1 /* 2 * Copyright (c) 2005-2011 Atheros Communications Inc. 3 * Copyright (c) 2011-2013 Qualcomm Atheros, Inc. 4 * 5 * Permission to use, copy, modify, and/or distribute this software for any 6 * purpose with or without fee is hereby granted, provided that the above 7 * copyright notice and this permission notice appear in all copies. 8 * 9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 16 */ 17 18 #include "core.h" 19 #include "htc.h" 20 #include "htt.h" 21 #include "txrx.h" 22 #include "debug.h" 23 #include "trace.h" 24 #include "mac.h" 25 26 #include <linux/log2.h> 27 28 #define HTT_RX_RING_SIZE HTT_RX_RING_SIZE_MAX 29 #define HTT_RX_RING_FILL_LEVEL (((HTT_RX_RING_SIZE) / 2) - 1) 30 31 /* when under memory pressure rx ring refill may fail and needs a retry */ 32 #define HTT_RX_RING_REFILL_RETRY_MS 50 33 34 #define HTT_RX_RING_REFILL_RESCHED_MS 5 35 36 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb); 37 38 static struct sk_buff * 39 ath10k_htt_rx_find_skb_paddr(struct ath10k *ar, u32 paddr) 40 { 41 struct ath10k_skb_rxcb *rxcb; 42 43 hash_for_each_possible(ar->htt.rx_ring.skb_table, rxcb, hlist, paddr) 44 if (rxcb->paddr == paddr) 45 return ATH10K_RXCB_SKB(rxcb); 46 47 WARN_ON_ONCE(1); 48 return NULL; 49 } 50 51 static void ath10k_htt_rx_ring_free(struct ath10k_htt *htt) 52 { 53 struct sk_buff *skb; 54 struct ath10k_skb_rxcb *rxcb; 55 struct hlist_node *n; 56 int i; 57 58 if (htt->rx_ring.in_ord_rx) { 59 hash_for_each_safe(htt->rx_ring.skb_table, i, n, rxcb, hlist) { 60 skb = ATH10K_RXCB_SKB(rxcb); 61 dma_unmap_single(htt->ar->dev, rxcb->paddr, 62 skb->len + skb_tailroom(skb), 63 DMA_FROM_DEVICE); 64 hash_del(&rxcb->hlist); 65 dev_kfree_skb_any(skb); 66 } 67 } else { 68 for (i = 0; i < htt->rx_ring.size; i++) { 69 skb = htt->rx_ring.netbufs_ring[i]; 70 if (!skb) 71 continue; 72 73 rxcb = ATH10K_SKB_RXCB(skb); 74 dma_unmap_single(htt->ar->dev, rxcb->paddr, 75 skb->len + skb_tailroom(skb), 76 DMA_FROM_DEVICE); 77 dev_kfree_skb_any(skb); 78 } 79 } 80 81 htt->rx_ring.fill_cnt = 0; 82 hash_init(htt->rx_ring.skb_table); 83 memset(htt->rx_ring.netbufs_ring, 0, 84 htt->rx_ring.size * sizeof(htt->rx_ring.netbufs_ring[0])); 85 } 86 87 static int __ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num) 88 { 89 struct htt_rx_desc *rx_desc; 90 struct ath10k_skb_rxcb *rxcb; 91 struct sk_buff *skb; 92 dma_addr_t paddr; 93 int ret = 0, idx; 94 95 /* The Full Rx Reorder firmware has no way of telling the host 96 * implicitly when it copied HTT Rx Ring buffers to MAC Rx Ring. 97 * To keep things simple make sure ring is always half empty. This 98 * guarantees there'll be no replenishment overruns possible. 99 */ 100 BUILD_BUG_ON(HTT_RX_RING_FILL_LEVEL >= HTT_RX_RING_SIZE / 2); 101 102 idx = __le32_to_cpu(*htt->rx_ring.alloc_idx.vaddr); 103 while (num > 0) { 104 skb = dev_alloc_skb(HTT_RX_BUF_SIZE + HTT_RX_DESC_ALIGN); 105 if (!skb) { 106 ret = -ENOMEM; 107 goto fail; 108 } 109 110 if (!IS_ALIGNED((unsigned long)skb->data, HTT_RX_DESC_ALIGN)) 111 skb_pull(skb, 112 PTR_ALIGN(skb->data, HTT_RX_DESC_ALIGN) - 113 skb->data); 114 115 /* Clear rx_desc attention word before posting to Rx ring */ 116 rx_desc = (struct htt_rx_desc *)skb->data; 117 rx_desc->attention.flags = __cpu_to_le32(0); 118 119 paddr = dma_map_single(htt->ar->dev, skb->data, 120 skb->len + skb_tailroom(skb), 121 DMA_FROM_DEVICE); 122 123 if (unlikely(dma_mapping_error(htt->ar->dev, paddr))) { 124 dev_kfree_skb_any(skb); 125 ret = -ENOMEM; 126 goto fail; 127 } 128 129 rxcb = ATH10K_SKB_RXCB(skb); 130 rxcb->paddr = paddr; 131 htt->rx_ring.netbufs_ring[idx] = skb; 132 htt->rx_ring.paddrs_ring[idx] = __cpu_to_le32(paddr); 133 htt->rx_ring.fill_cnt++; 134 135 if (htt->rx_ring.in_ord_rx) { 136 hash_add(htt->rx_ring.skb_table, 137 &ATH10K_SKB_RXCB(skb)->hlist, 138 (u32)paddr); 139 } 140 141 num--; 142 idx++; 143 idx &= htt->rx_ring.size_mask; 144 } 145 146 fail: 147 /* 148 * Make sure the rx buffer is updated before available buffer 149 * index to avoid any potential rx ring corruption. 150 */ 151 mb(); 152 *htt->rx_ring.alloc_idx.vaddr = __cpu_to_le32(idx); 153 return ret; 154 } 155 156 static int ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num) 157 { 158 lockdep_assert_held(&htt->rx_ring.lock); 159 return __ath10k_htt_rx_ring_fill_n(htt, num); 160 } 161 162 static void ath10k_htt_rx_msdu_buff_replenish(struct ath10k_htt *htt) 163 { 164 int ret, num_deficit, num_to_fill; 165 166 /* Refilling the whole RX ring buffer proves to be a bad idea. The 167 * reason is RX may take up significant amount of CPU cycles and starve 168 * other tasks, e.g. TX on an ethernet device while acting as a bridge 169 * with ath10k wlan interface. This ended up with very poor performance 170 * once CPU the host system was overwhelmed with RX on ath10k. 171 * 172 * By limiting the number of refills the replenishing occurs 173 * progressively. This in turns makes use of the fact tasklets are 174 * processed in FIFO order. This means actual RX processing can starve 175 * out refilling. If there's not enough buffers on RX ring FW will not 176 * report RX until it is refilled with enough buffers. This 177 * automatically balances load wrt to CPU power. 178 * 179 * This probably comes at a cost of lower maximum throughput but 180 * improves the average and stability. 181 */ 182 spin_lock_bh(&htt->rx_ring.lock); 183 num_deficit = htt->rx_ring.fill_level - htt->rx_ring.fill_cnt; 184 num_to_fill = min(ATH10K_HTT_MAX_NUM_REFILL, num_deficit); 185 num_deficit -= num_to_fill; 186 ret = ath10k_htt_rx_ring_fill_n(htt, num_to_fill); 187 if (ret == -ENOMEM) { 188 /* 189 * Failed to fill it to the desired level - 190 * we'll start a timer and try again next time. 191 * As long as enough buffers are left in the ring for 192 * another A-MPDU rx, no special recovery is needed. 193 */ 194 mod_timer(&htt->rx_ring.refill_retry_timer, jiffies + 195 msecs_to_jiffies(HTT_RX_RING_REFILL_RETRY_MS)); 196 } else if (num_deficit > 0) { 197 mod_timer(&htt->rx_ring.refill_retry_timer, jiffies + 198 msecs_to_jiffies(HTT_RX_RING_REFILL_RESCHED_MS)); 199 } 200 spin_unlock_bh(&htt->rx_ring.lock); 201 } 202 203 static void ath10k_htt_rx_ring_refill_retry(unsigned long arg) 204 { 205 struct ath10k_htt *htt = (struct ath10k_htt *)arg; 206 207 ath10k_htt_rx_msdu_buff_replenish(htt); 208 } 209 210 int ath10k_htt_rx_ring_refill(struct ath10k *ar) 211 { 212 struct ath10k_htt *htt = &ar->htt; 213 int ret; 214 215 spin_lock_bh(&htt->rx_ring.lock); 216 ret = ath10k_htt_rx_ring_fill_n(htt, (htt->rx_ring.fill_level - 217 htt->rx_ring.fill_cnt)); 218 spin_unlock_bh(&htt->rx_ring.lock); 219 220 if (ret) 221 ath10k_htt_rx_ring_free(htt); 222 223 return ret; 224 } 225 226 void ath10k_htt_rx_free(struct ath10k_htt *htt) 227 { 228 del_timer_sync(&htt->rx_ring.refill_retry_timer); 229 230 skb_queue_purge(&htt->rx_compl_q); 231 skb_queue_purge(&htt->rx_in_ord_compl_q); 232 skb_queue_purge(&htt->tx_fetch_ind_q); 233 234 ath10k_htt_rx_ring_free(htt); 235 236 dma_free_coherent(htt->ar->dev, 237 (htt->rx_ring.size * 238 sizeof(htt->rx_ring.paddrs_ring)), 239 htt->rx_ring.paddrs_ring, 240 htt->rx_ring.base_paddr); 241 242 dma_free_coherent(htt->ar->dev, 243 sizeof(*htt->rx_ring.alloc_idx.vaddr), 244 htt->rx_ring.alloc_idx.vaddr, 245 htt->rx_ring.alloc_idx.paddr); 246 247 kfree(htt->rx_ring.netbufs_ring); 248 } 249 250 static inline struct sk_buff *ath10k_htt_rx_netbuf_pop(struct ath10k_htt *htt) 251 { 252 struct ath10k *ar = htt->ar; 253 int idx; 254 struct sk_buff *msdu; 255 256 lockdep_assert_held(&htt->rx_ring.lock); 257 258 if (htt->rx_ring.fill_cnt == 0) { 259 ath10k_warn(ar, "tried to pop sk_buff from an empty rx ring\n"); 260 return NULL; 261 } 262 263 idx = htt->rx_ring.sw_rd_idx.msdu_payld; 264 msdu = htt->rx_ring.netbufs_ring[idx]; 265 htt->rx_ring.netbufs_ring[idx] = NULL; 266 htt->rx_ring.paddrs_ring[idx] = 0; 267 268 idx++; 269 idx &= htt->rx_ring.size_mask; 270 htt->rx_ring.sw_rd_idx.msdu_payld = idx; 271 htt->rx_ring.fill_cnt--; 272 273 dma_unmap_single(htt->ar->dev, 274 ATH10K_SKB_RXCB(msdu)->paddr, 275 msdu->len + skb_tailroom(msdu), 276 DMA_FROM_DEVICE); 277 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ", 278 msdu->data, msdu->len + skb_tailroom(msdu)); 279 280 return msdu; 281 } 282 283 /* return: < 0 fatal error, 0 - non chained msdu, 1 chained msdu */ 284 static int ath10k_htt_rx_amsdu_pop(struct ath10k_htt *htt, 285 struct sk_buff_head *amsdu) 286 { 287 struct ath10k *ar = htt->ar; 288 int msdu_len, msdu_chaining = 0; 289 struct sk_buff *msdu; 290 struct htt_rx_desc *rx_desc; 291 292 lockdep_assert_held(&htt->rx_ring.lock); 293 294 for (;;) { 295 int last_msdu, msdu_len_invalid, msdu_chained; 296 297 msdu = ath10k_htt_rx_netbuf_pop(htt); 298 if (!msdu) { 299 __skb_queue_purge(amsdu); 300 return -ENOENT; 301 } 302 303 __skb_queue_tail(amsdu, msdu); 304 305 rx_desc = (struct htt_rx_desc *)msdu->data; 306 307 /* FIXME: we must report msdu payload since this is what caller 308 * expects now 309 */ 310 skb_put(msdu, offsetof(struct htt_rx_desc, msdu_payload)); 311 skb_pull(msdu, offsetof(struct htt_rx_desc, msdu_payload)); 312 313 /* 314 * Sanity check - confirm the HW is finished filling in the 315 * rx data. 316 * If the HW and SW are working correctly, then it's guaranteed 317 * that the HW's MAC DMA is done before this point in the SW. 318 * To prevent the case that we handle a stale Rx descriptor, 319 * just assert for now until we have a way to recover. 320 */ 321 if (!(__le32_to_cpu(rx_desc->attention.flags) 322 & RX_ATTENTION_FLAGS_MSDU_DONE)) { 323 __skb_queue_purge(amsdu); 324 return -EIO; 325 } 326 327 msdu_len_invalid = !!