1 /* 2 * Copyright (c) 2005-2011 Atheros Communications Inc. 3 * Copyright (c) 2011-2013 Qualcomm Atheros, Inc. 4 * 5 * Permission to use, copy, modify, and/or distribute this software for any 6 * purpose with or without fee is hereby granted, provided that the above 7 * copyright notice and this permission notice appear in all copies. 8 * 9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 16 */ 17 18 #include "core.h" 19 #include "htc.h" 20 #include "htt.h" 21 #include "txrx.h" 22 #include "debug.h" 23 #include "trace.h" 24 25 #include <linux/log2.h> 26 27 /* slightly larger than one large A-MPDU */ 28 #define HTT_RX_RING_SIZE_MIN 128 29 30 /* roughly 20 ms @ 1 Gbps of 1500B MSDUs */ 31 #define HTT_RX_RING_SIZE_MAX 2048 32 33 #define HTT_RX_AVG_FRM_BYTES 1000 34 35 /* ms, very conservative */ 36 #define HTT_RX_HOST_LATENCY_MAX_MS 20 37 38 /* ms, conservative */ 39 #define HTT_RX_HOST_LATENCY_WORST_LIKELY_MS 10 40 41 /* when under memory pressure rx ring refill may fail and needs a retry */ 42 #define HTT_RX_RING_REFILL_RETRY_MS 50 43 44 45 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb); 46 static void ath10k_htt_txrx_compl_task(unsigned long ptr); 47 48 static int ath10k_htt_rx_ring_size(struct ath10k_htt *htt) 49 { 50 int size; 51 52 /* 53 * It is expected that the host CPU will typically be able to 54 * service the rx indication from one A-MPDU before the rx 55 * indication from the subsequent A-MPDU happens, roughly 1-2 ms 56 * later. However, the rx ring should be sized very conservatively, 57 * to accomodate the worst reasonable delay before the host CPU 58 * services a rx indication interrupt. 59 * 60 * The rx ring need not be kept full of empty buffers. In theory, 61 * the htt host SW can dynamically track the low-water mark in the 62 * rx ring, and dynamically adjust the level to which the rx ring 63 * is filled with empty buffers, to dynamically meet the desired 64 * low-water mark. 65 * 66 * In contrast, it's difficult to resize the rx ring itself, once 67 * it's in use. Thus, the ring itself should be sized very 68 * conservatively, while the degree to which the ring is filled 69 * with empty buffers should be sized moderately conservatively. 70 */ 71 72 /* 1e6 bps/mbps / 1e3 ms per sec = 1000 */ 73 size = 74 htt->max_throughput_mbps + 75 1000 / 76 (8 * HTT_RX_AVG_FRM_BYTES) * HTT_RX_HOST_LATENCY_MAX_MS; 77 78 if (size < HTT_RX_RING_SIZE_MIN) 79 size = HTT_RX_RING_SIZE_MIN; 80 81 if (size > HTT_RX_RING_SIZE_MAX) 82 size = HTT_RX_RING_SIZE_MAX; 83 84 size = roundup_pow_of_two(size); 85 86 return size; 87 } 88 89 static int ath10k_htt_rx_ring_fill_level(struct ath10k_htt *htt) 90 { 91 int size; 92 93 /* 1e6 bps/mbps / 1e3 ms per sec = 1000 */ 94 size = 95 htt->max_throughput_mbps * 96 1000 / 97 (8 * HTT_RX_AVG_FRM_BYTES) * HTT_RX_HOST_LATENCY_WORST_LIKELY_MS; 98 99 /* 100 * Make sure the fill level is at least 1 less than the ring size. 101 * Leaving 1 element empty allows the SW to easily distinguish 102 * between a full ring vs. an empty ring. 103 */ 104 if (size >= htt->rx_ring.size) 105 size = htt->rx_ring.size - 1; 106 107 return size; 108 } 109 110 static void ath10k_htt_rx_ring_free(struct ath10k_htt *htt) 111 { 112 struct sk_buff *skb; 113 struct ath10k_skb_cb *cb; 114 int i; 115 116 for (i = 0; i < htt->rx_ring.fill_cnt; i++) { 117 skb = htt->rx_ring.netbufs_ring[i]; 118 cb = ATH10K_SKB_CB(skb); 119 dma_unmap_single(htt->ar->dev, cb->paddr, 120 skb->len + skb_tailroom(skb), 121 DMA_FROM_DEVICE); 122 dev_kfree_skb_any(skb); 123 } 124 125 htt->rx_ring.fill_cnt = 0; 126 } 127 128 static int __ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num) 129 { 130 struct htt_rx_desc *rx_desc; 131 struct sk_buff *skb; 132 dma_addr_t paddr; 133 int ret = 0, idx; 134 135 idx = __le32_to_cpu(*(htt->rx_ring.alloc_idx.vaddr)); 136 while (num > 0) { 137 skb = dev_alloc_skb(HTT_RX_BUF_SIZE + HTT_RX_DESC_ALIGN); 138 if (!skb) { 139 ret = -ENOMEM; 140 goto fail; 141 } 142 143 if (!IS_ALIGNED((unsigned long)skb->data, HTT_RX_DESC_ALIGN)) 144 skb_pull(skb, 145 PTR_ALIGN(skb->data, HTT_RX_DESC_ALIGN) - 146 skb->data); 147 148 /* Clear rx_desc attention word before posting to Rx ring */ 149 rx_desc = (struct htt_rx_desc *)skb->data; 150 rx_desc->attention.flags = __cpu_to_le32(0); 151 152 paddr = dma_map_single(htt->ar->dev, skb->data, 153 skb->len + skb_tailroom(skb), 154 DMA_FROM_DEVICE); 155 156 if (unlikely(dma_mapping_error(htt->ar->dev, paddr))) { 157 dev_kfree_skb_any(skb); 158 ret = -ENOMEM; 159 goto fail; 160 } 161 162 ATH10K_SKB_CB(skb)->paddr = paddr; 163 htt->rx_ring.netbufs_ring[idx] = skb; 164 htt->rx_ring.paddrs_ring[idx] = __cpu_to_le32(paddr); 165 htt->rx_ring.fill_cnt++; 166 167 num--; 168 idx++; 169 idx &= htt->rx_ring.size_mask; 170 } 171 172 fail: 173 *(htt->rx_ring.alloc_idx.vaddr) = __cpu_to_le32(idx); 174 return ret; 175 } 176 177 static int ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num) 178 { 179 lockdep_assert_held(&htt->rx_ring.lock); 180 return __ath10k_htt_rx_ring_fill_n(htt, num); 181 } 182 183 static void ath10k_htt_rx_msdu_buff_replenish(struct ath10k_htt *htt) 184 { 185 int