1 // SPDX-License-Identifier: ISC 2 /* 3 * Copyright (c) 2005-2011 Atheros Communications Inc. 4 * Copyright (c) 2011-2017 Qualcomm Atheros, Inc. 5 * Copyright (c) 2018, The Linux Foundation. All rights reserved. 6 */ 7 8 #include "core.h" 9 #include "htc.h" 10 #include "htt.h" 11 #include "txrx.h" 12 #include "debug.h" 13 #include "trace.h" 14 #include "mac.h" 15 16 #include <linux/log2.h> 17 #include <linux/bitfield.h> 18 19 /* when under memory pressure rx ring refill may fail and needs a retry */ 20 #define HTT_RX_RING_REFILL_RETRY_MS 50 21 22 #define HTT_RX_RING_REFILL_RESCHED_MS 5 23 24 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb); 25 26 static struct sk_buff * 27 ath10k_htt_rx_find_skb_paddr(struct ath10k *ar, u64 paddr) 28 { 29 struct ath10k_skb_rxcb *rxcb; 30 31 hash_for_each_possible(ar->htt.rx_ring.skb_table, rxcb, hlist, paddr) 32 if (rxcb->paddr == paddr) 33 return ATH10K_RXCB_SKB(rxcb); 34 35 WARN_ON_ONCE(1); 36 return NULL; 37 } 38 39 static void ath10k_htt_rx_ring_free(struct ath10k_htt *htt) 40 { 41 struct sk_buff *skb; 42 struct ath10k_skb_rxcb *rxcb; 43 struct hlist_node *n; 44 int i; 45 46 if (htt->rx_ring.in_ord_rx) { 47 hash_for_each_safe(htt->rx_ring.skb_table, i, n, rxcb, hlist) { 48 skb = ATH10K_RXCB_SKB(rxcb); 49 dma_unmap_single(htt->ar->dev, rxcb->paddr, 50 skb->len + skb_tailroom(skb), 51 DMA_FROM_DEVICE); 52 hash_del(&rxcb->hlist); 53 dev_kfree_skb_any(skb); 54 } 55 } else { 56 for (i = 0; i < htt->rx_ring.size; i++) { 57 skb = htt->rx_ring.netbufs_ring[i]; 58 if (!skb) 59 continue; 60 61 rxcb = ATH10K_SKB_RXCB(skb); 62 dma_unmap_single(htt->ar->dev, rxcb->paddr, 63 skb->len + skb_tailroom(skb), 64 DMA_FROM_DEVICE); 65 dev_kfree_skb_any(skb); 66 } 67 } 68 69 htt->rx_ring.fill_cnt = 0; 70 hash_init(htt->rx_ring.skb_table); 71 memset(htt->rx_ring.netbufs_ring, 0, 72 htt->rx_ring.size * sizeof(htt->rx_ring.netbufs_ring[0])); 73 } 74 75 static size_t ath10k_htt_get_rx_ring_size_32(struct ath10k_htt *htt) 76 { 77 return htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring_32); 78 } 79 80 static size_t ath10k_htt_get_rx_ring_size_64(struct ath10k_htt *htt) 81 { 82 return htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring_64); 83 } 84 85 static void ath10k_htt_config_paddrs_ring_32(struct ath10k_htt *htt, 86 void *vaddr) 87 { 88 htt->rx_ring.paddrs_ring_32 = vaddr; 89 } 90 91 static void ath10k_htt_config_paddrs_ring_64(struct ath10k_htt *htt, 92 void *vaddr) 93 { 94 htt->rx_ring.paddrs_ring_64 = vaddr; 95 } 96 97 static void ath10k_htt_set_paddrs_ring_32(struct ath10k_htt *htt, 98 dma_addr_t paddr, int idx) 99 { 100 htt->rx_ring.paddrs_ring_32[idx] = __cpu_to_le32(paddr); 101 } 102 103 static void ath10k_htt_set_paddrs_ring_64(struct ath10k_htt *htt, 104 dma_addr_t paddr, int idx) 105 { 106 htt->rx_ring.paddrs_ring_64[idx] = __cpu_to_le64(paddr); 107 } 108 109 static void ath10k_htt_reset_paddrs_ring_32(struct ath10k_htt *htt, int idx) 110 { 111 htt->rx_ring.paddrs_ring_32[idx] = 0; 112 } 113 114 static void ath10k_htt_reset_paddrs_ring_64(struct ath10k_htt *htt, int idx) 115 { 116 htt->rx_ring.paddrs_ring_64[idx] = 0; 117 } 118 119 static void *ath10k_htt_get_vaddr_ring_32(struct ath10k_htt *htt) 120 { 121 return (void *)htt->rx_ring.paddrs_ring_32; 122 } 123 124 static void *ath10k_htt_get_vaddr_ring_64(struct ath10k_htt *htt) 125 { 126 return (void *)htt->rx_ring.paddrs_ring_64; 127 } 128 129 static int __ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num) 130 { 131 struct htt_rx_desc *rx_desc; 132 struct ath10k_skb_rxcb *rxcb; 133 struct sk_buff *skb; 134 dma_addr_t paddr; 135 int ret = 0, idx; 136 137 /* The Full Rx Reorder firmware has no way of telling the host 138 * implicitly when it copied HTT Rx Ring buffers to MAC Rx Ring. 139 * To keep things simple make sure ring is always half empty. This 140 * guarantees there'll be no replenishment overruns possible. 141 */ 142 BUILD_BUG_ON(HTT_RX_RING_FILL_LEVEL >= HTT_RX_RING_SIZE / 2); 143 144 idx = __le32_to_cpu(*htt->rx_ring.alloc_idx.vaddr); 145 while (num > 0) { 146 skb = dev_alloc_skb(HTT_RX_BUF_SIZE + HTT_RX_DESC_ALIGN); 147 if (!skb) { 148 ret = -ENOMEM; 149 goto fail; 150 } 151 152 if (!IS_ALIGNED((unsigned long)skb->data, HTT_RX_DESC_ALIGN)) 153 skb_pull(skb, 154 PTR_ALIGN(skb->data, HTT_RX_DESC_ALIGN) - 155 skb->data); 156 157 /* Clear rx_desc attention word before posting to Rx ring */ 158 rx_desc = (struct htt_rx_desc *)skb->data; 159 rx_desc->attention.flags = __cpu_to_le32(0); 160 161 paddr = dma_map_single(htt->ar->dev, skb->data, 162 skb->len + skb_tailroom(skb), 163 DMA_FROM_DEVICE); 164 165 if (unlikely(dma_mapping_error(htt->ar->dev, paddr))) { 166 dev_kfree_skb_any(skb); 167 ret = -ENOMEM; 168 goto fail; 169 } 170 171 rxcb = ATH10K_SKB_RXCB(skb); 172 rxcb->paddr = paddr; 173 htt->rx_ring.netbufs_ring[idx] = skb; 174 ath10k_htt_set_paddrs_ring(htt, paddr, idx); 175 htt->rx_ring.fill_cnt++; 176 177 if (htt->rx_ring.in_ord_rx) { 178 hash_add(htt->rx_ring.skb_table, 179 &ATH10K_SKB_RXCB(skb)->hlist, 180 paddr); 181 } 182 183 num--; 184 idx++; 185 idx &= htt->rx_ring.size_mask; 186 } 187 188 fail: 189 /* 190 * Make sure the rx buffer is updated before available buffer 191 * index to avoid any potential rx ring corruption. 192 */ 193 mb(); 194 *htt->rx_ring.alloc_idx.vaddr = __cpu_to_le32(idx); 195 return ret; 196 } 197 198 static int ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num) 199 { 200 lockdep_assert_held(&htt->rx_ring.lock); 201 return __ath10k_htt_rx_ring_fill_n(htt, num); 202 } 203 204 static void ath10k_htt_rx_msdu_buff_replenish(struct ath10k_htt *htt) 205 { 206 int ret, num_deficit, num_to_fill; 207 208 /* Refilling the whole RX ring buffer proves to be a bad idea. The 209 * reason is RX may take up significant amount of CPU cycles and starve 210 * other tasks, e.g. TX on an ethernet device while acting as a bridge 211 * with ath10k wlan interface. This ended up with very poor performance 212 * once CPU the host system was overwhelmed with RX on ath10k. 213 * 214 * By limiting the number of refills the replenishing occurs 215 * progressively. This in turns makes use of the fact tasklets are 216 * processed in FIFO order. This means actual RX processing can starve 217 * out refilling. If there's not enough buffers on RX ring FW will not 218 * report RX until it is refilled with enough buffers. This 219 * automatically balances load wrt to CPU power. 220 * 221 * This probably comes at a cost of lower maximum throughput but 222 * improves the average and stability. 223 */ 224 spin_lock_bh(&htt->rx_ring.lock); 225 num_deficit = htt->rx_ring.fill_level - htt->rx_ring.fill_cnt; 226 num_to_fill = min(ATH10K_HTT_MAX_NUM_REFILL, num_deficit); 227 num_deficit -= num_to_fill; 228 ret = ath10k_htt_rx_ring_fill_n(htt, num_to_fill); 229 if (ret == -ENOMEM) { 230 /* 231 * Failed to fill it to the desired level - 232 * we'll start a timer and try again next time. 233 * As long as enough buffers are left in the ring for 234 * another A-MPDU rx, no special recovery is needed. 235 */ 236 mod_timer(&htt->rx_ring.refill_retry_timer, jiffies + 237 msecs_to_jiffies(HTT_RX_RING_REFILL_RETRY_MS)); 238 } else if (num_deficit > 0) { 239 mod_timer(&htt->rx_ring.refill_retry_timer, jiffies + 240 msecs_to_jiffies(HTT_RX_RING_REFILL_RESCHED_MS)); 241 } 242 spin_unlock_bh(&htt->rx_ring.lock); 243 } 244 245 static void ath10k_htt_rx_ring_refill_retry(struct timer_list *t) 246 { 247 struct ath10k_htt *htt = from_timer(htt, t, rx_ring.refill_retry_timer); 248 249 ath10k_htt_rx_msdu_buff_replenish(htt); 250 } 251 252 int ath10k_htt_rx_ring_refill(struct ath10k *ar) 253 { 254 struct ath10k_htt *htt = &ar->htt; 255 int ret; 256 257 if (ar->bus_param.dev_type == ATH10K_DEV_TYPE_HL) 258 return 0; 259 260 spin_lock_bh(&htt->rx_ring.lock); 261 ret = ath10k_htt_rx_ring_fill_n(htt, (htt->rx_ring.fill_level - 262 htt->rx_ring.fill_cnt)); 263 264 if (ret) 265 ath10k_htt_rx_ring_free(htt); 266 267 spin_unlock_bh(&htt->rx_ring.lock); 268 269 return ret; 270 } 271 272 void ath10k_htt_rx_free(struct ath10k_htt *htt) 273 { 274 if (htt->ar->bus_param.dev_type == ATH10K_DEV_TYPE_HL) 275 return; 276 277 del_timer_sync(&htt->rx_ring.refill_retry_timer); 278 279 skb_queue_purge(&htt->rx_msdus_q); 280 skb_queue_purge(&htt->rx_in_ord_compl_q); 281 skb_queue_purge(&htt->tx_fetch_ind_q); 282 283 spin_lock_bh(&htt->rx_ring.lock); 284 ath10k_htt_rx_ring_free(htt); 285 spin_unlock_bh(&htt->rx_ring.lock); 286 287 dma_free_coherent(htt->ar->dev, 288 ath10k_htt_get_rx_ring_size(htt), 289 ath10k_htt_get_vaddr_ring(htt), 290 htt->rx_ring.base_paddr); 291 292 dma_free_coherent(htt->ar->dev, 293 sizeof(*htt->rx_ring.alloc_idx.vaddr), 294 htt->rx_ring.alloc_idx.vaddr, 295 htt->rx_ring.alloc_idx.paddr); 296 297 kfree(htt->rx_ring.netbufs_ring); 298 } 299 300 static inline struct sk_buff *ath10k_htt_rx_netbuf_pop(struct ath10k_htt *htt) 301 { 302 struct ath10k *ar = htt->ar; 303 int idx; 304 struct sk_buff *msdu; 305 306 lockdep_assert_held(&htt->rx_ring.lock); 307 308 if (htt->rx_ring.fill_cnt == 0) { 309 ath10k_warn(ar, "tried to pop sk_buff from an empty rx ring\n"); 310 return NULL; 311 } 312 313 idx = htt->rx_ring.sw_rd_idx.msdu_payld; 314 msdu = htt->rx_ring.netbufs_ring[idx]; 315 htt->rx_ring.netbufs_ring[idx] = NULL; 316 ath10k_htt_reset_paddrs_ring(htt, idx); 317 318 idx++; 319 idx &= htt->rx_ring.size_mask; 320 htt->rx_ring.sw_rd_idx.msdu_payld = idx; 321 htt->rx_ring.fill_cnt--; 322 323 dma_unmap_single(htt->ar->dev, 324 ATH10K_SKB_RXCB(msdu)->paddr, 325 msdu->len + skb_tailroom(msdu), 326 DMA_FROM_DEVICE); 327 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ", 328 msdu->data, msdu->len + skb_tailroom(msdu)); 329 330 return msdu; 331 } 332 333 /* return: < 0 fatal error, 0 - non chained msdu, 1 chained msdu */ 334 static int ath10k_htt_rx_amsdu_pop(struct ath10k_htt *htt, 335 struct sk_buff_head *amsdu) 336 { 337 struct ath10k *ar = htt->ar; 338 int msdu_len, msdu_chaining = 0; 339 struct sk_buff *msdu; 340 struct htt_rx_desc *rx_desc; 341 342 lockdep_assert_held(&htt->rx_ring.lock); 343 344 for (;;) { 345 int last_msdu, msdu_len_invalid, msdu_chained; 346 347 msdu = ath10k_htt_rx_netbuf_pop(htt); 348 if (!msdu) { 349 __skb_queue_purge(amsdu); 350 return -ENOENT; 351 } 352 353 __skb_queue_tail(amsdu, msdu); 354 355 rx_desc = (struct htt_rx_desc *)msdu->data; 356 357 /* FIXME: we must report msdu payload since this is what caller 358 * expects now 359 */ 360 skb_put(msdu, offsetof(struct htt_rx_desc, msdu_payload)); 361 skb_pull(msdu, offsetof(struct htt_rx_desc, msdu_payload)); 362 363 /* 364 * Sanity check - confirm the HW is finished filling in the 365 * rx data. 366 * If the HW and SW are working correctly, then it's guaranteed 367 * that the HW's MAC DMA is done before this point in the SW. 368 * To prevent the case that we handle a stale Rx descriptor, 369 * just assert for now until we have a way to recover. 370 */ 371 if (!(__le32_to_cpu(rx_desc->attention.flags) 372 & RX_ATTENTION_FLAGS_MSDU_DONE)) { 373 __skb_queue_purge(amsdu); 374 return -EIO; 375 } 376 377 msdu_len_invalid = !!(__le32_to_cpu(rx_desc->attention.flags) 378 & (RX_ATTENTION_FLAGS_MPDU_LENGTH_ERR | 379 RX_ATTENTION_FLAGS_MSDU_LENGTH_ERR)); 380 msdu_len = MS(__le32_to_cpu(rx_desc->msdu_start.common.info0), 381 RX_MSDU_START_INFO0_MSDU_LENGTH); 382 msdu_chained = rx_desc->frag_info.ring2_more_count; 383 384 if (msdu_len_invalid) 385 msdu_len = 0; 386 387 skb_trim(msdu, 0); 388 skb_put(msdu, min(msdu_len, HTT_RX_MSDU_SIZE)); 389 msdu_len -= msdu->len; 390 391 /* Note: Chained buffers do not contain rx descriptor */ 392 while (msdu_chained--) { 393 msdu = ath10k_htt_rx_netbuf_pop(htt); 394 if (!msdu) { 395 __skb_queue_purge(amsdu); 396 return -ENOENT; 397 } 398 399 __skb_queue_tail(amsdu, msdu); 400 skb_trim(msdu, 0); 401 skb_put(msdu, min(msdu_len, HTT_RX_BUF_SIZE)); 402 msdu_len -= msdu->len; 403 msdu_chaining = 1; 404 } 405 406 last_msdu = __le32_to_cpu(rx_desc->msdu_end.common.info0) & 407 RX_MSDU_END_INFO0_LAST_MSDU; 408 409 trace_ath10k_htt_rx_desc(ar, &rx_desc->attention, 410 sizeof(*rx_desc) - sizeof(u32)); 411 412 if (last_msdu) 413 break; 414 } 415 416 if (skb_queue_empty(amsdu)) 417 msdu_chaining = -1; 418 419 /* 420 * Don't refill the ring yet. 421 * 422 * First, the elements popped here are still in use - it is not 423 * safe to overwrite them until the matching call to 424 * mpdu_desc_list_next. Second, for efficiency it is preferable to 425 * refill the rx ring with 1 PPDU's worth of rx buffers (something 426 * like 32 x 3 buffers), rather than one MPDU's worth of rx buffers 427 * (something like 3 buffers). Consequently, we'll rely on the txrx 428 * SW to tell us when it is done pulling all the PPDU's rx buffers 429 * out of the rx ring, and then refill it just once. 430 */ 431 432 return msdu_chaining; 433 } 434 435 static struct sk_buff *ath10k_htt_rx_pop_paddr(struct ath10k_htt *htt, 436 u64 paddr) 437 { 438 struct ath10k *ar = htt->ar; 439 struct ath10k_skb_rxcb *rxcb; 440 struct sk_buff *msdu; 441 442 lockdep_assert_held(&htt->rx_ring.lock); 443 444 msdu = ath10k_htt_rx_find_skb_paddr(ar, paddr); 445 if (!msdu) 446 return NULL; 447 448 rxcb = ATH10K_SKB_RXCB(msdu); 449 hash_del(&rxcb->hlist); 450 htt->rx_ring.fill_cnt--; 451 452 dma_unmap_single(htt->ar->dev, rxcb->paddr, 453 msdu->len + skb_tailroom(msdu), 454 DMA_FROM_DEVICE); 455 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ", 456 msdu->data, msdu->len + skb_tailroom(msdu)); 457 458 return msdu; 459 } 460 461 static inline void ath10k_htt_append_frag_list(struct sk_buff *skb_head, 462 struct sk_buff *frag_list, 463 unsigned int frag_len) 464 { 465 skb_shinfo(skb_head)->frag_list = frag_list; 466 skb_head->data_len = frag_len; 467 skb_head->len += skb_head->data_len; 468 } 469 470 static int ath10k_htt_rx_handle_amsdu_mon_32(struct ath10k_htt *htt, 471 struct sk_buff *msdu, 472 struct htt_rx_in_ord_msdu_desc **msdu_desc) 473 { 474 struct ath10k *ar = htt->ar; 475 u32 paddr; 476 struct sk_buff *frag_buf; 477 struct sk_buff *prev_frag_buf; 478 u8 last_frag; 479 struct htt_rx_in_ord_msdu_desc *ind_desc = *msdu_desc; 480 struct htt_rx_desc *rxd; 481 int amsdu_len = __le16_to_cpu(ind_desc->msdu_len); 482 483 rxd = (void *)msdu->data; 484 trace_ath10k_htt_rx_desc(ar, rxd, sizeof(*rxd)); 485 486 skb_put(msdu, sizeof(struct htt_rx_desc)); 487 skb_pull(msdu, sizeof(struct htt_rx_desc)); 488 skb_put(msdu, min(amsdu_len, HTT_RX_MSDU_SIZE)); 489 amsdu_len -= msdu->len; 490 491 last_frag = ind_desc->reserved; 492 if (last_frag) { 493 if (amsdu_len) { 494 ath10k_warn(ar, "invalid amsdu len %u, left %d", 495 __le16_to_cpu(ind_desc->msdu_len), 496 amsdu_len); 497 } 498 return 0; 499 } 500 501 ind_desc++; 502 paddr = __le32_to_cpu(ind_desc->msdu_paddr); 503 frag_buf = ath10k_htt_rx_pop_paddr(htt, paddr); 504 if (!frag_buf) { 505 ath10k_warn(ar, "failed to pop frag-1 paddr: 0x%x", paddr); 506 return -ENOENT; 507 } 508 509 skb_put(frag_buf, min(amsdu_len, HTT_RX_BUF_SIZE)); 510 ath10k_htt_append_frag_list(msdu, frag_buf, amsdu_len); 511 512 amsdu_len -= frag_buf->len; 513 prev_frag_buf = frag_buf; 514 last_frag = ind_desc->reserved; 515 while (!last_frag) { 516 ind_desc++; 517 paddr = __le32_to_cpu(ind_desc->msdu_paddr); 518 frag_buf = ath10k_htt_rx_pop_paddr(htt, paddr); 519 if (!frag_buf) { 520 ath10k_warn(ar, "failed to pop frag-n paddr: 0x%x", 521 paddr); 522 prev_frag_buf->next = NULL; 523 return -ENOENT; 524 } 525 526 skb_put(frag_buf, min(amsdu_len, HTT_RX_BUF_SIZE)); 527 last_frag = ind_desc->reserved; 528 amsdu_len -= frag_buf->len; 529 530 prev_frag_buf->next = frag_buf; 531 prev_frag_buf = frag_buf; 532 } 533 534 if (amsdu_len) { 535 ath10k_warn(ar, "invalid amsdu len %u, left %d", 536 __le16_to_cpu(ind_desc->msdu_len), amsdu_len); 537 } 538 539 *msdu_desc = ind_desc; 540 541 prev_frag_buf->next = NULL; 542 return 0; 543 } 544 545 static int 546 ath10k_htt_rx_handle_amsdu_mon_64(struct ath10k_htt *htt, 547 struct sk_buff *msdu, 548 struct htt_rx_in_ord_msdu_desc_ext **msdu_desc) 549 { 550 struct ath10k *ar = htt->ar; 551 u64 paddr; 552 struct sk_buff *frag_buf; 553 struct sk_buff *prev_frag_buf; 554 u8 last_frag; 555 struct htt_rx_in_ord_msdu_desc_ext *ind_desc = *msdu_desc; 556 struct htt_rx_desc *rxd; 557 int amsdu_len = __le16_to_cpu(ind_desc->msdu_len); 558 559 rxd = (void *)msdu->data; 560 trace_ath10k_htt_rx_desc(ar, rxd, sizeof(*rxd)); 561 562 skb_put(msdu, sizeof(struct htt_rx_desc)); 563 skb_pull(msdu, sizeof(struct htt_rx_desc)); 564 skb_put(msdu, min(amsdu_len, HTT_RX_MSDU_SIZE)); 565 amsdu_len -= msdu->len; 566 567 last_frag = ind_desc->reserved; 568 if (last_frag) { 569 if (amsdu_len) { 570 ath10k_warn(ar, "invalid amsdu len %u, left %d", 571 __le16_to_cpu(ind_desc->msdu_len), 572 amsdu_len); 573 } 574 return 0; 575 } 576 577 ind_desc++; 578 paddr = __le64_to_cpu(ind_desc->msdu_paddr); 579 frag_buf = ath10k_htt_rx_pop_paddr(htt, paddr); 580 if (!frag_buf) { 581 ath10k_warn(ar, "failed to pop frag-1 paddr: 0x%llx", paddr); 582 return -ENOENT; 583 } 584 585 skb_put(frag_buf, min(amsdu_len, HTT_RX_BUF_SIZE)); 586 ath10k_htt_append_frag_list(msdu, frag_buf, amsdu_len); 587 588 amsdu_len -= frag_buf->len; 589 prev_frag_buf = frag_buf; 590 last_frag = ind_desc->reserved; 591 while (!last_frag) { 592 ind_desc++; 593 paddr = __le64_to_cpu(ind_desc->msdu_paddr); 594 frag_buf = ath10k_htt_rx_pop_paddr(htt, paddr); 595 if (!frag_buf) { 596 ath10k_warn(ar, "failed to pop frag-n paddr: 0x%llx", 597 paddr); 598 prev_frag_buf->next = NULL; 599 return -ENOENT; 600 } 601 602 skb_put(frag_buf, min(amsdu_len, HTT_RX_BUF_SIZE)); 603 last_frag = ind_desc->reserved; 604 amsdu_len -= frag_buf->len; 605 606 prev_frag_buf->next = frag_buf; 607 prev_frag_buf = frag_buf; 608 } 609 610 if (amsdu_len) { 611 ath10k_warn(ar, "invalid amsdu len %u, left %d", 612 __le16_to_cpu(ind_desc->msdu_len), amsdu_len); 613 } 614 615 *msdu_desc = ind_desc; 616 617 prev_frag_buf->next = NULL; 618 return 0; 619 } 620 621 static int ath10k_htt_rx_pop_paddr32_list(struct ath10k_htt *htt, 622 struct htt_rx_in_ord_ind *ev, 623 struct sk_buff_head *list) 624 { 625 struct ath10k *ar = htt->ar; 626 struct htt_rx_in_ord_msdu_desc *msdu_desc = ev->msdu_descs32; 627 struct htt_rx_desc *rxd; 628 struct sk_buff *msdu; 629 int msdu_count, ret; 630 bool is_offload; 631 u32 paddr; 632 633 lockdep_assert_held(&htt->rx_ring.lock); 634 635 msdu_count = __le16_to_cpu(ev->msdu_count); 636 is_offload = !!(ev->info & HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK); 637 638 while (msdu_count--) { 639 paddr = __le32_to_cpu(msdu_desc->msdu_paddr); 640 641 msdu = ath10k_htt_rx_pop_paddr(htt, paddr); 642 if (!msdu) { 643 __skb_queue_purge(list); 644 return -ENOENT; 645 } 646 647 if (!is_offload && ar->monitor_arvif) { 648 ret = ath10k_htt_rx_handle_amsdu_mon_32(htt, msdu, 649 &msdu_desc); 650 if (ret) { 651 __skb_queue_purge(list); 652 return ret; 653 } 654 __skb_queue_tail(list, msdu); 655 msdu_desc++; 656 continue; 657 } 658 659 __skb_queue_tail(list, msdu); 660 661 if (!is_offload) { 662 rxd = (void *)msdu->data; 663 664 trace_ath10k_htt_rx_desc(ar, rxd, sizeof(*rxd)); 665 666 skb_put(msdu, sizeof(*rxd)); 667 skb_pull(msdu, sizeof(*rxd)); 668 skb_put(msdu, __le16_to_cpu(msdu_desc->msdu_len)); 669 670 if (!(__le32_to_cpu(rxd->attention.flags) & 671 RX_ATTENTION_FLAGS_MSDU_DONE)) { 672 ath10k_warn(htt->ar, "tried to pop an incomplete frame, oops!\n"); 673 return -EIO; 674 } 675 } 676 677 msdu_desc++; 678 } 679 680 return 0; 681 } 682 683 static int ath10k_htt_rx_pop_paddr64_list(struct ath10k_htt *htt, 684 struct htt_rx_in_ord_ind *ev, 685 struct sk_buff_head *list) 686 { 687 struct ath10k *ar = htt->ar; 688 struct htt_rx_in_ord_msdu_desc_ext *msdu_desc = ev->msdu_descs64; 689 struct htt_rx_desc *rxd; 690 struct sk_buff *msdu; 691 int msdu_count, ret; 692 bool is_offload; 693 u64 paddr; 694 695 lockdep_assert_held(&htt->rx_ring.lock); 696 697 msdu_count = __le16_to_cpu(ev->msdu_count); 698 is_offload = !!(ev->info & HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK); 699 700 while (msdu_count--) { 701 paddr = __le64_to_cpu(msdu_desc->msdu_paddr); 702 msdu = ath10k_htt_rx_pop_paddr(htt, paddr); 703 if (!msdu) { 704 __skb_queue_purge(list); 705 return -ENOENT; 706 } 707 708 if (!is_offload && ar->monitor_arvif) { 709 ret = ath10k_htt_rx_handle_amsdu_mon_64(htt, msdu, 710 &msdu_desc); 711 if (ret) { 712 __skb_queue_purge(list); 713 return ret; 714 } 715 __skb_queue_tail(list, msdu); 716 msdu_desc++; 717 continue; 718 } 719 720 __skb_queue_tail(list, msdu); 721 722 if (!is_offload) { 723 rxd = (void *)msdu->data; 724 725 trace_ath10k_htt_rx_desc(ar, rxd, sizeof(*rxd)); 726 727 skb_put(msdu, sizeof(*rxd)); 728 skb_pull(msdu, sizeof(*rxd)); 729 skb_put(msdu, __le16_to_cpu(msdu_desc->msdu_len)); 730 731 if (!(__le32_to_cpu(rxd->attention.flags) & 732 RX_ATTENTION_FLAGS_MSDU_DONE)) { 733 ath10k_warn(htt->ar, "tried to pop an incomplete frame, oops!\n"); 734 return -EIO; 735 } 736 } 737 738 msdu_desc++; 739 } 740 741 return 0; 742 } 743 744 int ath10k_htt_rx_alloc(struct ath10k_htt *htt) 745 { 746 struct ath10k *ar = htt->ar; 747 dma_addr_t paddr; 748 void *vaddr, *vaddr_ring; 749 size_t size; 750 struct timer_list *timer = &htt->rx_ring.refill_retry_timer; 751 752 if (ar->bus_param.dev_type == ATH10K_DEV_TYPE_HL) 753 return 0; 754 755 htt->rx_confused = false; 756 757 /* XXX: The fill level could be changed during runtime in response to 758 * the host processing latency. Is this really worth it? 759 */ 760 htt->rx_ring.size = HTT_RX_RING_SIZE; 761 htt->rx_ring.size_mask = htt->rx_ring.size - 1; 762 htt->rx_ring.fill_level = ar->hw_params.rx_ring_fill_level; 763 764 if (!is_power_of_2(htt->rx_ring.size)) { 765 ath10k_warn(ar, "htt rx ring size is not power of 2\n"); 766 return -EINVAL; 767 } 768 769 htt->rx_ring.netbufs_ring = 770 kcalloc(htt->rx_ring.size, sizeof(struct sk_buff *), 771 GFP_KERNEL); 772 if (!htt->rx_ring.netbufs_ring) 773 goto err_netbuf; 774 775 size = ath10k_htt_get_rx_ring_size(htt); 776 777 vaddr_ring = dma_alloc_coherent(htt->ar->dev, size, &paddr, GFP_KERNEL); 778 if (!vaddr_ring) 779 goto err_dma_ring; 780 781 ath10k_htt_config_paddrs_ring(htt, vaddr_ring); 782 htt->rx_ring.base_paddr = paddr; 783 784 vaddr = dma_alloc_coherent(htt->ar->dev, 785 sizeof(*htt->rx_ring.alloc_idx.vaddr), 786 &paddr, GFP_KERNEL); 787 if (!vaddr) 788 goto err_dma_idx; 789 790 htt->rx_ring.alloc_idx.vaddr = vaddr; 791 htt->rx_ring.alloc_idx.paddr = paddr; 792 htt->rx_ring.sw_rd_idx.msdu_payld = htt->rx_ring.size_mask; 793 *htt->rx_ring.alloc_idx.vaddr = 0; 794 795 /* Initialize the Rx refill retry timer */ 796 timer_setup(timer, ath10k_htt_rx_ring_refill_retry, 0); 797 798 spin_lock_init(&htt->rx_ring.lock); 799 800 htt->rx_ring.fill_cnt = 0; 801 htt->rx_ring.sw_rd_idx.msdu_payld = 0; 802 hash_init(htt->rx_ring.skb_table); 803 804 skb_queue_head_init(&htt->rx_msdus_q); 805 skb_queue_head_init(&htt->rx_in_ord_compl_q); 806 skb_queue_head_init(&htt->tx_fetch_ind_q); 807 atomic_set(&htt->num_mpdus_ready, 0); 808 809 ath10k_dbg(ar, ATH10K_DBG_BOOT, "htt rx ring size %d fill_level %d\n", 810 htt->rx_ring.size, htt->rx_ring.fill_level); 811 return 0; 812 813 err_dma_idx: 814 dma_free_coherent(htt->ar->dev, 815 ath10k_htt_get_rx_ring_size(htt), 816 vaddr_ring, 817 htt->rx_ring.base_paddr); 818 err_dma_ring: 819 kfree(htt->rx_ring.netbufs_ring); 820 err_netbuf: 821 return -ENOMEM; 822 } 823 824 static int ath10k_htt_rx_crypto_param_len(struct ath10k *ar, 825 enum htt_rx_mpdu_encrypt_type type) 826 { 827 switch (type) { 828 case HTT_RX_MPDU_ENCRYPT_NONE: 829 return 0; 830 case HTT_RX_MPDU_ENCRYPT_WEP40: 831 case HTT_RX_MPDU_ENCRYPT_WEP104: 832 return IEEE80211_WEP_IV_LEN; 833 case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC: 834 case HTT_RX_MPDU_ENCRYPT_TKIP_WPA: 835 return IEEE80211_TKIP_IV_LEN; 836 case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2: 837 return IEEE80211_CCMP_HDR_LEN; 838 case HTT_RX_MPDU_ENCRYPT_AES_CCM256_WPA2: 839 return IEEE80211_CCMP_256_HDR_LEN; 840 case HTT_RX_MPDU_ENCRYPT_AES_GCMP_WPA2: 841 case HTT_RX_MPDU_ENCRYPT_AES_GCMP256_WPA2: 842 return IEEE80211_GCMP_HDR_LEN; 843 case HTT_RX_MPDU_ENCRYPT_WEP128: 844 case HTT_RX_MPDU_ENCRYPT_WAPI: 845 break; 846 } 847 848 ath10k_warn(ar, "unsupported encryption type %d\n", type); 849 return 0; 850 } 851 852 #define MICHAEL_MIC_LEN 8 853 854 static int ath10k_htt_rx_crypto_mic_len(struct ath10k *ar, 855 enum htt_rx_mpdu_encrypt_type type) 856 { 857 switch (type) { 858 case HTT_RX_MPDU_ENCRYPT_NONE: 859 case HTT_RX_MPDU_ENCRYPT_WEP40: 860 case HTT_RX_MPDU_ENCRYPT_WEP104: 861 case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC: 862 case HTT_RX_MPDU_ENCRYPT_TKIP_WPA: 863 return 0; 864 case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2: 865 return IEEE80211_CCMP_MIC_LEN; 866 case HTT_RX_MPDU_ENCRYPT_AES_CCM256_WPA2: 867 return IEEE80211_CCMP_256_MIC_LEN; 868 case HTT_RX_MPDU_ENCRYPT_AES_GCMP_WPA2: 869 case HTT_RX_MPDU_ENCRYPT_AES_GCMP256_WPA2: 870 return IEEE80211_GCMP_MIC_LEN; 871 case HTT_RX_MPDU_ENCRYPT_WEP128: 872 case HTT_RX_MPDU_ENCRYPT_WAPI: 873 break; 874 } 875 876 ath10k_warn(ar, "unsupported encryption type %d\n", type); 877 return 0; 878 } 879 880 static int ath10k_htt_rx_crypto_icv_len(struct ath10k *ar, 881 enum htt_rx_mpdu_encrypt_type type) 882 { 883 switch (type) { 884 case HTT_RX_MPDU_ENCRYPT_NONE: 885 case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2: 886 case HTT_RX_MPDU_ENCRYPT_AES_CCM256_WPA2: 887 case HTT_RX_MPDU_ENCRYPT_AES_GCMP_WPA2: 888 case HTT_RX_MPDU_ENCRYPT_AES_GCMP256_WPA2: 889 return 0; 890 case HTT_RX_MPDU_ENCRYPT_WEP40: 891 case HTT_RX_MPDU_ENCRYPT_WEP104: 892 return IEEE80211_WEP_ICV_LEN; 893 case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC: 894 case HTT_RX_MPDU_ENCRYPT_TKIP_WPA: 895 return IEEE80211_TKIP_ICV_LEN; 896 case HTT_RX_MPDU_ENCRYPT_WEP128: 897 case HTT_RX_MPDU_ENCRYPT_WAPI: 898 break; 899 } 900 901 ath10k_warn(ar, "unsupported encryption type %d\n", type); 902 return 0; 903 } 904 905 struct amsdu_subframe_hdr { 906 u8 dst[ETH_ALEN]; 907 u8 src[ETH_ALEN]; 908 __be16 len; 909 } __packed; 910 911 #define GROUP_ID_IS_SU_MIMO(x) ((x) == 0 || (x) == 63) 912 913 static inline u8 ath10k_bw_to_mac80211_bw(u8 bw) 914 { 915 u8 ret = 0; 916 917 switch (bw) { 918 case 0: 919 ret = RATE_INFO_BW_20; 920 break; 921 case 1: 922 ret = RATE_INFO_BW_40; 923 break; 924 case 2: 925 ret = RATE_INFO_BW_80; 926 break; 927 case 3: 928 ret = RATE_INFO_BW_160; 929 break; 930 } 931 932 return ret; 933 } 934 935 static void ath10k_htt_rx_h_rates(struct ath10k *ar, 936 struct ieee80211_rx_status *status, 937 struct htt_rx_desc *rxd) 938 { 939 struct ieee80211_supported_band *sband; 940 u8 cck, rate, bw, sgi, mcs, nss; 941 u8 preamble = 0; 942 u8 group_id; 943 u32 info1, info2, info3; 944 945 info1 = __le32_to_cpu(rxd->ppdu_start.info1); 946 info2 = __le32_to_cpu(rxd->ppdu_start.info2); 947 info3 = __le32_to_cpu(rxd->ppdu_start.info3); 948 949 preamble = MS(info1, RX_PPDU_START_INFO1_PREAMBLE_TYPE); 950 951 switch (preamble) { 952 case HTT_RX_LEGACY: 953 /* To get legacy rate index band is required. Since band can't 954 * be undefined check if freq is non-zero. 955 */ 956 if (!status->freq) 957 return; 958 959 cck = info1 & RX_PPDU_START_INFO1_L_SIG_RATE_SELECT; 960 rate = MS(info1, RX_PPDU_START_INFO1_L_SIG_RATE); 961 rate &= ~RX_PPDU_START_RATE_FLAG; 962 963 sband = &ar->mac.sbands[status->band]; 964 status->rate_idx = ath10k_mac_hw_rate_to_idx(sband, rate, cck); 965 break; 966 case HTT_RX_HT: 967 case HTT_RX_HT_WITH_TXBF: 968 /* HT-SIG - Table 20-11 in info2 and info3 */ 969 mcs = info2 & 0x1F; 970 nss = mcs >> 3; 971 bw = (info2 >> 7) & 1; 972 sgi = (info3 >> 7) & 1; 973 974 status->rate_idx = mcs; 975 status->encoding = RX_ENC_HT; 976 if (sgi) 977 status->enc_flags |= RX_ENC_FLAG_SHORT_GI; 978 if (bw) 979 status->bw = RATE_INFO_BW_40; 980 break; 981 case HTT_RX_VHT: 982 case HTT_RX_VHT_WITH_TXBF: 983 /* VHT-SIG-A1 in info2, VHT-SIG-A2 in info3 984 * TODO check this 985 */ 986 bw = info2 & 3; 987 sgi = info3 & 1; 988 group_id = (info2 >> 4) & 0x3F; 989 990 if (GROUP_ID_IS_SU_MIMO(group_id)) { 991 mcs = (info3 >> 4) & 0x0F; 992 nss = ((info2 >> 10) & 0x07) + 1; 993 } else { 994 /* Hardware doesn't decode VHT-SIG-B into Rx descriptor 995 * so it's impossible to decode MCS. Also since 996 * firmware consumes Group Id Management frames host 997 * has no knowledge regarding group/user position 998 * mapping so it's impossible to pick the correct Nsts 999 * from VHT-SIG-A1. 1000 * 1001 * Bandwidth and SGI are valid so report the rateinfo 1002 * on best-effort basis. 1003 */ 1004 mcs = 0; 1005 nss = 1; 1006 } 1007 1008 if (mcs > 0x09) { 1009 ath10k_warn(ar, "invalid MCS received %u\n", mcs); 1010 ath10k_warn(ar, "rxd %08x mpdu start %08x %08x msdu start %08x %08x ppdu start %08x %08x %08x %08x %08x\n", 1011 __le32_to_cpu(rxd->attention.flags), 1012 __le32_to_cpu(rxd->mpdu_start.info0), 1013 __le32_to_cpu(rxd->mpdu_start.info1), 1014 __le32_to_cpu(rxd->msdu_start.common.info0), 1015 __le32_to_cpu(rxd->msdu_start.common.info1), 1016 rxd->ppdu_start.info0, 1017 __le32_to_cpu(rxd->ppdu_start.info1), 1018 __le32_to_cpu(rxd->ppdu_start.info2), 1019 __le32_to_cpu(rxd->ppdu_start.info3), 1020 __le32_to_cpu(rxd->ppdu_start.info4)); 1021 1022 ath10k_warn(ar, "msdu end %08x mpdu end %08x\n", 1023 __le32_to_cpu(rxd->msdu_end.common.info0), 1024 __le32_to_cpu(rxd->mpdu_end.info0)); 1025 1026 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, 1027 "rx desc msdu payload: ", 1028 rxd->msdu_payload, 50); 1029 } 1030 1031 status->rate_idx = mcs; 1032 status->nss = nss; 1033 1034 if (sgi) 1035 status->enc_flags |= RX_ENC_FLAG_SHORT_GI; 1036 1037 status->bw = ath10k_bw_to_mac80211_bw(bw); 1038 status->encoding = RX_ENC_VHT; 1039 break; 1040 default: 1041 break; 1042 } 1043 } 1044 1045 static struct ieee80211_channel * 1046 ath10k_htt_rx_h_peer_channel(struct ath10k *ar, struct htt_rx_desc *rxd) 1047 { 1048 struct ath10k_peer *peer; 1049 struct ath10k_vif *arvif; 1050 struct cfg80211_chan_def def; 1051 u16 peer_id; 1052 1053 lockdep_assert_held(&ar->data_lock); 1054 1055 if (!rxd) 1056 return NULL; 1057 1058 if (rxd->attention.flags & 1059 __cpu_to_le32(RX_ATTENTION_FLAGS_PEER_IDX_INVALID)) 1060 return NULL; 1061 1062 if (!