SIZE_MIN 128 28 29 /* roughly 20 ms @ 1 Gbps of 1500B MSDUs */ 30 #define HTT_RX_RING_SIZE_MAX 2048 31 32 #define HTT_RX_AVG_FRM_BYTES 1000 33 34 /* ms, very conservative */ 35 #define HTT_RX_HOST_LATENCY_MAX_MS 20 36 37 /* ms, conservative */ 38 #define HTT_RX_HOST_LATENCY_WORST_LIKELY_MS 10 39 40 /* when under memory pressure rx ring refill may fail and needs a retry */ 41 #define HTT_RX_RING_REFILL_RETRY_MS 50 42 43 static int ath10k_htt_rx_ring_size(struct ath10k_htt *htt) 44 { 45 int size; 46 47 /* 48 * It is expected that the host CPU will typically be able to 49 * service the rx indication from one A-MPDU before the rx 50 * indication from the subsequent A-MPDU happens, roughly 1-2 ms 51 * later. However, the rx ring should be sized very conservatively, 52 * to accomodate the worst reasonable delay before the host CPU 53 * services a rx indication interrupt. 54 * 55 * The rx ring need not be kept full of empty buffers. In theory, 56 * the htt host SW can dynamically track the low-water mark in the 57 * rx ring, and dynamically adjust the level to which the rx ring 58 * is filled with empty buffers, to dynamically meet the desired 59 * low-water mark. 60 * 61 * In contrast, it's difficult to resize the rx ring itself, once 62 * it's in use. Thus, the ring itself should be sized very 63 * conservatively, while the degree to which the ring is filled 64 * with empty buffers should be sized moderately conservatively. 65 */ 66 67 /* 1e6 bps/mbps / 1e3 ms per sec = 1000 */ 68 size = 69 htt->max_throughput_mbps + 70 1000 / 71 (8 * HTT_RX_AVG_FRM_BYTES) * HTT_RX_HOST_LATENCY_MAX_MS; 72 73 if (size < HTT_RX_RING_SIZE_MIN) 74 size = HTT_RX_RING_SIZE_MIN; 75 76 if (size > HTT_RX_RING_SIZE_MAX) 77 size = HTT_RX_RING_SIZE_MAX; 78 79 size = roundup_pow_of_two(size); 80 81 return size; 82 } 83 84 static int ath10k_htt_rx_ring_fill_level(struct ath10k_htt *htt) 85 { 86 int size; 87 88 /* 1e6 bps/mbps / 1e3 ms per sec = 1000 */ 89 size = 90 htt->max_throughput_mbps * 91 1000 / 92 (8 * HTT_RX_AVG_FRM_BYTES) * HTT_RX_HOST_LATENCY_WORST_LIKELY_MS; 93 94 /* 95 * Make sure the fill level is at least 1 less than the ring size. 96 * Leaving 1 element empty allows the SW to easily distinguish 97 * between a full ring vs. an empty ring. 98 */ 99 if (size >= htt->rx_ring.size) 100 size = htt->rx_ring.size - 1; 101 102 return size; 103 } 104 105 static void ath10k_htt_rx_ring_free(struct ath10k_htt *htt) 106 { 107 struct sk_buff *skb; 108 struct ath10k_skb_cb *cb; 109 int i; 110 111 for (i = 0; i < htt->rx_ring.fill_cnt; i++) { 112 skb = htt->rx_ring.netbufs_ring[i]; 113 cb = ATH10K_SKB_CB(skb); 114 dma_unmap_single(htt->ar->dev, cb->paddr, 115 skb->len + skb_tailroom(skb), 116 DMA_FROM_DEVICE); 117 dev_kfree_skb_any(skb); 118 } 119 120 htt->rx_ring.fill_cnt = 0; 121 } 122 123 static int __ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num) 124 { 125 struct htt_rx_desc *rx_desc; 126 struct sk_buff *skb; 127 dma_addr_t paddr; 128 int ret = 0, idx; 129 130 idx = __le32_to_cpu(*(htt->rx_ring.alloc_idx.vaddr)); 131 while (num > 0) { 132 skb = dev_alloc_skb(HTT_RX_BUF_SIZE + HTT_RX_DESC_ALIGN); 133 if (!skb) { 134 ret = -ENOMEM; 135 goto fail; 136 } 137 138 if (!IS_ALIGNED((unsigned long)skb->data, HTT_RX_DESC_ALIGN)) 139 skb_pull(skb, 140 PTR_ALIGN(skb->data, HTT_RX_DESC_ALIGN) - 141 skb->data); 142 143 /* Clear rx_desc attention word before posting to Rx ring */ 144 rx_desc = (struct htt_rx_desc *)skb->data; 145 rx_desc->attention.flags = __cpu_to_le32(0); 146 147 paddr = dma_map_single(htt->ar->dev, skb->data, 148 skb->len + skb_tailroom(skb), 149 DMA_FROM_DEVICE); 150 151 if (unlikely(dma_mapping_error(htt->ar->dev, paddr))) { 152 dev_kfree_skb_any(skb); 153 ret = -ENOMEM; 154 goto fail; 155 } 156 157 ATH10K_SKB_CB(skb)->paddr = paddr; 158 htt->rx_ring.netbufs_ring[idx] = skb; 159 htt->rx_ring.paddrs_ring[idx] = __cpu_to_le32(paddr); 160 htt->rx_ring.fill_cnt++; 161 162 num--; 163 idx++; 164 idx &= htt->rx_ring.size_mask; 165 } 166 167 fail: 168 *(htt->rx_ring.alloc_idx.vaddr) = __cpu_to_le32(idx); 169 return ret; 170 } 171 172 static int ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num) 173 { 174 lockdep_assert_held(&htt->rx_ring.lock); 175 return __ath10k_htt_rx_ring_fill_n(htt, num); 176 } 177 178 static void ath10k_htt_rx_msdu_buff_replenish(struct ath10k_htt *htt) 179 { 180 int ret, num_to_fill; 181 182 spin_lock_bh(&htt->rx_ring.lock); 183 num_to_fill = htt->rx_ring.fill_level - htt->rx_ring.fill_cnt; 184 ret = ath10k_htt_rx_ring_fill_n(htt, num_to_fill); 185 if (ret == -ENOMEM) { 186 /* 187 * Failed to fill it to the desired level - 188 * we'll start a timer and try again next time. 189 * As long as enough buffers are left in the ring for 190 * another A-MPDU rx, no special recovery is needed. 