ret, num_deficit, num_to_fill; 186 187 /* Refilling the whole RX ring buffer proves to be a bad idea. The 188 * reason is RX may take up significant amount of CPU cycles and starve 189 * other tasks, e.g. TX on an ethernet device while acting as a bridge 190 * with ath10k wlan interface. This ended up with very poor performance 191 * once CPU the host system was overwhelmed with RX on ath10k. 192 * 193 * By limiting the number of refills the replenishing occurs 194 * progressively. This in turns makes use of the fact tasklets are 195 * processed in FIFO order. This means actual RX processing can starve 196 * out refilling. If there's not enough buffers on RX ring FW will not 197 * report RX until it is refilled with enough buffers. This 198 * automatically balances load wrt to CPU power. 199 * 200 * This probably comes at a cost of lower maximum throughput but 201 * improves the avarage and stability. */ 202 spin_lock_bh(&htt->rx_ring.lock); 203 num_deficit = htt->rx_ring.fill_level - htt->rx_ring.fill_cnt; 204 num_to_fill = min(ATH10K_HTT_MAX_NUM_REFILL, num_deficit); 205 num_deficit -= num_to_fill; 206 ret = ath10k_htt_rx_ring_fill_n(htt, num_to_fill); 207 if (ret == -ENOMEM) { 208 /* 209 * Failed to fill it to the desired level - 210 * we'll start a timer and try again next time. 211 * As long as enough buffers are left in the ring for 212 * another A-MPDU rx, no special recovery is needed. 213 */ 214 mod_timer(&htt->rx_ring.refill_retry_timer, jiffies + 215 msecs_to_jiffies(HTT_RX_RING_REFILL_RETRY_MS)); 216 } else if (num_deficit > 0) { 217 tasklet_schedule(&htt->rx_replenish_task); 218 } 219 spin_unlock_bh(&htt->rx_ring.lock); 220 } 221 222 static void ath10k_htt_rx_ring_refill_retry(unsigned long arg) 223 { 224 struct ath10k_htt *htt = (struct ath10k_htt *)arg; 225 ath10k_htt_rx_msdu_buff_replenish(htt); 226 } 227 228 void ath10k_htt_rx_detach(struct ath10k_htt *htt) 229 { 230 int sw_rd_idx = htt->rx_ring.sw_rd_idx.msdu_payld; 231 232 del_timer_sync(&htt->rx_ring.refill_retry_timer); 233 tasklet_kill(&htt->rx_replenish_task); 234 tasklet_kill(&htt->txrx_compl_task); 235 236 skb_queue_purge(&htt->tx_compl_q); 237 skb_queue_purge(&htt->rx_compl_q); 238 239 while (sw_rd_idx != __le32_to_cpu(*(htt->rx_ring.alloc_idx.vaddr))) { 240 struct sk_buff *skb = 241 htt->rx_ring.netbufs_ring[sw_rd_idx]; 242 struct ath10k_skb_cb *cb = ATH10K_SKB_CB(skb); 243 244 dma_unmap_single(htt->ar->dev, cb->paddr, 245 skb->len + skb_tailroom(skb), 246 DMA_FROM_DEVICE); 247 dev_kfree_skb_any(htt->rx_ring.netbufs_ring[sw_rd_idx]); 248 sw_rd_idx++; 249 sw_rd_idx &= htt->rx_ring.size_mask; 250 } 251 252 dma_free_coherent(htt->ar->dev, 253 (htt->rx_ring.size * 254 sizeof(htt->rx_ring.paddrs_ring)), 255 htt->rx_ring.paddrs_ring, 256 htt->rx_ring.base_paddr); 257 258 dma_free_coherent(htt->ar->dev, 259 sizeof(*htt->rx_ring.alloc_idx.vaddr), 260 htt->rx_ring.alloc_idx.vaddr, 261 htt->rx_ring.alloc_idx.paddr); 262 263 kfree(htt->rx_ring.netbufs_ring); 264 } 265 266 static inline struct sk_buff *ath10k_htt_rx_netbuf_pop(struct ath10k_htt *htt) 267 { 268 int idx; 269 struct sk_buff *msdu; 270 271 lockdep_assert_held(&htt->rx_ring.lock); 272 273 if (htt->rx_ring.fill_cnt == 0) { 274 ath10k_warn("tried to pop sk_buff from an empty rx ring\n"); 275 return NULL; 276 } 277 278 idx = htt->rx_ring.sw_rd_idx.msdu_payld; 279 msdu = htt->rx_ring.netbufs_ring[idx]; 280 281 idx++; 282 idx &= htt->rx_ring.size_mask; 283 htt->rx_ring.sw_rd_idx.msdu_payld = idx; 284 htt->rx_ring.fill_cnt--; 285 286 return msdu; 287 } 288 289 static void ath10k_htt_rx_free_msdu_chain(struct sk_buff *skb) 290 { 291 struct sk_buff *next; 292 293 while (skb) { 294 next = skb->next; 295 dev_kfree_skb_any(skb); 296 skb = next; 297 } 298 } 299 300 static int ath10k_htt_rx_amsdu_pop(struct ath10k_htt *htt, 301 u8 **fw_desc, int *fw_desc_len, 302 struct sk_buff **head_msdu, 303 struct sk_buff **tail_msdu) 304 { 305 int msdu_len, msdu_chaining = 0; 306 struct sk_buff *msdu; 307 struct htt_rx_desc *rx_desc; 308 309 lockdep_assert_held(&htt->rx_ring.lock); 310 311 if (htt->rx_confused) { 312 ath10k_warn("htt is confused. refusing rx\n"); 313 return 0; 314 } 315 316 msdu = *head_msdu = ath10k_htt_rx_netbuf_pop(htt); 317 while (msdu) { 318 int last_msdu, msdu_len_invalid, msdu_chained; 319 320 dma_unmap_single(htt->ar->dev, 321 ATH10K_SKB_CB(msdu)->paddr, 322 msdu->len + skb_tailroom(msdu), 323 DMA_FROM_DEVICE); 324 325 ath10k_dbg_dump(ATH10K_DBG_HTT_DUMP, NULL, "htt rx pop: ", 326 msdu->data, msdu->len + skb_tailroom(msdu)); 327 328 rx_desc = (struct htt_rx_desc *)msdu->data; 329 330 /* FIXME: we must report msdu payload since this is what caller 331 * expects now */ 332 skb_put(msdu, offsetof(struct htt_rx_desc, msdu_payload)); 333 skb_pull(msdu, offsetof(struct htt_rx_desc, msdu_payload)); 334 335 /* 336 * Sanity check - confirm the HW is finished filling in the 337 * rx data. 338 * If the HW and SW are working correctly, then it's guaranteed 339 * that the HW's MAC DMA is done before this point in the SW. 340 * To prevent the case that we handle a stale Rx descriptor, 341 * just assert for now until we have a way to recover. 