1 /* 2 * Copyright (c) 2005-2011 Atheros Communications Inc. 3 * Copyright (c) 2011-2013 Qualcomm Atheros, Inc. 4 * 5 * Permission to use, copy, modify, and/or distribute this software for any 6 * purpose with or without fee is hereby granted, provided that the above 7 * copyright notice and this permission notice appear in all copies. 8 * 9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 16 */ 17 18 #include "core.h" 19 #include "htc.h" 20 #include "htt.h" 21 #include "txrx.h" 22 #include "debug.h" 23 #include "trace.h" 24 #include "mac.h" 25 26 #include <linux/log2.h> 27 28 #define HTT_RX_RING_SIZE HTT_RX_RING_SIZE_MAX 29 #define HTT_RX_RING_FILL_LEVEL (((HTT_RX_RING_SIZE) / 2) - 1) 30 31 /* when under memory pressure rx ring refill may fail and needs a retry */ 32 #define HTT_RX_RING_REFILL_RETRY_MS 50 33 34 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb); 35 static void ath10k_htt_txrx_compl_task(unsigned long ptr); 36 37 static struct sk_buff * 38 ath10k_htt_rx_find_skb_paddr(struct ath10k *ar, u32 paddr) 39 { 40 struct ath10k_skb_rxcb *rxcb; 41 42 hash_for_each_possible(ar->htt.rx_ring.skb_table, rxcb, hlist, paddr) 43 if (rxcb->paddr == paddr) 44 return ATH10K_RXCB_SKB(rxcb); 45 46 WARN_ON_ONCE(1); 47 return NULL; 48 } 49 50 static void ath10k_htt_rx_ring_free(struct ath10k_htt *htt) 51 { 52 struct sk_buff *skb; 53 struct ath10k_skb_rxcb *rxcb; 54 struct hlist_node *n; 55 int i; 56 57 if (htt->rx_ring.in_ord_rx) { 58 hash_for_each_safe(htt->rx_ring.skb_table, i, n, rxcb, hlist) { 59 skb = ATH10K_RXCB_SKB(rxcb); 60 dma_unmap_single(htt->ar->dev, rxcb->paddr, 61 skb->len + skb_tailroom(skb), 62 DMA_FROM_DEVICE); 63 hash_del(&rxcb->hlist); 64 dev_kfree_skb_any(skb); 65 } 66 } else { 67 for (i = 0; i < htt->rx_ring.size; i++) { 68 skb = htt->rx_ring.netbufs_ring[i]; 69 if (!skb) 70 continue; 71 72 rxcb = ATH10K_SKB_RXCB(skb); 73 dma_unmap_single(htt->ar->dev, rxcb->paddr, 74 skb->len + skb_tailroom(skb), 75 DMA_FROM_DEVICE); 76 dev_kfree_skb_any(skb); 77 } 78 } 79 80 htt->rx_ring.fill_cnt = 0; 81 hash_init(htt->rx_ring.skb_table); 82 memset(htt->rx_ring.netbufs_ring, 0, 83 htt->rx_ring.size * sizeof(htt->rx_ring.netbufs_ring[0])); 84 } 85 86 static int __ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num) 87 { 88 struct htt_rx_desc *rx_desc; 89 struct ath10k_skb_rxcb *rxcb; 90 struct sk_buff *skb; 91 dma_addr_t paddr; 92 int ret = 0, idx; 93 94 /* The Full Rx Reorder firmware has no way of telling the host 95 * implicitly when it copied HTT Rx Ring buffers to MAC Rx Ring. 96 * To keep things simple make sure ring is always half empty. This 97 * guarantees there'll be no replenishment overruns possible. 98 */ 99 BUILD_BUG_ON(HTT_RX_RING_FILL_LEVEL >= HTT_RX_RING_SIZE / 2); 100 101 idx = __le32_to_cpu(*htt->rx_ring.alloc_idx.vaddr); 102 while (num > 0) { 103 skb = dev_alloc_skb(HTT_RX_BUF_SIZE + HTT_RX_DESC_ALIGN); 104 if (!skb) { 105 ret = -ENOMEM; 106 goto fail; 107 } 108 109 if (!IS_ALIGNED((unsigned long)skb->data, HTT_RX_DESC_ALIGN)) 110 skb_pull(skb, 111 PTR_ALIGN(skb->data, HTT_RX_DESC_ALIGN) - 112 skb->data); 113 114 /* Clear rx_desc attention word before posting to Rx ring */ 115 rx_desc = (struct htt_rx_desc *)skb->data; 116 rx_desc->attention.flags = __cpu_to_le32(0); 117 118 paddr = dma_map_single(htt->ar->dev, skb->data, 119 skb->len + skb_tailroom(skb), 120 DMA_FROM_DEVICE); 121 122 if (unlikely(dma_mapping_error(htt->ar->dev, paddr))) { 123 dev_kfree_skb_any(skb); 124 ret = -ENOMEM; 125 goto fail; 126 } 127 128 rxcb = ATH10K_SKB_RXCB(skb); 129 rxcb->paddr = paddr; 130 htt->rx_ring.netbufs_ring[idx] = skb; 131 htt->rx_ring.paddrs_ring[idx] = __cpu_to_le32(paddr); 132 htt->rx_ring.fill_cnt++; 133 134 if (htt->rx_ring.in_ord_rx) { 135 hash_add(htt->rx_ring.skb_table, 136 &ATH10K_SKB_RXCB(skb)->hlist, 137 (u32)paddr); 138 } 139 140 num--; 141 idx++; 142 idx &= htt->rx_ring.size_mask; 143 } 144 145 fail: 146 /* 147 * Make sure the rx buffer is updated before available buffer 148 * index to avoid any potential rx ring corruption. 