(rxd->msdu_end.common.info0 & 1063 __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU))) 1064 return NULL; 1065 1066 peer_id = MS(__le32_to_cpu(rxd->mpdu_start.info0), 1067 RX_MPDU_START_INFO0_PEER_IDX); 1068 1069 peer = ath10k_peer_find_by_id(ar, peer_id); 1070 if (!peer) 1071 return NULL; 1072 1073 arvif = ath10k_get_arvif(ar, peer->vdev_id); 1074 if (WARN_ON_ONCE(!arvif)) 1075 return NULL; 1076 1077 if (ath10k_mac_vif_chan(arvif->vif, &def)) 1078 return NULL; 1079 1080 return def.chan; 1081 } 1082 1083 static struct ieee80211_channel * 1084 ath10k_htt_rx_h_vdev_channel(struct ath10k *ar, u32 vdev_id) 1085 { 1086 struct ath10k_vif *arvif; 1087 struct cfg80211_chan_def def; 1088 1089 lockdep_assert_held(&ar->data_lock); 1090 1091 list_for_each_entry(arvif, &ar->arvifs, list) { 1092 if (arvif->vdev_id == vdev_id && 1093 ath10k_mac_vif_chan(arvif->vif, &def) == 0) 1094 return def.chan; 1095 } 1096 1097 return NULL; 1098 } 1099 1100 static void 1101 ath10k_htt_rx_h_any_chan_iter(struct ieee80211_hw *hw, 1102 struct ieee80211_chanctx_conf *conf, 1103 void *data) 1104 { 1105 struct cfg80211_chan_def *def = data; 1106 1107 *def = conf->def; 1108 } 1109 1110 static struct ieee80211_channel * 1111 ath10k_htt_rx_h_any_channel(struct ath10k *ar) 1112 { 1113 struct cfg80211_chan_def def = {}; 1114 1115 ieee80211_iter_chan_contexts_atomic(ar->hw, 1116 ath10k_htt_rx_h_any_chan_iter, 1117 &def); 1118 1119 return def.chan; 1120 } 1121 1122 static bool ath10k_htt_rx_h_channel(struct ath10k *ar, 1123 struct ieee80211_rx_status *status, 1124 struct htt_rx_desc *rxd, 1125 u32 vdev_id) 1126 { 1127 struct ieee80211_channel *ch; 1128 1129 spin_lock_bh(&ar->data_lock); 1130 ch = ar->scan_channel; 1131 if (!ch) 1132 ch = ar->rx_channel; 1133 if (!ch) 1134 ch = ath10k_htt_rx_h_peer_channel(ar, rxd); 1135 if (!ch) 1136 ch = ath10k_htt_rx_h_vdev_channel(ar, vdev_id); 1137 if (!ch) 1138 ch = ath10k_htt_rx_h_any_channel(ar); 1139 if (!ch) 1140 ch = ar->tgt_oper_chan; 1141 spin_unlock_bh(&ar->data_lock); 1142 1143 if (!ch) 1144 return false; 1145 1146 status->band = ch->band; 1147 status->freq = ch->center_freq; 1148 1149 return true; 1150 } 1151 1152 static void ath10k_htt_rx_h_signal(struct ath10k *ar, 1153 struct ieee80211_rx_status *status, 1154 struct htt_rx_desc *rxd) 1155 { 1156 int i; 1157 1158 for (i = 0; i < IEEE80211_MAX_CHAINS ; i++) { 1159 status->chains &= ~BIT(i); 1160 1161 if (rxd->ppdu_start.rssi_chains[i].pri20_mhz != 0x80) { 1162 status->chain_signal[i] = ATH10K_DEFAULT_NOISE_FLOOR + 1163 rxd->ppdu_start.rssi_chains[i].pri20_mhz; 1164 1165 status->chains |= BIT(i); 1166 } 1167 } 1168 1169 /* FIXME: Get real NF */ 1170 status->signal = ATH10K_DEFAULT_NOISE_FLOOR + 1171 rxd->ppdu_start.rssi_comb; 1172 status->flag &= ~RX_FLAG_NO_SIGNAL_VAL; 1173 } 1174 1175 static void ath10k_htt_rx_h_mactime(struct ath10k *ar, 1176 struct ieee80211_rx_status *status, 1177 struct htt_rx_desc *rxd) 1178 { 1179 /* FIXME: TSF is known only at the end of PPDU, in the last MPDU. This 1180 * means all prior MSDUs in a PPDU are reported to mac80211 without the 1181 * TSF. Is it worth holding frames until end of PPDU is known? 1182 * 1183 * FIXME: Can we get/compute 64bit TSF? 1184 */ 1185 status->mactime = __le32_to_cpu(rxd->ppdu_end.common.tsf_timestamp); 1186 status->flag |= RX_FLAG_MACTIME_END; 1187 } 1188 1189 static void ath10k_htt_rx_h_ppdu(struct ath10k *ar, 1190 struct sk_buff_head *amsdu, 1191 struct ieee80211_rx_status *status, 1192 u32 vdev_id) 1193 { 1194 struct sk_buff *first; 1195 struct htt_rx_desc *rxd; 1196 bool is_first_ppdu; 1197 bool is_last_ppdu; 1198 1199 if (skb_queue_empty(amsdu)) 1200 return; 1201 1202 first = skb_peek(amsdu); 1203 rxd = (void *)first->data - sizeof(*rxd); 1204 1205 is_first_ppdu = !!(rxd->attention.flags & 1206 __cpu_to_le32(RX_ATTENTION_FLAGS_FIRST_MPDU)); 1207 is_last_ppdu = !!(rxd->attention.flags & 1208 __cpu_to_le32(RX_ATTENTION_FLAGS_LAST_MPDU)); 1209 1210 if (is_first_ppdu) { 1211 /* New PPDU starts so clear out the old per-PPDU status. */ 1212 status->freq = 0; 1213 status->rate_idx = 0; 1214 status->nss = 0; 1215 status->encoding = RX_ENC_LEGACY; 1216 status->bw = RATE_INFO_BW_20; 1217 1218 status->flag &= ~RX_FLAG_MACTIME_END; 1219 status->flag |= RX_FLAG_NO_SIGNAL_VAL; 1220 1221 status->flag &= ~(RX_FLAG_AMPDU_IS_LAST); 1222 status->flag |= RX_FLAG_AMPDU_DETAILS | RX_FLAG_AMPDU_LAST_KNOWN; 1223 status->ampdu_reference = ar->ampdu_reference; 1224 1225 ath10k_htt_rx_h_signal(ar, status, rxd); 1226 ath10k_htt_rx_h_channel(ar, status, rxd, vdev_id); 1227 ath10k_htt_rx_h_rates(ar, status, rxd); 1228 } 1229 1230 if (is_last_ppdu) { 1231 ath10k_htt_rx_h_mactime(ar, status, rxd); 1232 1233 /* set ampdu last segment flag */ 1234 status->flag |= RX_FLAG_AMPDU_IS_LAST; 1235 ar->ampdu_reference++; 1236 } 1237 } 1238 1239 static const char * const tid_to_ac[] = { 1240 "BE", 1241 "BK", 1242 "BK", 1243 "BE", 1244 "VI", 1245 "VI", 1246 "VO", 1247 "VO", 1248 }; 1249 1250 static char *ath10k_get_tid(struct ieee80211_hdr *hdr, char *out, size_t size) 1251 { 1252 u8 *qc; 1253 int tid; 1254 1255 if (!ieee80211_is_data_qos(hdr->frame_control)) 1256 return ""; 1257 1258 qc = ieee80211_get_qos_ctl(hdr); 1259 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 1260 if (tid < 8) 1261 snprintf(out, size, "tid %d (%s)", tid, tid_to_ac[tid]); 1262 else 1263 snprintf(out, size, "tid %d", tid); 1264 1265 return out; 1266 } 1267 1268 static void ath10k_htt_rx_h_queue_msdu(struct ath10k *ar, 1269 struct ieee80211_rx_status *rx_status, 1270 struct sk_buff *skb) 1271 { 1272 struct ieee80211_rx_status *status; 1273 1274 status = IEEE80211_SKB_RXCB(skb); 1275 *status = *rx_status; 1276 1277 skb_queue_tail(&ar->htt.rx_msdus_q, skb); 1278 } 1279 1280 static void ath10k_process_rx(struct ath10k *ar, struct sk_buff *skb) 1281 { 1282 struct ieee80211_rx_status *status; 1283 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1284 char tid[32]; 1285 1286 status = IEEE80211_SKB_RXCB(skb); 1287 1288 ath10k_dbg(ar, ATH10K_DBG_DATA, 1289 "rx skb %pK len %u peer %pM %s %s sn %u %s%s%s%s%s%s %srate_idx %u vht_nss %u freq %u band %u flag 0x%x fcs-err %i mic-err %i amsdu-more %i\n", 1290 skb, 1291 skb->len, 1292 ieee80211_get_SA(hdr), 1293 ath10k_get_tid(hdr, tid, sizeof(tid)), 1294 is_multicast_ether_addr(ieee80211_get_DA(hdr)) ? 1295 "mcast" : "ucast", 1296 (__le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_SEQ) >> 4, 1297 (status->encoding == RX_ENC_LEGACY) ? "legacy" : "", 1298 (status->encoding == RX_ENC_HT) ? "ht" : "", 1299 (status->encoding == RX_ENC_VHT) ? "vht" : "", 1300 (status->bw == RATE_INFO_BW_40) ? "40" : "", 1301 (status->bw == RATE_INFO_BW_80) ? "80" : "", 1302 (status->bw == RATE_INFO_BW_160) ? "160" : "", 1303 status->enc_flags & RX_ENC_FLAG_SHORT_GI ? "sgi " : "", 1304 status->rate_idx, 1305 status->nss, 1306 status->freq, 1307 status->band, status->flag, 1308 !!(status->flag & RX_FLAG_FAILED_FCS_CRC), 1309 !!(status->flag & RX_FLAG_MMIC_ERROR), 1310 !!(status->flag & RX_FLAG_AMSDU_MORE)); 1311 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "rx skb: ", 1312 skb->data, skb->len); 1313 trace_ath10k_rx_hdr(ar, skb->data, skb->len); 1314 trace_ath10k_rx_payload(ar, skb->data, skb->len); 1315 1316 ieee80211_rx_napi(ar->hw, NULL, skb, &ar->napi); 1317 } 1318 1319 static int ath10k_htt_rx_nwifi_hdrlen(struct ath10k *ar, 1320 struct ieee80211_hdr *hdr) 1321 { 1322 int len = ieee80211_hdrlen(hdr->frame_control); 1323 1324 if (!test_bit(ATH10K_FW_FEATURE_NO_NWIFI_DECAP_4ADDR_PADDING, 1325 ar->running_fw->fw_file.fw_features)) 1326 len = round_up(len, 4); 1327 1328 return len; 1329 } 1330 1331 static void ath10k_htt_rx_h_undecap_raw(struct ath10k *ar, 1332 struct sk_buff *msdu, 1333 struct ieee80211_rx_status *status, 1334 enum htt_rx_mpdu_encrypt_type enctype, 1335 bool is_decrypted, 1336 const u8 first_hdr[64]) 1337 { 1338 struct ieee80211_hdr *hdr; 1339 struct htt_rx_desc *rxd; 1340 size_t hdr_len; 1341 size_t crypto_len; 1342 bool is_first; 1343 bool is_last; 1344 bool msdu_limit_err; 1345 int bytes_aligned = ar->hw_params.decap_align_bytes; 1346 u8 *qos; 1347 1348 rxd = (void *)msdu->data - sizeof(*rxd); 1349 is_first = !!(rxd->msdu_end.common.info0 & 1350 __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU)); 1351 is_last = !!(rxd->msdu_end.common.info0 & 1352 __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU)); 1353 1354 /* Delivered decapped frame: 1355 * [802.11 header] 1356 * [crypto param] <-- can be trimmed if !fcs_err && 1357 * !decrypt_err && !peer_idx_invalid 1358 * [amsdu header] <-- only if A-MSDU 1359 * [rfc1042/llc] 1360 * [payload] 1361 * [FCS] <-- at end, needs to be trimmed 1362 */ 1363 1364 /* Some hardwares(QCA99x0 variants) limit number of msdus in a-msdu when 1365 * deaggregate, so that unwanted MSDU-deaggregation is avoided for 1366 * error packets. If limit exceeds, hw sends all remaining MSDUs as 1367 * a single last MSDU with this msdu limit error set. 1368 */ 1369 msdu_limit_err = ath10k_rx_desc_msdu_limit_error(&ar->hw_params, rxd); 1370 1371 /* If MSDU limit error happens, then don't warn on, the partial raw MSDU 1372 * without first MSDU is expected in that case, and handled later here. 1373 */ 1374 /* This probably shouldn't happen but warn just in case */ 1375 if (WARN_ON_ONCE(!is_first && !msdu_limit_err)) 1376 return; 1377 1378 /* This probably shouldn't happen but warn just in case */ 1379 if (WARN_ON_ONCE(!(is_first && is_last) && !msdu_limit_err)) 1380 return; 1381 1382 skb_trim(msdu, msdu->len - FCS_LEN); 1383 1384 /* Push original 80211 header */ 1385 if (unlikely(msdu_limit_err)) { 1386 hdr = (struct ieee80211_hdr *)first_hdr; 1387 hdr_len = ieee80211_hdrlen(hdr->frame_control); 1388 crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype); 1389 1390 if (ieee80211_is_data_qos(hdr->frame_control)) { 1391 qos = ieee80211_get_qos_ctl(hdr); 1392 qos[0] |= IEEE80211_QOS_CTL_A_MSDU_PRESENT; 1393 } 1394 1395 if (crypto_len) 1396 memcpy(skb_push(msdu, crypto_len), 1397 (void *)hdr + round_up(hdr_len, bytes_aligned), 1398 crypto_len); 1399 1400 memcpy(skb_push(msdu, hdr_len), hdr, hdr_len); 1401 } 1402 1403 /* In most cases this will be true for sniffed frames. It makes sense 1404 * to deliver them as-is without stripping the crypto param. This is 1405 * necessary for software based decryption. 1406 * 1407 * If there's no error then the frame is decrypted. At least that is 1408 * the case for frames that come in via fragmented rx indication. 1409 */ 1410 if (!is_decrypted) 1411 return; 1412 1413 /* The payload is decrypted so strip crypto params. Start from tail 1414 * since hdr is used to compute some stuff. 1415 */ 1416 1417 hdr = (void *)msdu->data; 1418 1419 /* Tail */ 1420 if (status->flag & RX_FLAG_IV_STRIPPED) { 1421 skb_trim(msdu, msdu->len - 1422 ath10k_htt_rx_crypto_mic_len(ar, enctype)); 1423 1424 skb_trim(msdu, msdu->len - 1425 ath10k_htt_rx_crypto_icv_len(ar, enctype)); 1426 } else { 1427 /* MIC */ 1428 if (status->flag & RX_FLAG_MIC_STRIPPED) 1429 skb_trim(msdu, msdu->len - 1430 ath10k_htt_rx_crypto_mic_len(ar, enctype)); 1431 1432 /* ICV */ 1433 if (status->flag & RX_FLAG_ICV_STRIPPED) 1434 skb_trim(msdu, msdu->len - 1435 ath10k_htt_rx_crypto_icv_len(ar, enctype)); 1436 } 1437 1438 /* MMIC */ 1439 if ((status->flag & RX_FLAG_MMIC_STRIPPED) && 1440 !ieee80211_has_morefrags(hdr->frame_control) && 1441 enctype == HTT_RX_MPDU_ENCRYPT_TKIP_WPA) 1442 skb_trim(msdu, msdu->len - MICHAEL_MIC_LEN); 1443 1444 /* Head */ 1445 if (status->flag & RX_FLAG_IV_STRIPPED) { 1446 hdr_len = ieee80211_hdrlen(hdr->frame_control); 1447 crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype); 1448 1449 memmove((void *)msdu->data + crypto_len, 1450 (void *)msdu->data, hdr_len); 1451 skb_pull(msdu, crypto_len); 1452 } 1453 } 1454 1455 static void ath10k_htt_rx_h_undecap_nwifi(struct ath10k *ar, 1456 struct sk_buff *msdu, 1457 struct ieee80211_rx_status *status, 1458 const u8 first_hdr[64], 1459 enum htt_rx_mpdu_encrypt_type enctype) 1460 { 1461 struct ieee80211_hdr *hdr; 1462 struct htt_rx_desc *rxd; 1463 size_t hdr_len; 1464 u8 da[ETH_ALEN]; 1465 u8 sa[ETH_ALEN]; 1466 int l3_pad_bytes; 1467 int bytes_aligned = ar->hw_params.decap_align_bytes; 1468 1469 /* Delivered decapped frame: 1470 * [nwifi 802.11 header] <-- replaced with 802.11 hdr 1471 * [rfc1042/llc] 1472 * 1473 * Note: The nwifi header doesn't have QoS Control and is 1474 * (always?) a 3addr frame. 1475 * 1476 * Note2: There's no A-MSDU subframe header. Even if it's part 1477 * of an A-MSDU. 1478 */ 1479 1480 /* pull decapped header and copy SA & DA */ 1481 rxd = (void *)msdu->data - sizeof(*rxd); 1482 1483 l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd); 1484 skb_put(msdu, l3_pad_bytes); 1485 1486 hdr = (struct ieee80211_hdr *)(msdu->data + l3_pad_bytes); 1487 1488 hdr_len = ath10k_htt_rx_nwifi_hdrlen(ar, hdr); 1489 ether_addr_copy(da, ieee80211_get_DA(hdr)); 1490 ether_addr_copy(sa, ieee80211_get_SA(hdr)); 1491 skb_pull(msdu, hdr_len); 1492 1493 /* push original 802.11 header */ 1494 hdr = (struct ieee80211_hdr *)first_hdr; 1495 hdr_len = ieee80211_hdrlen(hdr->frame_control); 1496 1497 if (!(status->flag & RX_FLAG_IV_STRIPPED)) { 1498 memcpy(skb_push(msdu, 1499 ath10k_htt_rx_crypto_param_len(ar, enctype)), 1500 (void *)hdr + round_up(hdr_len, bytes_aligned), 1501 ath10k_htt_rx_crypto_param_len(ar, enctype)); 1502 } 1503 1504 memcpy(skb_push(msdu, hdr_len), hdr, hdr_len); 1505 1506 /* original 802.11 header has a different DA and in 1507 * case of 4addr it may also have different SA 1508 */ 1509 hdr = (struct ieee80211_hdr *)msdu->data; 1510 ether_addr_copy(ieee80211_get_DA(hdr), da); 1511 ether_addr_copy(ieee80211_get_SA(hdr), sa); 1512 } 1513 1514 static void *ath10k_htt_rx_h_find_rfc1042(struct ath10k *ar, 1515 struct sk_buff *msdu, 1516 enum htt_rx_mpdu_encrypt_type enctype) 1517 { 1518 struct ieee80211_hdr *hdr; 1519 struct htt_rx_desc *rxd; 1520 size_t hdr_len, crypto_len; 1521 void *rfc1042; 1522 bool is_first, is_last, is_amsdu; 1523 int bytes_aligned = ar->hw_params.decap_align_bytes; 1524 1525 rxd = (void *)msdu->data - sizeof(*rxd); 1526 hdr = (void *)rxd->rx_hdr_status; 1527 1528 is_first = !!(rxd->msdu_end.common.info0 & 1529 __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU)); 1530 is_last = !!(rxd->msdu_end.common.info0 & 1531 __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU)); 1532 is_amsdu = !(is_first && is_last); 1533 1534 rfc1042 = hdr; 1535 1536 if (is_first) { 1537 hdr_len = ieee80211_hdrlen(hdr->frame_control); 1538 crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype); 1539 1540 rfc1042 += round_up(hdr_len, bytes_aligned) + 1541 round_up(crypto_len, bytes_aligned); 1542 } 1543 1544 if (is_amsdu) 1545 rfc1042 += sizeof(struct amsdu_subframe_hdr); 1546 1547 return rfc1042; 1548 } 1549 1550 static void ath10k_htt_rx_h_undecap_eth(struct ath10k *ar, 1551 struct sk_buff *msdu, 1552 struct ieee80211_rx_status *status, 1553 const u8 first_hdr[64], 1554 enum htt_rx_mpdu_encrypt_type enctype) 1555 { 1556 struct ieee80211_hdr *hdr; 1557 struct ethhdr *eth; 1558 size_t hdr_len; 1559 void *rfc1042; 1560 u8 da[ETH_ALEN]; 1561 u8 sa[ETH_ALEN]; 1562 int l3_pad_bytes; 1563 struct htt_rx_desc *rxd; 1564 int bytes_aligned = ar->hw_params.decap_align_bytes; 1565 1566 /* Delivered decapped frame: 1567 * [eth header] <-- replaced with 802.11 hdr & rfc1042/llc 1568 * [payload] 1569 */ 1570 1571 rfc1042 = ath10k_htt_rx_h_find_rfc1042(ar, msdu, enctype); 1572 if (WARN_ON_ONCE(!rfc1042)) 1573 return; 1574 1575 rxd = (void *)msdu->data - sizeof(*rxd); 1576 l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd); 1577 skb_put(msdu, l3_pad_bytes); 1578 skb_pull(msdu, l3_pad_bytes); 1579 1580 /* pull decapped header and copy SA & DA */ 1581 eth = (struct ethhdr *)msdu->data; 1582 ether_addr_copy(da, eth->h_dest); 1583 ether_addr_copy(sa, eth->h_source); 1584 skb_pull(msdu, sizeof(struct ethhdr)); 1585 1586 /* push rfc1042/llc/snap */ 1587 memcpy(skb_push(msdu, sizeof(struct rfc1042_hdr)), rfc1042, 1588 sizeof(struct rfc1042_hdr)); 1589 1590 /* push original 802.11 header */ 1591 hdr = (struct ieee80211_hdr *)first_hdr; 1592 hdr_len = ieee80211_hdrlen(hdr->frame_control); 1593 1594 if (!