1 /*
2  * Copyright (c) 2005-2011 Atheros Communications Inc.
3  * Copyright (c) 2011-2017 Qualcomm Atheros, Inc.
4  * Copyright (c) 2018, The Linux Foundation. All rights reserved.
5  *
6  * Permission to use, copy, modify, and/or distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #include "core.h"
20 #include "htc.h"
21 #include "htt.h"
22 #include "txrx.h"
23 #include "debug.h"
24 #include "trace.h"
25 #include "mac.h"
26 
27 #include <linux/log2.h>
28 #include <linux/bitfield.h>
29 
30 /* when under memory pressure rx ring refill may fail and needs a retry */
31 #define HTT_RX_RING_REFILL_RETRY_MS 50
32 
33 #define HTT_RX_RING_REFILL_RESCHED_MS 5
34 
35 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb);
36 
37 static struct sk_buff *
38 ath10k_htt_rx_find_skb_paddr(struct ath10k *ar, u64 paddr)
39 {
40 	struct ath10k_skb_rxcb *rxcb;
41 
42 	hash_for_each_possible(ar->htt.rx_ring.skb_table, rxcb, hlist, paddr)
43 		if (rxcb->paddr == paddr)
44 			return ATH10K_RXCB_SKB(rxcb);
45 
46 	WARN_ON_ONCE(1);
47 	return NULL;
48 }
49 
50 static void ath10k_htt_rx_ring_free(struct ath10k_htt *htt)
51 {
52 	struct sk_buff *skb;
53 	struct ath10k_skb_rxcb *rxcb;
54 	struct hlist_node *n;
55 	int i;
56 
57 	if (htt->rx_ring.in_ord_rx) {
58 		hash_for_each_safe(htt->rx_ring.skb_table, i, n, rxcb, hlist) {
59 			skb = ATH10K_RXCB_SKB(rxcb);
60 			dma_unmap_single(htt->ar->dev, rxcb->paddr,
61 					 skb->len + skb_tailroom(skb),
62 					 DMA_FROM_DEVICE);
63 			hash_del(&rxcb->hlist);
64 			dev_kfree_skb_any(skb);
65 		}
66 	} else {
67 		for (i = 0; i < htt->rx_ring.size; i++) {
68 			skb = htt->rx_ring.netbufs_ring[i];
69 			if (!skb)
70 				continue;
71 
72 			rxcb = ATH10K_SKB_RXCB(skb);
73 			dma_unmap_single(htt->ar->dev, rxcb->paddr,
74 					 skb->len + skb_tailroom(skb),
75 					 DMA_FROM_DEVICE);
76 			dev_kfree_skb_any(skb);
77 		}
78 	}
79 
80 	htt->rx_ring.fill_cnt = 0;
81 	hash_init(htt->rx_ring.skb_table);
82 	memset(htt->rx_ring.netbufs_ring, 0,
83 	       htt->rx_ring.size * sizeof(htt->rx_ring.netbufs_ring[0]));
84 }
85 
86 static size_t ath10k_htt_get_rx_ring_size_32(struct ath10k_htt *htt)
87 {
88 	return htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring_32);
89 }
90 
91 static size_t ath10k_htt_get_rx_ring_size_64(struct ath10k_htt *htt)
92 {
93 	return htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring_64);
94 }
95 
96 static void ath10k_htt_config_paddrs_ring_32(struct ath10k_htt *htt,
97 					     void *vaddr)
98 {
99 	htt->rx_ring.paddrs_ring_32 = vaddr;
100 }
101 
102 static void ath10k_htt_config_paddrs_ring_64(struct ath10k_htt *htt,
103 					     void *vaddr)
104 {
105 	htt->rx_ring.paddrs_ring_64 = vaddr;
106 }
107 
108 static void ath10k_htt_set_paddrs_ring_32(struct ath10k_htt *htt,
109 					  dma_addr_t paddr, int idx)
110 {
111 	htt->rx_ring.paddrs_ring_32[idx] = __cpu_to_le32(paddr);
112 }
113 
114 static void ath10k_htt_set_paddrs_ring_64(struct ath10k_htt *htt,
115 					  dma_addr_t paddr, int idx)
116 {
117 	htt->rx_ring.paddrs_ring_64[idx] = __cpu_to_le64(paddr);
118 }
119 
120 static void ath10k_htt_reset_paddrs_ring_32(struct ath10k_htt *htt, int idx)
121 {
122 	htt->rx_ring.paddrs_ring_32[idx] = 0;
123 }
124 
125 static void ath10k_htt_reset_paddrs_ring_64(struct ath10k_htt *htt, int idx)
126 {
127 	htt->rx_ring.paddrs_ring_64[idx] = 0;
128 }
129 
130 static void *ath10k_htt_get_vaddr_ring_32(struct ath10k_htt *htt)
131 {
132 	return (void *)htt->rx_ring.paddrs_ring_32;
133 }
134 
135 static void *ath10k_htt_get_vaddr_ring_64(struct ath10k_htt *htt)
136 {
137 	return (void *)htt->rx_ring.paddrs_ring_64;
138 }
139 
140 static int __ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
141 {
142 	struct htt_rx_desc *rx_desc;
143 	struct ath10k_skb_rxcb *rxcb;
144 	struct sk_buff *skb;
145 	dma_addr_t paddr;
146 	int ret = 0, idx;
147 
148 	/* The Full Rx Reorder firmware has no way of telling the host
149 	 * implicitly when it copied HTT Rx Ring buffers to MAC Rx Ring.
150 	 * To keep things simple make sure ring is always half empty. This
151 	 * guarantees there'll be no replenishment overruns possible.
152 	 */
153 	BUILD_BUG_ON(HTT_RX_RING_FILL_LEVEL >= HTT_RX_RING_SIZE / 2);
154 
155 	idx = __le32_to_cpu(*htt->rx_ring.alloc_idx.vaddr);
156 	while (num > 0) {
157 		skb = dev_alloc_skb(HTT_RX_BUF_SIZE + HTT_RX_DESC_ALIGN);
158 		if (!skb) {
159 			ret = -ENOMEM;
160 			goto fail;
161 		}
162 
163 		if (!IS_ALIGNED((unsigned long)skb->data, HTT_RX_DESC_ALIGN))
164 			skb_pull(skb,
165 				 PTR_ALIGN(skb->data, HTT_RX_DESC_ALIGN) -
166 				 skb->data);
167 
168 		/* Clear rx_desc attention word before posting to Rx ring */
169 		rx_desc = (struct htt_rx_desc *)skb->data;
170 		rx_desc->attention.flags = __cpu_to_le32(0);
171 
172 		paddr = dma_map_single(htt->ar->dev, skb->data,
173 				       skb->len + skb_tailroom(skb),
174 				       DMA_FROM_DEVICE);
175 
176 		if (unlikely(dma_mapping_error(htt->ar->dev, paddr))) {
177 			dev_kfree_skb_any(skb);
178 			ret = -ENOMEM;
179 			goto fail;
180 		}
181 
182 		rxcb = ATH10K_SKB_RXCB(skb);
183 		rxcb->paddr = paddr;
184 		htt->rx_ring.netbufs_ring[idx] = skb;
185 		ath10k_htt_set_paddrs_ring(htt, paddr, idx);
186 		htt->rx_ring.fill_cnt++;
187 
188 		if (htt->rx_ring.in_ord_rx) {
189 			hash_add(htt->rx_ring.skb_table,
190 				 &ATH10K_SKB_RXCB(skb)->hlist,
191 				 paddr);
192 		}
193 
194 		num--;
195 		idx++;
196 		idx &= htt->rx_ring.size_mask;
197 	}
198 
199 fail:
200 	/*
201 	 * Make sure the rx buffer is updated before available buffer
202 	 * index to avoid any potential rx ring corruption.
203 	 */
204 	mb();
205 	*htt->rx_ring.alloc_idx.vaddr = __cpu_to_le32(idx);
206 	return ret;
207 }
208 
209 static int ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
210 {
211 	lockdep_assert_held(&htt->rx_ring.lock);
212 	return __ath10k_htt_rx_ring_fill_n(htt, num);
213 }
214 
215 static void ath10k_htt_rx_msdu_buff_replenish(struct ath10k_htt *htt)
216 {
217 	int ret, num_deficit, num_to_fill;
218 
219 	/* Refilling the whole RX ring buffer proves to be a bad idea. The
220 	 * reason is RX may take up significant amount of CPU cycles and starve
221 	 * other tasks, e.g. TX on an ethernet device while acting as a bridge
222 	 * with ath10k wlan interface. This ended up with very poor performance
223 	 * once CPU the host system was overwhelmed with RX on ath10k.
224 	 *
225 	 * By limiting the number of refills the replenishing occurs
226 	 * progressively. This in turns makes use of the fact tasklets are
227 	 * processed in FIFO order. This means actual RX processing can starve
228 	 * out refilling. If there's not enough buffers on RX ring FW will not
229 	 * report RX until it is refilled with enough buffers. This
230 	 * automatically balances load wrt to CPU power.
231 	 *
232 	 * This probably comes at a cost of lower maximum throughput but
233 	 * improves the average and stability.
234 	 */
235 	spin_lock_bh(&htt->rx_ring.lock);
236 	num_deficit = htt->rx_ring.fill_level - htt->rx_ring.fill_cnt;
237 	num_to_fill = min(ATH10K_HTT_MAX_NUM_REFILL, num_deficit);
238 	num_deficit -= num_to_fill;
239 	ret = ath10k_htt_rx_ring_fill_n(htt, num_to_fill);
240 	if (ret == -ENOMEM) {
241 		/*
242 		 * Failed to fill it to the desired level -
243 		 * we'll start a timer and try again next time.
244 		 * As long as enough buffers are left in the ring for
245 		 * another A-MPDU rx, no special recovery is needed.
246 		 */
247 		mod_timer(&htt->rx_ring.refill_retry_timer, jiffies +
248 			  msecs_to_jiffies(HTT_RX_RING_REFILL_RETRY_MS));
249 	} else if (num_deficit > 0) {
250 		mod_timer(&htt->rx_ring.refill_retry_timer, jiffies +
251 			  msecs_to_jiffies(HTT_RX_RING_REFILL_RESCHED_MS));
252 	}
253 	spin_unlock_bh(&htt->rx_ring.lock);
254 }
255 
256 static void ath10k_htt_rx_ring_refill_retry(struct timer_list *t)
257 {
258 	struct ath10k_htt *htt = from_timer(htt, t, rx_ring.refill_retry_timer);
259 
260 	ath10k_htt_rx_msdu_buff_replenish(htt);
261 }
262 
263 int ath10k_htt_rx_ring_refill(struct ath10k *ar)
264 {
265 	struct ath10k_htt *htt = &ar->htt;
266 	int ret;
267 
268 	spin_lock_bh(&htt->rx_ring.lock);
269 	ret = ath10k_htt_rx_ring_fill_n(htt, (htt->rx_ring.fill_level -
270 					      htt->rx_ring.fill_cnt));
271 	spin_unlock_bh(&htt->rx_ring.lock);
272 
273 	if (ret)
274 		ath10k_htt_rx_ring_free(htt);
275 
276 	return ret;
277 }
278 
279 void ath10k_htt_rx_free(struct ath10k_htt *htt)
280 {
281 	del_timer_sync(&htt->rx_ring.refill_retry_timer);
282 
283 	skb_queue_purge(&htt->rx_msdus_q);
284 	skb_queue_purge(&htt->rx_in_ord_compl_q);
285 	skb_queue_purge(&htt->tx_fetch_ind_q);
286 
287 	ath10k_htt_rx_ring_free(htt);
288 
289 	dma_free_coherent(htt->ar->dev,
290 			  ath10k_htt_get_rx_ring_size(htt),
291 			  ath10k_htt_get_vaddr_ring(htt),
292 			  htt->rx_ring.base_paddr);
293 
294 	dma_free_coherent(htt->ar->dev,
295 			  sizeof(*htt->rx_ring.alloc_idx.vaddr),
296 			  htt->rx_ring.alloc_idx.vaddr,
297 			  htt->rx_ring.alloc_idx.paddr);
298 
299 	kfree(htt->rx_ring.netbufs_ring);
300 }
301 
302 static inline struct sk_buff *ath10k_htt_rx_netbuf_pop(struct ath10k_htt *htt)
303 {
304 	struct ath10k *ar = htt->ar;
305 	int idx;
306 	struct sk_buff *msdu;
307 
308 	lockdep_assert_held(&htt->rx_ring.lock);
309 
310 	if (htt->rx_ring.fill_cnt == 0) {
311 		ath10k_warn(ar, "tried to pop sk_buff from an empty rx ring\n");
312 		return NULL;
313 	}
314 
315 	idx = htt->rx_ring.sw_rd_idx.msdu_payld;
316 	msdu = htt->rx_ring.netbufs_ring[idx];
317 	htt->rx_ring.netbufs_ring[idx] = NULL;
318 	ath10k_htt_reset_paddrs_ring(htt, idx);
319 
320 	idx++;
321 	idx &= htt->rx_ring.size_mask;
322 	htt->rx_ring.sw_rd_idx.msdu_payld = idx;
323 	htt->rx_ring.fill_cnt--;
324 
325 	dma_unmap_single(htt->ar->dev,
326 			 ATH10K_SKB_RXCB(msdu)->paddr,
327 			 msdu->len + skb_tailroom(msdu),
328 			 DMA_FROM_DEVICE);
329 	ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ",
330 			msdu->data, msdu->len + skb_tailroom(msdu));
331 
332 	return msdu;
333 }
334 
335 /* return: < 0 fatal error, 0 - non chained msdu, 1 chained msdu */
336 static int ath10k_htt_rx_amsdu_pop(struct ath10k_htt *htt,
337 				   struct sk_buff_head *amsdu)
338 {
339 	struct ath10k *ar = htt->ar;
340 	int msdu_len, msdu_chaining = 0;
341 	struct sk_buff *msdu;
342 	struct htt_rx_desc *rx_desc;
343 
344 	lockdep_assert_held(&htt->rx_ring.lock);
345 
346 	for (;;) {
347 		int last_msdu, msdu_len_invalid, msdu_chained;
348 
349 		msdu = ath10k_htt_rx_netbuf_pop(htt);
350 		if (!msdu) {
351 			__skb_queue_purge(amsdu);
352 			return -ENOENT;
353 		}
354 
355 		__skb_queue_tail(amsdu, msdu);
356 
357 		rx_desc = (struct htt_rx_desc *)msdu->data;
358 
359 		/* FIXME: we must report msdu payload since this is what caller
360 		 * expects now
361 		 */
362 		skb_put(msdu, offsetof(struct htt_rx_desc, msdu_payload));
363 		skb_pull(msdu, offsetof(struct htt_rx_desc, msdu_payload));
364 
365 		/*
366 		 * Sanity check - confirm the HW is finished filling in the
367 		 * rx data.
368 		 * If the HW and SW are working correctly, then it's guaranteed
369 		 * that the HW's MAC DMA is done before this point in the SW.
370 		 * To prevent the case that we handle a stale Rx descriptor,
371 		 * just assert for now until we have a way to recover.
372 		 */
373 		if (!(__le32_to_cpu(rx_desc->attention.flags)
374 				& RX_ATTENTION_FLAGS_MSDU_DONE)) {
375 			__skb_queue_purge(amsdu);
376 			return -EIO;
377 		}
378 
379 		msdu_len_invalid = !!(__le32_to_cpu(rx_desc->attention.flags)
380 					& (RX_ATTENTION_FLAGS_MPDU_LENGTH_ERR |
381 					   RX_ATTENTION_FLAGS_MSDU_LENGTH_ERR));
382 		msdu_len = MS(__le32_to_cpu(rx_desc->msdu_start.common.info0),
383 			      RX_MSDU_START_INFO0_MSDU_LENGTH);
384 		msdu_chained = rx_desc->frag_info.ring2_more_count;
385 
386 		if (msdu_len_invalid)
387 			msdu_len = 0;
388 
389 		skb_trim(msdu, 0);
390 		skb_put(msdu, min(msdu_len, HTT_RX_MSDU_SIZE));
391 		msdu_len -= msdu->len;
392 
393 		/* Note: Chained buffers do not contain rx descriptor */
394 		while (msdu_chained--) {
395 			msdu = ath10k_htt_rx_netbuf_pop(htt);
396 			if (!msdu) {
397 				__skb_queue_purge(amsdu);
398 				return -ENOENT;
399 			}
400 
401 			__skb_queue_tail(amsdu, msdu);
402 			skb_trim(msdu, 0);
403 			skb_put(msdu, min(msdu_len, HTT_RX_BUF_SIZE));
404 			msdu_len -= msdu->len;
405 			msdu_chaining = 1;
406 		}
407 
408 		last_msdu = __le32_to_cpu(rx_desc->msdu_end.common.info0) &
409 				RX_MSDU_END_INFO0_LAST_MSDU;
410 
411 		trace_ath10k_htt_rx_desc(ar, &rx_desc->attention,
412 					 sizeof(*rx_desc) - sizeof(u32));
413 
414 		if (last_msdu)
415 			break;
416 	}
417 
418 	if (skb_queue_empty(amsdu))
419 		msdu_chaining = -1;
420 
421 	/*
422 	 * Don't refill the ring yet.