149 */ 150 mb(); 151 *htt->rx_ring.alloc_idx.vaddr = __cpu_to_le32(idx); 152 return ret; 153 } 154 155 static int ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num) 156 { 157 lockdep_assert_held(&htt->rx_ring.lock); 158 return __ath10k_htt_rx_ring_fill_n(htt, num); 159 } 160 161 static void ath10k_htt_rx_msdu_buff_replenish(struct ath10k_htt *htt) 162 { 163 int ret, num_deficit, num_to_fill; 164 165 /* Refilling the whole RX ring buffer proves to be a bad idea. The 166 * reason is RX may take up significant amount of CPU cycles and starve 167 * other tasks, e.g. TX on an ethernet device while acting as a bridge 168 * with ath10k wlan interface. This ended up with very poor performance 169 * once CPU the host system was overwhelmed with RX on ath10k. 170 * 171 * By limiting the number of refills the replenishing occurs 172 * progressively. This in turns makes use of the fact tasklets are 173 * processed in FIFO order. This means actual RX processing can starve 174 * out refilling. If there's not enough buffers on RX ring FW will not 175 * report RX until it is refilled with enough buffers. This 176 * automatically balances load wrt to CPU power. 177 * 178 * This probably comes at a cost of lower maximum throughput but 179 * improves the average and stability. */ 180 spin_lock_bh(&htt->rx_ring.lock); 181 num_deficit = htt->rx_ring.fill_level - htt->rx_ring.fill_cnt; 182 num_to_fill = min(ATH10K_HTT_MAX_NUM_REFILL, num_deficit); 183 num_deficit -= num_to_fill; 184 ret = ath10k_htt_rx_ring_fill_n(htt, num_to_fill); 185 if (ret == -ENOMEM) { 186 /* 187 * Failed to fill it to the desired level - 188 * we'll start a timer and try again next time. 189 * As long as enough buffers are left in the ring for 190 * another A-MPDU rx, no special recovery is needed. 191 */ 192 mod_timer(&htt->rx_ring.refill_retry_timer, jiffies + 193 msecs_to_jiffies(HTT_RX_RING_REFILL_RETRY_MS)); 194 } else if (num_deficit > 0) { 195 tasklet_schedule(&htt->rx_replenish_task); 196 } 197 spin_unlock_bh(&htt->rx_ring.lock); 198 } 199 200 static void ath10k_htt_rx_ring_refill_retry(unsigned long arg) 201 { 202 struct ath10k_htt *htt = (struct ath10k_htt *)arg; 203 204 ath10k_htt_rx_msdu_buff_replenish(htt); 205 } 206 207 int ath10k_htt_rx_ring_refill(struct ath10k *ar) 208 { 209 struct ath10k_htt *htt = &ar->htt; 210 int ret; 211 212 spin_lock_bh(&htt->rx_ring.lock); 213 ret = ath10k_htt_rx_ring_fill_n(htt, (htt->rx_ring.fill_level - 214 htt->rx_ring.fill_cnt)); 215 spin_unlock_bh(&htt->rx_ring.lock); 216 217 if (ret) 218 ath10k_htt_rx_ring_free(htt); 219 220 return ret; 221 } 222 223 void ath10k_htt_rx_free(struct ath10k_htt *htt) 224 { 225 del_timer_sync(&htt->rx_ring.refill_retry_timer); 226 tasklet_kill(&htt->rx_replenish_task); 227 tasklet_kill(&htt->txrx_compl_task); 228 229 skb_queue_purge(&htt->tx_compl_q); 230 skb_queue_purge(&htt->rx_compl_q); 231 skb_queue_purge(&htt->rx_in_ord_compl_q); 232 233 ath10k_htt_rx_ring_free(htt); 234 235 dma_free_coherent(htt->ar->dev, 236 (htt->rx_ring.size * 237 sizeof(htt->rx_ring.paddrs_ring)), 238 htt->rx_ring.paddrs_ring, 239 htt->rx_ring.base_paddr); 240 241 dma_free_coherent(htt->ar->dev, 242 sizeof(*htt->rx_ring.alloc_idx.vaddr), 243 htt->rx_ring.alloc_idx.vaddr, 244 htt->rx_ring.alloc_idx.paddr); 245 246 kfree(htt->rx_ring.netbufs_ring); 247 } 248 249 static inline struct sk_buff *ath10k_htt_rx_netbuf_pop(struct ath10k_htt *htt) 250 { 251 struct ath10k *ar = htt->ar; 252 int idx; 253 struct sk_buff *msdu; 