342 */ 343 if (!(__le32_to_cpu(rx_desc->attention.flags) 344 & RX_ATTENTION_FLAGS_MSDU_DONE)) { 345 ath10k_htt_rx_free_msdu_chain(*head_msdu); 346 *head_msdu = NULL; 347 msdu = NULL; 348 ath10k_err("htt rx stopped. cannot recover\n"); 349 htt->rx_confused = true; 350 break; 351 } 352 353 /* 354 * Copy the FW rx descriptor for this MSDU from the rx 355 * indication message into the MSDU's netbuf. HL uses the 356 * same rx indication message definition as LL, and simply 357 * appends new info (fields from the HW rx desc, and the 358 * MSDU payload itself). So, the offset into the rx 359 * indication message only has to account for the standard 360 * offset of the per-MSDU FW rx desc info within the 361 * message, and how many bytes of the per-MSDU FW rx desc 362 * info have already been consumed. (And the endianness of 363 * the host, since for a big-endian host, the rx ind 364 * message contents, including the per-MSDU rx desc bytes, 365 * were byteswapped during upload.) 366 */ 367 if (*fw_desc_len > 0) { 368 rx_desc->fw_desc.info0 = **fw_desc; 369 /* 370 * The target is expected to only provide the basic 371 * per-MSDU rx descriptors. Just to be sure, verify 372 * that the target has not attached extension data 373 * (e.g. LRO flow ID). 374 */ 375 376 /* or more, if there's extension data */ 377 (*fw_desc)++; 378 (*fw_desc_len)--; 379 } else { 380 /* 381 * When an oversized AMSDU happened, FW will lost 382 * some of MSDU status - in this case, the FW 383 * descriptors provided will be less than the 384 * actual MSDUs inside this MPDU. Mark the FW 385 * descriptors so that it will still deliver to 386 * upper stack, if no CRC error for this MPDU. 387 * 388 * FIX THIS - the FW descriptors are actually for 389 * MSDUs in the end of this A-MSDU instead of the 390 * beginning. 391 */ 392 rx_desc->fw_desc.info0 = 0; 393 } 394 395 msdu_len_invalid = !!(__le32_to_cpu(rx_desc->attention.flags) 396 & (RX_ATTENTION_FLAGS_MPDU_LENGTH_ERR | 397 RX_ATTENTION_FLAGS_MSDU_LENGTH_ERR)); 398 msdu_len = MS(__le32_to_cpu(rx_desc->msdu_start.info0), 399 RX_MSDU_START_INFO0_MSDU_LENGTH); 400 msdu_chained = rx_desc->frag_info.ring2_more_count; 401 msdu_chaining = msdu_chained; 402 403 if (msdu_len_invalid) 404 msdu_len = 0; 405 406 skb_trim(msdu, 0); 407 skb_put(msdu, min(msdu_len, HTT_RX_MSDU_SIZE)); 408 msdu_len -= msdu->len; 409 410 /* FIXME: Do chained buffers include htt_rx_desc or not? */ 411 while (msdu_chained--) { 412 struct sk_buff *next = ath10k_htt_rx_netbuf_pop(htt); 413 414 dma_unmap_single(htt->ar->dev, 415 ATH10K_SKB_CB(next)->paddr, 416 next->len + skb_tailroom(next), 417 DMA_FROM_DEVICE); 418 419 ath10k_dbg_dump(ATH10K_DBG_HTT_DUMP, NULL, 420 "htt rx chained: ", next->data, 421 next->len + skb_tailroom(next)); 422 423 skb_trim(next, 0); 424 skb_put(next, min(msdu_len, HTT_RX_BUF_SIZE)); 425 msdu_len -= next->len; 426 427 msdu->next = next; 428 msdu = next; 429 } 430 431 last_msdu = __le32_to_cpu(rx_desc->msdu_end.info0) & 432 RX_MSDU_END_INFO0_LAST_MSDU; 433 434 if (last_msdu) { 435 msdu->next = NULL; 436 break; 437 } else { 438 struct sk_buff *next = ath10k_htt_rx_netbuf_pop(htt); 439 msdu->next = next; 440 msdu = next; 441 } 442 } 443 *tail_msdu = msdu; 444 445 /* 446 * Don't refill the ring yet. 447 * 448 * First, the elements popped here are still in use - it is not 449 * safe to overwrite them until the matching call to 450 * mpdu_desc_list_next. Second, for efficiency it is preferable to 451 * refill the rx ring with 1 PPDU's worth of rx buffers (something 452 * like 32 x 3 buffers), rather than one MPDU's worth of rx buffers 453 * (something like 3 buffers). Consequently, we'll rely on the txrx 454 * SW to tell us when it is done pulling all the PPDU's rx buffers 455 * out of the rx ring, and then refill it just once. 456 */ 457 458 return msdu_chaining; 459 } 460 461 static void ath10k_htt_rx_replenish_task(unsigned long ptr) 462 { 463 struct ath10k_htt *htt = (struct ath10k_htt *)ptr; 464 ath10k_htt_rx_msdu_buff_replenish(htt); 465 } 466 467 int ath10k_htt_rx_attach(struct ath10k_htt *htt) 468 { 469 dma_addr_t paddr; 470 void *vaddr; 471 struct timer_list *timer = &htt->rx_ring.refill_retry_timer; 472 473 htt->rx_ring.size = ath10k_htt_rx_ring_size(htt); 474 if (!is_power_of_2(htt->rx_ring.size)) { 475 ath10k_warn("htt rx ring size is not power of 2\n"); 476 return -EINVAL; 477 } 478 479 htt->rx_ring.size_mask = htt->rx_ring.size - 1; 480 481 /* 482 * Set the initial value for the level to which the rx ring 483 * should be filled, based on the max throughput and the 484 * worst likely latency for the host to fill the rx ring 485 * with new buffers. In theory, this fill level can be 486 * dynamically adjusted from the initial value set here, to 487 * reflect the actual host latency rather than a 488 * conservative assumption about the host latency. 