(status->flag & RX_FLAG_IV_STRIPPED)) { 1595 memcpy(skb_push(msdu, 1596 ath10k_htt_rx_crypto_param_len(ar, enctype)), 1597 (void *)hdr + round_up(hdr_len, bytes_aligned), 1598 ath10k_htt_rx_crypto_param_len(ar, enctype)); 1599 } 1600 1601 memcpy(skb_push(msdu, hdr_len), hdr, hdr_len); 1602 1603 /* original 802.11 header has a different DA and in 1604 * case of 4addr it may also have different SA 1605 */ 1606 hdr = (struct ieee80211_hdr *)msdu->data; 1607 ether_addr_copy(ieee80211_get_DA(hdr), da); 1608 ether_addr_copy(ieee80211_get_SA(hdr), sa); 1609 } 1610 1611 static void ath10k_htt_rx_h_undecap_snap(struct ath10k *ar, 1612 struct sk_buff *msdu, 1613 struct ieee80211_rx_status *status, 1614 const u8 first_hdr[64], 1615 enum htt_rx_mpdu_encrypt_type enctype) 1616 { 1617 struct ieee80211_hdr *hdr; 1618 size_t hdr_len; 1619 int l3_pad_bytes; 1620 struct htt_rx_desc *rxd; 1621 int bytes_aligned = ar->hw_params.decap_align_bytes; 1622 1623 /* Delivered decapped frame: 1624 * [amsdu header] <-- replaced with 802.11 hdr 1625 * [rfc1042/llc] 1626 * [payload] 1627 */ 1628 1629 rxd = (void *)msdu->data - sizeof(*rxd); 1630 l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd); 1631 1632 skb_put(msdu, l3_pad_bytes); 1633 skb_pull(msdu, sizeof(struct amsdu_subframe_hdr) + l3_pad_bytes); 1634 1635 hdr = (struct ieee80211_hdr *)first_hdr; 1636 hdr_len = ieee80211_hdrlen(hdr->frame_control); 1637 1638 if (!(status->flag & RX_FLAG_IV_STRIPPED)) { 1639 memcpy(skb_push(msdu, 1640 ath10k_htt_rx_crypto_param_len(ar, enctype)), 1641 (void *)hdr + round_up(hdr_len, bytes_aligned), 1642 ath10k_htt_rx_crypto_param_len(ar, enctype)); 1643 } 1644 1645 memcpy(skb_push(msdu, hdr_len), hdr, hdr_len); 1646 } 1647 1648 static void ath10k_htt_rx_h_undecap(struct ath10k *ar, 1649 struct sk_buff *msdu, 1650 struct ieee80211_rx_status *status, 1651 u8 first_hdr[64], 1652 enum htt_rx_mpdu_encrypt_type enctype, 1653 bool is_decrypted) 1654 { 1655 struct htt_rx_desc *rxd; 1656 enum rx_msdu_decap_format decap; 1657 1658 /* First msdu's decapped header: 1659 * [802.11 header] <-- padded to 4 bytes long 1660 * [crypto param] <-- padded to 4 bytes long 1661 * [amsdu header] <-- only if A-MSDU 1662 * [rfc1042/llc] 1663 * 1664 * Other (2nd, 3rd, ..) msdu's decapped header: 1665 * [amsdu header] <-- only if A-MSDU 1666 * [rfc1042/llc] 1667 */ 1668 1669 rxd = (void *)msdu->data - sizeof(*rxd); 1670 decap = MS(__le32_to_cpu(rxd->msdu_start.common.info1), 1671 RX_MSDU_START_INFO1_DECAP_FORMAT); 1672 1673 switch (decap) { 1674 case RX_MSDU_DECAP_RAW: 1675 ath10k_htt_rx_h_undecap_raw(ar, msdu, status, enctype, 1676 is_decrypted, first_hdr); 1677 break; 1678 case RX_MSDU_DECAP_NATIVE_WIFI: 1679 ath10k_htt_rx_h_undecap_nwifi(ar, msdu, status, first_hdr, 1680 enctype); 1681 break; 1682 case RX_MSDU_DECAP_ETHERNET2_DIX: 1683 ath10k_htt_rx_h_undecap_eth(ar, msdu, status, first_hdr, enctype); 1684 break; 1685 case RX_MSDU_DECAP_8023_SNAP_LLC: 1686 ath10k_htt_rx_h_undecap_snap(ar, msdu, status, first_hdr, 1687 enctype); 1688 break; 1689 } 1690 } 1691 1692 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb) 1693 { 1694 struct htt_rx_desc *rxd; 1695 u32 flags, info; 1696 bool is_ip4, is_ip6; 1697 bool is_tcp, is_udp; 1698 bool ip_csum_ok, tcpudp_csum_ok; 1699 1700 rxd = (void *)skb->data - sizeof(*rxd); 1701 flags = __le32_to_cpu(rxd->attention.flags); 1702 info = __le32_to_cpu(rxd->msdu_start.common.info1); 1703 1704 is_ip4 = !!(info & RX_MSDU_START_INFO1_IPV4_PROTO); 1705 is_ip6 = !!(info & RX_MSDU_START_INFO1_IPV6_PROTO); 1706 is_tcp = !!(info & RX_MSDU_START_INFO1_TCP_PROTO); 1707 is_udp = !!(info & RX_MSDU_START_INFO1_UDP_PROTO); 1708 ip_csum_ok = !(flags & RX_ATTENTION_FLAGS_IP_CHKSUM_FAIL); 1709 tcpudp_csum_ok = !(flags & RX_ATTENTION_FLAGS_TCP_UDP_CHKSUM_FAIL); 1710 1711 if (!is_ip4 && !is_ip6) 1712 return CHECKSUM_NONE; 1713 if (!is_tcp && !is_udp) 1714 return CHECKSUM_NONE; 1715 if (!ip_csum_ok) 1716 return CHECKSUM_NONE; 1717 if (!tcpudp_csum_ok) 1718 return CHECKSUM_NONE; 1719 1720 return CHECKSUM_UNNECESSARY; 1721 } 1722 1723 static void ath10k_htt_rx_h_csum_offload(struct sk_buff *msdu) 1724 { 1725 msdu->ip_summed = ath10k_htt_rx_get_csum_state(msdu); 1726 } 1727 1728 static void ath10k_htt_rx_h_mpdu(struct ath10k *ar, 1729 struct sk_buff_head *amsdu, 1730 struct ieee80211_rx_status *status, 1731 bool fill_crypt_header, 1732 u8 *rx_hdr, 1733 enum ath10k_pkt_rx_err *err) 1734 { 1735 struct sk_buff *first; 1736 struct sk_buff *last; 1737 struct sk_buff *msdu; 1738 struct htt_rx_desc *rxd; 1739 struct ieee80211_hdr *hdr; 1740 enum htt_rx_mpdu_encrypt_type enctype; 1741 u8 first_hdr[64]; 1742 u8 *qos; 1743 bool has_fcs_err; 1744 bool has_crypto_err; 1745 bool has_tkip_err; 1746 bool has_peer_idx_invalid; 1747 bool is_decrypted; 1748 bool is_mgmt; 1749 u32 attention; 1750 1751 if (skb_queue_empty(amsdu)) 1752 return; 1753 1754 first = skb_peek(amsdu); 1755 rxd = (void *)first->data - sizeof(*rxd); 1756 1757 is_mgmt = !!(rxd->attention.flags & 1758 __cpu_to_le32(RX_ATTENTION_FLAGS_MGMT_TYPE)); 1759 1760 enctype = MS(__le32_to_cpu(rxd->mpdu_start.info0), 1761 RX_MPDU_START_INFO0_ENCRYPT_TYPE); 1762 1763 /* First MSDU's Rx descriptor in an A-MSDU contains full 802.11 1764 * decapped header. It'll be used for undecapping of each MSDU. 1765 */ 1766 hdr = (void *)rxd->rx_hdr_status; 1767 memcpy(first_hdr, hdr, RX_HTT_HDR_STATUS_LEN); 1768 1769 if (rx_hdr) 1770 memcpy(rx_hdr, hdr, RX_HTT_HDR_STATUS_LEN); 1771 1772 /* Each A-MSDU subframe will use the original header as the base and be 1773 * reported as a separate MSDU so strip the A-MSDU bit from QoS Ctl. 1774 */ 1775 hdr = (void *)first_hdr; 1776 1777 if (ieee80211_is_data_qos(hdr->frame_control)) { 1778 qos = ieee80211_get_qos_ctl(hdr); 1779 qos[0] &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT; 1780 } 1781 1782 /* Some attention flags are valid only in the last MSDU. */ 1783 last = skb_peek_tail(amsdu); 1784 rxd = (void *)last->data - sizeof(*rxd); 1785 attention = __le32_to_cpu(rxd->attention.flags); 1786 1787 has_fcs_err = !!(attention & RX_ATTENTION_FLAGS_FCS_ERR); 1788 has_crypto_err = !!(attention & RX_ATTENTION_FLAGS_DECRYPT_ERR); 1789 has_tkip_err = !!(attention & RX_ATTENTION_FLAGS_TKIP_MIC_ERR); 1790 has_peer_idx_invalid = !!(attention & RX_ATTENTION_FLAGS_PEER_IDX_INVALID); 1791 1792 /* Note: If hardware captures an encrypted frame that it can't decrypt, 1793 * e.g. due to fcs error, missing peer or invalid key data it will 1794 * report the frame as raw. 1795 */ 1796 is_decrypted = (enctype != HTT_RX_MPDU_ENCRYPT_NONE && 1797 !has_fcs_err && 1798 !has_crypto_err && 1799 !has_peer_idx_invalid); 1800 1801 /* Clear per-MPDU flags while leaving per-PPDU flags intact. */ 1802 status->flag &= ~(RX_FLAG_FAILED_FCS_CRC | 1803 RX_FLAG_MMIC_ERROR | 1804 RX_FLAG_DECRYPTED | 1805 RX_FLAG_IV_STRIPPED | 1806 RX_FLAG_ONLY_MONITOR | 1807 RX_FLAG_MMIC_STRIPPED); 1808 1809 if (has_fcs_err) 1810 status->flag |= RX_FLAG_FAILED_FCS_CRC; 1811 1812 if (has_tkip_err) 1813 status->flag |= RX_FLAG_MMIC_ERROR; 1814 1815 if (err) { 1816 if (has_fcs_err) 1817 *err = ATH10K_PKT_RX_ERR_FCS; 1818 else if (has_tkip_err) 1819 *err = ATH10K_PKT_RX_ERR_TKIP; 1820 else if (has_crypto_err) 1821 *err = ATH10K_PKT_RX_ERR_CRYPT; 1822 else if (has_peer_idx_invalid) 1823 *err = ATH10K_PKT_RX_ERR_PEER_IDX_INVAL; 1824 } 1825 1826 /* Firmware reports all necessary management frames via WMI already. 1827 * They are not reported to monitor interfaces at all so pass the ones 1828 * coming via HTT to monitor interfaces instead. This simplifies 1829 * matters a lot. 1830 */ 1831 if (is_mgmt) 1832 status->flag |= RX_FLAG_ONLY_MONITOR; 1833 1834 if (is_decrypted) { 1835 status->flag |= RX_FLAG_DECRYPTED; 1836 1837 if (likely(!is_mgmt)) 1838 status->flag |= RX_FLAG_MMIC_STRIPPED; 1839 1840 if (fill_crypt_header) 1841 status->flag |= RX_FLAG_MIC_STRIPPED | 1842 RX_FLAG_ICV_STRIPPED; 1843 else 1844 status->flag |= RX_FLAG_IV_STRIPPED; 1845 } 1846 1847 skb_queue_walk(amsdu, msdu) { 1848 ath10k_htt_rx_h_csum_offload(msdu); 1849 ath10k_htt_rx_h_undecap(ar, msdu, status, first_hdr, enctype, 1850 is_decrypted); 1851 1852 /* Undecapping involves copying the original 802.11 header back 1853 * to sk_buff. If frame is protected and hardware has decrypted 1854 * it then remove the protected bit. 1855 */ 1856 if (!is_decrypted) 1857 continue; 1858 if (is_mgmt) 1859 continue; 1860 1861 if (fill_crypt_header) 1862 continue; 1863 1864 hdr = (void *)msdu->data; 1865 hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED); 1866 } 1867 } 1868 1869 static void ath10k_htt_rx_h_enqueue(struct ath10k *ar, 1870 struct sk_buff_head *amsdu, 1871 struct ieee80211_rx_status *status) 1872 { 1873 struct sk_buff *msdu; 1874 struct sk_buff *first_subframe; 1875 1876 first_subframe = skb_peek(amsdu); 1877 1878 while ((msdu = __skb_dequeue(amsdu))) { 1879 /* Setup per-MSDU flags */ 1880 if (skb_queue_empty(amsdu)) 1881 status->flag &= ~RX_FLAG_AMSDU_MORE; 1882 else 1883 status->flag |= RX_FLAG_AMSDU_MORE; 1884 1885 if (msdu == first_subframe) { 1886 first_subframe = NULL; 1887 status->flag &= ~RX_FLAG_ALLOW_SAME_PN; 1888 } else { 1889 status->flag |= RX_FLAG_ALLOW_SAME_PN; 1890 } 1891 1892 ath10k_htt_rx_h_queue_msdu(ar, status, msdu); 1893 } 1894 } 1895 1896 static int ath10k_unchain_msdu(struct sk_buff_head *amsdu, 1897 unsigned long *unchain_cnt) 1898 { 1899 struct sk_buff *skb, *first; 1900 int space; 1901 int total_len = 0; 1902 int amsdu_len = skb_queue_len(amsdu); 1903 1904 /* TODO: Might could optimize this by using 1905 * skb_try_coalesce or similar method to 1906 * decrease copying, or maybe get mac80211 to 1907 * provide a way to just receive a list of 1908 * skb? 1909 */ 1910 1911 first = __skb_dequeue(amsdu); 1912 1913 /* Allocate total length all at once. */ 1914 skb_queue_walk(amsdu, skb) 1915 total_len += skb->len; 1916 1917 space = total_len - skb_tailroom(first); 1918 if ((space > 0) && 1919 (pskb_expand_head(first, 0, space, GFP_ATOMIC) < 0)) { 1920 /* TODO: bump some rx-oom error stat */ 1921 /* put it back together so we can free the 1922 * whole list at once. 1923 */ 1924 __skb_queue_head(amsdu, first); 1925 return -1; 1926 } 1927 1928 /* Walk list again, copying contents into 1929 * msdu_head 1930 */ 1931 while ((skb = __skb_dequeue(amsdu))) { 1932 skb_copy_from_linear_data(skb, skb_put(first, skb->len), 1933 skb->len); 1934 dev_kfree_skb_any(skb); 1935 } 1936 1937 __skb_queue_head(amsdu, first); 1938 1939 *unchain_cnt += amsdu_len - 1; 1940 1941 return 0; 1942 } 1943 1944 static void ath10k_htt_rx_h_unchain(struct ath10k *ar, 1945 struct sk_buff_head *amsdu, 1946 unsigned long *drop_cnt, 1947 unsigned long *unchain_cnt) 1948 { 1949 struct sk_buff *first; 1950 struct htt_rx_desc *rxd; 1951 enum rx_msdu_decap_format decap; 1952 1953 first = skb_peek(amsdu); 1954 rxd = (void *)first->data - sizeof(*rxd); 1955 decap = MS(__le32_to_cpu(rxd->msdu_start.common.info1), 1956 RX_MSDU_START_INFO1_DECAP_FORMAT); 1957 1958 /* FIXME: Current unchaining logic can only handle simple case of raw 1959 * msdu chaining. If decapping is other than raw the chaining may be 1960 * more complex and this isn't handled by the current code. Don't even 1961 * try re-constructing such frames - it'll be pretty much garbage. 1962 */ 1963 if (decap != RX_MSDU_DECAP_RAW || 1964 skb_queue_len(amsdu) != 1 + rxd->frag_info.ring2_more_count) { 1965 *drop_cnt += skb_queue_len(amsdu); 1966 __skb_queue_purge(amsdu); 1967 return; 1968 } 1969 1970 ath10k_unchain_msdu(amsdu, unchain_cnt); 1971 } 1972 1973 static bool ath10k_htt_rx_amsdu_allowed(struct ath10k *ar, 1974 struct sk_buff_head *amsdu, 1975 struct ieee80211_rx_status *rx_status) 1976 { 1977 /* FIXME: It might be a good idea to do some fuzzy-testing to drop 1978 * invalid/dangerous frames. 1979 */ 1980 1981 if (!rx_status->freq) { 1982 ath10k_dbg(ar, ATH10K_DBG_HTT, "no channel configured; ignoring frame(s)!\n"); 1983 return false; 1984 } 1985 1986 if (test_bit(ATH10K_CAC_RUNNING, &ar->dev_flags)) { 1987 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx cac running\n"); 1988 return false; 1989 } 1990 1991 return true; 1992 } 1993 1994 static void ath10k_htt_rx_h_filter(struct ath10k *ar, 1995 struct sk_buff_head *amsdu, 1996 struct ieee80211_rx_status *rx_status, 1997 unsigned long *drop_cnt) 1998 { 1999 if (skb_queue_empty(amsdu)) 2000 return; 2001 2002 if (ath10k_htt_rx_amsdu_allowed(ar, amsdu, rx_status)) 2003 return; 2004 2005 if (drop_cnt) 2006 *drop_cnt += skb_queue_len(amsdu); 2007 2008 __skb_queue_purge(amsdu); 2009 } 2010 2011 static int ath10k_htt_rx_handle_amsdu(struct ath10k_htt *htt) 2012 { 2013 struct ath10k *ar = htt->ar; 2014 struct ieee80211_rx_status *rx_status = &htt->rx_status; 2015 struct sk_buff_head amsdu; 2016 int ret; 2017 unsigned long drop_cnt = 0; 2018 unsigned long unchain_cnt = 0; 2019 unsigned long drop_cnt_filter = 0; 2020 unsigned long msdus_to_queue, num_msdus; 2021 enum ath10k_pkt_rx_err err = ATH10K_PKT_RX_ERR_MAX; 2022 u8 first_hdr[RX_HTT_HDR_STATUS_LEN]; 2023 2024 __skb_queue_head_init(&amsdu); 2025 2026 spin_lock_bh(&htt->rx_ring.lock); 2027 if (htt->rx_confused) { 2028 spin_unlock_bh(&htt->rx_ring.lock); 2029 return -EIO; 2030 } 2031 ret = ath10k_htt_rx_amsdu_pop(htt, &amsdu); 2032 spin_unlock_bh(&htt->rx_ring.lock); 2033 2034 if (ret < 0) { 2035 ath10k_warn(ar, "rx ring became corrupted: %d\n", ret); 2036 __skb_queue_purge(&amsdu); 2037 /* FIXME: It's probably a good idea to reboot the 2038 * device instead of leaving it inoperable. 2039 */ 2040 htt->rx_confused = true; 2041 return ret; 2042 } 2043 2044 num_msdus = skb_queue_len(&amsdu); 2045 2046 ath10k_htt_rx_h_ppdu(ar, &amsdu, rx_status, 0xffff); 2047 2048 /* only for ret = 1 indicates chained msdus */ 2049 if (ret > 0) 2050 ath10k_htt_rx_h_unchain(ar, &amsdu, &drop_cnt, &unchain_cnt); 2051 2052 ath10k_htt_rx_h_filter(ar, &amsdu, rx_status, &drop_cnt_filter); 2053 ath10k_htt_rx_h_mpdu(ar, &amsdu, rx_status, true, first_hdr, &err); 2054 msdus_to_queue = skb_queue_len(&amsdu); 2055 ath10k_htt_rx_h_enqueue(ar, &amsdu, rx_status); 2056 2057 ath10k_sta_update_rx_tid_stats(ar, first_hdr, num_msdus, err, 2058 unchain_cnt, drop_cnt, drop_cnt_filter, 2059 msdus_to_queue); 2060 2061 return 0; 2062 } 2063 2064 static void ath10k_htt_rx_mpdu_desc_pn_hl(struct htt_hl_rx_desc *rx_desc, 2065 union htt_rx_pn_t *pn, 2066 int pn_len_bits) 2067 { 2068 switch (pn_len_bits) { 2069 case 48: 2070 pn->pn48 = __le32_to_cpu(rx_desc->pn_31_0) + 2071 ((u64)(__le32_to_cpu(rx_desc->u0.pn_63_32) & 0xFFFF) << 32); 2072 break; 2073 case 24: 2074 pn->pn24 = __le32_to_cpu(rx_desc->pn_31_0); 2075 break; 2076 }; 2077 } 2078 2079 static bool ath10k_htt_rx_pn_cmp48(union htt_rx_pn_t *new_pn, 2080 union htt_rx_pn_t *old_pn) 2081 { 2082 return ((new_pn->pn48 & 0xffffffffffffULL) <= 2083 (old_pn->pn48 & 0xffffffffffffULL)); 2084 } 2085 2086 static bool ath10k_htt_rx_pn_check_replay_hl(struct ath10k *ar, 2087 struct ath10k_peer *peer, 2088 struct htt_rx_indication_hl *rx) 2089 { 2090 bool last_pn_valid, pn_invalid = false; 2091 enum htt_txrx_sec_cast_type sec_index; 2092 enum htt_security_types sec_type; 2093 union htt_rx_pn_t new_pn = {0}; 2094 struct htt_hl_rx_desc *rx_desc; 2095 union htt_rx_pn_t *last_pn; 2096 u32 rx_desc_info, tid; 2097 int num_mpdu_ranges; 2098 2099 lockdep_assert_held(&ar->data_lock); 2100 2101 if (!peer) 2102 return false; 2103 2104 if (!