254 255 lockdep_assert_held(&htt->rx_ring.lock); 256 257 if (htt->rx_ring.fill_cnt == 0) { 258 ath10k_warn(ar, "tried to pop sk_buff from an empty rx ring\n"); 259 return NULL; 260 } 261 262 idx = htt->rx_ring.sw_rd_idx.msdu_payld; 263 msdu = htt->rx_ring.netbufs_ring[idx]; 264 htt->rx_ring.netbufs_ring[idx] = NULL; 265 htt->rx_ring.paddrs_ring[idx] = 0; 266 267 idx++; 268 idx &= htt->rx_ring.size_mask; 269 htt->rx_ring.sw_rd_idx.msdu_payld = idx; 270 htt->rx_ring.fill_cnt--; 271 272 dma_unmap_single(htt->ar->dev, 273 ATH10K_SKB_RXCB(msdu)->paddr, 274 msdu->len + skb_tailroom(msdu), 275 DMA_FROM_DEVICE); 276 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ", 277 msdu->data, msdu->len + skb_tailroom(msdu)); 278 279 return msdu; 280 } 281 282 /* return: < 0 fatal error, 0 - non chained msdu, 1 chained msdu */ 283 static int ath10k_htt_rx_amsdu_pop(struct ath10k_htt *htt, 284 u8 **fw_desc, int *fw_desc_len, 285 struct sk_buff_head *amsdu) 286 { 287 struct ath10k *ar = htt->ar; 288 int msdu_len, msdu_chaining = 0; 289 struct sk_buff *msdu; 290 struct htt_rx_desc *rx_desc; 291 292 lockdep_assert_held(&htt->rx_ring.lock); 293 294 for (;;) { 295 int last_msdu, msdu_len_invalid, msdu_chained; 296 297 msdu = ath10k_htt_rx_netbuf_pop(htt); 298 if (!msdu) { 299 __skb_queue_purge(amsdu); 300 return -ENOENT; 301 } 302 303 __skb_queue_tail(amsdu, msdu); 304 305 rx_desc = (struct htt_rx_desc *)msdu->data; 306 307 /* FIXME: we must report msdu payload since this is what caller 308 * expects now */ 309 skb_put(msdu, offsetof(struct htt_rx_desc, msdu_payload)); 310 skb_pull(msdu, offsetof(struct htt_rx_desc, msdu_payload)); 311 312 /* 313 * Sanity check - confirm the HW is finished filling in the 314 * rx data. 315 * If the HW and SW are working correctly, then it's guaranteed 316 * that the HW's MAC DMA is done before this point in the SW. 317 * To prevent the case that we handle a stale Rx descriptor, 318 * just assert for now until we have a way to recover. 319 */ 320 if (!(__le32_to_cpu(rx_desc->attention.flags) 321 & RX_ATTENTION_FLAGS_MSDU_DONE)) { 322 __skb_queue_purge(amsdu); 323 return -EIO; 324 } 325 326 /* 327 * Copy the FW rx descriptor for this MSDU from the rx 328 * indication message into the MSDU's netbuf. HL uses the 329 * same rx indication message definition as LL, and simply 330 * appends new info (fields from the HW rx desc, and the 331 * MSDU payload itself). So, the offset into the rx 332 * indication message only has to account for the standard 333 * offset of the per-MSDU FW rx desc info within the 334 * message, and how many bytes of the per-MSDU FW rx desc 335 * info have already been consumed. (And the endianness of 336 * the host, since for a big-endian host, the rx ind 337 * message contents, including the per-MSDU rx desc bytes, 338 * were byteswapped during upload.) 339 */ 340 if (*fw_desc_len > 0) { 341 rx_desc->fw_desc.info0 = **fw_desc; 342 /* 343 * The target is expected to only provide the basic 344 * per-MSDU rx descriptors. Just to be sure, verify 345 * that the target has not attached extension data 346 * (e.g. LRO flow ID). 347 */ 348 349 /* or more, if there's extension data */ 350 (*fw_desc)++; 351 (*fw_desc_len)--; 352 } else { 353 /* 354 * When an oversized AMSDU happened, FW will lost 355 * some of MSDU status - in this case, the FW 356 * descriptors provided will be less than the 357 * actual MSDUs inside this MPDU. Mark the FW 358 * descriptors so that it will still deliver to 359 * upper stack, if no CRC error for this MPDU. 360 * 361 * FIX THIS - the FW descriptors are actually for 362 * MSDUs in the end of this A-MSDU instead of the 363 * beginning. 364 */ 365 rx_desc->fw_desc.info0 = 0; 366 } 367 368 msdu_len_invalid = !!