(__le32_to_cpu(rx_desc->attention.flags) 328 & (RX_ATTENTION_FLAGS_MPDU_LENGTH_ERR | 329 RX_ATTENTION_FLAGS_MSDU_LENGTH_ERR)); 330 msdu_len = MS(__le32_to_cpu(rx_desc->msdu_start.common.info0), 331 RX_MSDU_START_INFO0_MSDU_LENGTH); 332 msdu_chained = rx_desc->frag_info.ring2_more_count; 333 334 if (msdu_len_invalid) 335 msdu_len = 0; 336 337 skb_trim(msdu, 0); 338 skb_put(msdu, min(msdu_len, HTT_RX_MSDU_SIZE)); 339 msdu_len -= msdu->len; 340 341 /* Note: Chained buffers do not contain rx descriptor */ 342 while (msdu_chained--) { 343 msdu = ath10k_htt_rx_netbuf_pop(htt); 344 if (!msdu) { 345 __skb_queue_purge(amsdu); 346 return -ENOENT; 347 } 348 349 __skb_queue_tail(amsdu, msdu); 350 skb_trim(msdu, 0); 351 skb_put(msdu, min(msdu_len, HTT_RX_BUF_SIZE)); 352 msdu_len -= msdu->len; 353 msdu_chaining = 1; 354 } 355 356 last_msdu = __le32_to_cpu(rx_desc->msdu_end.common.info0) & 357 RX_MSDU_END_INFO0_LAST_MSDU; 358 359 trace_ath10k_htt_rx_desc(ar, &rx_desc->attention, 360 sizeof(*rx_desc) - sizeof(u32)); 361 362 if (last_msdu) 363 break; 364 } 365 366 if (skb_queue_empty(amsdu)) 367 msdu_chaining = -1; 368 369 /* 370 * Don't refill the ring yet. 371 * 372 * First, the elements popped here are still in use - it is not 373 * safe to overwrite them until the matching call to 374 * mpdu_desc_list_next. Second, for efficiency it is preferable to 375 * refill the rx ring with 1 PPDU's worth of rx buffers (something 376 * like 32 x 3 buffers), rather than one MPDU's worth of rx buffers 377 * (something like 3 buffers). Consequently, we'll rely on the txrx 378 * SW to tell us when it is done pulling all the PPDU's rx buffers 379 * out of the rx ring, and then refill it just once. 380 */ 381 382 return msdu_chaining; 383 } 384 385 static struct sk_buff *ath10k_htt_rx_pop_paddr(struct ath10k_htt *htt, 386 u32 paddr) 387 { 388 struct ath10k *ar = htt->ar; 389 struct ath10k_skb_rxcb *rxcb; 390 struct sk_buff *msdu; 391 392 lockdep_assert_held(&htt->rx_ring.lock); 393 394 msdu = ath10k_htt_rx_find_skb_paddr(ar, paddr); 395 if (!msdu) 396 return NULL; 397 398 rxcb = ATH10K_SKB_RXCB(msdu); 399 hash_del(&rxcb->hlist); 400 htt->rx_ring.fill_cnt--; 401 402 dma_unmap_single(htt->ar->dev, rxcb->paddr, 403 msdu->len + skb_tailroom(msdu), 404 DMA_FROM_DEVICE); 405 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ", 406 msdu->data, msdu->len + skb_tailroom(msdu)); 407 408 return msdu; 409 } 410 411 static int ath10k_htt_rx_pop_paddr_list(struct ath10k_htt *htt, 412 struct htt_rx_in_ord_ind *ev, 413 struct sk_buff_head *list) 414 { 415 struct ath10k *ar = htt->ar; 416 struct htt_rx_in_ord_msdu_desc *msdu_desc = ev->msdu_descs; 417 struct htt_rx_desc *rxd; 418 struct sk_buff *msdu; 419 int msdu_count; 420 bool is_offload; 421 u32 paddr; 422 423 lockdep_assert_held(&htt->rx_ring.lock); 424 425 msdu_count = __le16_to_cpu(ev->msdu_count); 426 is_offload = !!(ev->info & HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK); 427 428 while (msdu_count--) { 429 paddr = __le32_to_cpu(msdu_desc->msdu_paddr); 430 431 msdu = ath10k_htt_rx_pop_paddr(htt, paddr); 432 if (!msdu) { 433 __skb_queue_purge(list); 434 return -ENOENT; 435 } 436 437 __skb_queue_tail(list, msdu); 438 439 if (!is_offload) { 440 rxd = (void *)msdu->data; 441 442 trace_ath10k_htt_rx_desc(ar, rxd, sizeof(*rxd)); 443 444 skb_put(msdu, sizeof(*rxd)); 445 skb_pull(msdu, sizeof(*rxd)); 446 skb_put(msdu, __le16_to_cpu(msdu_desc->msdu_len)); 447 448 if (!(__le32_to_cpu(rxd->attention.flags) & 449 RX_ATTENTION_FLAGS_MSDU_DONE)) { 450 ath10k_warn(htt->ar, "tried to pop an incomplete frame, oops!\n"); 451 return -EIO; 452 } 453 } 454 455 msdu_desc++; 456 } 457 458 return 0; 459 } 460 461 int ath10k_htt_rx_alloc(struct ath10k_htt *htt) 462 { 463 struct ath10k *ar = htt->ar; 464 dma_addr_t paddr; 465 void *vaddr; 466 size_t size; 467 struct timer_list *timer = &htt->rx_ring.refill_retry_timer; 468 469 htt->rx_confused = false; 470 471 /* XXX: The fill level could be changed during runtime in response to 472 * the host processing latency. Is this really worth it? 473 */ 474 htt->rx_ring.size = HTT_RX_RING_SIZE; 475 htt->rx_ring.size_mask = htt->rx_ring.size - 1; 476 htt->rx_ring.fill_level = HTT_RX_RING_FILL_LEVEL; 477 478 if (!is_power_of_2(htt->rx_ring.size)) { 479 ath10k_warn(ar, "htt rx ring size is not power of 2\n"); 480 return -EINVAL; 481 } 482 483 htt->rx_ring.netbufs_ring = 484 kzalloc(htt->rx_ring.size * sizeof(struct sk_buff *), 485 GFP_KERNEL); 486 if (!htt->rx_ring.netbufs_ring) 487 goto err_netbuf; 488 489 size = htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring); 490 491 vaddr = dma_alloc_coherent(htt->ar->dev, size, &paddr, GFP_KERNEL); 492 if (!vaddr) 493 goto err_dma_ring; 494 495 htt->rx_ring.paddrs_ring = vaddr; 496 htt->rx_ring.base_paddr = paddr; 497 498 vaddr = dma_alloc_coherent(htt->ar->dev, 499 sizeof(*htt->rx_ring.alloc_idx.vaddr), 500 &paddr, GFP_KERNEL); 501 if (!vaddr) 502 goto err_dma_idx; 503 504 htt->rx_ring.alloc_idx.vaddr = vaddr; 505 htt->rx_ring.alloc_idx.paddr = paddr; 506 htt->rx_ring.sw_rd_idx.msdu_payld = htt->rx_ring.size_mask; 507 *htt->rx_ring.alloc_idx.vaddr = 0; 508 509 /* Initialize the Rx refill retry timer */ 510 setup_timer(timer, ath10k_htt_rx_ring_refill_retry, (unsigned long)htt); 511 512 spin_lock_init(&htt->rx_ring.lock); 513 514 htt->rx_ring.fill_cnt = 0; 515 htt->rx_ring.sw_rd_idx.msdu_payld = 0; 516 hash_init(htt->rx_ring.skb_table); 517 518 skb_queue_head_init(&htt->rx_compl_q); 519 skb_queue_head_init(&htt->rx_in_ord_compl_q); 520 skb_queue_head_init(&htt->tx_fetch_ind_q); 521 atomic_set(&htt->num_mpdus_ready, 0); 522 523 ath10k_dbg(ar, ATH10K_DBG_BOOT, "htt rx ring size %d fill_level %d\n", 524 htt->rx_ring.size, htt->rx_ring.fill_level); 525 return 0; 526 527 err_dma_idx: 528 dma_free_coherent(htt->ar->dev, 529 (htt->rx_ring.size * 530 sizeof(htt->rx_ring.paddrs_ring)), 531 htt->rx_ring.paddrs_ring, 532 htt->rx_ring.base_paddr); 533 err_dma_ring: 534 kfree(htt->rx_ring.netbufs_ring); 535 err_netbuf: 536 return -ENOMEM; 537 } 538 539 static int ath10k_htt_rx_crypto_param_len(struct ath10k *ar, 540 enum htt_rx_mpdu_encrypt_type type) 541 { 542 switch (type) { 543 case HTT_RX_MPDU_ENCRYPT_NONE: 544 return 0; 545 case HTT_RX_MPDU_ENCRYPT_WEP40: 546 case HTT_RX_MPDU_ENCRYPT_WEP104: 547 return IEEE80211_WEP_IV_LEN; 548 case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC: 549 case HTT_RX_MPDU_ENCRYPT_TKIP_WPA: 550 return IEEE80211_TKIP_IV_LEN; 551 case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2: 552 return IEEE80211_CCMP_HDR_LEN; 553 case HTT_RX_MPDU_ENCRYPT_WEP128: 554 case HTT_RX_MPDU_ENCRYPT_WAPI: 555 break; 556 } 557 558 ath10k_warn(ar, "unsupported encryption type %d\n", type); 559 return 0; 560 } 561 562 #define MICHAEL_MIC_LEN 8 563 564 static int ath10k_htt_rx_crypto_tail_len(struct ath10k *ar, 565 enum htt_rx_mpdu_encrypt_type type) 566 { 567 switch (type) { 568 case HTT_RX_MPDU_ENCRYPT_NONE: 569 return 0; 570 case HTT_RX_MPDU_ENCRYPT_WEP40: 571 case HTT_RX_MPDU_ENCRYPT_WEP104: 572 return IEEE80211_WEP_ICV_LEN; 573 case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC: 574 case HTT_RX_MPDU_ENCRYPT_TKIP_WPA: 575 return IEEE80211_TKIP_ICV_LEN; 576 case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2: 577 return IEEE80211_CCMP_MIC_LEN; 578 case HTT_RX_MPDU_ENCRYPT_WEP128: 579 case HTT_RX_MPDU_ENCRYPT_WAPI: 580 break; 581 } 582 583 ath10k_warn(ar, "unsupported encryption type %d\n", type); 584 return 0; 585 } 586 587 struct amsdu_subframe_hdr { 588 u8 dst[ETH_ALEN]; 589 u8 src[ETH_ALEN]; 590 __be16 len; 591 } __packed; 592 593 #define GROUP_ID_IS_SU_MIMO(x) ((x) == 0 || (x) == 63) 594 595 static void ath10k_htt_rx_h_rates(struct ath10k *ar, 596 struct ieee80211_rx_status *status, 597 struct htt_rx_desc *rxd) 598 { 599 struct ieee80211_supported_band *sband; 600 u8 cck, rate, bw, sgi, mcs, nss; 601 u8 preamble = 0; 602 u8 group_id; 603 u32 info1, info2, info3; 604 605 info1 = __le32_to_cpu(rxd->ppdu_start.info1); 606 info2 = __le32_to_cpu(rxd->ppdu_start.info2); 607 info3 = __le32_to_cpu(rxd->ppdu_start.info3); 608 609 preamble = MS(info1, RX_PPDU_START_INFO1_PREAMBLE_TYPE); 610 611 switch (preamble) { 612 case HTT_RX_LEGACY: 613 /* To get legacy rate index band is required. Since band can't 614 * be undefined check if freq is non-zero. 615 */ 616 if (!status->freq) 617 return; 618 619 cck = info1 & RX_PPDU_START_INFO1_L_SIG_RATE_SELECT; 620 rate = MS(info1, RX_PPDU_START_INFO1_L_SIG_RATE); 621 rate &= ~RX_PPDU_START_RATE_FLAG; 622 623 sband = &ar->mac.sbands[status->band]; 624 status->rate_idx = ath10k_mac_hw_rate_to_idx(sband, rate, cck); 625 break; 626 case HTT_RX_HT: 627 case HTT_RX_HT_WITH_TXBF: 628 /* HT-SIG - Table 20-11 in info2 and info3 */ 629 mcs = info2 & 0x1F; 630 nss = mcs >> 3; 631 bw = (info2 >> 7) & 1; 632 sgi = (info3 >> 7) & 1; 633 634 status->rate_idx = mcs; 635 status->encoding = RX_ENC_HT; 636 if (sgi) 637 status->enc_flags |= RX_ENC_FLAG_SHORT_GI; 638 if (bw) 639 status->bw = RATE_INFO_BW_40; 640 break; 641 case HTT_RX_VHT: 642 case HTT_RX_VHT_WITH_TXBF: 643 /* VHT-SIG-A1 in info2, VHT-SIG-A2 in info3 644 * TODO check this 645 */ 646 bw = info2 & 3; 647 sgi = info3 & 1; 648 group_id = (info2 >> 4) & 0x3F; 649 650 if (GROUP_ID_IS_SU_MIMO(group_id)) { 651 mcs = (info3 >> 4) & 0x0F; 652 nss = ((info2 >> 10) & 0x07) + 1; 653 } else { 654 /* Hardware doesn't decode VHT-SIG-B into Rx descriptor 655 * so it's impossible to decode MCS. Also since 656 * firmware consumes Group Id Management frames host 657 * has no knowledge regarding group/user position 658 * mapping so it's impossible to pick the correct Nsts 659 * from VHT-SIG-A1. 660 * 661 * Bandwidth and SGI are valid so report the rateinfo 662 * on best-effort basis. 