(rx->fw_desc.flags & FW_RX_DESC_FLAGS_FIRST_MSDU)) 2105 return false; 2106 2107 num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1), 2108 HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES); 2109 2110 rx_desc = (struct htt_hl_rx_desc *)&rx->mpdu_ranges[num_mpdu_ranges]; 2111 rx_desc_info = __le32_to_cpu(rx_desc->info); 2112 2113 if (!MS(rx_desc_info, HTT_RX_DESC_HL_INFO_ENCRYPTED)) 2114 return false; 2115 2116 tid = MS(rx->hdr.info0, HTT_RX_INDICATION_INFO0_EXT_TID); 2117 last_pn_valid = peer->tids_last_pn_valid[tid]; 2118 last_pn = &peer->tids_last_pn[tid]; 2119 2120 if (MS(rx_desc_info, HTT_RX_DESC_HL_INFO_MCAST_BCAST)) 2121 sec_index = HTT_TXRX_SEC_MCAST; 2122 else 2123 sec_index = HTT_TXRX_SEC_UCAST; 2124 2125 sec_type = peer->rx_pn[sec_index].sec_type; 2126 ath10k_htt_rx_mpdu_desc_pn_hl(rx_desc, &new_pn, peer->rx_pn[sec_index].pn_len); 2127 2128 if (sec_type != HTT_SECURITY_AES_CCMP && 2129 sec_type != HTT_SECURITY_TKIP && 2130 sec_type != HTT_SECURITY_TKIP_NOMIC) 2131 return false; 2132 2133 if (last_pn_valid) 2134 pn_invalid = ath10k_htt_rx_pn_cmp48(&new_pn, last_pn); 2135 else 2136 peer->tids_last_pn_valid[tid] = 1; 2137 2138 if (!pn_invalid) 2139 last_pn->pn48 = new_pn.pn48; 2140 2141 return pn_invalid; 2142 } 2143 2144 static bool ath10k_htt_rx_proc_rx_ind_hl(struct ath10k_htt *htt, 2145 struct htt_rx_indication_hl *rx, 2146 struct sk_buff *skb, 2147 enum htt_rx_pn_check_type check_pn_type, 2148 enum htt_rx_tkip_demic_type tkip_mic_type) 2149 { 2150 struct ath10k *ar = htt->ar; 2151 struct ath10k_peer *peer; 2152 struct htt_rx_indication_mpdu_range *mpdu_ranges; 2153 struct fw_rx_desc_hl *fw_desc; 2154 struct ieee80211_hdr *hdr; 2155 struct ieee80211_rx_status *rx_status; 2156 u16 peer_id; 2157 u8 rx_desc_len; 2158 int num_mpdu_ranges; 2159 size_t tot_hdr_len; 2160 struct ieee80211_channel *ch; 2161 bool pn_invalid; 2162 2163 peer_id = __le16_to_cpu(rx->hdr.peer_id); 2164 2165 spin_lock_bh(&ar->data_lock); 2166 peer = ath10k_peer_find_by_id(ar, peer_id); 2167 spin_unlock_bh(&ar->data_lock); 2168 if (!peer && peer_id != HTT_INVALID_PEERID) 2169 ath10k_warn(ar, "Got RX ind from invalid peer: %u\n", peer_id); 2170 2171 num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1), 2172 HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES); 2173 mpdu_ranges = htt_rx_ind_get_mpdu_ranges_hl(rx); 2174 fw_desc = &rx->fw_desc; 2175 rx_desc_len = fw_desc->len; 2176 2177 /* I have not yet seen any case where num_mpdu_ranges > 1. 2178 * qcacld does not seem handle that case either, so we introduce the 2179 * same limitiation here as well. 2180 */ 2181 if (num_mpdu_ranges > 1) 2182 ath10k_warn(ar, 2183 "Unsupported number of MPDU ranges: %d, ignoring all but the first\n", 2184 num_mpdu_ranges); 2185 2186 if (mpdu_ranges->mpdu_range_status != 2187 HTT_RX_IND_MPDU_STATUS_OK && 2188 mpdu_ranges->mpdu_range_status != 2189 HTT_RX_IND_MPDU_STATUS_TKIP_MIC_ERR) { 2190 ath10k_warn(ar, "MPDU range status: %d\n", 2191 mpdu_ranges->mpdu_range_status); 2192 goto err; 2193 } 2194 2195 if (check_pn_type == HTT_RX_PN_CHECK) { 2196 spin_lock_bh(&ar->data_lock); 2197 pn_invalid = ath10k_htt_rx_pn_check_replay_hl(ar, peer, rx); 2198 spin_unlock_bh(&ar->data_lock); 2199 if (pn_invalid) 2200 goto err; 2201 } 2202 2203 /* Strip off all headers before the MAC header before delivery to 2204 * mac80211 2205 */ 2206 tot_hdr_len = sizeof(struct htt_resp_hdr) + sizeof(rx->hdr) + 2207 sizeof(rx->ppdu) + sizeof(rx->prefix) + 2208 sizeof(rx->fw_desc) + 2209 sizeof(*mpdu_ranges) * num_mpdu_ranges + rx_desc_len; 2210 2211 skb_pull(skb, tot_hdr_len); 2212 2213 hdr = (struct ieee80211_hdr *)skb->data; 2214 rx_status = IEEE80211_SKB_RXCB(skb); 2215 rx_status->chains |= BIT(0); 2216 if (rx->ppdu.combined_rssi == 0) { 2217 /* SDIO firmware does not provide signal */ 2218 rx_status->signal = 0; 2219 rx_status->flag |= RX_FLAG_NO_SIGNAL_VAL; 2220 } else { 2221 rx_status->signal = ATH10K_DEFAULT_NOISE_FLOOR + 2222 rx->ppdu.combined_rssi; 2223 rx_status->flag &= ~RX_FLAG_NO_SIGNAL_VAL; 2224 } 2225 2226 spin_lock_bh(&ar->data_lock); 2227 ch = ar->scan_channel; 2228 if (!ch) 2229 ch = ar->rx_channel; 2230 if (!ch) 2231 ch = ath10k_htt_rx_h_any_channel(ar); 2232 if (!ch) 2233 ch = ar->tgt_oper_chan; 2234 spin_unlock_bh(&ar->data_lock); 2235 2236 if (ch) { 2237 rx_status->band = ch->band; 2238 rx_status->freq = ch->center_freq; 2239 } 2240 if (rx->fw_desc.flags & FW_RX_DESC_FLAGS_LAST_MSDU) 2241 rx_status->flag &= ~RX_FLAG_AMSDU_MORE; 2242 else 2243 rx_status->flag |= RX_FLAG_AMSDU_MORE; 2244 2245 /* Not entirely sure about this, but all frames from the chipset has 2246 * the protected flag set even though they have already been decrypted. 2247 * Unmasking this flag is necessary in order for mac80211 not to drop 2248 * the frame. 2249 * TODO: Verify this is always the case or find out a way to check 2250 * if there has been hw decryption. 2251 */ 2252 if (ieee80211_has_protected(hdr->frame_control)) { 2253 hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED); 2254 rx_status->flag |= RX_FLAG_DECRYPTED | 2255 RX_FLAG_IV_STRIPPED | 2256 RX_FLAG_MMIC_STRIPPED; 2257 } 2258 2259 if (tkip_mic_type == HTT_RX_TKIP_MIC) 2260 rx_status->flag &= ~RX_FLAG_IV_STRIPPED & 2261 ~RX_FLAG_MMIC_STRIPPED; 2262 2263 if (mpdu_ranges->mpdu_range_status == HTT_RX_IND_MPDU_STATUS_TKIP_MIC_ERR) 2264 rx_status->flag |= RX_FLAG_MMIC_ERROR; 2265 2266 ieee80211_rx_ni(ar->hw, skb); 2267 2268 /* We have delivered the skb to the upper layers (mac80211) so we 2269 * must not free it. 2270 */ 2271 return false; 2272 err: 2273 /* Tell the caller that it must free the skb since we have not 2274 * consumed it 2275 */ 2276 return true; 2277 } 2278 2279 static int ath10k_htt_rx_frag_tkip_decap_nomic(struct sk_buff *skb, 2280 u16 head_len, 2281 u16 hdr_len) 2282 { 2283 u8 *ivp, *orig_hdr; 2284 2285 orig_hdr = skb->data; 2286 ivp = orig_hdr + hdr_len + head_len; 2287 2288 /* the ExtIV bit is always set to 1 for TKIP */ 2289 if (!(ivp[IEEE80211_WEP_IV_LEN - 1] & ATH10K_IEEE80211_EXTIV)) 2290 return -EINVAL; 2291 2292 memmove(orig_hdr + IEEE80211_TKIP_IV_LEN, orig_hdr, head_len + hdr_len); 2293 skb_pull(skb, IEEE80211_TKIP_IV_LEN); 2294 skb_trim(skb, skb->len - ATH10K_IEEE80211_TKIP_MICLEN); 2295 return 0; 2296 } 2297 2298 static int ath10k_htt_rx_frag_tkip_decap_withmic(struct sk_buff *skb, 2299 u16 head_len, 2300 u16 hdr_len) 2301 { 2302 u8 *ivp, *orig_hdr; 2303 2304 orig_hdr = skb->data; 2305 ivp = orig_hdr + hdr_len + head_len; 2306 2307 /* the ExtIV bit is always set to 1 for TKIP */ 2308 if (!(ivp[IEEE80211_WEP_IV_LEN - 1] & ATH10K_IEEE80211_EXTIV)) 2309 return -EINVAL; 2310 2311 memmove(orig_hdr + IEEE80211_TKIP_IV_LEN, orig_hdr, head_len + hdr_len); 2312 skb_pull(skb, IEEE80211_TKIP_IV_LEN); 2313 skb_trim(skb, skb->len - IEEE80211_TKIP_ICV_LEN); 2314 return 0; 2315 } 2316 2317 static int ath10k_htt_rx_frag_ccmp_decap(struct sk_buff *skb, 2318 u16 head_len, 2319 u16 hdr_len) 2320 { 2321 u8 *ivp, *orig_hdr; 2322 2323 orig_hdr = skb->data; 2324 ivp = orig_hdr + hdr_len + head_len; 2325 2326 /* the ExtIV bit is always set to 1 for CCMP */ 2327 if (!(ivp[IEEE80211_WEP_IV_LEN - 1] & ATH10K_IEEE80211_EXTIV)) 2328 return -EINVAL; 2329 2330 skb_trim(skb, skb->len - IEEE80211_CCMP_MIC_LEN); 2331 memmove(orig_hdr + IEEE80211_CCMP_HDR_LEN, orig_hdr, head_len + hdr_len); 2332 skb_pull(skb, IEEE80211_CCMP_HDR_LEN); 2333 return 0; 2334 } 2335 2336 static int ath10k_htt_rx_frag_wep_decap(struct sk_buff *skb, 2337 u16 head_len, 2338 u16 hdr_len) 2339 { 2340 u8 *orig_hdr; 2341 2342 orig_hdr = skb->data; 2343 2344 memmove(orig_hdr + IEEE80211_WEP_IV_LEN, 2345 orig_hdr, head_len + hdr_len); 2346 skb_pull(skb, IEEE80211_WEP_IV_LEN); 2347 skb_trim(skb, skb->len - IEEE80211_WEP_ICV_LEN); 2348 return 0; 2349 } 2350 2351 static bool ath10k_htt_rx_proc_rx_frag_ind_hl(struct ath10k_htt *htt, 2352 struct htt_rx_fragment_indication *rx, 2353 struct sk_buff *skb) 2354 { 2355 struct ath10k *ar = htt->ar; 2356 enum htt_rx_tkip_demic_type tkip_mic = HTT_RX_NON_TKIP_MIC; 2357 enum htt_txrx_sec_cast_type sec_index; 2358 struct htt_rx_indication_hl *rx_hl; 2359 enum htt_security_types sec_type; 2360 u32 tid, frag, seq, rx_desc_info; 2361 union htt_rx_pn_t new_pn = {0}; 2362 struct htt_hl_rx_desc *rx_desc; 2363 u16 peer_id, sc, hdr_space; 2364 union htt_rx_pn_t *last_pn; 2365 struct ieee80211_hdr *hdr; 2366 int ret, num_mpdu_ranges; 2367 struct ath10k_peer *peer; 2368 struct htt_resp *resp; 2369 size_t tot_hdr_len; 2370 2371 resp = (struct htt_resp *)(skb->data + HTT_RX_FRAG_IND_INFO0_HEADER_LEN); 2372 skb_pull(skb, HTT_RX_FRAG_IND_INFO0_HEADER_LEN); 2373 skb_trim(skb, skb->len - FCS_LEN); 2374 2375 peer_id = __le16_to_cpu(rx->peer_id); 2376 rx_hl = (struct htt_rx_indication_hl *)(&resp->rx_ind_hl); 2377 2378 spin_lock_bh(&ar->data_lock); 2379 peer = ath10k_peer_find_by_id(ar, peer_id); 2380 if (!peer) { 2381 ath10k_dbg(ar, ATH10K_DBG_HTT, "invalid peer: %u\n", peer_id); 2382 goto err; 2383 } 2384 2385 num_mpdu_ranges = MS(__le32_to_cpu(rx_hl->hdr.info1), 2386 HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES); 2387 2388 tot_hdr_len = sizeof(struct htt_resp_hdr) + 2389 sizeof(rx_hl->hdr) + 2390 sizeof(rx_hl->ppdu) + 2391 sizeof(rx_hl->prefix) + 2392 sizeof(rx_hl->fw_desc) + 2393 sizeof(struct htt_rx_indication_mpdu_range) * num_mpdu_ranges; 2394 2395 tid = MS(rx_hl->hdr.info0, HTT_RX_INDICATION_INFO0_EXT_TID); 2396 rx_desc = (struct htt_hl_rx_desc *)(skb->data + tot_hdr_len); 2397 rx_desc_info = __le32_to_cpu(rx_desc->info); 2398 2399 if (!MS(rx_desc_info, HTT_RX_DESC_HL_INFO_ENCRYPTED)) { 2400 spin_unlock_bh(&ar->data_lock); 2401 return ath10k_htt_rx_proc_rx_ind_hl(htt, &resp->rx_ind_hl, skb, 2402 HTT_RX_NON_PN_CHECK, 2403 HTT_RX_NON_TKIP_MIC); 2404 } 2405 2406 hdr = (struct ieee80211_hdr *)((u8 *)rx_desc + rx_hl->fw_desc.len); 2407 2408 if (ieee80211_has_retry(hdr->frame_control)) 2409 goto err; 2410 2411 hdr_space = ieee80211_hdrlen(hdr->frame_control); 2412 sc = __le16_to_cpu(hdr->seq_ctrl); 2413 seq = (sc & IEEE80211_SCTL_SEQ) >> 4; 2414 frag = sc & IEEE80211_SCTL_FRAG; 2415 2416 sec_index = MS(rx_desc_info, HTT_RX_DESC_HL_INFO_MCAST_BCAST) ? 2417 HTT_TXRX_SEC_MCAST : HTT_TXRX_SEC_UCAST; 2418 sec_type = peer->rx_pn[sec_index].sec_type; 2419 ath10k_htt_rx_mpdu_desc_pn_hl(rx_desc, &new_pn, peer->rx_pn[sec_index].pn_len); 2420 2421 switch (sec_type) { 2422 case HTT_SECURITY_TKIP: 2423 tkip_mic = HTT_RX_TKIP_MIC; 2424 ret = ath10k_htt_rx_frag_tkip_decap_withmic(skb, 2425 tot_hdr_len + 2426 rx_hl->fw_desc.len, 2427 hdr_space); 2428 if (ret) 2429 goto err; 2430 break; 2431 case HTT_SECURITY_TKIP_NOMIC: 2432 ret = ath10k_htt_rx_frag_tkip_decap_nomic(skb, 2433 tot_hdr_len + 2434 rx_hl->fw_desc.len, 2435 hdr_space); 2436 if (ret) 2437 goto err; 2438 break; 2439 case HTT_SECURITY_AES_CCMP: 2440 ret = ath10k_htt_rx_frag_ccmp_decap(skb, 2441 tot_hdr_len + rx_hl->fw_desc.len, 2442 hdr_space); 2443 if (ret) 2444 goto err; 2445 break; 2446 case HTT_SECURITY_WEP128: 2447 case HTT_SECURITY_WEP104: 2448 case HTT_SECURITY_WEP40: 2449 ret = ath10k_htt_rx_frag_wep_decap(skb, 2450 tot_hdr_len + rx_hl->fw_desc.len, 2451 hdr_space); 2452 if (ret) 2453 goto err; 2454 break; 2455 default: 2456 break; 2457 } 2458 2459 resp = (struct htt_resp *)(skb->data); 2460 2461 if (sec_type != HTT_SECURITY_AES_CCMP && 2462 sec_type != HTT_SECURITY_TKIP && 2463 sec_type != HTT_SECURITY_TKIP_NOMIC) { 2464 spin_unlock_bh(&ar->data_lock); 2465 return ath10k_htt_rx_proc_rx_ind_hl(htt, &resp->rx_ind_hl, skb, 2466 HTT_RX_NON_PN_CHECK, 2467 HTT_RX_NON_TKIP_MIC); 2468 } 2469 2470 last_pn = &peer->frag_tids_last_pn[tid]; 2471 2472 if (frag == 0) { 2473 if (ath10k_htt_rx_pn_check_replay_hl(ar, peer, &resp->rx_ind_hl)) 2474 goto err; 2475 2476 last_pn->pn48 = new_pn.pn48; 2477 peer->frag_tids_seq[tid] = seq; 2478 } else if (sec_type == HTT_SECURITY_AES_CCMP) { 2479 if (seq != peer->frag_tids_seq[tid]) 2480 goto err; 2481 2482 if (new_pn.pn48 != last_pn->pn48 + 1) 2483 goto err; 2484 2485 last_pn->pn48 = new_pn.pn48; 2486 last_pn = &peer->tids_last_pn[tid]; 2487 last_pn->pn48 = new_pn.pn48; 2488 } 2489 2490 spin_unlock_bh(&ar->data_lock); 2491 2492 return ath10k_htt_rx_proc_rx_ind_hl(htt, &resp->rx_ind_hl, skb, 2493 HTT_RX_NON_PN_CHECK, tkip_mic); 2494 2495 err: 2496 spin_unlock_bh(&ar->data_lock); 2497 2498 /* Tell the caller that it must free the skb since we have not 2499 * consumed it 2500 */ 2501 return true; 2502 } 2503 2504 static void ath10k_htt_rx_proc_rx_ind_ll(struct ath10k_htt *htt, 2505 struct htt_rx_indication *rx) 2506 { 2507 struct ath10k *ar = htt->ar; 2508 struct htt_rx_indication_mpdu_range *mpdu_ranges; 2509 int num_mpdu_ranges; 2510 int i, mpdu_count = 0; 2511 u16 peer_id; 2512 u8 tid; 2513 2514 num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1), 2515 HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES); 2516 peer_id = __le16_to_cpu(rx->hdr.peer_id); 2517 tid = MS(rx->hdr.info0, HTT_RX_INDICATION_INFO0_EXT_TID); 2518 2519 mpdu_ranges = htt_rx_ind_get_mpdu_ranges(rx); 2520 2521 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx ind: ", 2522 rx, struct_size(rx, mpdu_ranges, num_mpdu_ranges)); 2523 2524 for (i = 0; i < num_mpdu_ranges; i++) 2525 mpdu_count += mpdu_ranges[i].mpdu_count; 2526 2527 atomic_add(mpdu_count, &htt->num_mpdus_ready); 2528 2529 ath10k_sta_update_rx_tid_stats_ampdu(ar, peer_id, tid, mpdu_ranges, 2530 num_mpdu_ranges); 2531 } 2532 2533 static void ath10k_htt_rx_tx_compl_ind(struct ath10k *ar, 2534 struct sk_buff *skb) 2535 { 2536 struct ath10k_htt *htt = &ar->htt; 2537 struct htt_resp *resp = (struct htt_resp *)skb->data; 2538 struct htt_tx_done tx_done = {}; 2539 int status = MS(resp->data_tx_completion.flags, HTT_DATA_TX_STATUS); 2540 __le16 msdu_id, *msdus; 2541 bool rssi_enabled = false; 2542 u8 msdu_count = 0, num_airtime_records, tid; 2543 int i, htt_pad = 0; 2544 struct htt_data_tx_compl_ppdu_dur *ppdu_info; 2545 struct ath10k_peer *peer; 2546 u16 ppdu_info_offset = 0, peer_id; 2547 u32 tx_duration; 2548 2549 switch (status) { 2550 case HTT_DATA_TX_STATUS_NO_ACK: 2551 tx_done.status = HTT_TX_COMPL_STATE_NOACK; 2552 break; 2553 case HTT_DATA_TX_STATUS_OK: 2554 tx_done.status = HTT_TX_COMPL_STATE_ACK; 2555 break; 2556 case HTT_DATA_TX_STATUS_DISCARD: 2557 case HTT_DATA_TX_STATUS_POSTPONE: 2558 case HTT_DATA_TX_STATUS_DOWNLOAD_FAIL: 2559 tx_done.status = HTT_TX_COMPL_STATE_DISCARD; 2560 break; 2561 default: 2562 ath10k_warn(ar, "unhandled tx completion status %d\n", status); 2563 tx_done.status = HTT_TX_COMPL_STATE_DISCARD; 2564 break; 2565 } 2566 2567 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx completion num_msdus %d\n", 2568 resp->data_tx_completion.num_msdus); 2569 2570 msdu_count = resp->data_tx_completion.num_msdus; 2571 msdus = resp->data_tx_completion.msdus; 2572 rssi_enabled = ath10k_is_rssi_enable(&ar->hw_params, resp); 2573 2574 if (rssi_enabled) 2575 htt_pad = ath10k_tx_data_rssi_get_pad_bytes(&ar->hw_params, 2576 resp); 2577 2578 for (i = 0; i < msdu_count; i++) { 2579 msdu_id = msdus[i]; 2580 tx_done.msdu_id = __le16_to_cpu(msdu_id); 2581 2582 if (rssi_enabled) { 2583 /* Total no of MSDUs should be even, 2584 * if odd MSDUs are sent firmware fills 2585 * last msdu id with 0xffff 2586 */ 2587 if (msdu_count & 0x01) { 2588 msdu_id = msdus[msdu_count + i + 1 + htt_pad]; 2589 tx_done.ack_rssi = __le16_to_cpu(msdu_id); 2590 } else { 2591 msdu_id = msdus[msdu_count + i + htt_pad]; 2592 tx_done.ack_rssi = __le16_to_cpu(msdu_id); 2593 } 2594 } 2595 2596 /* kfifo_put: In practice firmware shouldn't fire off per-CE 2597 * interrupt and main interrupt (MSI/-X range case) for the same 2598 * HTC service so it should be safe to use kfifo_put w/o lock. 2599 * 2600 * From kfifo_put() documentation: 2601 * Note that with only one concurrent reader and one concurrent 2602 * writer, you don't need extra locking to use these macro. 