1 // SPDX-License-Identifier: ISC
2 /*
3  * Copyright (c) 2005-2011 Atheros Communications Inc.
4  * Copyright (c) 2011-2017 Qualcomm Atheros, Inc.
5  * Copyright (c) 2018, The Linux Foundation. All rights reserved.
6  */
7 
8 #include "core.h"
9 #include "htc.h"
10 #include "htt.h"
11 #include "txrx.h"
12 #include "debug.h"
13 #include "trace.h"
14 #include "mac.h"
15 
16 #include <linux/log2.h>
17 #include <linux/bitfield.h>
18 
19 /* when under memory pressure rx ring refill may fail and needs a retry */
20 #define HTT_RX_RING_REFILL_RETRY_MS 50
21 
22 #define HTT_RX_RING_REFILL_RESCHED_MS 5
23 
24 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb);
25 
26 static struct sk_buff *
27 ath10k_htt_rx_find_skb_paddr(struct ath10k *ar, u64 paddr)
28 {
29 	struct ath10k_skb_rxcb *rxcb;
30 
31 	hash_for_each_possible(ar->htt.rx_ring.skb_table, rxcb, hlist, paddr)
32 		if (rxcb->paddr == paddr)
33 			return ATH10K_RXCB_SKB(rxcb);
34 
35 	WARN_ON_ONCE(1);
36 	return NULL;
37 }
38 
39 static void ath10k_htt_rx_ring_free(struct ath10k_htt *htt)
40 {
41 	struct sk_buff *skb;
42 	struct ath10k_skb_rxcb *rxcb;
43 	struct hlist_node *n;
44 	int i;
45 
46 	if (htt->rx_ring.in_ord_rx) {
47 		hash_for_each_safe(htt->rx_ring.skb_table, i, n, rxcb, hlist) {
48 			skb = ATH10K_RXCB_SKB(rxcb);
49 			dma_unmap_single(htt->ar->dev, rxcb->paddr,
50 					 skb->len + skb_tailroom(skb),
51 					 DMA_FROM_DEVICE);
52 			hash_del(&rxcb->hlist);
53 			dev_kfree_skb_any(skb);
54 		}
55 	} else {
56 		for (i = 0; i < htt->rx_ring.size; i++) {
57 			skb = htt->rx_ring.netbufs_ring[i];
58 			if (!skb)
59 				continue;
60 
61 			rxcb = ATH10K_SKB_RXCB(skb);
62 			dma_unmap_single(htt->ar->dev, rxcb->paddr,
63 					 skb->len + skb_tailroom(skb),
64 					 DMA_FROM_DEVICE);
65 			dev_kfree_skb_any(skb);
66 		}
67 	}
68 
69 	htt->rx_ring.fill_cnt = 0;
70 	hash_init(htt->rx_ring.skb_table);
71 	memset(htt->rx_ring.netbufs_ring, 0,
72 	       htt->rx_ring.size * sizeof(htt->rx_ring.netbufs_ring[0]));
73 }
74 
75 static size_t ath10k_htt_get_rx_ring_size_32(struct ath10k_htt *htt)
76 {
77 	return htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring_32);
78 }
79 
80 static size_t ath10k_htt_get_rx_ring_size_64(struct ath10k_htt *htt)
81 {
82 	return htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring_64);
83 }
84 
85 static void ath10k_htt_config_paddrs_ring_32(struct ath10k_htt *htt,
86 					     void *vaddr)
87 {
88 	htt->rx_ring.paddrs_ring_32 = vaddr;
89 }
90 
91 static void ath10k_htt_config_paddrs_ring_64(struct ath10k_htt *htt,
92 					     void *vaddr)
93 {
94 	htt->rx_ring.paddrs_ring_64 = vaddr;
95 }
96 
97 static void ath10k_htt_set_paddrs_ring_32(struct ath10k_htt *htt,
98 					  dma_addr_t paddr, int idx)
99 {
100 	htt->rx_ring.paddrs_ring_32[idx] = __cpu_to_le32(paddr);
101 }
102 
103 static void ath10k_htt_set_paddrs_ring_64(struct ath10k_htt *htt,
104 					  dma_addr_t paddr, int idx)
105 {
106 	htt->rx_ring.paddrs_ring_64[idx] = __cpu_to_le64(paddr);
107 }
108 
109 static void ath10k_htt_reset_paddrs_ring_32(struct ath10k_htt *htt, int idx)
110 {
111 	htt->rx_ring.paddrs_ring_32[idx] = 0;
112 }
113 
114 static void ath10k_htt_reset_paddrs_ring_64(struct ath10k_htt *htt, int idx)
115 {
116 	htt->rx_ring.paddrs_ring_64[idx] = 0;
117 }
118 
119 static void *ath10k_htt_get_vaddr_ring_32(struct ath10k_htt *htt)
120 {
121 	return (void *)htt->rx_ring.paddrs_ring_32;
122 }
123 
124 static void *ath10k_htt_get_vaddr_ring_64(struct ath10k_htt *htt)
125 {
126 	return (void *)htt->rx_ring.paddrs_ring_64;
127 }
128 
129 static int __ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
130 {
131 	struct htt_rx_desc *rx_desc;
132 	struct ath10k_skb_rxcb *rxcb;
133 	struct sk_buff *skb;
134 	dma_addr_t paddr;
135 	int ret = 0, idx;
136 
137 	/* The Full Rx Reorder firmware has no way of telling the host
138 	 * implicitly when it copied HTT Rx Ring buffers to MAC Rx Ring.
139 	 * To keep things simple make sure ring is always half empty. This
140 	 * guarantees there'll be no replenishment overruns possible.
141 	 */
142 	BUILD_BUG_ON(HTT_RX_RING_FILL_LEVEL >= HTT_RX_RING_SIZE / 2);
143 
144 	idx = __le32_to_cpu(*htt->rx_ring.alloc_idx.vaddr);
145 	while (num > 0) {
146 		skb = dev_alloc_skb(HTT_RX_BUF_SIZE + HTT_RX_DESC_ALIGN);
147 		if (!skb) {
148 			ret = -ENOMEM;
149 			goto fail;
150 		}
151 
152 		if (!IS_ALIGNED((unsigned long)skb->data, HTT_RX_DESC_ALIGN))
153 			skb_pull(skb,
154 				 PTR_ALIGN(skb->data, HTT_RX_DESC_ALIGN) -
155 				 skb->data);
156 
157 		/* Clear rx_desc attention word before posting to Rx ring */
158 		rx_desc = (struct htt_rx_desc *)skb->data;
159 		rx_desc->attention.flags = __cpu_to_le32(0);
160 
161 		paddr = dma_map_single(htt->ar->dev, skb->data,
162 				       skb->len + skb_tailroom(skb),
163 				       DMA_FROM_DEVICE);
164 
165 		if (unlikely(dma_mapping_error(htt->ar->dev, paddr))) {
166 			dev_kfree_skb_any(skb);
167 			ret = -ENOMEM;
168 			goto fail;
169 		}
170 
171 		rxcb = ATH10K_SKB_RXCB(skb);
172 		rxcb->paddr = paddr;
173 		htt->rx_ring.netbufs_ring[idx] = skb;
174 		ath10k_htt_set_paddrs_ring(htt, paddr, idx);
175 		htt->rx_ring.fill_cnt++;
176 
177 		if (htt->rx_ring.in_ord_rx) {
178 			hash_add(htt->rx_ring.skb_table,
179 				 &ATH10K_SKB_RXCB(skb)->hlist,
180 				 paddr);
181 		}
182 
183 		num--;
184 		idx++;
185 		idx &= htt->rx_ring.size_mask;
186 	}
187 
188 fail:
189 	/*
190 	 * Make sure the rx buffer is updated before available buffer
191 	 * index to avoid any potential rx ring corruption.
192 	 */
193 	mb();
194 	*htt->rx_ring.alloc_idx.vaddr = __cpu_to_le32(idx);
195 	return ret;
196 }
197 
198 static int ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
199 {
200 	lockdep_assert_held(&htt->rx_ring.lock);
201 	return __ath10k_htt_rx_ring_fill_n(htt, num);
202 }
203 
204 static void ath10k_htt_rx_msdu_buff_replenish(struct ath10k_htt *htt)
205 {
206 	int ret, num_deficit, num_to_fill;
207 
208 	/* Refilling the whole RX ring buffer proves to be a bad idea. The
209 	 * reason is RX may take up significant amount of CPU cycles and starve
210 	 * other tasks, e.g. TX on an ethernet device while acting as a bridge
211 	 * with ath10k wlan interface. This ended up with very poor performance
212 	 * once CPU the host system was overwhelmed with RX on ath10k.
213 	 *
214 	 * By limiting the number of refills the replenishing occurs
215 	 * progressively. This in turns makes use of the fact tasklets are
216 	 * processed in FIFO order. This means actual RX processing can starve
217 	 * out refilling. If there's not enough buffers on RX ring FW will not
218 	 * report RX until it is refilled with enough buffers. This
219 	 * automatically balances load wrt to CPU power.
220 	 *
221 	 * This probably comes at a cost of lower maximum throughput but
222 	 * improves the average and stability.
223 	 */
224 	spin_lock_bh(&htt->rx_ring.lock);
225 	num_deficit = htt->rx_ring.fill_level - htt->rx_ring.fill_cnt;
226 	num_to_fill = min(ATH10K_HTT_MAX_NUM_REFILL, num_deficit);
227 	num_deficit -= num_to_fill;
228 	ret = ath10k_htt_rx_ring_fill_n(htt, num_to_fill);
229 	if (ret == -ENOMEM) {
230 		/*
231 		 * Failed to fill it to the desired level -
232 		 * we'll start a timer and try again next time.
233 		 * As long as enough buffers are left in the ring for
234 		 * another A-MPDU rx, no special recovery is needed.
235 		 */
236 		mod_timer(&htt->rx_ring.refill_retry_timer, jiffies +
237 			  msecs_to_jiffies(HTT_RX_RING_REFILL_RETRY_MS));
238 	} else if (num_deficit > 0) {
239 		mod_timer(&htt->rx_ring.refill_retry_timer, jiffies +
240 			  msecs_to_jiffies(HTT_RX_RING_REFILL_RESCHED_MS));
241 	}
242 	spin_unlock_bh(&htt->rx_ring.lock);
243 }
244 
245 static void ath10k_htt_rx_ring_refill_retry(struct timer_list *t)
246 {
247 	struct ath10k_htt *htt = from_timer(htt, t, rx_ring.refill_retry_timer);
248 
249 	ath10k_htt_rx_msdu_buff_replenish(htt);
250 }
251 
252 int ath10k_htt_rx_ring_refill(struct ath10k *ar)
253 {
254 	struct ath10k_htt *htt = &ar->htt;
255 	int ret;
256 
257 	if (ar->bus_param.dev_type == ATH10K_DEV_TYPE_HL)
258 		return 0;
259 
260 	spin_lock_bh(&htt->rx_ring.lock);
261 	ret = ath10k_htt_rx_ring_fill_n(htt, (htt->rx_ring.fill_level -
262 					      htt->rx_ring.fill_cnt));
263 
264 	if (ret)
265 		ath10k_htt_rx_ring_free(htt);
266 
267 	spin_unlock_bh(&htt->rx_ring.lock);
268 
269 	return ret;
270 }
271 
272 void ath10k_htt_rx_free(struct ath10k_htt *htt)
273 {
274 	if (htt->ar->bus_param.dev_type == ATH10K_DEV_TYPE_HL)
275 		return;
276 
277 	del_timer_sync(&htt->rx_ring.refill_retry_timer);
278 
279 	skb_queue_purge(&htt->rx_msdus_q);
280 	skb_queue_purge(&htt->rx_in_ord_compl_q);
281 	skb_queue_purge(&htt->tx_fetch_ind_q);
282 
283 	spin_lock_bh(&htt->rx_ring.lock);
284 	ath10k_htt_rx_ring_free(htt);
285 	spin_unlock_bh(&htt->rx_ring.lock);
286 
287 	dma_free_coherent(htt->ar->dev,
288 			  ath10k_htt_get_rx_ring_size(htt),
289 			  ath10k_htt_get_vaddr_ring(htt),
290 			  htt->rx_ring.base_paddr);
291 
292 	dma_free_coherent(htt->ar->dev,
293 			  sizeof(*htt->rx_ring.alloc_idx.vaddr),
294 			  htt->rx_ring.alloc_idx.vaddr,
295 			  htt->rx_ring.alloc_idx.paddr);
296 
297 	kfree(htt->rx_ring.netbufs_ring);
298 }
299 
300 static inline struct sk_buff *ath10k_htt_rx_netbuf_pop(struct ath10k_htt *htt)
301 {
302 	struct ath10k *ar = htt->ar;
303 	int idx;
304 	struct sk_buff *msdu;
305 
306 	lockdep_assert_held(&htt->rx_ring.lock);
307 
308 	if (htt->rx_ring.fill_cnt == 0) {
309 		ath10k_warn(ar, "tried to pop sk_buff from an empty rx ring\n");
310 		return NULL;
311 	}
312 
313 	idx = htt->rx_ring.sw_rd_idx.msdu_payld;
314 	msdu = htt->rx_ring.netbufs_ring[idx];
315 	htt->rx_ring.netbufs_ring[idx] = NULL;
316 	ath10k_htt_reset_paddrs_ring(htt, idx);
317 
318 	idx++;
319 	idx &= htt->rx_ring.size_mask;
320 	htt->rx_ring.sw_rd_idx.msdu_payld = idx;
321 	htt->rx_ring.fill_cnt--;
322 
323 	dma_unmap_single(htt->ar->dev,
324 			 ATH10K_SKB_RXCB(msdu)->paddr,
325 			 msdu->len + skb_tailroom(msdu),
326 			 DMA_FROM_DEVICE);
327 	ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ",
328 			msdu->data, msdu->len + skb_tailroom(msdu));
329 
330 	return msdu;
331 }
332 
333 /* return: < 0 fatal error, 0 - non chained msdu, 1 chained msdu */
334 static int ath10k_htt_rx_amsdu_pop(struct ath10k_htt *htt,
335 				   struct sk_buff_head *amsdu)
336 {
337 	struct ath10k *ar = htt->ar;
338 	int msdu_len, msdu_chaining = 0;
339 	struct sk_buff *msdu;
340 	struct htt_rx_desc *rx_desc;
341 
342 	lockdep_assert_held(&htt->rx_ring.lock);
343 
344 	for (;;) {
345 		int last_msdu, msdu_len_invalid, msdu_chained;
346 
347 		msdu = ath10k_htt_rx_netbuf_pop(htt);
348 		if (!msdu) {
349 			__skb_queue_purge(amsdu);
350 			return -ENOENT;
351 		}
352 
353 		__skb_queue_tail(amsdu, msdu);
354 
355 		rx_desc = (struct htt_rx_desc *)msdu->data;
356 
357 		/* FIXME: we must report msdu payload since this is what caller
358 		 * expects now
359 		 */
360 		skb_put(msdu, offsetof(struct htt_rx_desc, msdu_payload));
361 		skb_pull(msdu, offsetof(struct htt_rx_desc, msdu_payload));
362 
363 		/*
364 		 * Sanity check - confirm the HW is finished filling in the
365 		 * rx data.
366 		 * If the HW and SW are working correctly, then it's guaranteed
367 		 * that the HW's MAC DMA is done before this point in the SW.
368 		 * To prevent the case that we handle a stale Rx descriptor,
369 		 * just assert for now until we have a way to recover.
370 		 */
371 		if (!(__le32_to_cpu(rx_desc->attention.flags)
372 				& RX_ATTENTION_FLAGS_MSDU_DONE)) {
373 			__skb_queue_purge(amsdu);
374 			return -EIO;
375 		}
376 
377 		msdu_len_invalid = !!(__le32_to_cpu(rx_desc->attention.flags)
378 					& (RX_ATTENTION_FLAGS_MPDU_LENGTH_ERR |
379 					   RX_ATTENTION_FLAGS_MSDU_LENGTH_ERR));
380 		msdu_len = MS(__le32_to_cpu(rx_desc->msdu_start.common.info0),
381 			      RX_MSDU_START_INFO0_MSDU_LENGTH);
382 		msdu_chained = rx_desc->frag_info.ring2_more_count;
383 
384 		if (msdu_len_invalid)
385 			msdu_len = 0;
386 
387 		skb_trim(msdu, 0);
388 		skb_put(msdu, min(msdu_len, HTT_RX_MSDU_SIZE));
389 		msdu_len -= msdu->len;
390 
391 		/* Note: Chained buffers do not contain rx descriptor */
392 		while (msdu_chained--) {
393 			msdu = ath10k_htt_rx_netbuf_pop(htt);
394 			if (!msdu) {
395 				__skb_queue_purge(amsdu);
396 				return -ENOENT;
397 			}
398 
399 			__skb_queue_tail(amsdu, msdu);
400 			skb_trim(msdu, 0);
401 			skb_put(msdu, min(msdu_len, HTT_RX_BUF_SIZE));
402 			msdu_len -= msdu->len;
403 			msdu_chaining = 1;
404 		}
405 
406 		last_msdu = __le32_to_cpu(rx_desc->msdu_end.common.info0) &
407 				RX_MSDU_END_INFO0_LAST_MSDU;
408 
409 		trace_ath10k_htt_rx_desc(ar, &rx_desc->attention,
410 					 sizeof(*rx_desc) - sizeof(u32));
411 
412 		if (last_msdu)
413 			break;
414 	}
415 
416 	if (skb_queue_empty(amsdu))
417 		msdu_chaining = -1;
418 
419 	/*
420 	 * Don't refill the ring yet.
421 	 *
422 	 * First, the elements popped here are still in use - it is not
423 	 * safe to overwrite them until the matching call to
424 	 * mpdu_desc_list_next. Second, for efficiency it is preferable to
425 	 * refill the rx ring with 1 PPDU's worth of rx buffers (something
426 	 * like 32 x 3 buffers), rather than one MPDU's worth of rx buffers
427 	 * (something like 3 buffers). Consequently, we'll rely on the txrx
428 	 * SW to tell us when it is done pulling all the PPDU's rx buffers
429 	 * out of the rx ring, and then refill it just once.