663 */ 664 mcs = 0; 665 nss = 1; 666 } 667 668 if (mcs > 0x09) { 669 ath10k_warn(ar, "invalid MCS received %u\n", mcs); 670 ath10k_warn(ar, "rxd %08x mpdu start %08x %08x msdu start %08x %08x ppdu start %08x %08x %08x %08x %08x\n", 671 __le32_to_cpu(rxd->attention.flags), 672 __le32_to_cpu(rxd->mpdu_start.info0), 673 __le32_to_cpu(rxd->mpdu_start.info1), 674 __le32_to_cpu(rxd->msdu_start.common.info0), 675 __le32_to_cpu(rxd->msdu_start.common.info1), 676 rxd->ppdu_start.info0, 677 __le32_to_cpu(rxd->ppdu_start.info1), 678 __le32_to_cpu(rxd->ppdu_start.info2), 679 __le32_to_cpu(rxd->ppdu_start.info3), 680 __le32_to_cpu(rxd->ppdu_start.info4)); 681 682 ath10k_warn(ar, "msdu end %08x mpdu end %08x\n", 683 __le32_to_cpu(rxd->msdu_end.common.info0), 684 __le32_to_cpu(rxd->mpdu_end.info0)); 685 686 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, 687 "rx desc msdu payload: ", 688 rxd->msdu_payload, 50); 689 } 690 691 status->rate_idx = mcs; 692 status->nss = nss; 693 694 if (sgi) 695 status->enc_flags |= RX_ENC_FLAG_SHORT_GI; 696 697 switch (bw) { 698 /* 20MHZ */ 699 case 0: 700 break; 701 /* 40MHZ */ 702 case 1: 703 status->bw = RATE_INFO_BW_40; 704 break; 705 /* 80MHZ */ 706 case 2: 707 status->bw = RATE_INFO_BW_80; 708 break; 709 case 3: 710 status->bw = RATE_INFO_BW_160; 711 break; 712 } 713 714 status->encoding = RX_ENC_VHT; 715 break; 716 default: 717 break; 718 } 719 } 720 721 static struct ieee80211_channel * 722 ath10k_htt_rx_h_peer_channel(struct ath10k *ar, struct htt_rx_desc *rxd) 723 { 724 struct ath10k_peer *peer; 725 struct ath10k_vif *arvif; 726 struct cfg80211_chan_def def; 727 u16 peer_id; 728 729 lockdep_assert_held(&ar->data_lock); 730 731 if (!rxd) 732 return NULL; 733 734 if (rxd->attention.flags & 735 __cpu_to_le32(RX_ATTENTION_FLAGS_PEER_IDX_INVALID)) 736 return NULL; 737 738 if (!(rxd->msdu_end.common.info0 & 739 __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU))) 740 return NULL; 741 742 peer_id = MS(__le32_to_cpu(rxd->mpdu_start.info0), 743 RX_MPDU_START_INFO0_PEER_IDX); 744 745 peer = ath10k_peer_find_by_id(ar, peer_id); 746 if (!peer) 747 return NULL; 748 749 arvif = ath10k_get_arvif(ar, peer->vdev_id); 750 if (WARN_ON_ONCE(!arvif)) 751 return NULL; 752 753 if (ath10k_mac_vif_chan(arvif->vif, &def)) 754 return NULL; 755 756 return def.chan; 757 } 758 759 static struct ieee80211_channel * 760 ath10k_htt_rx_h_vdev_channel(struct ath10k *ar, u32 vdev_id) 761 { 762 struct ath10k_vif *arvif; 763 struct cfg80211_chan_def def; 764 765 lockdep_assert_held(&ar->data_lock); 766 767 list_for_each_entry(arvif, &ar->arvifs, list) { 768 if (arvif->vdev_id == vdev_id && 769 ath10k_mac_vif_chan(arvif->vif, &def) == 0) 770 return def.chan; 771 } 772 773 return NULL; 774 } 775 776 static void 777 ath10k_htt_rx_h_any_chan_iter(struct ieee80211_hw *hw, 778 struct ieee80211_chanctx_conf *conf, 779 void *data) 780 { 781 struct cfg80211_chan_def *def = data; 782 783 *def = conf->def; 784 } 785 786 static struct ieee80211_channel * 787 ath10k_htt_rx_h_any_channel(struct ath10k *ar) 788 { 789 struct cfg80211_chan_def def = {}; 790 791 ieee80211_iter_chan_contexts_atomic(ar->hw, 792 ath10k_htt_rx_h_any_chan_iter, 793 &def); 794 795 return def.chan; 796 } 797 798 static bool ath10k_htt_rx_h_channel(struct ath10k *ar, 799 struct ieee80211_rx_status *status, 800 struct htt_rx_desc *rxd, 801 u32 vdev_id) 802 { 803 struct ieee80211_channel *ch; 804 805 spin_lock_bh(&ar->data_lock); 806 ch = ar->scan_channel; 807 if (!ch) 808 ch = ar->rx_channel; 809 if (!ch) 810 ch = ath10k_htt_rx_h_peer_channel(ar, rxd); 811 if (!ch) 812 ch = ath10k_htt_rx_h_vdev_channel(ar, vdev_id); 813 if (!ch) 814 ch = ath10k_htt_rx_h_any_channel(ar); 815 if (!ch) 816 ch = ar->tgt_oper_chan; 817 spin_unlock_bh(&ar->data_lock); 818 819 if (!ch) 820 return false; 821 822 status->band = ch->band; 823 status->freq = ch->center_freq; 824 825 return true; 826 } 827 828 static void ath10k_htt_rx_h_signal(struct ath10k *ar, 829 struct ieee80211_rx_status *status, 830 struct htt_rx_desc *rxd) 831 { 832 /* FIXME: Get real NF */ 833 status->signal = ATH10K_DEFAULT_NOISE_FLOOR + 834 rxd->ppdu_start.rssi_comb; 835 status->flag &= ~RX_FLAG_NO_SIGNAL_VAL; 836 } 837 838 static void ath10k_htt_rx_h_mactime(struct ath10k *ar, 839 struct ieee80211_rx_status *status, 840 struct htt_rx_desc *rxd) 841 { 842 /* FIXME: TSF is known only at the end of PPDU, in the last MPDU. This 843 * means all prior MSDUs in a PPDU are reported to mac80211 without the 844 * TSF. Is it worth holding frames until end of PPDU is known? 845 * 846 * FIXME: Can we get/compute 64bit TSF? 847 */ 848 status->mactime = __le32_to_cpu(rxd->ppdu_end.common.tsf_timestamp); 849 status->flag |= RX_FLAG_MACTIME_END; 850 } 851 852 static void ath10k_htt_rx_h_ppdu(struct ath10k *ar, 853 struct sk_buff_head *amsdu, 854 struct ieee80211_rx_status *status, 855 u32 vdev_id) 856 { 857 struct sk_buff *first; 858 struct htt_rx_desc *rxd; 859 bool is_first_ppdu; 860 bool is_last_ppdu; 861 862 if (skb_queue_empty(amsdu)) 863 return; 864 865 first = skb_peek(amsdu); 866 rxd = (void *)first->data - sizeof(*rxd); 867 868 is_first_ppdu = !!(rxd->attention.flags & 869 __cpu_to_le32(RX_ATTENTION_FLAGS_FIRST_MPDU)); 870 is_last_ppdu = !!(rxd->attention.flags & 871 __cpu_to_le32(RX_ATTENTION_FLAGS_LAST_MPDU)); 872 873 if (is_first_ppdu) { 874 /* New PPDU starts so clear out the old per-PPDU status. */ 875 status->freq = 0; 876 status->rate_idx = 0; 877 status->nss = 0; 878 status->encoding = RX_ENC_LEGACY; 879 status->bw = RATE_INFO_BW_20; 880 status->flag &= ~RX_FLAG_MACTIME_END; 881 status->flag |= RX_FLAG_NO_SIGNAL_VAL; 882 883 ath10k_htt_rx_h_signal(ar, status, rxd); 884 ath10k_htt_rx_h_channel(ar, status, rxd, vdev_id); 885 ath10k_htt_rx_h_rates(ar, status, rxd); 886 } 887 888 if (is_last_ppdu) 889 ath10k_htt_rx_h_mactime(ar, status, rxd); 890 } 891 892 static const char * const tid_to_ac[] = { 893 "BE", 894 "BK", 895 "BK", 896 "BE", 897 "VI", 898 "VI", 899 "VO", 900 "VO", 901 }; 902 903 static char *ath10k_get_tid(struct ieee80211_hdr *hdr, char *out, size_t size) 904 { 905 u8 *qc; 906 int tid; 907 908 if (!ieee80211_is_data_qos(hdr->frame_control)) 909 return ""; 910 911 qc = ieee80211_get_qos_ctl(hdr); 912 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 913 if (tid < 8) 914 snprintf(out, size, "tid %d (%s)", tid, tid_to_ac[tid]); 915 else 916 snprintf(out, size, "tid %d", tid); 917 918 return out; 919 } 920 921 static void ath10k_process_rx(struct ath10k *ar, 922 struct ieee80211_rx_status *rx_status, 923 struct sk_buff *skb) 924 { 925 struct ieee80211_rx_status *status; 926 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 927 char tid[32]; 928 929 status = IEEE80211_SKB_RXCB(skb); 930 *status = *rx_status; 931 932 ath10k_dbg(ar, ATH10K_DBG_DATA, 933 "rx skb %pK len %u peer %pM %s %s sn %u %s%s%s%s%s%s %srate_idx %u vht_nss %u freq %u band %u flag 0x%x fcs-err %i mic-err %i amsdu-more %i\n", 934 skb, 935 skb->len, 936 ieee80211_get_SA(hdr), 937 ath10k_get_tid(hdr, tid, sizeof(tid)), 938 is_multicast_ether_addr(ieee80211_get_DA(hdr)) ? 939 "mcast" : "ucast", 940 (__le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_SEQ) >> 4, 941 (status->encoding == RX_ENC_LEGACY) ? "legacy" : "", 942 (status->encoding == RX_ENC_HT) ? "ht" : "", 943 (status->encoding == RX_ENC_VHT) ? "vht" : "", 944 (status->bw == RATE_INFO_BW_40) ? "40" : "", 945 (status->bw == RATE_INFO_BW_80) ? "80" : "", 946 (status->bw == RATE_INFO_BW_160) ? "160" : "", 947 status->enc_flags & RX_ENC_FLAG_SHORT_GI ? "sgi " : "", 948 status->rate_idx, 949 status->nss, 950 status->freq, 951 status->band, status->flag, 952 !!(status->flag & RX_FLAG_FAILED_FCS_CRC), 953 !!(status->flag & RX_FLAG_MMIC_ERROR), 954 !!(status->flag & RX_FLAG_AMSDU_MORE)); 955 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "rx skb: ", 956 skb->data, skb->len); 957 trace_ath10k_rx_hdr(ar, skb->data, skb->len); 958 trace_ath10k_rx_payload(ar, skb->data, skb->len); 959 960 ieee80211_rx_napi(ar->hw, NULL, skb, &ar->napi); 961 } 962 963 static int ath10k_htt_rx_nwifi_hdrlen(struct ath10k *ar, 964 struct ieee80211_hdr *hdr) 965 { 966 int len = ieee80211_hdrlen(hdr->frame_control); 967 968 if (!test_bit(ATH10K_FW_FEATURE_NO_NWIFI_DECAP_4ADDR_PADDING, 969 ar->running_fw->fw_file.fw_features)) 970 len = round_up(len, 4); 971 972 return len; 973 } 974 975 static void ath10k_htt_rx_h_undecap_raw(struct ath10k *ar, 976 struct sk_buff *msdu, 977 struct ieee80211_rx_status *status, 978 enum htt_rx_mpdu_encrypt_type enctype, 979 bool is_decrypted) 980 { 981 struct ieee80211_hdr *hdr; 982 struct htt_rx_desc *rxd; 983 size_t hdr_len; 984 size_t crypto_len; 985 bool is_first; 986 bool is_last; 987 988 rxd = (void *)msdu->data - sizeof(*rxd); 989 is_first = !!(rxd->msdu_end.common.info0 & 990 __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU)); 991 is_last = !!(rxd->msdu_end.common.info0 & 992 __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU)); 993 994 /* Delivered decapped frame: 995 * [802.11 header] 996 * [crypto param] <-- can be trimmed if !fcs_err && 997 * !decrypt_err && !peer_idx_invalid 998 * [amsdu header] <-- only if A-MSDU 999 * [rfc1042/llc] 1000 * [payload] 1001 * [FCS] <-- at end, needs to be trimmed 1002 */ 1003 1004 /* This probably shouldn't happen but warn just in case */ 1005 if (unlikely(WARN_ON_ONCE(!is_first))) 1006 return; 1007 1008 /* This probably shouldn't happen but warn just in case */ 1009 if (unlikely(WARN_ON_ONCE(!(is_first && is_last)))) 1010 return; 1011 1012 skb_trim(msdu, msdu->len - FCS_LEN); 1013 1014 /* In most cases this will be true for sniffed frames. It makes sense 1015 * to deliver them as-is without stripping the crypto param. This is 1016 * necessary for software based decryption. 1017 * 1018 * If there's no error then the frame is decrypted. At least that is 1019 * the case for frames that come in via fragmented rx indication. 1020 */ 1021 if (!is_decrypted) 1022 return; 1023 1024 /* The payload is decrypted so strip crypto params. Start from tail 1025 * since hdr is used to compute some stuff. 