423 	 *
424 	 * First, the elements popped here are still in use - it is not
425 	 * safe to overwrite them until the matching call to
426 	 * mpdu_desc_list_next. Second, for efficiency it is preferable to
427 	 * refill the rx ring with 1 PPDU's worth of rx buffers (something
428 	 * like 32 x 3 buffers), rather than one MPDU's worth of rx buffers
429 	 * (something like 3 buffers). Consequently, we'll rely on the txrx
430 	 * SW to tell us when it is done pulling all the PPDU's rx buffers
431 	 * out of the rx ring, and then refill it just once.
432 	 */
433 
434 	return msdu_chaining;
435 }
436 
437 static struct sk_buff *ath10k_htt_rx_pop_paddr(struct ath10k_htt *htt,
438 					       u64 paddr)
439 {
440 	struct ath10k *ar = htt->ar;
441 	struct ath10k_skb_rxcb *rxcb;
442 	struct sk_buff *msdu;
443 
444 	lockdep_assert_held(&htt->rx_ring.lock);
445 
446 	msdu = ath10k_htt_rx_find_skb_paddr(ar, paddr);
447 	if (!msdu)
448 		return NULL;
449 
450 	rxcb = ATH10K_SKB_RXCB(msdu);
451 	hash_del(&rxcb->hlist);
452 	htt->rx_ring.fill_cnt--;
453 
454 	dma_unmap_single(htt->ar->dev, rxcb->paddr,
455 			 msdu->len + skb_tailroom(msdu),
456 			 DMA_FROM_DEVICE);
457 	ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ",
458 			msdu->data, msdu->len + skb_tailroom(msdu));
459 
460 	return msdu;
461 }
462 
463 static int ath10k_htt_rx_pop_paddr32_list(struct ath10k_htt *htt,
464 					  struct htt_rx_in_ord_ind *ev,
465 					  struct sk_buff_head *list)
466 {
467 	struct ath10k *ar = htt->ar;
468 	struct htt_rx_in_ord_msdu_desc *msdu_desc = ev->msdu_descs32;
469 	struct htt_rx_desc *rxd;
470 	struct sk_buff *msdu;
471 	int msdu_count;
472 	bool is_offload;
473 	u32 paddr;
474 
475 	lockdep_assert_held(&htt->rx_ring.lock);
476 
477 	msdu_count = __le16_to_cpu(ev->msdu_count);
478 	is_offload = !!(ev->info & HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK);
479 
480 	while (msdu_count--) {
481 		paddr = __le32_to_cpu(msdu_desc->msdu_paddr);
482 
483 		msdu = ath10k_htt_rx_pop_paddr(htt, paddr);
484 		if (!msdu) {
485 			__skb_queue_purge(list);
486 			return -ENOENT;
487 		}
488 
489 		__skb_queue_tail(list, msdu);
490 
491 		if (!is_offload) {
492 			rxd = (void *)msdu->data;
493 
494 			trace_ath10k_htt_rx_desc(ar, rxd, sizeof(*rxd));
495 
496 			skb_put(msdu, sizeof(*rxd));
497 			skb_pull(msdu, sizeof(*rxd));
498 			skb_put(msdu, __le16_to_cpu(msdu_desc->msdu_len));
499 
500 			if (!(__le32_to_cpu(rxd->attention.flags) &
501 			      RX_ATTENTION_FLAGS_MSDU_DONE)) {
502 				ath10k_warn(htt->ar, "tried to pop an incomplete frame, oops!\n");
503 				return -EIO;
504 			}
505 		}
506 
507 		msdu_desc++;
508 	}
509 
510 	return 0;
511 }
512 
513 static int ath10k_htt_rx_pop_paddr64_list(struct ath10k_htt *htt,
514 					  struct htt_rx_in_ord_ind *ev,
515 					  struct sk_buff_head *list)
516 {
517 	struct ath10k *ar = htt->ar;
518 	struct htt_rx_in_ord_msdu_desc_ext *msdu_desc = ev->msdu_descs64;
519 	struct htt_rx_desc *rxd;
520 	struct sk_buff *msdu;
521 	int msdu_count;
522 	bool is_offload;
523 	u64 paddr;
524 
525 	lockdep_assert_held(&htt->rx_ring.lock);
526 
527 	msdu_count = __le16_to_cpu(ev->msdu_count);
528 	is_offload = !!(ev->info & HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK);
529 
530 	while (msdu_count--) {
531 		paddr = __le64_to_cpu(msdu_desc->msdu_paddr);
532 		msdu = ath10k_htt_rx_pop_paddr(htt, paddr);
533 		if (!msdu) {
534 			__skb_queue_purge(list);
535 			return -ENOENT;
536 		}
537 
538 		__skb_queue_tail(list, msdu);
539 
540 		if (!is_offload) {
541 			rxd = (void *)msdu->data;
542 
543 			trace_ath10k_htt_rx_desc(ar, rxd, sizeof(*rxd));
544 
545 			skb_put(msdu, sizeof(*rxd));
546 			skb_pull(msdu, sizeof(*rxd));
547 			skb_put(msdu, __le16_to_cpu(msdu_desc->msdu_len));
548 
549 			if (!(__le32_to_cpu(rxd->attention.flags) &
550 			      RX_ATTENTION_FLAGS_MSDU_DONE)) {
551 				ath10k_warn(htt->ar, "tried to pop an incomplete frame, oops!\n");
552 				return -EIO;
553 			}
554 		}
555 
556 		msdu_desc++;
557 	}
558 
559 	return 0;
560 }
561 
562 int ath10k_htt_rx_alloc(struct ath10k_htt *htt)
563 {
564 	struct ath10k *ar = htt->ar;
565 	dma_addr_t paddr;
566 	void *vaddr, *vaddr_ring;
567 	size_t size;
568 	struct timer_list *timer = &htt->rx_ring.refill_retry_timer;
569 
570 	htt->rx_confused = false;
571 
572 	/* XXX: The fill level could be changed during runtime in response to
573 	 * the host processing latency. Is this really worth it?
574 	 */
575 	htt->rx_ring.size = HTT_RX_RING_SIZE;
576 	htt->rx_ring.size_mask = htt->rx_ring.size - 1;
577 	htt->rx_ring.fill_level = ar->hw_params.rx_ring_fill_level;
578 
579 	if (!is_power_of_2(htt->rx_ring.size)) {
580 		ath10k_warn(ar, "htt rx ring size is not power of 2\n");
581 		return -EINVAL;
582 	}
583 
584 	htt->rx_ring.netbufs_ring =
585 		kcalloc(htt->rx_ring.size, sizeof(struct sk_buff *),
586 			GFP_KERNEL);
587 	if (!htt->rx_ring.netbufs_ring)
588 		goto err_netbuf;
589 
590 	size = ath10k_htt_get_rx_ring_size(htt);
591 
592 	vaddr_ring = dma_alloc_coherent(htt->ar->dev, size, &paddr, GFP_KERNEL);
593 	if (!vaddr_ring)
594 		goto err_dma_ring;
595 
596 	ath10k_htt_config_paddrs_ring(htt, vaddr_ring);
597 	htt->rx_ring.base_paddr = paddr;
598 
599 	vaddr = dma_alloc_coherent(htt->ar->dev,
600 				   sizeof(*htt->rx_ring.alloc_idx.vaddr),
601 				   &paddr, GFP_KERNEL);
602 	if (!vaddr)
603 		goto err_dma_idx;
604 
605 	htt->rx_ring.alloc_idx.vaddr = vaddr;
606 	htt->rx_ring.alloc_idx.paddr = paddr;
607 	htt->rx_ring.sw_rd_idx.msdu_payld = htt->rx_ring.size_mask;
608 	*htt->rx_ring.alloc_idx.vaddr = 0;
609 
610 	/* Initialize the Rx refill retry timer */
611 	timer_setup(timer, ath10k_htt_rx_ring_refill_retry, 0);
612 
613 	spin_lock_init(&htt->rx_ring.lock);
614 
615 	htt->rx_ring.fill_cnt = 0;
616 	htt->rx_ring.sw_rd_idx.msdu_payld = 0;
617 	hash_init(htt->rx_ring.skb_table);
618 
619 	skb_queue_head_init(&htt->rx_msdus_q);
620 	skb_queue_head_init(&htt->rx_in_ord_compl_q);
621 	skb_queue_head_init(&htt->tx_fetch_ind_q);
622 	atomic_set(&htt->num_mpdus_ready, 0);
623 
624 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "htt rx ring size %d fill_level %d\n",
625 		   htt->rx_ring.size, htt->rx_ring.fill_level);
626 	return 0;
627 
628 err_dma_idx:
629 	dma_free_coherent(htt->ar->dev,
630 			  ath10k_htt_get_rx_ring_size(htt),
631 			  vaddr_ring,
632 			  htt->rx_ring.base_paddr);
633 err_dma_ring:
634 	kfree(htt->rx_ring.netbufs_ring);
635 err_netbuf:
636 	return -ENOMEM;
637 }
638 
639 static int ath10k_htt_rx_crypto_param_len(struct ath10k *ar,
640 					  enum htt_rx_mpdu_encrypt_type type)
641 {
642 	switch (type) {
643 	case HTT_RX_MPDU_ENCRYPT_NONE:
644 		return 0;
645 	case HTT_RX_MPDU_ENCRYPT_WEP40:
646 	case HTT_RX_MPDU_ENCRYPT_WEP104:
647 		return IEEE80211_WEP_IV_LEN;
648 	case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
649 	case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
650 		return IEEE80211_TKIP_IV_LEN;
651 	case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
652 		return IEEE80211_CCMP_HDR_LEN;
653 	case HTT_RX_MPDU_ENCRYPT_AES_CCM256_WPA2:
654 		return IEEE80211_CCMP_256_HDR_LEN;
655 	case HTT_RX_MPDU_ENCRYPT_AES_GCMP_WPA2:
656 	case HTT_RX_MPDU_ENCRYPT_AES_GCMP256_WPA2:
657 		return IEEE80211_GCMP_HDR_LEN;
658 	case HTT_RX_MPDU_ENCRYPT_WEP128:
659 	case HTT_RX_MPDU_ENCRYPT_WAPI:
660 		break;
661 	}
662 
663 	ath10k_warn(ar, "unsupported encryption type %d\n", type);
664 	return 0;
665 }
666 
667 #define MICHAEL_MIC_LEN 8
668 
669 static int ath10k_htt_rx_crypto_mic_len(struct ath10k *ar,
670 					enum htt_rx_mpdu_encrypt_type type)
671 {
672 	switch (type) {
673 	case HTT_RX_MPDU_ENCRYPT_NONE:
674 	case HTT_RX_MPDU_ENCRYPT_WEP40:
675 	case HTT_RX_MPDU_ENCRYPT_WEP104:
676 	case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
677 	case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
678 		return 0;
679 	case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
680 		return IEEE80211_CCMP_MIC_LEN;
681 	case HTT_RX_MPDU_ENCRYPT_AES_CCM256_WPA2:
682 		return IEEE80211_CCMP_256_MIC_LEN;
683 	case HTT_RX_MPDU_ENCRYPT_AES_GCMP_WPA2:
684 	case HTT_RX_MPDU_ENCRYPT_AES_GCMP256_WPA2:
685 		return IEEE80211_GCMP_MIC_LEN;
686 	case HTT_RX_MPDU_ENCRYPT_WEP128:
687 	case HTT_RX_MPDU_ENCRYPT_WAPI:
688 		break;
689 	}
690 
691 	ath10k_warn(ar, "unsupported encryption type %d\n", type);
692 	return 0;
693 }
694 
695 static int ath10k_htt_rx_crypto_icv_len(struct ath10k *ar,
696 					enum htt_rx_mpdu_encrypt_type type)
697 {
698 	switch (type) {
699 	case HTT_RX_MPDU_ENCRYPT_NONE:
700 	case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
701 	case HTT_RX_MPDU_ENCRYPT_AES_CCM256_WPA2:
702 	case HTT_RX_MPDU_ENCRYPT_AES_GCMP_WPA2:
703 	case HTT_RX_MPDU_ENCRYPT_AES_GCMP256_WPA2:
704 		return 0;
705 	case HTT_RX_MPDU_ENCRYPT_WEP40:
706 	case HTT_RX_MPDU_ENCRYPT_WEP104:
707 		return IEEE80211_WEP_ICV_LEN;
708 	case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
709 	case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
710 		return IEEE80211_TKIP_ICV_LEN;
711 	case HTT_RX_MPDU_ENCRYPT_WEP128:
712 	case HTT_RX_MPDU_ENCRYPT_WAPI:
713 		break;
714 	}
715 
716 	ath10k_warn(ar, "unsupported encryption type %d\n", type);
717 	return 0;
718 }
719 
720 struct amsdu_subframe_hdr {
721 	u8 dst[ETH_ALEN];
722 	u8 src[ETH_ALEN];
723 	__be16 len;
724 } __packed;
725 
726 #define GROUP_ID_IS_SU_MIMO(x) ((x) == 0 || (x) == 63)
727 
728 static inline u8 ath10k_bw_to_mac80211_bw(u8 bw)
729 {
730 	u8 ret = 0;
731 
732 	switch (bw) {
733 	case 0:
734 		ret = RATE_INFO_BW_20;
735 		break;
736 	case 1:
737 		ret = RATE_INFO_BW_40;
738 		break;
739 	case 2:
740 		ret = RATE_INFO_BW_80;
741 		break;
742 	case 3:
743 		ret = RATE_INFO_BW_160;
744 		break;
745 	}
746 
747 	return ret;
748 }
749 
750 static void ath10k_htt_rx_h_rates(struct ath10k *ar,
751 				  struct ieee80211_rx_status *status,
752 				  struct htt_rx_desc *rxd)
753 {
754 	struct ieee80211_supported_band *sband;
755 	u8 cck, rate, bw, sgi, mcs, nss;
756 	u8 preamble = 0;
757 	u8 group_id;
758 	u32 info1, info2, info3;
759 
760 	info1 = __le32_to_cpu(rxd->ppdu_start.info1);
761 	info2 = __le32_to_cpu(rxd->ppdu_start.info2);
762 	info3 = __le32_to_cpu(rxd->ppdu_start.info3);
763 
764 	preamble = MS(info1, RX_PPDU_START_INFO1_PREAMBLE_TYPE);
765 
766 	switch (preamble) {
767 	case HTT_RX_LEGACY:
768 		/* To get legacy rate index band is required. Since band can't
769 		 * be undefined check if freq is non-zero.
770 		 */
771 		if (!status->freq)
772 			return;
773 
774 		cck = info1 & RX_PPDU_START_INFO1_L_SIG_RATE_SELECT;
775 		rate = MS(info1, RX_PPDU_START_INFO1_L_SIG_RATE);
776 		rate &= ~RX_PPDU_START_RATE_FLAG;
777 
778 		sband = &ar->mac.sbands[status->band];
779 		status->rate_idx = ath10k_mac_hw_rate_to_idx(sband, rate, cck);
780 		break;
781 	case HTT_RX_HT:
782 	case HTT_RX_HT_WITH_TXBF:
783 		/* HT-SIG - Table 20-11 in info2 and info3 */
784 		mcs = info2 & 0x1F;
785 		nss = mcs >> 3;
786 		bw = (info2 >> 7) & 1;
787 		sgi = (info3 >> 7) & 1;
788 
789 		status->rate_idx = mcs;
790 		status->encoding = RX_ENC_HT;
791 		if (sgi)
792 			status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
793 		if (bw)
794 			status->bw = RATE_INFO_BW_40;
795 		break;
796 	case HTT_RX_VHT:
797 	case HTT_RX_VHT_WITH_TXBF:
798 		/* VHT-SIG-A1 in info2, VHT-SIG-A2 in info3
799 		 * TODO check this
800 		 */
801 		bw = info2 & 3;
802 		sgi = info3 & 1;
803 		group_id = (info2 >> 4) & 0x3F;
804 
805 		if (GROUP_ID_IS_SU_MIMO(group_id)) {
806 			mcs = (info3 >> 4) & 0x0F;
807 			nss = ((info2 >> 10) & 0x07) + 1;
808 		} else {
809 			/* Hardware doesn't decode VHT-SIG-B into Rx descriptor
810 			 * so it's impossible to decode MCS. Also since
811 			 * firmware consumes Group Id Management frames host
812 			 * has no knowledge regarding group/user position
813 			 * mapping so it's impossible to pick the correct Nsts
814 			 * from VHT-SIG-A1.