430 	 */
431 
432 	return msdu_chaining;
433 }
434 
435 static struct sk_buff *ath10k_htt_rx_pop_paddr(struct ath10k_htt *htt,
436 					       u64 paddr)
437 {
438 	struct ath10k *ar = htt->ar;
439 	struct ath10k_skb_rxcb *rxcb;
440 	struct sk_buff *msdu;
441 
442 	lockdep_assert_held(&htt->rx_ring.lock);
443 
444 	msdu = ath10k_htt_rx_find_skb_paddr(ar, paddr);
445 	if (!msdu)
446 		return NULL;
447 
448 	rxcb = ATH10K_SKB_RXCB(msdu);
449 	hash_del(&rxcb->hlist);
450 	htt->rx_ring.fill_cnt--;
451 
452 	dma_unmap_single(htt->ar->dev, rxcb->paddr,
453 			 msdu->len + skb_tailroom(msdu),
454 			 DMA_FROM_DEVICE);
455 	ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ",
456 			msdu->data, msdu->len + skb_tailroom(msdu));
457 
458 	return msdu;
459 }
460 
461 static inline void ath10k_htt_append_frag_list(struct sk_buff *skb_head,
462 					       struct sk_buff *frag_list,
463 					       unsigned int frag_len)
464 {
465 	skb_shinfo(skb_head)->frag_list = frag_list;
466 	skb_head->data_len = frag_len;
467 	skb_head->len += skb_head->data_len;
468 }
469 
470 static int ath10k_htt_rx_handle_amsdu_mon_32(struct ath10k_htt *htt,
471 					     struct sk_buff *msdu,
472 					     struct htt_rx_in_ord_msdu_desc **msdu_desc)
473 {
474 	struct ath10k *ar = htt->ar;
475 	u32 paddr;
476 	struct sk_buff *frag_buf;
477 	struct sk_buff *prev_frag_buf;
478 	u8 last_frag;
479 	struct htt_rx_in_ord_msdu_desc *ind_desc = *msdu_desc;
480 	struct htt_rx_desc *rxd;
481 	int amsdu_len = __le16_to_cpu(ind_desc->msdu_len);
482 
483 	rxd = (void *)msdu->data;
484 	trace_ath10k_htt_rx_desc(ar, rxd, sizeof(*rxd));
485 
486 	skb_put(msdu, sizeof(struct htt_rx_desc));
487 	skb_pull(msdu, sizeof(struct htt_rx_desc));
488 	skb_put(msdu, min(amsdu_len, HTT_RX_MSDU_SIZE));
489 	amsdu_len -= msdu->len;
490 
491 	last_frag = ind_desc->reserved;
492 	if (last_frag) {
493 		if (amsdu_len) {
494 			ath10k_warn(ar, "invalid amsdu len %u, left %d",
495 				    __le16_to_cpu(ind_desc->msdu_len),
496 				    amsdu_len);
497 		}
498 		return 0;
499 	}
500 
501 	ind_desc++;
502 	paddr = __le32_to_cpu(ind_desc->msdu_paddr);
503 	frag_buf = ath10k_htt_rx_pop_paddr(htt, paddr);
504 	if (!frag_buf) {
505 		ath10k_warn(ar, "failed to pop frag-1 paddr: 0x%x", paddr);
506 		return -ENOENT;
507 	}
508 
509 	skb_put(frag_buf, min(amsdu_len, HTT_RX_BUF_SIZE));
510 	ath10k_htt_append_frag_list(msdu, frag_buf, amsdu_len);
511 
512 	amsdu_len -= frag_buf->len;
513 	prev_frag_buf = frag_buf;
514 	last_frag = ind_desc->reserved;
515 	while (!last_frag) {
516 		ind_desc++;
517 		paddr = __le32_to_cpu(ind_desc->msdu_paddr);
518 		frag_buf = ath10k_htt_rx_pop_paddr(htt, paddr);
519 		if (!frag_buf) {
520 			ath10k_warn(ar, "failed to pop frag-n paddr: 0x%x",
521 				    paddr);
522 			prev_frag_buf->next = NULL;
523 			return -ENOENT;
524 		}
525 
526 		skb_put(frag_buf, min(amsdu_len, HTT_RX_BUF_SIZE));
527 		last_frag = ind_desc->reserved;
528 		amsdu_len -= frag_buf->len;
529 
530 		prev_frag_buf->next = frag_buf;
531 		prev_frag_buf = frag_buf;
532 	}
533 
534 	if (amsdu_len) {
535 		ath10k_warn(ar, "invalid amsdu len %u, left %d",
536 			    __le16_to_cpu(ind_desc->msdu_len), amsdu_len);
537 	}
538 
539 	*msdu_desc = ind_desc;
540 
541 	prev_frag_buf->next = NULL;
542 	return 0;
543 }
544 
545 static int
546 ath10k_htt_rx_handle_amsdu_mon_64(struct ath10k_htt *htt,
547 				  struct sk_buff *msdu,
548 				  struct htt_rx_in_ord_msdu_desc_ext **msdu_desc)
549 {
550 	struct ath10k *ar = htt->ar;
551 	u64 paddr;
552 	struct sk_buff *frag_buf;
553 	struct sk_buff *prev_frag_buf;
554 	u8 last_frag;
555 	struct htt_rx_in_ord_msdu_desc_ext *ind_desc = *msdu_desc;
556 	struct htt_rx_desc *rxd;
557 	int amsdu_len = __le16_to_cpu(ind_desc->msdu_len);
558 
559 	rxd = (void *)msdu->data;
560 	trace_ath10k_htt_rx_desc(ar, rxd, sizeof(*rxd));
561 
562 	skb_put(msdu, sizeof(struct htt_rx_desc));
563 	skb_pull(msdu, sizeof(struct htt_rx_desc));
564 	skb_put(msdu, min(amsdu_len, HTT_RX_MSDU_SIZE));
565 	amsdu_len -= msdu->len;
566 
567 	last_frag = ind_desc->reserved;
568 	if (last_frag) {
569 		if (amsdu_len) {
570 			ath10k_warn(ar, "invalid amsdu len %u, left %d",
571 				    __le16_to_cpu(ind_desc->msdu_len),
572 				    amsdu_len);
573 		}
574 		return 0;
575 	}
576 
577 	ind_desc++;
578 	paddr = __le64_to_cpu(ind_desc->msdu_paddr);
579 	frag_buf = ath10k_htt_rx_pop_paddr(htt, paddr);
580 	if (!frag_buf) {
581 		ath10k_warn(ar, "failed to pop frag-1 paddr: 0x%llx", paddr);
582 		return -ENOENT;
583 	}
584 
585 	skb_put(frag_buf, min(amsdu_len, HTT_RX_BUF_SIZE));
586 	ath10k_htt_append_frag_list(msdu, frag_buf, amsdu_len);
587 
588 	amsdu_len -= frag_buf->len;
589 	prev_frag_buf = frag_buf;
590 	last_frag = ind_desc->reserved;
591 	while (!last_frag) {
592 		ind_desc++;
593 		paddr = __le64_to_cpu(ind_desc->msdu_paddr);
594 		frag_buf = ath10k_htt_rx_pop_paddr(htt, paddr);
595 		if (!frag_buf) {
596 			ath10k_warn(ar, "failed to pop frag-n paddr: 0x%llx",
597 				    paddr);
598 			prev_frag_buf->next = NULL;
599 			return -ENOENT;
600 		}
601 
602 		skb_put(frag_buf, min(amsdu_len, HTT_RX_BUF_SIZE));
603 		last_frag = ind_desc->reserved;
604 		amsdu_len -= frag_buf->len;
605 
606 		prev_frag_buf->next = frag_buf;
607 		prev_frag_buf = frag_buf;
608 	}
609 
610 	if (amsdu_len) {
611 		ath10k_warn(ar, "invalid amsdu len %u, left %d",
612 			    __le16_to_cpu(ind_desc->msdu_len), amsdu_len);
613 	}
614 
615 	*msdu_desc = ind_desc;
616 
617 	prev_frag_buf->next = NULL;
618 	return 0;
619 }
620 
621 static int ath10k_htt_rx_pop_paddr32_list(struct ath10k_htt *htt,
622 					  struct htt_rx_in_ord_ind *ev,
623 					  struct sk_buff_head *list)
624 {
625 	struct ath10k *ar = htt->ar;
626 	struct htt_rx_in_ord_msdu_desc *msdu_desc = ev->msdu_descs32;
627 	struct htt_rx_desc *rxd;
628 	struct sk_buff *msdu;
629 	int msdu_count, ret;
630 	bool is_offload;
631 	u32 paddr;
632 
633 	lockdep_assert_held(&htt->rx_ring.lock);
634 
635 	msdu_count = __le16_to_cpu(ev->msdu_count);
636 	is_offload = !!(ev->info & HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK);
637 
638 	while (msdu_count--) {
639 		paddr = __le32_to_cpu(msdu_desc->msdu_paddr);
640 
641 		msdu = ath10k_htt_rx_pop_paddr(htt, paddr);
642 		if (!msdu) {
643 			__skb_queue_purge(list);
644 			return -ENOENT;
645 		}
646 
647 		if (!is_offload && ar->monitor_arvif) {
648 			ret = ath10k_htt_rx_handle_amsdu_mon_32(htt, msdu,
649 								&msdu_desc);
650 			if (ret) {
651 				__skb_queue_purge(list);
652 				return ret;
653 			}
654 			__skb_queue_tail(list, msdu);
655 			msdu_desc++;
656 			continue;
657 		}
658 
659 		__skb_queue_tail(list, msdu);
660 
661 		if (!is_offload) {
662 			rxd = (void *)msdu->data;
663 
664 			trace_ath10k_htt_rx_desc(ar, rxd, sizeof(*rxd));
665 
666 			skb_put(msdu, sizeof(*rxd));
667 			skb_pull(msdu, sizeof(*rxd));
668 			skb_put(msdu, __le16_to_cpu(msdu_desc->msdu_len));
669 
670 			if (!(__le32_to_cpu(rxd->attention.flags) &
671 			      RX_ATTENTION_FLAGS_MSDU_DONE)) {
672 				ath10k_warn(htt->ar, "tried to pop an incomplete frame, oops!\n");
673 				return -EIO;
674 			}
675 		}
676 
677 		msdu_desc++;
678 	}
679 
680 	return 0;
681 }
682 
683 static int ath10k_htt_rx_pop_paddr64_list(struct ath10k_htt *htt,
684 					  struct htt_rx_in_ord_ind *ev,
685 					  struct sk_buff_head *list)
686 {
687 	struct ath10k *ar = htt->ar;
688 	struct htt_rx_in_ord_msdu_desc_ext *msdu_desc = ev->msdu_descs64;
689 	struct htt_rx_desc *rxd;
690 	struct sk_buff *msdu;
691 	int msdu_count, ret;
692 	bool is_offload;
693 	u64 paddr;
694 
695 	lockdep_assert_held(&htt->rx_ring.lock);
696 
697 	msdu_count = __le16_to_cpu(ev->msdu_count);
698 	is_offload = !!(ev->info & HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK);
699 
700 	while (msdu_count--) {
701 		paddr = __le64_to_cpu(msdu_desc->msdu_paddr);
702 		msdu = ath10k_htt_rx_pop_paddr(htt, paddr);
703 		if (!msdu) {
704 			__skb_queue_purge(list);
705 			return -ENOENT;
706 		}
707 
708 		if (!is_offload && ar->monitor_arvif) {
709 			ret = ath10k_htt_rx_handle_amsdu_mon_64(htt, msdu,
710 								&msdu_desc);
711 			if (ret) {
712 				__skb_queue_purge(list);
713 				return ret;
714 			}
715 			__skb_queue_tail(list, msdu);
716 			msdu_desc++;
717 			continue;
718 		}
719 
720 		__skb_queue_tail(list, msdu);
721 
722 		if (!is_offload) {
723 			rxd = (void *)msdu->data;
724 
725 			trace_ath10k_htt_rx_desc(ar, rxd, sizeof(*rxd));
726 
727 			skb_put(msdu, sizeof(*rxd));
728 			skb_pull(msdu, sizeof(*rxd));
729 			skb_put(msdu, __le16_to_cpu(msdu_desc->msdu_len));
730 
731 			if (!(__le32_to_cpu(rxd->attention.flags) &
732 			      RX_ATTENTION_FLAGS_MSDU_DONE)) {
733 				ath10k_warn(htt->ar, "tried to pop an incomplete frame, oops!\n");
734 				return -EIO;
735 			}
736 		}
737 
738 		msdu_desc++;
739 	}
740 
741 	return 0;
742 }
743 
744 int ath10k_htt_rx_alloc(struct ath10k_htt *htt)
745 {
746 	struct ath10k *ar = htt->ar;
747 	dma_addr_t paddr;
748 	void *vaddr, *vaddr_ring;
749 	size_t size;
750 	struct timer_list *timer = &htt->rx_ring.refill_retry_timer;
751 
752 	if (ar->bus_param.dev_type == ATH10K_DEV_TYPE_HL)
753 		return 0;
754 
755 	htt->rx_confused = false;
756 
757 	/* XXX: The fill level could be changed during runtime in response to
758 	 * the host processing latency. Is this really worth it?
759 	 */
760 	htt->rx_ring.size = HTT_RX_RING_SIZE;
761 	htt->rx_ring.size_mask = htt->rx_ring.size - 1;
762 	htt->rx_ring.fill_level = ar->hw_params.rx_ring_fill_level;
763 
764 	if (!is_power_of_2(htt->rx_ring.size)) {
765 		ath10k_warn(ar, "htt rx ring size is not power of 2\n");
766 		return -EINVAL;
767 	}
768 
769 	htt->rx_ring.netbufs_ring =
770 		kcalloc(htt->rx_ring.size, sizeof(struct sk_buff *),
771 			GFP_KERNEL);
772 	if (!htt->rx_ring.netbufs_ring)
773 		goto err_netbuf;
774 
775 	size = ath10k_htt_get_rx_ring_size(htt);
776 
777 	vaddr_ring = dma_alloc_coherent(htt->ar->dev, size, &paddr, GFP_KERNEL);
778 	if (!vaddr_ring)
779 		goto err_dma_ring;
780 
781 	ath10k_htt_config_paddrs_ring(htt, vaddr_ring);
782 	htt->rx_ring.base_paddr = paddr;
783 
784 	vaddr = dma_alloc_coherent(htt->ar->dev,
785 				   sizeof(*htt->rx_ring.alloc_idx.vaddr),
786 				   &paddr, GFP_KERNEL);
787 	if (!vaddr)
788 		goto err_dma_idx;
789 
790 	htt->rx_ring.alloc_idx.vaddr = vaddr;
791 	htt->rx_ring.alloc_idx.paddr = paddr;
792 	htt->rx_ring.sw_rd_idx.msdu_payld = htt->rx_ring.size_mask;
793 	*htt->rx_ring.alloc_idx.vaddr = 0;
794 
795 	/* Initialize the Rx refill retry timer */
796 	timer_setup(timer, ath10k_htt_rx_ring_refill_retry, 0);
797 
798 	spin_lock_init(&htt->rx_ring.lock);
799 
800 	htt->rx_ring.fill_cnt = 0;
801 	htt->rx_ring.sw_rd_idx.msdu_payld = 0;
802 	hash_init(htt->rx_ring.skb_table);
803 
804 	skb_queue_head_init(&htt->rx_msdus_q);
805 	skb_queue_head_init(&htt->rx_in_ord_compl_q);
806 	skb_queue_head_init(&htt->tx_fetch_ind_q);
807 	atomic_set(&htt->num_mpdus_ready, 0);
808 
809 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "htt rx ring size %d fill_level %d\n",
810 		   htt->rx_ring.size, htt->rx_ring.fill_level);
811 	return 0;
812 
813 err_dma_idx:
814 	dma_free_coherent(htt->ar->dev,
815 			  ath10k_htt_get_rx_ring_size(htt),
816 			  vaddr_ring,
817 			  htt->rx_ring.base_paddr);
818 err_dma_ring:
819 	kfree(htt->rx_ring.netbufs_ring);
820 err_netbuf:
821 	return -ENOMEM;
822 }
823 
824 static int ath10k_htt_rx_crypto_param_len(struct ath10k *ar,
825 					  enum htt_rx_mpdu_encrypt_type type)
826 {
827 	switch (type) {
828 	case HTT_RX_MPDU_ENCRYPT_NONE:
829 		return 0;
830 	case HTT_RX_MPDU_ENCRYPT_WEP40:
831 	case HTT_RX_MPDU_ENCRYPT_WEP104:
832 		return IEEE80211_WEP_IV_LEN;
833 	case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
834 	case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
835 		return IEEE80211_TKIP_IV_LEN;
836 	case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
837 		return IEEE80211_CCMP_HDR_LEN;
838 	case HTT_RX_MPDU_ENCRYPT_AES_CCM256_WPA2:
839 		return IEEE80211_CCMP_256_HDR_LEN;
840 	case HTT_RX_MPDU_ENCRYPT_AES_GCMP_WPA2:
841 	case HTT_RX_MPDU_ENCRYPT_AES_GCMP256_WPA2:
842 		return IEEE80211_GCMP_HDR_LEN;
843 	case HTT_RX_MPDU_ENCRYPT_WEP128:
844 	case HTT_RX_MPDU_ENCRYPT_WAPI:
845 		break;
846 	}
847 
848 	ath10k_warn(ar, "unsupported encryption type %d\n", type);
849 	return 0;
850 }
851 
852 #define MICHAEL_MIC_LEN 8
853 
854 static int ath10k_htt_rx_crypto_mic_len(struct ath10k *ar,
855 					enum htt_rx_mpdu_encrypt_type type)
856 {
857 	switch (type) {
858 	case HTT_RX_MPDU_ENCRYPT_NONE:
859 	case HTT_RX_MPDU_ENCRYPT_WEP40:
860 	case HTT_RX_MPDU_ENCRYPT_WEP104:
861 	case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
862 	case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
863 		return 0;
864 	case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
865 		return IEEE80211_CCMP_MIC_LEN;
866 	case HTT_RX_MPDU_ENCRYPT_AES_CCM256_WPA2:
867 		return IEEE80211_CCMP_256_MIC_LEN;
868 	case HTT_RX_MPDU_ENCRYPT_AES_GCMP_WPA2:
869 	case HTT_RX_MPDU_ENCRYPT_AES_GCMP256_WPA2:
870 		return IEEE80211_GCMP_MIC_LEN;
871 	case HTT_RX_MPDU_ENCRYPT_WEP128:
872 	case HTT_RX_MPDU_ENCRYPT_WAPI:
873 		break;
874 	}
875 
876 	ath10k_warn(ar, "unsupported encryption type %d\n", type);
877 	return 0;
878 }
879 
880 static int ath10k_htt_rx_crypto_icv_len(struct ath10k *ar,
881 					enum htt_rx_mpdu_encrypt_type type)
882 {
883 	switch (type) {
884 	case HTT_RX_MPDU_ENCRYPT_NONE:
885 	case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
886 	case HTT_RX_MPDU_ENCRYPT_AES_CCM256_WPA2:
887 	case HTT_RX_MPDU_ENCRYPT_AES_GCMP_WPA2:
888 	case HTT_RX_MPDU_ENCRYPT_AES_GCMP256_WPA2:
889 		return 0;
890 	case HTT_RX_MPDU_ENCRYPT_WEP40:
891 	case HTT_RX_MPDU_ENCRYPT_WEP104:
892 		return IEEE80211_WEP_ICV_LEN;
893 	case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
894 	case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
895 		return IEEE80211_TKIP_ICV_LEN;
896 	case HTT_RX_MPDU_ENCRYPT_WEP128:
897 	case HTT_RX_MPDU_ENCRYPT_WAPI:
898 		break;
899 	}
900 
901 	ath10k_warn(ar, "unsupported encryption type %d\n", type);
902 	return 0;
903 }
904 
905 struct amsdu_subframe_hdr {
906 	u8 dst[ETH_ALEN];
907 	u8 src[ETH_ALEN];
908 	__be16 len;
909 } __packed;
910 
911 #define GROUP_ID_IS_SU_MIMO(x) ((x) == 0 || (x) == 63)
912 
913 static inline u8 ath10k_bw_to_mac80211_bw(u8 bw)
914 {
915 	u8 ret = 0;
916 
917 	switch (bw) {
918 	case 0:
919 		ret = RATE_INFO_BW_20;
920 		break;
921 	case 1:
922 		ret = RATE_INFO_BW_40;
923 		break;
924 	case 2:
925 		ret = RATE_INFO_BW_80;
926 		break;
927 	case 3:
928 		ret = RATE_INFO_BW_160;
929 		break;
930 	}
931 
932 	return ret;
933 }
934 
935 static void ath10k_htt_rx_h_rates(struct ath10k *ar,
936 				  struct ieee80211_rx_status *status,
937 				  struct htt_rx_desc *rxd)
938 {
939 	struct ieee80211_supported_band *sband;
940 	u8 cck, rate, bw, sgi, mcs, nss;
941 	u8 preamble = 0;
942 	u8 group_id;
943 	u32 info1, info2, info3;
944 
945 	info1 = __le32_to_cpu(rxd->ppdu_start.info1);
946 	info2 = __le32_to_cpu(rxd->ppdu_start.info2);
947 	info3 = __le32_to_cpu(rxd->ppdu_start.info3);
948 
949 	preamble = MS(info1, RX_PPDU_START_INFO1_PREAMBLE_TYPE);
950 
951 	switch (preamble) {
952 	case HTT_RX_LEGACY:
953 		/* To get legacy rate index band is required. Since band can't
954 		 * be undefined check if freq is non-zero.
955 		 */
956 		if (!status->freq)
957 			return;
958 
959 		cck = info1 & RX_PPDU_START_INFO1_L_SIG_RATE_SELECT;
960 		rate = MS(info1, RX_PPDU_START_INFO1_L_SIG_RATE);
961 		rate &= ~RX_PPDU_START_RATE_FLAG;
962 
963 		sband = &ar->mac.sbands[status->band];
964 		status->rate_idx = ath10k_mac_hw_rate_to_idx(sband, rate, cck);
965 		break;
966 	case HTT_RX_HT:
967 	case HTT_RX_HT_WITH_TXBF:
968 		/* HT-SIG - Table 20-11 in info2 and info3 */
969 		mcs = info2 & 0x1F;
970 		nss = mcs >> 3;
971 		bw = (info2 >> 7) & 1;
972 		sgi = (info3 >> 7) & 1;
973 
974 		status->rate_idx = mcs;
975 		status->encoding = RX_ENC_HT;
976 		if (sgi)
977 			status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
978 		if (bw)
979 			status->bw = RATE_INFO_BW_40;
980 		break;
981 	case HTT_RX_VHT:
982 	case HTT_RX_VHT_WITH_TXBF:
983 		/* VHT-SIG-A1 in info2, VHT-SIG-A2 in info3
984 		 * TODO check this
985 		 */
986 		bw = info2 & 3;
987 		sgi = info3 & 1;
988 		group_id = (info2 >> 4) & 0x3F;
989 
990 		if (GROUP_ID_IS_SU_MIMO(group_id)) {
991 			mcs = (info3 >> 4) & 0x0F;
992 			nss = ((info2 >> 10) & 0x07) + 1;
993 		} else {
994 			/* Hardware doesn't decode VHT-SIG-B into Rx descriptor
995 			 * so it's impossible to decode MCS. Also since
996 			 * firmware consumes Group Id Management frames host
997 			 * has no knowledge regarding group/user position
998 			 * mapping so it's impossible to pick the correct Nsts
999 			 * from VHT-SIG-A1.
1000 			 *
1001 			 * Bandwidth and SGI are valid so report the rateinfo
1002 			 * on best-effort basis.