1026 */ 1027 1028 hdr = (void *)msdu->data; 1029 1030 /* Tail */ 1031 if (status->flag & RX_FLAG_IV_STRIPPED) 1032 skb_trim(msdu, msdu->len - 1033 ath10k_htt_rx_crypto_tail_len(ar, enctype)); 1034 1035 /* MMIC */ 1036 if ((status->flag & RX_FLAG_MMIC_STRIPPED) && 1037 !ieee80211_has_morefrags(hdr->frame_control) && 1038 enctype == HTT_RX_MPDU_ENCRYPT_TKIP_WPA) 1039 skb_trim(msdu, msdu->len - 8); 1040 1041 /* Head */ 1042 if (status->flag & RX_FLAG_IV_STRIPPED) { 1043 hdr_len = ieee80211_hdrlen(hdr->frame_control); 1044 crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype); 1045 1046 memmove((void *)msdu->data + crypto_len, 1047 (void *)msdu->data, hdr_len); 1048 skb_pull(msdu, crypto_len); 1049 } 1050 } 1051 1052 static void ath10k_htt_rx_h_undecap_nwifi(struct ath10k *ar, 1053 struct sk_buff *msdu, 1054 struct ieee80211_rx_status *status, 1055 const u8 first_hdr[64]) 1056 { 1057 struct ieee80211_hdr *hdr; 1058 struct htt_rx_desc *rxd; 1059 size_t hdr_len; 1060 u8 da[ETH_ALEN]; 1061 u8 sa[ETH_ALEN]; 1062 int l3_pad_bytes; 1063 1064 /* Delivered decapped frame: 1065 * [nwifi 802.11 header] <-- replaced with 802.11 hdr 1066 * [rfc1042/llc] 1067 * 1068 * Note: The nwifi header doesn't have QoS Control and is 1069 * (always?) a 3addr frame. 1070 * 1071 * Note2: There's no A-MSDU subframe header. Even if it's part 1072 * of an A-MSDU. 1073 */ 1074 1075 /* pull decapped header and copy SA & DA */ 1076 rxd = (void *)msdu->data - sizeof(*rxd); 1077 1078 l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd); 1079 skb_put(msdu, l3_pad_bytes); 1080 1081 hdr = (struct ieee80211_hdr *)(msdu->data + l3_pad_bytes); 1082 1083 hdr_len = ath10k_htt_rx_nwifi_hdrlen(ar, hdr); 1084 ether_addr_copy(da, ieee80211_get_DA(hdr)); 1085 ether_addr_copy(sa, ieee80211_get_SA(hdr)); 1086 skb_pull(msdu, hdr_len); 1087 1088 /* push original 802.11 header */ 1089 hdr = (struct ieee80211_hdr *)first_hdr; 1090 hdr_len = ieee80211_hdrlen(hdr->frame_control); 1091 memcpy(skb_push(msdu, hdr_len), hdr, hdr_len); 1092 1093 /* original 802.11 header has a different DA and in 1094 * case of 4addr it may also have different SA 1095 */ 1096 hdr = (struct ieee80211_hdr *)msdu->data; 1097 ether_addr_copy(ieee80211_get_DA(hdr), da); 1098 ether_addr_copy(ieee80211_get_SA(hdr), sa); 1099 } 1100 1101 static void *ath10k_htt_rx_h_find_rfc1042(struct ath10k *ar, 1102 struct sk_buff *msdu, 1103 enum htt_rx_mpdu_encrypt_type enctype) 1104 { 1105 struct ieee80211_hdr *hdr; 1106 struct htt_rx_desc *rxd; 1107 size_t hdr_len, crypto_len; 1108 void *rfc1042; 1109 bool is_first, is_last, is_amsdu; 1110 int bytes_aligned = ar->hw_params.decap_align_bytes; 1111 1112 rxd = (void *)msdu->data - sizeof(*rxd); 1113 hdr = (void *)rxd->rx_hdr_status; 1114 1115 is_first = !!(rxd->msdu_end.common.info0 & 1116 __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU)); 1117 is_last = !!(rxd->msdu_end.common.info0 & 1118 __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU)); 1119 is_amsdu = !(is_first && is_last); 1120 1121 rfc1042 = hdr; 1122 1123 if (is_first) { 1124 hdr_len = ieee80211_hdrlen(hdr->frame_control); 1125 crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype); 1126 1127 rfc1042 += round_up(hdr_len, bytes_aligned) + 1128 round_up(crypto_len, bytes_aligned); 1129 } 1130 1131 if (is_amsdu) 1132 rfc1042 += sizeof(struct amsdu_subframe_hdr); 1133 1134 return rfc1042; 1135 } 1136 1137 static void ath10k_htt_rx_h_undecap_eth(struct ath10k *ar, 1138 struct sk_buff *msdu, 1139 struct ieee80211_rx_status *status, 1140 const u8 first_hdr[64], 1141 enum htt_rx_mpdu_encrypt_type enctype) 1142 { 1143 struct ieee80211_hdr *hdr; 1144 struct ethhdr *eth; 1145 size_t hdr_len; 1146 void *rfc1042; 1147 u8 da[ETH_ALEN]; 1148 u8 sa[ETH_ALEN]; 1149 int l3_pad_bytes; 1150 struct htt_rx_desc *rxd; 1151 1152 /* Delivered decapped frame: 1153 * [eth header] <-- replaced with 802.11 hdr & rfc1042/llc 1154 * [payload] 1155 */ 1156 1157 rfc1042 = ath10k_htt_rx_h_find_rfc1042(ar, msdu, enctype); 1158 if (WARN_ON_ONCE(!rfc1042)) 1159 return; 1160 1161 rxd = (void *)msdu->data - sizeof(*rxd); 1162 l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd); 1163 skb_put(msdu, l3_pad_bytes); 1164 skb_pull(msdu, l3_pad_bytes); 1165 1166 /* pull decapped header and copy SA & DA */ 1167 eth = (struct ethhdr *)msdu->data; 1168 ether_addr_copy(da, eth->h_dest); 1169 ether_addr_copy(sa, eth->h_source); 1170 skb_pull(msdu, sizeof(struct ethhdr)); 1171 1172 /* push rfc1042/llc/snap */ 1173 memcpy(skb_push(msdu, sizeof(struct rfc1042_hdr)), rfc1042, 1174 sizeof(struct rfc1042_hdr)); 1175 1176 /* push original 802.11 header */ 1177 hdr = (struct ieee80211_hdr *)first_hdr; 1178 hdr_len = ieee80211_hdrlen(hdr->frame_control); 1179 memcpy(skb_push(msdu, hdr_len), hdr, hdr_len); 1180 1181 /* original 802.11 header has a different DA and in 1182 * case of 4addr it may also have different SA 1183 */ 1184 hdr = (struct ieee80211_hdr *)msdu->data; 1185 ether_addr_copy(ieee80211_get_DA(hdr), da); 1186 ether_addr_copy(ieee80211_get_SA(hdr), sa); 1187 } 1188 1189 static void ath10k_htt_rx_h_undecap_snap(struct ath10k *ar, 1190 struct sk_buff *msdu, 1191 struct ieee80211_rx_status *status, 1192 const u8 first_hdr[64]) 1193 { 1194 struct ieee80211_hdr *hdr; 1195 size_t hdr_len; 1196 int l3_pad_bytes; 1197 struct htt_rx_desc *rxd; 1198 1199 /* Delivered decapped frame: 1200 * [amsdu header] <-- replaced with 802.11 hdr 1201 * [rfc1042/llc] 1202 * [payload] 1203 */ 1204 1205 rxd = (void *)msdu->data - sizeof(*rxd); 1206 l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd); 1207 1208 skb_put(msdu, l3_pad_bytes); 1209 skb_pull(msdu, sizeof(struct amsdu_subframe_hdr) + l3_pad_bytes); 1210 1211 hdr = (struct ieee80211_hdr *)first_hdr; 1212 hdr_len = ieee80211_hdrlen(hdr->frame_control); 1213 memcpy(skb_push(msdu, hdr_len), hdr, hdr_len); 1214 } 1215 1216 static void ath10k_htt_rx_h_undecap(struct ath10k *ar, 1217 struct sk_buff *msdu, 1218 struct ieee80211_rx_status *status, 1219 u8 first_hdr[64], 1220 enum htt_rx_mpdu_encrypt_type enctype, 1221 bool is_decrypted) 1222 { 1223 struct htt_rx_desc *rxd; 1224 enum rx_msdu_decap_format decap; 1225 1226 /* First msdu's decapped header: 1227 * [802.11 header] <-- padded to 4 bytes long 1228 * [crypto param] <-- padded to 4 bytes long 1229 * [amsdu header] <-- only if A-MSDU 1230 * [rfc1042/llc] 1231 * 1232 * Other (2nd, 3rd, ..) msdu's decapped header: 1233 * [amsdu header] <-- only if A-MSDU 1234 * [rfc1042/llc] 1235 */ 1236 1237 rxd = (void *)msdu->data - sizeof(*rxd); 1238 decap = MS(__le32_to_cpu(rxd->msdu_start.common.info1), 1239 RX_MSDU_START_INFO1_DECAP_FORMAT); 1240 1241 switch (decap) { 1242 case RX_MSDU_DECAP_RAW: 1243 ath10k_htt_rx_h_undecap_raw(ar, msdu, status, enctype, 1244 is_decrypted); 1245 break; 1246 case RX_MSDU_DECAP_NATIVE_WIFI: 1247 ath10k_htt_rx_h_undecap_nwifi(ar, msdu, status, first_hdr); 1248 break; 1249 case RX_MSDU_DECAP_ETHERNET2_DIX: 1250 ath10k_htt_rx_h_undecap_eth(ar, msdu, status, first_hdr, enctype); 1251 break; 1252 case RX_MSDU_DECAP_8023_SNAP_LLC: 1253 ath10k_htt_rx_h_undecap_snap(ar, msdu, status, first_hdr); 1254 break; 1255 } 1256 } 1257 1258 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb) 1259 { 1260 struct htt_rx_desc *rxd; 1261 u32 flags, info; 1262 bool is_ip4, is_ip6; 1263 bool is_tcp, is_udp; 1264 bool ip_csum_ok, tcpudp_csum_ok; 1265 1266 rxd = (void *)skb->data - sizeof(*rxd); 1267 flags = __le32_to_cpu(rxd->attention.flags); 1268 info = __le32_to_cpu(rxd->msdu_start.common.info1); 1269 1270 is_ip4 = !!(info & RX_MSDU_START_INFO1_IPV4_PROTO); 1271 is_ip6 = !!(info & RX_MSDU_START_INFO1_IPV6_PROTO); 1272 is_tcp = !!(info & RX_MSDU_START_INFO1_TCP_PROTO); 1273 is_udp = !!(info & RX_MSDU_START_INFO1_UDP_PROTO); 1274 ip_csum_ok = !(flags & RX_ATTENTION_FLAGS_IP_CHKSUM_FAIL); 1275 tcpudp_csum_ok = !(flags & RX_ATTENTION_FLAGS_TCP_UDP_CHKSUM_FAIL); 1276 1277 if (!is_ip4 && !is_ip6) 1278 return CHECKSUM_NONE; 1279 if (!is_tcp && !is_udp) 1280 return CHECKSUM_NONE; 1281 if (!ip_csum_ok) 1282 return CHECKSUM_NONE; 1283 if (!tcpudp_csum_ok) 1284 return CHECKSUM_NONE; 1285 1286 return CHECKSUM_UNNECESSARY; 1287 } 1288 1289 static void ath10k_htt_rx_h_csum_offload(struct sk_buff *msdu) 1290 { 1291 msdu->ip_summed = ath10k_htt_rx_get_csum_state(msdu); 1292 } 1293 1294 static void ath10k_htt_rx_h_mpdu(struct ath10k *ar, 1295 struct sk_buff_head *amsdu, 1296 struct ieee80211_rx_status *status) 1297 { 1298 struct sk_buff *first; 1299 struct sk_buff *last; 1300 struct sk_buff *msdu; 1301 struct htt_rx_desc *rxd; 1302 struct ieee80211_hdr *hdr; 1303 enum htt_rx_mpdu_encrypt_type enctype; 1304 u8 first_hdr[64]; 1305 u8 *qos; 1306 size_t hdr_len; 1307 bool has_fcs_err; 1308 bool has_crypto_err; 1309 bool has_tkip_err; 1310 bool has_peer_idx_invalid; 1311 bool is_decrypted; 1312 bool is_mgmt; 1313 u32 attention; 1314 1315 if (skb_queue_empty(amsdu)) 1316 return; 1317 1318 first = skb_peek(amsdu); 1319 rxd = (void *)first->data - sizeof(*rxd); 1320 1321 is_mgmt = !!(rxd->attention.flags & 1322 __cpu_to_le32(RX_ATTENTION_FLAGS_MGMT_TYPE)); 1323 1324 enctype = MS(__le32_to_cpu(rxd->mpdu_start.info0), 1325 RX_MPDU_START_INFO0_ENCRYPT_TYPE); 1326 1327 /* First MSDU's Rx descriptor in an A-MSDU contains full 802.11 1328 * decapped header. It'll be used for undecapping of each MSDU. 1329 */ 1330 hdr = (void *)rxd->rx_hdr_status; 1331 hdr_len = ieee80211_hdrlen(hdr->frame_control); 1332 memcpy(first_hdr, hdr, hdr_len); 1333 1334 /* Each A-MSDU subframe will use the original header as the base and be 1335 * reported as a separate MSDU so strip the A-MSDU bit from QoS Ctl. 1336 */ 1337 hdr = (void *)first_hdr; 1338 qos = ieee80211_get_qos_ctl(hdr); 1339 qos[0] &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT; 1340 1341 /* Some attention flags are valid only in the last MSDU. */ 1342 last = skb_peek_tail(amsdu); 1343 rxd = (void *)last->data - sizeof(*rxd); 1344 attention = __le32_to_cpu(rxd->attention.flags); 1345 1346 has_fcs_err = !!