191 */ 192 mod_timer(&htt->rx_ring.refill_retry_timer, jiffies + 193 msecs_to_jiffies(HTT_RX_RING_REFILL_RETRY_MS)); 194 } 195 spin_unlock_bh(&htt->rx_ring.lock); 196 } 197 198 static void ath10k_htt_rx_ring_refill_retry(unsigned long arg) 199 { 200 struct ath10k_htt *htt = (struct ath10k_htt *)arg; 201 ath10k_htt_rx_msdu_buff_replenish(htt); 202 } 203 204 static unsigned ath10k_htt_rx_ring_elems(struct ath10k_htt *htt) 205 { 206 return (__le32_to_cpu(*htt->rx_ring.alloc_idx.vaddr) - 207 htt->rx_ring.sw_rd_idx.msdu_payld) & htt->rx_ring.size_mask; 208 } 209 210 void ath10k_htt_rx_detach(struct ath10k_htt *htt) 211 { 212 int sw_rd_idx = htt->rx_ring.sw_rd_idx.msdu_payld; 213 214 del_timer_sync(&htt->rx_ring.refill_retry_timer); 215 216 while (sw_rd_idx != __le32_to_cpu(*(htt->rx_ring.alloc_idx.vaddr))) { 217 struct sk_buff *skb = 218 htt->rx_ring.netbufs_ring[sw_rd_idx]; 219 struct ath10k_skb_cb *cb = ATH10K_SKB_CB(skb); 220 221 dma_unmap_single(htt->ar->dev, cb->paddr, 222 skb->len + skb_tailroom(skb), 223 DMA_FROM_DEVICE); 224 dev_kfree_skb_any(htt->rx_ring.netbufs_ring[sw_rd_idx]); 225 sw_rd_idx++; 226 sw_rd_idx &= htt->rx_ring.size_mask; 227 } 228 229 dma_free_coherent(htt->ar->dev, 230 (htt->rx_ring.size * 231 sizeof(htt->rx_ring.paddrs_ring)), 232 htt->rx_ring.paddrs_ring, 233 htt->rx_ring.base_paddr); 234 235 dma_free_coherent(htt->ar->dev, 236 sizeof(*htt->rx_ring.alloc_idx.vaddr), 237 htt->rx_ring.alloc_idx.vaddr, 238 htt->rx_ring.alloc_idx.paddr); 239 240 kfree(htt->rx_ring.netbufs_ring); 241 } 242 243 static inline struct sk_buff *ath10k_htt_rx_netbuf_pop(struct ath10k_htt *htt) 244 { 245 int idx; 246 struct sk_buff *msdu; 247 248 spin_lock_bh(&htt->rx_ring.lock); 249 250 if (ath10k_htt_rx_ring_elems(htt) == 0) 251 ath10k_warn("htt rx ring is empty!\n"); 252 253 idx = htt->rx_ring.sw_rd_idx.msdu_payld; 254 msdu = htt->rx_ring.netbufs_ring[idx]; 255 256 idx++; 257 idx &= htt->rx_ring.size_mask; 258 htt->rx_ring.sw_rd_idx.msdu_payld = idx; 259 htt->rx_ring.fill_cnt--; 260 261 spin_unlock_bh(&htt->rx_ring.lock); 262 return msdu; 263 } 264 265 static void ath10k_htt_rx_free_msdu_chain(struct sk_buff *skb) 266 { 267 struct sk_buff *next; 268 269 while (skb) { 270 next = skb->next; 271 dev_kfree_skb_any(skb); 272 skb = next; 273 } 274 } 275 276 static int ath10k_htt_rx_amsdu_pop(struct ath10k_htt *htt, 277 u8 **fw_desc, int *fw_desc_len, 278 struct sk_buff **head_msdu, 279 struct sk_buff **tail_msdu) 280 { 281 int msdu_len, msdu_chaining = 0; 282 struct sk_buff *msdu; 283 struct htt_rx_desc *rx_desc; 284 285 if (ath10k_htt_rx_ring_elems(htt) == 0) 286 ath10k_warn("htt rx ring is empty!\n"); 287 288 if (htt->rx_confused) { 289 ath10k_warn("htt is confused. refusing rx\n"); 290 return 0; 291 } 292 293 msdu = *head_msdu = ath10k_htt_rx_netbuf_pop(htt); 294 while (msdu) { 295 int last_msdu, msdu_len_invalid, msdu_chained; 296 297 dma_unmap_single(htt->ar->dev, 298 ATH10K_SKB_CB(msdu)->paddr, 299 msdu->len + skb_tailroom(msdu), 300 DMA_FROM_DEVICE); 301 302 ath10k_dbg_dump(ATH10K_DBG_HTT_DUMP, NULL, "htt rx: ", 303 msdu->data, msdu->len + skb_tailroom(msdu)); 304 305 rx_desc = (struct htt_rx_desc *)msdu->data; 306 307 /* FIXME: we must report msdu payload since this is what caller 308 * expects now */ 309 skb_put(msdu, offsetof(struct htt_rx_desc, msdu_payload)); 310 skb_pull(msdu, offsetof(struct htt_rx_desc, msdu_payload)); 311 312 /* 313 * Sanity check - confirm the HW is finished filling in the 314 * rx data. 315 * If the HW and SW are working correctly, then it's guaranteed 316 * that the HW's MAC DMA is done before this point in the SW. 317 * To prevent the case that we handle a stale Rx descriptor, 318 * just assert for now until we have a way to recover. 319 */ 320 if (!