489 */ 490 htt->rx_ring.fill_level = ath10k_htt_rx_ring_fill_level(htt); 491 492 htt->rx_ring.netbufs_ring = 493 kmalloc(htt->rx_ring.size * sizeof(struct sk_buff *), 494 GFP_KERNEL); 495 if (!htt->rx_ring.netbufs_ring) 496 goto err_netbuf; 497 498 vaddr = dma_alloc_coherent(htt->ar->dev, 499 (htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring)), 500 &paddr, GFP_DMA); 501 if (!vaddr) 502 goto err_dma_ring; 503 504 htt->rx_ring.paddrs_ring = vaddr; 505 htt->rx_ring.base_paddr = paddr; 506 507 vaddr = dma_alloc_coherent(htt->ar->dev, 508 sizeof(*htt->rx_ring.alloc_idx.vaddr), 509 &paddr, GFP_DMA); 510 if (!vaddr) 511 goto err_dma_idx; 512 513 htt->rx_ring.alloc_idx.vaddr = vaddr; 514 htt->rx_ring.alloc_idx.paddr = paddr; 515 htt->rx_ring.sw_rd_idx.msdu_payld = 0; 516 *htt->rx_ring.alloc_idx.vaddr = 0; 517 518 /* Initialize the Rx refill retry timer */ 519 setup_timer(timer, ath10k_htt_rx_ring_refill_retry, (unsigned long)htt); 520 521 spin_lock_init(&htt->rx_ring.lock); 522 523 htt->rx_ring.fill_cnt = 0; 524 if (__ath10k_htt_rx_ring_fill_n(htt, htt->rx_ring.fill_level)) 525 goto err_fill_ring; 526 527 tasklet_init(&htt->rx_replenish_task, ath10k_htt_rx_replenish_task, 528 (unsigned long)htt); 529 530 skb_queue_head_init(&htt->tx_compl_q); 531 skb_queue_head_init(&htt->rx_compl_q); 532 533 tasklet_init(&htt->txrx_compl_task, ath10k_htt_txrx_compl_task, 534 (unsigned long)htt); 535 536 ath10k_dbg(ATH10K_DBG_BOOT, "htt rx ring size %d fill_level %d\n", 537 htt->rx_ring.size, htt->rx_ring.fill_level); 538 return 0; 539 540 err_fill_ring: 541 ath10k_htt_rx_ring_free(htt); 542 dma_free_coherent(htt->ar->dev, 543 sizeof(*htt->rx_ring.alloc_idx.vaddr), 544 htt->rx_ring.alloc_idx.vaddr, 545 htt->rx_ring.alloc_idx.paddr); 546 err_dma_idx: 547 dma_free_coherent(htt->ar->dev, 548 (htt->rx_ring.size * 549 sizeof(htt->rx_ring.paddrs_ring)), 550 htt->rx_ring.paddrs_ring, 551 htt->rx_ring.base_paddr); 552 err_dma_ring: 553 kfree(htt->rx_ring.netbufs_ring); 554 err_netbuf: 555 return -ENOMEM; 556 } 557 558 static int ath10k_htt_rx_crypto_param_len(enum htt_rx_mpdu_encrypt_type type) 559 { 560 switch (type) { 561 case HTT_RX_MPDU_ENCRYPT_WEP40: 562 case HTT_RX_MPDU_ENCRYPT_WEP104: 563 return 4; 564 case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC: 565 case HTT_RX_MPDU_ENCRYPT_WEP128: /* not tested */ 566 case HTT_RX_MPDU_ENCRYPT_TKIP_WPA: 567 case HTT_RX_MPDU_ENCRYPT_WAPI: /* not tested */ 568 case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2: 569 return 8; 570 case HTT_RX_MPDU_ENCRYPT_NONE: 571 return 0; 572 } 573 574 ath10k_warn("unknown encryption type %d\n", type); 575 return 0; 576 } 577 578 static int ath10k_htt_rx_crypto_tail_len(enum htt_rx_mpdu_encrypt_type type) 579 { 580 switch (type) { 581 case HTT_RX_MPDU_ENCRYPT_NONE: 582 case HTT_RX_MPDU_ENCRYPT_WEP40: 583 case HTT_RX_MPDU_ENCRYPT_WEP104: 584 case HTT_RX_MPDU_ENCRYPT_WEP128: 585 case HTT_RX_MPDU_ENCRYPT_WAPI: 586 return 0; 587 case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC: 588 case HTT_RX_MPDU_ENCRYPT_TKIP_WPA: 589 return 4; 590 case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2: 591 return 8; 592 } 593 594 ath10k_warn("unknown encryption type %d\n", type); 595 return 0; 596 } 597 598 /* Applies for first msdu in chain, before altering it. */ 599 static struct ieee80211_hdr *ath10k_htt_rx_skb_get_hdr(struct sk_buff *skb) 600 { 601 struct htt_rx_desc *rxd; 602 enum rx_msdu_decap_format fmt; 603 604 rxd = (void *)skb->data - sizeof(*rxd); 605 fmt = MS(__le32_to_cpu(rxd->msdu_start.info1), 606 RX_MSDU_START_INFO1_DECAP_FORMAT); 607 608 if (fmt == RX_MSDU_DECAP_RAW) 609 return (void *)skb->data; 610 else 611 return (void *)skb->data - RX_HTT_HDR_STATUS_LEN; 612 } 613 614 /* This function only applies for first msdu in an msdu chain */ 615 static bool ath10k_htt_rx_hdr_is_amsdu(struct ieee80211_hdr *hdr) 616 { 617 if (ieee80211_is_data_qos(hdr->frame_control)) { 618 u8 *qc = ieee80211_get_qos_ctl(hdr); 619 if (qc[0] & 0x80) 620 return true; 621 } 622 return false; 623 } 624 625 struct rfc1042_hdr { 626 u8 llc_dsap; 627 u8 llc_ssap; 628 u8 llc_ctrl; 629 u8 snap_oui[3]; 630 __be16 snap_type; 631 } __packed; 632 633 struct amsdu_subframe_hdr { 634 u8 dst[ETH_ALEN]; 635 u8 src[ETH_ALEN]; 636 __be16 len; 637 } __packed; 638 639 static int ath10k_htt_rx_nwifi_hdrlen(struct ieee80211_hdr *hdr) 640 { 641 /* nwifi header is padded to 4 bytes. this fixes 4addr rx */ 642 return round_up(ieee80211_hdrlen(hdr->frame_control), 4); 643 } 644 645 static void ath10k_htt_rx_amsdu(struct ath10k_htt *htt, 646 struct htt_rx_info *info) 647 { 648 struct htt_rx_desc *rxd; 649 struct sk_buff *first; 650 struct sk_buff *skb = info->skb; 651 enum rx_msdu_decap_format fmt; 652 enum htt_rx_mpdu_encrypt_type enctype; 653 struct ieee80211_hdr *hdr; 654 u8 hdr_buf[64], addr[ETH_ALEN], *qos; 655 unsigned int hdr_len; 656 657 rxd = (void *)skb->data - sizeof(*rxd); 658 enctype = MS(__le32_to_cpu(rxd->mpdu_start.info0), 659 RX_MPDU_START_INFO0_ENCRYPT_TYPE); 660 661 hdr = (struct ieee80211_hdr *)rxd->rx_hdr_status; 662 hdr_len = ieee80211_hdrlen(hdr->frame_control); 663 memcpy(hdr_buf, hdr, hdr_len); 664 hdr = (struct ieee80211_hdr *)hdr_buf; 665 666 first = skb; 667 while (skb) { 668 void *decap_hdr; 669 int len; 670 671 rxd = (void *)skb->data - sizeof(*rxd); 672 fmt = MS(__le32_to_cpu(rxd->msdu_start.info1), 673 RX_MSDU_START_INFO1_DECAP_FORMAT); 