1 /* 2 * Copyright (c) 2005-2011 Atheros Communications Inc. 3 * Copyright (c) 2011-2013 Qualcomm Atheros, Inc. 4 * 5 * Permission to use, copy, modify, and/or distribute this software for any 6 * purpose with or without fee is hereby granted, provided that the above 7 * copyright notice and this permission notice appear in all copies. 8 * 9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 16 */ 17 18 #include "core.h" 19 #include "htc.h" 20 #include "htt.h" 21 #include "txrx.h" 22 #include "debug.h" 23 #include "trace.h" 24 #include "mac.h" 25 26 #include <linux/log2.h> 27 28 #define HTT_RX_RING_SIZE HTT_RX_RING_SIZE_MAX 29 #define HTT_RX_RING_FILL_LEVEL (((HTT_RX_RING_SIZE) / 2) - 1) 30 31 /* when under memory pressure rx ring refill may fail and needs a retry */ 32 #define HTT_RX_RING_REFILL_RETRY_MS 50 33 34 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb); 35 static void ath10k_htt_txrx_compl_task(unsigned long ptr); 36 37 static struct sk_buff * 38 ath10k_htt_rx_find_skb_paddr(struct ath10k *ar, u32 paddr) 39 { 40 struct ath10k_skb_rxcb *rxcb; 41 42 hash_for_each_possible(ar->htt.rx_ring.skb_table, rxcb, hlist, paddr) 43 if (rxcb->paddr == paddr) 44 return ATH10K_RXCB_SKB(rxcb); 45 46 WARN_ON_ONCE(1); 47 return NULL; 48 } 49 50 static void ath10k_htt_rx_ring_free(struct ath10k_htt *htt) 51 { 52 struct sk_buff *skb; 53 struct ath10k_skb_rxcb *rxcb; 54 struct hlist_node *n; 55 int i; 56 57 if (htt->rx_ring.in_ord_rx) { 58 hash_for_each_safe(htt->rx_ring.skb_table, i, n, rxcb, hlist) { 59 skb = ATH10K_RXCB_SKB(rxcb); 60 dma_unmap_single(htt->ar->dev, rxcb->paddr, 61 skb->len + skb_tailroom(skb), 62 DMA_FROM_DEVICE); 63 hash_del(&rxcb->hlist); 64 dev_kfree_skb_any(skb); 65 } 66 } else { 67 for (i = 0; i < htt->rx_ring.size; i++) { 68 skb = htt->rx_ring.netbufs_ring[i]; 69 if (!skb) 70 continue; 71 72 rxcb = ATH10K_SKB_RXCB(skb); 73 dma_unmap_single(htt->ar->dev, rxcb->paddr, 74 skb->len + skb_tailroom(skb), 75 DMA_FROM_DEVICE); 76 dev_kfree_skb_any(skb); 77 } 78 } 79 80 htt->rx_ring.fill_cnt = 0; 81 hash_init(htt->rx_ring.skb_table); 82 memset(htt->rx_ring.netbufs_ring, 0, 83 htt->rx_ring.size * sizeof(htt->rx_ring.netbufs_ring[0])); 84 } 85 86 static int __ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num) 87 { 88 struct htt_rx_desc *rx_desc; 89 struct ath10k_skb_rxcb *rxcb; 90 struct sk_buff *skb; 91 dma_addr_t paddr; 92 int ret = 0, idx; 93 94 /* The Full Rx Reorder firmware has no way of telling the host 95 * implicitly when it copied HTT Rx Ring buffers to MAC Rx Ring. 96 * To keep things simple make sure ring is always half empty. This 97 * guarantees there'll be no replenishment overruns possible. 98 */ 99 BUILD_BUG_ON(HTT_RX_RING_FILL_LEVEL >= HTT_RX_RING_SIZE / 2); 100 101 idx = __le32_to_cpu(*htt->rx_ring.alloc_idx.vaddr); 102 while (num > 0) { 103 skb = dev_alloc_skb(HTT_RX_BUF_SIZE + HTT_RX_DESC_ALIGN); 104 if (!skb) { 105 ret = -ENOMEM; 106 goto fail; 107 } 108 109 if (!IS_ALIGNED((unsigned long)skb->data, HTT_RX_DESC_ALIGN)) 110 skb_pull(skb, 111 PTR_ALIGN(skb->data, HTT_RX_DESC_ALIGN) - 112 skb->data); 113 114 /* Clear rx_desc attention word before posting to Rx ring */ 115 rx_desc = (struct htt_rx_desc *)skb->data; 116 rx_desc->attention.flags = __cpu_to_le32(0); 117 118 paddr = dma_map_single(htt->ar->dev, skb->data, 119 skb->len + skb_tailroom(skb), 120 DMA_FROM_DEVICE); 121 122 if (unlikely(dma_mapping_error(htt->ar->dev, paddr))) { 123 dev_kfree_skb_any(skb); 124 ret = -ENOMEM; 125 goto fail; 126 } 127 128 rxcb = ATH10K_SKB_RXCB(skb); 129 rxcb->paddr = paddr; 130 htt->rx_ring.netbufs_ring[idx] = skb; 131 htt->rx_ring.paddrs_ring[idx] = __cpu_to_le32(paddr); 132 htt->rx_ring.fill_cnt++; 133 134 if (htt->rx_ring.in_ord_rx) { 135 hash_add(htt->rx_ring.skb_table, 136 &ATH10K_SKB_RXCB(skb)->hlist, 137 (u32)paddr); 138 } 139 140 num--; 141 idx++; 142 idx &= htt->rx_ring.size_mask; 143 } 144 145 fail: 146 /* 147 * Make sure the rx buffer is updated before available buffer 148 * index to avoid any potential rx ring corruption. 149 */ 150 mb(); 151 *htt->rx_ring.alloc_idx.vaddr = __cpu_to_le32(idx); 152 return ret; 153 } 154 155 static int ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num) 156 { 157 lockdep_assert_held(&htt->rx_ring.lock); 158 return __ath10k_htt_rx_ring_fill_n(htt, num); 159 } 160 161 static void ath10k_htt_rx_msdu_buff_replenish(struct ath10k_htt *htt) 162 { 163 int ret, num_deficit, num_to_fill; 164 165 /* Refilling the whole RX ring buffer proves to be a bad idea. The 166 * reason is RX may take up significant amount of CPU cycles and starve 167 * other tasks, e.g. TX on an ethernet device while acting as a bridge 168 * with ath10k wlan interface. This ended up with very poor performance 169 * once CPU the host system was overwhelmed with RX on ath10k. 170 * 171 * By limiting the number of refills the replenishing occurs 172 * progressively. This in turns makes use of the fact tasklets are 173 * processed in FIFO order. This means actual RX processing can starve 174 * out refilling. If there's not enough buffers on RX ring FW will not 175 * report RX until it is refilled with enough buffers. This 176 * automatically balances load wrt to CPU power. 177 * 178 * This probably comes at a cost of lower maximum throughput but 179 * improves the average and stability. */ 180 spin_lock_bh(&htt->rx_ring.lock); 181 num_deficit = htt->rx_ring.fill_level - htt->rx_ring.fill_cnt; 182 num_to_fill = min(ATH10K_HTT_MAX_NUM_REFILL, num_deficit); 183 num_deficit -= num_to_fill; 184 ret = ath10k_htt_rx_ring_fill_n(htt, num_to_fill); 185 if (ret == -ENOMEM) { 186 /* 187 * Failed to fill it to the desired level - 188 * we'll start a timer and try again next time. 189 * As long as enough buffers are left in the ring for 190 * another A-MPDU rx, no special recovery is needed. 191 */ 192 mod_timer(&htt->rx_ring.refill_retry_timer, jiffies + 193 msecs_to_jiffies(HTT_RX_RING_REFILL_RETRY_MS)); 194 } else if (num_deficit > 0) { 195 tasklet_schedule(&htt->rx_replenish_task); 196 } 197 spin_unlock_bh(&htt->rx_ring.lock); 198 } 199 200 static void ath10k_htt_rx_ring_refill_retry(unsigned long arg) 201 { 202 struct ath10k_htt *htt = (struct ath10k_htt *)arg; 203 204 ath10k_htt_rx_msdu_buff_replenish(htt); 205 } 206 207 int ath10k_htt_rx_ring_refill(struct ath10k *ar) 208 { 209 struct ath10k_htt *htt = &ar->htt; 210 int ret; 211 212 spin_lock_bh(&htt->rx_ring.lock); 213 ret = ath10k_htt_rx_ring_fill_n(htt, (htt->rx_ring.fill_level - 214 htt->rx_ring.fill_cnt)); 215 spin_unlock_bh(&htt->rx_ring.lock); 216 217 if (ret) 218 ath10k_htt_rx_ring_free(htt); 219 220 return ret; 221 } 222 223 void ath10k_htt_rx_free(struct ath10k_htt *htt) 224 { 225 del_timer_sync(&htt->rx_ring.refill_retry_timer); 226 tasklet_kill(&htt->rx_replenish_task); 227 tasklet_kill(&htt->txrx_compl_task); 228 229 skb_queue_purge(&htt->tx_compl_q); 230 skb_queue_purge(&htt->rx_compl_q); 231 skb_queue_purge(&htt->rx_in_ord_compl_q); 232 233 ath10k_htt_rx_ring_free(htt); 234 235 dma_free_coherent(htt->ar->dev, 236 (htt->rx_ring.size * 237 sizeof(htt->rx_ring.paddrs_ring)), 238 htt->rx_ring.paddrs_ring, 239 htt->rx_ring.base_paddr); 240 241 dma_free_coherent(htt->ar->dev, 242 sizeof(*htt->rx_ring.alloc_idx.vaddr), 243 htt->rx_ring.alloc_idx.vaddr, 244 htt->rx_ring.alloc_idx.paddr); 245 246 kfree(htt->rx_ring.netbufs_ring); 247 } 248 249 static inline struct sk_buff *ath10k_htt_rx_netbuf_pop(struct ath10k_htt *htt) 250 { 251 struct ath10k *ar = htt->ar; 252 int idx; 253 struct sk_buff *msdu; 254 255 lockdep_assert_held(&htt->rx_ring.lock); 256 257 if (htt->rx_ring.fill_cnt == 0) { 258 ath10k_warn(ar, "tried to pop sk_buff from an empty rx ring\n"); 259 return NULL; 260 } 261 262 idx = htt->rx_ring.sw_rd_idx.msdu_payld; 263 msdu = htt->rx_ring.netbufs_ring[idx]; 264 htt->rx_ring.netbufs_ring[idx] = NULL; 265 htt->rx_ring.paddrs_ring[idx] = 0; 266 267 idx++; 268 idx &= htt->rx_ring.size_mask; 269 htt->rx_ring.sw_rd_idx.msdu_payld = idx; 270 htt->rx_ring.fill_cnt--; 271 272 dma_unmap_single(htt->ar->dev, 273 ATH10K_SKB_RXCB(msdu)->paddr, 274 msdu->len + skb_tailroom(msdu), 275 DMA_FROM_DEVICE); 276 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ", 277 msdu->data, msdu->len + skb_tailroom(msdu)); 278 279 return msdu; 280 } 281 282 /* return: < 0 fatal error, 0 - non chained msdu, 1 chained msdu */ 283 static int ath10k_htt_rx_amsdu_pop(struct ath10k_htt *htt, 284 u8 **fw_desc, int *fw_desc_len, 285 struct sk_buff_head *amsdu) 286 { 287 struct ath10k *ar = htt->ar; 288 int msdu_len, msdu_chaining = 0; 289 struct sk_buff *msdu; 290 struct htt_rx_desc *rx_desc; 291 292 lockdep_assert_held(&htt->rx_ring.lock); 293 294 for (;;) { 295 int last_msdu, msdu_len_invalid, msdu_chained; 296 297 msdu = ath10k_htt_rx_netbuf_pop(htt); 298 if (!msdu) { 299 __skb_queue_purge(amsdu); 300 return -ENOENT; 301 } 302 303 __skb_queue_tail(amsdu, msdu); 304 305 rx_desc = (struct htt_rx_desc *)msdu->data; 306 307 /* FIXME: we must report msdu payload since this is what caller 308 * expects now */ 309 skb_put(msdu, offsetof(struct htt_rx_desc, msdu_payload)); 310 skb_pull(msdu, offsetof(struct htt_rx_desc, msdu_payload)); 311 312 /* 313 * Sanity check - confirm the HW is finished filling in the 314 * rx data. 315 * If the HW and SW are working correctly, then it's guaranteed 316 * that the HW's MAC DMA is done before this point in the SW. 317 * To prevent the case that we handle a stale Rx descriptor, 318 * just assert for now until we have a way to recover. 319 */ 320 if (!(__le32_to_cpu(rx_desc->attention.flags) 321 & RX_ATTENTION_FLAGS_MSDU_DONE)) { 322 __skb_queue_purge(amsdu); 323 return -EIO; 324 } 325 326 /* 327 * Copy the FW rx descriptor for this MSDU from the rx 328 * indication message into the MSDU's netbuf. HL uses the 329 * same rx indication message definition as LL, and simply 330 * appends new info (fields from the HW rx desc, and the 331 * MSDU payload itself). So, the offset into the rx 332 * indication message only has to account for the standard 333 * offset of the per-MSDU FW rx desc info within the 334 * message, and how many bytes of the per-MSDU FW rx desc 335 * info have already been consumed. (And the endianness of 336 * the host, since for a big-endian host, the rx ind 337 * message contents, including the per-MSDU rx desc bytes, 338 * were byteswapped during upload.) 339 */ 340 if (*fw_desc_len > 0) { 341 rx_desc->fw_desc.info0 = **fw_desc; 342 /* 343 * The target is expected to only provide the basic 344 * per-MSDU rx descriptors. Just to be sure, verify 345 * that the target has not attached extension data 346 * (e.g. LRO flow ID). 347 */ 348 349 /* or more, if there's extension data */ 350 (*fw_desc)++; 351 (*fw_desc_len)--; 352 } else { 353 /* 354 * When an oversized AMSDU happened, FW will lost 355 * some of MSDU status - in this case, the FW 356 * descriptors provided will be less than the 357 * actual MSDUs inside this MPDU. Mark the FW 358 * descriptors so that it will still deliver to 359 * upper stack, if no CRC error for this MPDU. 360 * 361 * FIX THIS - the FW descriptors are actually for 362 * MSDUs in the end of this A-MSDU instead of the 363 * beginning. 364 */ 365 rx_desc->fw_desc.info0 = 0; 366 } 367 368 msdu_len_invalid = !!(__le32_to_cpu(rx_desc->attention.flags) 369 & (RX_ATTENTION_FLAGS_MPDU_LENGTH_ERR | 370 RX_ATTENTION_FLAGS_MSDU_LENGTH_ERR)); 371 msdu_len = MS(__le32_to_cpu(rx_desc->msdu_start.common.info0), 372 RX_MSDU_START_INFO0_MSDU_LENGTH); 373 msdu_chained = rx_desc->frag_info.ring2_more_count; 374 375 if (msdu_len_invalid) 376 msdu_len = 0; 377 378 skb_trim(msdu, 0); 379 skb_put(msdu, min(msdu_len, HTT_RX_MSDU_SIZE)); 380 msdu_len -= msdu->len; 381 382 /* Note: Chained buffers do not contain rx descriptor */ 383 while (msdu_chained--) { 384 msdu = ath10k_htt_rx_netbuf_pop(htt); 385 if (!msdu) { 386 __skb_queue_purge(amsdu); 387 return -ENOENT; 388 } 389 390 __skb_queue_tail(amsdu, msdu); 391 skb_trim(msdu, 0); 392 skb_put(msdu, min(msdu_len, HTT_RX_BUF_SIZE)); 393 msdu_len -= msdu->len; 394 msdu_chaining = 1; 395 } 396 397 last_msdu = __le32_to_cpu(rx_desc->msdu_end.common.info0) & 398 RX_MSDU_END_INFO0_LAST_MSDU; 399 400 trace_ath10k_htt_rx_desc(ar, &rx_desc->attention, 401 sizeof(*rx_desc) - sizeof(u32)); 402 403 if (last_msdu) 404 break; 405 } 406 407 if (skb_queue_empty(amsdu)) 408 msdu_chaining = -1; 409 410 /* 411 * Don't refill the ring yet. 412 * 413 * First, the elements popped here are still in use - it is not 414 * safe to overwrite them until the matching call to 415 * mpdu_desc_list_next. Second, for efficiency it is preferable to 416 * refill the rx ring with 1 PPDU's worth of rx buffers (something 417 * like 32 x 3 buffers), rather than one MPDU's worth of rx buffers 418 * (something like 3 buffers). Consequently, we'll rely on the txrx 419 * SW to tell us when it is done pulling all the PPDU's rx buffers 420 * out of the rx ring, and then refill it just once. 421 */ 422 423 return msdu_chaining; 424 } 425 426 static void ath10k_htt_rx_replenish_task(unsigned long ptr) 427 { 428 struct ath10k_htt *htt = (struct ath10k_htt *)ptr; 429 430 ath10k_htt_rx_msdu_buff_replenish(htt); 431 } 432 433 static struct sk_buff *ath10k_htt_rx_pop_paddr(struct ath10k_htt *htt, 434 u32 paddr) 435 { 436 struct ath10k *ar = htt->ar; 437 struct ath10k_skb_rxcb *rxcb; 438 struct sk_buff *msdu; 439 440 lockdep_assert_held(&htt->rx_ring.lock); 441 442 msdu = ath10k_htt_rx_find_skb_paddr(ar, paddr); 443 if (!msdu) 444 return NULL; 445 446 rxcb = ATH10K_SKB_RXCB(msdu); 447 hash_del(&rxcb->hlist); 448 htt->rx_ring.fill_cnt--; 449 450 dma_unmap_single(htt->ar->dev, rxcb->paddr, 451 msdu->len + skb_tailroom(msdu), 452 DMA_FROM_DEVICE); 453 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ", 454 msdu->data, msdu->len + skb_tailroom(msdu)); 455 456 return msdu; 457 } 458 459 static int ath10k_htt_rx_pop_paddr_list(struct ath10k_htt *htt, 460 struct htt_rx_in_ord_ind *ev, 461 struct sk_buff_head *list) 462 { 463 struct ath10k *ar = htt->ar; 464 struct htt_rx_in_ord_msdu_desc *msdu_desc = ev->msdu_descs; 465 struct htt_rx_desc *rxd; 466 struct sk_buff *msdu; 467 int msdu_count; 468 bool is_offload; 469 u32 paddr; 470 471 lockdep_assert_held(&htt->rx_ring.lock); 472 473 msdu_count = __le16_to_cpu(ev->msdu_count); 474 is_offload = !!(ev->info & HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK); 475 476 while (msdu_count--) { 477 paddr = __le32_to_cpu(msdu_desc->msdu_paddr); 478 479 msdu = ath10k_htt_rx_pop_paddr(htt, paddr); 480 if (!msdu) { 481 __skb_queue_purge(list); 482 return -ENOENT; 483 } 484 485 __skb_queue_tail(list, msdu); 486 487 if (!is_offload) { 488 rxd = (void *)msdu->data; 489 490 trace_ath10k_htt_rx_desc(ar, rxd, sizeof(*rxd)); 491 492 skb_put(msdu, sizeof(*rxd)); 493 skb_pull(msdu, sizeof(*rxd)); 494 skb_put(msdu, __le16_to_cpu(msdu_desc->msdu_len)); 495 496 if (!(__le32_to_cpu(rxd->attention.flags) & 497 RX_ATTENTION_FLAGS_MSDU_DONE)) { 498 ath10k_warn(htt->ar, "tried to pop an incomplete frame, oops!