(__le32_to_cpu(rx_desc->attention.flags) 321 & RX_ATTENTION_FLAGS_MSDU_DONE)) { 322 ath10k_htt_rx_free_msdu_chain(*head_msdu); 323 *head_msdu = NULL; 324 msdu = NULL; 325 ath10k_err("htt rx stopped. cannot recover\n"); 326 htt->rx_confused = true; 327 break; 328 } 329 330 /* 331 * Copy the FW rx descriptor for this MSDU from the rx 332 * indication message into the MSDU's netbuf. HL uses the 333 * same rx indication message definition as LL, and simply 334 * appends new info (fields from the HW rx desc, and the 335 * MSDU payload itself). So, the offset into the rx 336 * indication message only has to account for the standard 337 * offset of the per-MSDU FW rx desc info within the 338 * message, and how many bytes of the per-MSDU FW rx desc 339 * info have already been consumed. (And the endianness of 340 * the host, since for a big-endian host, the rx ind 341 * message contents, including the per-MSDU rx desc bytes, 342 * were byteswapped during upload.) 343 */ 344 if (*fw_desc_len > 0) { 345 rx_desc->fw_desc.info0 = **fw_desc; 346 /* 347 * The target is expected to only provide the basic 348 * per-MSDU rx descriptors. Just to be sure, verify 349 * that the target has not attached extension data 350 * (e.g. LRO flow ID). 351 */ 352 353 /* or more, if there's extension data */ 354 (*fw_desc)++; 355 (*fw_desc_len)--; 356 } else { 357 /* 358 * When an oversized AMSDU happened, FW will lost 359 * some of MSDU status - in this case, the FW 360 * descriptors provided will be less than the 361 * actual MSDUs inside this MPDU. Mark the FW 362 * descriptors so that it will still deliver to 363 * upper stack, if no CRC error for this MPDU. 364 * 365 * FIX THIS - the FW descriptors are actually for 366 * MSDUs in the end of this A-MSDU instead of the 367 * beginning. 368 */ 369 rx_desc->fw_desc.info0 = 0; 370 } 371 372 msdu_len_invalid = !!(__le32_to_cpu(rx_desc->attention.flags) 373 & (RX_ATTENTION_FLAGS_MPDU_LENGTH_ERR | 374 RX_ATTENTION_FLAGS_MSDU_LENGTH_ERR)); 375 msdu_len = MS(__le32_to_cpu(rx_desc->msdu_start.info0), 376 RX_MSDU_START_INFO0_MSDU_LENGTH); 377 msdu_chained = rx_desc->frag_info.ring2_more_count; 378 379 if (msdu_len_invalid) 380 msdu_len = 0; 381 382 skb_trim(msdu, 0); 383 skb_put(msdu, min(msdu_len, HTT_RX_MSDU_SIZE)); 384 msdu_len -= msdu->len; 385 386 /* FIXME: Do chained buffers include htt_rx_desc or not? */ 387 while (msdu_chained--) { 388 struct sk_buff *next = ath10k_htt_rx_netbuf_pop(htt); 389 390 dma_unmap_single(htt->ar->dev, 391 ATH10K_SKB_CB(next)->paddr, 392 next->len + skb_tailroom(next), 393 DMA_FROM_DEVICE); 394 395 ath10k_dbg_dump(ATH10K_DBG_HTT_DUMP, NULL, "htt rx: ", 396 next->data, 397 next->len + skb_tailroom(next)); 398 399 skb_trim(next, 0); 400 skb_put(next, min(msdu_len, HTT_RX_BUF_SIZE)); 401 msdu_len -= next->len; 402 403 msdu->next = next; 404 msdu = next; 405 msdu_chaining = 1; 406 } 407 408 if (msdu_len > 0) { 409 /* This may suggest FW bug? */ 410 ath10k_warn("htt rx msdu len not consumed (%d)\n", 411 msdu_len); 412 } 413 414 last_msdu = __le32_to_cpu(rx_desc->msdu_end.info0) & 415 RX_MSDU_END_INFO0_LAST_MSDU; 416 417 if (last_msdu) { 418 msdu->next = NULL; 419 break; 420 } else { 421 struct sk_buff *next = ath10k_htt_rx_netbuf_pop(htt); 422 msdu->next = next; 423 msdu = next; 424 } 425 } 426 *tail_msdu = msdu; 427 428 /* 429 * Don't refill the ring yet. 430 * 431 * First, the elements popped here are still in use - it is not 432 * safe to overwrite them until the matching call to 433 * mpdu_desc_list_next. Second, for efficiency it is preferable to 434 * refill the rx ring with 1 PPDU's worth of rx buffers (something 435 * like 32 x 3 buffers), rather than one MPDU's worth of rx buffers 436 * (something like 3 buffers). Consequently, we'll rely on the txrx 437 * SW to tell us when it is done pulling all the PPDU's rx buffers 438 * out of the rx ring, and then refill it just once. 439 */ 440 441 return msdu_chaining; 442 } 443 444 int ath10k_htt_rx_attach(struct ath10k_htt *htt) 445 { 446 dma_addr_t paddr; 447 void *vaddr; 448 struct timer_list *timer = &htt->rx_ring.refill_retry_timer; 449 450 htt->rx_ring.size = ath10k_htt_rx_ring_size(htt); 451 if (!is_power_of_2(htt->rx_ring.size)) { 452 ath10k_warn("htt rx ring size is not power of 2\n"); 453 return -EINVAL; 454 } 455 456 htt->rx_ring.size_mask = htt->rx_ring.size - 1; 457 458 /* 459 * Set the initial value for the level to which the rx ring 460 * should be filled, based on the max throughput and the 461 * worst likely latency for the host to fill the rx ring 462 * with new buffers. In theory, this fill level can be 463 * dynamically adjusted from the initial value set here, to 464 * reflect the actual host latency rather than a 465 * conservative assumption about the host latency. 