(attention & RX_ATTENTION_FLAGS_FCS_ERR); 1347 has_crypto_err = !!(attention & RX_ATTENTION_FLAGS_DECRYPT_ERR); 1348 has_tkip_err = !!(attention & RX_ATTENTION_FLAGS_TKIP_MIC_ERR); 1349 has_peer_idx_invalid = !!(attention & RX_ATTENTION_FLAGS_PEER_IDX_INVALID); 1350 1351 /* Note: If hardware captures an encrypted frame that it can't decrypt, 1352 * e.g. due to fcs error, missing peer or invalid key data it will 1353 * report the frame as raw. 1354 */ 1355 is_decrypted = (enctype != HTT_RX_MPDU_ENCRYPT_NONE && 1356 !has_fcs_err && 1357 !has_crypto_err && 1358 !has_peer_idx_invalid); 1359 1360 /* Clear per-MPDU flags while leaving per-PPDU flags intact. */ 1361 status->flag &= ~(RX_FLAG_FAILED_FCS_CRC | 1362 RX_FLAG_MMIC_ERROR | 1363 RX_FLAG_DECRYPTED | 1364 RX_FLAG_IV_STRIPPED | 1365 RX_FLAG_ONLY_MONITOR | 1366 RX_FLAG_MMIC_STRIPPED); 1367 1368 if (has_fcs_err) 1369 status->flag |= RX_FLAG_FAILED_FCS_CRC; 1370 1371 if (has_tkip_err) 1372 status->flag |= RX_FLAG_MMIC_ERROR; 1373 1374 /* Firmware reports all necessary management frames via WMI already. 1375 * They are not reported to monitor interfaces at all so pass the ones 1376 * coming via HTT to monitor interfaces instead. This simplifies 1377 * matters a lot. 1378 */ 1379 if (is_mgmt) 1380 status->flag |= RX_FLAG_ONLY_MONITOR; 1381 1382 if (is_decrypted) { 1383 status->flag |= RX_FLAG_DECRYPTED; 1384 1385 if (likely(!is_mgmt)) 1386 status->flag |= RX_FLAG_IV_STRIPPED | 1387 RX_FLAG_MMIC_STRIPPED; 1388 } 1389 1390 skb_queue_walk(amsdu, msdu) { 1391 ath10k_htt_rx_h_csum_offload(msdu); 1392 ath10k_htt_rx_h_undecap(ar, msdu, status, first_hdr, enctype, 1393 is_decrypted); 1394 1395 /* Undecapping involves copying the original 802.11 header back 1396 * to sk_buff. If frame is protected and hardware has decrypted 1397 * it then remove the protected bit. 1398 */ 1399 if (!is_decrypted) 1400 continue; 1401 if (is_mgmt) 1402 continue; 1403 1404 hdr = (void *)msdu->data; 1405 hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED); 1406 } 1407 } 1408 1409 static void ath10k_htt_rx_h_deliver(struct ath10k *ar, 1410 struct sk_buff_head *amsdu, 1411 struct ieee80211_rx_status *status) 1412 { 1413 struct sk_buff *msdu; 1414 1415 while ((msdu = __skb_dequeue(amsdu))) { 1416 /* Setup per-MSDU flags */ 1417 if (skb_queue_empty(amsdu)) 1418 status->flag &= ~RX_FLAG_AMSDU_MORE; 1419 else 1420 status->flag |= RX_FLAG_AMSDU_MORE; 1421 1422 ath10k_process_rx(ar, status, msdu); 1423 } 1424 } 1425 1426 static int ath10k_unchain_msdu(struct sk_buff_head *amsdu) 1427 { 1428 struct sk_buff *skb, *first; 1429 int space; 1430 int total_len = 0; 1431 1432 /* TODO: Might could optimize this by using 1433 * skb_try_coalesce or similar method to 1434 * decrease copying, or maybe get mac80211 to 1435 * provide a way to just receive a list of 1436 * skb? 1437 */ 1438 1439 first = __skb_dequeue(amsdu); 1440 1441 /* Allocate total length all at once. */ 1442 skb_queue_walk(amsdu, skb) 1443 total_len += skb->len; 1444 1445 space = total_len - skb_tailroom(first); 1446 if ((space > 0) && 1447 (pskb_expand_head(first, 0, space, GFP_ATOMIC) < 0)) { 1448 /* TODO: bump some rx-oom error stat */ 1449 /* put it back together so we can free the 1450 * whole list at once. 1451 */ 1452 __skb_queue_head(amsdu, first); 1453 return -1; 1454 } 1455 1456 /* Walk list again, copying contents into 1457 * msdu_head 1458 */ 1459 while ((skb = __skb_dequeue(amsdu))) { 1460 skb_copy_from_linear_data(skb, skb_put(first, skb->len), 1461 skb->len); 1462 dev_kfree_skb_any(skb); 1463 } 1464 1465 __skb_queue_head(amsdu, first); 1466 return 0; 1467 } 1468 1469 static void ath10k_htt_rx_h_unchain(struct ath10k *ar, 1470 struct sk_buff_head *amsdu) 1471 { 1472 struct sk_buff *first; 1473 struct htt_rx_desc *rxd; 1474 enum rx_msdu_decap_format decap; 1475 1476 first = skb_peek(amsdu); 1477 rxd = (void *)first->data - sizeof(*rxd); 1478 decap = MS(__le32_to_cpu(rxd->msdu_start.common.info1), 1479 RX_MSDU_START_INFO1_DECAP_FORMAT); 1480 1481 /* FIXME: Current unchaining logic can only handle simple case of raw 1482 * msdu chaining. If decapping is other than raw the chaining may be 1483 * more complex and this isn't handled by the current code. Don't even 1484 * try re-constructing such frames - it'll be pretty much garbage. 1485 */ 1486 if (decap != RX_MSDU_DECAP_RAW || 1487 skb_queue_len(amsdu) != 1 + rxd->frag_info.ring2_more_count) { 1488 __skb_queue_purge(amsdu); 1489 return; 1490 } 1491 1492 ath10k_unchain_msdu(amsdu); 1493 } 1494 1495 static bool ath10k_htt_rx_amsdu_allowed(struct ath10k *ar, 1496 struct sk_buff_head *amsdu, 1497 struct ieee80211_rx_status *rx_status) 1498 { 1499 /* FIXME: It might be a good idea to do some fuzzy-testing to drop 1500 * invalid/dangerous frames. 1501 */ 1502 1503 if (!rx_status->freq) { 1504 ath10k_warn(ar, "no channel configured; ignoring frame(s)!\n"); 1505 return false; 1506 } 1507 1508 if (test_bit(ATH10K_CAC_RUNNING, &ar->dev_flags)) { 1509 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx cac running\n"); 1510 return false; 1511 } 1512 1513 return true; 1514 } 1515 1516 static void ath10k_htt_rx_h_filter(struct ath10k *ar, 1517 struct sk_buff_head *amsdu, 1518 struct ieee80211_rx_status *rx_status) 1519 { 1520 if (skb_queue_empty(amsdu)) 1521 return; 1522 1523 if (ath10k_htt_rx_amsdu_allowed(ar, amsdu, rx_status)) 1524 return; 1525 1526 __skb_queue_purge(amsdu); 1527 } 1528 1529 static int ath10k_htt_rx_handle_amsdu(struct ath10k_htt *htt) 1530 { 1531 struct ath10k *ar = htt->ar; 1532 struct ieee80211_rx_status *rx_status = &htt->rx_status; 1533 struct sk_buff_head amsdu; 1534 int ret, num_msdus; 1535 1536 __skb_queue_head_init(&amsdu); 1537 1538 spin_lock_bh(&htt->rx_ring.lock); 1539 if (htt->rx_confused) { 1540 spin_unlock_bh(&htt->rx_ring.lock); 1541 return -EIO; 1542 } 1543 ret = ath10k_htt_rx_amsdu_pop(htt, &amsdu); 1544 spin_unlock_bh(&htt->rx_ring.lock); 1545 1546 if (ret < 0) { 1547 ath10k_warn(ar, "rx ring became corrupted: %d\n", ret); 1548 __skb_queue_purge(&amsdu); 1549 /* FIXME: It's probably a good idea to reboot the 1550 * device instead of leaving it inoperable. 1551 */ 1552 htt->rx_confused = true; 1553 return ret; 1554 } 1555 1556 num_msdus = skb_queue_len(&amsdu); 1557 ath10k_htt_rx_h_ppdu(ar, &amsdu, rx_status, 0xffff); 1558 1559 /* only for ret = 1 indicates chained msdus */ 1560 if (ret > 0) 1561 ath10k_htt_rx_h_unchain(ar, &amsdu); 1562 1563 ath10k_htt_rx_h_filter(ar, &amsdu, rx_status); 1564 ath10k_htt_rx_h_mpdu(ar, &amsdu, rx_status); 1565 ath10k_htt_rx_h_deliver(ar, &amsdu, rx_status); 1566 1567 return num_msdus; 1568 } 1569 1570 static void ath10k_htt_rx_proc_rx_ind(struct ath10k_htt *htt, 1571 struct htt_rx_indication *rx) 1572 { 1573 struct ath10k *ar = htt->ar; 1574 struct htt_rx_indication_mpdu_range *mpdu_ranges; 1575 int num_mpdu_ranges; 1576 int i, mpdu_count = 0; 1577 1578 num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1), 1579 HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES); 1580 mpdu_ranges = htt_rx_ind_get_mpdu_ranges(rx); 1581 1582 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx ind: ", 1583 rx, sizeof(*rx) + 1584 (sizeof(struct htt_rx_indication_mpdu_range) * 1585 num_mpdu_ranges)); 1586 1587 for (i = 0; i < num_mpdu_ranges; i++) 1588 mpdu_count += mpdu_ranges[i].mpdu_count; 1589 1590 atomic_add(mpdu_count, &htt->num_mpdus_ready); 1591 } 1592 1593 static void ath10k_htt_rx_tx_compl_ind(struct ath10k *ar, 1594 struct sk_buff *skb) 1595 { 1596 struct ath10k_htt *htt = &ar->htt; 1597 struct htt_resp *resp = (struct htt_resp *)skb->data; 1598 struct htt_tx_done tx_done = {}; 1599 int status = MS(resp->data_tx_completion.flags, HTT_DATA_TX_STATUS); 1600 __le16 msdu_id; 1601 int i; 1602 1603 switch (status) { 1604 case HTT_DATA_TX_STATUS_NO_ACK: 1605 tx_done.status = HTT_TX_COMPL_STATE_NOACK; 1606 break; 1607 case HTT_DATA_TX_STATUS_OK: 1608 tx_done.status = HTT_TX_COMPL_STATE_ACK; 1609 break; 1610 case HTT_DATA_TX_STATUS_DISCARD: 1611 case HTT_DATA_TX_STATUS_POSTPONE: 1612 case HTT_DATA_TX_STATUS_DOWNLOAD_FAIL: 1613 tx_done.status = HTT_TX_COMPL_STATE_DISCARD; 1614 break; 1615 default: 1616 ath10k_warn(ar, "unhandled tx completion status %d\n", status); 1617 tx_done.status = HTT_TX_COMPL_STATE_DISCARD; 1618 break; 1619 } 1620 1621 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx completion num_msdus %d\n", 1622 resp->data_tx_completion.num_msdus); 1623 1624 for (i = 0; i < resp->data_tx_completion.num_msdus; i++) { 1625 msdu_id = resp->data_tx_completion.msdus[i]; 1626 tx_done.msdu_id = __le16_to_cpu(msdu_id); 1627 1628 /* kfifo_put: In practice firmware shouldn't fire off per-CE 1629 * interrupt and main interrupt (MSI/-X range case) for the same 1630 * HTC service so it should be safe to use kfifo_put w/o lock. 1631 * 1632 * From kfifo_put() documentation: 1633 * Note that with only one concurrent reader and one concurrent 1634 * writer, you don't need extra locking to use these macro. 