(__le32_to_cpu(rx_desc->attention.flags) 369 & (RX_ATTENTION_FLAGS_MPDU_LENGTH_ERR | 370 RX_ATTENTION_FLAGS_MSDU_LENGTH_ERR)); 371 msdu_len = MS(__le32_to_cpu(rx_desc->msdu_start.common.info0), 372 RX_MSDU_START_INFO0_MSDU_LENGTH); 373 msdu_chained = rx_desc->frag_info.ring2_more_count; 374 375 if (msdu_len_invalid) 376 msdu_len = 0; 377 378 skb_trim(msdu, 0); 379 skb_put(msdu, min(msdu_len, HTT_RX_MSDU_SIZE)); 380 msdu_len -= msdu->len; 381 382 /* Note: Chained buffers do not contain rx descriptor */ 383 while (msdu_chained--) { 384 msdu = ath10k_htt_rx_netbuf_pop(htt); 385 if (!msdu) { 386 __skb_queue_purge(amsdu); 387 return -ENOENT; 388 } 389 390 __skb_queue_tail(amsdu, msdu); 391 skb_trim(msdu, 0); 392 skb_put(msdu, min(msdu_len, HTT_RX_BUF_SIZE)); 393 msdu_len -= msdu->len; 394 msdu_chaining = 1; 395 } 396 397 last_msdu = __le32_to_cpu(rx_desc->msdu_end.common.info0) & 398 RX_MSDU_END_INFO0_LAST_MSDU; 399 400 trace_ath10k_htt_rx_desc(ar, &rx_desc->attention, 401 sizeof(*rx_desc) - sizeof(u32)); 402 403 if (last_msdu) 404 break; 405 } 406 407 if (skb_queue_empty(amsdu)) 408 msdu_chaining = -1; 409 410 /* 411 * Don't refill the ring yet. 412 * 413 * First, the elements popped here are still in use - it is not 414 * safe to overwrite them until the matching call to 415 * mpdu_desc_list_next. Second, for efficiency it is preferable to 416 * refill the rx ring with 1 PPDU's worth of rx buffers (something 417 * like 32 x 3 buffers), rather than one MPDU's worth of rx buffers 418 * (something like 3 buffers). Consequently, we'll rely on the txrx 419 * SW to tell us when it is done pulling all the PPDU's rx buffers 420 * out of the rx ring, and then refill it just once. 421 */ 422 423 return msdu_chaining; 424 } 425 426 static void ath10k_htt_rx_replenish_task(unsigned long ptr) 427 { 428 struct ath10k_htt *htt = (struct ath10k_htt *)ptr; 429 430 ath10k_htt_rx_msdu_buff_replenish(htt); 431 } 432 433 static struct sk_buff *ath10k_htt_rx_pop_paddr(struct ath10k_htt *htt, 434 u32 paddr) 435 { 436 struct ath10k *ar = htt->ar; 437 struct ath10k_skb_rxcb *rxcb; 438 struct sk_buff *msdu; 439 440 lockdep_assert_held(&htt->rx_ring.lock); 441 442 msdu = ath10k_htt_rx_find_skb_paddr(ar, paddr); 443 if (!msdu) 444 return NULL; 445 446 rxcb = ATH10K_SKB_RXCB(msdu); 447 hash_del(&rxcb->hlist); 448 htt->rx_ring.fill_cnt--; 449 450 dma_unmap_single(htt->ar->dev, rxcb->paddr, 451 msdu->len + skb_tailroom(msdu), 452 DMA_FROM_DEVICE); 453 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ", 454 msdu->data, msdu->len + skb_tailroom(msdu)); 455 456 return msdu; 457 } 458 459 static int ath10k_htt_rx_pop_paddr_list(struct ath10k_htt *htt, 460 struct htt_rx_in_ord_ind *ev, 461 struct sk_buff_head *list) 462 { 463 struct ath10k *ar = htt->ar; 464 struct htt_rx_in_ord_msdu_desc *msdu_desc = ev->msdu_descs; 465 struct htt_rx_desc *rxd; 466 struct sk_buff *msdu; 467 int msdu_count; 468 bool is_offload; 469 u32 paddr; 470 471 lockdep_assert_held(&htt->rx_ring.lock); 472 473 msdu_count = __le16_to_cpu(ev->msdu_count); 474 is_offload = !!(ev->info & HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK); 475 476 while (msdu_count--) { 477 paddr = __le32_to_cpu(msdu_desc->msdu_paddr); 478 479 msdu = ath10k_htt_rx_pop_paddr(htt, paddr); 480 if (!msdu) { 481 __skb_queue_purge(list); 482 return -ENOENT; 483 } 484 485 __skb_queue_tail(list, msdu); 486 487 if (!is_offload) { 488 rxd = (void *)msdu->data; 489 490 trace_ath10k_htt_rx_desc(ar, rxd, sizeof(*rxd)); 491 492 skb_put(msdu, sizeof(*rxd)); 493 skb_pull(msdu, sizeof(*rxd)); 494 skb_put(msdu, __le16_to_cpu(msdu_desc->msdu_len)); 495 496 if (!(__le32_to_cpu(rxd->attention.flags) & 497 RX_ATTENTION_FLAGS_MSDU_DONE)) { 498 ath10k_warn(htt->ar, "tried to pop an incomplete frame, oops!