466 */ 467 htt->rx_ring.fill_level = ath10k_htt_rx_ring_fill_level(htt); 468 469 htt->rx_ring.netbufs_ring = 470 kmalloc(htt->rx_ring.size * sizeof(struct sk_buff *), 471 GFP_KERNEL); 472 if (!htt->rx_ring.netbufs_ring) 473 goto err_netbuf; 474 475 vaddr = dma_alloc_coherent(htt->ar->dev, 476 (htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring)), 477 &paddr, GFP_DMA); 478 if (!vaddr) 479 goto err_dma_ring; 480 481 htt->rx_ring.paddrs_ring = vaddr; 482 htt->rx_ring.base_paddr = paddr; 483 484 vaddr = dma_alloc_coherent(htt->ar->dev, 485 sizeof(*htt->rx_ring.alloc_idx.vaddr), 486 &paddr, GFP_DMA); 487 if (!vaddr) 488 goto err_dma_idx; 489 490 htt->rx_ring.alloc_idx.vaddr = vaddr; 491 htt->rx_ring.alloc_idx.paddr = paddr; 492 htt->rx_ring.sw_rd_idx.msdu_payld = 0; 493 *htt->rx_ring.alloc_idx.vaddr = 0; 494 495 /* Initialize the Rx refill retry timer */ 496 setup_timer(timer, ath10k_htt_rx_ring_refill_retry, (unsigned long)htt); 497 498 spin_lock_init(&htt->rx_ring.lock); 499 500 htt->rx_ring.fill_cnt = 0; 501 if (__ath10k_htt_rx_ring_fill_n(htt, htt->rx_ring.fill_level)) 502 goto err_fill_ring; 503 504 ath10k_dbg(ATH10K_DBG_HTT, "HTT RX ring size: %d, fill_level: %d\n", 505 htt->rx_ring.size, htt->rx_ring.fill_level); 506 return 0; 507 508 err_fill_ring: 509 ath10k_htt_rx_ring_free(htt); 510 dma_free_coherent(htt->ar->dev, 511 sizeof(*htt->rx_ring.alloc_idx.vaddr), 512 htt->rx_ring.alloc_idx.vaddr, 513 htt->rx_ring.alloc_idx.paddr); 514 err_dma_idx: 515 dma_free_coherent(htt->ar->dev, 516 (htt->rx_ring.size * 517 sizeof(htt->rx_ring.paddrs_ring)), 518 htt->rx_ring.paddrs_ring, 519 htt->rx_ring.base_paddr); 520 err_dma_ring: 521 kfree(htt->rx_ring.netbufs_ring); 522 err_netbuf: 523 return -ENOMEM; 524 } 525 526 static int ath10k_htt_rx_crypto_param_len(enum htt_rx_mpdu_encrypt_type type) 527 { 528 switch (type) { 529 case HTT_RX_MPDU_ENCRYPT_WEP40: 530 case HTT_RX_MPDU_ENCRYPT_WEP104: 531 return 4; 532 case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC: 533 case HTT_RX_MPDU_ENCRYPT_WEP128: /* not tested */ 534 case HTT_RX_MPDU_ENCRYPT_TKIP_WPA: 535 case HTT_RX_MPDU_ENCRYPT_WAPI: /* not tested */ 536 case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2: 537 return 8; 538 case HTT_RX_MPDU_ENCRYPT_NONE: 539 return 0; 540 } 541 542 ath10k_warn("unknown encryption type %d\n", type); 543 return 0; 544 } 545 546 static int ath10k_htt_rx_crypto_tail_len(enum htt_rx_mpdu_encrypt_type type) 547 { 548 switch (type) { 549 case HTT_RX_MPDU_ENCRYPT_NONE: 550 case HTT_RX_MPDU_ENCRYPT_WEP40: 551 case HTT_RX_MPDU_ENCRYPT_WEP104: 552 case HTT_RX_MPDU_ENCRYPT_WEP128: 553 case HTT_RX_MPDU_ENCRYPT_WAPI: 554 return 0; 555 case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC: 556 case HTT_RX_MPDU_ENCRYPT_TKIP_WPA: 557 return 4; 558 case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2: 559 return 8; 560 } 561 562 ath10k_warn("unknown encryption type %d\n", type); 563 return 0; 564 } 565 566 /* Applies for first msdu in chain, before altering it. */ 567 static struct ieee80211_hdr *ath10k_htt_rx_skb_get_hdr(struct sk_buff *skb) 568 { 569 struct htt_rx_desc *rxd; 570 enum rx_msdu_decap_format fmt; 571 572 rxd = (void *)skb->data - sizeof(*rxd); 573 fmt = MS(__le32_to_cpu(rxd->msdu_start.info1), 574 RX_MSDU_START_INFO1_DECAP_FORMAT); 575 576 if (fmt == RX_MSDU_DECAP_RAW) 577 return (void *)skb->data; 578 else 579 return (void *)skb->data - RX_HTT_HDR_STATUS_LEN; 580 } 581 582 /* This function only applies for first msdu in an msdu chain */ 583 static bool ath10k_htt_rx_hdr_is_amsdu(struct ieee80211_hdr *hdr) 584 { 585 if (ieee80211_is_data_qos(hdr->frame_control)) { 586 u8 *qc = ieee80211_get_qos_ctl(hdr); 587 if (qc[0] & 0x80) 588 return true; 589 } 590 return false; 591 } 592 593 static int ath10k_htt_rx_amsdu(struct ath10k_htt *htt, 594 struct htt_rx_info *info) 595 { 596 struct htt_rx_desc *rxd; 597 struct sk_buff *amsdu; 598 struct sk_buff *first; 599 struct ieee80211_hdr *hdr; 600 struct sk_buff *skb = info->skb; 601 enum rx_msdu_decap_format fmt; 602 enum htt_rx_mpdu_encrypt_type enctype; 603 unsigned int hdr_len; 604 int crypto_len; 605 606 rxd = (void *)skb->data - sizeof(*rxd); 607 fmt = MS(__le32_to_cpu(rxd->msdu_start.info1), 608 RX_MSDU_START_INFO1_DECAP_FORMAT); 