1003 			 */
1004 			mcs = 0;
1005 			nss = 1;
1006 		}
1007 
1008 		if (mcs > 0x09) {
1009 			ath10k_warn(ar, "invalid MCS received %u\n", mcs);
1010 			ath10k_warn(ar, "rxd %08x mpdu start %08x %08x msdu start %08x %08x ppdu start %08x %08x %08x %08x %08x\n",
1011 				    __le32_to_cpu(rxd->attention.flags),
1012 				    __le32_to_cpu(rxd->mpdu_start.info0),
1013 				    __le32_to_cpu(rxd->mpdu_start.info1),
1014 				    __le32_to_cpu(rxd->msdu_start.common.info0),
1015 				    __le32_to_cpu(rxd->msdu_start.common.info1),
1016 				    rxd->ppdu_start.info0,
1017 				    __le32_to_cpu(rxd->ppdu_start.info1),
1018 				    __le32_to_cpu(rxd->ppdu_start.info2),
1019 				    __le32_to_cpu(rxd->ppdu_start.info3),
1020 				    __le32_to_cpu(rxd->ppdu_start.info4));
1021 
1022 			ath10k_warn(ar, "msdu end %08x mpdu end %08x\n",
1023 				    __le32_to_cpu(rxd->msdu_end.common.info0),
1024 				    __le32_to_cpu(rxd->mpdu_end.info0));
1025 
1026 			ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL,
1027 					"rx desc msdu payload: ",
1028 					rxd->msdu_payload, 50);
1029 		}
1030 
1031 		status->rate_idx = mcs;
1032 		status->nss = nss;
1033 
1034 		if (sgi)
1035 			status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
1036 
1037 		status->bw = ath10k_bw_to_mac80211_bw(bw);
1038 		status->encoding = RX_ENC_VHT;
1039 		break;
1040 	default:
1041 		break;
1042 	}
1043 }
1044 
1045 static struct ieee80211_channel *
1046 ath10k_htt_rx_h_peer_channel(struct ath10k *ar, struct htt_rx_desc *rxd)
1047 {
1048 	struct ath10k_peer *peer;
1049 	struct ath10k_vif *arvif;
1050 	struct cfg80211_chan_def def;
1051 	u16 peer_id;
1052 
1053 	lockdep_assert_held(&ar->data_lock);
1054 
1055 	if (!rxd)
1056 		return NULL;
1057 
1058 	if (rxd->attention.flags &
1059 	    __cpu_to_le32(RX_ATTENTION_FLAGS_PEER_IDX_INVALID))
1060 		return NULL;
1061 
1062 	if (!(rxd->msdu_end.common.info0 &
1063 	      __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU)))
1064 		return NULL;
1065 
1066 	peer_id = MS(__le32_to_cpu(rxd->mpdu_start.info0),
1067 		     RX_MPDU_START_INFO0_PEER_IDX);
1068 
1069 	peer = ath10k_peer_find_by_id(ar, peer_id);
1070 	if (!peer)
1071 		return NULL;
1072 
1073 	arvif = ath10k_get_arvif(ar, peer->vdev_id);
1074 	if (WARN_ON_ONCE(!arvif))
1075 		return NULL;
1076 
1077 	if (ath10k_mac_vif_chan(arvif->vif, &def))
1078 		return NULL;
1079 
1080 	return def.chan;
1081 }
1082 
1083 static struct ieee80211_channel *
1084 ath10k_htt_rx_h_vdev_channel(struct ath10k *ar, u32 vdev_id)
1085 {
1086 	struct ath10k_vif *arvif;
1087 	struct cfg80211_chan_def def;
1088 
1089 	lockdep_assert_held(&ar->data_lock);
1090 
1091 	list_for_each_entry(arvif, &ar->arvifs, list) {
1092 		if (arvif->vdev_id == vdev_id &&
1093 		    ath10k_mac_vif_chan(arvif->vif, &def) == 0)
1094 			return def.chan;
1095 	}
1096 
1097 	return NULL;
1098 }
1099 
1100 static void
1101 ath10k_htt_rx_h_any_chan_iter(struct ieee80211_hw *hw,
1102 			      struct ieee80211_chanctx_conf *conf,
1103 			      void *data)
1104 {
1105 	struct cfg80211_chan_def *def = data;
1106 
1107 	*def = conf->def;
1108 }
1109 
1110 static struct ieee80211_channel *
1111 ath10k_htt_rx_h_any_channel(struct ath10k *ar)
1112 {
1113 	struct cfg80211_chan_def def = {};
1114 
1115 	ieee80211_iter_chan_contexts_atomic(ar->hw,
1116 					    ath10k_htt_rx_h_any_chan_iter,
1117 					    &def);
1118 
1119 	return def.chan;
1120 }
1121 
1122 static bool ath10k_htt_rx_h_channel(struct ath10k *ar,
1123 				    struct ieee80211_rx_status *status,
1124 				    struct htt_rx_desc *rxd,
1125 				    u32 vdev_id)
1126 {
1127 	struct ieee80211_channel *ch;
1128 
1129 	spin_lock_bh(&ar->data_lock);
1130 	ch = ar->scan_channel;
1131 	if (!ch)
1132 		ch = ar->rx_channel;
1133 	if (!ch)
1134 		ch = ath10k_htt_rx_h_peer_channel(ar, rxd);
1135 	if (!ch)
1136 		ch = ath10k_htt_rx_h_vdev_channel(ar, vdev_id);
1137 	if (!ch)
1138 		ch = ath10k_htt_rx_h_any_channel(ar);
1139 	if (!ch)
1140 		ch = ar->tgt_oper_chan;
1141 	spin_unlock_bh(&ar->data_lock);
1142 
1143 	if (!ch)
1144 		return false;
1145 
1146 	status->band = ch->band;
1147 	status->freq = ch->center_freq;
1148 
1149 	return true;
1150 }
1151 
1152 static void ath10k_htt_rx_h_signal(struct ath10k *ar,
1153 				   struct ieee80211_rx_status *status,
1154 				   struct htt_rx_desc *rxd)
1155 {
1156 	int i;
1157 
1158 	for (i = 0; i < IEEE80211_MAX_CHAINS ; i++) {
1159 		status->chains &= ~BIT(i);
1160 
1161 		if (rxd->ppdu_start.rssi_chains[i].pri20_mhz != 0x80) {
1162 			status->chain_signal[i] = ATH10K_DEFAULT_NOISE_FLOOR +
1163 				rxd->ppdu_start.rssi_chains[i].pri20_mhz;
1164 
1165 			status->chains |= BIT(i);
1166 		}
1167 	}
1168 
1169 	/* FIXME: Get real NF */
1170 	status->signal = ATH10K_DEFAULT_NOISE_FLOOR +
1171 			 rxd->ppdu_start.rssi_comb;
1172 	status->flag &= ~RX_FLAG_NO_SIGNAL_VAL;
1173 }
1174 
1175 static void ath10k_htt_rx_h_mactime(struct ath10k *ar,
1176 				    struct ieee80211_rx_status *status,
1177 				    struct htt_rx_desc *rxd)
1178 {
1179 	/* FIXME: TSF is known only at the end of PPDU, in the last MPDU. This
1180 	 * means all prior MSDUs in a PPDU are reported to mac80211 without the
1181 	 * TSF. Is it worth holding frames until end of PPDU is known?
1182 	 *
1183 	 * FIXME: Can we get/compute 64bit TSF?
1184 	 */
1185 	status->mactime = __le32_to_cpu(rxd->ppdu_end.common.tsf_timestamp);
1186 	status->flag |= RX_FLAG_MACTIME_END;
1187 }
1188 
1189 static void ath10k_htt_rx_h_ppdu(struct ath10k *ar,
1190 				 struct sk_buff_head *amsdu,
1191 				 struct ieee80211_rx_status *status,
1192 				 u32 vdev_id)
1193 {
1194 	struct sk_buff *first;
1195 	struct htt_rx_desc *rxd;
1196 	bool is_first_ppdu;
1197 	bool is_last_ppdu;
1198 
1199 	if (skb_queue_empty(amsdu))
1200 		return;
1201 
1202 	first = skb_peek(amsdu);
1203 	rxd = (void *)first->data - sizeof(*rxd);
1204 
1205 	is_first_ppdu = !!(rxd->attention.flags &
1206 			   __cpu_to_le32(RX_ATTENTION_FLAGS_FIRST_MPDU));
1207 	is_last_ppdu = !!(rxd->attention.flags &
1208 			  __cpu_to_le32(RX_ATTENTION_FLAGS_LAST_MPDU));
1209 
1210 	if (is_first_ppdu) {
1211 		/* New PPDU starts so clear out the old per-PPDU status. */
1212 		status->freq = 0;
1213 		status->rate_idx = 0;
1214 		status->nss = 0;
1215 		status->encoding = RX_ENC_LEGACY;
1216 		status->bw = RATE_INFO_BW_20;
1217 
1218 		status->flag &= ~RX_FLAG_MACTIME_END;
1219 		status->flag |= RX_FLAG_NO_SIGNAL_VAL;
1220 
1221 		status->flag &= ~(RX_FLAG_AMPDU_IS_LAST);
1222 		status->flag |= RX_FLAG_AMPDU_DETAILS | RX_FLAG_AMPDU_LAST_KNOWN;
1223 		status->ampdu_reference = ar->ampdu_reference;
1224 
1225 		ath10k_htt_rx_h_signal(ar, status, rxd);
1226 		ath10k_htt_rx_h_channel(ar, status, rxd, vdev_id);
1227 		ath10k_htt_rx_h_rates(ar, status, rxd);
1228 	}
1229 
1230 	if (is_last_ppdu) {
1231 		ath10k_htt_rx_h_mactime(ar, status, rxd);
1232 
1233 		/* set ampdu last segment flag */
1234 		status->flag |= RX_FLAG_AMPDU_IS_LAST;
1235 		ar->ampdu_reference++;
1236 	}
1237 }
1238 
1239 static const char * const tid_to_ac[] = {
1240 	"BE",
1241 	"BK",
1242 	"BK",
1243 	"BE",
1244 	"VI",
1245 	"VI",
1246 	"VO",
1247 	"VO",
1248 };
1249 
1250 static char *ath10k_get_tid(struct ieee80211_hdr *hdr, char *out, size_t size)
1251 {
1252 	u8 *qc;
1253 	int tid;
1254 
1255 	if (!ieee80211_is_data_qos(hdr->frame_control))
1256 		return "";
1257 
1258 	qc = ieee80211_get_qos_ctl(hdr);
1259 	tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
1260 	if (tid < 8)
1261 		snprintf(out, size, "tid %d (%s)", tid, tid_to_ac[tid]);
1262 	else
1263 		snprintf(out, size, "tid %d", tid);
1264 
1265 	return out;
1266 }
1267 
1268 static void ath10k_htt_rx_h_queue_msdu(struct ath10k *ar,
1269 				       struct ieee80211_rx_status *rx_status,
1270 				       struct sk_buff *skb)
1271 {
1272 	struct ieee80211_rx_status *status;
1273 
1274 	status = IEEE80211_SKB_RXCB(skb);
1275 	*status = *rx_status;
1276 
1277 	skb_queue_tail(&ar->htt.rx_msdus_q, skb);
1278 }
1279 
1280 static void ath10k_process_rx(struct ath10k *ar, struct sk_buff *skb)
1281 {
1282 	struct ieee80211_rx_status *status;
1283 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1284 	char tid[32];
1285 
1286 	status = IEEE80211_SKB_RXCB(skb);
1287 
1288 	ath10k_dbg(ar, ATH10K_DBG_DATA,
1289 		   "rx skb %pK len %u peer %pM %s %s sn %u %s%s%s%s%s%s %srate_idx %u vht_nss %u freq %u band %u flag 0x%x fcs-err %i mic-err %i amsdu-more %i\n",
1290 		   skb,
1291 		   skb->len,
1292 		   ieee80211_get_SA(hdr),
1293 		   ath10k_get_tid(hdr, tid, sizeof(tid)),
1294 		   is_multicast_ether_addr(ieee80211_get_DA(hdr)) ?
1295 							"mcast" : "ucast",
1296 		   (__le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_SEQ) >> 4,
1297 		   (status->encoding == RX_ENC_LEGACY) ? "legacy" : "",
1298 		   (status->encoding == RX_ENC_HT) ? "ht" : "",
1299 		   (status->encoding == RX_ENC_VHT) ? "vht" : "",
1300 		   (status->bw == RATE_INFO_BW_40) ? "40" : "",
1301 		   (status->bw == RATE_INFO_BW_80) ? "80" : "",
1302 		   (status->bw == RATE_INFO_BW_160) ? "160" : "",
1303 		   status->enc_flags & RX_ENC_FLAG_SHORT_GI ? "sgi " : "",
1304 		   status->rate_idx,
1305 		   status->nss,
1306 		   status->freq,
1307 		   status->band, status->flag,
1308 		   !!(status->flag & RX_FLAG_FAILED_FCS_CRC),
1309 		   !!(status->flag & RX_FLAG_MMIC_ERROR),
1310 		   !!(status->flag & RX_FLAG_AMSDU_MORE));
1311 	ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "rx skb: ",
1312 			skb->data, skb->len);
1313 	trace_ath10k_rx_hdr(ar, skb->data, skb->len);
1314 	trace_ath10k_rx_payload(ar, skb->data, skb->len);
1315 
1316 	ieee80211_rx_napi(ar->hw, NULL, skb, &ar->napi);
1317 }
1318 
1319 static int ath10k_htt_rx_nwifi_hdrlen(struct ath10k *ar,
1320 				      struct ieee80211_hdr *hdr)
1321 {
1322 	int len = ieee80211_hdrlen(hdr->frame_control);
1323 
1324 	if (!test_bit(ATH10K_FW_FEATURE_NO_NWIFI_DECAP_4ADDR_PADDING,
1325 		      ar->running_fw->fw_file.fw_features))
1326 		len = round_up(len, 4);
1327 
1328 	return len;
1329 }
1330 
1331 static void ath10k_htt_rx_h_undecap_raw(struct ath10k *ar,
1332 					struct sk_buff *msdu,
1333 					struct ieee80211_rx_status *status,
1334 					enum htt_rx_mpdu_encrypt_type enctype,
1335 					bool is_decrypted,
1336 					const u8 first_hdr[64])
1337 {
1338 	struct ieee80211_hdr *hdr;
1339 	struct htt_rx_desc *rxd;
1340 	size_t hdr_len;
1341 	size_t crypto_len;
1342 	bool is_first;
1343 	bool is_last;
1344 	bool msdu_limit_err;
1345 	int bytes_aligned = ar->hw_params.decap_align_bytes;
1346 	u8 *qos;
1347 
1348 	rxd = (void *)msdu->data - sizeof(*rxd);
1349 	is_first = !!(rxd->msdu_end.common.info0 &
1350 		      __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU));
1351 	is_last = !!(rxd->msdu_end.common.info0 &
1352 		     __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU));
1353 
1354 	/* Delivered decapped frame:
1355 	 * [802.11 header]
1356 	 * [crypto param] <-- can be trimmed if !fcs_err &&
1357 	 *                    !decrypt_err && !peer_idx_invalid
1358 	 * [amsdu header] <-- only if A-MSDU
1359 	 * [rfc1042/llc]
1360 	 * [payload]
1361 	 * [FCS] <-- at end, needs to be trimmed
1362 	 */
1363 
1364 	/* Some hardwares(QCA99x0 variants) limit number of msdus in a-msdu when
1365 	 * deaggregate, so that unwanted MSDU-deaggregation is avoided for
1366 	 * error packets. If limit exceeds, hw sends all remaining MSDUs as
1367 	 * a single last MSDU with this msdu limit error set.
1368 	 */
1369 	msdu_limit_err = ath10k_rx_desc_msdu_limit_error(&ar->hw_params, rxd);
1370 
1371 	/* If MSDU limit error happens, then don't warn on, the partial raw MSDU
1372 	 * without first MSDU is expected in that case, and handled later here.
1373 	 */
1374 	/* This probably shouldn't happen but warn just in case */
1375 	if (WARN_ON_ONCE(!is_first && !msdu_limit_err))
1376 		return;
1377 
1378 	/* This probably shouldn't happen but warn just in case */
1379 	if (WARN_ON_ONCE(!(is_first && is_last) && !msdu_limit_err))
1380 		return;
1381 
1382 	skb_trim(msdu, msdu->len - FCS_LEN);
1383 
1384 	/* Push original 80211 header */
1385 	if (unlikely(msdu_limit_err)) {
1386 		hdr = (struct ieee80211_hdr *)first_hdr;
1387 		hdr_len = ieee80211_hdrlen(hdr->frame_control);
1388 		crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype);
1389 
1390 		if (ieee80211_is_data_qos(hdr->frame_control)) {
1391 			qos = ieee80211_get_qos_ctl(hdr);
1392 			qos[0] |= IEEE80211_QOS_CTL_A_MSDU_PRESENT;
1393 		}
1394 
1395 		if (crypto_len)
1396 			memcpy(skb_push(msdu, crypto_len),
1397 			       (void *)hdr + round_up(hdr_len, bytes_aligned),
1398 			       crypto_len);
1399 
1400 		memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1401 	}
1402 
1403 	/* In most cases this will be true for sniffed frames. It makes sense
1404 	 * to deliver them as-is without stripping the crypto param. This is
1405 	 * necessary for software based decryption.
1406 	 *
1407 	 * If there's no error then the frame is decrypted. At least that is
1408 	 * the case for frames that come in via fragmented rx indication.
1409 	 */
1410 	if (!is_decrypted)
1411 		return;
1412 
1413 	/* The payload is decrypted so strip crypto params. Start from tail
1414 	 * since hdr is used to compute some stuff.
1415 	 */
1416 
1417 	hdr = (void *)msdu->data;
1418 
1419 	/* Tail */
1420 	if (status->flag & RX_FLAG_IV_STRIPPED) {
1421 		skb_trim(msdu, msdu->len -
1422 			 ath10k_htt_rx_crypto_mic_len(ar, enctype));
1423 
1424 		skb_trim(msdu, msdu->len -
1425 			 ath10k_htt_rx_crypto_icv_len(ar, enctype));
1426 	} else {
1427 		/* MIC */
1428 		if (status->flag & RX_FLAG_MIC_STRIPPED)
1429 			skb_trim(msdu, msdu->len -
1430 				 ath10k_htt_rx_crypto_mic_len(ar, enctype));
1431 
1432 		/* ICV */
1433 		if (status->flag & RX_FLAG_ICV_STRIPPED)
1434 			skb_trim(msdu, msdu->len -
1435 				 ath10k_htt_rx_crypto_icv_len(ar, enctype));
1436 	}
1437 
1438 	/* MMIC */
1439 	if ((status->flag & RX_FLAG_MMIC_STRIPPED) &&
1440 	    !ieee80211_has_morefrags(hdr->frame_control) &&
1441 	    enctype == HTT_RX_MPDU_ENCRYPT_TKIP_WPA)
1442 		skb_trim(msdu, msdu->len - MICHAEL_MIC_LEN);
1443 
1444 	/* Head */
1445 	if (status->flag & RX_FLAG_IV_STRIPPED) {
1446 		hdr_len = ieee80211_hdrlen(hdr->frame_control);
1447 		crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype);
1448 
1449 		memmove((void *)msdu->data + crypto_len,
1450 			(void *)msdu->data, hdr_len);
1451 		skb_pull(msdu, crypto_len);
1452 	}
1453 }
1454 
1455 static void ath10k_htt_rx_h_undecap_nwifi(struct ath10k *ar,
1456 					  struct sk_buff *msdu,
1457 					  struct ieee80211_rx_status *status,
1458 					  const u8 first_hdr[64],
1459 					  enum htt_rx_mpdu_encrypt_type enctype)
1460 {
1461 	struct ieee80211_hdr *hdr;
1462 	struct htt_rx_desc *rxd;
1463 	size_t hdr_len;
1464 	u8 da[ETH_ALEN];
1465 	u8 sa[ETH_ALEN];
1466 	int l3_pad_bytes;
1467 	int bytes_aligned = ar->hw_params.decap_align_bytes;
1468 
1469 	/* Delivered decapped frame:
1470 	 * [nwifi 802.11 header] <-- replaced with 802.11 hdr
1471 	 * [rfc1042/llc]
1472 	 *
1473 	 * Note: The nwifi header doesn't have QoS Control and is
1474 	 * (always?) a 3addr frame.
1475 	 *
1476 	 * Note2: There's no A-MSDU subframe header. Even if it's part
1477 	 * of an A-MSDU.