\n"); 499 return -EIO; 500 } 501 } 502 503 msdu_desc++; 504 } 505 506 return 0; 507 } 508 509 int ath10k_htt_rx_alloc(struct ath10k_htt *htt) 510 { 511 struct ath10k *ar = htt->ar; 512 dma_addr_t paddr; 513 void *vaddr; 514 size_t size; 515 struct timer_list *timer = &htt->rx_ring.refill_retry_timer; 516 517 htt->rx_confused = false; 518 519 /* XXX: The fill level could be changed during runtime in response to 520 * the host processing latency. Is this really worth it? 521 */ 522 htt->rx_ring.size = HTT_RX_RING_SIZE; 523 htt->rx_ring.size_mask = htt->rx_ring.size - 1; 524 htt->rx_ring.fill_level = HTT_RX_RING_FILL_LEVEL; 525 526 if (!is_power_of_2(htt->rx_ring.size)) { 527 ath10k_warn(ar, "htt rx ring size is not power of 2\n"); 528 return -EINVAL; 529 } 530 531 htt->rx_ring.netbufs_ring = 532 kzalloc(htt->rx_ring.size * sizeof(struct sk_buff *), 533 GFP_KERNEL); 534 if (!htt->rx_ring.netbufs_ring) 535 goto err_netbuf; 536 537 size = htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring); 538 539 vaddr = dma_alloc_coherent(htt->ar->dev, size, &paddr, GFP_DMA); 540 if (!vaddr) 541 goto err_dma_ring; 542 543 htt->rx_ring.paddrs_ring = vaddr; 544 htt->rx_ring.base_paddr = paddr; 545 546 vaddr = dma_alloc_coherent(htt->ar->dev, 547 sizeof(*htt->rx_ring.alloc_idx.vaddr), 548 &paddr, GFP_DMA); 549 if (!vaddr) 550 goto err_dma_idx; 551 552 htt->rx_ring.alloc_idx.vaddr = vaddr; 553 htt->rx_ring.alloc_idx.paddr = paddr; 554 htt->rx_ring.sw_rd_idx.msdu_payld = htt->rx_ring.size_mask; 555 *htt->rx_ring.alloc_idx.vaddr = 0; 556 557 /* Initialize the Rx refill retry timer */ 558 setup_timer(timer, ath10k_htt_rx_ring_refill_retry, (unsigned long)htt); 559 560 spin_lock_init(&htt->rx_ring.lock); 561 562 htt->rx_ring.fill_cnt = 0; 563 htt->rx_ring.sw_rd_idx.msdu_payld = 0; 564 hash_init(htt->rx_ring.skb_table); 565 566 tasklet_init(&htt->rx_replenish_task, ath10k_htt_rx_replenish_task, 567 (unsigned long)htt); 568 569 skb_queue_head_init(&htt->tx_compl_q); 570 skb_queue_head_init(&htt->rx_compl_q); 571 skb_queue_head_init(&htt->rx_in_ord_compl_q); 572 573 tasklet_init(&htt->txrx_compl_task, ath10k_htt_txrx_compl_task, 574 (unsigned long)htt); 575 576 ath10k_dbg(ar, ATH10K_DBG_BOOT, "htt rx ring size %d fill_level %d\n", 577 htt->rx_ring.size, htt->rx_ring.fill_level); 578 return 0; 579 580 err_dma_idx: 581 dma_free_coherent(htt->ar->dev, 582 (htt->rx_ring.size * 583 sizeof(htt->rx_ring.paddrs_ring)), 584 htt->rx_ring.paddrs_ring, 585 htt->rx_ring.base_paddr); 586 err_dma_ring: 587 kfree(htt->rx_ring.netbufs_ring); 588 err_netbuf: 589 return -ENOMEM; 590 } 591 592 static int ath10k_htt_rx_crypto_param_len(struct ath10k *ar, 593 enum htt_rx_mpdu_encrypt_type type) 594 { 595 switch (type) { 596 case HTT_RX_MPDU_ENCRYPT_NONE: 597 return 0; 598 case HTT_RX_MPDU_ENCRYPT_WEP40: 599 case HTT_RX_MPDU_ENCRYPT_WEP104: 600 return IEEE80211_WEP_IV_LEN; 601 case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC: 602 case HTT_RX_MPDU_ENCRYPT_TKIP_WPA: 603 return IEEE80211_TKIP_IV_LEN; 604 case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2: 605 return IEEE80211_CCMP_HDR_LEN; 606 case HTT_RX_MPDU_ENCRYPT_WEP128: 607 case HTT_RX_MPDU_ENCRYPT_WAPI: 608 break; 609 } 610 611 ath10k_warn(ar, "unsupported encryption type %d\n", type); 612 return 0; 613 } 614 615 #define MICHAEL_MIC_LEN 8 616 617 static int ath10k_htt_rx_crypto_tail_len(struct ath10k *ar, 618 enum htt_rx_mpdu_encrypt_type type) 619 { 620 switch (type) { 621 case HTT_RX_MPDU_ENCRYPT_NONE: 622 return 0; 623 case HTT_RX_MPDU_ENCRYPT_WEP40: 624 case HTT_RX_MPDU_ENCRYPT_WEP104: 625 return IEEE80211_WEP_ICV_LEN; 626 case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC: 627 case HTT_RX_MPDU_ENCRYPT_TKIP_WPA: 628 return IEEE80211_TKIP_ICV_LEN; 629 