674 decap_hdr = (void *)rxd->rx_hdr_status; 675 676 skb->ip_summed = ath10k_htt_rx_get_csum_state(skb); 677 678 /* First frame in an A-MSDU chain has more decapped data. */ 679 if (skb == first) { 680 len = round_up(ieee80211_hdrlen(hdr->frame_control), 4); 681 len += round_up(ath10k_htt_rx_crypto_param_len(enctype), 682 4); 683 decap_hdr += len; 684 } 685 686 switch (fmt) { 687 case RX_MSDU_DECAP_RAW: 688 /* remove trailing FCS */ 689 skb_trim(skb, skb->len - FCS_LEN); 690 break; 691 case RX_MSDU_DECAP_NATIVE_WIFI: 692 /* pull decapped header and copy DA */ 693 hdr = (struct ieee80211_hdr *)skb->data; 694 hdr_len = ath10k_htt_rx_nwifi_hdrlen(hdr); 695 memcpy(addr, ieee80211_get_DA(hdr), ETH_ALEN); 696 skb_pull(skb, hdr_len); 697 698 /* push original 802.11 header */ 699 hdr = (struct ieee80211_hdr *)hdr_buf; 700 hdr_len = ieee80211_hdrlen(hdr->frame_control); 701 memcpy(skb_push(skb, hdr_len), hdr, hdr_len); 702 703 /* original A-MSDU header has the bit set but we're 704 * not including A-MSDU subframe header */ 705 hdr = (struct ieee80211_hdr *)skb->data; 706 qos = ieee80211_get_qos_ctl(hdr); 707 qos[0] &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT; 708 709 /* original 802.11 header has a different DA */ 710 memcpy(ieee80211_get_DA(hdr), addr, ETH_ALEN); 711 break; 712 case RX_MSDU_DECAP_ETHERNET2_DIX: 713 /* strip ethernet header and insert decapped 802.11 714 * header, amsdu subframe header and rfc1042 header */ 715 716 len = 0; 717 len += sizeof(struct rfc1042_hdr); 718 len += sizeof(struct amsdu_subframe_hdr); 719 720 skb_pull(skb, sizeof(struct ethhdr)); 721 memcpy(skb_push(skb, len), decap_hdr, len); 722 memcpy(skb_push(skb, hdr_len), hdr, hdr_len); 723 break; 724 case RX_MSDU_DECAP_8023_SNAP_LLC: 725 /* insert decapped 802.11 header making a singly 726 * A-MSDU */ 727 memcpy(skb_push(skb, hdr_len), hdr, hdr_len); 728 break; 729 } 730 731 info->skb = skb; 732 info->encrypt_type = enctype; 733 skb = skb->next; 734 info->skb->next = NULL; 735 736 if (skb) 737 info->amsdu_more = true; 738 739 ath10k_process_rx(htt->ar, info); 740 } 741 742 /* FIXME: It might be nice to re-assemble the A-MSDU when there's a 743 * monitor interface active for sniffing purposes. */ 744 } 745 746 static void ath10k_htt_rx_msdu(struct ath10k_htt *htt, struct htt_rx_info *info) 747 { 748 struct sk_buff *skb = info->skb; 749 struct htt_rx_desc *rxd; 750 struct ieee80211_hdr *hdr; 751 enum rx_msdu_decap_format fmt; 752 enum htt_rx_mpdu_encrypt_type enctype; 753 int hdr_len; 754 void *rfc1042; 755 756 /* This shouldn't happen. If it does than it may be a FW bug. */ 757 if (skb->next) { 758 ath10k_warn("htt rx received chained non A-MSDU frame\n"); 759 ath10k_htt_rx_free_msdu_chain(skb->next); 760 skb->next = NULL; 761 } 762 763 rxd = (void *)skb->data - sizeof(*rxd); 764 fmt = MS(__le32_to_cpu(rxd->msdu_start.info1), 765 RX_MSDU_START_INFO1_DECAP_FORMAT); 766 enctype = MS(__le32_to_cpu(rxd->mpdu_start.info0), 767 RX_MPDU_START_INFO0_ENCRYPT_TYPE); 768 hdr = (struct ieee80211_hdr *)rxd->rx_hdr_status; 769 hdr_len = ieee80211_hdrlen(hdr->frame_control); 770 771 skb->ip_summed = ath10k_htt_rx_get_csum_state(skb); 772 773 switch (fmt) { 774 case RX_MSDU_DECAP_RAW: 775 /* remove trailing FCS */ 776 skb_trim(skb, skb->len - FCS_LEN); 777 break; 778 case RX_MSDU_DECAP_NATIVE_WIFI: 779 /* Pull decapped header */ 780 hdr = (struct ieee80211_hdr *)skb->data; 781 hdr_len = ath10k_htt_rx_nwifi_hdrlen(hdr); 782 skb_pull(skb, hdr_len); 783 784 /* Push original header */ 785 hdr = (struct ieee80211_hdr *)rxd->rx_hdr_status; 786 hdr_len = ieee80211_hdrlen(hdr->frame_control); 787 memcpy(skb_push(skb, hdr_len), hdr, hdr_len); 788 break; 789 case RX_MSDU_DECAP_ETHERNET2_DIX: 790 /* strip ethernet header and insert decapped 802.11 header and 791 * rfc1042 header */ 792 793 rfc1042 = hdr; 794 rfc1042 += roundup(hdr_len, 4); 795 rfc1042 += roundup(ath10k_htt_rx_crypto_param_len(enctype), 4); 796 797 skb_pull(skb, sizeof(struct ethhdr)); 798 memcpy(skb_push(skb, sizeof(struct rfc1042_hdr)), 799 rfc1042, sizeof(struct rfc1042_hdr)); 800 memcpy(skb_push(skb, hdr_len), hdr, hdr_len); 801 break; 802 case RX_MSDU_DECAP_8023_SNAP_LLC: 803 /* remove A-MSDU subframe header and insert 804 * decapped 802.11 header. rfc1042 header is already there */ 805 806 skb_pull(skb, sizeof(struct amsdu_subframe_hdr)); 807 memcpy(skb_push(skb, hdr_len), hdr, hdr_len); 808 break; 809 } 810 811 info->skb = skb; 812 info->encrypt_type = enctype; 813 814 ath10k_process_rx(htt->ar, info); 815 } 816 817 static bool ath10k_htt_rx_has_decrypt_err(struct sk_buff *skb) 818 { 819 struct htt_rx_desc *rxd; 820 u32 flags; 821 822 rxd = (void *)skb->data - sizeof(*rxd); 823 flags = __le32_to_cpu(rxd->attention.flags); 824 825 if (flags & RX_ATTENTION_FLAGS_DECRYPT_ERR) 826 return true; 827 828 return false; 829 } 830 831 static bool ath10k_htt_rx_has_fcs_err(struct sk_buff *skb) 832 { 833 struct htt_rx_desc *rxd; 834 u32 flags; 835 836 rxd = (void *)skb->data - sizeof(*rxd); 837 flags = __le32_to_cpu(rxd->attention.flags); 838 839 if (flags & RX_ATTENTION_FLAGS_FCS_ERR) 840 return true; 841 