1478 	 */
1479 
1480 	/* pull decapped header and copy SA & DA */
1481 	rxd = (void *)msdu->data - sizeof(*rxd);
1482 
1483 	l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd);
1484 	skb_put(msdu, l3_pad_bytes);
1485 
1486 	hdr = (struct ieee80211_hdr *)(msdu->data + l3_pad_bytes);
1487 
1488 	hdr_len = ath10k_htt_rx_nwifi_hdrlen(ar, hdr);
1489 	ether_addr_copy(da, ieee80211_get_DA(hdr));
1490 	ether_addr_copy(sa, ieee80211_get_SA(hdr));
1491 	skb_pull(msdu, hdr_len);
1492 
1493 	/* push original 802.11 header */
1494 	hdr = (struct ieee80211_hdr *)first_hdr;
1495 	hdr_len = ieee80211_hdrlen(hdr->frame_control);
1496 
1497 	if (!(status->flag & RX_FLAG_IV_STRIPPED)) {
1498 		memcpy(skb_push(msdu,
1499 				ath10k_htt_rx_crypto_param_len(ar, enctype)),
1500 		       (void *)hdr + round_up(hdr_len, bytes_aligned),
1501 			ath10k_htt_rx_crypto_param_len(ar, enctype));
1502 	}
1503 
1504 	memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1505 
1506 	/* original 802.11 header has a different DA and in
1507 	 * case of 4addr it may also have different SA
1508 	 */
1509 	hdr = (struct ieee80211_hdr *)msdu->data;
1510 	ether_addr_copy(ieee80211_get_DA(hdr), da);
1511 	ether_addr_copy(ieee80211_get_SA(hdr), sa);
1512 }
1513 
1514 static void *ath10k_htt_rx_h_find_rfc1042(struct ath10k *ar,
1515 					  struct sk_buff *msdu,
1516 					  enum htt_rx_mpdu_encrypt_type enctype)
1517 {
1518 	struct ieee80211_hdr *hdr;
1519 	struct htt_rx_desc *rxd;
1520 	size_t hdr_len, crypto_len;
1521 	void *rfc1042;
1522 	bool is_first, is_last, is_amsdu;
1523 	int bytes_aligned = ar->hw_params.decap_align_bytes;
1524 
1525 	rxd = (void *)msdu->data - sizeof(*rxd);
1526 	hdr = (void *)rxd->rx_hdr_status;
1527 
1528 	is_first = !!(rxd->msdu_end.common.info0 &
1529 		      __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU));
1530 	is_last = !!(rxd->msdu_end.common.info0 &
1531 		     __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU));
1532 	is_amsdu = !(is_first && is_last);
1533 
1534 	rfc1042 = hdr;
1535 
1536 	if (is_first) {
1537 		hdr_len = ieee80211_hdrlen(hdr->frame_control);
1538 		crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype);
1539 
1540 		rfc1042 += round_up(hdr_len, bytes_aligned) +
1541 			   round_up(crypto_len, bytes_aligned);
1542 	}
1543 
1544 	if (is_amsdu)
1545 		rfc1042 += sizeof(struct amsdu_subframe_hdr);
1546 
1547 	return rfc1042;
1548 }
1549 
1550 static void ath10k_htt_rx_h_undecap_eth(struct ath10k *ar,
1551 					struct sk_buff *msdu,
1552 					struct ieee80211_rx_status *status,
1553 					const u8 first_hdr[64],
1554 					enum htt_rx_mpdu_encrypt_type enctype)
1555 {
1556 	struct ieee80211_hdr *hdr;
1557 	struct ethhdr *eth;
1558 	size_t hdr_len;
1559 	void *rfc1042;
1560 	u8 da[ETH_ALEN];
1561 	u8 sa[ETH_ALEN];
1562 	int l3_pad_bytes;
1563 	struct htt_rx_desc *rxd;
1564 	int bytes_aligned = ar->hw_params.decap_align_bytes;
1565 
1566 	/* Delivered decapped frame:
1567 	 * [eth header] <-- replaced with 802.11 hdr & rfc1042/llc
1568 	 * [payload]
1569 	 */
1570 
1571 	rfc1042 = ath10k_htt_rx_h_find_rfc1042(ar, msdu, enctype);
1572 	if (WARN_ON_ONCE(!rfc1042))
1573 		return;
1574 
1575 	rxd = (void *)msdu->data - sizeof(*rxd);
1576 	l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd);
1577 	skb_put(msdu, l3_pad_bytes);
1578 	skb_pull(msdu, l3_pad_bytes);
1579 
1580 	/* pull decapped header and copy SA & DA */
1581 	eth = (struct ethhdr *)msdu->data;
1582 	ether_addr_copy(da, eth->h_dest);
1583 	ether_addr_copy(sa, eth->h_source);
1584 	skb_pull(msdu, sizeof(struct ethhdr));
1585 
1586 	/* push rfc1042/llc/snap */
1587 	memcpy(skb_push(msdu, sizeof(struct rfc1042_hdr)), rfc1042,
1588 	       sizeof(struct rfc1042_hdr));
1589 
1590 	/* push original 802.11 header */
1591 	hdr = (struct ieee80211_hdr *)first_hdr;
1592 	hdr_len = ieee80211_hdrlen(hdr->frame_control);
1593 
1594 	if (!(status->flag & RX_FLAG_IV_STRIPPED)) {
1595 		memcpy(skb_push(msdu,
1596 				ath10k_htt_rx_crypto_param_len(ar, enctype)),
1597 		       (void *)hdr + round_up(hdr_len, bytes_aligned),
1598 			ath10k_htt_rx_crypto_param_len(ar, enctype));
1599 	}
1600 
1601 	memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1602 
1603 	/* original 802.11 header has a different DA and in
1604 	 * case of 4addr it may also have different SA
1605 	 */
1606 	hdr = (struct ieee80211_hdr *)msdu->data;
1607 	ether_addr_copy(ieee80211_get_DA(hdr), da);
1608 	ether_addr_copy(ieee80211_get_SA(hdr), sa);
1609 }
1610 
1611 static void ath10k_htt_rx_h_undecap_snap(struct ath10k *ar,
1612 					 struct sk_buff *msdu,
1613 					 struct ieee80211_rx_status *status,
1614 					 const u8 first_hdr[64],
1615 					 enum htt_rx_mpdu_encrypt_type enctype)
1616 {
1617 	struct ieee80211_hdr *hdr;
1618 	size_t hdr_len;
1619 	int l3_pad_bytes;
1620 	struct htt_rx_desc *rxd;
1621 	int bytes_aligned = ar->hw_params.decap_align_bytes;
1622 
1623 	/* Delivered decapped frame:
1624 	 * [amsdu header] <-- replaced with 802.11 hdr
1625 	 * [rfc1042/llc]
1626 	 * [payload]
1627 	 */
1628 
1629 	rxd = (void *)msdu->data - sizeof(*rxd);
1630 	l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd);
1631 
1632 	skb_put(msdu, l3_pad_bytes);
1633 	skb_pull(msdu, sizeof(struct amsdu_subframe_hdr) + l3_pad_bytes);
1634 
1635 	hdr = (struct ieee80211_hdr *)first_hdr;
1636 	hdr_len = ieee80211_hdrlen(hdr->frame_control);
1637 
1638 	if (!(status->flag & RX_FLAG_IV_STRIPPED)) {
1639 		memcpy(skb_push(msdu,
1640 				ath10k_htt_rx_crypto_param_len(ar, enctype)),
1641 		       (void *)hdr + round_up(hdr_len, bytes_aligned),
1642 			ath10k_htt_rx_crypto_param_len(ar, enctype));
1643 	}
1644 
1645 	memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1646 }
1647 
1648 static void ath10k_htt_rx_h_undecap(struct ath10k *ar,
1649 				    struct sk_buff *msdu,
1650 				    struct ieee80211_rx_status *status,
1651 				    u8 first_hdr[64],
1652 				    enum htt_rx_mpdu_encrypt_type enctype,
1653 				    bool is_decrypted)
1654 {
1655 	struct htt_rx_desc *rxd;
1656 	enum rx_msdu_decap_format decap;
1657 
1658 	/* First msdu's decapped header:
1659 	 * [802.11 header] <-- padded to 4 bytes long
1660 	 * [crypto param] <-- padded to 4 bytes long
1661 	 * [amsdu header] <-- only if A-MSDU
1662 	 * [rfc1042/llc]
1663 	 *
1664 	 * Other (2nd, 3rd, ..) msdu's decapped header:
1665 	 * [amsdu header] <-- only if A-MSDU
1666 	 * [rfc1042/llc]
1667 	 */
1668 
1669 	rxd = (void *)msdu->data - sizeof(*rxd);
1670 	decap = MS(__le32_to_cpu(rxd->msdu_start.common.info1),
1671 		   RX_MSDU_START_INFO1_DECAP_FORMAT);
1672 
1673 	switch (decap) {
1674 	case RX_MSDU_DECAP_RAW:
1675 		ath10k_htt_rx_h_undecap_raw(ar, msdu, status, enctype,
1676 					    is_decrypted, first_hdr);
1677 		break;
1678 	case RX_MSDU_DECAP_NATIVE_WIFI:
1679 		ath10k_htt_rx_h_undecap_nwifi(ar, msdu, status, first_hdr,
1680 					      enctype);
1681 		break;
1682 	case RX_MSDU_DECAP_ETHERNET2_DIX:
1683 		ath10k_htt_rx_h_undecap_eth(ar, msdu, status, first_hdr, enctype);
1684 		break;
1685 	case RX_MSDU_DECAP_8023_SNAP_LLC:
1686 		ath10k_htt_rx_h_undecap_snap(ar, msdu, status, first_hdr,
1687 					     enctype);
1688 		break;
1689 	}
1690 }
1691 
1692 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb)
1693 {
1694 	struct htt_rx_desc *rxd;
1695 	u32 flags, info;
1696 	bool is_ip4, is_ip6;
1697 	bool is_tcp, is_udp;
1698 	bool ip_csum_ok, tcpudp_csum_ok;
1699 
1700 	rxd = (void *)skb->data - sizeof(*rxd);
1701 	flags = __le32_to_cpu(rxd->attention.flags);
1702 	info = __le32_to_cpu(rxd->msdu_start.common.info1);
1703 
1704 	is_ip4 = !!(info & RX_MSDU_START_INFO1_IPV4_PROTO);
1705 	is_ip6 = !!(info & RX_MSDU_START_INFO1_IPV6_PROTO);
1706 	is_tcp = !!(info & RX_MSDU_START_INFO1_TCP_PROTO);
1707 	is_udp = !!(info & RX_MSDU_START_INFO1_UDP_PROTO);
1708 	ip_csum_ok = !(flags & RX_ATTENTION_FLAGS_IP_CHKSUM_FAIL);
1709 	tcpudp_csum_ok = !(flags & RX_ATTENTION_FLAGS_TCP_UDP_CHKSUM_FAIL);
1710 
1711 	if (!is_ip4 && !is_ip6)
1712 		return CHECKSUM_NONE;
1713 	if (!is_tcp && !is_udp)
1714 		return CHECKSUM_NONE;
1715 	if (!ip_csum_ok)
1716 		return CHECKSUM_NONE;
1717 	if (!tcpudp_csum_ok)
1718 		return CHECKSUM_NONE;
1719 
1720 	return CHECKSUM_UNNECESSARY;
1721 }
1722 
1723 static void ath10k_htt_rx_h_csum_offload(struct sk_buff *msdu)
1724 {
1725 	msdu->ip_summed = ath10k_htt_rx_get_csum_state(msdu);
1726 }
1727 
1728 static void ath10k_htt_rx_h_mpdu(struct ath10k *ar,
1729 				 struct sk_buff_head *amsdu,
1730 				 struct ieee80211_rx_status *status,
1731 				 bool fill_crypt_header,
1732 				 u8 *rx_hdr,
1733 				 enum ath10k_pkt_rx_err *err)
1734 {
1735 	struct sk_buff *first;
1736 	struct sk_buff *last;
1737 	struct sk_buff *msdu;
1738 	struct htt_rx_desc *rxd;
1739 	struct ieee80211_hdr *hdr;
1740 	enum htt_rx_mpdu_encrypt_type enctype;
1741 	u8 first_hdr[64];
1742 	u8 *qos;
1743 	bool has_fcs_err;
1744 	bool has_crypto_err;
1745 	bool has_tkip_err;
1746 	bool has_peer_idx_invalid;
1747 	bool is_decrypted;
1748 	bool is_mgmt;
1749 	u32 attention;
1750 
1751 	if (skb_queue_empty(amsdu))
1752 		return;
1753 
1754 	first = skb_peek(amsdu);
1755 	rxd = (void *)first->data - sizeof(*rxd);
1756 
1757 	is_mgmt = !!(rxd->attention.flags &
1758 		     __cpu_to_le32(RX_ATTENTION_FLAGS_MGMT_TYPE));
1759 
1760 	enctype = MS(__le32_to_cpu(rxd->mpdu_start.info0),
1761 		     RX_MPDU_START_INFO0_ENCRYPT_TYPE);
1762 
1763 	/* First MSDU's Rx descriptor in an A-MSDU contains full 802.11
1764 	 * decapped header. It'll be used for undecapping of each MSDU.
1765 	 */
1766 	hdr = (void *)rxd->rx_hdr_status;
1767 	memcpy(first_hdr, hdr, RX_HTT_HDR_STATUS_LEN);
1768 
1769 	if (rx_hdr)
1770 		memcpy(rx_hdr, hdr, RX_HTT_HDR_STATUS_LEN);
1771 
1772 	/* Each A-MSDU subframe will use the original header as the base and be
1773 	 * reported as a separate MSDU so strip the A-MSDU bit from QoS Ctl.
1774 	 */
1775 	hdr = (void *)first_hdr;
1776 
1777 	if (ieee80211_is_data_qos(hdr->frame_control)) {
1778 		qos = ieee80211_get_qos_ctl(hdr);
1779 		qos[0] &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
1780 	}
1781 
1782 	/* Some attention flags are valid only in the last MSDU. */
1783 	last = skb_peek_tail(amsdu);
1784 	rxd = (void *)last->data - sizeof(*rxd);
1785 	attention = __le32_to_cpu(rxd->attention.flags);
1786 
1787 	has_fcs_err = !!(attention & RX_ATTENTION_FLAGS_FCS_ERR);
1788 	has_crypto_err = !!(attention & RX_ATTENTION_FLAGS_DECRYPT_ERR);
1789 	has_tkip_err = !!(attention & RX_ATTENTION_FLAGS_TKIP_MIC_ERR);
1790 	has_peer_idx_invalid = !!(attention & RX_ATTENTION_FLAGS_PEER_IDX_INVALID);
1791 
1792 	/* Note: If hardware captures an encrypted frame that it can't decrypt,
1793 	 * e.g. due to fcs error, missing peer or invalid key data it will
1794 	 * report the frame as raw.
1795 	 */
1796 	is_decrypted = (enctype != HTT_RX_MPDU_ENCRYPT_NONE &&
1797 			!has_fcs_err &&
1798 			!has_crypto_err &&
1799 			!has_peer_idx_invalid);
1800 
1801 	/* Clear per-MPDU flags while leaving per-PPDU flags intact. */
1802 	status->flag &= ~(RX_FLAG_FAILED_FCS_CRC |
1803 			  RX_FLAG_MMIC_ERROR |
1804 			  RX_FLAG_DECRYPTED |
1805 			  RX_FLAG_IV_STRIPPED |
1806 			  RX_FLAG_ONLY_MONITOR |
1807 			  RX_FLAG_MMIC_STRIPPED);
1808 
1809 	if (has_fcs_err)
1810 		status->flag |= RX_FLAG_FAILED_FCS_CRC;
1811 
1812 	if (has_tkip_err)
1813 		status->flag |= RX_FLAG_MMIC_ERROR;
1814 
1815 	if (err) {
1816 		if (has_fcs_err)
1817 			*err = ATH10K_PKT_RX_ERR_FCS;
1818 		else if (has_tkip_err)
1819 			*err = ATH10K_PKT_RX_ERR_TKIP;
1820 		else if (has_crypto_err)
1821 			*err = ATH10K_PKT_RX_ERR_CRYPT;
1822 		else if (has_peer_idx_invalid)
1823 			*err = ATH10K_PKT_RX_ERR_PEER_IDX_INVAL;
1824 	}
1825 
1826 	/* Firmware reports all necessary management frames via WMI already.
1827 	 * They are not reported to monitor interfaces at all so pass the ones
1828 	 * coming via HTT to monitor interfaces instead. This simplifies
1829 	 * matters a lot.
1830 	 */
1831 	if (is_mgmt)
1832 		status->flag |= RX_FLAG_ONLY_MONITOR;
1833 
1834 	if (is_decrypted) {
1835 		status->flag |= RX_FLAG_DECRYPTED;
1836 
1837 		if (likely(!is_mgmt))
1838 			status->flag |= RX_FLAG_MMIC_STRIPPED;
1839 
1840 		if (fill_crypt_header)
1841 			status->flag |= RX_FLAG_MIC_STRIPPED |
1842 					RX_FLAG_ICV_STRIPPED;
1843 		else
1844 			status->flag |= RX_FLAG_IV_STRIPPED;
1845 	}
1846 
1847 	skb_queue_walk(amsdu, msdu) {
1848 		ath10k_htt_rx_h_csum_offload(msdu);
1849 		ath10k_htt_rx_h_undecap(ar, msdu, status, first_hdr, enctype,
1850 					is_decrypted);
1851 
1852 		/* Undecapping involves copying the original 802.11 header back
1853 		 * to sk_buff. If frame is protected and hardware has decrypted
1854 		 * it then remove the protected bit.
1855 		 */
1856 		if (!is_decrypted)
1857 			continue;
1858 		if (is_mgmt)
1859 			continue;
1860 
1861 		if (fill_crypt_header)
1862 			continue;
1863 
1864 		hdr = (void *)msdu->data;
1865 		hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED);
1866 	}
1867 }
1868 
1869 static void ath10k_htt_rx_h_enqueue(struct ath10k *ar,
1870 				    struct sk_buff_head *amsdu,
1871 				    struct ieee80211_rx_status *status)
1872 {
1873 	struct sk_buff *msdu;
1874 	struct sk_buff *first_subframe;
1875 
1876 	first_subframe = skb_peek(amsdu);
1877 
1878 	while ((msdu = __skb_dequeue(amsdu))) {
1879 		/* Setup per-MSDU flags */
1880 		if (skb_queue_empty(amsdu))
1881 			status->flag &= ~RX_FLAG_AMSDU_MORE;
1882 		else
1883 			status->flag |= RX_FLAG_AMSDU_MORE;
1884 
1885 		if (msdu == first_subframe) {
1886 			first_subframe = NULL;
1887 			status->flag &= ~RX_FLAG_ALLOW_SAME_PN;
1888 		} else {
1889 			status->flag |= RX_FLAG_ALLOW_SAME_PN;
1890 		}
1891 
1892 		ath10k_htt_rx_h_queue_msdu(ar, status, msdu);
1893 	}
1894 }
1895 
1896 static int ath10k_unchain_msdu(struct sk_buff_head *amsdu,
1897 			       unsigned long *unchain_cnt)
1898 {
1899 	struct sk_buff *skb, *first;
1900 	int space;
1901 	int total_len = 0;
1902 	int amsdu_len = skb_queue_len(amsdu);
1903 
1904 	/* TODO:  Might could optimize this by using
1905 	 * skb_try_coalesce or similar method to
1906 	 * decrease copying, or maybe get mac80211 to
1907 	 * provide a way to just receive a list of
1908 	 * skb?
1909 	 */
1910 
1911 	first = __skb_dequeue(amsdu);
1912 
1913 	/* Allocate total length all at once. */
1914 	skb_queue_walk(amsdu, skb)
1915 		total_len += skb->len;
1916 
1917 	space = total_len - skb_tailroom(first);
1918 	if ((space > 0) &&
1919 	    (pskb_expand_head(first, 0, space, GFP_ATOMIC) < 0)) {
1920 		/* TODO:  bump some rx-oom error stat */
1921 		/* put it back together so we can free the
1922 		 * whole list at once.
1923 		 */
1924 		__skb_queue_head(amsdu, first);
1925 		return -1;
1926 	}
1927 
1928 	/* Walk list again, copying contents into
1929 	 * msdu_head
1930 	 */
1931 	while ((skb = __skb_dequeue(amsdu))) {
1932 		skb_copy_from_linear_data(skb, skb_put(first, skb->len),
1933 					  skb->len);
1934 		dev_kfree_skb_any(skb);
1935 	}
1936 
1937 	__skb_queue_head(amsdu, first);
1938 
1939 	*unchain_cnt += amsdu_len - 1;
1940 
1941 	return 0;
1942 }
1943 
1944 static void ath10k_htt_rx_h_unchain(struct ath10k *ar,
1945 				    struct sk_buff_head *amsdu,
1946 				    unsigned long *drop_cnt,
1947 				    unsigned long *unchain_cnt)
1948 {
1949 	struct sk_buff *first;
1950 	struct htt_rx_desc *rxd;
1951 	enum rx_msdu_decap_format decap;
1952 
1953 	first = skb_peek(amsdu);
1954 	rxd = (void *)first->data - sizeof(*rxd);
1955 	decap = MS(__le32_to_cpu(rxd->msdu_start.common.info1),
1956 		   RX_MSDU_START_INFO1_DECAP_FORMAT);
1957 
1958 	/* FIXME: Current unchaining logic can only handle simple case of raw
1959 	 * msdu chaining. If decapping is other than raw the chaining may be
1960 	 * more complex and this isn't handled by the current code. Don't even
1961 	 * try re-constructing such frames - it'll be pretty much garbage.
1962 	 */
1963 	if (decap != RX_MSDU_DECAP_RAW ||
1964 	    skb_queue_len(amsdu) != 1 + rxd->frag_info.ring2_more_count) {
1965 		*drop_cnt += skb_queue_len(amsdu);
1966 		__skb_queue_purge(amsdu);
1967 		return;
1968 	}
1969 
1970 	ath10k_unchain_msdu(amsdu, unchain_cnt);
1971 }
1972 
1973 static bool ath10k_htt_rx_amsdu_allowed(struct ath10k *ar,
1974 					struct sk_buff_head *amsdu,
1975 					struct ieee80211_rx_status *rx_status)
1976 {
1977 	/* FIXME: It might be a good idea to do some fuzzy-testing to drop
1978 	 * invalid/dangerous frames.
1979 	 */
1980 
1981 	if (!rx_status->freq) {
1982 		ath10k_dbg(ar, ATH10K_DBG_HTT, "no channel configured; ignoring frame(s)!\n");
1983 		return false;
1984 	}
1985 
1986 	if (test_bit(ATH10K_CAC_RUNNING, &ar->dev_flags)) {
1987 		ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx cac running\n");
1988 		return false;
1989 	}
1990 
1991 	return true;
1992 }
1993 
1994 static void ath10k_htt_rx_h_filter(struct ath10k *ar,
1995 				   struct sk_buff_head *amsdu,
1996 				   struct ieee80211_rx_status *rx_status,
1997 				   unsigned long *drop_cnt)
1998 {
1999 	if (skb_queue_empty(amsdu))
2000 		return;
2001 
2002 	if (ath10k_htt_rx_amsdu_allowed(ar, amsdu, rx_status))
2003 		return;
2004 
2005 	if (drop_cnt)
2006 		*drop_cnt += skb_queue_len(amsdu);
2007 
2008 	__skb_queue_purge(amsdu);
2009 }
2010 
2011 static int ath10k_htt_rx_handle_amsdu(struct ath10k_htt *htt)
2012 {
2013 	struct ath10k *ar = htt->ar;
2014 	struct ieee80211_rx_status *rx_status = &htt->rx_status;
2015 	struct sk_buff_head amsdu;
2016 	int ret;
2017 	unsigned long drop_cnt = 0;
2018 	unsigned long unchain_cnt = 0;
2019 	unsigned long drop_cnt_filter = 0;
2020 	unsigned long msdus_to_queue, num_msdus;
2021 	enum ath10k_pkt_rx_err err = ATH10K_PKT_RX_ERR_MAX;
2022 	u8 first_hdr[RX_HTT_HDR_STATUS_LEN];
2023 
2024 	__skb_queue_head_init(&amsdu);
2025 
2026 	spin_lock_bh(&htt->rx_ring.lock);
2027 	if (htt->rx_confused) {
2028 		spin_unlock_bh(&htt->rx_ring.lock);
2029 		return -EIO;
2030 	}
2031 	ret = ath10k_htt_rx_amsdu_pop(htt, &amsdu);
2032 	spin_unlock_bh(&htt->rx_ring.lock);
2033 
2034 	if (ret < 0) {
2035 		ath10k_warn(ar, "rx ring became corrupted: %d\n", ret);
2036 		__skb_queue_purge(&amsdu);
2037 		/* FIXME: It's probably a good idea to reboot the
2038 		 * device instead of leaving it inoperable.