case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2: 630 return IEEE80211_CCMP_MIC_LEN; 631 case HTT_RX_MPDU_ENCRYPT_WEP128: 632 case HTT_RX_MPDU_ENCRYPT_WAPI: 633 break; 634 } 635 636 ath10k_warn(ar, "unsupported encryption type %d\n", type); 637 return 0; 638 } 639 640 struct amsdu_subframe_hdr { 641 u8 dst[ETH_ALEN]; 642 u8 src[ETH_ALEN]; 643 __be16 len; 644 } __packed; 645 646 #define GROUP_ID_IS_SU_MIMO(x) ((x) == 0 || (x) == 63) 647 648 static void ath10k_htt_rx_h_rates(struct ath10k *ar, 649 struct ieee80211_rx_status *status, 650 struct htt_rx_desc *rxd) 651 { 652 struct ieee80211_supported_band *sband; 653 u8 cck, rate, bw, sgi, mcs, nss; 654 u8 preamble = 0; 655 u8 group_id; 656 u32 info1, info2, info3; 657 658 info1 = __le32_to_cpu(rxd->ppdu_start.info1); 659 info2 = __le32_to_cpu(rxd->ppdu_start.info2); 660 info3 = __le32_to_cpu(rxd->ppdu_start.info3); 661 662 preamble = MS(info1, RX_PPDU_START_INFO1_PREAMBLE_TYPE); 663 664 switch (preamble) { 665 case HTT_RX_LEGACY: 666 /* To get legacy rate index band is required. Since band can't 667 * be undefined check if freq is non-zero. 668 */ 669 if (!status->freq) 670 return; 671 672 cck = info1 & RX_PPDU_START_INFO1_L_SIG_RATE_SELECT; 673 rate = MS(info1, RX_PPDU_START_INFO1_L_SIG_RATE); 674 rate &= ~RX_PPDU_START_RATE_FLAG; 675 676 sband = &ar->mac.sbands[status->band]; 677 status->rate_idx = ath10k_mac_hw_rate_to_idx(sband, rate); 678 break; 679 case HTT_RX_HT: 680 case HTT_RX_HT_WITH_TXBF: 681 /* HT-SIG - Table 20-11 in info2 and info3 */ 682 mcs = info2 & 0x1F; 683 nss = mcs >> 3; 684 bw = (info2 >> 7) & 1; 685 sgi = (info3 >> 7) & 1; 686 687 status->rate_idx = mcs; 688 status->flag |= RX_FLAG_HT; 689 if (sgi) 690 status->flag |= RX_FLAG_SHORT_GI; 691 if (bw) 692 status->flag |= RX_FLAG_40MHZ; 693 break; 694 case HTT_RX_VHT: 695 case HTT_RX_VHT_WITH_TXBF: 696 /* VHT-SIG-A1 in info2, VHT-SIG-A2 in info3 697 TODO check this */ 698 bw = info2 & 3; 699 sgi = info3 & 1; 700 group_id = (info2 >> 4) & 0x3F; 701 702 if (GROUP_ID_IS_SU_MIMO(group_id)) { 703 mcs = (info3 >> 4) & 0x0F; 704 nss = ((info2 >> 10) & 0x07) + 1; 705 } else { 706 /* Hardware doesn't decode VHT-SIG-B into Rx descriptor 707 * so it's impossible to decode MCS. Also since 708 * firmware consumes Group Id Management frames host 709 * has no knowledge regarding group/user position 710 * mapping so it's impossible to pick the correct Nsts 711 * from VHT-SIG-A1. 712 * 713 * Bandwidth and SGI are valid so report the rateinfo 714 * on best-effort basis. 715 */ 716 mcs = 0; 717 nss = 1; 718 } 719 720 if (mcs > 0x09) { 721 ath10k_warn(ar, "invalid MCS received %u\n", mcs); 722 ath10k_warn(ar, "rxd %08x mpdu start %08x %08x msdu start %08x %08x ppdu start %08x %08x %08x %08x %08x\n", 723 __le32_to_cpu(rxd->attention.flags), 724 __le32_to_cpu(rxd->mpdu_start.info0), 725 __le32_to_cpu(rxd->mpdu_start.info1), 726 __le32_to_cpu(rxd->msdu_start.common.info0), 727 __le32_to_cpu(rxd->msdu_start.common.info1), 728 rxd->ppdu_start.info0, 729 __le32_to_cpu(rxd->ppdu_start.info1), 730 __le32_to_cpu(rxd->ppdu_start.info2), 731 __le32_to_cpu(rxd->ppdu_start.info3), 732 __le32_to_cpu(rxd->ppdu_start.info4)); 733 734 ath10k_warn(ar, "msdu end %08x mpdu end %08x\n", 735 __le32_to_cpu(rxd->msdu_end.common.info0), 736 __le32_to_cpu(rxd->mpdu_end.info0)); 737 738 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, 739 "rx desc msdu payload: ", 740 rxd->msdu_payload, 50); 741 } 742 743 status->rate_idx = mcs; 744 status->vht_nss = nss; 745 746 if (sgi) 747 status->flag |= RX_FLAG_SHORT_GI; 748 749 switch (bw) { 750 /* 20MHZ */ 751 case 0: 752 break; 753 /* 40MHZ */ 754 case 1: 755 status->flag |= RX_FLAG_40MHZ; 756 break; 757 /* 80MHZ */ 758 case 2: 759 status->vht_flag |= RX_VHT_FLAG_80MHZ; 760 } 761 762 status->flag |= RX_FLAG_VHT; 763 break; 764 default: 765 break; 766 } 767 } 768 769 static struct ieee80211_channel * 770 ath10k_htt_rx_h_peer_channel(struct ath10k *ar, struct htt_rx_desc *rxd) 771 { 772 struct ath10k_peer *peer; 773 struct ath10k_vif *arvif; 774 struct cfg80211_chan_def def; 775 u16 peer_id; 776 777 lockdep_assert_held(&ar->data_lock); 778 779 if (!rxd) 780 return NULL; 781 782 if (rxd->attention.flags & 783 __cpu_to_le32(RX_ATTENTION_FLAGS_PEER_IDX_INVALID)) 784 return NULL; 785 786 if (!