2603 */ 2604 if (ar->bus_param.dev_type == ATH10K_DEV_TYPE_HL) { 2605 ath10k_txrx_tx_unref(htt, &tx_done); 2606 } else if (!kfifo_put(&htt->txdone_fifo, tx_done)) { 2607 ath10k_warn(ar, "txdone fifo overrun, msdu_id %d status %d\n", 2608 tx_done.msdu_id, tx_done.status); 2609 ath10k_txrx_tx_unref(htt, &tx_done); 2610 } 2611 } 2612 2613 if (!(resp->data_tx_completion.flags2 & HTT_TX_CMPL_FLAG_PPDU_DURATION_PRESENT)) 2614 return; 2615 2616 ppdu_info_offset = (msdu_count & 0x01) ? msdu_count + 1 : msdu_count; 2617 2618 if (rssi_enabled) 2619 ppdu_info_offset += ppdu_info_offset; 2620 2621 if (resp->data_tx_completion.flags2 & 2622 (HTT_TX_CMPL_FLAG_PPID_PRESENT | HTT_TX_CMPL_FLAG_PA_PRESENT)) 2623 ppdu_info_offset += 2; 2624 2625 ppdu_info = (struct htt_data_tx_compl_ppdu_dur *)&msdus[ppdu_info_offset]; 2626 num_airtime_records = FIELD_GET(HTT_TX_COMPL_PPDU_DUR_INFO0_NUM_ENTRIES_MASK, 2627 __le32_to_cpu(ppdu_info->info0)); 2628 2629 for (i = 0; i < num_airtime_records; i++) { 2630 struct htt_data_tx_ppdu_dur *ppdu_dur; 2631 u32 info0; 2632 2633 ppdu_dur = &ppdu_info->ppdu_dur[i]; 2634 info0 = __le32_to_cpu(ppdu_dur->info0); 2635 2636 peer_id = FIELD_GET(HTT_TX_PPDU_DUR_INFO0_PEER_ID_MASK, 2637 info0); 2638 rcu_read_lock(); 2639 spin_lock_bh(&ar->data_lock); 2640 2641 peer = ath10k_peer_find_by_id(ar, peer_id); 2642 if (!peer) { 2643 spin_unlock_bh(&ar->data_lock); 2644 rcu_read_unlock(); 2645 continue; 2646 } 2647 2648 tid = FIELD_GET(HTT_TX_PPDU_DUR_INFO0_TID_MASK, info0); 2649 tx_duration = __le32_to_cpu(ppdu_dur->tx_duration); 2650 2651 ieee80211_sta_register_airtime(peer->sta, tid, tx_duration, 0); 2652 2653 spin_unlock_bh(&ar->data_lock); 2654 rcu_read_unlock(); 2655 } 2656 } 2657 2658 static void ath10k_htt_rx_addba(struct ath10k *ar, struct htt_resp *resp) 2659 { 2660 struct htt_rx_addba *ev = &resp->rx_addba; 2661 struct ath10k_peer *peer; 2662 struct ath10k_vif *arvif; 2663 u16 info0, tid, peer_id; 2664 2665 info0 = __le16_to_cpu(ev->info0); 2666 tid = MS(info0, HTT_RX_BA_INFO0_TID); 2667 peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID); 2668 2669 ath10k_dbg(ar, ATH10K_DBG_HTT, 2670 "htt rx addba tid %hu peer_id %hu size %hhu\n", 2671 tid, peer_id, ev->window_size); 2672 2673 spin_lock_bh(&ar->data_lock); 2674 peer = ath10k_peer_find_by_id(ar, peer_id); 2675 if (!peer) { 2676 ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n", 2677 peer_id); 2678 spin_unlock_bh(&ar->data_lock); 2679 return; 2680 } 2681 2682 arvif = ath10k_get_arvif(ar, peer->vdev_id); 2683 if (!arvif) { 2684 ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n", 2685 peer->vdev_id); 2686 spin_unlock_bh(&ar->data_lock); 2687 return; 2688 } 2689 2690 ath10k_dbg(ar, ATH10K_DBG_HTT, 2691 "htt rx start rx ba session sta %pM tid %hu size %hhu\n", 2692 peer->addr, tid, ev->window_size); 2693 2694 ieee80211_start_rx_ba_session_offl(arvif->vif, peer->addr, tid); 2695 spin_unlock_bh(&ar->data_lock); 2696 } 2697 2698 static void ath10k_htt_rx_delba(struct ath10k *ar, struct htt_resp *resp) 2699 { 2700 struct htt_rx_delba *ev = &resp->rx_delba; 2701 struct ath10k_peer *peer; 2702 struct ath10k_vif *arvif; 2703 u16 info0, tid, peer_id; 2704 2705 info0 = __le16_to_cpu(ev->info0); 2706 tid = MS(info0, HTT_RX_BA_INFO0_TID); 2707 peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID); 2708 2709 ath10k_dbg(ar, ATH10K_DBG_HTT, 2710 "htt rx delba tid %hu peer_id %hu\n", 2711 tid, peer_id); 2712 2713 spin_lock_bh(&ar->data_lock); 2714 peer = ath10k_peer_find_by_id(ar, peer_id); 2715 if (!peer) { 2716 ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n", 2717 peer_id); 2718 spin_unlock_bh(&ar->data_lock); 2719 return; 2720 } 2721 2722 arvif = ath10k_get_arvif(ar, peer->vdev_id); 2723 if (!arvif) { 2724 ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n", 2725 peer->vdev_id); 2726 spin_unlock_bh(&ar->data_lock); 2727 return; 2728 } 2729 2730 ath10k_dbg(ar, ATH10K_DBG_HTT, 2731 "htt rx stop rx ba session sta %pM tid %hu\n", 2732 peer->addr, tid); 2733 2734 ieee80211_stop_rx_ba_session_offl(arvif->vif, peer->addr, tid); 2735 spin_unlock_bh(&ar->data_lock); 2736 } 2737 2738 static int ath10k_htt_rx_extract_amsdu(struct sk_buff_head *list, 2739 struct sk_buff_head *amsdu) 2740 { 2741 struct sk_buff *msdu; 2742 struct htt_rx_desc *rxd; 2743 2744 if (skb_queue_empty(list)) 2745 return -ENOBUFS; 2746 2747 if (WARN_ON(!skb_queue_empty(amsdu))) 2748 return -EINVAL; 2749 2750 while ((msdu = __skb_dequeue(list))) { 2751 __skb_queue_tail(amsdu, msdu); 2752 2753 rxd = (void *)msdu->data - sizeof(*rxd); 2754 if (rxd->msdu_end.common.info0 & 2755 __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU)) 2756 break; 2757 } 2758 2759 msdu = skb_peek_tail(amsdu); 2760 rxd = (void *)msdu->data - sizeof(*rxd); 2761 if (!(rxd->msdu_end.common.info0 & 2762 __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU))) { 2763 skb_queue_splice_init(amsdu, list); 2764 return -EAGAIN; 2765 } 2766 2767 return 0; 2768 } 2769 2770 static void ath10k_htt_rx_h_rx_offload_prot(struct ieee80211_rx_status *status, 2771 struct sk_buff *skb) 2772 { 2773 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2774 2775 if (!ieee80211_has_protected(hdr->frame_control)) 2776 return; 2777 2778 /* Offloaded frames are already decrypted but firmware insists they are 2779 * protected in the 802.11 header. Strip the flag. Otherwise mac80211 2780 * will drop the frame. 2781 */ 2782 2783 hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED); 2784 status->flag |= RX_FLAG_DECRYPTED | 2785 RX_FLAG_IV_STRIPPED | 2786 RX_FLAG_MMIC_STRIPPED; 2787 } 2788 2789 static void ath10k_htt_rx_h_rx_offload(struct ath10k *ar, 2790 struct sk_buff_head *list) 2791 { 2792 struct ath10k_htt *htt = &ar->htt; 2793 struct ieee80211_rx_status *status = &htt->rx_status; 2794 struct htt_rx_offload_msdu *rx; 2795 struct sk_buff *msdu; 2796 size_t offset; 2797 2798 while ((msdu = __skb_dequeue(list))) { 2799 /* Offloaded frames don't have Rx descriptor. Instead they have 2800 * a short meta information header. 2801 */ 2802 2803 rx = (void *)msdu->data; 2804 2805 skb_put(msdu, sizeof(*rx)); 2806 skb_pull(msdu, sizeof(*rx)); 2807 2808 if (skb_tailroom(msdu) < __le16_to_cpu(rx->msdu_len)) { 2809 ath10k_warn(ar, "dropping frame: offloaded rx msdu is too long!\n"); 2810 dev_kfree_skb_any(msdu); 2811 continue; 2812 } 2813 2814 skb_put(msdu, __le16_to_cpu(rx->msdu_len)); 2815 2816 /* Offloaded rx header length isn't multiple of 2 nor 4 so the 2817 * actual payload is unaligned. Align the frame. Otherwise 2818 * mac80211 complains. This shouldn't reduce performance much 2819 * because these offloaded frames are rare. 2820 */ 2821 offset = 4 - ((unsigned long)msdu->data & 3); 2822 skb_put(msdu, offset); 2823 memmove(msdu->data + offset, msdu->data, msdu->len); 2824 skb_pull(msdu, offset); 2825 2826 /* FIXME: The frame is NWifi. Re-construct QoS Control 2827 * if possible later. 2828 */ 2829 2830 memset(status, 0, sizeof(*status)); 2831 status->flag |= RX_FLAG_NO_SIGNAL_VAL; 2832 2833 ath10k_htt_rx_h_rx_offload_prot(status, msdu); 2834 ath10k_htt_rx_h_channel(ar, status, NULL, rx->vdev_id); 2835 ath10k_htt_rx_h_queue_msdu(ar, status, msdu); 2836 } 2837 } 2838 2839 static int ath10k_htt_rx_in_ord_ind(struct ath10k *ar, struct sk_buff *skb) 2840 { 2841 struct ath10k_htt *htt = &ar->htt; 2842 struct htt_resp *resp = (void *)skb->data; 2843 struct ieee80211_rx_status *status = &htt->rx_status; 2844 struct sk_buff_head list; 2845 struct sk_buff_head amsdu; 2846 u16 peer_id; 2847 u16 msdu_count; 2848 u8 vdev_id; 2849 u8 tid; 2850 bool offload; 2851 bool frag; 2852 int ret; 2853 2854 lockdep_assert_held(&htt->rx_ring.lock); 2855 2856 if (htt->rx_confused) 2857 return -EIO; 2858 2859 skb_pull(skb, sizeof(resp->hdr)); 2860 skb_pull(skb, sizeof(resp->rx_in_ord_ind)); 2861 2862 peer_id = __le16_to_cpu(resp->rx_in_ord_ind.peer_id); 2863 msdu_count = __le16_to_cpu(resp->rx_in_ord_ind.msdu_count); 2864 vdev_id = resp->rx_in_ord_ind.vdev_id; 2865 tid = SM(resp->rx_in_ord_ind.info, HTT_RX_IN_ORD_IND_INFO_TID); 2866 offload = !!(resp->rx_in_ord_ind.info & 2867 HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK); 2868 frag = !!(resp->rx_in_ord_ind.info & HTT_RX_IN_ORD_IND_INFO_FRAG_MASK); 2869 2870 ath10k_dbg(ar, ATH10K_DBG_HTT, 2871 "htt rx in ord vdev %i peer %i tid %i offload %i frag %i msdu count %i\n", 2872 vdev_id, peer_id, tid, offload, frag, msdu_count); 2873 2874 if (skb->len < msdu_count * sizeof(*resp->rx_in_ord_ind.msdu_descs32)) { 2875 ath10k_warn(ar, "dropping invalid in order rx indication\n"); 2876 return -EINVAL; 2877 } 2878 2879 /* The event can deliver more than 1 A-MSDU. Each A-MSDU is later 2880 * extracted and processed. 2881 */ 2882 __skb_queue_head_init(&list); 2883 if (ar->hw_params.target_64bit) 2884 ret = ath10k_htt_rx_pop_paddr64_list(htt, &resp->rx_in_ord_ind, 2885 &list); 2886 else 2887 ret = ath10k_htt_rx_pop_paddr32_list(htt, &resp->rx_in_ord_ind, 2888 &list); 2889 2890 if (ret < 0) { 2891 ath10k_warn(ar, "failed to pop paddr list: %d\n", ret); 2892 htt->rx_confused = true; 2893 return -EIO; 2894 } 2895 2896 /* Offloaded frames are very different and need to be handled 2897 * separately. 2898 */ 2899 if (offload) 2900 ath10k_htt_rx_h_rx_offload(ar, &list); 2901 2902 while (!skb_queue_empty(&list)) { 2903 __skb_queue_head_init(&amsdu); 2904 ret = ath10k_htt_rx_extract_amsdu(&list, &amsdu); 2905 switch (ret) { 2906 case 0: 2907 /* Note: The in-order indication may report interleaved 2908 * frames from different PPDUs meaning reported rx rate 2909 * to mac80211 isn't accurate/reliable. It's still 2910 * better to report something than nothing though. This 2911 * should still give an idea about rx rate to the user. 2912 */ 2913 ath10k_htt_rx_h_ppdu(ar, &amsdu, status, vdev_id); 2914 ath10k_htt_rx_h_filter(ar, &amsdu, status, NULL); 2915 ath10k_htt_rx_h_mpdu(ar, &amsdu, status, false, NULL, 2916 NULL); 2917 ath10k_htt_rx_h_enqueue(ar, &amsdu, status); 2918 break; 2919 case -EAGAIN: 2920 /* fall through */ 2921 default: 2922 /* Should not happen. */ 2923 ath10k_warn(ar, "failed to extract amsdu: %d\n", ret); 2924 htt->rx_confused = true; 2925 __skb_queue_purge(&list); 2926 return -EIO; 2927 } 2928 } 2929 return ret; 2930 } 2931 2932 static void ath10k_htt_rx_tx_fetch_resp_id_confirm(struct ath10k *ar, 2933 const __le32 *resp_ids, 2934 int num_resp_ids) 2935 { 2936 int i; 2937 u32 resp_id; 2938 2939 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm num_resp_ids %d\n", 2940 num_resp_ids); 2941 2942 for (i = 0; i < num_resp_ids; i++) { 2943 resp_id = le32_to_cpu(resp_ids[i]); 2944 2945 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm resp_id %u\n", 2946 resp_id); 2947 2948 /* TODO: free resp_id */ 2949 } 2950 } 2951 2952 static void ath10k_htt_rx_tx_fetch_ind(struct ath10k *ar, struct sk_buff *skb) 2953 { 2954 struct ieee80211_hw *hw = ar->hw; 2955 struct ieee80211_txq *txq; 2956 struct htt_resp *resp = (struct htt_resp *)skb->data; 2957 struct htt_tx_fetch_record *record; 2958 size_t len; 2959 size_t max_num_bytes; 2960 size_t max_num_msdus; 2961 size_t num_bytes; 2962 size_t num_msdus; 2963 const __le32 *resp_ids; 2964 u16 num_records; 2965 u16 num_resp_ids; 2966 u16 peer_id; 2967 u8 tid; 2968 int ret; 2969 int i; 2970 bool may_tx; 2971 2972 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch ind\n"); 2973 2974 len = sizeof(resp->hdr) + sizeof(resp->tx_fetch_ind); 2975 if (unlikely(skb->len < len)) { 2976 ath10k_warn(ar, "received corrupted tx_fetch_ind event: buffer too short\n"); 2977 return; 2978 } 2979 2980 num_records = le16_to_cpu(resp->tx_fetch_ind.num_records); 2981 num_resp_ids = le16_to_cpu(resp->tx_fetch_ind.num_resp_ids); 2982 2983 len += sizeof(resp->tx_fetch_ind.records[0]) * num_records; 2984 len += sizeof(resp->tx_fetch_ind.resp_ids[0]) * num_resp_ids; 2985 2986 if (unlikely(skb->len < len)) { 2987 ath10k_warn(ar, "received corrupted tx_fetch_ind event: too many records/resp_ids\n"); 2988 return; 2989 } 2990 2991 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch ind num records %hu num resps %hu seq %hu\n", 2992 num_records, num_resp_ids, 2993 le16_to_cpu(resp->tx_fetch_ind.fetch_seq_num)); 2994 2995 if (!ar->htt.tx_q_state.enabled) { 2996 ath10k_warn(ar, "received unexpected tx_fetch_ind event: not enabled\n"); 2997 return; 2998 } 2999 3000 if (ar->htt.tx_q_state.mode == HTT_TX_MODE_SWITCH_PUSH) { 3001 ath10k_warn(ar, "received unexpected tx_fetch_ind event: in push mode\n"); 3002 return; 3003 } 3004 3005 rcu_read_lock(); 3006 3007 for (i = 0; i < num_records; i++) { 3008 record = &resp->tx_fetch_ind.records[i]; 3009 peer_id = MS(le16_to_cpu(record->info), 3010 HTT_TX_FETCH_RECORD_INFO_PEER_ID); 3011 tid = MS(le16_to_cpu(record->info), 3012 HTT_TX_FETCH_RECORD_INFO_TID); 3013 max_num_msdus = le16_to_cpu(record->num_msdus); 3014 max_num_bytes = le32_to_cpu(record->num_bytes); 3015 3016 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch record %i peer_id %hu tid %hhu msdus %zu bytes %zu\n", 3017 i, peer_id, tid, max_num_msdus, max_num_bytes); 3018 3019 if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) || 3020 unlikely(tid >= ar->htt.tx_q_state.num_tids)) { 3021 ath10k_warn(ar, "received out of range peer_id %hu tid %hhu\n", 3022 peer_id, tid); 3023 continue; 3024 } 3025 3026 spin_lock_bh(&ar->data_lock); 3027 txq = ath10k_mac_txq_lookup(ar, peer_id, tid); 3028 spin_unlock_bh(&ar->data_lock); 3029 3030 /* It is okay to release the lock and use txq because RCU read 3031 * lock is held. 3032 */ 3033 3034 if (unlikely(!txq)) { 3035 ath10k_warn(ar, "failed to lookup txq for peer_id %hu tid %hhu\n", 3036 peer_id, tid); 3037 continue; 3038 } 3039 3040 num_msdus = 0; 3041 num_bytes = 0; 3042 3043 ieee80211_txq_schedule_start(hw, txq->ac); 3044 may_tx = ieee80211_txq_may_transmit(hw, txq); 3045 while (num_msdus < max_num_msdus && 3046 num_bytes < max_num_bytes) { 3047 if (!may_tx) 3048 break; 3049 3050 ret = ath10k_mac_tx_push_txq(hw, txq); 3051 if (ret < 0) 3052 break; 3053 3054 num_msdus++; 