815 			 *
816 			 * Bandwidth and SGI are valid so report the rateinfo
817 			 * on best-effort basis.
818 			 */
819 			mcs = 0;
820 			nss = 1;
821 		}
822 
823 		if (mcs > 0x09) {
824 			ath10k_warn(ar, "invalid MCS received %u\n", mcs);
825 			ath10k_warn(ar, "rxd %08x mpdu start %08x %08x msdu start %08x %08x ppdu start %08x %08x %08x %08x %08x\n",
826 				    __le32_to_cpu(rxd->attention.flags),
827 				    __le32_to_cpu(rxd->mpdu_start.info0),
828 				    __le32_to_cpu(rxd->mpdu_start.info1),
829 				    __le32_to_cpu(rxd->msdu_start.common.info0),
830 				    __le32_to_cpu(rxd->msdu_start.common.info1),
831 				    rxd->ppdu_start.info0,
832 				    __le32_to_cpu(rxd->ppdu_start.info1),
833 				    __le32_to_cpu(rxd->ppdu_start.info2),
834 				    __le32_to_cpu(rxd->ppdu_start.info3),
835 				    __le32_to_cpu(rxd->ppdu_start.info4));
836 
837 			ath10k_warn(ar, "msdu end %08x mpdu end %08x\n",
838 				    __le32_to_cpu(rxd->msdu_end.common.info0),
839 				    __le32_to_cpu(rxd->mpdu_end.info0));
840 
841 			ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL,
842 					"rx desc msdu payload: ",
843 					rxd->msdu_payload, 50);
844 		}
845 
846 		status->rate_idx = mcs;
847 		status->nss = nss;
848 
849 		if (sgi)
850 			status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
851 
852 		status->bw = ath10k_bw_to_mac80211_bw(bw);
853 		status->encoding = RX_ENC_VHT;
854 		break;
855 	default:
856 		break;
857 	}
858 }
859 
860 static struct ieee80211_channel *
861 ath10k_htt_rx_h_peer_channel(struct ath10k *ar, struct htt_rx_desc *rxd)
862 {
863 	struct ath10k_peer *peer;
864 	struct ath10k_vif *arvif;
865 	struct cfg80211_chan_def def;
866 	u16 peer_id;
867 
868 	lockdep_assert_held(&ar->data_lock);
869 
870 	if (!rxd)
871 		return NULL;
872 
873 	if (rxd->attention.flags &
874 	    __cpu_to_le32(RX_ATTENTION_FLAGS_PEER_IDX_INVALID))
875 		return NULL;
876 
877 	if (!(rxd->msdu_end.common.info0 &
878 	      __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU)))
879 		return NULL;
880 
881 	peer_id = MS(__le32_to_cpu(rxd->mpdu_start.info0),
882 		     RX_MPDU_START_INFO0_PEER_IDX);
883 
884 	peer = ath10k_peer_find_by_id(ar, peer_id);
885 	if (!peer)
886 		return NULL;
887 
888 	arvif = ath10k_get_arvif(ar, peer->vdev_id);
889 	if (WARN_ON_ONCE(!arvif))
890 		return NULL;
891 
892 	if (ath10k_mac_vif_chan(arvif->vif, &def))
893 		return NULL;
894 
895 	return def.chan;
896 }
897 
898 static struct ieee80211_channel *
899 ath10k_htt_rx_h_vdev_channel(struct ath10k *ar, u32 vdev_id)
900 {
901 	struct ath10k_vif *arvif;
902 	struct cfg80211_chan_def def;
903 
904 	lockdep_assert_held(&ar->data_lock);
905 
906 	list_for_each_entry(arvif, &ar->arvifs, list) {
907 		if (arvif->vdev_id == vdev_id &&
908 		    ath10k_mac_vif_chan(arvif->vif, &def) == 0)
909 			return def.chan;
910 	}
911 
912 	return NULL;
913 }
914 
915 static void
916 ath10k_htt_rx_h_any_chan_iter(struct ieee80211_hw *hw,
917 			      struct ieee80211_chanctx_conf *conf,
918 			      void *data)
919 {
920 	struct cfg80211_chan_def *def = data;
921 
922 	*def = conf->def;
923 }
924 
925 static struct ieee80211_channel *
926 ath10k_htt_rx_h_any_channel(struct ath10k *ar)
927 {
928 	struct cfg80211_chan_def def = {};
929 
930 	ieee80211_iter_chan_contexts_atomic(ar->hw,
931 					    ath10k_htt_rx_h_any_chan_iter,
932 					    &def);
933 
934 	return def.chan;
935 }
936 
937 static bool ath10k_htt_rx_h_channel(struct ath10k *ar,
938 				    struct ieee80211_rx_status *status,
939 				    struct htt_rx_desc *rxd,
940 				    u32 vdev_id)
941 {
942 	struct ieee80211_channel *ch;
943 
944 	spin_lock_bh(&ar->data_lock);
945 	ch = ar->scan_channel;
946 	if (!ch)
947 		ch = ar->rx_channel;
948 	if (!ch)
949 		ch = ath10k_htt_rx_h_peer_channel(ar, rxd);
950 	if (!ch)
951 		ch = ath10k_htt_rx_h_vdev_channel(ar, vdev_id);
952 	if (!ch)
953 		ch = ath10k_htt_rx_h_any_channel(ar);
954 	if (!ch)
955 		ch = ar->tgt_oper_chan;
956 	spin_unlock_bh(&ar->data_lock);
957 
958 	if (!ch)
959 		return false;
960 
961 	status->band = ch->band;
962 	status->freq = ch->center_freq;
963 
964 	return true;
965 }
966 
967 static void ath10k_htt_rx_h_signal(struct ath10k *ar,
968 				   struct ieee80211_rx_status *status,
969 				   struct htt_rx_desc *rxd)
970 {
971 	int i;
972 
973 	for (i = 0; i < IEEE80211_MAX_CHAINS ; i++) {
974 		status->chains &= ~BIT(i);
975 
976 		if (rxd->ppdu_start.rssi_chains[i].pri20_mhz != 0x80) {
977 			status->chain_signal[i] = ATH10K_DEFAULT_NOISE_FLOOR +
978 				rxd->ppdu_start.rssi_chains[i].pri20_mhz;
979 
980 			status->chains |= BIT(i);
981 		}
982 	}
983 
984 	/* FIXME: Get real NF */
985 	status->signal = ATH10K_DEFAULT_NOISE_FLOOR +
986 			 rxd->ppdu_start.rssi_comb;
987 	status->flag &= ~RX_FLAG_NO_SIGNAL_VAL;
988 }
989 
990 static void ath10k_htt_rx_h_mactime(struct ath10k *ar,
991 				    struct ieee80211_rx_status *status,
992 				    struct htt_rx_desc *rxd)
993 {
994 	/* FIXME: TSF is known only at the end of PPDU, in the last MPDU. This
995 	 * means all prior MSDUs in a PPDU are reported to mac80211 without the
996 	 * TSF. Is it worth holding frames until end of PPDU is known?
997 	 *
998 	 * FIXME: Can we get/compute 64bit TSF?
999 	 */
1000 	status->mactime = __le32_to_cpu(rxd->ppdu_end.common.tsf_timestamp);
1001 	status->flag |= RX_FLAG_MACTIME_END;
1002 }
1003 
1004 static void ath10k_htt_rx_h_ppdu(struct ath10k *ar,
1005 				 struct sk_buff_head *amsdu,
1006 				 struct ieee80211_rx_status *status,
1007 				 u32 vdev_id)
1008 {
1009 	struct sk_buff *first;
1010 	struct htt_rx_desc *rxd;
1011 	bool is_first_ppdu;
1012 	bool is_last_ppdu;
1013 
1014 	if (skb_queue_empty(amsdu))
1015 		return;
1016 
1017 	first = skb_peek(amsdu);
1018 	rxd = (void *)first->data - sizeof(*rxd);
1019 
1020 	is_first_ppdu = !!(rxd->attention.flags &
1021 			   __cpu_to_le32(RX_ATTENTION_FLAGS_FIRST_MPDU));
1022 	is_last_ppdu = !!(rxd->attention.flags &
1023 			  __cpu_to_le32(RX_ATTENTION_FLAGS_LAST_MPDU));
1024 
1025 	if (is_first_ppdu) {
1026 		/* New PPDU starts so clear out the old per-PPDU status. */
1027 		status->freq = 0;
1028 		status->rate_idx = 0;
1029 		status->nss = 0;
1030 		status->encoding = RX_ENC_LEGACY;
1031 		status->bw = RATE_INFO_BW_20;
1032 
1033 		status->flag &= ~RX_FLAG_MACTIME_END;
1034 		status->flag |= RX_FLAG_NO_SIGNAL_VAL;
1035 
1036 		status->flag &= ~(RX_FLAG_AMPDU_IS_LAST);
1037 		status->flag |= RX_FLAG_AMPDU_DETAILS | RX_FLAG_AMPDU_LAST_KNOWN;
1038 		status->ampdu_reference = ar->ampdu_reference;
1039 
1040 		ath10k_htt_rx_h_signal(ar, status, rxd);
1041 		ath10k_htt_rx_h_channel(ar, status, rxd, vdev_id);
1042 		ath10k_htt_rx_h_rates(ar, status, rxd);
1043 	}
1044 
1045 	if (is_last_ppdu) {
1046 		ath10k_htt_rx_h_mactime(ar, status, rxd);
1047 
1048 		/* set ampdu last segment flag */
1049 		status->flag |= RX_FLAG_AMPDU_IS_LAST;
1050 		ar->ampdu_reference++;
1051 	}
1052 }
1053 
1054 static const char * const tid_to_ac[] = {
1055 	"BE",
1056 	"BK",
1057 	"BK",
1058 	"BE",
1059 	"VI",
1060 	"VI",
1061 	"VO",
1062 	"VO",
1063 };
1064 
1065 static char *ath10k_get_tid(struct ieee80211_hdr *hdr, char *out, size_t size)
1066 {
1067 	u8 *qc;
1068 	int tid;
1069 
1070 	if (!ieee80211_is_data_qos(hdr->frame_control))
1071 		return "";
1072 
1073 	qc = ieee80211_get_qos_ctl(hdr);
1074 	tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
1075 	if (tid < 8)
1076 		snprintf(out, size, "tid %d (%s)", tid, tid_to_ac[tid]);
1077 	else
1078 		snprintf(out, size, "tid %d", tid);
1079 
1080 	return out;
1081 }
1082 
1083 static void ath10k_htt_rx_h_queue_msdu(struct ath10k *ar,
1084 				       struct ieee80211_rx_status *rx_status,
1085 				       struct sk_buff *skb)
1086 {
1087 	struct ieee80211_rx_status *status;
1088 
1089 	status = IEEE80211_SKB_RXCB(skb);
1090 	*status = *rx_status;
1091 
1092 	__skb_queue_tail(&ar->htt.rx_msdus_q, skb);
1093 }
1094 
1095 static void ath10k_process_rx(struct ath10k *ar, struct sk_buff *skb)
1096 {
1097 	struct ieee80211_rx_status *status;
1098 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1099 	char tid[32];
1100 
1101 	status = IEEE80211_SKB_RXCB(skb);
1102 
1103 	ath10k_dbg(ar, ATH10K_DBG_DATA,
1104 		   "rx skb %pK len %u peer %pM %s %s sn %u %s%s%s%s%s%s %srate_idx %u vht_nss %u freq %u band %u flag 0x%x fcs-err %i mic-err %i amsdu-more %i\n",
1105 		   skb,
1106 		   skb->len,
1107 		   ieee80211_get_SA(hdr),
1108 		   ath10k_get_tid(hdr, tid, sizeof(tid)),
1109 		   is_multicast_ether_addr(ieee80211_get_DA(hdr)) ?
1110 							"mcast" : "ucast",
1111 		   (__le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_SEQ) >> 4,
1112 		   (status->encoding == RX_ENC_LEGACY) ? "legacy" : "",
1113 		   (status->encoding == RX_ENC_HT) ? "ht" : "",
1114 		   (status->encoding == RX_ENC_VHT) ? "vht" : "",
1115 		   (status->bw == RATE_INFO_BW_40) ? "40" : "",
1116 		   (status->bw == RATE_INFO_BW_80) ? "80" : "",
1117 		   (status->bw == RATE_INFO_BW_160) ? "160" : "",
1118 		   status->enc_flags & RX_ENC_FLAG_SHORT_GI ? "sgi " : "",
1119 		   status->rate_idx,
1120 		   status->nss,
1121 		   status->freq,
1122 		   status->band, status->flag,
1123 		   !!(status->flag & RX_FLAG_FAILED_FCS_CRC),
1124 		   !!(status->flag & RX_FLAG_MMIC_ERROR),
1125 		   !!(status->flag & RX_FLAG_AMSDU_MORE));
1126 	ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "rx skb: ",
1127 			skb->data, skb->len);
1128 	trace_ath10k_rx_hdr(ar, skb->data, skb->len);
1129 	trace_ath10k_rx_payload(ar, skb->data, skb->len);
1130 
1131 	ieee80211_rx_napi(ar->hw, NULL, skb, &ar->napi);
1132 }
1133 
1134 static int ath10k_htt_rx_nwifi_hdrlen(struct ath10k *ar,
1135 				      struct ieee80211_hdr *hdr)
1136 {
1137 	int len = ieee80211_hdrlen(hdr->frame_control);
1138 
1139 	if (!test_bit(ATH10K_FW_FEATURE_NO_NWIFI_DECAP_4ADDR_PADDING,
1140 		      ar->running_fw->fw_file.fw_features))
1141 		len = round_up(len, 4);
1142 
1143 	return len;
1144 }
1145 
1146 static void ath10k_htt_rx_h_undecap_raw(struct ath10k *ar,
1147 					struct sk_buff *msdu,
1148 					struct ieee80211_rx_status *status,
1149 					enum htt_rx_mpdu_encrypt_type enctype,
1150 					bool is_decrypted)
1151 {
1152 	struct ieee80211_hdr *hdr;
1153 	struct htt_rx_desc *rxd;
1154 	size_t hdr_len;
1155 	size_t crypto_len;
1156 	bool is_first;
1157 	bool is_last;
1158 
1159 	rxd = (void *)msdu->data - sizeof(*rxd);
1160 	is_first = !!(rxd->msdu_end.common.info0 &
1161 		      __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU));
1162 	is_last = !!(rxd->msdu_end.common.info0 &
1163 		     __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU));
1164 
1165 	/* Delivered decapped frame:
1166 	 * [802.11 header]
1167 	 * [crypto param] <-- can be trimmed if !fcs_err &&
1168 	 *                    !decrypt_err && !peer_idx_invalid
1169 	 * [amsdu header] <-- only if A-MSDU
1170 	 * [rfc1042/llc]
1171 	 * [payload]
1172 	 * [FCS] <-- at end, needs to be trimmed
1173 	 */
1174 
1175 	/* This probably shouldn't happen but warn just in case */
1176 	if (unlikely(WARN_ON_ONCE(!is_first)))
1177 		return;
1178 
1179 	/* This probably shouldn't happen but warn just in case */
1180 	if (unlikely(WARN_ON_ONCE(!(is_first && is_last))))
1181 		return;
1182 
1183 	skb_trim(msdu, msdu->len - FCS_LEN);
1184 
1185 	/* In most cases this will be true for sniffed frames. It makes sense
1186 	 * to deliver them as-is without stripping the crypto param. This is
1187 	 * necessary for software based decryption.
1188 	 *
1189 	 * If there's no error then the frame is decrypted. At least that is
1190 	 * the case for frames that come in via fragmented rx indication.