\n"); 499 return -EIO; 500 } 501 } 502 503 msdu_desc++; 504 } 505 506 return 0; 507 } 508 509 int ath10k_htt_rx_alloc(struct ath10k_htt *htt) 510 { 511 struct ath10k *ar = htt->ar; 512 dma_addr_t paddr; 513 void *vaddr; 514 size_t size; 515 struct timer_list *timer = &htt->rx_ring.refill_retry_timer; 516 517 htt->rx_confused = false; 518 519 /* XXX: The fill level could be changed during runtime in response to 520 * the host processing latency. Is this really worth it? 521 */ 522 htt->rx_ring.size = HTT_RX_RING_SIZE; 523 htt->rx_ring.size_mask = htt->rx_ring.size - 1; 524 htt->rx_ring.fill_level = HTT_RX_RING_FILL_LEVEL; 525 526 if (!is_power_of_2(htt->rx_ring.size)) { 527 ath10k_warn(ar, "htt rx ring size is not power of 2\n"); 528 return -EINVAL; 529 } 530 531 htt->rx_ring.netbufs_ring = 532 kzalloc(htt->rx_ring.size * sizeof(struct sk_buff *), 533 GFP_KERNEL); 534 if (!htt->rx_ring.netbufs_ring) 535 goto err_netbuf; 536 537 size = htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring); 538 539 vaddr = dma_alloc_coherent(htt->ar->dev, size, &paddr, GFP_DMA); 540 if (!vaddr) 541 goto err_dma_ring; 542 543 htt->rx_ring.paddrs_ring = vaddr; 544 htt->rx_ring.base_paddr = paddr; 545 546 vaddr = dma_alloc_coherent(htt->ar->dev, 547 sizeof(*htt->rx_ring.alloc_idx.vaddr), 548 &paddr, GFP_DMA); 549 if (!vaddr) 550 goto err_dma_idx; 551 552 htt->rx_ring.alloc_idx.vaddr = vaddr; 553 htt->rx_ring.alloc_idx.paddr = paddr; 554 htt->rx_ring.sw_rd_idx.msdu_payld = htt->rx_ring.size_mask; 555 *htt->rx_ring.alloc_idx.vaddr = 0; 556 557 /* Initialize the Rx refill retry timer */ 558 setup_timer(timer, ath10k_htt_rx_ring_refill_retry, (unsigned long)htt); 559 560 spin_lock_init(&htt->rx_ring.lock); 561 562 htt->rx_ring.fill_cnt = 0; 563 htt->rx_ring.sw_rd_idx.msdu_payld = 0; 564 hash_init(htt->rx_ring.skb_table); 565 566 tasklet_init(&htt->rx_replenish_task, ath10k_htt_rx_replenish_task, 567 (unsigned long)htt); 568 569 skb_queue_head_init(&htt->tx_compl_q); 570 skb_queue_head_init(&htt->rx_compl_q); 571 skb_queue_head_init(&htt->rx_in_ord_compl_q); 572 573 tasklet_init(&htt->txrx_compl_task, ath10k_htt_txrx_compl_task, 574 (unsigned long)htt); 575 576 ath10k_dbg(ar, ATH10K_DBG_BOOT, "htt rx ring size %d fill_level %d\n", 577 htt->rx_ring.size, htt->rx_ring.fill_level); 578 return 0; 579 580 err_dma_idx: 581 dma_free_coherent(htt->ar->dev, 582 (htt->rx_ring.size * 583 sizeof(htt->rx_ring.paddrs_ring)), 584 htt->rx_ring.paddrs_ring, 585 htt->rx_ring.base_paddr); 586 err_dma_ring: 587 kfree(htt->rx_ring.netbufs_ring); 588 err_netbuf: 589 return -ENOMEM; 590 } 591 592 static int ath10k_htt_rx_crypto_param_len(struct ath10k *ar, 593 enum htt_rx_mpdu_encrypt_type type) 594 { 595 switch (type) { 596 case HTT_RX_MPDU_ENCRYPT_NONE: 597 return 0; 598 case HTT_RX_MPDU_ENCRYPT_WEP40: 599 case HTT_RX_MPDU_ENCRYPT_WEP104: 600 return IEEE80211_WEP_IV_LEN; 601 case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC: 602 case HTT_RX_MPDU_ENCRYPT_TKIP_WPA: 603 return IEEE80211_TKIP_IV_LEN; 604 case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2: 605 return IEEE80211_CCMP_HDR_LEN; 606 case HTT_RX_MPDU_ENCRYPT_WEP128: 607 case HTT_RX_MPDU_ENCRYPT_WAPI: 608 break; 609 } 610 611 ath10k_warn(ar, "unsupported encryption type %d\n", type); 612 return 0; 613 } 614 615 #define MICHAEL_MIC_LEN 8 616 617 static int ath10k_htt_rx_crypto_tail_len(struct ath10k *ar, 618 enum htt_rx_mpdu_encrypt_type type) 619 { 620 switch (type) { 621 case HTT_RX_MPDU_ENCRYPT_NONE: 622 return 0; 623 case HTT_RX_MPDU_ENCRYPT_WEP40: 624 case HTT_RX_MPDU_ENCRYPT_WEP104: 625 return IEEE80211_WEP_ICV_LEN; 626 case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC: 627 case HTT_RX_MPDU_ENCRYPT_TKIP_WPA: 628 return IEEE80211_TKIP_ICV_LEN; 629 case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2: 630 return IEEE80211_CCMP_MIC_LEN; 631 case HTT_RX_MPDU_ENCRYPT_WEP128: 632 case HTT_RX_MPDU_ENCRYPT_WAPI: 633 break; 634 } 635 636 ath10k_warn(ar, "unsupported encryption type %d\n", type); 637 return 0; 638 } 639 640 struct amsdu_subframe_hdr { 641 u8 dst[ETH_ALEN]; 642 u8 src[ETH_ALEN]; 643 __be16 len; 644 } __packed; 645 646 static void ath10k_htt_rx_h_rates(struct ath10k *ar, 647 struct ieee80211_rx_status *status, 648 struct htt_rx_desc *rxd) 649 { 650 struct ieee80211_supported_band *sband; 651 u8 cck, rate, bw, sgi, mcs, nss; 652 u8 preamble = 0; 653 u32 info1, info2, info3; 654 655 info1 = __le32_to_cpu(rxd->ppdu_start.info1); 656 info2 = __le32_to_cpu(rxd->ppdu_start.info2); 657 info3 = __le32_to_cpu(rxd->ppdu_start.info3); 658 659 preamble = MS(info1, RX_PPDU_START_INFO1_PREAMBLE_TYPE); 660 661 switch (preamble) { 662 case HTT_RX_LEGACY: 663 /* To get legacy rate index band is required. Since band can't 664 * be undefined check if freq is non-zero. 665 */ 666 if (!status->freq) 667 return; 668 669 cck = info1 & RX_PPDU_START_INFO1_L_SIG_RATE_SELECT; 670 rate = MS(info1, RX_PPDU_START_INFO1_L_SIG_RATE); 671 rate &= ~RX_PPDU_START_RATE_FLAG; 672 673 sband = &ar->mac.sbands[status->band]; 674 status->rate_idx = ath10k_mac_hw_rate_to_idx(sband, rate); 675 break; 676 case HTT_RX_HT: 677 case HTT_RX_HT_WITH_TXBF: 678 /* HT-SIG - Table 20-11 in info2 and info3 */ 679 mcs = info2 & 0x1F; 680 nss = mcs >> 3; 681 bw = (info2 >> 7) & 1; 682 sgi = (info3 >> 7) & 1; 683 684 status->rate_idx = mcs; 685 status->flag |= RX_FLAG_HT; 686 if (sgi) 687 status->flag |= RX_FLAG_SHORT_GI; 688 if (bw) 689 status->flag |= RX_FLAG_40MHZ; 690 break; 691 case HTT_RX_VHT: 692 case HTT_RX_VHT_WITH_TXBF: 693 /* VHT-SIG-A1 in info2, VHT-SIG-A2 in info3 694 TODO check this */ 695 mcs = (info3 >> 4) & 0x0F; 696 nss = ((info2 >> 10) & 0x07) + 1; 697 bw = info2 & 3; 698 sgi = info3 & 1; 699 700 status->rate_idx = mcs; 701 status->vht_nss = nss; 702 703 if (sgi) 704 status->flag |= RX_FLAG_SHORT_GI; 705 706 switch (bw) { 707 /* 20MHZ */ 708 case 0: 709 break; 710 /* 40MHZ */ 711 case 1: 712 status->flag |= RX_FLAG_40MHZ; 713 break; 714 /* 80MHZ */ 715 case 2: 716 status->vht_flag |= RX_VHT_FLAG_80MHZ; 717 } 718 719 status->flag |= RX_FLAG_VHT; 720 break; 721 default: 722 break; 723 } 724 } 725 726 static struct ieee80211_channel * 727 ath10k_htt_rx_h_peer_channel(struct ath10k *ar, struct htt_rx_desc *rxd) 728 { 729 struct ath10k_peer *peer; 730 struct ath10k_vif *arvif; 731 struct cfg80211_chan_def def; 732 u16 peer_id; 733 734 lockdep_assert_held(&ar->data_lock); 735 736 if (!rxd) 737 return NULL; 738 739 if (rxd->attention.flags & 740 __cpu_to_le32(RX_ATTENTION_FLAGS_PEER_IDX_INVALID)) 741 return NULL; 742 743 if (!(rxd->msdu_end.common.info0 & 744 __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU))) 745 return NULL; 746 747 peer_id = MS(__le32_to_cpu(rxd->mpdu_start.info0), 748 RX_MPDU_START_INFO0_PEER_IDX); 749 750 peer = ath10k_peer_find_by_id(ar, peer_id); 751 if (!peer) 752 return NULL; 753 754 arvif = ath10k_get_arvif(ar, peer->vdev_id); 755 if (WARN_ON_ONCE(!arvif)) 756 return NULL; 757 758 if (WARN_ON(ath10k_mac_vif_chan(arvif->vif, &def))) 759 return NULL; 760 761 return def.chan; 762 } 763 764 static struct ieee80211_channel * 765 ath10k_htt_rx_h_vdev_channel(struct ath10k *ar, u32 vdev_id) 766 { 767 struct ath10k_vif *arvif; 768 struct cfg80211_chan_def def; 769 770 lockdep_assert_held(&ar->data_lock); 771 772 list_for_each_entry(arvif, &ar->arvifs, list) { 773 if (arvif->vdev_id == vdev_id && 774 ath10k_mac_vif_chan(arvif->vif, &def) == 0) 775 return def.chan; 776 } 777 778 return NULL; 779 } 780 781 static void 782 ath10k_htt_rx_h_any_chan_iter(struct ieee80211_hw *hw, 783 struct ieee80211_chanctx_conf *conf, 784 void *data) 785 { 786 struct cfg80211_chan_def *def = data; 787 788 *def = conf->def; 789 } 790 791 static struct ieee80211_channel * 792 ath10k_htt_rx_h_any_channel(struct ath10k *ar) 793 { 794 struct cfg80211_chan_def def = {}; 795 796 ieee80211_iter_chan_contexts_atomic(ar->hw, 797 ath10k_htt_rx_h_any_chan_iter, 798 &def); 799 800 return def.chan; 801 } 802 803 static bool ath10k_htt_rx_h_channel(struct ath10k *ar, 804 struct ieee80211_rx_status *status, 805 struct htt_rx_desc *rxd, 806 u32 vdev_id) 807 { 808 struct ieee80211_channel *ch; 809 810 spin_lock_bh(&ar->data_lock); 811 ch = ar->scan_channel; 812 if (!ch) 813 ch = ar->rx_channel; 814 if (!ch) 815 ch = ath10k_htt_rx_h_peer_channel(ar, rxd); 816 if (!ch) 817 ch = ath10k_htt_rx_h_vdev_channel(ar, vdev_id); 818 if (!ch) 819 ch = ath10k_htt_rx_h_any_channel(ar); 820 spin_unlock_bh(&ar->data_lock); 821 822 if (!ch) 823 return false; 824 825 status->band = ch->band; 826 status->freq = ch->center_freq; 827 828 return true; 829 } 830 831 static void ath10k_htt_rx_h_signal(struct ath10k *ar, 832 struct ieee80211_rx_status *status, 833 struct htt_rx_desc *rxd) 834 { 835 /* FIXME: Get real NF */ 836 status->signal = ATH10K_DEFAULT_NOISE_FLOOR + 837 rxd->ppdu_start.rssi_comb; 838 status->flag &= ~RX_FLAG_NO_SIGNAL_VAL; 839 } 840 841 static void ath10k_htt_rx_h_mactime(struct ath10k *ar, 842 struct ieee80211_rx_status *status, 843 struct htt_rx_desc *rxd) 844 { 845 /* FIXME: TSF is known only at the end of PPDU, in the last MPDU. This 846 * means all prior MSDUs in a PPDU are reported to mac80211 without the 847 * TSF. Is it worth holding frames until end of PPDU is known? 