2039 		 */
2040 		htt->rx_confused = true;
2041 		return ret;
2042 	}
2043 
2044 	num_msdus = skb_queue_len(&amsdu);
2045 
2046 	ath10k_htt_rx_h_ppdu(ar, &amsdu, rx_status, 0xffff);
2047 
2048 	/* only for ret = 1 indicates chained msdus */
2049 	if (ret > 0)
2050 		ath10k_htt_rx_h_unchain(ar, &amsdu, &drop_cnt, &unchain_cnt);
2051 
2052 	ath10k_htt_rx_h_filter(ar, &amsdu, rx_status, &drop_cnt_filter);
2053 	ath10k_htt_rx_h_mpdu(ar, &amsdu, rx_status, true, first_hdr, &err);
2054 	msdus_to_queue = skb_queue_len(&amsdu);
2055 	ath10k_htt_rx_h_enqueue(ar, &amsdu, rx_status);
2056 
2057 	ath10k_sta_update_rx_tid_stats(ar, first_hdr, num_msdus, err,
2058 				       unchain_cnt, drop_cnt, drop_cnt_filter,
2059 				       msdus_to_queue);
2060 
2061 	return 0;
2062 }
2063 
2064 static void ath10k_htt_rx_mpdu_desc_pn_hl(struct htt_hl_rx_desc *rx_desc,
2065 					  union htt_rx_pn_t *pn,
2066 					  int pn_len_bits)
2067 {
2068 	switch (pn_len_bits) {
2069 	case 48:
2070 		pn->pn48 = __le32_to_cpu(rx_desc->pn_31_0) +
2071 			   ((u64)(__le32_to_cpu(rx_desc->u0.pn_63_32) & 0xFFFF) << 32);
2072 		break;
2073 	case 24:
2074 		pn->pn24 = __le32_to_cpu(rx_desc->pn_31_0);
2075 		break;
2076 	};
2077 }
2078 
2079 static bool ath10k_htt_rx_pn_cmp48(union htt_rx_pn_t *new_pn,
2080 				   union htt_rx_pn_t *old_pn)
2081 {
2082 	return ((new_pn->pn48 & 0xffffffffffffULL) <=
2083 		(old_pn->pn48 & 0xffffffffffffULL));
2084 }
2085 
2086 static bool ath10k_htt_rx_pn_check_replay_hl(struct ath10k *ar,
2087 					     struct ath10k_peer *peer,
2088 					     struct htt_rx_indication_hl *rx)
2089 {
2090 	bool last_pn_valid, pn_invalid = false;
2091 	enum htt_txrx_sec_cast_type sec_index;
2092 	enum htt_security_types sec_type;
2093 	union htt_rx_pn_t new_pn = {0};
2094 	struct htt_hl_rx_desc *rx_desc;
2095 	union htt_rx_pn_t *last_pn;
2096 	u32 rx_desc_info, tid;
2097 	int num_mpdu_ranges;
2098 
2099 	lockdep_assert_held(&ar->data_lock);
2100 
2101 	if (!peer)
2102 		return false;
2103 
2104 	if (!(rx->fw_desc.flags & FW_RX_DESC_FLAGS_FIRST_MSDU))
2105 		return false;
2106 
2107 	num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1),
2108 			     HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES);
2109 
2110 	rx_desc = (struct htt_hl_rx_desc *)&rx->mpdu_ranges[num_mpdu_ranges];
2111 	rx_desc_info = __le32_to_cpu(rx_desc->info);
2112 
2113 	if (!MS(rx_desc_info, HTT_RX_DESC_HL_INFO_ENCRYPTED))
2114 		return false;
2115 
2116 	tid = MS(rx->hdr.info0, HTT_RX_INDICATION_INFO0_EXT_TID);
2117 	last_pn_valid = peer->tids_last_pn_valid[tid];
2118 	last_pn = &peer->tids_last_pn[tid];
2119 
2120 	if (MS(rx_desc_info, HTT_RX_DESC_HL_INFO_MCAST_BCAST))
2121 		sec_index = HTT_TXRX_SEC_MCAST;
2122 	else
2123 		sec_index = HTT_TXRX_SEC_UCAST;
2124 
2125 	sec_type = peer->rx_pn[sec_index].sec_type;
2126 	ath10k_htt_rx_mpdu_desc_pn_hl(rx_desc, &new_pn, peer->rx_pn[sec_index].pn_len);
2127 
2128 	if (sec_type != HTT_SECURITY_AES_CCMP &&
2129 	    sec_type != HTT_SECURITY_TKIP &&
2130 	    sec_type != HTT_SECURITY_TKIP_NOMIC)
2131 		return false;
2132 
2133 	if (last_pn_valid)
2134 		pn_invalid = ath10k_htt_rx_pn_cmp48(&new_pn, last_pn);
2135 	else
2136 		peer->tids_last_pn_valid[tid] = 1;
2137 
2138 	if (!pn_invalid)
2139 		last_pn->pn48 = new_pn.pn48;
2140 
2141 	return pn_invalid;
2142 }
2143 
2144 static bool ath10k_htt_rx_proc_rx_ind_hl(struct ath10k_htt *htt,
2145 					 struct htt_rx_indication_hl *rx,
2146 					 struct sk_buff *skb,
2147 					 enum htt_rx_pn_check_type check_pn_type,
2148 					 enum htt_rx_tkip_demic_type tkip_mic_type)
2149 {
2150 	struct ath10k *ar = htt->ar;
2151 	struct ath10k_peer *peer;
2152 	struct htt_rx_indication_mpdu_range *mpdu_ranges;
2153 	struct fw_rx_desc_hl *fw_desc;
2154 	struct ieee80211_hdr *hdr;
2155 	struct ieee80211_rx_status *rx_status;
2156 	u16 peer_id;
2157 	u8 rx_desc_len;
2158 	int num_mpdu_ranges;
2159 	size_t tot_hdr_len;
2160 	struct ieee80211_channel *ch;
2161 	bool pn_invalid;
2162 
2163 	peer_id = __le16_to_cpu(rx->hdr.peer_id);
2164 
2165 	spin_lock_bh(&ar->data_lock);
2166 	peer = ath10k_peer_find_by_id(ar, peer_id);
2167 	spin_unlock_bh(&ar->data_lock);
2168 	if (!peer && peer_id != HTT_INVALID_PEERID)
2169 		ath10k_warn(ar, "Got RX ind from invalid peer: %u\n", peer_id);
2170 
2171 	num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1),
2172 			     HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES);
2173 	mpdu_ranges = htt_rx_ind_get_mpdu_ranges_hl(rx);
2174 	fw_desc = &rx->fw_desc;
2175 	rx_desc_len = fw_desc->len;
2176 
2177 	/* I have not yet seen any case where num_mpdu_ranges > 1.
2178 	 * qcacld does not seem handle that case either, so we introduce the
2179 	 * same limitiation here as well.
2180 	 */
2181 	if (num_mpdu_ranges > 1)
2182 		ath10k_warn(ar,
2183 			    "Unsupported number of MPDU ranges: %d, ignoring all but the first\n",
2184 			    num_mpdu_ranges);
2185 
2186 	if (mpdu_ranges->mpdu_range_status !=
2187 	    HTT_RX_IND_MPDU_STATUS_OK &&
2188 	    mpdu_ranges->mpdu_range_status !=
2189 	    HTT_RX_IND_MPDU_STATUS_TKIP_MIC_ERR) {
2190 		ath10k_warn(ar, "MPDU range status: %d\n",
2191 			    mpdu_ranges->mpdu_range_status);
2192 		goto err;
2193 	}
2194 
2195 	if (check_pn_type == HTT_RX_PN_CHECK) {
2196 		spin_lock_bh(&ar->data_lock);
2197 		pn_invalid = ath10k_htt_rx_pn_check_replay_hl(ar, peer, rx);
2198 		spin_unlock_bh(&ar->data_lock);
2199 		if (pn_invalid)
2200 			goto err;
2201 	}
2202 
2203 	/* Strip off all headers before the MAC header before delivery to
2204 	 * mac80211
2205 	 */
2206 	tot_hdr_len = sizeof(struct htt_resp_hdr) + sizeof(rx->hdr) +
2207 		      sizeof(rx->ppdu) + sizeof(rx->prefix) +
2208 		      sizeof(rx->fw_desc) +
2209 		      sizeof(*mpdu_ranges) * num_mpdu_ranges + rx_desc_len;
2210 
2211 	skb_pull(skb, tot_hdr_len);
2212 
2213 	hdr = (struct ieee80211_hdr *)skb->data;
2214 	rx_status = IEEE80211_SKB_RXCB(skb);
2215 	rx_status->chains |= BIT(0);
2216 	if (rx->ppdu.combined_rssi == 0) {
2217 		/* SDIO firmware does not provide signal */
2218 		rx_status->signal = 0;
2219 		rx_status->flag |= RX_FLAG_NO_SIGNAL_VAL;
2220 	} else {
2221 		rx_status->signal = ATH10K_DEFAULT_NOISE_FLOOR +
2222 			rx->ppdu.combined_rssi;
2223 		rx_status->flag &= ~RX_FLAG_NO_SIGNAL_VAL;
2224 	}
2225 
2226 	spin_lock_bh(&ar->data_lock);
2227 	ch = ar->scan_channel;
2228 	if (!ch)
2229 		ch = ar->rx_channel;
2230 	if (!ch)
2231 		ch = ath10k_htt_rx_h_any_channel(ar);
2232 	if (!ch)
2233 		ch = ar->tgt_oper_chan;
2234 	spin_unlock_bh(&ar->data_lock);
2235 
2236 	if (ch) {
2237 		rx_status->band = ch->band;
2238 		rx_status->freq = ch->center_freq;
2239 	}
2240 	if (rx->fw_desc.flags & FW_RX_DESC_FLAGS_LAST_MSDU)
2241 		rx_status->flag &= ~RX_FLAG_AMSDU_MORE;
2242 	else
2243 		rx_status->flag |= RX_FLAG_AMSDU_MORE;
2244 
2245 	/* Not entirely sure about this, but all frames from the chipset has
2246 	 * the protected flag set even though they have already been decrypted.
2247 	 * Unmasking this flag is necessary in order for mac80211 not to drop
2248 	 * the frame.
2249 	 * TODO: Verify this is always the case or find out a way to check
2250 	 * if there has been hw decryption.
2251 	 */
2252 	if (ieee80211_has_protected(hdr->frame_control)) {
2253 		hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED);
2254 		rx_status->flag |= RX_FLAG_DECRYPTED |
2255 				   RX_FLAG_IV_STRIPPED |
2256 				   RX_FLAG_MMIC_STRIPPED;
2257 	}
2258 
2259 	if (tkip_mic_type == HTT_RX_TKIP_MIC)
2260 		rx_status->flag &= ~RX_FLAG_IV_STRIPPED &
2261 				   ~RX_FLAG_MMIC_STRIPPED;
2262 
2263 	if (mpdu_ranges->mpdu_range_status == HTT_RX_IND_MPDU_STATUS_TKIP_MIC_ERR)
2264 		rx_status->flag |= RX_FLAG_MMIC_ERROR;
2265 
2266 	ieee80211_rx_ni(ar->hw, skb);
2267 
2268 	/* We have delivered the skb to the upper layers (mac80211) so we
2269 	 * must not free it.
2270 	 */
2271 	return false;
2272 err:
2273 	/* Tell the caller that it must free the skb since we have not
2274 	 * consumed it
2275 	 */
2276 	return true;
2277 }
2278 
2279 static int ath10k_htt_rx_frag_tkip_decap_nomic(struct sk_buff *skb,
2280 					       u16 head_len,
2281 					       u16 hdr_len)
2282 {
2283 	u8 *ivp, *orig_hdr;
2284 
2285 	orig_hdr = skb->data;
2286 	ivp = orig_hdr + hdr_len + head_len;
2287 
2288 	/* the ExtIV bit is always set to 1 for TKIP */
2289 	if (!(ivp[IEEE80211_WEP_IV_LEN - 1] & ATH10K_IEEE80211_EXTIV))
2290 		return -EINVAL;
2291 
2292 	memmove(orig_hdr + IEEE80211_TKIP_IV_LEN, orig_hdr, head_len + hdr_len);
2293 	skb_pull(skb, IEEE80211_TKIP_IV_LEN);
2294 	skb_trim(skb, skb->len - ATH10K_IEEE80211_TKIP_MICLEN);
2295 	return 0;
2296 }
2297 
2298 static int ath10k_htt_rx_frag_tkip_decap_withmic(struct sk_buff *skb,
2299 						 u16 head_len,
2300 						 u16 hdr_len)
2301 {
2302 	u8 *ivp, *orig_hdr;
2303 
2304 	orig_hdr = skb->data;
2305 	ivp = orig_hdr + hdr_len + head_len;
2306 
2307 	/* the ExtIV bit is always set to 1 for TKIP */
2308 	if (!(ivp[IEEE80211_WEP_IV_LEN - 1] & ATH10K_IEEE80211_EXTIV))
2309 		return -EINVAL;
2310 
2311 	memmove(orig_hdr + IEEE80211_TKIP_IV_LEN, orig_hdr, head_len + hdr_len);
2312 	skb_pull(skb, IEEE80211_TKIP_IV_LEN);
2313 	skb_trim(skb, skb->len - IEEE80211_TKIP_ICV_LEN);
2314 	return 0;
2315 }
2316 
2317 static int ath10k_htt_rx_frag_ccmp_decap(struct sk_buff *skb,
2318 					 u16 head_len,
2319 					 u16 hdr_len)
2320 {
2321 	u8 *ivp, *orig_hdr;
2322 
2323 	orig_hdr = skb->data;
2324 	ivp = orig_hdr + hdr_len + head_len;
2325 
2326 	/* the ExtIV bit is always set to 1 for CCMP */
2327 	if (!(ivp[IEEE80211_WEP_IV_LEN - 1] & ATH10K_IEEE80211_EXTIV))
2328 		return -EINVAL;
2329 
2330 	skb_trim(skb, skb->len - IEEE80211_CCMP_MIC_LEN);
2331 	memmove(orig_hdr + IEEE80211_CCMP_HDR_LEN, orig_hdr, head_len + hdr_len);
2332 	skb_pull(skb, IEEE80211_CCMP_HDR_LEN);
2333 	return 0;
2334 }
2335 
2336 static int ath10k_htt_rx_frag_wep_decap(struct sk_buff *skb,
2337 					u16 head_len,
2338 					u16 hdr_len)
2339 {
2340 	u8 *orig_hdr;
2341 
2342 	orig_hdr = skb->data;
2343 
2344 	memmove(orig_hdr + IEEE80211_WEP_IV_LEN,
2345 		orig_hdr, head_len + hdr_len);
2346 	skb_pull(skb, IEEE80211_WEP_IV_LEN);
2347 	skb_trim(skb, skb->len - IEEE80211_WEP_ICV_LEN);
2348 	return 0;
2349 }
2350 
2351 static bool ath10k_htt_rx_proc_rx_frag_ind_hl(struct ath10k_htt *htt,
2352 					      struct htt_rx_fragment_indication *rx,
2353 					      struct sk_buff *skb)
2354 {
2355 	struct ath10k *ar = htt->ar;
2356 	enum htt_rx_tkip_demic_type tkip_mic = HTT_RX_NON_TKIP_MIC;
2357 	enum htt_txrx_sec_cast_type sec_index;
2358 	struct htt_rx_indication_hl *rx_hl;
2359 	enum htt_security_types sec_type;
2360 	u32 tid, frag, seq, rx_desc_info;
2361 	union htt_rx_pn_t new_pn = {0};
2362 	struct htt_hl_rx_desc *rx_desc;
2363 	u16 peer_id, sc, hdr_space;
2364 	union htt_rx_pn_t *last_pn;
2365 	struct ieee80211_hdr *hdr;
2366 	int ret, num_mpdu_ranges;
2367 	struct ath10k_peer *peer;
2368 	struct htt_resp *resp;
2369 	size_t tot_hdr_len;
2370 
2371 	resp = (struct htt_resp *)(skb->data + HTT_RX_FRAG_IND_INFO0_HEADER_LEN);
2372 	skb_pull(skb, HTT_RX_FRAG_IND_INFO0_HEADER_LEN);
2373 	skb_trim(skb, skb->len - FCS_LEN);
2374 
2375 	peer_id = __le16_to_cpu(rx->peer_id);
2376 	rx_hl = (struct htt_rx_indication_hl *)(&resp->rx_ind_hl);
2377 
2378 	spin_lock_bh(&ar->data_lock);
2379 	peer = ath10k_peer_find_by_id(ar, peer_id);
2380 	if (!peer) {
2381 		ath10k_dbg(ar, ATH10K_DBG_HTT, "invalid peer: %u\n", peer_id);
2382 		goto err;
2383 	}
2384 
2385 	num_mpdu_ranges = MS(__le32_to_cpu(rx_hl->hdr.info1),
2386 			     HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES);
2387 
2388 	tot_hdr_len = sizeof(struct htt_resp_hdr) +
2389 		      sizeof(rx_hl->hdr) +
2390 		      sizeof(rx_hl->ppdu) +
2391 		      sizeof(rx_hl->prefix) +
2392 		      sizeof(rx_hl->fw_desc) +
2393 		      sizeof(struct htt_rx_indication_mpdu_range) * num_mpdu_ranges;
2394 
2395 	tid =  MS(rx_hl->hdr.info0, HTT_RX_INDICATION_INFO0_EXT_TID);
2396 	rx_desc = (struct htt_hl_rx_desc *)(skb->data + tot_hdr_len);
2397 	rx_desc_info = __le32_to_cpu(rx_desc->info);
2398 
2399 	if (!MS(rx_desc_info, HTT_RX_DESC_HL_INFO_ENCRYPTED)) {
2400 		spin_unlock_bh(&ar->data_lock);
2401 		return ath10k_htt_rx_proc_rx_ind_hl(htt, &resp->rx_ind_hl, skb,
2402 						    HTT_RX_NON_PN_CHECK,
2403 						    HTT_RX_NON_TKIP_MIC);
2404 	}
2405 
2406 	hdr = (struct ieee80211_hdr *)((u8 *)rx_desc + rx_hl->fw_desc.len);
2407 
2408 	if (ieee80211_has_retry(hdr->frame_control))
2409 		goto err;
2410 
2411 	hdr_space = ieee80211_hdrlen(hdr->frame_control);
2412 	sc = __le16_to_cpu(hdr->seq_ctrl);
2413 	seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
2414 	frag = sc & IEEE80211_SCTL_FRAG;
2415 
2416 	sec_index = MS(rx_desc_info, HTT_RX_DESC_HL_INFO_MCAST_BCAST) ?
2417 		    HTT_TXRX_SEC_MCAST : HTT_TXRX_SEC_UCAST;
2418 	sec_type = peer->rx_pn[sec_index].sec_type;
2419 	ath10k_htt_rx_mpdu_desc_pn_hl(rx_desc, &new_pn, peer->rx_pn[sec_index].pn_len);
2420 
2421 	switch (sec_type) {
2422 	case HTT_SECURITY_TKIP:
2423 		tkip_mic = HTT_RX_TKIP_MIC;
2424 		ret = ath10k_htt_rx_frag_tkip_decap_withmic(skb,
2425 							    tot_hdr_len +
2426 							    rx_hl->fw_desc.len,
2427 							    hdr_space);
2428 		if (ret)
2429 			goto err;
2430 		break;
2431 	case HTT_SECURITY_TKIP_NOMIC:
2432 		ret = ath10k_htt_rx_frag_tkip_decap_nomic(skb,
2433 							  tot_hdr_len +
2434 							  rx_hl->fw_desc.len,
2435 							  hdr_space);
2436 		if (ret)
2437 			goto err;
2438 		break;
2439 	case HTT_SECURITY_AES_CCMP:
2440 		ret = ath10k_htt_rx_frag_ccmp_decap(skb,
2441 						    tot_hdr_len + rx_hl->fw_desc.len,
2442 						    hdr_space);
2443 		if (ret)
2444 			goto err;
2445 		break;
2446 	case HTT_SECURITY_WEP128:
2447 	case HTT_SECURITY_WEP104:
2448 	case HTT_SECURITY_WEP40:
2449 		ret = ath10k_htt_rx_frag_wep_decap(skb,
2450 						   tot_hdr_len + rx_hl->fw_desc.len,
2451 						   hdr_space);
2452 		if (ret)
2453 			goto err;
2454 		break;
2455 	default:
2456 		break;
2457 	}
2458 
2459 	resp = (struct htt_resp *)(skb->data);
2460 
2461 	if (sec_type != HTT_SECURITY_AES_CCMP &&
2462 	    sec_type != HTT_SECURITY_TKIP &&
2463 	    sec_type != HTT_SECURITY_TKIP_NOMIC) {
2464 		spin_unlock_bh(&ar->data_lock);
2465 		return ath10k_htt_rx_proc_rx_ind_hl(htt, &resp->rx_ind_hl, skb,
2466 						    HTT_RX_NON_PN_CHECK,
2467 						    HTT_RX_NON_TKIP_MIC);
2468 	}
2469 
2470 	last_pn = &peer->frag_tids_last_pn[tid];
2471 
2472 	if (frag == 0) {
2473 		if (ath10k_htt_rx_pn_check_replay_hl(ar, peer, &resp->rx_ind_hl))
2474 			goto err;
2475 
2476 		last_pn->pn48 = new_pn.pn48;
2477 		peer->frag_tids_seq[tid] = seq;
2478 	} else if (sec_type == HTT_SECURITY_AES_CCMP) {
2479 		if (seq != peer->frag_tids_seq[tid])
2480 			goto err;
2481 
2482 		if (new_pn.pn48 != last_pn->pn48 + 1)
2483 			goto err;
2484 
2485 		last_pn->pn48 = new_pn.pn48;
2486 		last_pn = &peer->tids_last_pn[tid];
2487 		last_pn->pn48 = new_pn.pn48;
2488 	}
2489 
2490 	spin_unlock_bh(&ar->data_lock);
2491 
2492 	return ath10k_htt_rx_proc_rx_ind_hl(htt, &resp->rx_ind_hl, skb,
2493 					    HTT_RX_NON_PN_CHECK, tkip_mic);
2494 
2495 err:
2496 	spin_unlock_bh(&ar->data_lock);
2497 
2498 	/* Tell the caller that it must free the skb since we have not
2499 	 * consumed it
2500 	 */
2501 	return true;
2502 }
2503 
2504 static void ath10k_htt_rx_proc_rx_ind_ll(struct ath10k_htt *htt,
2505 					 struct htt_rx_indication *rx)
2506 {
2507 	struct ath10k *ar = htt->ar;
2508 	struct htt_rx_indication_mpdu_range *mpdu_ranges;
2509 	int num_mpdu_ranges;
2510 	int i, mpdu_count = 0;
2511 	u16 peer_id;
2512 	u8 tid;
2513 
2514 	num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1),
2515 			     HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES);
2516 	peer_id = __le16_to_cpu(rx->hdr.peer_id);
2517 	tid =  MS(rx->hdr.info0, HTT_RX_INDICATION_INFO0_EXT_TID);
2518 
2519 	mpdu_ranges = htt_rx_ind_get_mpdu_ranges(rx);
2520 
2521 	ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx ind: ",
2522 			rx, struct_size(rx, mpdu_ranges, num_mpdu_ranges));
2523 
2524 	for (i = 0; i < num_mpdu_ranges; i++)
2525 		mpdu_count += mpdu_ranges[i].mpdu_count;
2526 
2527 	atomic_add(mpdu_count, &htt->num_mpdus_ready);
2528 
2529 	ath10k_sta_update_rx_tid_stats_ampdu(ar, peer_id, tid, mpdu_ranges,
2530 					     num_mpdu_ranges);
2531 }
2532 
2533 static void ath10k_htt_rx_tx_compl_ind(struct ath10k *ar,
2534 				       struct sk_buff *skb)
2535 {
2536 	struct ath10k_htt *htt = &ar->htt;
2537 	struct htt_resp *resp = (struct htt_resp *)skb->data;
2538 	struct htt_tx_done tx_done = {};
2539 	int status = MS(resp->data_tx_completion.flags, HTT_DATA_TX_STATUS);
2540 	__le16 msdu_id, *msdus;
2541 	bool rssi_enabled = false;
2542 	u8 msdu_count = 0, num_airtime_records, tid;
2543 	int i, htt_pad = 0;
2544 	struct htt_data_tx_compl_ppdu_dur *ppdu_info;
2545 	struct ath10k_peer *peer;
2546 	u16 ppdu_info_offset = 0, peer_id;
2547 	u32 tx_duration;
2548 
2549 	switch (status) {
2550 	case HTT_DATA_TX_STATUS_NO_ACK:
2551 		tx_done.status = HTT_TX_COMPL_STATE_NOACK;
2552 		break;
2553 	case HTT_DATA_TX_STATUS_OK:
2554 		tx_done.status = HTT_TX_COMPL_STATE_ACK;
2555 		break;
2556 	case HTT_DATA_TX_STATUS_DISCARD:
2557 	case HTT_DATA_TX_STATUS_POSTPONE:
2558 	case HTT_DATA_TX_STATUS_DOWNLOAD_FAIL:
2559 		tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
2560 		break;
2561 	default:
2562 		ath10k_warn(ar, "unhandled tx completion status %d\n", status);
2563 		tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
2564 		break;
2565 	}
2566 
2567 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx completion num_msdus %d\n",
2568 		   resp->data_tx_completion.num_msdus);
2569 
2570 	msdu_count = resp->data_tx_completion.num_msdus;
2571 	msdus = resp->data_tx_completion.msdus;
2572 	rssi_enabled = ath10k_is_rssi_enable(&ar->hw_params, resp);
2573 
2574 	if (rssi_enabled)
2575 		htt_pad = ath10k_tx_data_rssi_get_pad_bytes(&ar->hw_params,
2576 							    resp);
2577 
2578 	for (i = 0; i < msdu_count; i++) {
2579 		msdu_id = msdus[i];
2580 		tx_done.msdu_id = __le16_to_cpu(msdu_id);
2581 
2582 		if (rssi_enabled) {
2583 			/* Total no of MSDUs should be even,
2584 			 * if odd MSDUs are sent firmware fills
2585 			 * last msdu id with 0xffff
2586 			 */
2587 			if (msdu_count & 0x01) {
2588 				msdu_id = msdus[msdu_count +  i + 1 + htt_pad];
2589 				tx_done.ack_rssi = __le16_to_cpu(msdu_id);
2590 			} else {
2591 				msdu_id = msdus[msdu_count +  i + htt_pad];
2592 				tx_done.ack_rssi = __le16_to_cpu(msdu_id);
2593 			}
2594 		}
2595 
2596 		/* kfifo_put: In practice firmware shouldn't fire off per-CE
2597 		 * interrupt and main interrupt (MSI/-X range case) for the same
2598 		 * HTC service so it should be safe to use kfifo_put w/o lock.