1191 	 */
1192 	if (!is_decrypted)
1193 		return;
1194 
1195 	/* The payload is decrypted so strip crypto params. Start from tail
1196 	 * since hdr is used to compute some stuff.
1197 	 */
1198 
1199 	hdr = (void *)msdu->data;
1200 
1201 	/* Tail */
1202 	if (status->flag & RX_FLAG_IV_STRIPPED) {
1203 		skb_trim(msdu, msdu->len -
1204 			 ath10k_htt_rx_crypto_mic_len(ar, enctype));
1205 
1206 		skb_trim(msdu, msdu->len -
1207 			 ath10k_htt_rx_crypto_icv_len(ar, enctype));
1208 	} else {
1209 		/* MIC */
1210 		if (status->flag & RX_FLAG_MIC_STRIPPED)
1211 			skb_trim(msdu, msdu->len -
1212 				 ath10k_htt_rx_crypto_mic_len(ar, enctype));
1213 
1214 		/* ICV */
1215 		if (status->flag & RX_FLAG_ICV_STRIPPED)
1216 			skb_trim(msdu, msdu->len -
1217 				 ath10k_htt_rx_crypto_icv_len(ar, enctype));
1218 	}
1219 
1220 	/* MMIC */
1221 	if ((status->flag & RX_FLAG_MMIC_STRIPPED) &&
1222 	    !ieee80211_has_morefrags(hdr->frame_control) &&
1223 	    enctype == HTT_RX_MPDU_ENCRYPT_TKIP_WPA)
1224 		skb_trim(msdu, msdu->len - MICHAEL_MIC_LEN);
1225 
1226 	/* Head */
1227 	if (status->flag & RX_FLAG_IV_STRIPPED) {
1228 		hdr_len = ieee80211_hdrlen(hdr->frame_control);
1229 		crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype);
1230 
1231 		memmove((void *)msdu->data + crypto_len,
1232 			(void *)msdu->data, hdr_len);
1233 		skb_pull(msdu, crypto_len);
1234 	}
1235 }
1236 
1237 static void ath10k_htt_rx_h_undecap_nwifi(struct ath10k *ar,
1238 					  struct sk_buff *msdu,
1239 					  struct ieee80211_rx_status *status,
1240 					  const u8 first_hdr[64],
1241 					  enum htt_rx_mpdu_encrypt_type enctype)
1242 {
1243 	struct ieee80211_hdr *hdr;
1244 	struct htt_rx_desc *rxd;
1245 	size_t hdr_len;
1246 	u8 da[ETH_ALEN];
1247 	u8 sa[ETH_ALEN];
1248 	int l3_pad_bytes;
1249 	int bytes_aligned = ar->hw_params.decap_align_bytes;
1250 
1251 	/* Delivered decapped frame:
1252 	 * [nwifi 802.11 header] <-- replaced with 802.11 hdr
1253 	 * [rfc1042/llc]
1254 	 *
1255 	 * Note: The nwifi header doesn't have QoS Control and is
1256 	 * (always?) a 3addr frame.
1257 	 *
1258 	 * Note2: There's no A-MSDU subframe header. Even if it's part
1259 	 * of an A-MSDU.
1260 	 */
1261 
1262 	/* pull decapped header and copy SA & DA */
1263 	rxd = (void *)msdu->data - sizeof(*rxd);
1264 
1265 	l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd);
1266 	skb_put(msdu, l3_pad_bytes);
1267 
1268 	hdr = (struct ieee80211_hdr *)(msdu->data + l3_pad_bytes);
1269 
1270 	hdr_len = ath10k_htt_rx_nwifi_hdrlen(ar, hdr);
1271 	ether_addr_copy(da, ieee80211_get_DA(hdr));
1272 	ether_addr_copy(sa, ieee80211_get_SA(hdr));
1273 	skb_pull(msdu, hdr_len);
1274 
1275 	/* push original 802.11 header */
1276 	hdr = (struct ieee80211_hdr *)first_hdr;
1277 	hdr_len = ieee80211_hdrlen(hdr->frame_control);
1278 
1279 	if (!(status->flag & RX_FLAG_IV_STRIPPED)) {
1280 		memcpy(skb_push(msdu,
1281 				ath10k_htt_rx_crypto_param_len(ar, enctype)),
1282 		       (void *)hdr + round_up(hdr_len, bytes_aligned),
1283 			ath10k_htt_rx_crypto_param_len(ar, enctype));
1284 	}
1285 
1286 	memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1287 
1288 	/* original 802.11 header has a different DA and in
1289 	 * case of 4addr it may also have different SA
1290 	 */
1291 	hdr = (struct ieee80211_hdr *)msdu->data;
1292 	ether_addr_copy(ieee80211_get_DA(hdr), da);
1293 	ether_addr_copy(ieee80211_get_SA(hdr), sa);
1294 }
1295 
1296 static void *ath10k_htt_rx_h_find_rfc1042(struct ath10k *ar,
1297 					  struct sk_buff *msdu,
1298 					  enum htt_rx_mpdu_encrypt_type enctype)
1299 {
1300 	struct ieee80211_hdr *hdr;
1301 	struct htt_rx_desc *rxd;
1302 	size_t hdr_len, crypto_len;
1303 	void *rfc1042;
1304 	bool is_first, is_last, is_amsdu;
1305 	int bytes_aligned = ar->hw_params.decap_align_bytes;
1306 
1307 	rxd = (void *)msdu->data - sizeof(*rxd);
1308 	hdr = (void *)rxd->rx_hdr_status;
1309 
1310 	is_first = !!(rxd->msdu_end.common.info0 &
1311 		      __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU));
1312 	is_last = !!(rxd->msdu_end.common.info0 &
1313 		     __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU));
1314 	is_amsdu = !(is_first && is_last);
1315 
1316 	rfc1042 = hdr;
1317 
1318 	if (is_first) {
1319 		hdr_len = ieee80211_hdrlen(hdr->frame_control);
1320 		crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype);
1321 
1322 		rfc1042 += round_up(hdr_len, bytes_aligned) +
1323 			   round_up(crypto_len, bytes_aligned);
1324 	}
1325 
1326 	if (is_amsdu)
1327 		rfc1042 += sizeof(struct amsdu_subframe_hdr);
1328 
1329 	return rfc1042;
1330 }
1331 
1332 static void ath10k_htt_rx_h_undecap_eth(struct ath10k *ar,
1333 					struct sk_buff *msdu,
1334 					struct ieee80211_rx_status *status,
1335 					const u8 first_hdr[64],
1336 					enum htt_rx_mpdu_encrypt_type enctype)
1337 {
1338 	struct ieee80211_hdr *hdr;
1339 	struct ethhdr *eth;
1340 	size_t hdr_len;
1341 	void *rfc1042;
1342 	u8 da[ETH_ALEN];
1343 	u8 sa[ETH_ALEN];
1344 	int l3_pad_bytes;
1345 	struct htt_rx_desc *rxd;
1346 	int bytes_aligned = ar->hw_params.decap_align_bytes;
1347 
1348 	/* Delivered decapped frame:
1349 	 * [eth header] <-- replaced with 802.11 hdr & rfc1042/llc
1350 	 * [payload]
1351 	 */
1352 
1353 	rfc1042 = ath10k_htt_rx_h_find_rfc1042(ar, msdu, enctype);
1354 	if (WARN_ON_ONCE(!rfc1042))
1355 		return;
1356 
1357 	rxd = (void *)msdu->data - sizeof(*rxd);
1358 	l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd);
1359 	skb_put(msdu, l3_pad_bytes);
1360 	skb_pull(msdu, l3_pad_bytes);
1361 
1362 	/* pull decapped header and copy SA & DA */
1363 	eth = (struct ethhdr *)msdu->data;
1364 	ether_addr_copy(da, eth->h_dest);
1365 	ether_addr_copy(sa, eth->h_source);
1366 	skb_pull(msdu, sizeof(struct ethhdr));
1367 
1368 	/* push rfc1042/llc/snap */
1369 	memcpy(skb_push(msdu, sizeof(struct rfc1042_hdr)), rfc1042,
1370 	       sizeof(struct rfc1042_hdr));
1371 
1372 	/* push original 802.11 header */
1373 	hdr = (struct ieee80211_hdr *)first_hdr;
1374 	hdr_len = ieee80211_hdrlen(hdr->frame_control);
1375 
1376 	if (!(status->flag & RX_FLAG_IV_STRIPPED)) {
1377 		memcpy(skb_push(msdu,
1378 				ath10k_htt_rx_crypto_param_len(ar, enctype)),
1379 		       (void *)hdr + round_up(hdr_len, bytes_aligned),
1380 			ath10k_htt_rx_crypto_param_len(ar, enctype));
1381 	}
1382 
1383 	memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1384 
1385 	/* original 802.11 header has a different DA and in
1386 	 * case of 4addr it may also have different SA
1387 	 */
1388 	hdr = (struct ieee80211_hdr *)msdu->data;
1389 	ether_addr_copy(ieee80211_get_DA(hdr), da);
1390 	ether_addr_copy(ieee80211_get_SA(hdr), sa);
1391 }
1392 
1393 static void ath10k_htt_rx_h_undecap_snap(struct ath10k *ar,
1394 					 struct sk_buff *msdu,
1395 					 struct ieee80211_rx_status *status,
1396 					 const u8 first_hdr[64],
1397 					 enum htt_rx_mpdu_encrypt_type enctype)
1398 {
1399 	struct ieee80211_hdr *hdr;
1400 	size_t hdr_len;
1401 	int l3_pad_bytes;
1402 	struct htt_rx_desc *rxd;
1403 	int bytes_aligned = ar->hw_params.decap_align_bytes;
1404 
1405 	/* Delivered decapped frame:
1406 	 * [amsdu header] <-- replaced with 802.11 hdr
1407 	 * [rfc1042/llc]
1408 	 * [payload]
1409 	 */
1410 
1411 	rxd = (void *)msdu->data - sizeof(*rxd);
1412 	l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd);
1413 
1414 	skb_put(msdu, l3_pad_bytes);
1415 	skb_pull(msdu, sizeof(struct amsdu_subframe_hdr) + l3_pad_bytes);
1416 
1417 	hdr = (struct ieee80211_hdr *)first_hdr;
1418 	hdr_len = ieee80211_hdrlen(hdr->frame_control);
1419 
1420 	if (!(status->flag & RX_FLAG_IV_STRIPPED)) {
1421 		memcpy(skb_push(msdu,
1422 				ath10k_htt_rx_crypto_param_len(ar, enctype)),
1423 		       (void *)hdr + round_up(hdr_len, bytes_aligned),
1424 			ath10k_htt_rx_crypto_param_len(ar, enctype));
1425 	}
1426 
1427 	memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1428 }
1429 
1430 static void ath10k_htt_rx_h_undecap(struct ath10k *ar,
1431 				    struct sk_buff *msdu,
1432 				    struct ieee80211_rx_status *status,
1433 				    u8 first_hdr[64],
1434 				    enum htt_rx_mpdu_encrypt_type enctype,
1435 				    bool is_decrypted)
1436 {
1437 	struct htt_rx_desc *rxd;
1438 	enum rx_msdu_decap_format decap;
1439 
1440 	/* First msdu's decapped header:
1441 	 * [802.11 header] <-- padded to 4 bytes long
1442 	 * [crypto param] <-- padded to 4 bytes long
1443 	 * [amsdu header] <-- only if A-MSDU
1444 	 * [rfc1042/llc]
1445 	 *
1446 	 * Other (2nd, 3rd, ..) msdu's decapped header:
1447 	 * [amsdu header] <-- only if A-MSDU
1448 	 * [rfc1042/llc]
1449 	 */
1450 
1451 	rxd = (void *)msdu->data - sizeof(*rxd);
1452 	decap = MS(__le32_to_cpu(rxd->msdu_start.common.info1),
1453 		   RX_MSDU_START_INFO1_DECAP_FORMAT);
1454 
1455 	switch (decap) {
1456 	case RX_MSDU_DECAP_RAW:
1457 		ath10k_htt_rx_h_undecap_raw(ar, msdu, status, enctype,
1458 					    is_decrypted);
1459 		break;
1460 	case RX_MSDU_DECAP_NATIVE_WIFI:
1461 		ath10k_htt_rx_h_undecap_nwifi(ar, msdu, status, first_hdr,
1462 					      enctype);
1463 		break;
1464 	case RX_MSDU_DECAP_ETHERNET2_DIX:
1465 		ath10k_htt_rx_h_undecap_eth(ar, msdu, status, first_hdr, enctype);
1466 		break;
1467 	case RX_MSDU_DECAP_8023_SNAP_LLC:
1468 		ath10k_htt_rx_h_undecap_snap(ar, msdu, status, first_hdr,
1469 					     enctype);
1470 		break;
1471 	}
1472 }
1473 
1474 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb)
1475 {
1476 	struct htt_rx_desc *rxd;
1477 	u32 flags, info;
1478 	bool is_ip4, is_ip6;
1479 	bool is_tcp, is_udp;
1480 	bool ip_csum_ok, tcpudp_csum_ok;
1481 
1482 	rxd = (void *)skb->data - sizeof(*rxd);
1483 	flags = __le32_to_cpu(rxd->attention.flags);
1484 	info = __le32_to_cpu(rxd->msdu_start.common.info1);
1485 
1486 	is_ip4 = !!(info & RX_MSDU_START_INFO1_IPV4_PROTO);
1487 	is_ip6 = !!(info & RX_MSDU_START_INFO1_IPV6_PROTO);
1488 	is_tcp = !!(info & RX_MSDU_START_INFO1_TCP_PROTO);
1489 	is_udp = !!(info & RX_MSDU_START_INFO1_UDP_PROTO);
1490 	ip_csum_ok = !(flags & RX_ATTENTION_FLAGS_IP_CHKSUM_FAIL);
1491 	tcpudp_csum_ok = !(flags & RX_ATTENTION_FLAGS_TCP_UDP_CHKSUM_FAIL);
1492 
1493 	if (!is_ip4 && !is_ip6)
1494 		return CHECKSUM_NONE;
1495 	if (!is_tcp && !is_udp)
1496 		return CHECKSUM_NONE;
1497 	if (!ip_csum_ok)
1498 		return CHECKSUM_NONE;
1499 	if (!tcpudp_csum_ok)
1500 		return CHECKSUM_NONE;
1501 
1502 	return CHECKSUM_UNNECESSARY;
1503 }
1504 
1505 static void ath10k_htt_rx_h_csum_offload(struct sk_buff *msdu)
1506 {
1507 	msdu->ip_summed = ath10k_htt_rx_get_csum_state(msdu);
1508 }
1509 
1510 static void ath10k_htt_rx_h_mpdu(struct ath10k *ar,
1511 				 struct sk_buff_head *amsdu,
1512 				 struct ieee80211_rx_status *status,
1513 				 bool fill_crypt_header,
1514 				 u8 *rx_hdr,
1515 				 enum ath10k_pkt_rx_err *err)
1516 {
1517 	struct sk_buff *first;
1518 	struct sk_buff *last;
1519 	struct sk_buff *msdu;
1520 	struct htt_rx_desc *rxd;
1521 	struct ieee80211_hdr *hdr;
1522 	enum htt_rx_mpdu_encrypt_type enctype;
1523 	u8 first_hdr[64];
1524 	u8 *qos;
1525 	bool has_fcs_err;
1526 	bool has_crypto_err;
1527 	bool has_tkip_err;
1528 	bool has_peer_idx_invalid;
1529 	bool is_decrypted;
1530 	bool is_mgmt;
1531 	u32 attention;
1532 
1533 	if (skb_queue_empty(amsdu))
1534 		return;
1535 
1536 	first = skb_peek(amsdu);
1537 	rxd = (void *)first->data - sizeof(*rxd);
1538 
1539 	is_mgmt = !!(rxd->attention.flags &
1540 		     __cpu_to_le32(RX_ATTENTION_FLAGS_MGMT_TYPE));
1541 
1542 	enctype = MS(__le32_to_cpu(rxd->mpdu_start.info0),
1543 		     RX_MPDU_START_INFO0_ENCRYPT_TYPE);
1544 
1545 	/* First MSDU's Rx descriptor in an A-MSDU contains full 802.11
1546 	 * decapped header. It'll be used for undecapping of each MSDU.