609 enctype = MS(__le32_to_cpu(rxd->mpdu_start.info0), 610 RX_MPDU_START_INFO0_ENCRYPT_TYPE); 611 612 /* FIXME: No idea what assumptions are safe here. Need logs */ 613 if ((fmt == RX_MSDU_DECAP_RAW && skb->next) || 614 (fmt == RX_MSDU_DECAP_8023_SNAP_LLC)) { 615 ath10k_htt_rx_free_msdu_chain(skb->next); 616 skb->next = NULL; 617 return -ENOTSUPP; 618 } 619 620 /* A-MSDU max is a little less than 8K */ 621 amsdu = dev_alloc_skb(8*1024); 622 if (!amsdu) { 623 ath10k_warn("A-MSDU allocation failed\n"); 624 ath10k_htt_rx_free_msdu_chain(skb->next); 625 skb->next = NULL; 626 return -ENOMEM; 627 } 628 629 if (fmt >= RX_MSDU_DECAP_NATIVE_WIFI) { 630 int hdrlen; 631 632 hdr = (void *)rxd->rx_hdr_status; 633 hdrlen = ieee80211_hdrlen(hdr->frame_control); 634 memcpy(skb_put(amsdu, hdrlen), hdr, hdrlen); 635 } 636 637 first = skb; 638 while (skb) { 639 void *decap_hdr; 640 int decap_len = 0; 641 642 rxd = (void *)skb->data - sizeof(*rxd); 643 fmt = MS(__le32_to_cpu(rxd->msdu_start.info1), 644 RX_MSDU_START_INFO1_DECAP_FORMAT); 645 decap_hdr = (void *)rxd->rx_hdr_status; 646 647 if (skb == first) { 648 /* We receive linked A-MSDU subframe skbuffs. The 649 * first one contains the original 802.11 header (and 650 * possible crypto param) in the RX descriptor. The 651 * A-MSDU subframe header follows that. Each part is 652 * aligned to 4 byte boundary. */ 653 654 hdr = (void *)amsdu->data; 655 hdr_len = ieee80211_hdrlen(hdr->frame_control); 656 crypto_len = ath10k_htt_rx_crypto_param_len(enctype); 657 658 decap_hdr += roundup(hdr_len, 4); 659 decap_hdr += roundup(crypto_len, 4); 660 } 661 662 if (fmt == RX_MSDU_DECAP_ETHERNET2_DIX) { 663 /* Ethernet2 decap inserts ethernet header in place of 664 * A-MSDU subframe header. */ 665 skb_pull(skb, 6 + 6 + 2); 666 667 /* A-MSDU subframe header length */ 668 decap_len += 6 + 6 + 2; 669 670 /* Ethernet2 decap also strips the LLC/SNAP so we need 671 * to re-insert it. The LLC/SNAP follows A-MSDU 672 * subframe header. */ 673 /* FIXME: Not all LLCs are 8 bytes long */ 674 decap_len += 8; 675 676 memcpy(skb_put(amsdu, decap_len), decap_hdr, decap_len); 677 } 678 679 if (fmt == RX_MSDU_DECAP_NATIVE_WIFI) { 680 /* Native Wifi decap inserts regular 802.11 header 681 * in place of A-MSDU subframe header. */ 682 hdr = (struct ieee80211_hdr *)skb->data; 683 skb_pull(skb, ieee80211_hdrlen(hdr->frame_control)); 684 685 /* A-MSDU subframe header length */ 686 decap_len += 6 + 6 + 2; 687 688 memcpy(skb_put(amsdu, decap_len), decap_hdr, decap_len); 689 } 690 691 if (fmt == RX_MSDU_DECAP_RAW) 692 skb_trim(skb, skb->len - 4); /* remove FCS */ 693 694 memcpy(skb_put(amsdu, skb->len), skb->data, skb->len); 695 696 /* A-MSDU subframes are padded to 4bytes 697 * but relative to first subframe, not the whole MPDU */ 698 if (skb->next && ((decap_len + skb->len) & 3)) { 699 int padlen = 4 - ((decap_len + skb->len) & 3); 700 memset(skb_put(amsdu, padlen), 0, padlen); 701 } 702 703 skb = skb->next; 704 } 705 706 info->skb = amsdu; 707 info->encrypt_type = enctype; 708 709 ath10k_htt_rx_free_msdu_chain(first); 710 711 return 0; 712 } 713 714 static int ath10k_htt_rx_msdu(struct ath10k_htt *htt, struct htt_rx_info *info) 715 { 716 struct sk_buff *skb = info->skb; 717 struct htt_rx_desc *rxd; 718 struct ieee80211_hdr *hdr; 719 enum rx_msdu_decap_format fmt; 720 enum htt_rx_mpdu_encrypt_type enctype; 721 722 /* This shouldn't happen. If it does than it may be a FW bug. */ 723 if (skb->next) { 724 ath10k_warn("received chained non A-MSDU frame\n"); 725 ath10k_htt_rx_free_msdu_chain(skb->next); 726 skb->next = NULL; 727 } 728 729 rxd = (void *)skb->data - sizeof(*rxd); 730 fmt = MS(__le32_to_cpu(rxd->msdu_start.info1), 731 RX_MSDU_START_INFO1_DECAP_FORMAT); 732 enctype = MS(__le32_to_cpu(rxd->mpdu_start.info0), 733 RX_MPDU_START_INFO0_ENCRYPT_TYPE); 734 hdr = (void *)skb->data - RX_HTT_HDR_STATUS_LEN; 735 736 switch (fmt) { 737 case RX_MSDU_DECAP_RAW: 738 /* remove trailing FCS */ 739 skb_trim(skb, skb->len - 4); 740 break; 741 case RX_MSDU_DECAP_NATIVE_WIFI: 742 /* nothing to do here */ 743 break; 744 case RX_MSDU_DECAP_ETHERNET2_DIX: 745 /* macaddr[6] + macaddr[6] + ethertype[2] */ 746 skb_pull(skb, 6 + 6 + 2); 747 break; 748 case RX_MSDU_DECAP_8023_SNAP_LLC: 749 /* macaddr[6] + macaddr[6] + len[2] */ 750 /* we don't need this for non-A-MSDU */ 751 skb_pull(skb, 6 + 6 + 2); 752 break; 753 } 754 755 if (fmt == RX_MSDU_DECAP_ETHERNET2_DIX) { 756 void *llc; 757 int llclen; 758 759 llclen = 8; 760 llc = hdr; 761 llc += roundup(ieee80211_hdrlen(hdr->frame_control), 4); 762 llc += roundup(ath10k_htt_rx_crypto_param_len(enctype), 4); 763 764 skb_push(skb, llclen); 765 memcpy(skb->data, llc, llclen); 766 } 767 768 if (fmt >= RX_MSDU_DECAP_ETHERNET2_DIX) { 769 int len = ieee80211_hdrlen(hdr->frame_control); 770 skb_push(skb, len); 771 memcpy(skb->data, hdr, len); 772 } 773 774 info->skb = skb; 775 info->encrypt_type = enctype; 776 return 0; 777 } 778 779 static bool ath10k_htt_rx_has_decrypt_err(struct sk_buff *skb) 780 { 781 struct htt_rx_desc *rxd; 782 u32 flags; 783 784 rxd = (void *)skb->data - sizeof(*rxd); 785 flags = __le32_to_cpu(rxd->attention.flags); 786 787 if (flags & RX_ATTENTION_FLAGS_DECRYPT_ERR) 788 return true; 789 790 return false; 791 } 792 793 static bool ath10k_htt_rx_has_fcs_err(struct sk_buff *skb) 794 { 795 struct htt_rx_desc *rxd; 796 u32 flags; 797 798 rxd = (void *)skb->data - sizeof(*rxd); 799 flags = __le32_to_cpu(rxd->attention.flags); 800 801 if (flags & RX_ATTENTION_FLAGS_FCS_ERR) 802 return true; 803 804 return false; 805 } 806 807 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb) 808 { 809 struct htt_rx_desc *rxd; 810 u32 flags, info; 811 bool is_ip4, is_ip6; 812 bool is_tcp, is_udp; 813 bool ip_csum_ok, tcpudp_csum_ok; 814 815 rxd = (void *)skb->data - sizeof(*rxd); 816 flags = __le32_to_cpu(rxd->attention.flags); 817 info = __le32_to_cpu(rxd->msdu_start.info1); 818 819 is_ip4 = !!(info & RX_MSDU_START_INFO1_IPV4_PROTO); 820 is_ip6 = !!(info & RX_MSDU_START_INFO1_IPV6_PROTO); 821 is_tcp = !!(info & RX_MSDU_START_INFO1_TCP_PROTO); 822 is_udp = !!(info & RX_MSDU_START_INFO1_UDP_PROTO); 823 ip_csum_ok = !(flags & RX_ATTENTION_FLAGS_IP_CHKSUM_FAIL); 824 tcpudp_csum_ok = !(flags & RX_ATTENTION_FLAGS_TCP_UDP_CHKSUM_FAIL); 825 826 if (!is_ip4 && !is_ip6) 827 return CHECKSUM_NONE; 828 if (!is_tcp && !is_udp) 829 return CHECKSUM_NONE; 830 if (!ip_csum_ok) 831 return CHECKSUM_NONE; 832 if (!tcpudp_csum_ok) 833 return CHECKSUM_NONE; 834 835 return CHECKSUM_UNNECESSARY; 836 } 837 838 static void ath10k_htt_rx_handler(struct ath10k_htt *htt, 839 struct htt_rx_indication *rx) 840 { 841 struct htt_rx_info info; 842 struct htt_rx_indication_mpdu_range *mpdu_ranges; 843 struct ieee80211_hdr *hdr; 844 int num_mpdu_ranges; 845 int fw_desc_len; 846 u8 *fw_desc; 847 int i, j; 848 int ret; 849 int ip_summed; 850 851 memset(&info, 0, sizeof(info)); 852 853 fw_desc_len = __le16_to_cpu(rx->prefix.fw_rx_desc_bytes); 854 fw_desc = (u8 *)&rx->fw_desc; 855 856 num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1), 857 HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES); 858 mpdu_ranges = htt_rx_ind_get_mpdu_ranges(rx); 859 860 ath10k_dbg_dump(ATH10K_DBG_HTT_DUMP, NULL, "htt rx ind: ", 861 rx, sizeof(*rx) + 862 (sizeof(struct htt_rx_indication_mpdu_range) * 863 num_mpdu_ranges)); 864 865 for (i = 0; i < num_mpdu_ranges; i++) { 866 info.status = mpdu_ranges[i].mpdu_range_status; 867 868 for (j = 0; j < mpdu_ranges[i].mpdu_count; j++) { 869 struct sk_buff *msdu_head, *msdu_tail; 870 enum htt_rx_mpdu_status status; 871 int msdu_chaining; 872 873 msdu_head = NULL; 874 msdu_tail = NULL; 875 msdu_chaining = ath10k_htt_rx_amsdu_pop(htt, 876 &fw_desc, 877 &fw_desc_len, 878 &msdu_head, 879 &msdu_tail); 880 881 if (!msdu_head) { 882 ath10k_warn("htt rx no data!\n"); 883 continue; 884 } 885 886 if (msdu_head->len == 0) { 887 ath10k_dbg(ATH10K_DBG_HTT, 888 "htt rx dropping due to zero-len\n"); 889 ath10k_htt_rx_free_msdu_chain(msdu_head); 890 continue; 891 } 892 893 if (ath10k_htt_rx_has_decrypt_err(msdu_head)) { 894 ath10k_htt_rx_free_msdu_chain(msdu_head); 895 continue; 896 } 897 898 status = info.status; 899 900 /* Skip mgmt frames while we handle this in WMI */ 901 if (status == HTT_RX_IND_MPDU_STATUS_MGMT_CTRL) { 902 ath10k_htt_rx_free_msdu_chain(msdu_head); 903 continue; 904 } 905 906 if (status != HTT_RX_IND_MPDU_STATUS_OK && 907 status != HTT_RX_IND_MPDU_STATUS_TKIP_MIC_ERR && 908 !htt->ar->monitor_enabled) { 909 ath10k_dbg(ATH10K_DBG_HTT, 910 "htt rx ignoring frame w/ status %d\n", 911 status); 912 ath10k_htt_rx_free_msdu_chain(msdu_head); 913 continue; 914 } 915 916 /* FIXME: we do not support chaining yet. 917 * this needs investigation */ 918 if (msdu_chaining) { 919 ath10k_warn("msdu_chaining