848 * 849 * FIXME: Can we get/compute 64bit TSF? 850 */ 851 status->mactime = __le32_to_cpu(rxd->ppdu_end.common.tsf_timestamp); 852 status->flag |= RX_FLAG_MACTIME_END; 853 } 854 855 static void ath10k_htt_rx_h_ppdu(struct ath10k *ar, 856 struct sk_buff_head *amsdu, 857 struct ieee80211_rx_status *status, 858 u32 vdev_id) 859 { 860 struct sk_buff *first; 861 struct htt_rx_desc *rxd; 862 bool is_first_ppdu; 863 bool is_last_ppdu; 864 865 if (skb_queue_empty(amsdu)) 866 return; 867 868 first = skb_peek(amsdu); 869 rxd = (void *)first->data - sizeof(*rxd); 870 871 is_first_ppdu = !!(rxd->attention.flags & 872 __cpu_to_le32(RX_ATTENTION_FLAGS_FIRST_MPDU)); 873 is_last_ppdu = !!(rxd->attention.flags & 874 __cpu_to_le32(RX_ATTENTION_FLAGS_LAST_MPDU)); 875 876 if (is_first_ppdu) { 877 /* New PPDU starts so clear out the old per-PPDU status. */ 878 status->freq = 0; 879 status->rate_idx = 0; 880 status->vht_nss = 0; 881 status->vht_flag &= ~RX_VHT_FLAG_80MHZ; 882 status->flag &= ~(RX_FLAG_HT | 883 RX_FLAG_VHT | 884 RX_FLAG_SHORT_GI | 885 RX_FLAG_40MHZ | 886 RX_FLAG_MACTIME_END); 887 status->flag |= RX_FLAG_NO_SIGNAL_VAL; 888 889 ath10k_htt_rx_h_signal(ar, status, rxd); 890 ath10k_htt_rx_h_channel(ar, status, rxd, vdev_id); 891 ath10k_htt_rx_h_rates(ar, status, rxd); 892 } 893 894 if (is_last_ppdu) 895 ath10k_htt_rx_h_mactime(ar, status, rxd); 896 } 897 898 static const char * const tid_to_ac[] = { 899 "BE", 900 "BK", 901 "BK", 902 "BE", 903 "VI", 904 "VI", 905 "VO", 906 "VO", 907 }; 908 909 static char *ath10k_get_tid(struct ieee80211_hdr *hdr, char *out, size_t size) 910 { 911 u8 *qc; 912 int tid; 913 914 if (!ieee80211_is_data_qos(hdr->frame_control)) 915 return ""; 916 917 qc = ieee80211_get_qos_ctl(hdr); 918 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 919 if (tid < 8) 920 snprintf(out, size, "tid %d (%s)", tid, tid_to_ac[tid]); 921 else 922 snprintf(out, size, "tid %d", tid); 923 924 return out; 925 } 926 927 static void ath10k_process_rx(struct ath10k *ar, 928 struct ieee80211_rx_status *rx_status, 929 struct sk_buff *skb) 930 { 931 struct ieee80211_rx_status *status; 932 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 933 char tid[32]; 934 935 status = IEEE80211_SKB_RXCB(skb); 936 *status = *rx_status; 937 938 ath10k_dbg(ar, ATH10K_DBG_DATA, 939 "rx skb %p len %u peer %pM %s %s sn %u %s%s%s%s%s %srate_idx %u vht_nss %u freq %u band %u flag 0x%x fcs-err %i mic-err %i amsdu-more %i\n", 940 skb, 941 skb->len, 942 ieee80211_get_SA(hdr), 943 ath10k_get_tid(hdr, tid, sizeof(tid)), 944 is_multicast_ether_addr(ieee80211_get_DA(hdr)) ? 945 "mcast" : "ucast", 946 (__le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_SEQ) >> 4, 947 status->flag == 0 ? "legacy" : "", 948 status->flag & RX_FLAG_HT ? "ht" : "", 949 status->flag & RX_FLAG_VHT ? "vht" : "", 950 status->flag & RX_FLAG_40MHZ ? "40" : "", 951 status->vht_flag & RX_VHT_FLAG_80MHZ ? "80" : "", 952 status->flag & RX_FLAG_SHORT_GI ? "sgi " : "", 953 status->rate_idx, 954 status->vht_nss, 955 status->freq, 956 status->band, status->flag, 957 !!(status->flag & RX_FLAG_FAILED_FCS_CRC), 958 !!(status->flag & RX_FLAG_MMIC_ERROR), 959 !!(status->flag & RX_FLAG_AMSDU_MORE)); 960 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "rx skb: ", 961 skb->data, skb->len); 962 trace_ath10k_rx_hdr(ar, skb->data, skb->len); 963 trace_ath10k_rx_payload(ar, skb->data, skb->len); 964 965 ieee80211_rx(ar->hw, skb); 966 } 967 968 static int ath10k_htt_rx_nwifi_hdrlen(struct ath10k *ar, 969 struct ieee80211_hdr *hdr) 970 { 971 int len = ieee80211_hdrlen(hdr->frame_control); 972 973 if (!test_bit(ATH10K_FW_FEATURE_NO_NWIFI_DECAP_4ADDR_PADDING, 974 ar->fw_features)) 975 len = round_up(len, 4); 976 977 return len; 978 } 979 980 static void ath10k_htt_rx_h_undecap_raw(struct ath10k *ar, 981 struct sk_buff *msdu, 982 struct ieee80211_rx_status *status, 983 enum htt_rx_mpdu_encrypt_type enctype, 984 bool is_decrypted) 985 { 986 struct ieee80211_hdr *hdr; 987 struct htt_rx_desc *rxd; 988 size_t hdr_len; 989 size_t crypto_len; 990 bool is_first; 991 bool is_last; 992 993 rxd = (void *)msdu->data - sizeof(*rxd); 994 is_first = !!(rxd->msdu_end.common.info0 & 995 __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU)); 996 is_last = !!(rxd->msdu_end.common.info0 & 997 __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU)); 998 999 /* Delivered decapped frame: 1000 * [802.11 header] 1001 * [crypto param] <-- can be trimmed if !fcs_err && 1002 * !decrypt_err && !peer_idx_invalid 1003 * [amsdu header] <-- only if A-MSDU 1004 * [rfc1042/llc] 1005 * [payload] 1006 * [FCS] <-- at end, needs to be trimmed 1007 */ 1008 1009 /* This probably shouldn't happen but warn just in case */ 1010 if (unlikely(WARN_ON_ONCE(!is_first))) 1011 return; 1012 1013 /* This probably shouldn't happen but warn just in case */ 1014 if (unlikely(WARN_ON_ONCE(!(is_first && is_last)))) 1015 return; 1016 1017 skb_trim(msdu, msdu->len - FCS_LEN); 1018 1019 /* In most cases this will be true for sniffed frames. It makes sense 1020 * to deliver them as-is without stripping the crypto param. This is 1021 * necessary for software based decryption. 1022 * 1023 * If there's no error then the frame is decrypted. At least that is 1024 * the case for frames that come in via fragmented rx indication. 1025 */ 1026 if (!is_decrypted) 1027 return; 1028 1029 /* The payload is decrypted so strip crypto params. Start from tail 1030 * since hdr is used to compute some stuff. 1031 */ 1032 1033 hdr = (void *)msdu->data; 1034 1035 /* Tail */ 1036 skb_trim(msdu, msdu->len - ath10k_htt_rx_crypto_tail_len(ar, enctype)); 1037 1038 /* MMIC */ 1039 if (!ieee80211_has_morefrags(hdr->frame_control) && 1040 enctype == HTT_RX_MPDU_ENCRYPT_TKIP_WPA) 1041 skb_trim(msdu, msdu->len - 8); 1042 1043 /* Head */ 1044 hdr_len = ieee80211_hdrlen(hdr->frame_control); 1045 crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype); 1046 1047 memmove((void *)msdu->data + crypto_len, 1048 (void *)msdu->data, hdr_len); 1049 skb_pull(msdu, crypto_len); 1050 } 1051 1052 static void ath10k_htt_rx_h_undecap_nwifi(struct ath10k *ar, 1053 struct sk_buff *msdu, 1054 struct ieee80211_rx_status *status, 1055 const u8 first_hdr[64]) 1056 { 1057 struct ieee80211_hdr *hdr; 1058 size_t hdr_len; 1059 u8 da[ETH_ALEN]; 1060 u8 sa[ETH_ALEN]; 1061 1062 /* Delivered decapped frame: 1063 * [nwifi 802.11 header] <-- replaced with 802.11 hdr 1064 * [rfc1042/llc] 1065 * 1066 * Note: The nwifi header doesn't have QoS Control and is 1067 * (always?) a 3addr frame. 1068 * 1069 * Note2: There's no A-MSDU subframe header. Even if it's part 1070 * of an A-MSDU. 1071 */ 1072 1073 /* pull decapped header and copy SA & DA */ 1074 hdr = (struct ieee80211_hdr *)msdu->data; 1075 hdr_len = ath10k_htt_rx_nwifi_hdrlen(ar, hdr); 1076 ether_addr_copy(da, ieee80211_get_DA(hdr)); 1077 ether_addr_copy(sa, ieee80211_get_SA(hdr)); 1078 skb_pull(msdu, hdr_len); 1079 1080 /* push original 802.11 header */ 1081 hdr = (struct ieee80211_hdr *)first_hdr; 1082 hdr_len = ieee80211_hdrlen(hdr->frame_control); 1083 memcpy(skb_push(msdu, hdr_len), hdr, hdr_len); 1084 1085 /* original 802.11 header has a different DA and in 1086 * case of 4addr it may also have different SA 1087 */ 1088 hdr = (struct ieee80211_hdr *)msdu->data; 1089 ether_addr_copy(ieee80211_get_DA(hdr), da); 1090 ether_addr_copy(ieee80211_get_SA(hdr), sa); 1091 } 1092 1093 static void *ath10k_htt_rx_h_find_rfc1042(struct ath10k *ar, 1094 struct sk_buff *msdu, 1095 enum htt_rx_mpdu_encrypt_type enctype) 1096 { 1097 struct ieee80211_hdr *hdr; 1098 struct htt_rx_desc *rxd; 1099 size_t hdr_len, crypto_len; 1100 void *rfc1042; 1101 bool is_first, is_last, is_amsdu; 1102 1103 rxd = (void *)msdu->data - sizeof(*rxd); 1104 hdr = (void *)rxd->rx_hdr_status; 1105 1106 is_first = !!