1547 	 */
1548 	hdr = (void *)rxd->rx_hdr_status;
1549 	memcpy(first_hdr, hdr, RX_HTT_HDR_STATUS_LEN);
1550 
1551 	if (rx_hdr)
1552 		memcpy(rx_hdr, hdr, RX_HTT_HDR_STATUS_LEN);
1553 
1554 	/* Each A-MSDU subframe will use the original header as the base and be
1555 	 * reported as a separate MSDU so strip the A-MSDU bit from QoS Ctl.
1556 	 */
1557 	hdr = (void *)first_hdr;
1558 
1559 	if (ieee80211_is_data_qos(hdr->frame_control)) {
1560 		qos = ieee80211_get_qos_ctl(hdr);
1561 		qos[0] &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
1562 	}
1563 
1564 	/* Some attention flags are valid only in the last MSDU. */
1565 	last = skb_peek_tail(amsdu);
1566 	rxd = (void *)last->data - sizeof(*rxd);
1567 	attention = __le32_to_cpu(rxd->attention.flags);
1568 
1569 	has_fcs_err = !!(attention & RX_ATTENTION_FLAGS_FCS_ERR);
1570 	has_crypto_err = !!(attention & RX_ATTENTION_FLAGS_DECRYPT_ERR);
1571 	has_tkip_err = !!(attention & RX_ATTENTION_FLAGS_TKIP_MIC_ERR);
1572 	has_peer_idx_invalid = !!(attention & RX_ATTENTION_FLAGS_PEER_IDX_INVALID);
1573 
1574 	/* Note: If hardware captures an encrypted frame that it can't decrypt,
1575 	 * e.g. due to fcs error, missing peer or invalid key data it will
1576 	 * report the frame as raw.
1577 	 */
1578 	is_decrypted = (enctype != HTT_RX_MPDU_ENCRYPT_NONE &&
1579 			!has_fcs_err &&
1580 			!has_crypto_err &&
1581 			!has_peer_idx_invalid);
1582 
1583 	/* Clear per-MPDU flags while leaving per-PPDU flags intact. */
1584 	status->flag &= ~(RX_FLAG_FAILED_FCS_CRC |
1585 			  RX_FLAG_MMIC_ERROR |
1586 			  RX_FLAG_DECRYPTED |
1587 			  RX_FLAG_IV_STRIPPED |
1588 			  RX_FLAG_ONLY_MONITOR |
1589 			  RX_FLAG_MMIC_STRIPPED);
1590 
1591 	if (has_fcs_err)
1592 		status->flag |= RX_FLAG_FAILED_FCS_CRC;
1593 
1594 	if (has_tkip_err)
1595 		status->flag |= RX_FLAG_MMIC_ERROR;
1596 
1597 	if (err) {
1598 		if (has_fcs_err)
1599 			*err = ATH10K_PKT_RX_ERR_FCS;
1600 		else if (has_tkip_err)
1601 			*err = ATH10K_PKT_RX_ERR_TKIP;
1602 		else if (has_crypto_err)
1603 			*err = ATH10K_PKT_RX_ERR_CRYPT;
1604 		else if (has_peer_idx_invalid)
1605 			*err = ATH10K_PKT_RX_ERR_PEER_IDX_INVAL;
1606 	}
1607 
1608 	/* Firmware reports all necessary management frames via WMI already.
1609 	 * They are not reported to monitor interfaces at all so pass the ones
1610 	 * coming via HTT to monitor interfaces instead. This simplifies
1611 	 * matters a lot.
1612 	 */
1613 	if (is_mgmt)
1614 		status->flag |= RX_FLAG_ONLY_MONITOR;
1615 
1616 	if (is_decrypted) {
1617 		status->flag |= RX_FLAG_DECRYPTED;
1618 
1619 		if (likely(!is_mgmt))
1620 			status->flag |= RX_FLAG_MMIC_STRIPPED;
1621 
1622 		if (fill_crypt_header)
1623 			status->flag |= RX_FLAG_MIC_STRIPPED |
1624 					RX_FLAG_ICV_STRIPPED;
1625 		else
1626 			status->flag |= RX_FLAG_IV_STRIPPED;
1627 	}
1628 
1629 	skb_queue_walk(amsdu, msdu) {
1630 		ath10k_htt_rx_h_csum_offload(msdu);
1631 		ath10k_htt_rx_h_undecap(ar, msdu, status, first_hdr, enctype,
1632 					is_decrypted);
1633 
1634 		/* Undecapping involves copying the original 802.11 header back
1635 		 * to sk_buff. If frame is protected and hardware has decrypted
1636 		 * it then remove the protected bit.
1637 		 */
1638 		if (!is_decrypted)
1639 			continue;
1640 		if (is_mgmt)
1641 			continue;
1642 
1643 		if (fill_crypt_header)
1644 			continue;
1645 
1646 		hdr = (void *)msdu->data;
1647 		hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED);
1648 	}
1649 }
1650 
1651 static void ath10k_htt_rx_h_enqueue(struct ath10k *ar,
1652 				    struct sk_buff_head *amsdu,
1653 				    struct ieee80211_rx_status *status)
1654 {
1655 	struct sk_buff *msdu;
1656 	struct sk_buff *first_subframe;
1657 
1658 	first_subframe = skb_peek(amsdu);
1659 
1660 	while ((msdu = __skb_dequeue(amsdu))) {
1661 		/* Setup per-MSDU flags */
1662 		if (skb_queue_empty(amsdu))
1663 			status->flag &= ~RX_FLAG_AMSDU_MORE;
1664 		else
1665 			status->flag |= RX_FLAG_AMSDU_MORE;
1666 
1667 		if (msdu == first_subframe) {
1668 			first_subframe = NULL;
1669 			status->flag &= ~RX_FLAG_ALLOW_SAME_PN;
1670 		} else {
1671 			status->flag |= RX_FLAG_ALLOW_SAME_PN;
1672 		}
1673 
1674 		ath10k_htt_rx_h_queue_msdu(ar, status, msdu);
1675 	}
1676 }
1677 
1678 static int ath10k_unchain_msdu(struct sk_buff_head *amsdu,
1679 			       unsigned long int *unchain_cnt)
1680 {
1681 	struct sk_buff *skb, *first;
1682 	int space;
1683 	int total_len = 0;
1684 	int amsdu_len = skb_queue_len(amsdu);
1685 
1686 	/* TODO:  Might could optimize this by using
1687 	 * skb_try_coalesce or similar method to
1688 	 * decrease copying, or maybe get mac80211 to
1689 	 * provide a way to just receive a list of
1690 	 * skb?
1691 	 */
1692 
1693 	first = __skb_dequeue(amsdu);
1694 
1695 	/* Allocate total length all at once. */
1696 	skb_queue_walk(amsdu, skb)
1697 		total_len += skb->len;
1698 
1699 	space = total_len - skb_tailroom(first);
1700 	if ((space > 0) &&
1701 	    (pskb_expand_head(first, 0, space, GFP_ATOMIC) < 0)) {
1702 		/* TODO:  bump some rx-oom error stat */
1703 		/* put it back together so we can free the
1704 		 * whole list at once.
1705 		 */
1706 		__skb_queue_head(amsdu, first);
1707 		return -1;
1708 	}
1709 
1710 	/* Walk list again, copying contents into
1711 	 * msdu_head
1712 	 */
1713 	while ((skb = __skb_dequeue(amsdu))) {
1714 		skb_copy_from_linear_data(skb, skb_put(first, skb->len),
1715 					  skb->len);
1716 		dev_kfree_skb_any(skb);
1717 	}
1718 
1719 	__skb_queue_head(amsdu, first);
1720 
1721 	*unchain_cnt += amsdu_len - 1;
1722 
1723 	return 0;
1724 }
1725 
1726 static void ath10k_htt_rx_h_unchain(struct ath10k *ar,
1727 				    struct sk_buff_head *amsdu,
1728 				    unsigned long int *drop_cnt,
1729 				    unsigned long int *unchain_cnt)
1730 {
1731 	struct sk_buff *first;
1732 	struct htt_rx_desc *rxd;
1733 	enum rx_msdu_decap_format decap;
1734 
1735 	first = skb_peek(amsdu);
1736 	rxd = (void *)first->data - sizeof(*rxd);
1737 	decap = MS(__le32_to_cpu(rxd->msdu_start.common.info1),
1738 		   RX_MSDU_START_INFO1_DECAP_FORMAT);
1739 
1740 	/* FIXME: Current unchaining logic can only handle simple case of raw
1741 	 * msdu chaining. If decapping is other than raw the chaining may be
1742 	 * more complex and this isn't handled by the current code. Don't even
1743 	 * try re-constructing such frames - it'll be pretty much garbage.
1744 	 */
1745 	if (decap != RX_MSDU_DECAP_RAW ||
1746 	    skb_queue_len(amsdu) != 1 + rxd->frag_info.ring2_more_count) {
1747 		*drop_cnt += skb_queue_len(amsdu);
1748 		__skb_queue_purge(amsdu);
1749 		return;
1750 	}
1751 
1752 	ath10k_unchain_msdu(amsdu, unchain_cnt);
1753 }
1754 
1755 static bool ath10k_htt_rx_amsdu_allowed(struct ath10k *ar,
1756 					struct sk_buff_head *amsdu,
1757 					struct ieee80211_rx_status *rx_status)
1758 {
1759 	/* FIXME: It might be a good idea to do some fuzzy-testing to drop
1760 	 * invalid/dangerous frames.
1761 	 */
1762 
1763 	if (!rx_status->freq) {
1764 		ath10k_dbg(ar, ATH10K_DBG_HTT, "no channel configured; ignoring frame(s)!\n");
1765 		return false;
1766 	}
1767 
1768 	if (test_bit(ATH10K_CAC_RUNNING, &ar->dev_flags)) {
1769 		ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx cac running\n");
1770 		return false;
1771 	}
1772 
1773 	return true;
1774 }
1775 
1776 static void ath10k_htt_rx_h_filter(struct ath10k *ar,
1777 				   struct sk_buff_head *amsdu,
1778 				   struct ieee80211_rx_status *rx_status,
1779 				   unsigned long int *drop_cnt)
1780 {
1781 	if (skb_queue_empty(amsdu))
1782 		return;
1783 
1784 	if (ath10k_htt_rx_amsdu_allowed(ar, amsdu, rx_status))
1785 		return;
1786 
1787 	if (drop_cnt)
1788 		*drop_cnt += skb_queue_len(amsdu);
1789 
1790 	__skb_queue_purge(amsdu);
1791 }
1792 
1793 static int ath10k_htt_rx_handle_amsdu(struct ath10k_htt *htt)
1794 {
1795 	struct ath10k *ar = htt->ar;
1796 	struct ieee80211_rx_status *rx_status = &htt->rx_status;
1797 	struct sk_buff_head amsdu;
1798 	int ret;
1799 	unsigned long int drop_cnt = 0;
1800 	unsigned long int unchain_cnt = 0;
1801 	unsigned long int drop_cnt_filter = 0;
1802 	unsigned long int msdus_to_queue, num_msdus;
1803 	enum ath10k_pkt_rx_err err = ATH10K_PKT_RX_ERR_MAX;
1804 	u8 first_hdr[RX_HTT_HDR_STATUS_LEN];
1805 
1806 	__skb_queue_head_init(&amsdu);
1807 
1808 	spin_lock_bh(&htt->rx_ring.lock);
1809 	if (htt->rx_confused) {
1810 		spin_unlock_bh(&htt->rx_ring.lock);
1811 		return -EIO;
1812 	}
1813 	ret = ath10k_htt_rx_amsdu_pop(htt, &amsdu);
1814 	spin_unlock_bh(&htt->rx_ring.lock);
1815 
1816 	if (ret < 0) {
1817 		ath10k_warn(ar, "rx ring became corrupted: %d\n", ret);
1818 		__skb_queue_purge(&amsdu);
1819 		/* FIXME: It's probably a good idea to reboot the
1820 		 * device instead of leaving it inoperable.
1821 		 */
1822 		htt->rx_confused = true;
1823 		return ret;
1824 	}
1825 
1826 	num_msdus = skb_queue_len(&amsdu);
1827 
1828 	ath10k_htt_rx_h_ppdu(ar, &amsdu, rx_status, 0xffff);
1829 
1830 	/* only for ret = 1 indicates chained msdus */
1831 	if (ret > 0)
1832 		ath10k_htt_rx_h_unchain(ar, &amsdu, &drop_cnt, &unchain_cnt);
1833 
1834 	ath10k_htt_rx_h_filter(ar, &amsdu, rx_status, &drop_cnt_filter);
1835 	ath10k_htt_rx_h_mpdu(ar, &amsdu, rx_status, true, first_hdr, &err);
1836 	msdus_to_queue = skb_queue_len(&amsdu);
1837 	ath10k_htt_rx_h_enqueue(ar, &amsdu, rx_status);
1838 
1839 	ath10k_sta_update_rx_tid_stats(ar, first_hdr, num_msdus, err,
1840 				       unchain_cnt, drop_cnt, drop_cnt_filter,
1841 				       msdus_to_queue);
1842 
1843 	return 0;
1844 }
1845 
1846 static void ath10k_htt_rx_proc_rx_ind(struct ath10k_htt *htt,
1847 				      struct htt_rx_indication *rx)
1848 {
1849 	struct ath10k *ar = htt->ar;
1850 	struct htt_rx_indication_mpdu_range *mpdu_ranges;
1851 	int num_mpdu_ranges;
1852 	int i, mpdu_count = 0;
1853 	u16 peer_id;
1854 	u8 tid;
1855 
1856 	num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1),
1857 			     HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES);
1858 	peer_id = __le16_to_cpu(rx->hdr.peer_id);
1859 	tid =  MS(rx->hdr.info0, HTT_RX_INDICATION_INFO0_EXT_TID);
1860 
1861 	mpdu_ranges = htt_rx_ind_get_mpdu_ranges(rx);
1862 
1863 	ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx ind: ",
1864 			rx, sizeof(*rx) +
1865 			(sizeof(struct htt_rx_indication_mpdu_range) *
1866 				num_mpdu_ranges));
1867 
1868 	for (i = 0; i < num_mpdu_ranges; i++)
1869 		mpdu_count += mpdu_ranges[i].mpdu_count;
1870 
1871 	atomic_add(mpdu_count, &htt->num_mpdus_ready);
1872 
1873 	ath10k_sta_update_rx_tid_stats_ampdu(ar, peer_id, tid, mpdu_ranges,
1874 					     num_mpdu_ranges);
1875 }
1876 
1877 static void ath10k_htt_rx_tx_compl_ind(struct ath10k *ar,
1878 				       struct sk_buff *skb)
1879 {
1880 	struct ath10k_htt *htt = &ar->htt;
1881 	struct htt_resp *resp = (struct htt_resp *)skb->data;
1882 	struct htt_tx_done tx_done = {};
1883 	int status = MS(resp->data_tx_completion.flags, HTT_DATA_TX_STATUS);
1884 	__le16 msdu_id;
1885 	int i;
1886 
1887 	switch (status) {
1888 	case HTT_DATA_TX_STATUS_NO_ACK:
1889 		tx_done.status = HTT_TX_COMPL_STATE_NOACK;
1890 		break;
1891 	case HTT_DATA_TX_STATUS_OK:
1892 		tx_done.status = HTT_TX_COMPL_STATE_ACK;
1893 		break;
1894 	case HTT_DATA_TX_STATUS_DISCARD:
1895 	case HTT_DATA_TX_STATUS_POSTPONE:
1896 	case HTT_DATA_TX_STATUS_DOWNLOAD_FAIL:
1897 		tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
1898 		break;
1899 	default:
1900 		ath10k_warn(ar, "unhandled tx completion status %d\n", status);
1901 		tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
1902 		break;
1903 	}
1904 
1905 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx completion num_msdus %d\n",
1906 		   resp->data_tx_completion.num_msdus);
1907 
1908 	for (i = 0; i < resp->data_tx_completion.num_msdus; i++) {
1909 		msdu_id = resp->data_tx_completion.msdus[i];
1910 		tx_done.msdu_id = __le16_to_cpu(msdu_id);
1911 
1912 		/* kfifo_put: In practice firmware shouldn't fire off per-CE
1913 		 * interrupt and main interrupt (MSI/-X range case) for the same
1914 		 * HTC service so it should be safe to use kfifo_put w/o lock.
1915 		 *
1916 		 * From kfifo_put() documentation:
1917 		 *  Note that with only one concurrent reader and one concurrent
1918 		 *  writer, you don't need extra locking to use these macro.