2599 		 *
2600 		 * From kfifo_put() documentation:
2601 		 *  Note that with only one concurrent reader and one concurrent
2602 		 *  writer, you don't need extra locking to use these macro.
2603 		 */
2604 		if (ar->bus_param.dev_type == ATH10K_DEV_TYPE_HL) {
2605 			ath10k_txrx_tx_unref(htt, &tx_done);
2606 		} else if (!kfifo_put(&htt->txdone_fifo, tx_done)) {
2607 			ath10k_warn(ar, "txdone fifo overrun, msdu_id %d status %d\n",
2608 				    tx_done.msdu_id, tx_done.status);
2609 			ath10k_txrx_tx_unref(htt, &tx_done);
2610 		}
2611 	}
2612 
2613 	if (!(resp->data_tx_completion.flags2 & HTT_TX_CMPL_FLAG_PPDU_DURATION_PRESENT))
2614 		return;
2615 
2616 	ppdu_info_offset = (msdu_count & 0x01) ? msdu_count + 1 : msdu_count;
2617 
2618 	if (rssi_enabled)
2619 		ppdu_info_offset += ppdu_info_offset;
2620 
2621 	if (resp->data_tx_completion.flags2 &
2622 	    (HTT_TX_CMPL_FLAG_PPID_PRESENT | HTT_TX_CMPL_FLAG_PA_PRESENT))
2623 		ppdu_info_offset += 2;
2624 
2625 	ppdu_info = (struct htt_data_tx_compl_ppdu_dur *)&msdus[ppdu_info_offset];
2626 	num_airtime_records = FIELD_GET(HTT_TX_COMPL_PPDU_DUR_INFO0_NUM_ENTRIES_MASK,
2627 					__le32_to_cpu(ppdu_info->info0));
2628 
2629 	for (i = 0; i < num_airtime_records; i++) {
2630 		struct htt_data_tx_ppdu_dur *ppdu_dur;
2631 		u32 info0;
2632 
2633 		ppdu_dur = &ppdu_info->ppdu_dur[i];
2634 		info0 = __le32_to_cpu(ppdu_dur->info0);
2635 
2636 		peer_id = FIELD_GET(HTT_TX_PPDU_DUR_INFO0_PEER_ID_MASK,
2637 				    info0);
2638 		rcu_read_lock();
2639 		spin_lock_bh(&ar->data_lock);
2640 
2641 		peer = ath10k_peer_find_by_id(ar, peer_id);
2642 		if (!peer) {
2643 			spin_unlock_bh(&ar->data_lock);
2644 			rcu_read_unlock();
2645 			continue;
2646 		}
2647 
2648 		tid = FIELD_GET(HTT_TX_PPDU_DUR_INFO0_TID_MASK, info0);
2649 		tx_duration = __le32_to_cpu(ppdu_dur->tx_duration);
2650 
2651 		ieee80211_sta_register_airtime(peer->sta, tid, tx_duration, 0);
2652 
2653 		spin_unlock_bh(&ar->data_lock);
2654 		rcu_read_unlock();
2655 	}
2656 }
2657 
2658 static void ath10k_htt_rx_addba(struct ath10k *ar, struct htt_resp *resp)
2659 {
2660 	struct htt_rx_addba *ev = &resp->rx_addba;
2661 	struct ath10k_peer *peer;
2662 	struct ath10k_vif *arvif;
2663 	u16 info0, tid, peer_id;
2664 
2665 	info0 = __le16_to_cpu(ev->info0);
2666 	tid = MS(info0, HTT_RX_BA_INFO0_TID);
2667 	peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID);
2668 
2669 	ath10k_dbg(ar, ATH10K_DBG_HTT,
2670 		   "htt rx addba tid %hu peer_id %hu size %hhu\n",
2671 		   tid, peer_id, ev->window_size);
2672 
2673 	spin_lock_bh(&ar->data_lock);
2674 	peer = ath10k_peer_find_by_id(ar, peer_id);
2675 	if (!peer) {
2676 		ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n",
2677 			    peer_id);
2678 		spin_unlock_bh(&ar->data_lock);
2679 		return;
2680 	}
2681 
2682 	arvif = ath10k_get_arvif(ar, peer->vdev_id);
2683 	if (!arvif) {
2684 		ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n",
2685 			    peer->vdev_id);
2686 		spin_unlock_bh(&ar->data_lock);
2687 		return;
2688 	}
2689 
2690 	ath10k_dbg(ar, ATH10K_DBG_HTT,
2691 		   "htt rx start rx ba session sta %pM tid %hu size %hhu\n",
2692 		   peer->addr, tid, ev->window_size);
2693 
2694 	ieee80211_start_rx_ba_session_offl(arvif->vif, peer->addr, tid);
2695 	spin_unlock_bh(&ar->data_lock);
2696 }
2697 
2698 static void ath10k_htt_rx_delba(struct ath10k *ar, struct htt_resp *resp)
2699 {
2700 	struct htt_rx_delba *ev = &resp->rx_delba;
2701 	struct ath10k_peer *peer;
2702 	struct ath10k_vif *arvif;
2703 	u16 info0, tid, peer_id;
2704 
2705 	info0 = __le16_to_cpu(ev->info0);
2706 	tid = MS(info0, HTT_RX_BA_INFO0_TID);
2707 	peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID);
2708 
2709 	ath10k_dbg(ar, ATH10K_DBG_HTT,
2710 		   "htt rx delba tid %hu peer_id %hu\n",
2711 		   tid, peer_id);
2712 
2713 	spin_lock_bh(&ar->data_lock);
2714 	peer = ath10k_peer_find_by_id(ar, peer_id);
2715 	if (!peer) {
2716 		ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n",
2717 			    peer_id);
2718 		spin_unlock_bh(&ar->data_lock);
2719 		return;
2720 	}
2721 
2722 	arvif = ath10k_get_arvif(ar, peer->vdev_id);
2723 	if (!arvif) {
2724 		ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n",
2725 			    peer->vdev_id);
2726 		spin_unlock_bh(&ar->data_lock);
2727 		return;
2728 	}
2729 
2730 	ath10k_dbg(ar, ATH10K_DBG_HTT,
2731 		   "htt rx stop rx ba session sta %pM tid %hu\n",
2732 		   peer->addr, tid);
2733 
2734 	ieee80211_stop_rx_ba_session_offl(arvif->vif, peer->addr, tid);
2735 	spin_unlock_bh(&ar->data_lock);
2736 }
2737 
2738 static int ath10k_htt_rx_extract_amsdu(struct sk_buff_head *list,
2739 				       struct sk_buff_head *amsdu)
2740 {
2741 	struct sk_buff *msdu;
2742 	struct htt_rx_desc *rxd;
2743 
2744 	if (skb_queue_empty(list))
2745 		return -ENOBUFS;
2746 
2747 	if (WARN_ON(!skb_queue_empty(amsdu)))
2748 		return -EINVAL;
2749 
2750 	while ((msdu = __skb_dequeue(list))) {
2751 		__skb_queue_tail(amsdu, msdu);
2752 
2753 		rxd = (void *)msdu->data - sizeof(*rxd);
2754 		if (rxd->msdu_end.common.info0 &
2755 		    __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU))
2756 			break;
2757 	}
2758 
2759 	msdu = skb_peek_tail(amsdu);
2760 	rxd = (void *)msdu->data - sizeof(*rxd);
2761 	if (!(rxd->msdu_end.common.info0 &
2762 	      __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU))) {
2763 		skb_queue_splice_init(amsdu, list);
2764 		return -EAGAIN;
2765 	}
2766 
2767 	return 0;
2768 }
2769 
2770 static void ath10k_htt_rx_h_rx_offload_prot(struct ieee80211_rx_status *status,
2771 					    struct sk_buff *skb)
2772 {
2773 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2774 
2775 	if (!ieee80211_has_protected(hdr->frame_control))
2776 		return;
2777 
2778 	/* Offloaded frames are already decrypted but firmware insists they are
2779 	 * protected in the 802.11 header. Strip the flag.  Otherwise mac80211
2780 	 * will drop the frame.
2781 	 */
2782 
2783 	hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED);
2784 	status->flag |= RX_FLAG_DECRYPTED |
2785 			RX_FLAG_IV_STRIPPED |
2786 			RX_FLAG_MMIC_STRIPPED;
2787 }
2788 
2789 static void ath10k_htt_rx_h_rx_offload(struct ath10k *ar,
2790 				       struct sk_buff_head *list)
2791 {
2792 	struct ath10k_htt *htt = &ar->htt;
2793 	struct ieee80211_rx_status *status = &htt->rx_status;
2794 	struct htt_rx_offload_msdu *rx;
2795 	struct sk_buff *msdu;
2796 	size_t offset;
2797 
2798 	while ((msdu = __skb_dequeue(list))) {
2799 		/* Offloaded frames don't have Rx descriptor. Instead they have
2800 		 * a short meta information header.
2801 		 */
2802 
2803 		rx = (void *)msdu->data;
2804 
2805 		skb_put(msdu, sizeof(*rx));
2806 		skb_pull(msdu, sizeof(*rx));
2807 
2808 		if (skb_tailroom(msdu) < __le16_to_cpu(rx->msdu_len)) {
2809 			ath10k_warn(ar, "dropping frame: offloaded rx msdu is too long!\n");
2810 			dev_kfree_skb_any(msdu);
2811 			continue;
2812 		}
2813 
2814 		skb_put(msdu, __le16_to_cpu(rx->msdu_len));
2815 
2816 		/* Offloaded rx header length isn't multiple of 2 nor 4 so the
2817 		 * actual payload is unaligned. Align the frame.  Otherwise
2818 		 * mac80211 complains.  This shouldn't reduce performance much
2819 		 * because these offloaded frames are rare.
2820 		 */
2821 		offset = 4 - ((unsigned long)msdu->data & 3);
2822 		skb_put(msdu, offset);
2823 		memmove(msdu->data + offset, msdu->data, msdu->len);
2824 		skb_pull(msdu, offset);
2825 
2826 		/* FIXME: The frame is NWifi. Re-construct QoS Control
2827 		 * if possible later.
2828 		 */
2829 
2830 		memset(status, 0, sizeof(*status));
2831 		status->flag |= RX_FLAG_NO_SIGNAL_VAL;
2832 
2833 		ath10k_htt_rx_h_rx_offload_prot(status, msdu);
2834 		ath10k_htt_rx_h_channel(ar, status, NULL, rx->vdev_id);
2835 		ath10k_htt_rx_h_queue_msdu(ar, status, msdu);
2836 	}
2837 }
2838 
2839 static int ath10k_htt_rx_in_ord_ind(struct ath10k *ar, struct sk_buff *skb)
2840 {
2841 	struct ath10k_htt *htt = &ar->htt;
2842 	struct htt_resp *resp = (void *)skb->data;
2843 	struct ieee80211_rx_status *status = &htt->rx_status;
2844 	struct sk_buff_head list;
2845 	struct sk_buff_head amsdu;
2846 	u16 peer_id;
2847 	u16 msdu_count;
2848 	u8 vdev_id;
2849 	u8 tid;
2850 	bool offload;
2851 	bool frag;
2852 	int ret;
2853 
2854 	lockdep_assert_held(&htt->rx_ring.lock);
2855 
2856 	if (htt->rx_confused)
2857 		return -EIO;
2858 
2859 	skb_pull(skb, sizeof(resp->hdr));
2860 	skb_pull(skb, sizeof(resp->rx_in_ord_ind));
2861 
2862 	peer_id = __le16_to_cpu(resp->rx_in_ord_ind.peer_id);
2863 	msdu_count = __le16_to_cpu(resp->rx_in_ord_ind.msdu_count);
2864 	vdev_id = resp->rx_in_ord_ind.vdev_id;
2865 	tid = SM(resp->rx_in_ord_ind.info, HTT_RX_IN_ORD_IND_INFO_TID);
2866 	offload = !!(resp->rx_in_ord_ind.info &
2867 			HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK);
2868 	frag = !!(resp->rx_in_ord_ind.info & HTT_RX_IN_ORD_IND_INFO_FRAG_MASK);
2869 
2870 	ath10k_dbg(ar, ATH10K_DBG_HTT,
2871 		   "htt rx in ord vdev %i peer %i tid %i offload %i frag %i msdu count %i\n",
2872 		   vdev_id, peer_id, tid, offload, frag, msdu_count);
2873 
2874 	if (skb->len < msdu_count * sizeof(*resp->rx_in_ord_ind.msdu_descs32)) {
2875 		ath10k_warn(ar, "dropping invalid in order rx indication\n");
2876 		return -EINVAL;
2877 	}
2878 
2879 	/* The event can deliver more than 1 A-MSDU. Each A-MSDU is later
2880 	 * extracted and processed.
2881 	 */
2882 	__skb_queue_head_init(&list);
2883 	if (ar->hw_params.target_64bit)
2884 		ret = ath10k_htt_rx_pop_paddr64_list(htt, &resp->rx_in_ord_ind,
2885 						     &list);
2886 	else
2887 		ret = ath10k_htt_rx_pop_paddr32_list(htt, &resp->rx_in_ord_ind,
2888 						     &list);
2889 
2890 	if (ret < 0) {
2891 		ath10k_warn(ar, "failed to pop paddr list: %d\n", ret);
2892 		htt->rx_confused = true;
2893 		return -EIO;
2894 	}
2895 
2896 	/* Offloaded frames are very different and need to be handled
2897 	 * separately.
2898 	 */
2899 	if (offload)
2900 		ath10k_htt_rx_h_rx_offload(ar, &list);
2901 
2902 	while (!skb_queue_empty(&list)) {
2903 		__skb_queue_head_init(&amsdu);
2904 		ret = ath10k_htt_rx_extract_amsdu(&list, &amsdu);
2905 		switch (ret) {
2906 		case 0:
2907 			/* Note: The in-order indication may report interleaved
2908 			 * frames from different PPDUs meaning reported rx rate
2909 			 * to mac80211 isn't accurate/reliable. It's still
2910 			 * better to report something than nothing though. This
2911 			 * should still give an idea about rx rate to the user.
2912 			 */
2913 			ath10k_htt_rx_h_ppdu(ar, &amsdu, status, vdev_id);
2914 			ath10k_htt_rx_h_filter(ar, &amsdu, status, NULL);
2915 			ath10k_htt_rx_h_mpdu(ar, &amsdu, status, false, NULL,
2916 					     NULL);
2917 			ath10k_htt_rx_h_enqueue(ar, &amsdu, status);
2918 			break;
2919 		case -EAGAIN:
2920 			/* fall through */
2921 		default:
2922 			/* Should not happen. */
2923 			ath10k_warn(ar, "failed to extract amsdu: %d\n", ret);
2924 			htt->rx_confused = true;
2925 			__skb_queue_purge(&list);
2926 			return -EIO;
2927 		}
2928 	}
2929 	return ret;
2930 }
2931 
2932 static void ath10k_htt_rx_tx_fetch_resp_id_confirm(struct ath10k *ar,
2933 						   const __le32 *resp_ids,
2934 						   int num_resp_ids)
2935 {
2936 	int i;
2937 	u32 resp_id;
2938 
2939 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm num_resp_ids %d\n",
2940 		   num_resp_ids);
2941 
2942 	for (i = 0; i < num_resp_ids; i++) {
2943 		resp_id = le32_to_cpu(resp_ids[i]);
2944 
2945 		ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm resp_id %u\n",
2946 			   resp_id);
2947 
2948 		/* TODO: free resp_id */
2949 	}
2950 }
2951 
2952 static void ath10k_htt_rx_tx_fetch_ind(struct ath10k *ar, struct sk_buff *skb)
2953 {
2954 	struct ieee80211_hw *hw = ar->hw;
2955 	struct ieee80211_txq *txq;
2956 	struct htt_resp *resp = (struct htt_resp *)skb->data;
2957 	struct htt_tx_fetch_record *record;
2958 	size_t len;
2959 	size_t max_num_bytes;
2960 	size_t max_num_msdus;
2961 	size_t num_bytes;
2962 	size_t num_msdus;
2963 	const __le32 *resp_ids;
2964 	u16 num_records;
2965 	u16 num_resp_ids;
2966 	u16 peer_id;
2967 	u8 tid;
2968 	int ret;
2969 	int i;
2970 	bool may_tx;
2971 
2972 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch ind\n");
2973 
2974 	len = sizeof(resp->hdr) + sizeof(resp->tx_fetch_ind);
2975 	if (unlikely(skb->len < len)) {
2976 		ath10k_warn(ar, "received corrupted tx_fetch_ind event: buffer too short\n");
2977 		return;
2978 	}
2979 
2980 	num_records = le16_to_cpu(resp->tx_fetch_ind.num_records);
2981 	num_resp_ids = le16_to_cpu(resp->tx_fetch_ind.num_resp_ids);
2982 
2983 	len += sizeof(resp->tx_fetch_ind.records[0]) * num_records;
2984 	len += sizeof(resp->tx_fetch_ind.resp_ids[0]) * num_resp_ids;
2985 
2986 	if (unlikely(skb->len < len)) {
2987 		ath10k_warn(ar, "received corrupted tx_fetch_ind event: too many records/resp_ids\n");
2988 		return;
2989 	}
2990 
2991 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch ind num records %hu num resps %hu seq %hu\n",
2992 		   num_records, num_resp_ids,
2993 		   le16_to_cpu(resp->tx_fetch_ind.fetch_seq_num));
2994 
2995 	if (!ar->htt.tx_q_state.enabled) {
2996 		ath10k_warn(ar, "received unexpected tx_fetch_ind event: not enabled\n");
2997 		return;
2998 	}
2999 
3000 	if (ar->htt.tx_q_state.mode == HTT_TX_MODE_SWITCH_PUSH) {
3001 		ath10k_warn(ar, "received unexpected tx_fetch_ind event: in push mode\n");
3002 		return;
3003 	}
3004 
3005 	rcu_read_lock();
3006 
3007 	for (i = 0; i < num_records; i++) {
3008 		record = &resp->tx_fetch_ind.records[i];
3009 		peer_id = MS(le16_to_cpu(record->info),
3010 			     HTT_TX_FETCH_RECORD_INFO_PEER_ID);
3011 		tid = MS(le16_to_cpu(record->info),
3012 			 HTT_TX_FETCH_RECORD_INFO_TID);
3013 		max_num_msdus = le16_to_cpu(record->num_msdus);
3014 		max_num_bytes = le32_to_cpu(record->num_bytes);
3015 
3016 		ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch record %i peer_id %hu tid %hhu msdus %zu bytes %zu\n",
3017 			   i, peer_id, tid, max_num_msdus, max_num_bytes);
3018 
3019 		if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) ||
3020 		    unlikely(tid >= ar->htt.tx_q_state.num_tids)) {
3021 			ath10k_warn(ar, "received out of range peer_id %hu tid %hhu\n",
3022 				    peer_id, tid);
3023 			continue;
3024 		}
3025 
3026 		spin_lock_bh(&ar->data_lock);
3027 		txq = ath10k_mac_txq_lookup(ar, peer_id, tid);
3028 		spin_unlock_bh(&ar->data_lock);
3029 
3030 		/* It is okay to release the lock and use txq because RCU read
3031 		 * lock is held.