(rxd->msdu_end.common.info0 & 1107 __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU)); 1108 is_last = !!(rxd->msdu_end.common.info0 & 1109 __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU)); 1110 is_amsdu = !(is_first && is_last); 1111 1112 rfc1042 = hdr; 1113 1114 if (is_first) { 1115 hdr_len = ieee80211_hdrlen(hdr->frame_control); 1116 crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype); 1117 1118 rfc1042 += round_up(hdr_len, 4) + 1119 round_up(crypto_len, 4); 1120 } 1121 1122 if (is_amsdu) 1123 rfc1042 += sizeof(struct amsdu_subframe_hdr); 1124 1125 return rfc1042; 1126 } 1127 1128 static void ath10k_htt_rx_h_undecap_eth(struct ath10k *ar, 1129 struct sk_buff *msdu, 1130 struct ieee80211_rx_status *status, 1131 const u8 first_hdr[64], 1132 enum htt_rx_mpdu_encrypt_type enctype) 1133 { 1134 struct ieee80211_hdr *hdr; 1135 struct ethhdr *eth; 1136 size_t hdr_len; 1137 void *rfc1042; 1138 u8 da[ETH_ALEN]; 1139 u8 sa[ETH_ALEN]; 1140 1141 /* Delivered decapped frame: 1142 * [eth header] <-- replaced with 802.11 hdr & rfc1042/llc 1143 * [payload] 1144 */ 1145 1146 rfc1042 = ath10k_htt_rx_h_find_rfc1042(ar, msdu, enctype); 1147 if (WARN_ON_ONCE(!rfc1042)) 1148 return; 1149 1150 /* pull decapped header and copy SA & DA */ 1151 eth = (struct ethhdr *)msdu->data; 1152 ether_addr_copy(da, eth->h_dest); 1153 ether_addr_copy(sa, eth->h_source); 1154 skb_pull(msdu, sizeof(struct ethhdr)); 1155 1156 /* push rfc1042/llc/snap */ 1157 memcpy(skb_push(msdu, sizeof(struct rfc1042_hdr)), rfc1042, 1158 sizeof(struct rfc1042_hdr)); 1159 1160 /* push original 802.11 header */ 1161 hdr = (struct ieee80211_hdr *)first_hdr; 1162 hdr_len = ieee80211_hdrlen(hdr->frame_control); 1163 memcpy(skb_push(msdu, hdr_len), hdr, hdr_len); 1164 1165 /* original 802.11 header has a different DA and in 1166 * case of 4addr it may also have different SA 1167 */ 1168 hdr = (struct ieee80211_hdr *)msdu->data; 1169 ether_addr_copy(ieee80211_get_DA(hdr), da); 1170 ether_addr_copy(ieee80211_get_SA(hdr), sa); 1171 } 1172 1173 static void ath10k_htt_rx_h_undecap_snap(struct ath10k *ar, 1174 struct sk_buff *msdu, 1175 struct ieee80211_rx_status *status, 1176 const u8 first_hdr[64]) 1177 { 1178 struct ieee80211_hdr *hdr; 1179 size_t hdr_len; 1180 1181 /* Delivered decapped frame: 1182 * [amsdu header] <-- replaced with 802.11 hdr 1183 * [rfc1042/llc] 1184 * [payload] 1185 */ 1186 1187 skb_pull(msdu, sizeof(struct amsdu_subframe_hdr)); 1188 1189 hdr = (struct ieee80211_hdr *)first_hdr; 1190 hdr_len = ieee80211_hdrlen(hdr->frame_control); 1191 memcpy(skb_push(msdu, hdr_len), hdr, hdr_len); 1192 } 1193 1194 static void ath10k_htt_rx_h_undecap(struct ath10k *ar, 1195 struct sk_buff *msdu, 1196 struct ieee80211_rx_status *status, 1197 u8 first_hdr[64], 1198 enum htt_rx_mpdu_encrypt_type enctype, 1199 bool is_decrypted) 1200 { 1201 struct htt_rx_desc *rxd; 1202 enum rx_msdu_decap_format decap; 1203 1204 /* First msdu's decapped header: 1205 * [802.11 header] <-- padded to 4 bytes long 1206 * [crypto param] <-- padded to 4 bytes long 1207 * [amsdu header] <-- only if A-MSDU 1208 * [rfc1042/llc] 1209 * 1210 * Other (2nd, 3rd, ..) msdu's decapped header: 1211 * [amsdu header] <-- only if A-MSDU 1212 * [rfc1042/llc] 1213 */ 1214 1215 rxd = (void *)msdu->data - sizeof(*rxd); 1216 decap = MS(__le32_to_cpu(rxd->msdu_start.common.info1), 1217 RX_MSDU_START_INFO1_DECAP_FORMAT); 1218 1219 switch (decap) { 1220 case RX_MSDU_DECAP_RAW: 1221 ath10k_htt_rx_h_undecap_raw(ar, msdu, status, enctype, 1222 is_decrypted); 1223 break; 1224 case RX_MSDU_DECAP_NATIVE_WIFI: 1225 ath10k_htt_rx_h_undecap_nwifi(ar, msdu, status, first_hdr); 1226 break; 1227 case RX_MSDU_DECAP_ETHERNET2_DIX: 1228 ath10k_htt_rx_h_undecap_eth(ar, msdu, status, first_hdr, enctype); 1229 break; 1230 case RX_MSDU_DECAP_8023_SNAP_LLC: 1231 ath10k_htt_rx_h_undecap_snap(ar, msdu, status, first_hdr); 1232 break; 1233 } 1234 } 1235 1236 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb) 1237 { 1238 struct htt_rx_desc *rxd; 1239 u32 flags, info; 1240 bool is_ip4, is_ip6; 1241 bool is_tcp, is_udp; 1242 bool ip_csum_ok, tcpudp_csum_ok; 1243 1244 rxd = (void *)skb->data - sizeof(*rxd); 1245 flags = __le32_to_cpu(rxd->attention.flags); 1246 info = __le32_to_cpu(rxd->msdu_start.common.info1); 1247 1248 is_ip4 = !!(info & RX_MSDU_START_INFO1_IPV4_PROTO); 1249 is_ip6 = !!(info & RX_MSDU_START_INFO1_IPV6_PROTO); 1250 is_tcp = !!(info & RX_MSDU_START_INFO1_TCP_PROTO); 1251 is_udp = !!(info & RX_MSDU_START_INFO1_UDP_PROTO); 1252 ip_csum_ok = !(flags & RX_ATTENTION_FLAGS_IP_CHKSUM_FAIL); 1253 tcpudp_csum_ok = !(flags & RX_ATTENTION_FLAGS_TCP_UDP_CHKSUM_FAIL); 1254 1255 if (!is_ip4 && !is_ip6) 1256 return CHECKSUM_NONE; 1257 if (!is_tcp && !is_udp) 1258 return CHECKSUM_NONE; 1259 if (!ip_csum_ok) 1260 return CHECKSUM_NONE; 1261 if (!tcpudp_csum_ok) 1262 return CHECKSUM_NONE; 1263 1264 return CHECKSUM_UNNECESSARY; 1265 } 1266 1267 static void ath10k_htt_rx_h_csum_offload(struct sk_buff *msdu) 1268 { 1269 msdu->ip_summed = ath10k_htt_rx_get_csum_state(msdu); 1270 } 1271 1272 static void ath10k_htt_rx_h_mpdu(struct ath10k *ar, 1273 struct sk_buff_head *amsdu, 1274 struct ieee80211_rx_status *status) 1275 { 1276 struct sk_buff *first; 1277 struct sk_buff *last; 1278 struct sk_buff *msdu; 1279 struct htt_rx_desc *rxd; 1280 struct ieee80211_hdr *hdr; 1281 enum htt_rx_mpdu_encrypt_type enctype; 1282 u8 first_hdr[64]; 1283 u8 *qos; 1284 size_t hdr_len; 1285 bool has_fcs_err; 1286 bool has_crypto_err; 1287 bool has_tkip_err; 1288 bool has_peer_idx_invalid; 1289 bool is_decrypted; 1290 u32 attention; 1291 1292 if (skb_queue_empty(amsdu)) 1293 return; 1294 1295 first = skb_peek(amsdu); 1296 rxd = (void *)first->data - sizeof(*rxd); 1297 1298 enctype = MS(__le32_to_cpu(rxd->mpdu_start.info0), 1299 RX_MPDU_START_INFO0_ENCRYPT_TYPE); 1300 1301 /* First MSDU's Rx descriptor in an A-MSDU contains full 802.11 1302 * decapped header. It'll be used for undecapping of each MSDU. 1303 */ 1304 hdr = (void *)rxd->rx_hdr_status; 1305 hdr_len = ieee80211_hdrlen(hdr->frame_control); 1306 memcpy(first_hdr, hdr, hdr_len); 1307 1308 /* Each A-MSDU subframe will use the original header as the base and be 1309 * reported as a separate MSDU so strip the A-MSDU bit from QoS Ctl. 1310 */ 1311 hdr = (void *)first_hdr; 1312 qos = ieee80211_get_qos_ctl(hdr); 1313 qos[0] &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT; 1314 1315 /* Some attention flags are valid only in the last MSDU. */ 1316 last = skb_peek_tail(amsdu); 1317 rxd = (void *)last->data - sizeof(*rxd); 1318 attention = __le32_to_cpu(rxd->attention.flags); 1319 1320 has_fcs_err = !!(attention & RX_ATTENTION_FLAGS_FCS_ERR); 1321 has_crypto_err = !!(attention & RX_ATTENTION_FLAGS_DECRYPT_ERR); 1322 has_tkip_err = !!(attention & RX_ATTENTION_FLAGS_TKIP_MIC_ERR); 1323 has_peer_idx_invalid = !!