1919 		 */
1920 		if (!kfifo_put(&htt->txdone_fifo, tx_done)) {
1921 			ath10k_warn(ar, "txdone fifo overrun, msdu_id %d status %d\n",
1922 				    tx_done.msdu_id, tx_done.status);
1923 			ath10k_txrx_tx_unref(htt, &tx_done);
1924 		}
1925 	}
1926 }
1927 
1928 static void ath10k_htt_rx_addba(struct ath10k *ar, struct htt_resp *resp)
1929 {
1930 	struct htt_rx_addba *ev = &resp->rx_addba;
1931 	struct ath10k_peer *peer;
1932 	struct ath10k_vif *arvif;
1933 	u16 info0, tid, peer_id;
1934 
1935 	info0 = __le16_to_cpu(ev->info0);
1936 	tid = MS(info0, HTT_RX_BA_INFO0_TID);
1937 	peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID);
1938 
1939 	ath10k_dbg(ar, ATH10K_DBG_HTT,
1940 		   "htt rx addba tid %hu peer_id %hu size %hhu\n",
1941 		   tid, peer_id, ev->window_size);
1942 
1943 	spin_lock_bh(&ar->data_lock);
1944 	peer = ath10k_peer_find_by_id(ar, peer_id);
1945 	if (!peer) {
1946 		ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n",
1947 			    peer_id);
1948 		spin_unlock_bh(&ar->data_lock);
1949 		return;
1950 	}
1951 
1952 	arvif = ath10k_get_arvif(ar, peer->vdev_id);
1953 	if (!arvif) {
1954 		ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n",
1955 			    peer->vdev_id);
1956 		spin_unlock_bh(&ar->data_lock);
1957 		return;
1958 	}
1959 
1960 	ath10k_dbg(ar, ATH10K_DBG_HTT,
1961 		   "htt rx start rx ba session sta %pM tid %hu size %hhu\n",
1962 		   peer->addr, tid, ev->window_size);
1963 
1964 	ieee80211_start_rx_ba_session_offl(arvif->vif, peer->addr, tid);
1965 	spin_unlock_bh(&ar->data_lock);
1966 }
1967 
1968 static void ath10k_htt_rx_delba(struct ath10k *ar, struct htt_resp *resp)
1969 {
1970 	struct htt_rx_delba *ev = &resp->rx_delba;
1971 	struct ath10k_peer *peer;
1972 	struct ath10k_vif *arvif;
1973 	u16 info0, tid, peer_id;
1974 
1975 	info0 = __le16_to_cpu(ev->info0);
1976 	tid = MS(info0, HTT_RX_BA_INFO0_TID);
1977 	peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID);
1978 
1979 	ath10k_dbg(ar, ATH10K_DBG_HTT,
1980 		   "htt rx delba tid %hu peer_id %hu\n",
1981 		   tid, peer_id);
1982 
1983 	spin_lock_bh(&ar->data_lock);
1984 	peer = ath10k_peer_find_by_id(ar, peer_id);
1985 	if (!peer) {
1986 		ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n",
1987 			    peer_id);
1988 		spin_unlock_bh(&ar->data_lock);
1989 		return;
1990 	}
1991 
1992 	arvif = ath10k_get_arvif(ar, peer->vdev_id);
1993 	if (!arvif) {
1994 		ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n",
1995 			    peer->vdev_id);
1996 		spin_unlock_bh(&ar->data_lock);
1997 		return;
1998 	}
1999 
2000 	ath10k_dbg(ar, ATH10K_DBG_HTT,
2001 		   "htt rx stop rx ba session sta %pM tid %hu\n",
2002 		   peer->addr, tid);
2003 
2004 	ieee80211_stop_rx_ba_session_offl(arvif->vif, peer->addr, tid);
2005 	spin_unlock_bh(&ar->data_lock);
2006 }
2007 
2008 static int ath10k_htt_rx_extract_amsdu(struct sk_buff_head *list,
2009 				       struct sk_buff_head *amsdu)
2010 {
2011 	struct sk_buff *msdu;
2012 	struct htt_rx_desc *rxd;
2013 
2014 	if (skb_queue_empty(list))
2015 		return -ENOBUFS;
2016 
2017 	if (WARN_ON(!skb_queue_empty(amsdu)))
2018 		return -EINVAL;
2019 
2020 	while ((msdu = __skb_dequeue(list))) {
2021 		__skb_queue_tail(amsdu, msdu);
2022 
2023 		rxd = (void *)msdu->data - sizeof(*rxd);
2024 		if (rxd->msdu_end.common.info0 &
2025 		    __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU))
2026 			break;
2027 	}
2028 
2029 	msdu = skb_peek_tail(amsdu);
2030 	rxd = (void *)msdu->data - sizeof(*rxd);
2031 	if (!(rxd->msdu_end.common.info0 &
2032 	      __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU))) {
2033 		skb_queue_splice_init(amsdu, list);
2034 		return -EAGAIN;
2035 	}
2036 
2037 	return 0;
2038 }
2039 
2040 static void ath10k_htt_rx_h_rx_offload_prot(struct ieee80211_rx_status *status,
2041 					    struct sk_buff *skb)
2042 {
2043 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2044 
2045 	if (!ieee80211_has_protected(hdr->frame_control))
2046 		return;
2047 
2048 	/* Offloaded frames are already decrypted but firmware insists they are
2049 	 * protected in the 802.11 header. Strip the flag.  Otherwise mac80211
2050 	 * will drop the frame.
2051 	 */
2052 
2053 	hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED);
2054 	status->flag |= RX_FLAG_DECRYPTED |
2055 			RX_FLAG_IV_STRIPPED |
2056 			RX_FLAG_MMIC_STRIPPED;
2057 }
2058 
2059 static void ath10k_htt_rx_h_rx_offload(struct ath10k *ar,
2060 				       struct sk_buff_head *list)
2061 {
2062 	struct ath10k_htt *htt = &ar->htt;
2063 	struct ieee80211_rx_status *status = &htt->rx_status;
2064 	struct htt_rx_offload_msdu *rx;
2065 	struct sk_buff *msdu;
2066 	size_t offset;
2067 
2068 	while ((msdu = __skb_dequeue(list))) {
2069 		/* Offloaded frames don't have Rx descriptor. Instead they have
2070 		 * a short meta information header.
2071 		 */
2072 
2073 		rx = (void *)msdu->data;
2074 
2075 		skb_put(msdu, sizeof(*rx));
2076 		skb_pull(msdu, sizeof(*rx));
2077 
2078 		if (skb_tailroom(msdu) < __le16_to_cpu(rx->msdu_len)) {
2079 			ath10k_warn(ar, "dropping frame: offloaded rx msdu is too long!\n");
2080 			dev_kfree_skb_any(msdu);
2081 			continue;
2082 		}
2083 
2084 		skb_put(msdu, __le16_to_cpu(rx->msdu_len));
2085 
2086 		/* Offloaded rx header length isn't multiple of 2 nor 4 so the
2087 		 * actual payload is unaligned. Align the frame.  Otherwise
2088 		 * mac80211 complains.  This shouldn't reduce performance much
2089 		 * because these offloaded frames are rare.
2090 		 */
2091 		offset = 4 - ((unsigned long)msdu->data & 3);
2092 		skb_put(msdu, offset);
2093 		memmove(msdu->data + offset, msdu->data, msdu->len);
2094 		skb_pull(msdu, offset);
2095 
2096 		/* FIXME: The frame is NWifi. Re-construct QoS Control
2097 		 * if possible later.
2098 		 */
2099 
2100 		memset(status, 0, sizeof(*status));
2101 		status->flag |= RX_FLAG_NO_SIGNAL_VAL;
2102 
2103 		ath10k_htt_rx_h_rx_offload_prot(status, msdu);
2104 		ath10k_htt_rx_h_channel(ar, status, NULL, rx->vdev_id);
2105 		ath10k_htt_rx_h_queue_msdu(ar, status, msdu);
2106 	}
2107 }
2108 
2109 static int ath10k_htt_rx_in_ord_ind(struct ath10k *ar, struct sk_buff *skb)
2110 {
2111 	struct ath10k_htt *htt = &ar->htt;
2112 	struct htt_resp *resp = (void *)skb->data;
2113 	struct ieee80211_rx_status *status = &htt->rx_status;
2114 	struct sk_buff_head list;
2115 	struct sk_buff_head amsdu;
2116 	u16 peer_id;
2117 	u16 msdu_count;
2118 	u8 vdev_id;
2119 	u8 tid;
2120 	bool offload;
2121 	bool frag;
2122 	int ret;
2123 
2124 	lockdep_assert_held(&htt->rx_ring.lock);
2125 
2126 	if (htt->rx_confused)
2127 		return -EIO;
2128 
2129 	skb_pull(skb, sizeof(resp->hdr));
2130 	skb_pull(skb, sizeof(resp->rx_in_ord_ind));
2131 
2132 	peer_id = __le16_to_cpu(resp->rx_in_ord_ind.peer_id);
2133 	msdu_count = __le16_to_cpu(resp->rx_in_ord_ind.msdu_count);
2134 	vdev_id = resp->rx_in_ord_ind.vdev_id;
2135 	tid = SM(resp->rx_in_ord_ind.info, HTT_RX_IN_ORD_IND_INFO_TID);
2136 	offload = !!(resp->rx_in_ord_ind.info &
2137 			HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK);
2138 	frag = !!(resp->rx_in_ord_ind.info & HTT_RX_IN_ORD_IND_INFO_FRAG_MASK);
2139 
2140 	ath10k_dbg(ar, ATH10K_DBG_HTT,
2141 		   "htt rx in ord vdev %i peer %i tid %i offload %i frag %i msdu count %i\n",
2142 		   vdev_id, peer_id, tid, offload, frag, msdu_count);
2143 
2144 	if (skb->len < msdu_count * sizeof(*resp->rx_in_ord_ind.msdu_descs32)) {
2145 		ath10k_warn(ar, "dropping invalid in order rx indication\n");
2146 		return -EINVAL;
2147 	}
2148 
2149 	/* The event can deliver more than 1 A-MSDU. Each A-MSDU is later
2150 	 * extracted and processed.
2151 	 */
2152 	__skb_queue_head_init(&list);
2153 	if (ar->hw_params.target_64bit)
2154 		ret = ath10k_htt_rx_pop_paddr64_list(htt, &resp->rx_in_ord_ind,
2155 						     &list);
2156 	else
2157 		ret = ath10k_htt_rx_pop_paddr32_list(htt, &resp->rx_in_ord_ind,
2158 						     &list);
2159 
2160 	if (ret < 0) {
2161 		ath10k_warn(ar, "failed to pop paddr list: %d\n", ret);
2162 		htt->rx_confused = true;
2163 		return -EIO;
2164 	}
2165 
2166 	/* Offloaded frames are very different and need to be handled
2167 	 * separately.
2168 	 */
2169 	if (offload)
2170 		ath10k_htt_rx_h_rx_offload(ar, &list);
2171 
2172 	while (!skb_queue_empty(&list)) {
2173 		__skb_queue_head_init(&amsdu);
2174 		ret = ath10k_htt_rx_extract_amsdu(&list, &amsdu);
2175 		switch (ret) {
2176 		case 0:
2177 			/* Note: The in-order indication may report interleaved
2178 			 * frames from different PPDUs meaning reported rx rate
2179 			 * to mac80211 isn't accurate/reliable. It's still
2180 			 * better to report something than nothing though. This
2181 			 * should still give an idea about rx rate to the user.
2182 			 */
2183 			ath10k_htt_rx_h_ppdu(ar, &amsdu, status, vdev_id);
2184 			ath10k_htt_rx_h_filter(ar, &amsdu, status, NULL);
2185 			ath10k_htt_rx_h_mpdu(ar, &amsdu, status, false, NULL,
2186 					     NULL);
2187 			ath10k_htt_rx_h_enqueue(ar, &amsdu, status);
2188 			break;
2189 		case -EAGAIN:
2190 			/* fall through */
2191 		default:
2192 			/* Should not happen. */
2193 			ath10k_warn(ar, "failed to extract amsdu: %d\n", ret);
2194 			htt->rx_confused = true;
2195 			__skb_queue_purge(&list);
2196 			return -EIO;
2197 		}
2198 	}
2199 	return ret;
2200 }
2201 
2202 static void ath10k_htt_rx_tx_fetch_resp_id_confirm(struct ath10k *ar,
2203 						   const __le32 *resp_ids,
2204 						   int num_resp_ids)
2205 {
2206 	int i;
2207 	u32 resp_id;
2208 
2209 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm num_resp_ids %d\n",
2210 		   num_resp_ids);
2211 
2212 	for (i = 0; i < num_resp_ids; i++) {
2213 		resp_id = le32_to_cpu(resp_ids[i]);
2214 
2215 		ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm resp_id %u\n",
2216 			   resp_id);
2217 
2218 		/* TODO: free resp_id */
2219 	}
2220 }
2221 
2222 static void ath10k_htt_rx_tx_fetch_ind(struct ath10k *ar, struct sk_buff *skb)
2223 {
2224 	struct ieee80211_hw *hw = ar->hw;
2225 	struct ieee80211_txq *txq;
2226 	struct htt_resp *resp = (struct htt_resp *)skb->data;
2227 	struct htt_tx_fetch_record *record;
2228 	size_t len;
2229 	size_t max_num_bytes;
2230 	size_t max_num_msdus;
2231 	size_t num_bytes;
2232 	size_t num_msdus;
2233 	const __le32 *resp_ids;
2234 	u16 num_records;
2235 	u16 num_resp_ids;
2236 	u16 peer_id;
2237 	u8 tid;
2238 	int ret;
2239 	int i;
2240 
2241 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch ind\n");
2242 
2243 	len = sizeof(resp->hdr) + sizeof(resp->tx_fetch_ind);
2244 	if (unlikely(skb->len < len)) {
2245 		ath10k_warn(ar, "received corrupted tx_fetch_ind event: buffer too short\n");
2246 		return;
2247 	}
2248 
2249 	num_records = le16_to_cpu(resp->tx_fetch_ind.num_records);
2250 	num_resp_ids = le16_to_cpu(resp->tx_fetch_ind.num_resp_ids);
2251 
2252 	len += sizeof(resp->tx_fetch_ind.records[0]) * num_records;
2253 	len += sizeof(resp->tx_fetch_ind.resp_ids[0]) * num_resp_ids;
2254 
2255 	if (unlikely(skb->len < len)) {
2256 		ath10k_warn(ar, "received corrupted tx_fetch_ind event: too many records/resp_ids\n");
2257 		return;
2258 	}
2259 
2260 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch ind num records %hu num resps %hu seq %hu\n",
2261 		   num_records, num_resp_ids,
2262 		   le16_to_cpu(resp->tx_fetch_ind.fetch_seq_num));
2263 
2264 	if (!ar->htt.tx_q_state.enabled) {
2265 		ath10k_warn(ar, "received unexpected tx_fetch_ind event: not enabled\n");
2266 		return;
2267 	}
2268 
2269 	if (ar->htt.tx_q_state.mode == HTT_TX_MODE_SWITCH_PUSH) {
2270 		ath10k_warn(ar, "received unexpected tx_fetch_ind event: in push mode\n");
2271 		return;
2272 	}
2273 
2274 	rcu_read_lock();
2275 
2276 	for (i = 0; i < num_records; i++) {
2277 		record = &resp->tx_fetch_ind.records[i];
2278 		peer_id = MS(le16_to_cpu(record->info),
2279 			     HTT_TX_FETCH_RECORD_INFO_PEER_ID);
2280 		tid = MS(le16_to_cpu(record->info),
2281 			 HTT_TX_FETCH_RECORD_INFO_TID);
2282 		max_num_msdus = le16_to_cpu(record->num_msdus);
2283 		max_num_bytes = le32_to_cpu(record->num_bytes);
2284 
2285 		ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch record %i peer_id %hu tid %hhu msdus %zu bytes %zu\n",
2286 			   i, peer_id, tid, max_num_msdus, max_num_bytes);
2287 
2288 		if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) ||
2289 		    unlikely(tid >= ar->htt.tx_q_state.num_tids)) {
2290 			ath10k_warn(ar, "received out of range peer_id %hu tid %hhu\n",
2291 				    peer_id, tid);
2292 			continue;
2293 		}
2294 
2295 		spin_lock_bh(&ar->data_lock);
2296 		txq = ath10k_mac_txq_lookup(ar, peer_id, tid);
2297 		spin_unlock_bh(&ar->data_lock);
2298 
2299 		/* It is okay to release the lock and use txq because RCU read
2300 		 * lock is held.