842 return false; 843 } 844 845 static bool ath10k_htt_rx_has_mic_err(struct sk_buff *skb) 846 { 847 struct htt_rx_desc *rxd; 848 u32 flags; 849 850 rxd = (void *)skb->data - sizeof(*rxd); 851 flags = __le32_to_cpu(rxd->attention.flags); 852 853 if (flags & RX_ATTENTION_FLAGS_TKIP_MIC_ERR) 854 return true; 855 856 return false; 857 } 858 859 static bool ath10k_htt_rx_is_mgmt(struct sk_buff *skb) 860 { 861 struct htt_rx_desc *rxd; 862 u32 flags; 863 864 rxd = (void *)skb->data - sizeof(*rxd); 865 flags = __le32_to_cpu(rxd->attention.flags); 866 867 if (flags & RX_ATTENTION_FLAGS_MGMT_TYPE) 868 return true; 869 870 return false; 871 } 872 873 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb) 874 { 875 struct htt_rx_desc *rxd; 876 u32 flags, info; 877 bool is_ip4, is_ip6; 878 bool is_tcp, is_udp; 879 bool ip_csum_ok, tcpudp_csum_ok; 880 881 rxd = (void *)skb->data - sizeof(*rxd); 882 flags = __le32_to_cpu(rxd->attention.flags); 883 info = __le32_to_cpu(rxd->msdu_start.info1); 884 885 is_ip4 = !!(info & RX_MSDU_START_INFO1_IPV4_PROTO); 886 is_ip6 = !!(info & RX_MSDU_START_INFO1_IPV6_PROTO); 887 is_tcp = !!(info & RX_MSDU_START_INFO1_TCP_PROTO); 888 is_udp = !!(info & RX_MSDU_START_INFO1_UDP_PROTO); 889 ip_csum_ok = !(flags & RX_ATTENTION_FLAGS_IP_CHKSUM_FAIL); 890 tcpudp_csum_ok = !(flags & RX_ATTENTION_FLAGS_TCP_UDP_CHKSUM_FAIL); 891 892 if (!is_ip4 && !is_ip6) 893 return CHECKSUM_NONE; 894 if (!is_tcp && !is_udp) 895 return CHECKSUM_NONE; 896 if (!ip_csum_ok) 897 return CHECKSUM_NONE; 898 if (!tcpudp_csum_ok) 899 return CHECKSUM_NONE; 900 901 return CHECKSUM_UNNECESSARY; 902 } 903 904 static int ath10k_unchain_msdu(struct sk_buff *msdu_head) 905 { 906 struct sk_buff *next = msdu_head->next; 907 struct sk_buff *to_free = next; 908 int space; 909 int total_len = 0; 910 911 /* TODO: Might could optimize this by using 912 * skb_try_coalesce or similar method to 913 * decrease copying, or maybe get mac80211 to 914 * provide a way to just receive a list of 915 * skb? 916 */ 917 918 msdu_head->next = NULL; 919 920 /* Allocate total length all at once. */ 921 while (next) { 922 total_len += next->len; 923 next = next->next; 924 } 925 926 space = total_len - skb_tailroom(msdu_head); 927 if ((space > 0) && 928 (pskb_expand_head(msdu_head, 0, space, GFP_ATOMIC) < 0)) { 929 /* TODO: bump some rx-oom error stat */ 930 /* put it back together so we can free the 931 * whole list at once. 932 */ 933 msdu_head->next = to_free; 934 return -1; 935 } 936 937 /* Walk list again, copying contents into 938 * msdu_head 939 */ 940 next = to_free; 941 while (next) { 942 skb_copy_from_linear_data(next, skb_put(msdu_head, next->len), 943 next->len); 944 next = next->next; 945 } 946 947 /* If here, we have consolidated skb. Free the 948 * fragments and pass the main skb on up the 949 * stack. 950 */ 951 ath10k_htt_rx_free_msdu_chain(to_free); 952 return 0; 953 } 954 955 static void ath10k_htt_rx_handler(struct ath10k_htt *htt, 956 struct htt_rx_indication *rx) 957 { 958 struct htt_rx_info info; 959 struct htt_rx_indication_mpdu_range *mpdu_ranges; 960 struct ieee80211_hdr *hdr; 961 int num_mpdu_ranges; 962 int fw_desc_len; 963 u8 *fw_desc; 964 int i, j; 965 966 lockdep_assert_held(&htt->rx_ring.lock); 967 968 memset(&info, 0, sizeof(info)); 969 970 fw_desc_len = __le16_to_cpu(rx->prefix.fw_rx_desc_bytes); 971 fw_desc = (u8 *)&rx->fw_desc; 972 973 num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1), 974 HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES); 975 mpdu_ranges = htt_rx_ind_get_mpdu_ranges(rx); 976 977 ath10k_dbg_dump(ATH10K_DBG_HTT_DUMP, NULL, "htt rx ind: ", 978 rx, sizeof(*rx) + 979 (sizeof(struct htt_rx_indication_mpdu_range) * 980 num_mpdu_ranges)); 981 982 for (i = 0; i < num_mpdu_ranges; i++) { 983 info.status = mpdu_ranges[i].mpdu_range_status; 984 985 for (j = 0; j < mpdu_ranges[i].mpdu_count; j++) { 986 struct sk_buff *msdu_head, *msdu_tail; 987 enum htt_rx_mpdu_status status; 988 int msdu_chaining; 989 990 msdu_head = NULL; 991 msdu_tail = NULL; 992 msdu_chaining = ath10k_htt_rx_amsdu_pop(htt, 993 &fw_desc, 994 &fw_desc_len, 995 &msdu_head, 996 &msdu_tail); 997 998 if (!msdu_head) { 999 ath10k_warn("htt rx no data!\n"); 1000 continue; 1001 } 1002 1003 if (msdu_head->len == 0) { 1004 ath10k_dbg(ATH10K_DBG_HTT, 1005 "htt rx dropping due to zero-len\n"); 1006 ath10k_htt_rx_free_msdu_chain(msdu_head); 1007 continue; 1008 } 1009 1010 if (ath10k_htt_rx_has_decrypt_err(msdu_head)) { 1011 ath10k_dbg(ATH10K_DBG_HTT, 1012 "htt rx dropping due to decrypt-err\n"); 1013 ath10k_htt_rx_free_msdu_chain(msdu_head); 1014 continue; 1015 } 1016 1017 status = info.status; 1018 1019 /* Skip mgmt frames while we handle this in WMI */ 1020 if (status == HTT_RX_IND_MPDU_STATUS_MGMT_CTRL || 1021 ath10k_htt_rx_is_mgmt(msdu_head)) { 1022 ath10k_dbg(ATH10K_DBG_HTT, "htt rx mgmt ctrl\n"); 1023 ath10k_htt_rx_free_msdu_chain(msdu_head); 1024 continue; 1025 } 1026 1027 if (status != HTT_RX_IND_MPDU_STATUS_OK && 1028 status != HTT_RX_IND_MPDU_STATUS_TKIP_MIC_ERR && 1029 status != HTT_RX_IND_MPDU_STATUS_ERR_INV_PEER && 1030 !htt->ar->monitor_enabled) { 1031 