(attention & RX_ATTENTION_FLAGS_PEER_IDX_INVALID); 1324 1325 /* Note: If hardware captures an encrypted frame that it can't decrypt, 1326 * e.g. due to fcs error, missing peer or invalid key data it will 1327 * report the frame as raw. 1328 */ 1329 is_decrypted = (enctype != HTT_RX_MPDU_ENCRYPT_NONE && 1330 !has_fcs_err && 1331 !has_crypto_err && 1332 !has_peer_idx_invalid); 1333 1334 /* Clear per-MPDU flags while leaving per-PPDU flags intact. */ 1335 status->flag &= ~(RX_FLAG_FAILED_FCS_CRC | 1336 RX_FLAG_MMIC_ERROR | 1337 RX_FLAG_DECRYPTED | 1338 RX_FLAG_IV_STRIPPED | 1339 RX_FLAG_MMIC_STRIPPED); 1340 1341 if (has_fcs_err) 1342 status->flag |= RX_FLAG_FAILED_FCS_CRC; 1343 1344 if (has_tkip_err) 1345 status->flag |= RX_FLAG_MMIC_ERROR; 1346 1347 if (is_decrypted) 1348 status->flag |= RX_FLAG_DECRYPTED | 1349 RX_FLAG_IV_STRIPPED | 1350 RX_FLAG_MMIC_STRIPPED; 1351 1352 skb_queue_walk(amsdu, msdu) { 1353 ath10k_htt_rx_h_csum_offload(msdu); 1354 ath10k_htt_rx_h_undecap(ar, msdu, status, first_hdr, enctype, 1355 is_decrypted); 1356 1357 /* Undecapping involves copying the original 802.11 header back 1358 * to sk_buff. If frame is protected and hardware has decrypted 1359 * it then remove the protected bit. 1360 */ 1361 if (!is_decrypted) 1362 continue; 1363 1364 hdr = (void *)msdu->data; 1365 hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED); 1366 } 1367 } 1368 1369 static void ath10k_htt_rx_h_deliver(struct ath10k *ar, 1370 struct sk_buff_head *amsdu, 1371 struct ieee80211_rx_status *status) 1372 { 1373 struct sk_buff *msdu; 1374 1375 while ((msdu = __skb_dequeue(amsdu))) { 1376 /* Setup per-MSDU flags */ 1377 if (skb_queue_empty(amsdu)) 1378 status->flag &= ~RX_FLAG_AMSDU_MORE; 1379 else 1380 status->flag |= RX_FLAG_AMSDU_MORE; 1381 1382 ath10k_process_rx(ar, status, msdu); 1383 } 1384 } 1385 1386 static int ath10k_unchain_msdu(struct sk_buff_head *amsdu) 1387 { 1388 struct sk_buff *skb, *first; 1389 int space; 1390 int total_len = 0; 1391 1392 /* TODO: Might could optimize this by using 1393 * skb_try_coalesce or similar method to 1394 * decrease copying, or maybe get mac80211 to 1395 * provide a way to just receive a list of 1396 * skb? 1397 */ 1398 1399 first = __skb_dequeue(amsdu); 1400 1401 /* Allocate total length all at once. */ 1402 skb_queue_walk(amsdu, skb) 1403 total_len += skb->len; 1404 1405 space = total_len - skb_tailroom(first); 1406 if ((space > 0) && 1407 (pskb_expand_head(first, 0, space, GFP_ATOMIC) < 0)) { 1408 /* TODO: bump some rx-oom error stat */ 1409 /* put it back together so we can free the 1410 * whole list at once. 1411 */ 1412 __skb_queue_head(amsdu, first); 1413 return -1; 1414 } 1415 1416 /* Walk list again, copying contents into 1417 * msdu_head 1418 */ 1419 while ((skb = __skb_dequeue(amsdu))) { 1420 skb_copy_from_linear_data(skb, skb_put(first, skb->len), 1421 skb->len); 1422 dev_kfree_skb_any(skb); 1423 } 1424 1425 __skb_queue_head(amsdu, first); 1426 return 0; 1427 } 1428 1429 static void ath10k_htt_rx_h_unchain(struct ath10k *ar, 1430 struct sk_buff_head *amsdu, 1431 bool chained) 1432 { 1433 struct sk_buff *first; 1434 struct htt_rx_desc *rxd; 1435 enum rx_msdu_decap_format decap; 1436 1437 first = skb_peek(amsdu); 1438 rxd = (void *)first->data - sizeof(*rxd); 1439 decap = MS(__le32_to_cpu(rxd->msdu_start.common.info1), 1440 RX_MSDU_START_INFO1_DECAP_FORMAT); 1441 1442 if (!chained) 1443 return; 1444 1445 /* FIXME: Current unchaining logic can only handle simple case of raw 1446 * msdu chaining. If decapping is other than raw the chaining may be 1447 * more complex and this isn't handled by the current code. Don't even 1448 * try re-constructing such frames - it'll be pretty much garbage. 1449 */ 1450 if (decap != RX_MSDU_DECAP_RAW || 1451 skb_queue_len(amsdu) != 1 + rxd->frag_info.ring2_more_count) { 1452 __skb_queue_purge(amsdu); 1453 return; 1454 } 1455 1456 ath10k_unchain_msdu(amsdu); 1457 } 1458 1459 static bool ath10k_htt_rx_amsdu_allowed(struct ath10k *ar, 1460 struct sk_buff_head *amsdu, 1461 struct ieee80211_rx_status *rx_status) 1462 { 1463 struct sk_buff *msdu; 1464 struct htt_rx_desc *rxd; 1465 bool is_mgmt; 1466 bool has_fcs_err; 1467 1468 msdu = skb_peek(amsdu); 1469 rxd = (void *)msdu->data - sizeof(*rxd); 1470 1471 /* FIXME: It might be a good idea to do some fuzzy-testing to drop 1472 * invalid/dangerous frames. 1473 */ 1474 1475 if (!rx_status->freq) { 1476 ath10k_warn(ar, "no channel configured; ignoring frame(s)!\n"); 1477 return false; 1478 } 1479 1480 is_mgmt = !!(rxd->attention.flags & 1481 __cpu_to_le32(RX_ATTENTION_FLAGS_MGMT_TYPE)); 1482 has_fcs_err = !!(rxd->attention.flags & 1483 __cpu_to_le32(RX_ATTENTION_FLAGS_FCS_ERR)); 1484 1485 /* Management frames are handled via WMI events. The pros of such 1486 * approach is that channel is explicitly provided in WMI events 1487 * whereas HTT doesn't provide channel information for Rxed frames. 1488 * 1489 * However some firmware revisions don't report corrupted frames via 1490 * WMI so don't drop them. 1491 */ 1492 if (is_mgmt && !has_fcs_err) { 1493 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx mgmt ctrl\n"); 1494 return false; 1495 } 1496 1497 if (test_bit(ATH10K_CAC_RUNNING, &ar->dev_flags)) { 1498 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx cac running\n"); 1499 return false; 1500 } 1501 1502 return true; 1503 } 1504 1505 static void ath10k_htt_rx_h_filter(struct ath10k *ar, 1506 struct sk_buff_head *amsdu, 1507 struct ieee80211_rx_status *rx_status) 1508 { 1509 if (skb_queue_empty(amsdu)) 1510 return; 1511 1512 if (ath10k_htt_rx_amsdu_allowed(ar, amsdu, rx_status)) 1513 return; 1514 1515 __skb_queue_purge(amsdu); 1516 } 1517 1518 static void ath10k_htt_rx_handler(struct ath10k_htt *htt, 1519 struct htt_rx_indication *rx) 1520 { 1521 struct ath10k *ar = htt->ar; 1522 struct ieee80211_rx_status *rx_status = &htt->rx_status; 1523 struct htt_rx_indication_mpdu_range *mpdu_ranges; 1524 struct sk_buff_head amsdu; 1525 int num_mpdu_ranges; 1526 int fw_desc_len; 1527 u8 *fw_desc; 1528 int i, ret, mpdu_count = 0; 1529 1530 lockdep_assert_held(&htt->rx_ring.lock); 1531 1532 if (htt->rx_confused) 1533 return; 1534 1535 fw_desc_len = __le16_to_cpu(rx->prefix.fw_rx_desc_bytes); 1536 fw_desc = (u8 *)&rx->fw_desc; 1537 1538 num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1), 1539 HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES); 1540 mpdu_ranges = htt_rx_ind_get_mpdu_ranges(rx); 1541 1542 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx ind: ", 1543 rx, sizeof(*rx) + 1544 (sizeof(struct htt_rx_indication_mpdu_range) * 1545 num_mpdu_ranges)); 1546 1547 for (i = 0; i < num_mpdu_ranges; i++) 1548 mpdu_count += mpdu_ranges[i].mpdu_count; 1549 1550 while (mpdu_count--) { 1551 __skb_queue_head_init(&amsdu); 1552 ret = ath10k_htt_rx_amsdu_pop(htt, &fw_desc, 1553 &fw_desc_len, &amsdu); 1554 if (ret < 0) { 1555 ath10k_warn(ar, "rx ring became corrupted: %d\n", ret); 1556 __skb_queue_purge(&amsdu); 1557 /* FIXME: It's probably a good idea to reboot the 1558 * device instead of leaving it inoperable. 1559 */ 1560 htt->rx_confused = true; 1561 break; 1562 } 1563 1564 ath10k_htt_rx_h_ppdu(ar, &amsdu, rx_status, 0xffff); 1565 ath10k_htt_rx_h_unchain(ar, &amsdu, ret > 0); 1566 ath10k_htt_rx_h_filter(ar, &amsdu, rx_status); 1567 ath10k_htt_rx_h_mpdu(ar, &amsdu, rx_status); 1568 ath10k_htt_rx_h_deliver(ar, &amsdu, rx_status); 1569 } 1570 1571 tasklet_schedule(&htt->rx_replenish_task); 1572 } 1573 1574 static void ath10k_htt_rx_frag_handler(struct ath10k_htt *htt, 1575 struct htt_rx_fragment_indication *frag) 1576 { 1577 struct ath10k *ar = htt->ar; 1578 struct ieee80211_rx_status *rx_status = &htt->rx_status; 1579 struct sk_buff_head amsdu; 1580 int ret; 1581 u8 *fw_desc; 1582 int fw_desc_len; 1583 1584 fw_desc_len = __le16_to_cpu(frag->fw_rx_desc_bytes); 1585 fw_desc = (u8 *)frag->fw_msdu_rx_desc; 1586 1587 __skb_queue_head_init(&amsdu); 1588 1589 spin_lock_bh(&htt->rx_ring.lock); 1590 ret = ath10k_htt_rx_amsdu_pop(htt, &fw_desc, &fw_desc_len, 1591 &amsdu); 1592 spin_unlock_bh(&htt->rx_ring.lock); 1593 1594 tasklet_schedule(&htt->rx_replenish_task); 1595 1596 ath10k_dbg(ar, ATH10K_DBG_HTT_DUMP, "htt rx frag ahead\n"); 1597 1598 if (ret) { 1599 ath10k_warn(ar, "failed to pop amsdu from httr rx ring for fragmented rx %d\n", 1600 ret); 1601 __skb_queue_purge(&amsdu); 1602 return; 1603 } 1604 1605 if (skb_queue_len(&amsdu) != 1) { 1606 ath10k_warn(ar, "failed to pop frag amsdu: too many