2301 		 */
2302 
2303 		if (unlikely(!txq)) {
2304 			ath10k_warn(ar, "failed to lookup txq for peer_id %hu tid %hhu\n",
2305 				    peer_id, tid);
2306 			continue;
2307 		}
2308 
2309 		num_msdus = 0;
2310 		num_bytes = 0;
2311 
2312 		while (num_msdus < max_num_msdus &&
2313 		       num_bytes < max_num_bytes) {
2314 			ret = ath10k_mac_tx_push_txq(hw, txq);
2315 			if (ret < 0)
2316 				break;
2317 
2318 			num_msdus++;
2319 			num_bytes += ret;
2320 		}
2321 
2322 		record->num_msdus = cpu_to_le16(num_msdus);
2323 		record->num_bytes = cpu_to_le32(num_bytes);
2324 
2325 		ath10k_htt_tx_txq_recalc(hw, txq);
2326 	}
2327 
2328 	rcu_read_unlock();
2329 
2330 	resp_ids = ath10k_htt_get_tx_fetch_ind_resp_ids(&resp->tx_fetch_ind);
2331 	ath10k_htt_rx_tx_fetch_resp_id_confirm(ar, resp_ids, num_resp_ids);
2332 
2333 	ret = ath10k_htt_tx_fetch_resp(ar,
2334 				       resp->tx_fetch_ind.token,
2335 				       resp->tx_fetch_ind.fetch_seq_num,
2336 				       resp->tx_fetch_ind.records,
2337 				       num_records);
2338 	if (unlikely(ret)) {
2339 		ath10k_warn(ar, "failed to submit tx fetch resp for token 0x%08x: %d\n",
2340 			    le32_to_cpu(resp->tx_fetch_ind.token), ret);
2341 		/* FIXME: request fw restart */
2342 	}
2343 
2344 	ath10k_htt_tx_txq_sync(ar);
2345 }
2346 
2347 static void ath10k_htt_rx_tx_fetch_confirm(struct ath10k *ar,
2348 					   struct sk_buff *skb)
2349 {
2350 	const struct htt_resp *resp = (void *)skb->data;
2351 	size_t len;
2352 	int num_resp_ids;
2353 
2354 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm\n");
2355 
2356 	len = sizeof(resp->hdr) + sizeof(resp->tx_fetch_confirm);
2357 	if (unlikely(skb->len < len)) {
2358 		ath10k_warn(ar, "received corrupted tx_fetch_confirm event: buffer too short\n");
2359 		return;
2360 	}
2361 
2362 	num_resp_ids = le16_to_cpu(resp->tx_fetch_confirm.num_resp_ids);
2363 	len += sizeof(resp->tx_fetch_confirm.resp_ids[0]) * num_resp_ids;
2364 
2365 	if (unlikely(skb->len < len)) {
2366 		ath10k_warn(ar, "received corrupted tx_fetch_confirm event: resp_ids buffer overflow\n");
2367 		return;
2368 	}
2369 
2370 	ath10k_htt_rx_tx_fetch_resp_id_confirm(ar,
2371 					       resp->tx_fetch_confirm.resp_ids,
2372 					       num_resp_ids);
2373 }
2374 
2375 static void ath10k_htt_rx_tx_mode_switch_ind(struct ath10k *ar,
2376 					     struct sk_buff *skb)
2377 {
2378 	const struct htt_resp *resp = (void *)skb->data;
2379 	const struct htt_tx_mode_switch_record *record;
2380 	struct ieee80211_txq *txq;
2381 	struct ath10k_txq *artxq;
2382 	size_t len;
2383 	size_t num_records;
2384 	enum htt_tx_mode_switch_mode mode;
2385 	bool enable;
2386 	u16 info0;
2387 	u16 info1;
2388 	u16 threshold;
2389 	u16 peer_id;
2390 	u8 tid;
2391 	int i;
2392 
2393 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx mode switch ind\n");
2394 
2395 	len = sizeof(resp->hdr) + sizeof(resp->tx_mode_switch_ind);
2396 	if (unlikely(skb->len < len)) {
2397 		ath10k_warn(ar, "received corrupted tx_mode_switch_ind event: buffer too short\n");
2398 		return;
2399 	}
2400 
2401 	info0 = le16_to_cpu(resp->tx_mode_switch_ind.info0);
2402 	info1 = le16_to_cpu(resp->tx_mode_switch_ind.info1);
2403 
2404 	enable = !!(info0 & HTT_TX_MODE_SWITCH_IND_INFO0_ENABLE);
2405 	num_records = MS(info0, HTT_TX_MODE_SWITCH_IND_INFO1_THRESHOLD);
2406 	mode = MS(info1, HTT_TX_MODE_SWITCH_IND_INFO1_MODE);
2407 	threshold = MS(info1, HTT_TX_MODE_SWITCH_IND_INFO1_THRESHOLD);
2408 
2409 	ath10k_dbg(ar, ATH10K_DBG_HTT,
2410 		   "htt rx tx mode switch ind info0 0x%04hx info1 0x%04hx enable %d num records %zd mode %d threshold %hu\n",
2411 		   info0, info1, enable, num_records, mode, threshold);
2412 
2413 	len += sizeof(resp->tx_mode_switch_ind.records[0]) * num_records;
2414 
2415 	if (unlikely(skb->len < len)) {
2416 		ath10k_warn(ar, "received corrupted tx_mode_switch_mode_ind event: too many records\n");
2417 		return;
2418 	}
2419 
2420 	switch (mode) {
2421 	case HTT_TX_MODE_SWITCH_PUSH:
2422 	case HTT_TX_MODE_SWITCH_PUSH_PULL:
2423 		break;
2424 	default:
2425 		ath10k_warn(ar, "received invalid tx_mode_switch_mode_ind mode %d, ignoring\n",
2426 			    mode);
2427 		return;
2428 	}
2429 
2430 	if (!enable)
2431 		return;
2432 
2433 	ar->htt.tx_q_state.enabled = enable;
2434 	ar->htt.tx_q_state.mode = mode;
2435 	ar->htt.tx_q_state.num_push_allowed = threshold;
2436 
2437 	rcu_read_lock();
2438 
2439 	for (i = 0; i < num_records; i++) {
2440 		record = &resp->tx_mode_switch_ind.records[i];
2441 		info0 = le16_to_cpu(record->info0);
2442 		peer_id = MS(info0, HTT_TX_MODE_SWITCH_RECORD_INFO0_PEER_ID);
2443 		tid = MS(info0, HTT_TX_MODE_SWITCH_RECORD_INFO0_TID);
2444 
2445 		if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) ||
2446 		    unlikely(tid >= ar->htt.tx_q_state.num_tids)) {
2447 			ath10k_warn(ar, "received out of range peer_id %hu tid %hhu\n",
2448 				    peer_id, tid);
2449 			continue;
2450 		}
2451 
2452 		spin_lock_bh(&ar->data_lock);
2453 		txq = ath10k_mac_txq_lookup(ar, peer_id, tid);
2454 		spin_unlock_bh(&ar->data_lock);
2455 
2456 		/* It is okay to release the lock and use txq because RCU read
2457 		 * lock is held.
2458 		 */
2459 
2460 		if (unlikely(!txq)) {
2461 			ath10k_warn(ar, "failed to lookup txq for peer_id %hu tid %hhu\n",
2462 				    peer_id, tid);
2463 			continue;
2464 		}
2465 
2466 		spin_lock_bh(&ar->htt.tx_lock);
2467 		artxq = (void *)txq->drv_priv;
2468 		artxq->num_push_allowed = le16_to_cpu(record->num_max_msdus);
2469 		spin_unlock_bh(&ar->htt.tx_lock);
2470 	}
2471 
2472 	rcu_read_unlock();
2473 
2474 	ath10k_mac_tx_push_pending(ar);
2475 }
2476 
2477 void ath10k_htt_htc_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb)
2478 {
2479 	bool release;
2480 
2481 	release = ath10k_htt_t2h_msg_handler(ar, skb);
2482 
2483 	/* Free the indication buffer */
2484 	if (release)
2485 		dev_kfree_skb_any(skb);
2486 }
2487 
2488 static inline bool is_valid_legacy_rate(u8 rate)
2489 {
2490 	static const u8 legacy_rates[] = {1, 2, 5, 11, 6, 9, 12,
2491 					  18, 24, 36, 48, 54};
2492 	int i;
2493 
2494 	for (i = 0; i < ARRAY_SIZE(legacy_rates); i++) {
2495 		if (rate == legacy_rates[i])
2496 			return true;
2497 	}
2498 
2499 	return false;
2500 }
2501 
2502 static void
2503 ath10k_update_per_peer_tx_stats(struct ath10k *ar,
2504 				struct ieee80211_sta *sta,
2505 				struct ath10k_per_peer_tx_stats *peer_stats)
2506 {
2507 	struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv;
2508 	u8 rate = 0, sgi;
2509 	struct rate_info txrate;
2510 
2511 	lockdep_assert_held(&ar->data_lock);
2512 
2513 	txrate.flags = ATH10K_HW_PREAMBLE(peer_stats->ratecode);
2514 	txrate.bw = ATH10K_HW_BW(peer_stats->flags);
2515 	txrate.nss = ATH10K_HW_NSS(peer_stats->ratecode);
2516 	txrate.mcs = ATH10K_HW_MCS_RATE(peer_stats->ratecode);
2517 	sgi = ATH10K_HW_GI(peer_stats->flags);
2518 
2519 	if (txrate.flags == WMI_RATE_PREAMBLE_VHT && txrate.mcs > 9) {
2520 		ath10k_warn(ar, "Invalid VHT mcs %hhd peer stats",  txrate.mcs);
2521 		return;
2522 	}
2523 
2524 	if (txrate.flags == WMI_RATE_PREAMBLE_HT &&
2525 	    (txrate.mcs > 7 || txrate.nss < 1)) {
2526 		ath10k_warn(ar, "Invalid HT mcs %hhd nss %hhd peer stats",
2527 			    txrate.mcs, txrate.nss);
2528 		return;
2529 	}
2530 
2531 	memset(&arsta->txrate, 0, sizeof(arsta->txrate));
2532 
2533 	if (txrate.flags == WMI_RATE_PREAMBLE_CCK ||
2534 	    txrate.flags == WMI_RATE_PREAMBLE_OFDM) {
2535 		rate = ATH10K_HW_LEGACY_RATE(peer_stats->ratecode);
2536 
2537 		if (!is_valid_legacy_rate(rate)) {
2538 			ath10k_warn(ar, "Invalid legacy rate %hhd peer stats",
2539 				    rate);
2540 			return;
2541 		}
2542 
2543 		/* This is hacky, FW sends CCK rate 5.5Mbps as 6 */
2544 		rate *= 10;
2545 		if (rate == 60 && txrate.flags == WMI_RATE_PREAMBLE_CCK)
2546 			rate = rate - 5;
2547 		arsta->txrate.legacy = rate;
2548 	} else if (txrate.flags == WMI_RATE_PREAMBLE_HT) {
2549 		arsta->txrate.flags = RATE_INFO_FLAGS_MCS;
2550 		arsta->txrate.mcs = txrate.mcs + 8 * (txrate.nss - 1);
2551 	} else {
2552 		arsta->txrate.flags = RATE_INFO_FLAGS_VHT_MCS;
2553 		arsta->txrate.mcs = txrate.mcs;
2554 	}
2555 
2556 	if (sgi)
2557 		arsta->txrate.flags |= RATE_INFO_FLAGS_SHORT_GI;
2558 
2559 	arsta->txrate.nss = txrate.nss;
2560 	arsta->txrate.bw = ath10k_bw_to_mac80211_bw(txrate.bw);
2561 }
2562 
2563 static void ath10k_htt_fetch_peer_stats(struct ath10k *ar,
2564 					struct sk_buff *skb)
2565 {
2566 	struct htt_resp *resp = (struct htt_resp *)skb->data;
2567 	struct ath10k_per_peer_tx_stats *p_tx_stats = &ar->peer_tx_stats;
2568 	struct htt_per_peer_tx_stats_ind *tx_stats;
2569 	struct ieee80211_sta *sta;
2570 	struct ath10k_peer *peer;
2571 	int peer_id, i;
2572 	u8 ppdu_len, num_ppdu;
2573 
2574 	num_ppdu = resp->peer_tx_stats.num_ppdu;
2575 	ppdu_len = resp->peer_tx_stats.ppdu_len * sizeof(__le32);
2576 
2577 	if (skb->len < sizeof(struct htt_resp_hdr) + num_ppdu * ppdu_len) {
2578 		ath10k_warn(ar, "Invalid peer stats buf length %d\n", skb->len);
2579 		return;
2580 	}
2581 
2582 	tx_stats = (struct htt_per_peer_tx_stats_ind *)
2583 			(resp->peer_tx_stats.payload);
2584 	peer_id = __le16_to_cpu(tx_stats->peer_id);
2585 
2586 	rcu_read_lock();
2587 	spin_lock_bh(&ar->data_lock);
2588 	peer = ath10k_peer_find_by_id(ar, peer_id);
2589 	if (!peer) {
2590 		ath10k_warn(ar, "Invalid peer id %d peer stats buffer\n",
2591 			    peer_id);
2592 		goto out;
2593 	}
2594 
2595 	sta = peer->sta;
2596 	for (i = 0; i < num_ppdu; i++) {
2597 		tx_stats = (struct htt_per_peer_tx_stats_ind *)
2598 			   (resp->peer_tx_stats.payload + i * ppdu_len);
2599 
2600 		p_tx_stats->succ_bytes = __le32_to_cpu(tx_stats->succ_bytes);
2601 		p_tx_stats->retry_bytes = __le32_to_cpu(tx_stats->retry_bytes);
2602 		p_tx_stats->failed_bytes =
2603 				__le32_to_cpu(tx_stats->failed_bytes);
2604 		p_tx_stats->ratecode = tx_stats->ratecode;
2605 		p_tx_stats->flags = tx_stats->flags;
2606 		p_tx_stats->succ_pkts = __le16_to_cpu(tx_stats->succ_pkts);
2607 		p_tx_stats->retry_pkts = __le16_to_cpu(tx_stats->retry_pkts);
2608 		p_tx_stats->failed_pkts = __le16_to_cpu(tx_stats->failed_pkts);
2609 
2610 		ath10k_update_per_peer_tx_stats(ar, sta, p_tx_stats);
2611 	}
2612 
2613 out:
2614 	spin_unlock_bh(&ar->data_lock);
2615 	rcu_read_unlock();
2616 }
2617 
2618 static void ath10k_fetch_10_2_tx_stats(struct ath10k *ar, u8 *data)
2619 {
2620 	struct ath10k_pktlog_hdr *hdr = (struct ath10k_pktlog_hdr *)data;
2621 	struct ath10k_per_peer_tx_stats *p_tx_stats = &ar->peer_tx_stats;
2622 	struct ath10k_10_2_peer_tx_stats *tx_stats;
2623 	struct ieee80211_sta *sta;
2624 	struct ath10k_peer *peer;
2625 	u16 log_type = __le16_to_cpu(hdr->log_type);
2626 	u32 peer_id = 0, i;
2627 
2628 	if (log_type != ATH_PKTLOG_TYPE_TX_STAT)
2629 		return;
2630 
2631 	tx_stats = (struct ath10k_10_2_peer_tx_stats *)((hdr->payload) +
2632 		    ATH10K_10_2_TX_STATS_OFFSET);
2633 
2634 	if (!tx_stats->tx_ppdu_cnt)
2635 		return;
2636 
2637 	peer_id = tx_stats->peer_id;
2638 
2639 	rcu_read_lock();
2640 	spin_lock_bh(&ar->data_lock);
2641 	peer = ath10k_peer_find_by_id(ar, peer_id);
2642 	if (!peer) {
2643 		ath10k_warn(ar, "Invalid peer id %d in peer stats buffer\n",
2644 			    peer_id);
2645 		goto out;
2646 	}
2647 
2648 	sta = peer->sta;
2649 	for (i = 0; i < tx_stats->tx_ppdu_cnt; i++) {
2650 		p_tx_stats->succ_bytes =
2651 			__le16_to_cpu(tx_stats->success_bytes[i]);
2652 		p_tx_stats->retry_bytes =
2653 			__le16_to_cpu(tx_stats->retry_bytes[i]);