is true\n"); 920 ath10k_htt_rx_free_msdu_chain(msdu_head); 921 continue; 922 } 923 924 /* The skb is not yet processed and it may be 925 * reallocated. Since the offload is in the original 926 * skb extract the checksum now and assign it later */ 927 ip_summed = ath10k_htt_rx_get_csum_state(msdu_head); 928 929 info.skb = msdu_head; 930 info.fcs_err = ath10k_htt_rx_has_fcs_err(msdu_head); 931 info.signal = ATH10K_DEFAULT_NOISE_FLOOR; 932 info.signal += rx->ppdu.combined_rssi; 933 934 info.rate.info0 = rx->ppdu.info0; 935 info.rate.info1 = __le32_to_cpu(rx->ppdu.info1); 936 info.rate.info2 = __le32_to_cpu(rx->ppdu.info2); 937 938 hdr = ath10k_htt_rx_skb_get_hdr(msdu_head); 939 940 if (ath10k_htt_rx_hdr_is_amsdu(hdr)) 941 ret = ath10k_htt_rx_amsdu(htt, &info); 942 else 943 ret = ath10k_htt_rx_msdu(htt, &info); 944 945 if (ret && !info.fcs_err) { 946 ath10k_warn("error processing msdus %d\n", ret); 947 dev_kfree_skb_any(info.skb); 948 continue; 949 } 950 951 if (ath10k_htt_rx_hdr_is_amsdu((void *)info.skb->data)) 952 ath10k_dbg(ATH10K_DBG_HTT, "htt mpdu is amsdu\n"); 953 954 info.skb->ip_summed = ip_summed; 955 956 ath10k_dbg_dump(ATH10K_DBG_HTT_DUMP, NULL, "htt mpdu: ", 957 info.skb->data, info.skb->len); 958 ath10k_process_rx(htt->ar, &info); 959 } 960 } 961 962 ath10k_htt_rx_msdu_buff_replenish(htt); 963 } 964 965 static void ath10k_htt_rx_frag_handler(struct ath10k_htt *htt, 966 struct htt_rx_fragment_indication *frag) 967 { 968 struct sk_buff *msdu_head, *msdu_tail; 969 struct htt_rx_desc *rxd; 970 enum rx_msdu_decap_format fmt; 971 struct htt_rx_info info = {}; 972 struct ieee80211_hdr *hdr; 973 int msdu_chaining; 974 bool tkip_mic_err; 975 bool decrypt_err; 976 u8 *fw_desc; 977 int fw_desc_len, hdrlen, paramlen; 978 int trim; 979 980 fw_desc_len = __le16_to_cpu(frag->fw_rx_desc_bytes); 981 fw_desc = (u8 *)frag->fw_msdu_rx_desc; 982 983 msdu_head = NULL; 984 msdu_tail = NULL; 985 msdu_chaining = ath10k_htt_rx_amsdu_pop(htt, &fw_desc, &fw_desc_len, 986 &msdu_head, &msdu_tail); 987 988 ath10k_dbg(ATH10K_DBG_HTT_DUMP, "htt rx frag ahead\n"); 989 990 if (!msdu_head) { 991 ath10k_warn("htt rx frag no data\n"); 992 return; 993 } 994 995 if (msdu_chaining || msdu_head != msdu_tail) { 996 ath10k_warn("aggregation with fragmentation?!\n"); 997 ath10k_htt_rx_free_msdu_chain(msdu_head); 998 return; 999 } 1000 1001 /* FIXME: implement signal strength */ 1002 1003 hdr = (struct ieee80211_hdr *)msdu_head->data; 1004 rxd = (void *)msdu_head->data - sizeof(*rxd); 1005 tkip_mic_err = !!(__le32_to_cpu(rxd->attention.flags) & 1006 RX_ATTENTION_FLAGS_TKIP_MIC_ERR); 1007 decrypt_err = !!(__le32_to_cpu(rxd->attention.flags) & 1008 RX_ATTENTION_FLAGS_DECRYPT_ERR); 1009 fmt = MS(__le32_to_cpu(rxd->msdu_start.info1), 1010 RX_MSDU_START_INFO1_DECAP_FORMAT); 1011 1012 if (fmt != RX_MSDU_DECAP_RAW) { 1013 ath10k_warn("we dont support non-raw fragmented rx yet\n"); 1014 dev_kfree_skb_any(msdu_head); 1015 goto end; 1016 } 1017 1018 info.skb = msdu_head; 1019 info.status = HTT_RX_IND_MPDU_STATUS_OK; 1020 info.encrypt_type = MS(__le32_to_cpu(rxd->mpdu_start.info0), 1021 RX_MPDU_START_INFO0_ENCRYPT_TYPE); 1022 info.skb->ip_summed = ath10k_htt_rx_get_csum_state(info.skb); 1023 1024 if (tkip_mic_err) { 1025 ath10k_warn("tkip mic error\n"); 1026 info.status = HTT_RX_IND_MPDU_STATUS_TKIP_MIC_ERR; 1027 } 1028 1029 if (decrypt_err) { 1030 ath10k_warn("decryption err in fragmented rx\n"); 1031 dev_kfree_skb_any(info.skb); 1032 goto end; 1033 } 1034 1035 if (info.encrypt_type != HTT_RX_MPDU_ENCRYPT_NONE) { 1036 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1037 paramlen = ath10k_htt_rx_crypto_param_len(info.encrypt_type); 1038 1039 /* It is more efficient to move the header than the payload */ 1040 memmove((void *)info.skb->data + paramlen, 1041 (void *)info.skb->data, 1042 hdrlen); 1043 skb_pull(info.skb, paramlen); 1044 hdr = (struct ieee80211_hdr *)info.skb->data; 1045 } 1046 1047 /* remove trailing FCS */ 1048 trim = 4; 1049 1050 /* remove crypto trailer */ 1051 trim += ath10k_htt_rx_crypto_tail_len(info.encrypt_type); 1052 1053 /* last fragment of TKIP frags has MIC */ 1054 if (!ieee80211_has_morefrags(hdr->frame_control) && 1055 info.encrypt_type == HTT_RX_MPDU_ENCRYPT_TKIP_WPA) 1056 trim += 8; 1057 1058 if (trim > info.skb->len) { 1059 ath10k_warn("htt rx fragment: trailer longer than the frame itself? drop\n"); 1060 