msdus\n"); 1607 __skb_queue_purge(&amsdu); 1608 return; 1609 } 1610 1611 ath10k_htt_rx_h_ppdu(ar, &amsdu, rx_status, 0xffff); 1612 ath10k_htt_rx_h_filter(ar, &amsdu, rx_status); 1613 ath10k_htt_rx_h_mpdu(ar, &amsdu, rx_status); 1614 ath10k_htt_rx_h_deliver(ar, &amsdu, rx_status); 1615 1616 if (fw_desc_len > 0) { 1617 ath10k_dbg(ar, ATH10K_DBG_HTT, 1618 "expecting more fragmented rx in one indication %d\n", 1619 fw_desc_len); 1620 } 1621 } 1622 1623 static void ath10k_htt_rx_frm_tx_compl(struct ath10k *ar, 1624 struct sk_buff *skb) 1625 { 1626 struct ath10k_htt *htt = &ar->htt; 1627 struct htt_resp *resp = (struct htt_resp *)skb->data; 1628 struct htt_tx_done tx_done = {}; 1629 int status = MS(resp->data_tx_completion.flags, HTT_DATA_TX_STATUS); 1630 __le16 msdu_id; 1631 int i; 1632 1633 switch (status) { 1634 case HTT_DATA_TX_STATUS_NO_ACK: 1635 tx_done.no_ack = true; 1636 break; 1637 case HTT_DATA_TX_STATUS_OK: 1638 tx_done.success = true; 1639 break; 1640 case HTT_DATA_TX_STATUS_DISCARD: 1641 case HTT_DATA_TX_STATUS_POSTPONE: 1642 case HTT_DATA_TX_STATUS_DOWNLOAD_FAIL: 1643 tx_done.discard = true; 1644 break; 1645 default: 1646 ath10k_warn(ar, "unhandled tx completion status %d\n", status); 1647 tx_done.discard = true; 1648 break; 1649 } 1650 1651 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx completion num_msdus %d\n", 1652 resp->data_tx_completion.num_msdus); 1653 1654 for (i = 0; i < resp->data_tx_completion.num_msdus; i++) { 1655 msdu_id = resp->data_tx_completion.msdus[i]; 1656 tx_done.msdu_id = __le16_to_cpu(msdu_id); 1657 ath10k_txrx_tx_unref(htt, &tx_done); 1658 } 1659 } 1660 1661 static void ath10k_htt_rx_addba(struct ath10k *ar, struct htt_resp *resp) 1662 { 1663 struct htt_rx_addba *ev = &resp->rx_addba; 1664 struct ath10k_peer *peer; 1665 struct ath10k_vif *arvif; 1666 u16 info0, tid, peer_id; 1667 1668 info0 = __le16_to_cpu(ev->info0); 1669 tid = MS(info0, HTT_RX_BA_INFO0_TID); 1670 peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID); 1671 1672 ath10k_dbg(ar, ATH10K_DBG_HTT, 1673 "htt rx addba tid %hu peer_id %hu size %hhu\n", 1674 tid, peer_id, ev->window_size); 1675 1676 spin_lock_bh(&ar->data_lock); 1677 peer = ath10k_peer_find_by_id(ar, peer_id); 1678 if (!peer) { 1679 ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n", 1680 peer_id); 1681 spin_unlock_bh(&ar->data_lock); 1682 return; 1683 } 1684 1685 arvif = ath10k_get_arvif(ar, peer->vdev_id); 1686 if (!arvif) { 1687 ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n", 1688 peer->vdev_id); 1689 spin_unlock_bh(&ar->data_lock); 1690 return; 1691 } 1692 1693 ath10k_dbg(ar, ATH10K_DBG_HTT, 1694 "htt rx start rx ba session sta %pM tid %hu size %hhu\n", 1695 peer->addr, tid, ev->window_size); 1696 1697 ieee80211_start_rx_ba_session_offl(arvif->vif, peer->addr, tid); 1698 spin_unlock_bh(&ar->data_lock); 1699 } 1700 1701 static void ath10k_htt_rx_delba(struct ath10k *ar, struct htt_resp *resp) 1702 { 1703 struct htt_rx_delba *ev = &resp->rx_delba; 1704 struct ath10k_peer *peer; 1705 struct ath10k_vif *arvif; 1706 u16 info0, tid, peer_id; 1707 1708 info0 = __le16_to_cpu(ev->info0); 1709 tid = MS(info0, HTT_RX_BA_INFO0_TID); 1710 peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID); 1711 1712 ath10k_dbg(ar, ATH10K_DBG_HTT, 1713 "htt rx delba tid %hu peer_id %hu\n", 1714 tid, peer_id); 1715 1716 spin_lock_bh(&ar->data_lock); 1717 peer = ath10k_peer_find_by_id(ar, peer_id); 1718 if (!peer) { 1719 ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n", 1720 peer_id); 1721 spin_unlock_bh(&ar->data_lock); 1722 return; 1723 } 1724 1725 arvif = ath10k_get_arvif(ar, peer->vdev_id); 1726 if (!arvif) { 1727 ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n", 1728 peer->vdev_id); 1729 spin_unlock_bh(&ar->data_lock); 1730 return; 1731 } 1732 1733 ath10k_dbg(ar, ATH10K_DBG_HTT, 1734 "htt rx stop rx ba session sta %pM tid %hu\n", 1735 peer->addr, tid); 1736 1737 ieee80211_stop_rx_ba_session_offl(arvif->vif, peer->addr, tid); 1738 spin_unlock_bh(&ar->data_lock); 1739 } 1740 1741 static int ath10k_htt_rx_extract_amsdu(struct sk_buff_head *list, 1742 struct sk_buff_head *amsdu) 1743 { 1744 struct sk_buff *msdu; 1745 struct htt_rx_desc *rxd; 1746 1747 if (skb_queue_empty(list)) 1748 return -ENOBUFS; 1749 1750 if (WARN_ON(!skb_queue_empty(amsdu))) 1751 return -EINVAL; 1752 1753 while ((msdu = __skb_dequeue(list))) { 1754 __skb_queue_tail(amsdu, msdu); 1755 1756 rxd = (void *)msdu->data - sizeof(*rxd); 1757 if (rxd->msdu_end.common.info0 & 1758 __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU)) 1759 break; 1760 } 1761 1762 msdu = skb_peek_tail(amsdu); 1763 rxd = (void *)msdu->data - sizeof(*rxd); 1764 if (!(rxd->msdu_end.common.info0 & 1765 __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU))) { 1766 skb_queue_splice_init(amsdu, list); 1767 return -EAGAIN; 1768 } 1769 1770 return 0; 1771 } 1772 1773 static void ath10k_htt_rx_h_rx_offload_prot(struct ieee80211_rx_status *status, 1774 struct sk_buff *skb) 1775 { 1776 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1777 1778 if (!ieee80211_has_protected(hdr->frame_control)) 1779 return; 1780 1781 /* Offloaded frames are already decrypted but firmware insists they are 1782 * protected in the 802.11 header. Strip the flag. Otherwise mac80211 1783 * will drop the frame. 1784 */ 1785 1786 hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED); 1787 status->flag |= RX_FLAG_DECRYPTED | 1788 RX_FLAG_IV_STRIPPED | 1789 RX_FLAG_MMIC_STRIPPED; 1790 } 1791 1792 static void ath10k_htt_rx_h_rx_offload(struct ath10k *ar, 1793 struct sk_buff_head *list) 1794 { 1795 struct ath10k_htt *htt = &ar->htt; 1796 struct ieee80211_rx_status *status = &htt->rx_status; 1797 struct htt_rx_offload_msdu *rx; 1798 struct sk_buff *msdu; 1799 size_t offset; 1800 1801 while ((msdu = __skb_dequeue(list))) { 1802 /* Offloaded frames don't have Rx descriptor. Instead they have 1803 * a short meta information header. 1804 */ 1805 1806 rx = (void *)msdu->data; 1807 1808 skb_put(msdu, sizeof(*rx)); 1809 skb_pull(msdu, sizeof(*rx)); 1810 1811 if (skb_tailroom(msdu) < __le16_to_cpu(rx->msdu_len)) { 1812 ath10k_warn(ar, "dropping frame: offloaded rx msdu is too long!\n"); 1813 dev_kfree_skb_any(msdu); 1814 continue; 1815 } 1816 1817 skb_put(msdu, __le16_to_cpu(rx->msdu_len)); 1818 1819 /* Offloaded rx header length isn't multiple of 2 nor 4 so the 1820 * actual payload is unaligned. Align the frame. Otherwise 1821 * mac80211 complains. This shouldn't reduce performance much 1822 * because these offloaded frames are rare. 1823 */ 1824 offset = 4 - ((unsigned long)msdu->data & 3); 1825 skb_put(msdu, offset); 1826 memmove(msdu->data + offset, msdu->data, msdu->len); 1827 skb_pull(msdu, offset); 1828 1829 /* FIXME: The frame is NWifi. Re-construct QoS Control 1830 * if possible later. 1831 */ 1832 1833 memset(status, 0, sizeof(*status)); 1834 status->flag |= RX_FLAG_NO_SIGNAL_VAL; 1835 1836 ath10k_htt_rx_h_rx_offload_prot(status, msdu); 1837 ath10k_htt_rx_h_channel(ar, status, NULL, rx->vdev_id); 1838 ath10k_process_rx(ar, status, msdu); 1839 } 1840 } 1841 1842 static void ath10k_htt_rx_in_ord_ind(struct ath10k *ar, struct sk_buff *skb) 1843 { 1844 struct ath10k_htt *htt = &ar->htt; 1845 struct htt_resp *resp = (void *)skb->data; 1846 struct ieee80211_rx_status *status = &htt->rx_status; 1847 struct sk_buff_head list; 1848 struct sk_buff_head amsdu; 1849 u16 peer_id; 1850 u16 msdu_count; 1851 u8 vdev_id; 1852 u8 tid; 1853 bool offload; 1854 bool frag; 1855 int ret; 1856 1857 lockdep_assert_held(&htt->rx_ring.lock); 1858 1859 if (htt->rx_confused) 1860 return; 1861 1862 skb_pull(skb, sizeof(resp->hdr)); 1863 skb_pull(skb, sizeof(resp->rx_in_ord_ind)); 1864 1865 peer_id = __le16_to_cpu(resp->rx_in_ord_ind.peer_id); 1866 msdu_count = __le16_to_cpu(resp->rx_in_ord_ind.msdu_count); 1867 vdev_id = resp->rx_in_ord_ind.vdev_id; 1868 tid = SM(resp->rx_in_ord_ind.info, HTT_RX_IN_ORD_IND_INFO_TID); 1869 offload = !!