2654 		p_tx_stats->failed_bytes =
2655 			__le16_to_cpu(tx_stats->failed_bytes[i]);
2656 		p_tx_stats->ratecode = tx_stats->ratecode[i];
2657 		p_tx_stats->flags = tx_stats->flags[i];
2658 		p_tx_stats->succ_pkts = tx_stats->success_pkts[i];
2659 		p_tx_stats->retry_pkts = tx_stats->retry_pkts[i];
2660 		p_tx_stats->failed_pkts = tx_stats->failed_pkts[i];
2661 
2662 		ath10k_update_per_peer_tx_stats(ar, sta, p_tx_stats);
2663 	}
2664 	spin_unlock_bh(&ar->data_lock);
2665 	rcu_read_unlock();
2666 
2667 	return;
2668 
2669 out:
2670 	spin_unlock_bh(&ar->data_lock);
2671 	rcu_read_unlock();
2672 }
2673 
2674 bool ath10k_htt_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb)
2675 {
2676 	struct ath10k_htt *htt = &ar->htt;
2677 	struct htt_resp *resp = (struct htt_resp *)skb->data;
2678 	enum htt_t2h_msg_type type;
2679 
2680 	/* confirm alignment */
2681 	if (!IS_ALIGNED((unsigned long)skb->data, 4))
2682 		ath10k_warn(ar, "unaligned htt message, expect trouble\n");
2683 
2684 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, msg_type: 0x%0X\n",
2685 		   resp->hdr.msg_type);
2686 
2687 	if (resp->hdr.msg_type >= ar->htt.t2h_msg_types_max) {
2688 		ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, unsupported msg_type: 0x%0X\n max: 0x%0X",
2689 			   resp->hdr.msg_type, ar->htt.t2h_msg_types_max);
2690 		return true;
2691 	}
2692 	type = ar->htt.t2h_msg_types[resp->hdr.msg_type];
2693 
2694 	switch (type) {
2695 	case HTT_T2H_MSG_TYPE_VERSION_CONF: {
2696 		htt->target_version_major = resp->ver_resp.major;
2697 		htt->target_version_minor = resp->ver_resp.minor;
2698 		complete(&htt->target_version_received);
2699 		break;
2700 	}
2701 	case HTT_T2H_MSG_TYPE_RX_IND:
2702 		ath10k_htt_rx_proc_rx_ind(htt, &resp->rx_ind);
2703 		break;
2704 	case HTT_T2H_MSG_TYPE_PEER_MAP: {
2705 		struct htt_peer_map_event ev = {
2706 			.vdev_id = resp->peer_map.vdev_id,
2707 			.peer_id = __le16_to_cpu(resp->peer_map.peer_id),
2708 		};
2709 		memcpy(ev.addr, resp->peer_map.addr, sizeof(ev.addr));
2710 		ath10k_peer_map_event(htt, &ev);
2711 		break;
2712 	}
2713 	case HTT_T2H_MSG_TYPE_PEER_UNMAP: {
2714 		struct htt_peer_unmap_event ev = {
2715 			.peer_id = __le16_to_cpu(resp->peer_unmap.peer_id),
2716 		};
2717 		ath10k_peer_unmap_event(htt, &ev);
2718 		break;
2719 	}
2720 	case HTT_T2H_MSG_TYPE_MGMT_TX_COMPLETION: {
2721 		struct htt_tx_done tx_done = {};
2722 		int status = __le32_to_cpu(resp->mgmt_tx_completion.status);
2723 		int info = __le32_to_cpu(resp->mgmt_tx_completion.info);
2724 
2725 		tx_done.msdu_id = __le32_to_cpu(resp->mgmt_tx_completion.desc_id);
2726 
2727 		switch (status) {
2728 		case HTT_MGMT_TX_STATUS_OK:
2729 			tx_done.status = HTT_TX_COMPL_STATE_ACK;
2730 			if (test_bit(WMI_SERVICE_HTT_MGMT_TX_COMP_VALID_FLAGS,
2731 				     ar->wmi.svc_map) &&
2732 			    (resp->mgmt_tx_completion.flags &
2733 			     HTT_MGMT_TX_CMPL_FLAG_ACK_RSSI)) {
2734 				tx_done.ack_rssi =
2735 				FIELD_GET(HTT_MGMT_TX_CMPL_INFO_ACK_RSSI_MASK,
2736 					  info);
2737 			}
2738 			break;
2739 		case HTT_MGMT_TX_STATUS_RETRY:
2740 			tx_done.status = HTT_TX_COMPL_STATE_NOACK;
2741 			break;
2742 		case HTT_MGMT_TX_STATUS_DROP:
2743 			tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
2744 			break;
2745 		}
2746 
2747 		status = ath10k_txrx_tx_unref(htt, &tx_done);
2748 		if (!status) {
2749 			spin_lock_bh(&htt->tx_lock);
2750 			ath10k_htt_tx_mgmt_dec_pending(htt);
2751 			spin_unlock_bh(&htt->tx_lock);
2752 		}
2753 		break;
2754 	}
2755 	case HTT_T2H_MSG_TYPE_TX_COMPL_IND:
2756 		ath10k_htt_rx_tx_compl_ind(htt->ar, skb);
2757 		break;
2758 	case HTT_T2H_MSG_TYPE_SEC_IND: {
2759 		struct ath10k *ar = htt->ar;
2760 		struct htt_security_indication *ev = &resp->security_indication;
2761 
2762 		ath10k_dbg(ar, ATH10K_DBG_HTT,
2763 			   "sec ind peer_id %d unicast %d type %d\n",
2764 			  __le16_to_cpu(ev->peer_id),
2765 			  !!(ev->flags & HTT_SECURITY_IS_UNICAST),
2766 			  MS(ev->flags, HTT_SECURITY_TYPE));
2767 		complete(&ar->install_key_done);
2768 		break;
2769 	}
2770 	case HTT_T2H_MSG_TYPE_RX_FRAG_IND: {
2771 		ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
2772 				skb->data, skb->len);
2773 		atomic_inc(&htt->num_mpdus_ready);
2774 		break;
2775 	}
2776 	case HTT_T2H_MSG_TYPE_TEST:
2777 		break;
2778 	case HTT_T2H_MSG_TYPE_STATS_CONF:
2779 		trace_ath10k_htt_stats(ar, skb->data, skb->len);
2780 		break;
2781 	case HTT_T2H_MSG_TYPE_TX_INSPECT_IND:
2782 		/* Firmware can return tx frames if it's unable to fully
2783 		 * process them and suspects host may be able to fix it. ath10k
2784 		 * sends all tx frames as already inspected so this shouldn't
2785 		 * happen unless fw has a bug.
2786 		 */
2787 		ath10k_warn(ar, "received an unexpected htt tx inspect event\n");
2788 		break;
2789 	case HTT_T2H_MSG_TYPE_RX_ADDBA:
2790 		ath10k_htt_rx_addba(ar, resp);
2791 		break;
2792 	case HTT_T2H_MSG_TYPE_RX_DELBA:
2793 		ath10k_htt_rx_delba(ar, resp);
2794 		break;
2795 	case HTT_T2H_MSG_TYPE_PKTLOG: {
2796 		trace_ath10k_htt_pktlog(ar, resp->pktlog_msg.payload,
2797 					skb->len -
2798 					offsetof(struct htt_resp,
2799 						 pktlog_msg.payload));
2800 
2801 		if (ath10k_peer_stats_enabled(ar))
2802 			ath10k_fetch_10_2_tx_stats(ar,
2803 						   resp->pktlog_msg.payload);
2804 		break;
2805 	}
2806 	case HTT_T2H_MSG_TYPE_RX_FLUSH: {
2807 		/* Ignore this event because mac80211 takes care of Rx
2808 		 * aggregation reordering.
2809 		 */
2810 		break;
2811 	}
2812 	case HTT_T2H_MSG_TYPE_RX_IN_ORD_PADDR_IND: {
2813 		__skb_queue_tail(&htt->rx_in_ord_compl_q, skb);
2814 		return false;
2815 	}
2816 	case HTT_T2H_MSG_TYPE_TX_CREDIT_UPDATE_IND:
2817 		break;
2818 	case HTT_T2H_MSG_TYPE_CHAN_CHANGE: {
2819 		u32 phymode = __le32_to_cpu(resp->chan_change.phymode);
2820 		u32 freq = __le32_to_cpu(resp->chan_change.freq);
2821 
2822 		ar->tgt_oper_chan = ieee80211_get_channel(ar->hw->wiphy, freq);
2823 		ath10k_dbg(ar, ATH10K_DBG_HTT,
2824 			   "htt chan change freq %u phymode %s\n",
2825 			   freq, ath10k_wmi_phymode_str(phymode));
2826 		break;
2827 	}
2828 	case HTT_T2H_MSG_TYPE_AGGR_CONF:
2829 		break;
2830 	case HTT_T2H_MSG_TYPE_TX_FETCH_IND: {
2831 		struct sk_buff *tx_fetch_ind = skb_copy(skb, GFP_ATOMIC);
2832 
2833 		if (!tx_fetch_ind) {
2834 			ath10k_warn(ar, "failed to copy htt tx fetch ind\n");
2835 			break;
2836 		}
2837 		skb_queue_tail(&htt->tx_fetch_ind_q, tx_fetch_ind);
2838 		break;
2839 	}
2840 	case HTT_T2H_MSG_TYPE_TX_FETCH_CONFIRM:
2841 		ath10k_htt_rx_tx_fetch_confirm(ar, skb);
2842 		break;
2843 	case HTT_T2H_MSG_TYPE_TX_MODE_SWITCH_IND:
2844 		ath10k_htt_rx_tx_mode_switch_ind(ar, skb);
2845 		break;
2846 	case HTT_T2H_MSG_TYPE_PEER_STATS:
2847 		ath10k_htt_fetch_peer_stats(ar, skb);
2848 		break;
2849 	case HTT_T2H_MSG_TYPE_EN_STATS:
2850 	default:
2851 		ath10k_warn(ar, "htt event (%d) not handled\n",
2852 			    resp->hdr.msg_type);
2853 		ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
2854 				skb->data, skb->len);
2855 		break;
2856 	}
2857 	return true;
2858 }
2859 EXPORT_SYMBOL(ath10k_htt_t2h_msg_handler);
2860 
2861 void ath10k_htt_rx_pktlog_completion_handler(struct ath10k *ar,
2862 					     struct sk_buff *skb)
2863 {
2864 	trace_ath10k_htt_pktlog(ar, skb->data, skb->len);
2865 	dev_kfree_skb_any(skb);
2866 }
2867 EXPORT_SYMBOL(ath10k_htt_rx_pktlog_completion_handler);
2868 
2869 static int ath10k_htt_rx_deliver_msdu(struct ath10k *ar, int quota, int budget)
2870 {
2871 	struct sk_buff *skb;
2872 
2873 	while (quota < budget) {
2874 		if (skb_queue_empty(&ar->htt.rx_msdus_q))
2875 			break;
2876 
2877 		skb = __skb_dequeue(&ar->htt.rx_msdus_q);
2878 		if (!skb)
2879 			break;
2880 		ath10k_process_rx(ar, skb);
2881 		quota++;
2882 	}
2883 
2884 	return quota;
2885 }
2886 
2887 int ath10k_htt_txrx_compl_task(struct ath10k *ar, int budget)
2888 {
2889 	struct ath10k_htt *htt = &ar->htt;
2890 	struct htt_tx_done tx_done = {};
2891 	struct sk_buff_head tx_ind_q;
2892 	struct sk_buff *skb;
2893 	unsigned long flags;
2894 	int quota = 0, done, ret;
2895 	bool resched_napi = false;
2896 
2897 	__skb_queue_head_init(&tx_ind_q);
2898 
2899 	/* Process pending frames before dequeuing more data
2900 	 * from hardware.
2901 	 */
2902 	quota = ath10k_htt_rx_deliver_msdu(ar, quota, budget);
2903 	if (quota == budget) {
2904 		resched_napi = true;
2905 		goto exit;
2906 	}
2907 
2908 	while ((skb = __skb_dequeue(&htt->rx_in_ord_compl_q))) {
2909 		spin_lock_bh(&htt->rx_ring.lock);
2910 		ret = ath10k_htt_rx_in_ord_ind(ar, skb);
2911 		spin_unlock_bh(&htt->rx_ring.lock);
2912 
2913 		dev_kfree_skb_any(skb);
2914 		if (ret == -EIO) {
2915 			resched_napi = true;
2916 			goto exit;
2917 		}
2918 	}
2919 
2920 	while (atomic_read(&htt->num_mpdus_ready)) {
2921 		ret = ath10k_htt_rx_handle_amsdu(htt);
2922 		if (ret == -EIO) {
2923 			resched_napi = true;
2924 			goto exit;
2925 		}
2926 		atomic_dec(&htt->num_mpdus_ready);
2927 	}
2928 
2929 	/* Deliver received data after processing data from hardware */
2930 	quota = ath10k_htt_rx_deliver_msdu(ar, quota, budget);
2931 
2932 	/* From NAPI documentation:
2933 	 *  The napi poll() function may also process TX completions, in which
2934 	 *  case if it processes the entire TX ring then it should count that
2935 	 *  work as the rest of the budget.
2936 	 */
2937 	if ((quota < budget) && !kfifo_is_empty(&htt->txdone_fifo))
2938 		quota = budget;
2939 
2940 	/* kfifo_get: called only within txrx_tasklet so it's neatly serialized.
2941 	 * From kfifo_get() documentation:
2942 	 *  Note that with only one concurrent reader and one concurrent writer,
2943 	 *  you don't need extra locking to use these macro.
2944 	 */
2945 	while (kfifo_get(&htt->txdone_fifo, &tx_done))
2946 		ath10k_txrx_tx_unref(htt, &tx_done);
2947 
2948 	ath10k_mac_tx_push_pending(ar);
2949 
2950 	spin_lock_irqsave(&htt->tx_fetch_ind_q.lock, flags);
2951 	skb_queue_splice_init(&htt->tx_fetch_ind_q, &tx_ind_q);
2952 	spin_unlock_irqrestore(&htt->tx_fetch_ind_q.lock, flags);
2953 
2954 	while ((skb = __skb_dequeue(&tx_ind_q))) {
2955 		ath10k_htt_rx_tx_fetch_ind(ar, skb);
2956 		dev_kfree_skb_any(skb);
2957 	}
2958 
2959 exit:
2960 	ath10k_htt_rx_msdu_buff_replenish(htt);
2961 	/* In case of rx failure or more data to read, report budget
2962 	 * to reschedule NAPI poll
2963 	 */
2964 	done = resched_napi ? budget : quota;
2965 
2966 	return done;
2967 }
2968 EXPORT_SYMBOL(ath10k_htt_txrx_compl_task);
2969 
2970 static const struct ath10k_htt_rx_ops htt_rx_ops_32 = {
2971 	.htt_get_rx_ring_size = ath10k_htt_get_rx_ring_size_32,
2972 	.htt_config_paddrs_ring = ath10k_htt_config_paddrs_ring_32,
2973 	.htt_set_paddrs_ring = ath10k_htt_set_paddrs_ring_32,
2974 	.htt_get_vaddr_ring = ath10k_htt_get_vaddr_ring_32,
2975 	.htt_reset_paddrs_ring = ath10k_htt_reset_paddrs_ring_32,
2976 };
2977 
2978 static const struct ath10k_htt_rx_ops htt_rx_ops_64 = {
2979 	.htt_get_rx_ring_size = ath10k_htt_get_rx_ring_size_64,
2980 	.htt_config_paddrs_ring = ath10k_htt_config_paddrs_ring_64,
2981 	.htt_set_paddrs_ring = ath10k_htt_set_paddrs_ring_64,
2982 	.htt_get_vaddr_ring = ath10k_htt_get_vaddr_ring_64,
2983 	.htt_reset_paddrs_ring = ath10k_htt_reset_paddrs_ring_64,
2984 };
2985 
2986 void ath10k_htt_set_rx_ops(struct ath10k_htt *htt)
2987 {
2988 	struct ath10k *ar = htt->ar;
2989 
2990 	if (ar->hw_params.target_64bit)
2991 		htt->rx_ops = &htt_rx_ops_64;
2992 	else
2993 		htt->rx_ops = &htt_rx_ops_32;
2994 }
2995