3032 		 */
3033 
3034 		if (unlikely(!txq)) {
3035 			ath10k_warn(ar, "failed to lookup txq for peer_id %hu tid %hhu\n",
3036 				    peer_id, tid);
3037 			continue;
3038 		}
3039 
3040 		num_msdus = 0;
3041 		num_bytes = 0;
3042 
3043 		ieee80211_txq_schedule_start(hw, txq->ac);
3044 		may_tx = ieee80211_txq_may_transmit(hw, txq);
3045 		while (num_msdus < max_num_msdus &&
3046 		       num_bytes < max_num_bytes) {
3047 			if (!may_tx)
3048 				break;
3049 
3050 			ret = ath10k_mac_tx_push_txq(hw, txq);
3051 			if (ret < 0)
3052 				break;
3053 
3054 			num_msdus++;
3055 			num_bytes += ret;
3056 		}
3057 		ieee80211_return_txq(hw, txq, false);
3058 		ieee80211_txq_schedule_end(hw, txq->ac);
3059 
3060 		record->num_msdus = cpu_to_le16(num_msdus);
3061 		record->num_bytes = cpu_to_le32(num_bytes);
3062 
3063 		ath10k_htt_tx_txq_recalc(hw, txq);
3064 	}
3065 
3066 	rcu_read_unlock();
3067 
3068 	resp_ids = ath10k_htt_get_tx_fetch_ind_resp_ids(&resp->tx_fetch_ind);
3069 	ath10k_htt_rx_tx_fetch_resp_id_confirm(ar, resp_ids, num_resp_ids);
3070 
3071 	ret = ath10k_htt_tx_fetch_resp(ar,
3072 				       resp->tx_fetch_ind.token,
3073 				       resp->tx_fetch_ind.fetch_seq_num,
3074 				       resp->tx_fetch_ind.records,
3075 				       num_records);
3076 	if (unlikely(ret)) {
3077 		ath10k_warn(ar, "failed to submit tx fetch resp for token 0x%08x: %d\n",
3078 			    le32_to_cpu(resp->tx_fetch_ind.token), ret);
3079 		/* FIXME: request fw restart */
3080 	}
3081 
3082 	ath10k_htt_tx_txq_sync(ar);
3083 }
3084 
3085 static void ath10k_htt_rx_tx_fetch_confirm(struct ath10k *ar,
3086 					   struct sk_buff *skb)
3087 {
3088 	const struct htt_resp *resp = (void *)skb->data;
3089 	size_t len;
3090 	int num_resp_ids;
3091 
3092 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm\n");
3093 
3094 	len = sizeof(resp->hdr) + sizeof(resp->tx_fetch_confirm);
3095 	if (unlikely(skb->len < len)) {
3096 		ath10k_warn(ar, "received corrupted tx_fetch_confirm event: buffer too short\n");
3097 		return;
3098 	}
3099 
3100 	num_resp_ids = le16_to_cpu(resp->tx_fetch_confirm.num_resp_ids);
3101 	len += sizeof(resp->tx_fetch_confirm.resp_ids[0]) * num_resp_ids;
3102 
3103 	if (unlikely(skb->len < len)) {
3104 		ath10k_warn(ar, "received corrupted tx_fetch_confirm event: resp_ids buffer overflow\n");
3105 		return;
3106 	}
3107 
3108 	ath10k_htt_rx_tx_fetch_resp_id_confirm(ar,
3109 					       resp->tx_fetch_confirm.resp_ids,
3110 					       num_resp_ids);
3111 }
3112 
3113 static void ath10k_htt_rx_tx_mode_switch_ind(struct ath10k *ar,
3114 					     struct sk_buff *skb)
3115 {
3116 	const struct htt_resp *resp = (void *)skb->data;
3117 	const struct htt_tx_mode_switch_record *record;
3118 	struct ieee80211_txq *txq;
3119 	struct ath10k_txq *artxq;
3120 	size_t len;
3121 	size_t num_records;
3122 	enum htt_tx_mode_switch_mode mode;
3123 	bool enable;
3124 	u16 info0;
3125 	u16 info1;
3126 	u16 threshold;
3127 	u16 peer_id;
3128 	u8 tid;
3129 	int i;
3130 
3131 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx mode switch ind\n");
3132 
3133 	len = sizeof(resp->hdr) + sizeof(resp->tx_mode_switch_ind);
3134 	if (unlikely(skb->len < len)) {
3135 		ath10k_warn(ar, "received corrupted tx_mode_switch_ind event: buffer too short\n");
3136 		return;
3137 	}
3138 
3139 	info0 = le16_to_cpu(resp->tx_mode_switch_ind.info0);
3140 	info1 = le16_to_cpu(resp->tx_mode_switch_ind.info1);
3141 
3142 	enable = !!(info0 & HTT_TX_MODE_SWITCH_IND_INFO0_ENABLE);
3143 	num_records = MS(info0, HTT_TX_MODE_SWITCH_IND_INFO1_THRESHOLD);
3144 	mode = MS(info1, HTT_TX_MODE_SWITCH_IND_INFO1_MODE);
3145 	threshold = MS(info1, HTT_TX_MODE_SWITCH_IND_INFO1_THRESHOLD);
3146 
3147 	ath10k_dbg(ar, ATH10K_DBG_HTT,
3148 		   "htt rx tx mode switch ind info0 0x%04hx info1 0x%04hx enable %d num records %zd mode %d threshold %hu\n",
3149 		   info0, info1, enable, num_records, mode, threshold);
3150 
3151 	len += sizeof(resp->tx_mode_switch_ind.records[0]) * num_records;
3152 
3153 	if (unlikely(skb->len < len)) {
3154 		ath10k_warn(ar, "received corrupted tx_mode_switch_mode_ind event: too many records\n");
3155 		return;
3156 	}
3157 
3158 	switch (mode) {
3159 	case HTT_TX_MODE_SWITCH_PUSH:
3160 	case HTT_TX_MODE_SWITCH_PUSH_PULL:
3161 		break;
3162 	default:
3163 		ath10k_warn(ar, "received invalid tx_mode_switch_mode_ind mode %d, ignoring\n",
3164 			    mode);
3165 		return;
3166 	}
3167 
3168 	if (!enable)
3169 		return;
3170 
3171 	ar->htt.tx_q_state.enabled = enable;
3172 	ar->htt.tx_q_state.mode = mode;
3173 	ar->htt.tx_q_state.num_push_allowed = threshold;
3174 
3175 	rcu_read_lock();
3176 
3177 	for (i = 0; i < num_records; i++) {
3178 		record = &resp->tx_mode_switch_ind.records[i];
3179 		info0 = le16_to_cpu(record->info0);
3180 		peer_id = MS(info0, HTT_TX_MODE_SWITCH_RECORD_INFO0_PEER_ID);
3181 		tid = MS(info0, HTT_TX_MODE_SWITCH_RECORD_INFO0_TID);
3182 
3183 		if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) ||
3184 		    unlikely(tid >= ar->htt.tx_q_state.num_tids)) {
3185 			ath10k_warn(ar, "received out of range peer_id %hu tid %hhu\n",
3186 				    peer_id, tid);
3187 			continue;
3188 		}
3189 
3190 		spin_lock_bh(&ar->data_lock);
3191 		txq = ath10k_mac_txq_lookup(ar, peer_id, tid);
3192 		spin_unlock_bh(&ar->data_lock);
3193 
3194 		/* It is okay to release the lock and use txq because RCU read
3195 		 * lock is held.
3196 		 */
3197 
3198 		if (unlikely(!txq)) {
3199 			ath10k_warn(ar, "failed to lookup txq for peer_id %hu tid %hhu\n",
3200 				    peer_id, tid);
3201 			continue;
3202 		}
3203 
3204 		spin_lock_bh(&ar->htt.tx_lock);
3205 		artxq = (void *)txq->drv_priv;
3206 		artxq->num_push_allowed = le16_to_cpu(record->num_max_msdus);
3207 		spin_unlock_bh(&ar->htt.tx_lock);
3208 	}
3209 
3210 	rcu_read_unlock();
3211 
3212 	ath10k_mac_tx_push_pending(ar);
3213 }
3214 
3215 void ath10k_htt_htc_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb)
3216 {
3217 	bool release;
3218 
3219 	release = ath10k_htt_t2h_msg_handler(ar, skb);
3220 
3221 	/* Free the indication buffer */
3222 	if (release)
3223 		dev_kfree_skb_any(skb);
3224 }
3225 
3226 static inline s8 ath10k_get_legacy_rate_idx(struct ath10k *ar, u8 rate)
3227 {
3228 	static const u8 legacy_rates[] = {1, 2, 5, 11, 6, 9, 12,
3229 					  18, 24, 36, 48, 54};
3230 	int i;
3231 
3232 	for (i = 0; i < ARRAY_SIZE(legacy_rates); i++) {
3233 		if (rate == legacy_rates[i])
3234 			return i;
3235 	}
3236 
3237 	ath10k_warn(ar, "Invalid legacy rate %hhd peer stats", rate);
3238 	return -EINVAL;
3239 }
3240 
3241 static void
3242 ath10k_accumulate_per_peer_tx_stats(struct ath10k *ar,
3243 				    struct ath10k_sta *arsta,
3244 				    struct ath10k_per_peer_tx_stats *pstats,
3245 				    s8 legacy_rate_idx)
3246 {
3247 	struct rate_info *txrate = &arsta->txrate;
3248 	struct ath10k_htt_tx_stats *tx_stats;
3249 	int idx, ht_idx, gi, mcs, bw, nss;
3250 	unsigned long flags;
3251 
3252 	if (!arsta->tx_stats)
3253 		return;
3254 
3255 	tx_stats = arsta->tx_stats;
3256 	flags = txrate->flags;
3257 	gi = test_bit(ATH10K_RATE_INFO_FLAGS_SGI_BIT, &flags);
3258 	mcs = ATH10K_HW_MCS_RATE(pstats->ratecode);
3259 	bw = txrate->bw;
3260 	nss = txrate->nss;
3261 	ht_idx = mcs + (nss - 1) * 8;
3262 	idx = mcs * 8 + 8 * 10 * (nss - 1);
3263 	idx += bw * 2 + gi;
3264 
3265 #define STATS_OP_FMT(name) tx_stats->stats[ATH10K_STATS_TYPE_##name]
3266 
3267 	if (txrate->flags & RATE_INFO_FLAGS_VHT_MCS) {
3268 		STATS_OP_FMT(SUCC).vht[0][mcs] += pstats->succ_bytes;
3269 		STATS_OP_FMT(SUCC).vht[1][mcs] += pstats->succ_pkts;
3270 		STATS_OP_FMT(FAIL).vht[0][mcs] += pstats->failed_bytes;
3271 		STATS_OP_FMT(FAIL).vht[1][mcs] += pstats->failed_pkts;
3272 		STATS_OP_FMT(RETRY).vht[0][mcs] += pstats->retry_bytes;
3273 		STATS_OP_FMT(RETRY).vht[1][mcs] += pstats->retry_pkts;
3274 	} else if (txrate->flags & RATE_INFO_FLAGS_MCS) {
3275 		STATS_OP_FMT(SUCC).ht[0][ht_idx] += pstats->succ_bytes;
3276 		STATS_OP_FMT(SUCC).ht[1][ht_idx] += pstats->succ_pkts;
3277 		STATS_OP_FMT(FAIL).ht[0][ht_idx] += pstats->failed_bytes;
3278 		STATS_OP_FMT(FAIL).ht[1][ht_idx] += pstats->failed_pkts;
3279 		STATS_OP_FMT(RETRY).ht[0][ht_idx] += pstats->retry_bytes;
3280 		STATS_OP_FMT(RETRY).ht[1][ht_idx] += pstats->retry_pkts;
3281 	} else {
3282 		mcs = legacy_rate_idx;
3283 
3284 		STATS_OP_FMT(SUCC).legacy[0][mcs] += pstats->succ_bytes;
3285 		STATS_OP_FMT(SUCC).legacy[1][mcs] += pstats->succ_pkts;
3286 		STATS_OP_FMT(FAIL).legacy[0][mcs] += pstats->failed_bytes;
3287 		STATS_OP_FMT(FAIL).legacy[1][mcs] += pstats->failed_pkts;
3288 		STATS_OP_FMT(RETRY).legacy[0][mcs] += pstats->retry_bytes;
3289 		STATS_OP_FMT(RETRY).legacy[1][mcs] += pstats->retry_pkts;
3290 	}
3291 
3292 	if (ATH10K_HW_AMPDU(pstats->flags)) {
3293 		tx_stats->ba_fails += ATH10K_HW_BA_FAIL(pstats->flags);
3294 
3295 		if (txrate->flags & RATE_INFO_FLAGS_MCS) {
3296 			STATS_OP_FMT(AMPDU).ht[0][ht_idx] +=
3297 				pstats->succ_bytes + pstats->retry_bytes;
3298 			STATS_OP_FMT(AMPDU).ht[1][ht_idx] +=
3299 				pstats->succ_pkts + pstats->retry_pkts;
3300 		} else {
3301 			STATS_OP_FMT(AMPDU).vht[0][mcs] +=
3302 				pstats->succ_bytes + pstats->retry_bytes;
3303 			STATS_OP_FMT(AMPDU).vht[1][mcs] +=
3304 				pstats->succ_pkts + pstats->retry_pkts;
3305 		}
3306 		STATS_OP_FMT(AMPDU).bw[0][bw] +=
3307 			pstats->succ_bytes + pstats->retry_bytes;
3308 		STATS_OP_FMT(AMPDU).nss[0][nss - 1] +=
3309 			pstats->succ_bytes + pstats->retry_bytes;
3310 		STATS_OP_FMT(AMPDU).gi[0][gi] +=
3311 			pstats->succ_bytes + pstats->retry_bytes;
3312 		STATS_OP_FMT(AMPDU).rate_table[0][idx] +=
3313 			pstats->succ_bytes + pstats->retry_bytes;
3314 		STATS_OP_FMT(AMPDU).bw[1][bw] +=
3315 			pstats->succ_pkts + pstats->retry_pkts;
3316 		STATS_OP_FMT(AMPDU).nss[1][nss - 1] +=
3317 			pstats->succ_pkts + pstats->retry_pkts;
3318 		STATS_OP_FMT(AMPDU).gi[1][gi] +=
3319 			pstats->succ_pkts + pstats->retry_pkts;
3320 		STATS_OP_FMT(AMPDU).rate_table[1][idx] +=
3321 			pstats->succ_pkts + pstats->retry_pkts;
3322 	} else {
3323 		tx_stats->ack_fails +=
3324 				ATH10K_HW_BA_FAIL(pstats->flags);
3325 	}
3326 
3327 	STATS_OP_FMT(SUCC).bw[0][bw] += pstats->succ_bytes;
3328 	STATS_OP_FMT(SUCC).nss[0][nss - 1] += pstats->succ_bytes;
3329 	STATS_OP_FMT(SUCC).gi[0][gi] += pstats->succ_bytes;
3330 
3331 	STATS_OP_FMT(SUCC).bw[1][bw] += pstats->succ_pkts;
3332 	STATS_OP_FMT(SUCC).nss[1][nss - 1] += pstats->succ_pkts;
3333 	STATS_OP_FMT(SUCC).gi[1][gi] += pstats->succ_pkts;
3334 
3335 	STATS_OP_FMT(FAIL).bw[0][bw] += pstats->failed_bytes;
3336 	STATS_OP_FMT(FAIL).nss[0][nss - 1] += pstats->failed_bytes;
3337 	STATS_OP_FMT(FAIL).gi[0][gi] += pstats->failed_bytes;
3338 
3339 	STATS_OP_FMT(FAIL).bw[1][bw] += pstats->failed_pkts;
3340 	STATS_OP_FMT(FAIL).nss[1][nss - 1] += pstats->failed_pkts;
3341 	STATS_OP_FMT(FAIL).gi[1][gi] += pstats->failed_pkts;
3342 
3343 	STATS_OP_FMT(RETRY).bw[0][bw] += pstats->retry_bytes;
3344 	STATS_OP_FMT(RETRY).nss[0][nss - 1] += pstats->retry_bytes;
3345 	STATS_OP_FMT(RETRY).gi[0][gi] += pstats->retry_bytes;
3346 
3347 	STATS_OP_FMT(RETRY).bw[1][bw] += pstats->retry_pkts;
3348 	STATS_OP_FMT(RETRY).nss[1][nss - 1] += pstats->retry_pkts;
3349 	STATS_OP_FMT(RETRY).gi[1][gi] += pstats->retry_pkts;
3350 
3351 	if (txrate->flags >= RATE_INFO_FLAGS_MCS) {
3352 		STATS_OP_FMT(SUCC).rate_table[0][idx] += pstats->succ_bytes;
3353 		STATS_OP_FMT(SUCC).rate_table[1][idx] += pstats->succ_pkts;
3354 		STATS_OP_FMT(FAIL).rate_table[0][idx] += pstats->failed_bytes;
3355 		STATS_OP_FMT(FAIL).rate_table[1][idx] += pstats->failed_pkts;
3356 		STATS_OP_FMT(RETRY).rate_table[0][idx] += pstats->retry_bytes;
3357 		STATS_OP_FMT(RETRY).rate_table[1][idx] += pstats->retry_pkts;
3358 	}
3359 
3360 	tx_stats->tx_duration += pstats->duration;
3361 }
3362 
3363 static void
3364 ath10k_update_per_peer_tx_stats(struct ath10k *ar,
3365 				struct ieee80211_sta *sta,
3366 				struct ath10k_per_peer_tx_stats *peer_stats)
3367 {
3368 	struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv;
3369 	struct ieee80211_chanctx_conf *conf = NULL;
3370 	u8 rate = 0, sgi;
3371 	s8 rate_idx = 0;
3372 	bool skip_auto_rate;
3373 	struct rate_info txrate;
3374 
3375 	lockdep_assert_held(&ar->data_lock);
3376 
3377 	txrate.flags = ATH10K_HW_PREAMBLE(peer_stats->ratecode);
3378 	txrate.bw = ATH10K_HW_BW(peer_stats->flags);
3379 	txrate.nss = ATH10K_HW_NSS(peer_stats->ratecode);
3380 	txrate.mcs = ATH10K_HW_MCS_RATE(peer_stats->ratecode);
3381 	sgi = ATH10K_HW_GI(peer_stats->flags);
3382 	skip_auto_rate = ATH10K_FW_SKIPPED_RATE_CTRL(peer_stats->flags);
3383 
3384 	/* Firmware's rate control skips broadcast/management frames,
3385 	 * if host has configure fixed rates and in some other special cases.