(resp->rx_in_ord_ind.info & 1870 HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK); 1871 frag = !!(resp->rx_in_ord_ind.info & HTT_RX_IN_ORD_IND_INFO_FRAG_MASK); 1872 1873 ath10k_dbg(ar, ATH10K_DBG_HTT, 1874 "htt rx in ord vdev %i peer %i tid %i offload %i frag %i msdu count %i\n", 1875 vdev_id, peer_id, tid, offload, frag, msdu_count); 1876 1877 if (skb->len < msdu_count * sizeof(*resp->rx_in_ord_ind.msdu_descs)) { 1878 ath10k_warn(ar, "dropping invalid in order rx indication\n"); 1879 return; 1880 } 1881 1882 /* The event can deliver more than 1 A-MSDU. Each A-MSDU is later 1883 * extracted and processed. 1884 */ 1885 __skb_queue_head_init(&list); 1886 ret = ath10k_htt_rx_pop_paddr_list(htt, &resp->rx_in_ord_ind, &list); 1887 if (ret < 0) { 1888 ath10k_warn(ar, "failed to pop paddr list: %d\n", ret); 1889 htt->rx_confused = true; 1890 return; 1891 } 1892 1893 /* Offloaded frames are very different and need to be handled 1894 * separately. 1895 */ 1896 if (offload) 1897 ath10k_htt_rx_h_rx_offload(ar, &list); 1898 1899 while (!skb_queue_empty(&list)) { 1900 __skb_queue_head_init(&amsdu); 1901 ret = ath10k_htt_rx_extract_amsdu(&list, &amsdu); 1902 switch (ret) { 1903 case 0: 1904 /* Note: The in-order indication may report interleaved 1905 * frames from different PPDUs meaning reported rx rate 1906 * to mac80211 isn't accurate/reliable. It's still 1907 * better to report something than nothing though. This 1908 * should still give an idea about rx rate to the user. 1909 */ 1910 ath10k_htt_rx_h_ppdu(ar, &amsdu, status, vdev_id); 1911 ath10k_htt_rx_h_filter(ar, &amsdu, status); 1912 ath10k_htt_rx_h_mpdu(ar, &amsdu, status); 1913 ath10k_htt_rx_h_deliver(ar, &amsdu, status); 1914 break; 1915 case -EAGAIN: 1916 /* fall through */ 1917 default: 1918 /* Should not happen. */ 1919 ath10k_warn(ar, "failed to extract amsdu: %d\n", ret); 1920 htt->rx_confused = true; 1921 __skb_queue_purge(&list); 1922 return; 1923 } 1924 } 1925 1926 tasklet_schedule(&htt->rx_replenish_task); 1927 } 1928 1929 void ath10k_htt_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb) 1930 { 1931 struct ath10k_htt *htt = &ar->htt; 1932 struct htt_resp *resp = (struct htt_resp *)skb->data; 1933 enum htt_t2h_msg_type type; 1934 1935 /* confirm alignment */ 1936 if (!IS_ALIGNED((unsigned long)skb->data, 4)) 1937 ath10k_warn(ar, "unaligned htt message, expect trouble\n"); 1938 1939 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, msg_type: 0x%0X\n", 1940 resp->hdr.msg_type); 1941 1942 if (resp->hdr.msg_type >= ar->htt.t2h_msg_types_max) { 1943 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, unsupported msg_type: 0x%0X\n max: 0x%0X", 1944 resp->hdr.msg_type, ar->htt.t2h_msg_types_max); 1945 dev_kfree_skb_any(skb); 1946 return; 1947 } 1948 type = ar->htt.t2h_msg_types[resp->hdr.msg_type]; 1949 1950 switch (type) { 1951 case HTT_T2H_MSG_TYPE_VERSION_CONF: { 1952 htt->target_version_major = resp->ver_resp.major; 1953 htt->target_version_minor = resp->ver_resp.minor; 1954 complete(&htt->target_version_received); 1955 break; 1956 } 1957 case HTT_T2H_MSG_TYPE_RX_IND: 1958 spin_lock_bh(&htt->rx_ring.lock); 1959 __skb_queue_tail(&htt->rx_compl_q, skb); 1960 spin_unlock_bh(&htt->rx_ring.lock); 1961 tasklet_schedule(&htt->txrx_compl_task); 1962 return; 1963 case HTT_T2H_MSG_TYPE_PEER_MAP: { 1964 struct htt_peer_map_event ev = { 1965 .vdev_id = resp->peer_map.vdev_id, 1966 .peer_id = __le16_to_cpu(resp->peer_map.peer_id), 1967 }; 1968 memcpy(ev.addr, resp->peer_map.addr, sizeof(ev.addr)); 1969 ath10k_peer_map_event(htt, &ev); 1970 break; 1971 } 1972 case HTT_T2H_MSG_TYPE_PEER_UNMAP: { 1973 struct htt_peer_unmap_event ev = { 1974 .peer_id = __le16_to_cpu(resp->peer_unmap.peer_id), 1975 }; 1976 ath10k_peer_unmap_event(htt, &ev); 1977 break; 1978 } 1979 case HTT_T2H_MSG_TYPE_MGMT_TX_COMPLETION: { 1980 struct htt_tx_done tx_done = {}; 1981 int status = __le32_to_cpu(resp->mgmt_tx_completion.status); 1982 1983 tx_done.msdu_id = 1984 __le32_to_cpu(resp->mgmt_tx_completion.desc_id); 1985 1986 switch (status) { 1987 case HTT_MGMT_TX_STATUS_OK: 1988 tx_done.success = true; 1989 break; 1990 case HTT_MGMT_TX_STATUS_RETRY: 1991 tx_done.no_ack = true; 1992 break; 1993 case HTT_MGMT_TX_STATUS_DROP: 1994 tx_done.discard = true; 1995 break; 1996 } 1997 1998 ath10k_txrx_tx_unref(htt, &tx_done); 1999 break; 2000 } 2001 case HTT_T2H_MSG_TYPE_TX_COMPL_IND: 2002 skb_queue_tail(&htt->tx_compl_q, skb); 2003 tasklet_schedule(&htt->txrx_compl_task); 2004 return; 2005 case HTT_T2H_MSG_TYPE_SEC_IND: { 2006 struct ath10k *ar = htt->ar; 2007 struct htt_security_indication *ev = &resp->security_indication; 2008 2009 ath10k_dbg(ar, ATH10K_DBG_HTT, 2010 "sec ind peer_id %d unicast %d type %d\n", 2011 __le16_to_cpu(ev->peer_id), 2012 !!(ev->flags & HTT_SECURITY_IS_UNICAST), 2013 MS(ev->flags, HTT_SECURITY_TYPE)); 2014 complete(&ar->install_key_done); 2015 break; 2016 } 2017 case HTT_T2H_MSG_TYPE_RX_FRAG_IND: { 2018 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ", 2019 skb->data, skb->len); 2020 ath10k_htt_rx_frag_handler(htt, &resp->rx_frag_ind); 2021 break; 2022 } 2023 case HTT_T2H_MSG_TYPE_TEST: 2024 break; 2025 case HTT_T2H_MSG_TYPE_STATS_CONF: 2026 trace_ath10k_htt_stats(ar, skb->data, skb->len); 2027 break; 2028 case HTT_T2H_MSG_TYPE_TX_INSPECT_IND: 2029 /* Firmware can return tx frames if it's unable to fully 2030 * process them and suspects host may be able to fix it. ath10k 2031 * sends all tx frames as already inspected so this shouldn't 2032 * happen unless fw has a bug. 2033 */ 2034 ath10k_warn(ar, "received an unexpected htt tx inspect event\n"); 2035 break; 2036 case HTT_T2H_MSG_TYPE_RX_ADDBA: 2037 ath10k_htt_rx_addba(ar, resp); 2038 break; 2039 case HTT_T2H_MSG_TYPE_RX_DELBA: 2040 ath10k_htt_rx_delba(ar, resp); 2041 break; 2042 case HTT_T2H_MSG_TYPE_PKTLOG: { 2043 struct ath10k_pktlog_hdr *hdr = 2044 (struct ath10k_pktlog_hdr *)resp->pktlog_msg.payload; 2045 2046 trace_ath10k_htt_pktlog(ar, resp->pktlog_msg.payload, 2047 sizeof(*hdr) + 2048 __le16_to_cpu(hdr->size)); 2049 break; 2050 } 2051 case HTT_T2H_MSG_TYPE_RX_FLUSH: { 2052 /* Ignore this event because mac80211 takes care of Rx 2053 * aggregation reordering. 2054 */ 2055 break; 2056 } 2057 case HTT_T2H_MSG_TYPE_RX_IN_ORD_PADDR_IND: { 2058 spin_lock_bh(&htt->rx_ring.lock); 2059 __skb_queue_tail(&htt->rx_in_ord_compl_q, skb); 2060 spin_unlock_bh(&htt->rx_ring.lock); 2061 tasklet_schedule(&htt->txrx_compl_task); 2062 return; 2063 } 2064 case HTT_T2H_MSG_TYPE_TX_CREDIT_UPDATE_IND: 2065 break; 2066 case HTT_T2H_MSG_TYPE_CHAN_CHANGE: 2067 break; 2068 case HTT_T2H_MSG_TYPE_AGGR_CONF: 2069 break; 2070 case HTT_T2H_MSG_TYPE_EN_STATS: 2071 case HTT_T2H_MSG_TYPE_TX_FETCH_IND: 2072 case HTT_T2H_MSG_TYPE_TX_FETCH_CONF: 2073 case HTT_T2H_MSG_TYPE_TX_LOW_LATENCY_IND: 2074 default: 2075 ath10k_warn(ar, "htt event (%d) not handled\n", 2076 resp->hdr.msg_type); 2077 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ", 2078 skb->data, skb->len); 2079 break; 2080 }; 2081 2082 /* Free the indication buffer */ 2083 dev_kfree_skb_any(skb); 2084 } 2085 2086 static void ath10k_htt_txrx_compl_task(unsigned long ptr) 2087 { 2088 struct ath10k_htt *htt = (struct ath10k_htt *)ptr; 2089 struct ath10k *ar = htt->ar; 2090 struct htt_resp *resp; 2091 struct sk_buff *skb; 2092 2093 while ((skb = skb_dequeue(&htt->tx_compl_q))) { 2094 ath10k_htt_rx_frm_tx_compl(htt->ar, skb); 2095 dev_kfree_skb_any(skb); 2096 } 2097 2098 spin_lock_bh(&htt->rx_ring.lock); 2099 while ((skb = __skb_dequeue(&htt->rx_compl_q))) { 2100 resp = (struct htt_resp *)skb->data; 2101 ath10k_htt_rx_handler(htt, &resp->rx_ind); 2102 dev_kfree_skb_any(skb); 2103 } 2104 2105 while ((skb = __skb_dequeue(&htt->rx_in_ord_compl_q))) { 2106 ath10k_htt_rx_in_ord_ind(ar, skb); 2107 dev_kfree_skb_any(skb); 2108 } 2109 spin_unlock_bh(&htt->rx_ring.lock); 2110 } 2111