3055 num_bytes += ret; 3056 } 3057 ieee80211_return_txq(hw, txq, false); 3058 ieee80211_txq_schedule_end(hw, txq->ac); 3059 3060 record->num_msdus = cpu_to_le16(num_msdus); 3061 record->num_bytes = cpu_to_le32(num_bytes); 3062 3063 ath10k_htt_tx_txq_recalc(hw, txq); 3064 } 3065 3066 rcu_read_unlock(); 3067 3068 resp_ids = ath10k_htt_get_tx_fetch_ind_resp_ids(&resp->tx_fetch_ind); 3069 ath10k_htt_rx_tx_fetch_resp_id_confirm(ar, resp_ids, num_resp_ids); 3070 3071 ret = ath10k_htt_tx_fetch_resp(ar, 3072 resp->tx_fetch_ind.token, 3073 resp->tx_fetch_ind.fetch_seq_num, 3074 resp->tx_fetch_ind.records, 3075 num_records); 3076 if (unlikely(ret)) { 3077 ath10k_warn(ar, "failed to submit tx fetch resp for token 0x%08x: %d\n", 3078 le32_to_cpu(resp->tx_fetch_ind.token), ret); 3079 /* FIXME: request fw restart */ 3080 } 3081 3082 ath10k_htt_tx_txq_sync(ar); 3083 } 3084 3085 static void ath10k_htt_rx_tx_fetch_confirm(struct ath10k *ar, 3086 struct sk_buff *skb) 3087 { 3088 const struct htt_resp *resp = (void *)skb->data; 3089 size_t len; 3090 int num_resp_ids; 3091 3092 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm\n"); 3093 3094 len = sizeof(resp->hdr) + sizeof(resp->tx_fetch_confirm); 3095 if (unlikely(skb->len < len)) { 3096 ath10k_warn(ar, "received corrupted tx_fetch_confirm event: buffer too short\n"); 3097 return; 3098 } 3099 3100 num_resp_ids = le16_to_cpu(resp->tx_fetch_confirm.num_resp_ids); 3101 len += sizeof(resp->tx_fetch_confirm.resp_ids[0]) * num_resp_ids; 3102 3103 if (unlikely(skb->len < len)) { 3104 ath10k_warn(ar, "received corrupted tx_fetch_confirm event: resp_ids buffer overflow\n"); 3105 return; 3106 } 3107 3108 ath10k_htt_rx_tx_fetch_resp_id_confirm(ar, 3109 resp->tx_fetch_confirm.resp_ids, 3110 num_resp_ids); 3111 } 3112 3113 static void ath10k_htt_rx_tx_mode_switch_ind(struct ath10k *ar, 3114 struct sk_buff *skb) 3115 { 3116 const struct htt_resp *resp = (void *)skb->data; 3117 const struct htt_tx_mode_switch_record *record; 3118 struct ieee80211_txq *txq; 3119 struct ath10k_txq *artxq; 3120 size_t len; 3121 size_t num_records; 3122 enum htt_tx_mode_switch_mode mode; 3123 bool enable; 3124 u16 info0; 3125 u16 info1; 3126 u16 threshold; 3127 u16 peer_id; 3128 u8 tid; 3129 int i; 3130 3131 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx mode switch ind\n"); 3132 3133 len = sizeof(resp->hdr) + sizeof(resp->tx_mode_switch_ind); 3134 if (unlikely(skb->len < len)) { 3135 ath10k_warn(ar, "received corrupted tx_mode_switch_ind event: buffer too short\n"); 3136 return; 3137 } 3138 3139 info0 = le16_to_cpu(resp->tx_mode_switch_ind.info0); 3140 info1 = le16_to_cpu(resp->tx_mode_switch_ind.info1); 3141 3142 enable = !!(info0 & HTT_TX_MODE_SWITCH_IND_INFO0_ENABLE); 3143 num_records = MS(info0, HTT_TX_MODE_SWITCH_IND_INFO1_THRESHOLD); 3144 mode = MS(info1, HTT_TX_MODE_SWITCH_IND_INFO1_MODE); 3145 threshold = MS(info1, HTT_TX_MODE_SWITCH_IND_INFO1_THRESHOLD); 3146 3147 ath10k_dbg(ar, ATH10K_DBG_HTT, 3148 "htt rx tx mode switch ind info0 0x%04hx info1 0x%04hx enable %d num records %zd mode %d threshold %hu\n", 3149 info0, info1, enable, num_records, mode, threshold); 3150 3151 len += sizeof(resp->tx_mode_switch_ind.records[0]) * num_records; 3152 3153 if (unlikely(skb->len < len)) { 3154 ath10k_warn(ar, "received corrupted tx_mode_switch_mode_ind event: too many records\n"); 3155 return; 3156 } 3157 3158 switch (mode) { 3159 case HTT_TX_MODE_SWITCH_PUSH: 3160 case HTT_TX_MODE_SWITCH_PUSH_PULL: 3161 break; 3162 default: 3163 ath10k_warn(ar, "received invalid tx_mode_switch_mode_ind mode %d, ignoring\n", 3164 mode); 3165 return; 3166 } 3167 3168 if (!enable) 3169 return; 3170 3171 ar->htt.tx_q_state.enabled = enable; 3172 ar->htt.tx_q_state.mode = mode; 3173 ar->htt.tx_q_state.num_push_allowed = threshold; 3174 3175 rcu_read_lock(); 3176 3177 for (i = 0; i < num_records; i++) { 3178 record = &resp->tx_mode_switch_ind.records[i]; 3179 info0 = le16_to_cpu(record->info0); 3180 peer_id = MS(info0, HTT_TX_MODE_SWITCH_RECORD_INFO0_PEER_ID); 3181 tid = MS(info0, HTT_TX_MODE_SWITCH_RECORD_INFO0_TID); 3182 3183 if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) || 3184 unlikely(tid >= ar->htt.tx_q_state.num_tids)) { 3185 ath10k_warn(ar, "received out of range peer_id %hu tid %hhu\n", 3186 peer_id, tid); 3187 continue; 3188 } 3189 3190 spin_lock_bh(&ar->data_lock); 3191 txq = ath10k_mac_txq_lookup(ar, peer_id, tid); 3192 spin_unlock_bh(&ar->data_lock); 3193 3194 /* It is okay to release the lock and use txq because RCU read 3195 * lock is held. 3196 */ 3197 3198 if (unlikely(!txq)) { 3199 ath10k_warn(ar, "failed to lookup txq for peer_id %hu tid %hhu\n", 3200 peer_id, tid); 3201 continue; 3202 } 3203 3204 spin_lock_bh(&ar->htt.tx_lock); 3205 artxq = (void *)txq->drv_priv; 3206 artxq->num_push_allowed = le16_to_cpu(record->num_max_msdus); 3207 spin_unlock_bh(&ar->htt.tx_lock); 3208 } 3209 3210 rcu_read_unlock(); 3211 3212 ath10k_mac_tx_push_pending(ar); 3213 } 3214 3215 void ath10k_htt_htc_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb) 3216 { 3217 bool release; 3218 3219 release = ath10k_htt_t2h_msg_handler(ar, skb); 3220 3221 /* Free the indication buffer */ 3222 if (release) 3223 dev_kfree_skb_any(skb); 3224 } 3225 3226 static inline s8 ath10k_get_legacy_rate_idx(struct ath10k *ar, u8 rate) 3227 { 3228 static const u8 legacy_rates[] = {1, 2, 5, 11, 6, 9, 12, 3229 18, 24, 36, 48, 54}; 3230 int i; 3231 3232 for (i = 0; i < ARRAY_SIZE(legacy_rates); i++) { 3233 if (rate == legacy_rates[i]) 3234 return i; 3235 } 3236 3237 ath10k_warn(ar, "Invalid legacy rate %hhd peer stats", rate); 3238 return -EINVAL; 3239 } 3240 3241 static void 3242 ath10k_accumulate_per_peer_tx_stats(struct ath10k *ar, 3243 struct ath10k_sta *arsta, 3244 struct ath10k_per_peer_tx_stats *pstats, 3245 s8 legacy_rate_idx) 3246 { 3247 struct rate_info *txrate = &arsta->txrate; 3248 struct ath10k_htt_tx_stats *tx_stats; 3249 int idx, ht_idx, gi, mcs, bw, nss; 3250 unsigned long flags; 3251 3252 if (!arsta->tx_stats) 3253 return; 3254 3255 tx_stats = arsta->tx_stats; 3256 flags = txrate->flags; 3257 gi = test_bit(ATH10K_RATE_INFO_FLAGS_SGI_BIT, &flags); 3258 mcs = ATH10K_HW_MCS_RATE(pstats->ratecode); 3259 bw = txrate->bw; 3260 nss = txrate->nss; 3261 ht_idx = mcs + (nss - 1) * 8; 3262 idx = mcs * 8 + 8 * 10 * (nss - 1); 3263 idx += bw * 2 + gi; 3264 3265 #define STATS_OP_FMT(name) tx_stats->stats[ATH10K_STATS_TYPE_##name] 3266 3267 if (txrate->flags & RATE_INFO_FLAGS_VHT_MCS) { 3268 STATS_OP_FMT(SUCC).vht[0][mcs] += pstats->succ_bytes; 3269 STATS_OP_FMT(SUCC).vht[1][mcs] += pstats->succ_pkts; 3270 STATS_OP_FMT(FAIL).vht[0][mcs] += pstats->failed_bytes; 3271 STATS_OP_FMT(FAIL).vht[1][mcs] += pstats->failed_pkts; 3272 STATS_OP_FMT(RETRY).vht[0][mcs] += pstats->retry_bytes; 3273 STATS_OP_FMT(RETRY).vht[1][mcs] += pstats->retry_pkts; 3274 } else if (txrate->flags & RATE_INFO_FLAGS_MCS) { 3275 STATS_OP_FMT(SUCC).ht[0][ht_idx] += pstats->succ_bytes; 3276 STATS_OP_FMT(SUCC).ht[1][ht_idx] += pstats->succ_pkts; 3277 STATS_OP_FMT(FAIL).ht[0][ht_idx] += pstats->failed_bytes; 3278 STATS_OP_FMT(FAIL).ht[1][ht_idx] += pstats->failed_pkts; 3279 STATS_OP_FMT(RETRY).ht[0][ht_idx] += pstats->retry_bytes; 3280 STATS_OP_FMT(RETRY).ht[1][ht_idx] += pstats->retry_pkts; 3281 } else { 3282 mcs = legacy_rate_idx; 3283 3284 STATS_OP_FMT(SUCC).legacy[0][mcs] += pstats->succ_bytes; 3285 STATS_OP_FMT(SUCC).legacy[1][mcs] += pstats->succ_pkts; 3286 STATS_OP_FMT(FAIL).legacy[0][mcs] += pstats->failed_bytes; 3287 STATS_OP_FMT(FAIL).legacy[1][mcs] += pstats->failed_pkts; 3288 STATS_OP_FMT(RETRY).legacy[0][mcs] += pstats->retry_bytes; 3289 STATS_OP_FMT(RETRY).legacy[1][mcs] += pstats->retry_pkts; 3290 } 3291 3292 if (ATH10K_HW_AMPDU(pstats->flags)) { 3293 tx_stats->ba_fails += ATH10K_HW_BA_FAIL(pstats->flags); 3294 3295 if (txrate->flags & RATE_INFO_FLAGS_MCS) { 3296 STATS_OP_FMT(AMPDU).ht[0][ht_idx] += 3297 pstats->succ_bytes + pstats->retry_bytes; 3298 STATS_OP_FMT(AMPDU).ht[1][ht_idx] += 3299 pstats->succ_pkts + pstats->retry_pkts; 3300 } else { 3301 STATS_OP_FMT(AMPDU).vht[0][mcs] += 3302 pstats->succ_bytes + pstats->retry_bytes; 3303 STATS_OP_FMT(AMPDU).vht[1][mcs] += 3304 pstats->succ_pkts + pstats->retry_pkts; 3305 } 3306 STATS_OP_FMT(AMPDU).bw[0][bw] += 3307 pstats->succ_bytes + pstats->retry_bytes; 3308 STATS_OP_FMT(AMPDU).nss[0][nss - 1] += 3309 pstats->succ_bytes + pstats->retry_bytes; 3310 STATS_OP_FMT(AMPDU).gi[0][gi] += 3311 pstats->succ_bytes + pstats->retry_bytes; 3312 STATS_OP_FMT(AMPDU).rate_table[0][idx] += 3313 pstats->succ_bytes + pstats->retry_bytes; 3314 STATS_OP_FMT(AMPDU).bw[1][bw] += 3315 pstats->succ_pkts + pstats->retry_pkts; 3316 STATS_OP_FMT(AMPDU).nss[1][nss - 1] += 3317 pstats->succ_pkts + pstats->retry_pkts; 3318 STATS_OP_FMT(AMPDU).gi[1][gi] += 3319 pstats->succ_pkts + pstats->retry_pkts; 3320 STATS_OP_FMT(AMPDU).rate_table[1][idx] += 3321 pstats->succ_pkts + pstats->retry_pkts; 3322 } else { 3323 tx_stats->ack_fails += 3324 ATH10K_HW_BA_FAIL(pstats->flags); 3325 } 3326 3327 STATS_OP_FMT(SUCC).bw[0][bw] += pstats->succ_bytes; 3328 STATS_OP_FMT(SUCC).nss[0][nss - 1] += pstats->succ_bytes; 3329 STATS_OP_FMT(SUCC).gi[0][gi] += pstats->succ_bytes; 3330 3331 STATS_OP_FMT(SUCC).bw[1][bw] += pstats->succ_pkts; 3332 STATS_OP_FMT(SUCC).nss[1][nss - 1] += pstats->succ_pkts; 3333 STATS_OP_FMT(SUCC).gi[1][gi] += pstats->succ_pkts; 3334 3335 STATS_OP_FMT(FAIL).bw[0][bw] += pstats->failed_bytes; 3336 STATS_OP_FMT(FAIL).nss[0][nss - 1] += pstats->failed_bytes; 3337 STATS_OP_FMT(FAIL).gi[0][gi] += pstats->failed_bytes; 3338 3339 STATS_OP_FMT(FAIL).bw[1][bw] += pstats->failed_pkts; 3340 STATS_OP_FMT(FAIL).nss[1][nss - 1] += pstats->failed_pkts; 3341 STATS_OP_FMT(FAIL).gi[1][gi] += pstats->failed_pkts; 3342 3343 STATS_OP_FMT(RETRY).bw[0][bw] += pstats->retry_bytes; 3344 STATS_OP_FMT(RETRY).nss[0][nss - 1] += pstats->retry_bytes; 3345 STATS_OP_FMT(RETRY).gi[0][gi] += pstats->retry_bytes; 3346 3347 STATS_OP_FMT(RETRY).bw[1][bw] += pstats->retry_pkts; 3348 STATS_OP_FMT(RETRY).nss[1][nss - 1] += pstats->retry_pkts; 3349 STATS_OP_FMT(RETRY).gi[1][gi] += pstats->retry_pkts; 3350 3351 if (txrate->flags >= RATE_INFO_FLAGS_MCS) { 3352 STATS_OP_FMT(SUCC).rate_table[0][idx] += pstats->succ_bytes; 3353 STATS_OP_FMT(SUCC).rate_table[1][idx] += pstats->succ_pkts; 3354 STATS_OP_FMT(FAIL).rate_table[0][idx] += pstats->failed_bytes; 3355 STATS_OP_FMT(FAIL).rate_table[1][idx] += pstats->failed_pkts; 3356 STATS_OP_FMT(RETRY).rate_table[0][idx] += pstats->retry_bytes; 3357 STATS_OP_FMT(RETRY).rate_table[1][idx] += pstats->retry_pkts; 3358 } 3359 3360 tx_stats->tx_duration += pstats->duration; 3361 } 3362 3363 static void 3364 ath10k_update_per_peer_tx_stats(struct ath10k *ar, 3365 struct ieee80211_sta *sta, 3366 struct ath10k_per_peer_tx_stats *peer_stats) 3367 { 3368 struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv; 3369 struct ieee80211_chanctx_conf *conf = NULL; 3370 u8 rate = 0, sgi; 3371 s8 rate_idx = 0; 3372 bool skip_auto_rate; 3373 struct rate_info txrate; 3374 3375 lockdep_assert_held(&ar->data_lock); 3376 3377 txrate.flags = ATH10K_HW_PREAMBLE(peer_stats->ratecode); 3378 txrate.bw = ATH10K_HW_BW(peer_stats->flags); 3379 txrate.nss = ATH10K_HW_NSS(peer_stats->ratecode); 3380 txrate.mcs = ATH10K_HW_MCS_RATE(peer_stats->ratecode); 3381 sgi = ATH10K_HW_GI(peer_stats->flags); 3382 skip_auto_rate = ATH10K_FW_SKIPPED_RATE_CTRL(peer_stats->flags); 3383 3384 /* Firmware's rate control skips broadcast/management frames, 3385 * if host has configure fixed rates and in some other special cases. 3386 */ 3387 if (skip_auto_rate) 3388 return; 3389 3390 if (txrate.flags == WMI_RATE_PREAMBLE_VHT && txrate.mcs > 9) { 3391 ath10k_warn(ar, "Invalid VHT mcs %hhd peer stats", txrate.mcs); 3392 return; 3393 } 3394 3395 if (txrate.flags == WMI_RATE_PREAMBLE_HT && 3396 (txrate.mcs > 7 || txrate.nss < 1)) { 3397 ath10k_warn(ar, "Invalid HT mcs %hhd nss %hhd peer stats", 3398 txrate.mcs, txrate.nss); 3399 return; 3400 } 3401 3402 memset(&arsta->txrate, 0, sizeof(arsta->txrate)); 3403 memset(&arsta->tx_info.status, 0, sizeof(arsta->tx_info.status)); 3404 if (txrate.flags == WMI_RATE_PREAMBLE_CCK || 3405 txrate.flags == WMI_RATE_PREAMBLE_OFDM) { 3406 rate = ATH10K_HW_LEGACY_RATE(peer_stats->ratecode); 3407 /* This is hacky, FW sends CCK rate 5.5Mbps as 6 */ 3408 if (rate == 6 && txrate.flags == WMI_RATE_PREAMBLE_CCK) 3409 rate = 5; 3410 rate_idx = ath10k_get_legacy_rate_idx(ar, rate); 3411 if (rate_idx < 0) 3412 return; 3413 arsta->txrate.legacy = rate; 3414 } else if (txrate.flags == WMI_RATE_PREAMBLE_HT) { 3415 arsta->txrate.flags = RATE_INFO_FLAGS_MCS; 3416 arsta->txrate.mcs = txrate.mcs + 8 * (txrate.nss - 1); 3417 } else { 3418 arsta->txrate.flags = RATE_INFO_FLAGS_VHT_MCS; 3419 arsta->txrate.mcs = txrate.mcs; 3420 } 3421 3422 switch (txrate.flags) { 3423 case WMI_RATE_PREAMBLE_OFDM: 3424 if (arsta->arvif && arsta->arvif->vif) 3425 conf = rcu_dereference(arsta->arvif->vif->chanctx_conf); 3426 if (conf && conf->def.chan->band == NL80211_BAND_5GHZ) 3427 arsta->tx_info.status.rates[0].idx = rate_idx - 4; 3428 break; 3429 case WMI_RATE_PREAMBLE_CCK: 3430 arsta->tx_info.status.rates[0].idx = rate_idx; 3431 if (sgi) 3432 arsta->tx_info.status.rates[0].flags |= 3433 (IEEE80211_TX_RC_USE_SHORT_PREAMBLE | 3434 IEEE80211_TX_RC_SHORT_GI); 3435 break; 3436 case WMI_RATE_PREAMBLE_HT: 3437 arsta->tx_info.status.rates[0].idx = 3438 txrate.mcs + ((txrate.nss - 1) * 8); 3439 if (sgi) 3440 arsta->tx_info.status.rates[0].flags |= 3441 IEEE80211_TX_RC_SHORT_GI; 3442 arsta->tx_info.status.rates[0].flags |= IEEE80211_TX_RC_MCS; 3443 break; 3444 case WMI_RATE_PREAMBLE_VHT: 3445 ieee80211_rate_set_vht(&arsta->tx_info.status.rates[0], 3446 txrate.mcs, txrate.nss); 3447 if (sgi) 3448 arsta->tx_info.status.rates[0].flags |= 3449 IEEE80211_TX_RC_SHORT_GI; 3450 arsta->tx_info.status.rates[0].flags |= IEEE80211_TX_RC_VHT_MCS; 3451 break; 3452 } 3453 3454 arsta->txrate.nss = txrate.nss; 3455 arsta->txrate.bw = ath10k_bw_to_mac80211_bw(txrate.bw); 3456 arsta->last_tx_bitrate = cfg80211_calculate_bitrate(&arsta->txrate); 3457 if (sgi) 3458 arsta->txrate.flags |= RATE_INFO_FLAGS_SHORT_GI; 3459 3460 switch (arsta->txrate.bw) { 3461 case RATE_INFO_BW_40: 3462 arsta->tx_info.status.rates[0].flags |= 3463 IEEE80211_TX_RC_40_MHZ_WIDTH; 3464 break; 3465 case RATE_INFO_BW_80: 3466 arsta->tx_info.status.rates[0].flags |= 3467 IEEE80211_TX_RC_80_MHZ_WIDTH; 3468 break; 3469 } 3470 3471 if (peer_stats->succ_pkts) { 3472 arsta->tx_info.flags = IEEE80211_TX_STAT_ACK; 3473 arsta->tx_info.status.rates[0].count = 1; 3474 ieee80211_tx_rate_update(ar->hw, sta, &arsta->tx_info); 3475 } 3476 3477 if (ath10k_debug_is_extd_tx_stats_enabled(ar)) 3478 ath10k_accumulate_per_peer_tx_stats(ar, arsta, peer_stats, 3479 rate_idx); 3480 } 3481 3482 static void ath10k_htt_fetch_peer_stats(struct ath10k *ar, 3483 struct sk_buff *skb) 3484 { 3485 struct htt_resp *resp = (struct htt_resp *)skb->data; 3486 struct ath10k_per_peer_tx_stats *p_tx_stats = &ar->peer_tx_stats; 3487 struct htt_per_peer_tx_stats_ind *tx_stats; 3488 struct ieee80211_sta *sta; 3489 struct ath10k_peer *peer; 3490 int peer_id, i; 3491 u8 ppdu_len, num_ppdu; 3492 3493 num_ppdu = resp->peer_tx_stats.num_ppdu; 3494 ppdu_len = resp->peer_tx_stats.ppdu_len * sizeof(__le32); 3495 3496 if (skb->len < sizeof(struct htt_resp_hdr) + num_ppdu * ppdu_len) { 3497 ath10k_warn(ar, "Invalid peer stats buf length %d\n", skb->len); 3498 return; 3499 } 3500 3501 tx_stats = (struct htt_per_peer_tx_stats_ind *) 3502 (resp->peer_tx_stats.payload); 3503 peer_id = __le16_to_cpu(tx_stats->peer_id); 3504 3505 rcu_read_lock(); 3506 spin_lock_bh(&ar->data_lock); 3507 peer = ath10k_peer_find_by_id(ar, peer_id); 3508 if (!peer || !peer->sta) { 3509 ath10k_warn(ar, "Invalid peer id %d peer stats buffer\n", 3510 peer_id); 3511 goto out; 3512 } 3513 3514 sta = peer->sta; 3515 for (i = 0; i < num_ppdu; i++) { 3516 tx_stats = (struct htt_per_peer_tx_stats_ind *) 3517 (resp->peer_tx_stats.payload + i * ppdu_len); 3518 3519 p_tx_stats->succ_bytes = __le32_to_cpu(tx_stats->succ_bytes); 3520 p_tx_stats->retry_bytes = __le32_to_cpu(tx_stats->retry_bytes); 3521 p_tx_stats->failed_bytes = 3522 __le32_to_cpu(tx_stats->failed_bytes); 3523 p_tx_stats->ratecode = tx_stats->ratecode; 3524 p_tx_stats->flags = tx_stats->flags; 3525 p_tx_stats->succ_pkts = __le16_to_cpu(tx_stats->succ_pkts); 3526 p_tx_stats->retry_pkts = __le16_to_cpu(tx_stats->retry_pkts); 3527 p_tx_stats->failed_pkts = __le16_to_cpu(tx_stats->failed_pkts); 3528 p_tx_stats->duration = __le16_to_cpu(tx_stats->tx_duration); 3529 3530 ath10k_update_per_peer_tx_stats(ar, sta, p_tx_stats); 3531 } 3532 3533 out: 3534 spin_unlock_bh(&ar->data_lock); 3535 rcu_read_unlock(); 3536 } 3537 3538 static void ath10k_fetch_10_2_tx_stats(struct ath10k *ar, u8 *data) 3539 { 3540 struct ath10k_pktlog_hdr *hdr = (struct ath10k_pktlog_hdr *)data; 3541 struct ath10k_per_peer_tx_stats *p_tx_stats = &ar->peer_tx_stats; 3542 struct ath10k_10_2_peer_tx_stats *tx_stats; 3543 struct ieee80211_sta *sta; 3544 struct ath10k_peer *peer; 3545 u16 log_type = __le16_to_cpu(hdr->log_type); 3546 u32 peer_id = 0, i; 3547 3548 if (log_type != ATH_PKTLOG_TYPE_TX_STAT) 3549 return; 3550 3551 tx_stats = (struct ath10k_10_2_peer_tx_stats *)((hdr->payload) + 3552 ATH10K_10_2_TX_STATS_OFFSET); 3553 3554 if (!tx_stats->tx_ppdu_cnt) 3555 return; 3556 3557 peer_id = tx_stats->peer_id; 3558 3559 rcu_read_lock(); 3560 spin_lock_bh(&ar->data_lock); 3561 peer = ath10k_peer_find_by_id(ar, peer_id); 3562 if (!peer || !peer->sta) { 3563 ath10k_warn(ar, "Invalid peer id %d in peer stats buffer\n", 3564 peer_id); 3565 goto out; 3566 } 3567 3568 sta = peer->sta; 3569 for (i = 0; i < tx_stats->tx_ppdu_cnt; i++) { 3570 p_tx_stats->succ_bytes = 3571 __le16_to_cpu(tx_stats->success_bytes[i]); 3572 p_tx_stats->retry_bytes = 3573 __le16_to_cpu(tx_stats->retry_bytes[i]); 3574 p_tx_stats->failed_bytes = 3575 __le16_to_cpu(tx_stats->failed_bytes[i]); 3576 p_tx_stats->ratecode = tx_stats->ratecode[i]; 3577 p_tx_stats->flags = tx_stats->flags[i]; 3578 p_tx_stats->succ_pkts = tx_stats->success_pkts[i]; 3579 p_tx_stats->retry_pkts = tx_stats->retry_pkts[i]; 3580 p_tx_stats->failed_pkts = tx_stats->failed_pkts[i]; 3581 3582 ath10k_update_per_peer_tx_stats(ar, sta, p_tx_stats); 3583 } 3584 spin_unlock_bh(&ar->data_lock); 3585 rcu_read_unlock(); 3586 3587 return; 3588 3589 out: 3590 spin_unlock_bh(&ar->data_lock); 3591 rcu_read_unlock(); 3592 } 3593 3594 static int ath10k_htt_rx_pn_len(enum htt_security_types sec_type) 3595 { 3596 switch (sec_type) { 3597 case HTT_SECURITY_TKIP: 3598 case HTT_SECURITY_TKIP_NOMIC: 3599 case HTT_SECURITY_AES_CCMP: 3600 return 48; 3601 default: 3602 return 0; 3603 } 3604 } 3605 3606 static void ath10k_htt_rx_sec_ind_handler(struct ath10k *ar, 3607 struct htt_security_indication *ev) 3608 { 3609 enum htt_txrx_sec_cast_type sec_index; 3610 enum htt_security_types sec_type; 3611 struct ath10k_peer *peer; 3612 3613 spin_lock_bh(&ar->data_lock); 3614 3615 peer = ath10k_peer_find_by_id(ar, __le16_to_cpu(ev->peer_id)); 3616 if (!peer) { 3617 ath10k_warn(ar, "failed to find peer id %d for security indication", 3618 __le16_to_cpu(ev->peer_id)); 3619 goto out; 3620 } 3621 3622 sec_type = MS(ev->flags, HTT_SECURITY_TYPE); 3623 3624 if (ev->flags & HTT_SECURITY_IS_UNICAST) 3625 sec_index = HTT_TXRX_SEC_UCAST; 3626 else 3627 sec_index = HTT_TXRX_SEC_MCAST; 3628 3629 peer->rx_pn[sec_index].sec_type = sec_type; 3630 peer->rx_pn[sec_index].pn_len = ath10k_htt_rx_pn_len(sec_type); 3631 3632 memset(peer->tids_last_pn_valid, 0, sizeof(peer->tids_last_pn_valid)); 3633 memset(peer->tids_last_pn, 0, sizeof(peer->tids_last_pn)); 3634 3635 out: 3636 spin_unlock_bh(&ar->data_lock); 3637 } 3638 3639 bool ath10k_htt_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb) 3640 { 3641 struct ath10k_htt *htt = &ar->htt; 3642 struct htt_resp *resp = (struct htt_resp *)skb->data; 3643 enum htt_t2h_msg_type type; 3644 3645 /* confirm alignment */ 3646 if (!IS_ALIGNED((unsigned long)skb->data, 4)) 3647 ath10k_warn(ar, "unaligned htt message, expect trouble\n"); 3648 3649 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, msg_type: 0x%0X\n", 3650 resp->hdr.msg_type); 3651 3652 if (resp->hdr.msg_type >= ar->htt.t2h_msg_types_max) { 3653 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, unsupported msg_type: 0x%0X\n max: 0x%0X", 3654 resp->hdr.msg_type, ar->htt.t2h_msg_types_max); 3655 return true; 3656 } 3657 type = ar->htt.t2h_msg_types[resp->hdr.msg_type]; 3658 3659 switch (type) { 3660 case HTT_T2H_MSG_TYPE_VERSION_CONF: { 3661 htt->target_version_major = resp->ver_resp.major; 3662 htt->target_version_minor = resp->ver_resp.minor; 3663 complete(&htt->target_version_received); 3664 break; 3665 } 3666 case HTT_T2H_MSG_TYPE_RX_IND: 3667 if (ar->bus_param.dev_type == ATH10K_DEV_TYPE_HL) 3668 return ath10k_htt_rx_proc_rx_ind_hl(htt, 3669 &resp->rx_ind_hl, 3670 skb, 3671 HTT_RX_PN_CHECK, 3672 HTT_RX_NON_TKIP_MIC); 3673 else 3674 ath10k_htt_rx_proc_rx_ind_ll(htt, &resp->rx_ind); 3675 break; 3676 case HTT_T2H_MSG_TYPE_PEER_MAP: { 3677 struct htt_peer_map_event ev = { 3678 .vdev_id = resp->peer_map.vdev_id, 3679 .peer_id = __le16_to_cpu(resp->peer_map.peer_id), 3680 }; 3681 memcpy(ev.addr, resp->peer_map.addr, sizeof(ev.addr)); 3682 ath10k_peer_map_event(htt, &ev); 3683 break; 3684 } 3685 case HTT_T2H_MSG_TYPE_PEER_UNMAP: { 3686 struct htt_peer_unmap_event ev = { 3687 .peer_id = __le16_to_cpu(resp->peer_unmap.peer_id), 3688 }; 3689 ath10k_peer_unmap_event(htt, &ev); 3690 break; 3691 } 3692 case HTT_T2H_MSG_TYPE_MGMT_TX_COMPLETION: { 3693 struct htt_tx_done tx_done = {}; 3694 int status = __le32_to_cpu(resp->mgmt_tx_completion.status); 3695 int info = __le32_to_cpu(resp->mgmt_tx_completion.info); 3696 3697 tx_done.msdu_id = __le32_to_cpu(resp->mgmt_tx_completion.desc_id); 3698 3699 switch (status) { 3700 case HTT_MGMT_TX_STATUS_OK: 3701 tx_done.status = HTT_TX_COMPL_STATE_ACK; 3702 if (test_bit(WMI_SERVICE_HTT_MGMT_TX_COMP_VALID_FLAGS, 3703 ar->wmi.svc_map) && 3704 (resp->mgmt_tx_completion.flags & 3705 HTT_MGMT_TX_CMPL_FLAG_ACK_RSSI)) { 3706 tx_done.ack_rssi = 3707 FIELD_GET(HTT_MGMT_TX_CMPL_INFO_ACK_RSSI_MASK, 3708 info); 3709 } 3710 break; 3711 case HTT_MGMT_TX_STATUS_RETRY: 3712 tx_done.status = HTT_TX_COMPL_STATE_NOACK; 3713 break; 3714 case HTT_MGMT_TX_STATUS_DROP: 3715 tx_done.status = HTT_TX_COMPL_STATE_DISCARD; 3716 break; 3717 } 3718 3719 status = ath10k_txrx_tx_unref(htt, &tx_done); 3720 if (!status) { 3721 spin_lock_bh(&htt->tx_lock); 3722 ath10k_htt_tx_mgmt_dec_pending(htt); 3723 spin_unlock_bh(&htt->tx_lock); 3724 } 3725 break; 3726 } 3727 case HTT_T2H_MSG_TYPE_TX_COMPL_IND: 3728 ath10k_htt_rx_tx_compl_ind(htt->ar, skb); 3729 break; 3730 case HTT_T2H_MSG_TYPE_SEC_IND: { 3731 struct ath10k *ar = htt->ar; 3732 struct htt_security_indication *ev = &resp->security_indication; 3733 3734 ath10k_htt_rx_sec_ind_handler(ar, ev); 3735 ath10k_dbg(ar, ATH10K_DBG_HTT, 3736 "sec ind peer_id %d unicast %d type %d\n", 3737 __le16_to_cpu(ev->peer_id), 3738 !!(ev->flags & HTT_SECURITY_IS_UNICAST), 3739 MS(ev->flags, HTT_SECURITY_TYPE)); 3740 complete(&ar->install_key_done); 3741 break; 3742 } 3743 case HTT_T2H_MSG_TYPE_RX_FRAG_IND: { 3744 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ", 3745 skb->data, skb->len); 3746 atomic_inc(&htt->num_mpdus_ready); 3747 3748 return ath10k_htt_rx_proc_rx_frag_ind(htt, 3749 &resp->rx_frag_ind, 3750 skb); 3751 break; 3752 } 3753 case HTT_T2H_MSG_TYPE_TEST: 3754 break; 3755 case HTT_T2H_MSG_TYPE_STATS_CONF: 3756 trace_ath10k_htt_stats(ar, skb->data, skb->len); 3757 break; 3758 case HTT_T2H_MSG_TYPE_TX_INSPECT_IND: 3759 /* Firmware can return tx frames if it's unable to fully 3760 * process them and suspects host may be able to fix it. ath10k 3761 * sends all tx frames as already inspected so this shouldn't 3762 * happen unless fw has a bug. 3763 */ 3764 ath10k_warn(ar, "received an unexpected htt tx inspect event\n"); 3765 break; 3766 case HTT_T2H_MSG_TYPE_RX_ADDBA: 3767 ath10k_htt_rx_addba(ar, resp); 3768 break; 3769 case HTT_T2H_MSG_TYPE_RX_DELBA: 3770 ath10k_htt_rx_delba(ar, resp); 3771 break; 3772 case HTT_T2H_MSG_TYPE_PKTLOG: { 3773 trace_ath10k_htt_pktlog(ar, resp->pktlog_msg.payload, 3774 skb->len - 3775 offsetof(struct htt_resp, 3776 pktlog_msg.payload)); 3777 3778 if (ath10k_peer_stats_enabled(ar)) 3779 ath10k_fetch_10_2_tx_stats(ar, 3780 resp->pktlog_msg.payload); 3781 break; 3782 } 3783 case HTT_T2H_MSG_TYPE_RX_FLUSH: { 3784 /* Ignore this event because mac80211 takes care of Rx 3785 * aggregation reordering. 3786 */ 3787 break; 3788 } 3789 case HTT_T2H_MSG_TYPE_RX_IN_ORD_PADDR_IND: { 3790 skb_queue_tail(&htt->rx_in_ord_compl_q, skb); 3791 return false; 3792 } 3793 case HTT_T2H_MSG_TYPE_TX_CREDIT_UPDATE_IND: 3794 break; 3795 case HTT_T2H_MSG_TYPE_CHAN_CHANGE: { 3796 u32 phymode = __le32_to_cpu(resp->chan_change.phymode); 3797 u32 freq = __le32_to_cpu(resp->chan_change.freq); 3798 3799 ar->tgt_oper_chan = ieee80211_get_channel(ar->hw->wiphy, freq); 3800 ath10k_dbg(ar, ATH10K_DBG_HTT, 3801 "htt chan change freq %u phymode %s\n", 3802 freq, ath10k_wmi_phymode_str(phymode)); 3803 break; 3804 } 3805 case HTT_T2H_MSG_TYPE_AGGR_CONF: 3806 break; 3807 case HTT_T2H_MSG_TYPE_TX_FETCH_IND: { 3808 struct sk_buff *tx_fetch_ind = skb_copy(skb, GFP_ATOMIC); 3809 3810 if (!tx_fetch_ind) { 3811 ath10k_warn(ar, "failed to copy htt tx fetch ind\n"); 3812 break; 3813 } 3814 skb_queue_tail(&htt->tx_fetch_ind_q, tx_fetch_ind); 3815 break; 3816 } 3817 case HTT_T2H_MSG_TYPE_TX_FETCH_CONFIRM: 3818 ath10k_htt_rx_tx_fetch_confirm(ar, skb); 3819 break; 3820 case HTT_T2H_MSG_TYPE_TX_MODE_SWITCH_IND: 3821 ath10k_htt_rx_tx_mode_switch_ind(ar, skb); 3822 break; 3823 case HTT_T2H_MSG_TYPE_PEER_STATS: 3824 ath10k_htt_fetch_peer_stats(ar, skb); 3825 break; 3826 case HTT_T2H_MSG_TYPE_EN_STATS: 3827 default: 3828 ath10k_warn(ar, "htt event (%d) not handled\n", 3829 resp->hdr.msg_type); 3830 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ", 3831 skb->data, skb->len); 3832 break; 3833 } 3834 return true; 3835 } 3836 EXPORT_SYMBOL(ath10k_htt_t2h_msg_handler); 3837 3838 void ath10k_htt_rx_pktlog_completion_handler(struct ath10k *ar, 3839 struct sk_buff *skb) 3840 { 3841 trace_ath10k_htt_pktlog(ar, skb->data, skb->len); 3842 dev_kfree_skb_any(skb); 3843 } 3844 EXPORT_SYMBOL(ath10k_htt_rx_pktlog_completion_handler); 3845 3846 static int ath10k_htt_rx_deliver_msdu(struct ath10k *ar, int quota, int budget) 3847 { 3848 struct sk_buff *skb; 3849 3850 while (quota < budget) { 3851 if (skb_queue_empty(&ar->htt.rx_msdus_q)) 3852 break; 3853 3854 skb = skb_dequeue(&ar->htt.rx_msdus_q); 3855 if (!skb) 3856 break; 3857 ath10k_process_rx(ar, skb); 3858 quota++; 3859 } 3860 3861 return quota; 3862 } 3863 3864 int ath10k_htt_txrx_compl_task(struct ath10k *ar, int budget) 3865 { 3866 struct ath10k_htt *htt = &ar->htt; 3867 struct htt_tx_done tx_done = {}; 3868 struct sk_buff_head tx_ind_q; 3869 struct sk_buff *skb; 3870 unsigned long flags; 3871 int quota = 0, done, ret; 3872 bool resched_napi = false; 3873 3874 __skb_queue_head_init(&tx_ind_q); 3875 3876 /* Process pending frames before dequeuing more data 3877 * from hardware. 3878 */ 3879 quota = ath10k_htt_rx_deliver_msdu(ar, quota, budget); 3880 if (quota == budget) { 3881 resched_napi = true; 3882 goto exit; 3883 } 3884 3885 while ((skb = skb_dequeue(&htt->rx_in_ord_compl_q))) { 3886 spin_lock_bh(&htt->rx_ring.lock); 3887 ret = ath10k_htt_rx_in_ord_ind(ar, skb); 3888 spin_unlock_bh(&htt->rx_ring.lock); 3889 3890 dev_kfree_skb_any(skb); 3891 if (ret == -EIO) { 3892 resched_napi = true; 3893 goto exit; 3894 } 3895 } 3896 3897 while (atomic_read(&htt->num_mpdus_ready)) { 3898 ret = ath10k_htt_rx_handle_amsdu(htt); 3899 if (ret == -EIO) { 3900 resched_napi = true; 3901 goto exit; 3902 } 3903 atomic_dec(&htt->num_mpdus_ready); 3904 } 3905 3906 /* Deliver received data after processing data from hardware */ 3907 quota = ath10k_htt_rx_deliver_msdu(ar, quota, budget); 3908 3909 /* From NAPI documentation: 3910 * The napi poll() function may also process TX completions, in which 3911 * case if it processes the entire TX ring then it should count that 3912 * work as the rest of the budget. 3913 */ 3914 if ((quota < budget) && !kfifo_is_empty(&htt->txdone_fifo)) 3915 quota = budget; 3916 3917 /* kfifo_get: called only within txrx_tasklet so it's neatly serialized. 3918 * From kfifo_get() documentation: 3919 * Note that with only one concurrent reader and one concurrent writer, 3920 * you don't need extra locking to use these macro. 3921 */ 3922 while (kfifo_get(&htt->txdone_fifo, &tx_done)) 3923 ath10k_txrx_tx_unref(htt, &tx_done); 3924 3925 ath10k_mac_tx_push_pending(ar); 3926 3927 spin_lock_irqsave(&htt->tx_fetch_ind_q.lock, flags); 3928 skb_queue_splice_init(&htt->tx_fetch_ind_q, &tx_ind_q); 3929 spin_unlock_irqrestore(&htt->tx_fetch_ind_q.lock, flags); 3930 3931 while ((skb = __skb_dequeue(&tx_ind_q))) { 3932 ath10k_htt_rx_tx_fetch_ind(ar, skb); 3933 dev_kfree_skb_any(skb); 3934 } 3935 3936 exit: 3937 ath10k_htt_rx_msdu_buff_replenish(htt); 3938 /* In case of rx failure or more data to read, report budget 3939 * to reschedule NAPI poll 3940 */ 3941 done = resched_napi ? budget : quota; 3942 3943 return done; 3944 } 3945 EXPORT_SYMBOL(ath10k_htt_txrx_compl_task); 3946 3947 static const struct ath10k_htt_rx_ops htt_rx_ops_32 = { 3948 .htt_get_rx_ring_size = ath10k_htt_get_rx_ring_size_32, 3949 .htt_config_paddrs_ring = ath10k_htt_config_paddrs_ring_32, 3950 .htt_set_paddrs_ring = ath10k_htt_set_paddrs_ring_32, 3951 .htt_get_vaddr_ring = ath10k_htt_get_vaddr_ring_32, 3952 .htt_reset_paddrs_ring = ath10k_htt_reset_paddrs_ring_32, 3953 }; 3954 3955 static const struct ath10k_htt_rx_ops htt_rx_ops_64 = { 3956 .htt_get_rx_ring_size = ath10k_htt_get_rx_ring_size_64, 3957 .htt_config_paddrs_ring = ath10k_htt_config_paddrs_ring_64, 3958 .htt_set_paddrs_ring = ath10k_htt_set_paddrs_ring_64, 3959 .htt_get_vaddr_ring = ath10k_htt_get_vaddr_ring_64, 3960 .htt_reset_paddrs_ring = ath10k_htt_reset_paddrs_ring_64, 3961 }; 3962 3963 static const struct ath10k_htt_rx_ops htt_rx_ops_hl = { 3964 .htt_rx_proc_rx_frag_ind = ath10k_htt_rx_proc_rx_frag_ind_hl, 3965 }; 3966 3967 void ath10k_htt_set_rx_ops(struct ath10k_htt *htt) 3968 { 3969 struct ath10k *ar = htt->ar; 3970 3971 if (ar->bus_param.dev_type == ATH10K_DEV_TYPE_HL) 3972 htt->rx_ops = &htt_rx_ops_hl; 3973 else if (ar->hw_params.target_64bit) 3974 htt->rx_ops = &htt_rx_ops_64; 3975 else 3976 htt->rx_ops = &htt_rx_ops_32; 3977 } 3978