(rxd->msdu_end.common.info0 & 787 __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU))) 788 return NULL; 789 790 peer_id = MS(__le32_to_cpu(rxd->mpdu_start.info0), 791 RX_MPDU_START_INFO0_PEER_IDX); 792 793 peer = ath10k_peer_find_by_id(ar, peer_id); 794 if (!peer) 795 return NULL; 796 797 arvif = ath10k_get_arvif(ar, peer->vdev_id); 798 if (WARN_ON_ONCE(!arvif)) 799 return NULL; 800 801 if (WARN_ON(ath10k_mac_vif_chan(arvif->vif, &def))) 802 return NULL; 803 804 return def.chan; 805 } 806 807 static struct ieee80211_channel * 808 ath10k_htt_rx_h_vdev_channel(struct ath10k *ar, u32 vdev_id) 809 { 810 struct ath10k_vif *arvif; 811 struct cfg80211_chan_def def; 812 813 lockdep_assert_held(&ar->data_lock); 814 815 list_for_each_entry(arvif, &ar->arvifs, list) { 816 if (arvif->vdev_id == vdev_id && 817 ath10k_mac_vif_chan(arvif->vif, &def) == 0) 818 return def.chan; 819 } 820 821 return NULL; 822 } 823 824 static void 825 ath10k_htt_rx_h_any_chan_iter(struct ieee80211_hw *hw, 826 struct ieee80211_chanctx_conf *conf, 827 void *data) 828 { 829 struct cfg80211_chan_def *def = data; 830 831 *def = conf->def; 832 } 833 834 static struct ieee80211_channel * 835 ath10k_htt_rx_h_any_channel(struct ath10k *ar) 836 { 837 struct cfg80211_chan_def def = {}; 838 839 ieee80211_iter_chan_contexts_atomic(ar->hw, 840 ath10k_htt_rx_h_any_chan_iter, 841 &def); 842 843 return def.chan; 844 } 845 846 static bool ath10k_htt_rx_h_channel(struct ath10k *ar, 847 struct ieee80211_rx_status *status, 848 struct htt_rx_desc *rxd, 849 u32 vdev_id) 850 { 851 struct ieee80211_channel *ch; 852 853 spin_lock_bh(&ar->data_lock); 854 ch = ar->scan_channel; 855 if (!ch) 856 ch = ar->rx_channel; 857 if (!ch) 858 ch = ath10k_htt_rx_h_peer_channel(ar, rxd); 859 if (!ch) 860 ch = ath10k_htt_rx_h_vdev_channel(ar, vdev_id); 861 if (!ch) 862 ch = ath10k_htt_rx_h_any_channel(ar); 863 spin_unlock_bh(&ar->data_lock); 864 865 if (!ch) 866 return false; 867 868 status->band = ch->band; 869 status->freq = ch->center_freq; 870 871 return true; 872 } 873 874 static void ath10k_htt_rx_h_signal(struct ath10k *ar, 875 struct ieee80211_rx_status *status, 876 struct htt_rx_desc *rxd) 877 { 878 /* FIXME: Get real NF */ 879 status->signal = ATH10K_DEFAULT_NOISE_FLOOR + 880 rxd->ppdu_start.rssi_comb; 881 status->flag &= ~RX_FLAG_NO_SIGNAL_VAL; 882 } 883 884 static void ath10k_htt_rx_h_mactime(struct ath10k *ar, 885 struct ieee80211_rx_status *status, 886 struct htt_rx_desc *rxd) 887 { 888 /* FIXME: TSF is known only at the end of PPDU, in the last MPDU. This 889 * means all prior MSDUs in a PPDU are reported to mac80211 without the 890 * TSF. Is it worth holding frames until end of PPDU is known? 891 * 892 * FIXME: Can we get/compute 64bit TSF? 893 */ 894 status->mactime = __le32_to_cpu(rxd->ppdu_end.common.tsf_timestamp); 895 status->flag |= RX_FLAG_MACTIME_END; 896 } 897 898 static void ath10k_htt_rx_h_ppdu(struct ath10k *ar, 899 struct sk_buff_head *amsdu, 900 struct ieee80211_rx_status *status, 901 u32 vdev_id) 902 { 903 struct sk_buff *first; 904 struct htt_rx_desc *rxd; 905 bool is_first_ppdu; 906 bool is_last_ppdu; 907 908 if (skb_queue_empty(amsdu)) 909 return; 910 911 first = skb_peek(amsdu); 912 rxd = (void *)first->data - sizeof(*rxd); 913 914 is_first_ppdu = !!