ath10k_dbg(ATH10K_DBG_HTT, 1032 "htt rx ignoring frame w/ status %d\n", 1033 status); 1034 ath10k_htt_rx_free_msdu_chain(msdu_head); 1035 continue; 1036 } 1037 1038 if (test_bit(ATH10K_CAC_RUNNING, &htt->ar->dev_flags)) { 1039 ath10k_dbg(ATH10K_DBG_HTT, 1040 "htt rx CAC running\n"); 1041 ath10k_htt_rx_free_msdu_chain(msdu_head); 1042 continue; 1043 } 1044 1045 if (msdu_chaining && 1046 (ath10k_unchain_msdu(msdu_head) < 0)) { 1047 ath10k_htt_rx_free_msdu_chain(msdu_head); 1048 continue; 1049 } 1050 1051 info.skb = msdu_head; 1052 info.fcs_err = ath10k_htt_rx_has_fcs_err(msdu_head); 1053 info.mic_err = ath10k_htt_rx_has_mic_err(msdu_head); 1054 1055 if (info.fcs_err) 1056 ath10k_dbg(ATH10K_DBG_HTT, 1057 "htt rx has FCS err\n"); 1058 1059 if (info.mic_err) 1060 ath10k_dbg(ATH10K_DBG_HTT, 1061 "htt rx has MIC err\n"); 1062 1063 info.signal = ATH10K_DEFAULT_NOISE_FLOOR; 1064 info.signal += rx->ppdu.combined_rssi; 1065 1066 info.rate.info0 = rx->ppdu.info0; 1067 info.rate.info1 = __le32_to_cpu(rx->ppdu.info1); 1068 info.rate.info2 = __le32_to_cpu(rx->ppdu.info2); 1069 info.tsf = __le32_to_cpu(rx->ppdu.tsf); 1070 1071 hdr = ath10k_htt_rx_skb_get_hdr(msdu_head); 1072 1073 if (ath10k_htt_rx_hdr_is_amsdu(hdr)) 1074 ath10k_htt_rx_amsdu(htt, &info); 1075 else 1076 ath10k_htt_rx_msdu(htt, &info); 1077 } 1078 } 1079 1080 tasklet_schedule(&htt->rx_replenish_task); 1081 } 1082 1083 static void ath10k_htt_rx_frag_handler(struct ath10k_htt *htt, 1084 struct htt_rx_fragment_indication *frag) 1085 { 1086 struct sk_buff *msdu_head, *msdu_tail; 1087 struct htt_rx_desc *rxd; 1088 enum rx_msdu_decap_format fmt; 1089 struct htt_rx_info info = {}; 1090 struct ieee80211_hdr *hdr; 1091 int msdu_chaining; 1092 bool tkip_mic_err; 1093 bool decrypt_err; 1094 u8 *fw_desc; 1095 int fw_desc_len, hdrlen, paramlen; 1096 int trim; 1097 1098 fw_desc_len = __le16_to_cpu(frag->fw_rx_desc_bytes); 1099 fw_desc = (u8 *)frag->fw_msdu_rx_desc; 1100 1101 msdu_head = NULL; 1102 msdu_tail = NULL; 1103 1104 spin_lock_bh(&htt->rx_ring.lock); 1105 msdu_chaining = ath10k_htt_rx_amsdu_pop(htt, &fw_desc, &fw_desc_len, 1106 &msdu_head, &msdu_tail); 1107 spin_unlock_bh(&htt->rx_ring.lock); 1108 1109 ath10k_dbg(ATH10K_DBG_HTT_DUMP, "htt rx frag ahead\n"); 1110 1111 if (!msdu_head) { 1112 ath10k_warn("htt rx frag no data\n"); 1113 return; 1114 } 1115 1116 if (msdu_chaining || msdu_head != msdu_tail) { 1117 ath10k_warn("aggregation with fragmentation?!\n"); 1118 ath10k_htt_rx_free_msdu_chain(msdu_head); 1119 return; 1120 } 1121 1122 /* FIXME: implement signal strength */ 1123 1124 hdr = (struct ieee80211_hdr *)msdu_head->data; 1125 rxd = (void *)msdu_head->data - sizeof(*rxd); 1126 tkip_mic_err = !!(__le32_to_cpu(rxd->attention.flags) & 1127 RX_ATTENTION_FLAGS_TKIP_MIC_ERR); 1128 decrypt_err = !!(__le32_to_cpu(rxd->attention.flags) & 1129 RX_ATTENTION_FLAGS_DECRYPT_ERR); 1130 fmt = MS(__le32_to_cpu(rxd->msdu_start.info1), 1131 RX_MSDU_START_INFO1_DECAP_FORMAT); 1132 1133 if (fmt != RX_MSDU_DECAP_RAW) { 1134 ath10k_warn("we dont support non-raw fragmented rx yet\n"); 1135 dev_kfree_skb_any(msdu_head); 1136 goto end; 1137 } 1138 1139 info.skb = msdu_head; 1140 info.status = HTT_RX_IND_MPDU_STATUS_OK; 1141 info.encrypt_type = MS(__le32_to_cpu(rxd->mpdu_start.info0), 1142 RX_MPDU_START_INFO0_ENCRYPT_TYPE); 1143 info.skb->ip_summed = ath10k_htt_rx_get_csum_state(info.skb); 1144 1145 if (tkip_mic_err) { 1146 ath10k_warn("tkip mic error\n"); 1147 info.status = HTT_RX_IND_MPDU_STATUS_TKIP_MIC_ERR; 1148 } 1149 1150 if (decrypt_err) { 1151 ath10k_warn("decryption err in fragmented rx\n"); 1152 dev_kfree_skb_any(info.skb); 1153 goto end; 1154 } 1155 1156 if (info.encrypt_type != HTT_RX_MPDU_ENCRYPT_NONE) { 1157 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1158 paramlen = ath10k_htt_rx_crypto_param_len(info.encrypt_type); 1159 1160 /* It is more efficient to move the header than the payload */ 1161 memmove((void *)info.skb->data + paramlen, 1162 (void *)info.skb->data, 1163 hdrlen); 1164 skb_pull(info.skb, paramlen); 1165 hdr = (struct ieee80211_hdr *)info.skb->data; 1166 } 1167 1168 /* remove trailing FCS */ 1169 trim = 4; 1170 1171 /* remove crypto trailer */ 1172 trim += ath10k_htt_rx_crypto_tail_len(info.encrypt_type); 1173 1174 /* last fragment of TKIP frags has MIC */ 1175 if (!ieee80211_has_morefrags(hdr->frame_control) && 1176 info.encrypt_type == HTT_RX_MPDU_ENCRYPT_TKIP_WPA) 1177 trim += 8; 1178 1179 if (trim > info.skb->len) { 1180 ath10k_warn("htt rx fragment: trailer longer than the frame itself? drop\n"); 1181 dev_kfree_skb_any(info.skb); 1182 goto end; 1183 } 1184 1185 skb_trim(info.skb, info.skb->len - trim); 1186 1187 ath10k_dbg_dump(ATH10K_DBG_HTT_DUMP, NULL, "htt rx frag mpdu: ", 1188 info.skb->data, info.skb->len); 1189 ath10k_process_rx(htt->ar, &info); 1190 1191 end: 1192 if (fw_desc_len > 0) { 1193 ath10k_dbg(ATH10K_DBG_HTT, 1194 "expecting more fragmented rx in one indication %d\n", 1195 fw_desc_len); 1196 } 1197 } 1198 1199 static void ath10k_htt_rx_frm_tx_compl(struct ath10k *ar, 1200 struct sk_buff *skb) 1201 { 1202 struct ath10k_htt *htt = &ar->htt; 1203 struct htt_resp *resp = (struct htt_resp *)skb->data; 1204 struct htt_tx_done tx_done = {}; 1205 int status = MS(resp->data_tx_completion.flags, HTT_DATA_TX_STATUS); 1206 __le16 msdu_id; 1207 int i; 1208 1209 lockdep_assert_held(&htt->tx_lock); 1210 1211 switch (status) { 1212 case HTT_DATA_TX_STATUS_NO_ACK: 1213 tx_done.no_ack = true; 1214 break; 1215 case HTT_DATA_TX_STATUS_OK: 1216 break; 1217 case HTT_DATA_TX_STATUS_DISCARD: 1218 case HTT_DATA_TX_STATUS_POSTPONE: 1219 case HTT_DATA_TX_STATUS_DOWNLOAD_FAIL: 1220 tx_done.discard = true; 1221 break; 1222 default: 1223 ath10k_warn("unhandled tx completion status %d\n", status); 1224 tx_done.discard = true; 1225 break; 1226 } 1227 1228 ath10k_dbg(ATH10K_DBG_HTT, "htt tx completion num_msdus %d\n", 1229 resp->data_tx_completion.num_msdus); 1230 1231 for (i = 0; i < resp->data_tx_completion.num_msdus; i++) { 1232 msdu_id = resp->data_tx_completion.msdus[i]; 1233 tx_done.msdu_id = __le16_to_cpu(msdu_id); 1234 ath10k_txrx_tx_unref(htt, &tx_done); 1235 } 1236 } 1237 1238 void ath10k_htt_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb) 1239 { 1240 struct ath10k_htt *htt = &ar->htt; 1241 struct htt_resp *resp = (struct htt_resp *)skb->data; 1242 1243 /* confirm alignment */ 1244 if (!IS_ALIGNED((unsigned long)skb->data, 4)) 1245 ath10k_warn("unaligned htt message, expect trouble\n"); 1246 1247 ath10k_dbg(ATH10K_DBG_HTT, "htt rx, msg_type: 0x%0X\n", 1248 resp->hdr.msg_type); 1249 switch (resp->hdr.msg_type) { 1250 case HTT_T2H_MSG_TYPE_VERSION_CONF: { 1251 htt->target_version_major = resp->ver_resp.major; 1252 htt->target_version_minor = resp->ver_resp.minor; 1253 complete(&htt->target_version_received); 1254 break; 1255 } 1256 case HTT_T2H_MSG_TYPE_RX_IND: 1257 spin_lock_bh(&htt->rx_ring.lock); 1258 __skb_queue_tail(&htt->rx_compl_q, skb); 1259 spin_unlock_bh(&htt->rx_ring.lock); 1260 tasklet_schedule(&htt->txrx_compl_task); 1261 return; 1262 case HTT_T2H_MSG_TYPE_PEER_MAP: { 1263 struct htt_peer_map_event ev = { 1264 .vdev_id = resp->peer_map.vdev_id, 1265 .peer_id = __le16_to_cpu(resp->peer_map.peer_id), 1266 }; 1267 memcpy(ev.addr, resp->peer_map.addr, sizeof(ev.addr)); 1268 ath10k_peer_map_event(htt, &ev); 1269 break; 1270 } 1271 case HTT_T2H_MSG_TYPE_PEER_UNMAP: { 1272 struct htt_peer_unmap_event ev = { 1273 .peer_id = __le16_to_cpu(resp->peer_unmap.peer_id), 1274 }; 1275 ath10k_peer_unmap_event(htt, &ev); 1276 break; 1277 } 1278 case HTT_T2H_MSG_TYPE_MGMT_TX_COMPLETION: { 1279 struct htt_tx_done tx_done = {}; 1280 int status = __le32_to_cpu(resp->mgmt_tx_completion.status); 1281 1282 tx_done.msdu_id = 1283 __le32_to_cpu(resp->mgmt_tx_completion.desc_id); 1284 1285 switch (status) { 1286 case HTT_MGMT_TX_STATUS_OK: 1287 break; 1288 case HTT_MGMT_TX_STATUS_RETRY: 1289 tx_done.no_ack = true; 1290 break; 1291 case HTT_MGMT_TX_STATUS_DROP: 1292 tx_done.discard = true; 1293 break; 1294 } 1295 1296 spin_lock_bh(&htt->tx_lock); 1297 ath10k_txrx_tx_unref(htt, &tx_done); 1298 spin_unlock_bh(&htt->tx_lock); 1299 break; 1300 } 1301 case HTT_T2H_MSG_TYPE_TX_COMPL_IND: 1302 spin_lock_bh(&htt->tx_lock); 1303 __skb_queue_tail(&htt->tx_compl_q, skb); 1304 spin_unlock_bh(&htt->tx_lock); 1305 tasklet_schedule(&htt->txrx_compl_task); 1306 return; 1307 case HTT_T2H_MSG_TYPE_SEC_IND: { 1308 struct ath10k *ar = htt->ar; 1309 struct htt_security_indication *ev = &resp->security_indication; 1310 1311 ath10k_dbg(ATH10K_DBG_HTT, 1312 "sec ind peer_id %d unicast %d type %d\n", 1313 __le16_to_cpu(ev->peer_id), 1314 !!(ev->flags & HTT_SECURITY_IS_UNICAST), 1315 MS(ev->flags, HTT_SECURITY_TYPE)); 1316 complete(&ar->install_key_done); 1317 break; 1318 } 1319 case HTT_T2H_MSG_TYPE_RX_FRAG_IND: { 1320 ath10k_dbg_dump(ATH10K_DBG_HTT_DUMP, NULL, "htt event: ", 1321 skb->data, skb->len); 1322 ath10k_htt_rx_frag_handler(htt, &resp->rx_frag_ind); 1323 break; 1324 } 1325 case HTT_T2H_MSG_TYPE_TEST: 1326 /* FIX THIS */ 1327 break; 1328 case HTT_T2H_MSG_TYPE_STATS_CONF: 1329 trace_ath10k_htt_stats(skb->data, skb->len); 1330 break; 1331 case HTT_T2H_MSG_TYPE_TX_INSPECT_IND: 1332 case HTT_T2H_MSG_TYPE_RX_ADDBA: 1333 case HTT_T2H_MSG_TYPE_RX_DELBA: 1334 case HTT_T2H_MSG_TYPE_RX_FLUSH: 1335 default: 1336 ath10k_dbg(ATH10K_DBG_HTT, "htt event (%d) not handled\n", 1337 resp->hdr.msg_type); 1338 ath10k_dbg_dump(ATH10K_DBG_HTT_DUMP, NULL, "htt event: ", 1339 skb->data, skb->len); 1340 break; 1341 }; 1342 1343 /* Free the indication buffer */ 1344 dev_kfree_skb_any(skb); 1345 } 1346 1347 static void ath10k_htt_txrx_compl_task(unsigned long ptr) 1348 { 1349 struct ath10k_htt *htt = (struct ath10k_htt *)ptr; 1350 struct htt_resp *resp; 1351 struct sk_buff *skb; 1352 1353 spin_lock_bh(&htt->tx_lock); 1354 while ((skb = __skb_dequeue(&htt->tx_compl_q))) { 1355 ath10k_htt_rx_frm_tx_compl(htt->ar, skb); 1356 dev_kfree_skb_any(skb); 1357 } 1358 spin_unlock_bh(&htt->tx_lock); 1359 1360 spin_lock_bh(&htt->rx_ring.lock); 1361 while ((skb = __skb_dequeue(&htt->rx_compl_q))) { 1362 resp = (struct htt_resp *)skb->data; 1363 ath10k_htt_rx_handler(htt, &resp->rx_ind); 1364 dev_kfree_skb_any(skb); 1365 } 1366 spin_unlock_bh(&htt->rx_ring.lock); 1367 } 1368