1635 */ 1636 if (!kfifo_put(&htt->txdone_fifo, tx_done)) { 1637 ath10k_warn(ar, "txdone fifo overrun, msdu_id %d status %d\n", 1638 tx_done.msdu_id, tx_done.status); 1639 ath10k_txrx_tx_unref(htt, &tx_done); 1640 } 1641 } 1642 } 1643 1644 static void ath10k_htt_rx_addba(struct ath10k *ar, struct htt_resp *resp) 1645 { 1646 struct htt_rx_addba *ev = &resp->rx_addba; 1647 struct ath10k_peer *peer; 1648 struct ath10k_vif *arvif; 1649 u16 info0, tid, peer_id; 1650 1651 info0 = __le16_to_cpu(ev->info0); 1652 tid = MS(info0, HTT_RX_BA_INFO0_TID); 1653 peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID); 1654 1655 ath10k_dbg(ar, ATH10K_DBG_HTT, 1656 "htt rx addba tid %hu peer_id %hu size %hhu\n", 1657 tid, peer_id, ev->window_size); 1658 1659 spin_lock_bh(&ar->data_lock); 1660 peer = ath10k_peer_find_by_id(ar, peer_id); 1661 if (!peer) { 1662 ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n", 1663 peer_id); 1664 spin_unlock_bh(&ar->data_lock); 1665 return; 1666 } 1667 1668 arvif = ath10k_get_arvif(ar, peer->vdev_id); 1669 if (!arvif) { 1670 ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n", 1671 peer->vdev_id); 1672 spin_unlock_bh(&ar->data_lock); 1673 return; 1674 } 1675 1676 ath10k_dbg(ar, ATH10K_DBG_HTT, 1677 "htt rx start rx ba session sta %pM tid %hu size %hhu\n", 1678 peer->addr, tid, ev->window_size); 1679 1680 ieee80211_start_rx_ba_session_offl(arvif->vif, peer->addr, tid); 1681 spin_unlock_bh(&ar->data_lock); 1682 } 1683 1684 static void ath10k_htt_rx_delba(struct ath10k *ar, struct htt_resp *resp) 1685 { 1686 struct htt_rx_delba *ev = &resp->rx_delba; 1687 struct ath10k_peer *peer; 1688 struct ath10k_vif *arvif; 1689 u16 info0, tid, peer_id; 1690 1691 info0 = __le16_to_cpu(ev->info0); 1692 tid = MS(info0, HTT_RX_BA_INFO0_TID); 1693 peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID); 1694 1695 ath10k_dbg(ar, ATH10K_DBG_HTT, 1696 "htt rx delba tid %hu peer_id %hu\n", 1697 tid, peer_id); 1698 1699 spin_lock_bh(&ar->data_lock); 1700 peer = ath10k_peer_find_by_id(ar, peer_id); 1701 if (!peer) { 1702 ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n", 1703 peer_id); 1704 spin_unlock_bh(&ar->data_lock); 1705 return; 1706 } 1707 1708 arvif = ath10k_get_arvif(ar, peer->vdev_id); 1709 if (!arvif) { 1710 ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n", 1711 peer->vdev_id); 1712 spin_unlock_bh(&ar->data_lock); 1713 return; 1714 } 1715 1716 ath10k_dbg(ar, ATH10K_DBG_HTT, 1717 "htt rx stop rx ba session sta %pM tid %hu\n", 1718 peer->addr, tid); 1719 1720 ieee80211_stop_rx_ba_session_offl(arvif->vif, peer->addr, tid); 1721 spin_unlock_bh(&ar->data_lock); 1722 } 1723 1724 static int ath10k_htt_rx_extract_amsdu(struct sk_buff_head *list, 1725 struct sk_buff_head *amsdu) 1726 { 1727 struct sk_buff *msdu; 1728 struct htt_rx_desc *rxd; 1729 1730 if (skb_queue_empty(list)) 1731 return -ENOBUFS; 1732 1733 if (WARN_ON(!skb_queue_empty(amsdu))) 1734 return -EINVAL; 1735 1736 while ((msdu = __skb_dequeue(list))) { 1737 __skb_queue_tail(amsdu, msdu); 1738 1739 rxd = (void *)msdu->data - sizeof(*rxd); 1740 if (rxd->msdu_end.common.info0 & 1741 __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU)) 1742 break; 1743 } 1744 1745 msdu = skb_peek_tail(amsdu); 1746 rxd = (void *)msdu->data - sizeof(*rxd); 1747 if (!(rxd->msdu_end.common.info0 & 1748 __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU))) { 1749 skb_queue_splice_init(amsdu, list); 1750 return -EAGAIN; 1751 } 1752 1753 return 0; 1754 } 1755 1756 static void ath10k_htt_rx_h_rx_offload_prot(struct ieee80211_rx_status *status, 1757 struct sk_buff *skb) 1758 { 1759 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1760 1761 if (!ieee80211_has_protected(hdr->frame_control)) 1762 return; 1763 1764 /* Offloaded frames are already decrypted but firmware insists they are 1765 * protected in the 802.11 header. Strip the flag. Otherwise mac80211 1766 * will drop the frame. 1767 */ 1768 1769 hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED); 1770 status->flag |= RX_FLAG_DECRYPTED | 1771 RX_FLAG_IV_STRIPPED | 1772 RX_FLAG_MMIC_STRIPPED; 1773 } 1774 1775 static int ath10k_htt_rx_h_rx_offload(struct ath10k *ar, 1776 struct sk_buff_head *list) 1777 { 1778 struct ath10k_htt *htt = &ar->htt; 1779 struct ieee80211_rx_status *status = &htt->rx_status; 1780 struct htt_rx_offload_msdu *rx; 1781 struct sk_buff *msdu; 1782 size_t offset; 1783 int num_msdu = 0; 1784 1785 while ((msdu = __skb_dequeue(list))) { 1786 /* Offloaded frames don't have Rx descriptor. Instead they have 1787 * a short meta information header. 1788 */ 1789 1790 rx = (void *)msdu->data; 1791 1792 skb_put(msdu, sizeof(*rx)); 1793 skb_pull(msdu, sizeof(*rx)); 1794 1795 if (skb_tailroom(msdu) < __le16_to_cpu(rx->msdu_len)) { 1796 ath10k_warn(ar, "dropping frame: offloaded rx msdu is too long!\n"); 1797 dev_kfree_skb_any(msdu); 1798 continue; 1799 } 1800 1801 skb_put(msdu, __le16_to_cpu(rx->msdu_len)); 1802 1803 /* Offloaded rx header length isn't multiple of 2 nor 4 so the 1804 * actual payload is unaligned. Align the frame. Otherwise 1805 * mac80211 complains. This shouldn't reduce performance much 1806 * because these offloaded frames are rare. 1807 */ 1808 offset = 4 - ((unsigned long)msdu->data & 3); 1809 skb_put(msdu, offset); 1810 memmove(msdu->data + offset, msdu->data, msdu->len); 1811 skb_pull(msdu, offset); 1812 1813 /* FIXME: The frame is NWifi. Re-construct QoS Control 1814 * if possible later. 1815 */ 1816 1817 memset(status, 0, sizeof(*status)); 1818 status->flag |= RX_FLAG_NO_SIGNAL_VAL; 1819 1820 ath10k_htt_rx_h_rx_offload_prot(status, msdu); 1821 ath10k_htt_rx_h_channel(ar, status, NULL, rx->vdev_id); 1822 ath10k_process_rx(ar, status, msdu); 1823 num_msdu++; 1824 } 1825 return num_msdu; 1826 } 1827 1828 static int ath10k_htt_rx_in_ord_ind(struct ath10k *ar, struct sk_buff *skb) 1829 { 1830 struct ath10k_htt *htt = &ar->htt; 1831 struct htt_resp *resp = (void *)skb->data; 1832 struct ieee80211_rx_status *status = &htt->rx_status; 1833 struct sk_buff_head list; 1834 struct sk_buff_head amsdu; 1835 u16 peer_id; 1836 u16 msdu_count; 1837 u8 vdev_id; 1838 u8 tid; 1839 bool offload; 1840 bool frag; 1841 int ret, num_msdus = 0; 1842 1843 lockdep_assert_held(&htt->rx_ring.lock); 1844 1845 if (htt->rx_confused) 1846 return -EIO; 1847 1848 skb_pull(skb, sizeof(resp->hdr)); 1849 skb_pull(skb, sizeof(resp->rx_in_ord_ind)); 1850 1851 peer_id = __le16_to_cpu(resp->rx_in_ord_ind.peer_id); 1852 msdu_count = __le16_to_cpu(resp->rx_in_ord_ind.msdu_count); 1853 vdev_id = resp->rx_in_ord_ind.vdev_id; 1854 tid = SM(resp->rx_in_ord_ind.info, HTT_RX_IN_ORD_IND_INFO_TID); 1855 offload = !!(resp->rx_in_ord_ind.info & 1856 HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK); 1857 frag = !!(resp->rx_in_ord_ind.info & HTT_RX_IN_ORD_IND_INFO_FRAG_MASK); 1858 1859 ath10k_dbg(ar, ATH10K_DBG_HTT, 1860 "htt rx in ord vdev %i peer %i tid %i offload %i frag %i msdu count %i\n", 1861 vdev_id, peer_id, tid, offload, frag, msdu_count); 1862 1863 if (skb->len < msdu_count * sizeof(*resp->rx_in_ord_ind.msdu_descs)) { 1864 ath10k_warn(ar, "dropping invalid in order rx indication\n"); 1865 return -EINVAL; 1866 } 1867 1868 /* The event can deliver more than 1 A-MSDU. Each A-MSDU is later 1869 * extracted and processed. 1870 */ 1871 __skb_queue_head_init(&list); 1872 ret = ath10k_htt_rx_pop_paddr_list(htt, &resp->rx_in_ord_ind, &list); 1873 if (ret < 0) { 1874 ath10k_warn(ar, "failed to pop paddr list: %d\n", ret); 1875 htt->rx_confused = true; 1876 return -EIO; 1877 } 1878 1879 /* Offloaded frames are very different and need to be handled 1880 * separately. 1881 */ 1882 if (offload) 1883 num_msdus = ath10k_htt_rx_h_rx_offload(ar, &list); 1884 1885 while (!skb_queue_empty(&list)) { 1886 __skb_queue_head_init(&amsdu); 1887 ret = ath10k_htt_rx_extract_amsdu(&list, &amsdu); 1888 switch (ret) { 1889 case 0: 1890 /* Note: The in-order indication may report interleaved 1891 * frames from different PPDUs meaning reported rx rate 1892 * to mac80211 isn't accurate/reliable. It's still 1893 * better to report something than nothing though. This 1894 * should still give an idea about rx rate to the user. 1895 */ 1896 num_msdus += skb_queue_len(&amsdu); 1897 ath10k_htt_rx_h_ppdu(ar, &amsdu, status, vdev_id); 1898 ath10k_htt_rx_h_filter(ar, &amsdu, status); 1899 ath10k_htt_rx_h_mpdu(ar, &amsdu, status); 1900 ath10k_htt_rx_h_deliver(ar, &amsdu, status); 1901 break; 1902 case -EAGAIN: 1903 /* fall through */ 1904 default: 1905 /* Should not happen. */ 1906 ath10k_warn(ar, "failed to extract amsdu: %d\n", ret); 1907 htt->rx_confused = true; 1908 __skb_queue_purge(&list); 1909 return -EIO; 1910 } 1911 } 1912 return num_msdus; 1913 } 1914 1915 static void ath10k_htt_rx_tx_fetch_resp_id_confirm(struct ath10k *ar, 1916 const __le32 *resp_ids, 1917 int num_resp_ids) 1918 { 1919 int i; 1920 u32 resp_id; 1921 1922 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm num_resp_ids %d\n", 1923 num_resp_ids); 1924 1925 for (i = 0; i < num_resp_ids; i++) { 1926 resp_id = le32_to_cpu(resp_ids[i]); 1927 1928 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm resp_id %u\n", 1929 resp_id); 1930 1931 /* TODO: free resp_id */ 1932 } 1933 } 1934 1935 static void ath10k_htt_rx_tx_fetch_ind(struct ath10k *ar, struct sk_buff *skb) 1936 { 1937 struct ieee80211_hw *hw = ar->hw; 1938 struct ieee80211_txq *txq; 1939 struct htt_resp *resp = (struct htt_resp *)skb->data; 1940 struct htt_tx_fetch_record *record; 1941 size_t len; 1942 size_t max_num_bytes; 1943 size_t max_num_msdus; 1944 size_t num_bytes; 1945 size_t num_msdus; 1946 const __le32 *resp_ids; 1947 u16 num_records; 1948 u16 num_resp_ids; 1949 u16 peer_id; 1950 u8 tid; 1951 int ret; 1952 int i; 1953 1954 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch ind\n"); 1955 1956 len = sizeof(resp->hdr) + sizeof(resp->tx_fetch_ind); 1957 if (unlikely(skb->len < len)) { 1958 ath10k_warn(ar, "received corrupted tx_fetch_ind event: buffer too short\n"); 1959 return; 1960 } 1961 1962 num_records = le16_to_cpu(resp->tx_fetch_ind.num_records); 1963 num_resp_ids = le16_to_cpu(resp->tx_fetch_ind.num_resp_ids); 1964 1965 len += sizeof(resp->tx_fetch_ind.records[0]) * num_records; 1966 len += sizeof(resp->tx_fetch_ind.resp_ids[0]) * num_resp_ids; 1967 1968 if (unlikely(skb->len < len)) { 1969 ath10k_warn(ar, "received corrupted tx_fetch_ind event: too many records/resp_ids\n"); 1970 return; 1971 } 1972 1973 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch ind num records %hu num resps %hu seq %hu\n", 1974 num_records, num_resp_ids, 1975 le16_to_cpu(resp->tx_fetch_ind.fetch_seq_num)); 1976 1977 if (!ar->htt.tx_q_state.enabled) { 1978 ath10k_warn(ar, "received unexpected tx_fetch_ind event: not enabled\n"); 1979 return; 1980 } 1981 1982 if (ar->htt.tx_q_state.mode == HTT_TX_MODE_SWITCH_PUSH) { 1983 ath10k_warn(ar, "received unexpected tx_fetch_ind event: in push mode\n"); 1984 return; 1985 } 1986 1987 rcu_read_lock(); 1988 1989 for (i = 0; i < num_records; i++) { 1990 record = &resp->tx_fetch_ind.records[i]; 1991 peer_id = MS(le16_to_cpu(record->info), 1992 HTT_TX_FETCH_RECORD_INFO_PEER_ID); 1993 tid = MS(le16_to_cpu(record->info), 1994 HTT_TX_FETCH_RECORD_INFO_TID); 1995 max_num_msdus = le16_to_cpu(record->num_msdus); 1996 max_num_bytes = le32_to_cpu(record->num_bytes); 1997 1998 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch record %i peer_id %hu tid %hhu msdus %zu bytes %zu\n", 1999 i, peer_id, tid, max_num_msdus, max_num_bytes); 2000 2001 if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) || 2002 unlikely(tid >= ar->htt.tx_q_state.num_tids)) { 2003 ath10k_warn(ar, "received out of range peer_id %hu tid %hhu\n", 2004 peer_id, tid); 2005 continue; 2006 } 2007 2008 spin_lock_bh(&ar->data_lock); 2009 txq = ath10k_mac_txq_lookup(ar, peer_id, tid); 2010 spin_unlock_bh(&ar->data_lock); 2011 2012 /* It is okay to release the lock and use txq because RCU read 2013 * lock is held. 2014 */ 2015 2016 if (unlikely(!txq)) { 2017 ath10k_warn(ar, "failed to lookup txq for peer_id %hu tid %hhu\n", 2018 peer_id, tid); 2019 continue; 2020 } 2021 2022 num_msdus = 0; 2023 num_bytes = 0; 2024 2025 while (num_msdus < max_num_msdus && 2026 num_bytes < max_num_bytes) { 2027 ret = ath10k_mac_tx_push_txq(hw, txq); 2028 if (ret < 0) 2029 break; 2030 2031 num_msdus++; 2032 num_bytes += ret; 2033 } 2034 2035 record->num_msdus = cpu_to_le16(num_msdus); 2036 record->num_bytes = cpu_to_le32(num_bytes); 2037 2038 ath10k_htt_tx_txq_recalc(hw, txq); 2039 } 2040 2041 rcu_read_unlock(); 2042 2043 resp_ids = ath10k_htt_get_tx_fetch_ind_resp_ids(&resp->tx_fetch_ind); 2044 ath10k_htt_rx_tx_fetch_resp_id_confirm(ar, resp_ids, num_resp_ids); 2045 2046 ret = ath10k_htt_tx_fetch_resp(ar, 2047 resp->tx_fetch_ind.token, 2048 resp->tx_fetch_ind.fetch_seq_num, 2049 resp->tx_fetch_ind.records, 2050 num_records); 2051 if (unlikely(ret)) { 2052 ath10k_warn(ar, "failed to submit tx fetch resp for token 0x%08x: %d\n", 2053 le32_to_cpu(resp->tx_fetch_ind.token), ret); 2054 /* FIXME: request fw restart */ 2055 } 2056 2057 ath10k_htt_tx_txq_sync(ar); 2058 } 2059 2060 static void ath10k_htt_rx_tx_fetch_confirm(struct ath10k *ar, 2061 struct sk_buff *skb) 2062 { 2063 const struct htt_resp *resp = (void *)skb->data; 2064 size_t len; 2065 int num_resp_ids; 2066 2067 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm\n"); 2068 2069 len = sizeof(resp->hdr) + sizeof(resp->tx_fetch_confirm); 2070 if (unlikely(skb->len < len)) { 2071 ath10k_warn(ar, "received corrupted tx_fetch_confirm event: buffer too short\n"); 2072 return; 2073 } 2074 2075 num_resp_ids = le16_to_cpu(resp->tx_fetch_confirm.num_resp_ids); 2076 len += sizeof(resp->tx_fetch_confirm.resp_ids[0]) * num_resp_ids; 2077 2078 if (unlikely(skb->len < len)) { 2079 ath10k_warn(ar, "received corrupted tx_fetch_confirm event: resp_ids buffer overflow\n"); 2080 return; 2081 } 2082 2083 ath10k_htt_rx_tx_fetch_resp_id_confirm(ar, 2084 resp->tx_fetch_confirm.resp_ids, 2085 num_resp_ids); 2086 } 2087 2088 static void ath10k_htt_rx_tx_mode_switch_ind(struct ath10k *ar, 2089 struct sk_buff *skb) 2090 { 2091 const struct htt_resp *resp = (void *)skb->data; 2092 const struct htt_tx_mode_switch_record *record; 2093 struct ieee80211_txq *txq; 2094 struct ath10k_txq *artxq; 2095 size_t len; 2096 size_t num_records; 2097 enum htt_tx_mode_switch_mode mode; 2098 bool enable; 2099 u16 info0; 2100 u16 info1; 2101 u16 threshold; 2102 u16 peer_id; 2103 u8 tid; 2104 int i; 2105 2106 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx mode switch ind\n"); 2107 2108 len = sizeof(resp->hdr) + sizeof(resp->tx_mode_switch_ind); 2109 if (unlikely(skb->len < len)) { 2110 ath10k_warn(ar, "received corrupted tx_mode_switch_ind event: buffer too short\n"); 2111 return; 2112 } 2113 2114 info0 = le16_to_cpu(resp->tx_mode_switch_ind.info0); 2115 info1 = le16_to_cpu(resp->tx_mode_switch_ind.info1); 2116 2117 enable = !!(info0 & HTT_TX_MODE_SWITCH_IND_INFO0_ENABLE); 2118 num_records = MS(info0, HTT_TX_MODE_SWITCH_IND_INFO1_THRESHOLD); 2119 mode = MS(info1, HTT_TX_MODE_SWITCH_IND_INFO1_MODE); 2120 threshold = MS(info1, HTT_TX_MODE_SWITCH_IND_INFO1_THRESHOLD); 2121 2122 ath10k_dbg(ar, ATH10K_DBG_HTT, 2123 "htt rx tx mode switch ind info0 0x%04hx info1 0x%04hx enable %d num records %zd mode %d threshold %hu\n", 2124 info0, info1, enable, num_records, mode, threshold); 2125 2126 len += sizeof(resp->tx_mode_switch_ind.records[0]) * num_records; 2127 2128 if (unlikely(skb->len < len)) { 2129 ath10k_warn(ar, "received corrupted tx_mode_switch_mode_ind event: too many records\n"); 2130 return; 2131 } 2132 2133 switch (mode) { 2134 case HTT_TX_MODE_SWITCH_PUSH: 2135 case HTT_TX_MODE_SWITCH_PUSH_PULL: 2136 break; 2137 default: 2138 ath10k_warn(ar, "received invalid tx_mode_switch_mode_ind mode %d, ignoring\n", 2139 mode); 2140 return; 2141 } 2142 2143 if (!enable) 2144 return; 2145 2146 ar->htt.tx_q_state.enabled = enable; 2147 ar->htt.tx_q_state.mode = mode; 2148 ar->htt.tx_q_state.num_push_allowed = threshold; 2149 2150 rcu_read_lock(); 2151 2152 for (i = 0; i < num_records; i++) { 2153 record = &resp->tx_mode_switch_ind.records[i]; 2154 info0 = le16_to_cpu(record->info0); 2155 peer_id = MS(info0, HTT_TX_MODE_SWITCH_RECORD_INFO0_PEER_ID); 2156 tid = MS(info0, HTT_TX_MODE_SWITCH_RECORD_INFO0_TID); 2157 2158 if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) || 2159 unlikely(tid >= ar->htt.tx_q_state.num_tids)) { 2160 ath10k_warn(ar, "received out of range peer_id %hu tid %hhu\n", 2161 peer_id, tid); 2162 continue; 2163 } 2164 2165 spin_lock_bh(&ar->data_lock); 2166 txq = ath10k_mac_txq_lookup(ar, peer_id, tid); 2167 spin_unlock_bh(&ar->data_lock); 2168 2169 /* It is okay to release the lock and use txq because RCU read 2170 * lock is held. 2171 */ 2172 2173 if (unlikely(!txq)) { 2174 ath10k_warn(ar, "failed to lookup txq for peer_id %hu tid %hhu\n", 2175 peer_id, tid); 2176 continue; 2177 } 2178 2179 spin_lock_bh(&ar->htt.tx_lock); 2180 artxq = (void *)txq->drv_priv; 2181 artxq->num_push_allowed = le16_to_cpu(record->num_max_msdus); 2182 spin_unlock_bh(&ar->htt.tx_lock); 2183 } 2184 2185 rcu_read_unlock(); 2186 2187 ath10k_mac_tx_push_pending(ar); 2188 } 2189 2190 void ath10k_htt_htc_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb) 2191 { 2192 bool release; 2193 2194 release = ath10k_htt_t2h_msg_handler(ar, skb); 2195 2196 /* Free the indication buffer */ 2197 if (release) 2198 dev_kfree_skb_any(skb); 2199 } 2200 2201 static inline bool is_valid_legacy_rate(u8 rate) 2202 { 2203 static const u8 legacy_rates[] = {1, 2, 5, 11, 6, 9, 12, 2204 18, 24, 36, 48, 54}; 2205 int i; 2206 2207 for (i = 0; i < ARRAY_SIZE(legacy_rates); i++) { 2208 if (rate == legacy_rates[i]) 2209 return true; 2210 } 2211 2212 return false; 2213 } 2214 2215 static void 2216 ath10k_update_per_peer_tx_stats(struct ath10k *ar, 2217 struct ieee80211_sta *sta, 2218 struct ath10k_per_peer_tx_stats *peer_stats) 2219 { 2220 struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv; 2221 u8 rate = 0, sgi; 2222 struct rate_info txrate; 2223 2224 lockdep_assert_held(&ar->data_lock); 2225 2226 txrate.flags = ATH10K_HW_PREAMBLE(peer_stats->ratecode); 2227 txrate.bw = ATH10K_HW_BW(peer_stats->flags); 2228 txrate.nss = ATH10K_HW_NSS(peer_stats->ratecode); 2229 txrate.mcs = ATH10K_HW_MCS_RATE(peer_stats->ratecode); 2230 sgi = ATH10K_HW_GI(peer_stats->flags); 2231 2232 if (((txrate.flags == WMI_RATE_PREAMBLE_HT) || 2233 (txrate.flags == WMI_RATE_PREAMBLE_VHT)) && txrate.mcs > 9) { 2234 ath10k_warn(ar, "Invalid mcs %hhd peer stats", txrate.mcs); 2235 return; 2236 } 2237 2238 memset(&arsta->txrate, 0, sizeof(arsta->txrate)); 2239 2240 if (txrate.flags == WMI_RATE_PREAMBLE_CCK || 2241 txrate.flags == WMI_RATE_PREAMBLE_OFDM) { 2242 rate = ATH10K_HW_LEGACY_RATE(peer_stats->ratecode); 2243 2244 if (!is_valid_legacy_rate(rate)) { 2245 ath10k_warn(ar, "Invalid legacy rate %hhd peer stats", 2246 rate); 2247 return; 2248 } 2249 2250 /* This is hacky, FW sends CCK rate 5.5Mbps as 6 */ 2251 rate *= 10; 2252 if (rate == 60 && txrate.flags == WMI_RATE_PREAMBLE_CCK) 2253 rate = rate - 5; 2254 arsta->txrate.legacy = rate; 2255 } else if (txrate.flags == WMI_RATE_PREAMBLE_HT) { 2256 arsta->txrate.flags = RATE_INFO_FLAGS_MCS; 2257 arsta->txrate.mcs = txrate.mcs; 2258 } else { 2259 arsta->txrate.flags = RATE_INFO_FLAGS_VHT_MCS; 2260 arsta->txrate.mcs = txrate.mcs; 2261 } 2262 2263 if (sgi) 2264 arsta->txrate.flags |= RATE_INFO_FLAGS_SHORT_GI; 2265 2266 arsta->txrate.nss = txrate.nss; 2267 arsta->txrate.bw = txrate.bw + RATE_INFO_BW_20; 2268 } 2269 2270 static void ath10k_htt_fetch_peer_stats(struct ath10k *ar, 2271 struct sk_buff *skb) 2272 { 2273 struct htt_resp *resp = (struct htt_resp *)skb->data; 2274 struct ath10k_per_peer_tx_stats *p_tx_stats = &ar->peer_tx_stats; 2275 struct htt_per_peer_tx_stats_ind *tx_stats; 2276 struct ieee80211_sta *sta; 2277 struct ath10k_peer *peer; 2278 int peer_id, i; 2279 u8 ppdu_len, num_ppdu; 2280 2281 num_ppdu = resp->peer_tx_stats.num_ppdu; 2282 ppdu_len = resp->peer_tx_stats.ppdu_len * sizeof(__le32); 2283 2284 if (skb->len < sizeof(struct htt_resp_hdr) + num_ppdu * ppdu_len) { 2285 ath10k_warn(ar, "Invalid peer stats buf length %d\n", skb->len); 2286 return; 2287 } 2288 2289 tx_stats = (struct htt_per_peer_tx_stats_ind *) 2290 (resp->peer_tx_stats.payload); 2291 peer_id = __le16_to_cpu(tx_stats->peer_id); 2292 2293 rcu_read_lock(); 2294 spin_lock_bh(&ar->data_lock); 2295 peer = ath10k_peer_find_by_id(ar, peer_id); 