3386 	 */
3387 	if (skip_auto_rate)
3388 		return;
3389 
3390 	if (txrate.flags == WMI_RATE_PREAMBLE_VHT && txrate.mcs > 9) {
3391 		ath10k_warn(ar, "Invalid VHT mcs %hhd peer stats",  txrate.mcs);
3392 		return;
3393 	}
3394 
3395 	if (txrate.flags == WMI_RATE_PREAMBLE_HT &&
3396 	    (txrate.mcs > 7 || txrate.nss < 1)) {
3397 		ath10k_warn(ar, "Invalid HT mcs %hhd nss %hhd peer stats",
3398 			    txrate.mcs, txrate.nss);
3399 		return;
3400 	}
3401 
3402 	memset(&arsta->txrate, 0, sizeof(arsta->txrate));
3403 	memset(&arsta->tx_info.status, 0, sizeof(arsta->tx_info.status));
3404 	if (txrate.flags == WMI_RATE_PREAMBLE_CCK ||
3405 	    txrate.flags == WMI_RATE_PREAMBLE_OFDM) {
3406 		rate = ATH10K_HW_LEGACY_RATE(peer_stats->ratecode);
3407 		/* This is hacky, FW sends CCK rate 5.5Mbps as 6 */
3408 		if (rate == 6 && txrate.flags == WMI_RATE_PREAMBLE_CCK)
3409 			rate = 5;
3410 		rate_idx = ath10k_get_legacy_rate_idx(ar, rate);
3411 		if (rate_idx < 0)
3412 			return;
3413 		arsta->txrate.legacy = rate;
3414 	} else if (txrate.flags == WMI_RATE_PREAMBLE_HT) {
3415 		arsta->txrate.flags = RATE_INFO_FLAGS_MCS;
3416 		arsta->txrate.mcs = txrate.mcs + 8 * (txrate.nss - 1);
3417 	} else {
3418 		arsta->txrate.flags = RATE_INFO_FLAGS_VHT_MCS;
3419 		arsta->txrate.mcs = txrate.mcs;
3420 	}
3421 
3422 	switch (txrate.flags) {
3423 	case WMI_RATE_PREAMBLE_OFDM:
3424 		if (arsta->arvif && arsta->arvif->vif)
3425 			conf = rcu_dereference(arsta->arvif->vif->chanctx_conf);
3426 		if (conf && conf->def.chan->band == NL80211_BAND_5GHZ)
3427 			arsta->tx_info.status.rates[0].idx = rate_idx - 4;
3428 		break;
3429 	case WMI_RATE_PREAMBLE_CCK:
3430 		arsta->tx_info.status.rates[0].idx = rate_idx;
3431 		if (sgi)
3432 			arsta->tx_info.status.rates[0].flags |=
3433 				(IEEE80211_TX_RC_USE_SHORT_PREAMBLE |
3434 				 IEEE80211_TX_RC_SHORT_GI);
3435 		break;
3436 	case WMI_RATE_PREAMBLE_HT:
3437 		arsta->tx_info.status.rates[0].idx =
3438 				txrate.mcs + ((txrate.nss - 1) * 8);
3439 		if (sgi)
3440 			arsta->tx_info.status.rates[0].flags |=
3441 					IEEE80211_TX_RC_SHORT_GI;
3442 		arsta->tx_info.status.rates[0].flags |= IEEE80211_TX_RC_MCS;
3443 		break;
3444 	case WMI_RATE_PREAMBLE_VHT:
3445 		ieee80211_rate_set_vht(&arsta->tx_info.status.rates[0],
3446 				       txrate.mcs, txrate.nss);
3447 		if (sgi)
3448 			arsta->tx_info.status.rates[0].flags |=
3449 						IEEE80211_TX_RC_SHORT_GI;
3450 		arsta->tx_info.status.rates[0].flags |= IEEE80211_TX_RC_VHT_MCS;
3451 		break;
3452 	}
3453 
3454 	arsta->txrate.nss = txrate.nss;
3455 	arsta->txrate.bw = ath10k_bw_to_mac80211_bw(txrate.bw);
3456 	arsta->last_tx_bitrate = cfg80211_calculate_bitrate(&arsta->txrate);
3457 	if (sgi)
3458 		arsta->txrate.flags |= RATE_INFO_FLAGS_SHORT_GI;
3459 
3460 	switch (arsta->txrate.bw) {
3461 	case RATE_INFO_BW_40:
3462 		arsta->tx_info.status.rates[0].flags |=
3463 				IEEE80211_TX_RC_40_MHZ_WIDTH;
3464 		break;
3465 	case RATE_INFO_BW_80:
3466 		arsta->tx_info.status.rates[0].flags |=
3467 				IEEE80211_TX_RC_80_MHZ_WIDTH;
3468 		break;
3469 	}
3470 
3471 	if (peer_stats->succ_pkts) {
3472 		arsta->tx_info.flags = IEEE80211_TX_STAT_ACK;
3473 		arsta->tx_info.status.rates[0].count = 1;
3474 		ieee80211_tx_rate_update(ar->hw, sta, &arsta->tx_info);
3475 	}
3476 
3477 	if (ath10k_debug_is_extd_tx_stats_enabled(ar))
3478 		ath10k_accumulate_per_peer_tx_stats(ar, arsta, peer_stats,
3479 						    rate_idx);
3480 }
3481 
3482 static void ath10k_htt_fetch_peer_stats(struct ath10k *ar,
3483 					struct sk_buff *skb)
3484 {
3485 	struct htt_resp *resp = (struct htt_resp *)skb->data;
3486 	struct ath10k_per_peer_tx_stats *p_tx_stats = &ar->peer_tx_stats;
3487 	struct htt_per_peer_tx_stats_ind *tx_stats;
3488 	struct ieee80211_sta *sta;
3489 	struct ath10k_peer *peer;
3490 	int peer_id, i;
3491 	u8 ppdu_len, num_ppdu;
3492 
3493 	num_ppdu = resp->peer_tx_stats.num_ppdu;
3494 	ppdu_len = resp->peer_tx_stats.ppdu_len * sizeof(__le32);
3495 
3496 	if (skb->len < sizeof(struct htt_resp_hdr) + num_ppdu * ppdu_len) {
3497 		ath10k_warn(ar, "Invalid peer stats buf length %d\n", skb->len);
3498 		return;
3499 	}
3500 
3501 	tx_stats = (struct htt_per_peer_tx_stats_ind *)
3502 			(resp->peer_tx_stats.payload);
3503 	peer_id = __le16_to_cpu(tx_stats->peer_id);
3504 
3505 	rcu_read_lock();
3506 	spin_lock_bh(&ar->data_lock);
3507 	peer = ath10k_peer_find_by_id(ar, peer_id);
3508 	if (!peer || !peer->sta) {
3509 		ath10k_warn(ar, "Invalid peer id %d peer stats buffer\n",
3510 			    peer_id);
3511 		goto out;
3512 	}
3513 
3514 	sta = peer->sta;
3515 	for (i = 0; i < num_ppdu; i++) {
3516 		tx_stats = (struct htt_per_peer_tx_stats_ind *)
3517 			   (resp->peer_tx_stats.payload + i * ppdu_len);
3518 
3519 		p_tx_stats->succ_bytes = __le32_to_cpu(tx_stats->succ_bytes);
3520 		p_tx_stats->retry_bytes = __le32_to_cpu(tx_stats->retry_bytes);
3521 		p_tx_stats->failed_bytes =
3522 				__le32_to_cpu(tx_stats->failed_bytes);
3523 		p_tx_stats->ratecode = tx_stats->ratecode;
3524 		p_tx_stats->flags = tx_stats->flags;
3525 		p_tx_stats->succ_pkts = __le16_to_cpu(tx_stats->succ_pkts);
3526 		p_tx_stats->retry_pkts = __le16_to_cpu(tx_stats->retry_pkts);
3527 		p_tx_stats->failed_pkts = __le16_to_cpu(tx_stats->failed_pkts);
3528 		p_tx_stats->duration = __le16_to_cpu(tx_stats->tx_duration);
3529 
3530 		ath10k_update_per_peer_tx_stats(ar, sta, p_tx_stats);
3531 	}
3532 
3533 out:
3534 	spin_unlock_bh(&ar->data_lock);
3535 	rcu_read_unlock();
3536 }
3537 
3538 static void ath10k_fetch_10_2_tx_stats(struct ath10k *ar, u8 *data)
3539 {
3540 	struct ath10k_pktlog_hdr *hdr = (struct ath10k_pktlog_hdr *)data;
3541 	struct ath10k_per_peer_tx_stats *p_tx_stats = &ar->peer_tx_stats;
3542 	struct ath10k_10_2_peer_tx_stats *tx_stats;
3543 	struct ieee80211_sta *sta;
3544 	struct ath10k_peer *peer;
3545 	u16 log_type = __le16_to_cpu(hdr->log_type);
3546 	u32 peer_id = 0, i;
3547 
3548 	if (log_type != ATH_PKTLOG_TYPE_TX_STAT)
3549 		return;
3550 
3551 	tx_stats = (struct ath10k_10_2_peer_tx_stats *)((hdr->payload) +
3552 		    ATH10K_10_2_TX_STATS_OFFSET);
3553 
3554 	if (!tx_stats->tx_ppdu_cnt)
3555 		return;
3556 
3557 	peer_id = tx_stats->peer_id;
3558 
3559 	rcu_read_lock();
3560 	spin_lock_bh(&ar->data_lock);
3561 	peer = ath10k_peer_find_by_id(ar, peer_id);
3562 	if (!peer || !peer->sta) {
3563 		ath10k_warn(ar, "Invalid peer id %d in peer stats buffer\n",
3564 			    peer_id);
3565 		goto out;
3566 	}
3567 
3568 	sta = peer->sta;
3569 	for (i = 0; i < tx_stats->tx_ppdu_cnt; i++) {
3570 		p_tx_stats->succ_bytes =
3571 			__le16_to_cpu(tx_stats->success_bytes[i]);
3572 		p_tx_stats->retry_bytes =
3573 			__le16_to_cpu(tx_stats->retry_bytes[i]);
3574 		p_tx_stats->failed_bytes =
3575 			__le16_to_cpu(tx_stats->failed_bytes[i]);
3576 		p_tx_stats->ratecode = tx_stats->ratecode[i];
3577 		p_tx_stats->flags = tx_stats->flags[i];
3578 		p_tx_stats->succ_pkts = tx_stats->success_pkts[i];
3579 		p_tx_stats->retry_pkts = tx_stats->retry_pkts[i];
3580 		p_tx_stats->failed_pkts = tx_stats->failed_pkts[i];
3581 
3582 		ath10k_update_per_peer_tx_stats(ar, sta, p_tx_stats);
3583 	}
3584 	spin_unlock_bh(&ar->data_lock);
3585 	rcu_read_unlock();
3586 
3587 	return;
3588 
3589 out:
3590 	spin_unlock_bh(&ar->data_lock);
3591 	rcu_read_unlock();
3592 }
3593 
3594 static int ath10k_htt_rx_pn_len(enum htt_security_types sec_type)
3595 {
3596 	switch (sec_type) {
3597 	case HTT_SECURITY_TKIP:
3598 	case HTT_SECURITY_TKIP_NOMIC:
3599 	case HTT_SECURITY_AES_CCMP:
3600 		return 48;
3601 	default:
3602 		return 0;
3603 	}
3604 }
3605 
3606 static void ath10k_htt_rx_sec_ind_handler(struct ath10k *ar,
3607 					  struct htt_security_indication *ev)
3608 {
3609 	enum htt_txrx_sec_cast_type sec_index;
3610 	enum htt_security_types sec_type;
3611 	struct ath10k_peer *peer;
3612 
3613 	spin_lock_bh(&ar->data_lock);
3614 
3615 	peer = ath10k_peer_find_by_id(ar, __le16_to_cpu(ev->peer_id));
3616 	if (!peer) {
3617 		ath10k_warn(ar, "failed to find peer id %d for security indication",
3618 			    __le16_to_cpu(ev->peer_id));
3619 		goto out;
3620 	}
3621 
3622 	sec_type = MS(ev->flags, HTT_SECURITY_TYPE);
3623 
3624 	if (ev->flags & HTT_SECURITY_IS_UNICAST)
3625 		sec_index = HTT_TXRX_SEC_UCAST;
3626 	else
3627 		sec_index = HTT_TXRX_SEC_MCAST;
3628 
3629 	peer->rx_pn[sec_index].sec_type = sec_type;
3630 	peer->rx_pn[sec_index].pn_len = ath10k_htt_rx_pn_len(sec_type);
3631 
3632 	memset(peer->tids_last_pn_valid, 0, sizeof(peer->tids_last_pn_valid));
3633 	memset(peer->tids_last_pn, 0, sizeof(peer->tids_last_pn));
3634 
3635 out:
3636 	spin_unlock_bh(&ar->data_lock);
3637 }
3638 
3639 bool ath10k_htt_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb)
3640 {
3641 	struct ath10k_htt *htt = &ar->htt;
3642 	struct htt_resp *resp = (struct htt_resp *)skb->data;
3643 	enum htt_t2h_msg_type type;
3644 
3645 	/* confirm alignment */
3646 	if (!IS_ALIGNED((unsigned long)skb->data, 4))
3647 		ath10k_warn(ar, "unaligned htt message, expect trouble\n");
3648 
3649 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, msg_type: 0x%0X\n",
3650 		   resp->hdr.msg_type);
3651 
3652 	if (resp->hdr.msg_type >= ar->htt.t2h_msg_types_max) {
3653 		ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, unsupported msg_type: 0x%0X\n max: 0x%0X",
3654 			   resp->hdr.msg_type, ar->htt.t2h_msg_types_max);
3655 		return true;
3656 	}
3657 	type = ar->htt.t2h_msg_types[resp->hdr.msg_type];
3658 
3659 	switch (type) {
3660 	case HTT_T2H_MSG_TYPE_VERSION_CONF: {
3661 		htt->target_version_major = resp->ver_resp.major;
3662 		htt->target_version_minor = resp->ver_resp.minor;
3663 		complete(&htt->target_version_received);
3664 		break;
3665 	}
3666 	case HTT_T2H_MSG_TYPE_RX_IND:
3667 		if (ar->bus_param.dev_type == ATH10K_DEV_TYPE_HL)
3668 			return ath10k_htt_rx_proc_rx_ind_hl(htt,
3669 							    &resp->rx_ind_hl,
3670 							    skb,
3671 							    HTT_RX_PN_CHECK,
3672 							    HTT_RX_NON_TKIP_MIC);
3673 		else
3674 			ath10k_htt_rx_proc_rx_ind_ll(htt, &resp->rx_ind);
3675 		break;
3676 	case HTT_T2H_MSG_TYPE_PEER_MAP: {
3677 		struct htt_peer_map_event ev = {
3678 			.vdev_id = resp->peer_map.vdev_id,
3679 			.peer_id = __le16_to_cpu(resp->peer_map.peer_id),
3680 		};
3681 		memcpy(ev.addr, resp->peer_map.addr, sizeof(ev.addr));
3682 		ath10k_peer_map_event(htt, &ev);
3683 		break;
3684 	}
3685 	case HTT_T2H_MSG_TYPE_PEER_UNMAP: {
3686 		struct htt_peer_unmap_event ev = {
3687 			.peer_id = __le16_to_cpu(resp->peer_unmap.peer_id),
3688 		};
3689 		ath10k_peer_unmap_event(htt, &ev);
3690 		break;
3691 	}
3692 	case HTT_T2H_MSG_TYPE_MGMT_TX_COMPLETION: {
3693 		struct htt_tx_done tx_done = {};
3694 		int status = __le32_to_cpu(resp->mgmt_tx_completion.status);
3695 		int info = __le32_to_cpu(resp->mgmt_tx_completion.info);
3696 
3697 		tx_done.msdu_id = __le32_to_cpu(resp->mgmt_tx_completion.desc_id);
3698 
3699 		switch (status) {
3700 		case HTT_MGMT_TX_STATUS_OK:
3701 			tx_done.status = HTT_TX_COMPL_STATE_ACK;
3702 			if (test_bit(WMI_SERVICE_HTT_MGMT_TX_COMP_VALID_FLAGS,
3703 				     ar->wmi.svc_map) &&
3704 			    (resp->mgmt_tx_completion.flags &
3705 			     HTT_MGMT_TX_CMPL_FLAG_ACK_RSSI)) {
3706 				tx_done.ack_rssi =
3707 				FIELD_GET(HTT_MGMT_TX_CMPL_INFO_ACK_RSSI_MASK,
3708 					  info);
3709 			}
3710 			break;
3711 		case HTT_MGMT_TX_STATUS_RETRY:
3712 			tx_done.status = HTT_TX_COMPL_STATE_NOACK;
3713 			break;
3714 		case HTT_MGMT_TX_STATUS_DROP:
3715 			tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
3716 			break;
3717 		}
3718 
3719 		status = ath10k_txrx_tx_unref(htt, &tx_done);
3720 		if (!status) {
3721 			spin_lock_bh(&htt->tx_lock);
3722 			ath10k_htt_tx_mgmt_dec_pending(htt);
3723 			spin_unlock_bh(&htt->tx_lock);
3724 		}
3725 		break;
3726 	}
3727 	case HTT_T2H_MSG_TYPE_TX_COMPL_IND:
3728 		ath10k_htt_rx_tx_compl_ind(htt->ar, skb);
3729 		break;
3730 	case HTT_T2H_MSG_TYPE_SEC_IND: {
3731 		struct ath10k *ar = htt->ar;
3732 		struct htt_security_indication *ev = &resp->security_indication;
3733 
3734 		ath10k_htt_rx_sec_ind_handler(ar, ev);
3735 		ath10k_dbg(ar, ATH10K_DBG_HTT,
3736 			   "sec ind peer_id %d unicast %d type %d\n",
3737 			  __le16_to_cpu(ev->peer_id),
3738 			  !!(ev->flags & HTT_SECURITY_IS_UNICAST),
3739 			  MS(ev->flags, HTT_SECURITY_TYPE));
3740 		complete(&ar->install_key_done);
3741 		break;
3742 	}
3743 	case HTT_T2H_MSG_TYPE_RX_FRAG_IND: {
3744 		ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
3745 				skb->data, skb->len);
3746 		atomic_inc(&htt->num_mpdus_ready);
3747 
3748 		return ath10k_htt_rx_proc_rx_frag_ind(htt,
3749 						      &resp->rx_frag_ind,
3750 						      skb);
3751 		break;
3752 	}
3753 	case HTT_T2H_MSG_TYPE_TEST:
3754 		break;
3755 	case HTT_T2H_MSG_TYPE_STATS_CONF:
3756 		trace_ath10k_htt_stats(ar, skb->data, skb->len);
3757 		break;
3758 	case HTT_T2H_MSG_TYPE_TX_INSPECT_IND:
3759 		/* Firmware can return tx frames if it's unable to fully
3760 		 * process them and suspects host may be able to fix it. ath10k
3761 		 * sends all tx frames as already inspected so this shouldn't
3762 		 * happen unless fw has a bug.
3763 		 */
3764 		ath10k_warn(ar, "received an unexpected htt tx inspect event\n");
3765 		break;
3766 	case HTT_T2H_MSG_TYPE_RX_ADDBA:
3767 		ath10k_htt_rx_addba(ar, resp);
3768 		break;
3769 	case HTT_T2H_MSG_TYPE_RX_DELBA:
3770 		ath10k_htt_rx_delba(ar, resp);
3771 		break;
3772 	case HTT_T2H_MSG_TYPE_PKTLOG: {
3773 		trace_ath10k_htt_pktlog(ar, resp->pktlog_msg.payload,
3774 					skb->len -
3775 					offsetof(struct htt_resp,
3776 						 pktlog_msg.payload));
3777 
3778 		if (ath10k_peer_stats_enabled(ar))
3779 			ath10k_fetch_10_2_tx_stats(ar,
3780 						   resp->pktlog_msg.payload);
3781 		break;
3782 	}
3783 	case HTT_T2H_MSG_TYPE_RX_FLUSH: {
3784 		/* Ignore this event because mac80211 takes care of Rx
3785 		 * aggregation reordering.
3786 		 */
3787 		break;
3788 	}
3789 	case HTT_T2H_MSG_TYPE_RX_IN_ORD_PADDR_IND: {
3790 		skb_queue_tail(&htt->rx_in_ord_compl_q, skb);
3791 		return false;
3792 	}
3793 	case HTT_T2H_MSG_TYPE_TX_CREDIT_UPDATE_IND:
3794 		break;
3795 	case HTT_T2H_MSG_TYPE_CHAN_CHANGE: {
3796 		u32 phymode = __le32_to_cpu(resp->chan_change.phymode);
3797 		u32 freq = __le32_to_cpu(resp->chan_change.freq);
3798 
3799 		ar->tgt_oper_chan = ieee80211_get_channel(ar->hw->wiphy, freq);
3800 		ath10k_dbg(ar, ATH10K_DBG_HTT,
3801 			   "htt chan change freq %u phymode %s\n",
3802 			   freq, ath10k_wmi_phymode_str(phymode));
3803 		break;
3804 	}
3805 	case HTT_T2H_MSG_TYPE_AGGR_CONF:
3806 		break;
3807 	case HTT_T2H_MSG_TYPE_TX_FETCH_IND: {
3808 		struct sk_buff *tx_fetch_ind = skb_copy(skb, GFP_ATOMIC);
3809 
3810 		if (!tx_fetch_ind) {
3811 			ath10k_warn(ar, "failed to copy htt tx fetch ind\n");
3812 			break;
3813 		}
3814 		skb_queue_tail(&htt->tx_fetch_ind_q, tx_fetch_ind);
3815 		break;
3816 	}
3817 	case HTT_T2H_MSG_TYPE_TX_FETCH_CONFIRM:
3818 		ath10k_htt_rx_tx_fetch_confirm(ar, skb);
3819 		break;
3820 	case HTT_T2H_MSG_TYPE_TX_MODE_SWITCH_IND:
3821 		ath10k_htt_rx_tx_mode_switch_ind(ar, skb);
3822 		break;
3823 	case HTT_T2H_MSG_TYPE_PEER_STATS:
3824 		ath10k_htt_fetch_peer_stats(ar, skb);
3825 		break;
3826 	case HTT_T2H_MSG_TYPE_EN_STATS:
3827 	default:
3828 		ath10k_warn(ar, "htt event (%d) not handled\n",
3829 			    resp->hdr.msg_type);
3830 		ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
3831 				skb->data, skb->len);
3832 		break;
3833 	}
3834 	return true;
3835 }
3836 EXPORT_SYMBOL(ath10k_htt_t2h_msg_handler);
3837 
3838 void ath10k_htt_rx_pktlog_completion_handler(struct ath10k *ar,
3839 					     struct sk_buff *skb)
3840 {
3841 	trace_ath10k_htt_pktlog(ar, skb->data, skb->len);
3842 	dev_kfree_skb_any(skb);
3843 }
3844 EXPORT_SYMBOL(ath10k_htt_rx_pktlog_completion_handler);
3845 
3846 static int ath10k_htt_rx_deliver_msdu(struct ath10k *ar, int quota, int budget)
3847 {
3848 	struct sk_buff *skb;
3849 
3850 	while (quota < budget) {
3851 		if (skb_queue_empty(&ar->htt.rx_msdus_q))
3852 			break;
3853 
3854 		skb = skb_dequeue(&ar->htt.rx_msdus_q);
3855 		if (!skb)
3856 			break;
3857 		ath10k_process_rx(ar, skb);
3858 		quota++;
3859 	}
3860 
3861 	return quota;
3862 }
3863 
3864 int ath10k_htt_txrx_compl_task(struct ath10k *ar, int budget)
3865 {
3866 	struct ath10k_htt *htt = &ar->htt;
3867 	struct htt_tx_done tx_done = {};
3868 	struct sk_buff_head tx_ind_q;
3869 	struct sk_buff *skb;
3870 	unsigned long flags;
3871 	int quota = 0, done, ret;
3872 	bool resched_napi = false;
3873 
3874 	__skb_queue_head_init(&tx_ind_q);
3875 
3876 	/* Process pending frames before dequeuing more data
3877 	 * from hardware.
3878 	 */
3879 	quota = ath10k_htt_rx_deliver_msdu(ar, quota, budget);
3880 	if (quota == budget) {
3881 		resched_napi = true;
3882 		goto exit;
3883 	}
3884 
3885 	while ((skb = skb_dequeue(&htt->rx_in_ord_compl_q))) {
3886 		spin_lock_bh(&htt->rx_ring.lock);
3887 		ret = ath10k_htt_rx_in_ord_ind(ar, skb);
3888 		spin_unlock_bh(&htt->rx_ring.lock);
3889 
3890 		dev_kfree_skb_any(skb);
3891 		if (ret == -EIO) {
3892 			resched_napi = true;
3893 			goto exit;
3894 		}
3895 	}
3896 
3897 	while (atomic_read(&htt->num_mpdus_ready)) {
3898 		ret = ath10k_htt_rx_handle_amsdu(htt);
3899 		if (ret == -EIO) {
3900 			resched_napi = true;
3901 			goto exit;
3902 		}
3903 		atomic_dec(&htt->num_mpdus_ready);
3904 	}
3905 
3906 	/* Deliver received data after processing data from hardware */
3907 	quota = ath10k_htt_rx_deliver_msdu(ar, quota, budget);
3908 
3909 	/* From NAPI documentation:
3910 	 *  The napi poll() function may also process TX completions, in which
3911 	 *  case if it processes the entire TX ring then it should count that
3912 	 *  work as the rest of the budget.
3913 	 */
3914 	if ((quota < budget) && !kfifo_is_empty(&htt->txdone_fifo))
3915 		quota = budget;
3916 
3917 	/* kfifo_get: called only within txrx_tasklet so it's neatly serialized.
3918 	 * From kfifo_get() documentation:
3919 	 *  Note that with only one concurrent reader and one concurrent writer,
3920 	 *  you don't need extra locking to use these macro.
3921 	 */
3922 	while (kfifo_get(&htt->txdone_fifo, &tx_done))
3923 		ath10k_txrx_tx_unref(htt, &tx_done);
3924 
3925 	ath10k_mac_tx_push_pending(ar);
3926 
3927 	spin_lock_irqsave(&htt->tx_fetch_ind_q.lock, flags);
3928 	skb_queue_splice_init(&htt->tx_fetch_ind_q, &tx_ind_q);
3929 	spin_unlock_irqrestore(&htt->tx_fetch_ind_q.lock, flags);
3930 
3931 	while ((skb = __skb_dequeue(&tx_ind_q))) {
3932 		ath10k_htt_rx_tx_fetch_ind(ar, skb);
3933 		dev_kfree_skb_any(skb);
3934 	}
3935 
3936 exit:
3937 	ath10k_htt_rx_msdu_buff_replenish(htt);
3938 	/* In case of rx failure or more data to read, report budget
3939 	 * to reschedule NAPI poll
3940 	 */
3941 	done = resched_napi ? budget : quota;
3942 
3943 	return done;
3944 }
3945 EXPORT_SYMBOL(ath10k_htt_txrx_compl_task);
3946 
3947 static const struct ath10k_htt_rx_ops htt_rx_ops_32 = {
3948 	.htt_get_rx_ring_size = ath10k_htt_get_rx_ring_size_32,
3949 	.htt_config_paddrs_ring = ath10k_htt_config_paddrs_ring_32,
3950 	.htt_set_paddrs_ring = ath10k_htt_set_paddrs_ring_32,
3951 	.htt_get_vaddr_ring = ath10k_htt_get_vaddr_ring_32,
3952 	.htt_reset_paddrs_ring = ath10k_htt_reset_paddrs_ring_32,
3953 };
3954 
3955 static const struct ath10k_htt_rx_ops htt_rx_ops_64 = {
3956 	.htt_get_rx_ring_size = ath10k_htt_get_rx_ring_size_64,
3957 	.htt_config_paddrs_ring = ath10k_htt_config_paddrs_ring_64,
3958 	.htt_set_paddrs_ring = ath10k_htt_set_paddrs_ring_64,
3959 	.htt_get_vaddr_ring = ath10k_htt_get_vaddr_ring_64,
3960 	.htt_reset_paddrs_ring = ath10k_htt_reset_paddrs_ring_64,
3961 };
3962 
3963 static const struct ath10k_htt_rx_ops htt_rx_ops_hl = {
3964 	.htt_rx_proc_rx_frag_ind = ath10k_htt_rx_proc_rx_frag_ind_hl,
3965 };
3966 
3967 void ath10k_htt_set_rx_ops(struct ath10k_htt *htt)
3968 {
3969 	struct ath10k *ar = htt->ar;
3970 
3971 	if (ar->bus_param.dev_type == ATH10K_DEV_TYPE_HL)
3972 		htt->rx_ops = &htt_rx_ops_hl;
3973 	else if (ar->hw_params.target_64bit)
3974 		htt->rx_ops = &htt_rx_ops_64;
3975 	else
3976 		htt->rx_ops = &htt_rx_ops_32;
3977 }
3978