dev_kfree_skb_any(info.skb); 1061 goto end; 1062 } 1063 1064 skb_trim(info.skb, info.skb->len - trim); 1065 1066 ath10k_dbg_dump(ATH10K_DBG_HTT_DUMP, NULL, "htt frag mpdu: ", 1067 info.skb->data, info.skb->len); 1068 ath10k_process_rx(htt->ar, &info); 1069 1070 end: 1071 if (fw_desc_len > 0) { 1072 ath10k_dbg(ATH10K_DBG_HTT, 1073 "expecting more fragmented rx in one indication %d\n", 1074 fw_desc_len); 1075 } 1076 } 1077 1078 void ath10k_htt_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb) 1079 { 1080 struct ath10k_htt *htt = &ar->htt; 1081 struct htt_resp *resp = (struct htt_resp *)skb->data; 1082 1083 /* confirm alignment */ 1084 if (!IS_ALIGNED((unsigned long)skb->data, 4)) 1085 ath10k_warn("unaligned htt message, expect trouble\n"); 1086 1087 ath10k_dbg(ATH10K_DBG_HTT, "HTT RX, msg_type: 0x%0X\n", 1088 resp->hdr.msg_type); 1089 switch (resp->hdr.msg_type) { 1090 case HTT_T2H_MSG_TYPE_VERSION_CONF: { 1091 htt->target_version_major = resp->ver_resp.major; 1092 htt->target_version_minor = resp->ver_resp.minor; 1093 complete(&htt->target_version_received); 1094 break; 1095 } 1096 case HTT_T2H_MSG_TYPE_RX_IND: { 1097 ath10k_htt_rx_handler(htt, &resp->rx_ind); 1098 break; 1099 } 1100 case HTT_T2H_MSG_TYPE_PEER_MAP: { 1101 struct htt_peer_map_event ev = { 1102 .vdev_id = resp->peer_map.vdev_id, 1103 .peer_id = __le16_to_cpu(resp->peer_map.peer_id), 1104 }; 1105 memcpy(ev.addr, resp->peer_map.addr, sizeof(ev.addr)); 1106 ath10k_peer_map_event(htt, &ev); 1107 break; 1108 } 1109 case HTT_T2H_MSG_TYPE_PEER_UNMAP: { 1110 struct htt_peer_unmap_event ev = { 1111 .peer_id = __le16_to_cpu(resp->peer_unmap.peer_id), 1112 }; 1113 ath10k_peer_unmap_event(htt, &ev); 1114 break; 1115 } 1116 case HTT_T2H_MSG_TYPE_MGMT_TX_COMPLETION: { 1117 struct htt_tx_done tx_done = {}; 1118 int status = __le32_to_cpu(resp->mgmt_tx_completion.status); 1119 1120 tx_done.msdu_id = 1121 __le32_to_cpu(resp->mgmt_tx_completion.desc_id); 1122 1123 switch (status) { 1124 case HTT_MGMT_TX_STATUS_OK: 1125 break; 1126 case HTT_MGMT_TX_STATUS_RETRY: 1127 tx_done.no_ack = true; 1128 break; 1129 case HTT_MGMT_TX_STATUS_DROP: 1130 tx_done.discard = true; 1131 break; 1132 } 1133 1134 ath10k_txrx_tx_completed(htt, &tx_done); 1135 break; 1136 } 1137 case HTT_T2H_MSG_TYPE_TX_COMPL_IND: { 1138 struct htt_tx_done tx_done = {}; 1139 int status = MS(resp->data_tx_completion.flags, 1140 HTT_DATA_TX_STATUS); 1141 __le16 msdu_id; 1142 int i; 1143 1144 switch (status) { 1145 case HTT_DATA_TX_STATUS_NO_ACK: 1146 tx_done.no_ack = true; 1147 break; 1148 case HTT_DATA_TX_STATUS_OK: 1149 break; 1150 case HTT_DATA_TX_STATUS_DISCARD: 1151 case HTT_DATA_TX_STATUS_POSTPONE: 1152 case HTT_DATA_TX_STATUS_DOWNLOAD_FAIL: 1153 tx_done.discard = true; 1154 break; 1155 default: 1156 ath10k_warn("unhandled tx completion status %d\n", 1157 status); 1158 tx_done.discard = true; 1159 break; 1160 } 1161 1162 ath10k_dbg(ATH10K_DBG_HTT, "htt tx completion num_msdus %d\n", 1163 resp->data_tx_completion.num_msdus); 1164 1165 for (i = 0; i < resp->data_tx_completion.num_msdus; i++) { 1166 msdu_id = resp->data_tx_completion.msdus[i]; 1167 tx_done.msdu_id = __le16_to_cpu(msdu_id); 1168 ath10k_txrx_tx_completed(htt, &tx_done); 1169 } 1170 break; 1171 } 1172 case HTT_T2H_MSG_TYPE_SEC_IND: { 1173 struct ath10k *ar = htt->ar; 1174 struct htt_security_indication *ev = &resp->security_indication; 1175 1176 ath10k_dbg(ATH10K_DBG_HTT, 1177 "sec ind peer_id %d unicast %d type %d\n", 1178 __le16_to_cpu(ev->peer_id), 1179 !!(ev->flags & HTT_SECURITY_IS_UNICAST), 1180 MS(ev->flags, HTT_SECURITY_TYPE)); 1181 complete(&ar->install_key_done); 1182 break; 1183 } 1184 case HTT_T2H_MSG_TYPE_RX_FRAG_IND: { 1185 ath10k_dbg_dump(ATH10K_DBG_HTT_DUMP, NULL, "htt event: ", 1186 skb->data, skb->len); 1187 ath10k_htt_rx_frag_handler(htt, &resp->rx_frag_ind); 1188 break; 1189 } 1190 case HTT_T2H_MSG_TYPE_TEST: 1191 /* FIX THIS */ 1192 break; 1193 case HTT_T2H_MSG_TYPE_TX_INSPECT_IND: 1194 case HTT_T2H_MSG_TYPE_STATS_CONF: 1195 case HTT_T2H_MSG_TYPE_RX_ADDBA: 1196 case HTT_T2H_MSG_TYPE_RX_DELBA: 1197 case HTT_T2H_MSG_TYPE_RX_FLUSH: 1198 default: 1199 ath10k_dbg(ATH10K_DBG_HTT, "htt event (%d) not handled\n", 1200 resp->hdr.msg_type); 1201 ath10k_dbg_dump(ATH10K_DBG_HTT_DUMP, NULL, "htt event: ", 1202 skb->data, skb->len); 1203 break; 1204 }; 1205 1206 /* Free the indication buffer */ 1207 dev_kfree_skb_any(skb); 1208 } 1209