2296 if (!peer) { 2297 ath10k_warn(ar, "Invalid peer id %d peer stats buffer\n", 2298 peer_id); 2299 goto out; 2300 } 2301 2302 sta = peer->sta; 2303 for (i = 0; i < num_ppdu; i++) { 2304 tx_stats = (struct htt_per_peer_tx_stats_ind *) 2305 (resp->peer_tx_stats.payload + i * ppdu_len); 2306 2307 p_tx_stats->succ_bytes = __le32_to_cpu(tx_stats->succ_bytes); 2308 p_tx_stats->retry_bytes = __le32_to_cpu(tx_stats->retry_bytes); 2309 p_tx_stats->failed_bytes = 2310 __le32_to_cpu(tx_stats->failed_bytes); 2311 p_tx_stats->ratecode = tx_stats->ratecode; 2312 p_tx_stats->flags = tx_stats->flags; 2313 p_tx_stats->succ_pkts = __le16_to_cpu(tx_stats->succ_pkts); 2314 p_tx_stats->retry_pkts = __le16_to_cpu(tx_stats->retry_pkts); 2315 p_tx_stats->failed_pkts = __le16_to_cpu(tx_stats->failed_pkts); 2316 2317 ath10k_update_per_peer_tx_stats(ar, sta, p_tx_stats); 2318 } 2319 2320 out: 2321 spin_unlock_bh(&ar->data_lock); 2322 rcu_read_unlock(); 2323 } 2324 2325 bool ath10k_htt_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb) 2326 { 2327 struct ath10k_htt *htt = &ar->htt; 2328 struct htt_resp *resp = (struct htt_resp *)skb->data; 2329 enum htt_t2h_msg_type type; 2330 2331 /* confirm alignment */ 2332 if (!IS_ALIGNED((unsigned long)skb->data, 4)) 2333 ath10k_warn(ar, "unaligned htt message, expect trouble\n"); 2334 2335 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, msg_type: 0x%0X\n", 2336 resp->hdr.msg_type); 2337 2338 if (resp->hdr.msg_type >= ar->htt.t2h_msg_types_max) { 2339 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, unsupported msg_type: 0x%0X\n max: 0x%0X", 2340 resp->hdr.msg_type, ar->htt.t2h_msg_types_max); 2341 return true; 2342 } 2343 type = ar->htt.t2h_msg_types[resp->hdr.msg_type]; 2344 2345 switch (type) { 2346 case HTT_T2H_MSG_TYPE_VERSION_CONF: { 2347 htt->target_version_major = resp->ver_resp.major; 2348 htt->target_version_minor = resp->ver_resp.minor; 2349 complete(&htt->target_version_received); 2350 break; 2351 } 2352 case HTT_T2H_MSG_TYPE_RX_IND: 2353 ath10k_htt_rx_proc_rx_ind(htt, &resp->rx_ind); 2354 break; 2355 case HTT_T2H_MSG_TYPE_PEER_MAP: { 2356 struct htt_peer_map_event ev = { 2357 .vdev_id = resp->peer_map.vdev_id, 2358 .peer_id = __le16_to_cpu(resp->peer_map.peer_id), 2359 }; 2360 memcpy(ev.addr, resp->peer_map.addr, sizeof(ev.addr)); 2361 ath10k_peer_map_event(htt, &ev); 2362 break; 2363 } 2364 case HTT_T2H_MSG_TYPE_PEER_UNMAP: { 2365 struct htt_peer_unmap_event ev = { 2366 .peer_id = __le16_to_cpu(resp->peer_unmap.peer_id), 2367 }; 2368 ath10k_peer_unmap_event(htt, &ev); 2369 break; 2370 } 2371 case HTT_T2H_MSG_TYPE_MGMT_TX_COMPLETION: { 2372 struct htt_tx_done tx_done = {}; 2373 int status = __le32_to_cpu(resp->mgmt_tx_completion.status); 2374 2375 tx_done.msdu_id = __le32_to_cpu(resp->mgmt_tx_completion.desc_id); 2376 2377 switch (status) { 2378 case HTT_MGMT_TX_STATUS_OK: 2379 tx_done.status = HTT_TX_COMPL_STATE_ACK; 2380 break; 2381 case HTT_MGMT_TX_STATUS_RETRY: 2382 tx_done.status = HTT_TX_COMPL_STATE_NOACK; 2383 break; 2384 case HTT_MGMT_TX_STATUS_DROP: 2385 tx_done.status = HTT_TX_COMPL_STATE_DISCARD; 2386 break; 2387 } 2388 2389 status = ath10k_txrx_tx_unref(htt, &tx_done); 2390 if (!status) { 2391 spin_lock_bh(&htt->tx_lock); 2392 ath10k_htt_tx_mgmt_dec_pending(htt); 2393 spin_unlock_bh(&htt->tx_lock); 2394 } 2395 break; 2396 } 2397 case HTT_T2H_MSG_TYPE_TX_COMPL_IND: 2398 ath10k_htt_rx_tx_compl_ind(htt->ar, skb); 2399 break; 2400 case HTT_T2H_MSG_TYPE_SEC_IND: { 2401 struct ath10k *ar = htt->ar; 2402 struct htt_security_indication *ev = &resp->security_indication; 2403 2404 ath10k_dbg(ar, ATH10K_DBG_HTT, 2405 "sec ind peer_id %d unicast %d type %d\n", 2406 __le16_to_cpu(ev->peer_id), 2407 !!(ev->flags & HTT_SECURITY_IS_UNICAST), 2408 MS(ev->flags, HTT_SECURITY_TYPE)); 2409 complete(&ar->install_key_done); 2410 break; 2411 } 2412 case HTT_T2H_MSG_TYPE_RX_FRAG_IND: { 2413 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ", 2414 skb->data, skb->len); 2415 atomic_inc(&htt->num_mpdus_ready); 2416 break; 2417 } 2418 case HTT_T2H_MSG_TYPE_TEST: 2419 break; 2420 case HTT_T2H_MSG_TYPE_STATS_CONF: 2421 trace_ath10k_htt_stats(ar, skb->data, skb->len); 2422 break; 2423 case HTT_T2H_MSG_TYPE_TX_INSPECT_IND: 2424 /* Firmware can return tx frames if it's unable to fully 2425 * process them and suspects host may be able to fix it. ath10k 2426 * sends all tx frames as already inspected so this shouldn't 2427 * happen unless fw has a bug. 2428 */ 2429 ath10k_warn(ar, "received an unexpected htt tx inspect event\n"); 2430 break; 2431 case HTT_T2H_MSG_TYPE_RX_ADDBA: 2432 ath10k_htt_rx_addba(ar, resp); 2433 break; 2434 case HTT_T2H_MSG_TYPE_RX_DELBA: 2435 ath10k_htt_rx_delba(ar, resp); 2436 break; 2437 case HTT_T2H_MSG_TYPE_PKTLOG: { 2438 trace_ath10k_htt_pktlog(ar, resp->pktlog_msg.payload, 2439 skb->len - 2440 offsetof(struct htt_resp, 2441 pktlog_msg.payload)); 2442 break; 2443 } 2444 case HTT_T2H_MSG_TYPE_RX_FLUSH: { 2445 /* Ignore this event because mac80211 takes care of Rx 2446 * aggregation reordering. 2447 */ 2448 break; 2449 } 2450 case HTT_T2H_MSG_TYPE_RX_IN_ORD_PADDR_IND: { 2451 __skb_queue_tail(&htt->rx_in_ord_compl_q, skb); 2452 return false; 2453 } 2454 case HTT_T2H_MSG_TYPE_TX_CREDIT_UPDATE_IND: 2455 break; 2456 case HTT_T2H_MSG_TYPE_CHAN_CHANGE: { 2457 u32 phymode = __le32_to_cpu(resp->chan_change.phymode); 2458 u32 freq = __le32_to_cpu(resp->chan_change.freq); 2459 2460 ar->tgt_oper_chan = ieee80211_get_channel(ar->hw->wiphy, freq); 2461 ath10k_dbg(ar, ATH10K_DBG_HTT, 2462 "htt chan change freq %u phymode %s\n", 2463 freq, ath10k_wmi_phymode_str(phymode)); 2464 break; 2465 } 2466 case HTT_T2H_MSG_TYPE_AGGR_CONF: 2467 break; 2468 case HTT_T2H_MSG_TYPE_TX_FETCH_IND: { 2469 struct sk_buff *tx_fetch_ind = skb_copy(skb, GFP_ATOMIC); 2470 2471 if (!tx_fetch_ind) { 2472 ath10k_warn(ar, "failed to copy htt tx fetch ind\n"); 2473 break; 2474 } 2475 skb_queue_tail(&htt->tx_fetch_ind_q, tx_fetch_ind); 2476 break; 2477 } 2478 case HTT_T2H_MSG_TYPE_TX_FETCH_CONFIRM: 2479 ath10k_htt_rx_tx_fetch_confirm(ar, skb); 2480 break; 2481 case HTT_T2H_MSG_TYPE_TX_MODE_SWITCH_IND: 2482 ath10k_htt_rx_tx_mode_switch_ind(ar, skb); 2483 break; 2484 case HTT_T2H_MSG_TYPE_PEER_STATS: 2485 ath10k_htt_fetch_peer_stats(ar, skb); 2486 break; 2487 case HTT_T2H_MSG_TYPE_EN_STATS: 2488 default: 2489 ath10k_warn(ar, "htt event (%d) not handled\n", 2490 resp->hdr.msg_type); 2491 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ", 2492 skb->data, skb->len); 2493 break; 2494 } 2495 return true; 2496 } 2497 EXPORT_SYMBOL(ath10k_htt_t2h_msg_handler); 2498 2499 void ath10k_htt_rx_pktlog_completion_handler(struct ath10k *ar, 2500 struct sk_buff *skb) 2501 { 2502 trace_ath10k_htt_pktlog(ar, skb->data, skb->len); 2503 dev_kfree_skb_any(skb); 2504 } 2505 EXPORT_SYMBOL(ath10k_htt_rx_pktlog_completion_handler); 2506 2507 int ath10k_htt_txrx_compl_task(struct ath10k *ar, int budget) 2508 { 2509 struct ath10k_htt *htt = &ar->htt; 2510 struct htt_tx_done tx_done = {}; 2511 struct sk_buff_head tx_ind_q; 2512 struct sk_buff *skb; 2513 unsigned long flags; 2514 int quota = 0, done, num_rx_msdus; 2515 bool resched_napi = false; 2516 2517 __skb_queue_head_init(&tx_ind_q); 2518 2519 /* Since in-ord-ind can deliver more than 1 A-MSDU in single event, 2520 * process it first to utilize full available quota. 2521 */ 2522 while (quota < budget) { 2523 if (skb_queue_empty(&htt->rx_in_ord_compl_q)) 2524 break; 2525 2526 skb = __skb_dequeue(&htt->rx_in_ord_compl_q); 2527 if (!skb) { 2528 resched_napi = true; 2529 goto exit; 2530 } 2531 2532 spin_lock_bh(&htt->rx_ring.lock); 2533 num_rx_msdus = ath10k_htt_rx_in_ord_ind(ar, skb); 2534 spin_unlock_bh(&htt->rx_ring.lock); 2535 if (num_rx_msdus < 0) { 2536 resched_napi = true; 2537 goto exit; 2538 } 2539 2540 dev_kfree_skb_any(skb); 2541 if (num_rx_msdus > 0) 2542 quota += num_rx_msdus; 2543 2544 if ((quota > ATH10K_NAPI_QUOTA_LIMIT) && 2545 !skb_queue_empty(&htt->rx_in_ord_compl_q)) { 2546 resched_napi = true; 2547 goto exit; 2548 } 2549 } 2550 2551 while (quota < budget) { 2552 /* no more data to receive */ 2553 if (!atomic_read(&htt->num_mpdus_ready)) 2554 break; 2555 2556 num_rx_msdus = ath10k_htt_rx_handle_amsdu(htt); 2557 if (num_rx_msdus < 0) { 2558 resched_napi = true; 2559 goto exit; 2560 } 2561 2562 quota += num_rx_msdus; 2563 atomic_dec(&htt->num_mpdus_ready); 2564 if ((quota > ATH10K_NAPI_QUOTA_LIMIT) && 2565 atomic_read(&htt->num_mpdus_ready)) { 2566 resched_napi = true; 2567 goto exit; 2568 } 2569 } 2570 2571 /* From NAPI documentation: 2572 * The napi poll() function may also process TX completions, in which 2573 * case if it processes the entire TX ring then it should count that 2574 * work as the rest of the budget. 2575 */ 2576 if ((quota < budget) && !kfifo_is_empty(&htt->txdone_fifo)) 2577 quota = budget; 2578 2579 /* kfifo_get: called only within txrx_tasklet so it's neatly serialized. 2580 * From kfifo_get() documentation: 2581 * Note that with only one concurrent reader and one concurrent writer, 2582 * you don't need extra locking to use these macro. 2583 */ 2584 while (kfifo_get(&htt->txdone_fifo, &tx_done)) 2585 ath10k_txrx_tx_unref(htt, &tx_done); 2586 2587 ath10k_mac_tx_push_pending(ar); 2588 2589 spin_lock_irqsave(&htt->tx_fetch_ind_q.lock, flags); 2590 skb_queue_splice_init(&htt->tx_fetch_ind_q, &tx_ind_q); 2591 spin_unlock_irqrestore(&htt->tx_fetch_ind_q.lock, flags); 2592 2593 while ((skb = __skb_dequeue(&tx_ind_q))) { 2594 ath10k_htt_rx_tx_fetch_ind(ar, skb); 2595 dev_kfree_skb_any(skb); 2596 } 2597 2598 exit: 2599 ath10k_htt_rx_msdu_buff_replenish(htt); 2600 /* In case of rx failure or more data to read, report budget 2601 * to reschedule NAPI poll 2602 */ 2603 done = resched_napi ? budget : quota; 2604 2605 return done; 2606 } 2607 EXPORT_SYMBOL(ath10k_htt_txrx_compl_task); 2608