(rxd->attention.flags & 915 __cpu_to_le32(RX_ATTENTION_FLAGS_FIRST_MPDU)); 916 is_last_ppdu = !!(rxd->attention.flags & 917 __cpu_to_le32(RX_ATTENTION_FLAGS_LAST_MPDU)); 918 919 if (is_first_ppdu) { 920 /* New PPDU starts so clear out the old per-PPDU status. */ 921 status->freq = 0; 922 status->rate_idx = 0; 923 status->vht_nss = 0; 924 status->vht_flag &= ~RX_VHT_FLAG_80MHZ; 925 status->flag &= ~(RX_FLAG_HT | 926 RX_FLAG_VHT | 927 RX_FLAG_SHORT_GI | 928 RX_FLAG_40MHZ | 929 RX_FLAG_MACTIME_END); 930 status->flag |= RX_FLAG_NO_SIGNAL_VAL; 931 932 ath10k_htt_rx_h_signal(ar, status, rxd); 933 ath10k_htt_rx_h_channel(ar, status, rxd, vdev_id); 934 ath10k_htt_rx_h_rates(ar, status, rxd); 935 } 936 937 if (is_last_ppdu) 938 ath10k_htt_rx_h_mactime(ar, status, rxd); 939 } 940 941 static const char * const tid_to_ac[] = { 942 "BE", 943 "BK", 944 "BK", 945 "BE", 946 "VI", 947 "VI", 948 "VO", 949 "VO", 950 }; 951 952 static char *ath10k_get_tid(struct ieee80211_hdr *hdr, char *out, size_t size) 953 { 954 u8 *qc; 955 int tid; 956 957 if (!ieee80211_is_data_qos(hdr->frame_control)) 958 return ""; 959 960 qc = ieee80211_get_qos_ctl(hdr); 961 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 962 if (tid < 8) 963 snprintf(out, size, "tid %d (%s)", tid, tid_to_ac[tid]); 964 else 965 snprintf(out, size, "tid %d", tid); 966 967 return out; 968 } 969 970 static void ath10k_process_rx(struct ath10k *ar, 971 struct ieee80211_rx_status *rx_status, 972 struct sk_buff *skb) 973 { 974 struct ieee80211_rx_status *status; 975 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 976 char tid[32]; 977 978 status = IEEE80211_SKB_RXCB(skb); 979 *status = *rx_status; 980 981 ath10k_dbg(ar, ATH10K_DBG_DATA, 982 "rx skb %p len %u peer %pM %s %s sn %u %s%s%s%s%s %srate_idx %u vht_nss %u freq %u band %u flag 0x%x fcs-err %i mic-err %i amsdu-more %i\n", 983 skb, 984 skb->len, 985 ieee80211_get_SA(hdr), 986 ath10k_get_tid(hdr, tid, sizeof(tid)), 987 is_multicast_ether_addr(ieee80211_get_DA(hdr)) ? 988 "mcast" : "ucast", 989 (__le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_SEQ) >> 4, 990 status->flag == 0 ? "legacy" : "", 991 status->flag & RX_FLAG_HT ? "ht" : "", 992 status->flag & RX_FLAG_VHT ? "vht" : "", 993 status->flag & RX_FLAG_40MHZ ? "40" : "", 994 status->vht_flag & RX_VHT_FLAG_80MHZ ? "80" : "", 995 status->flag & RX_FLAG_SHORT_GI ? "sgi " : "", 996 status->rate_idx, 997 status->vht_nss, 998 status->freq, 999 status->band, status->flag, 1000 !!(status->flag & RX_FLAG_FAILED_FCS_CRC), 1001 !!(status->flag & RX_FLAG_MMIC_ERROR), 1002 !!(status->flag & RX_FLAG_AMSDU_MORE)); 1003 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "rx skb: ", 1004 skb->data, skb->len); 1005 trace_ath10k_rx_hdr(ar, skb->data, skb->len); 1006 trace_ath10k_rx_payload(ar, skb->data, skb->len); 1007 1008 ieee80211_rx(ar->hw, skb); 1009 } 1010 1011 static int ath10k_htt_rx_nwifi_hdrlen(struct ath10k *ar, 1012 struct ieee80211_hdr *hdr) 1013 { 1014 int len = ieee80211_hdrlen(hdr->frame_control); 1015 1016 if (!test_bit(ATH10K_FW_FEATURE_NO_NWIFI_DECAP_4ADDR_PADDING, 1017 ar->fw_features)) 1018 len = round_up(len, 4); 1019 1020 return len; 1021 } 1022 1023 static void ath10k_htt_rx_h_undecap_raw(struct ath10k *ar, 1024 struct sk_buff *msdu, 1025 struct ieee80211_rx_status *status, 1026 enum htt_rx_mpdu_encrypt_type enctype, 1027 bool is_decrypted) 1028 { 1029 struct ieee80211_hdr *hdr; 1030 struct htt_rx_desc *rxd; 1031 size_t hdr_len; 1032 size_t crypto_len; 1033 bool is_first; 1034 bool is_last; 1035 1036 rxd = (void *)msdu->data - sizeof(*rxd); 1037 is_first = !!(rxd->msdu_end.common.info0 & 1038 __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU)); 1039 is_last = !!(rxd->msdu_end.common.info0 & 1040 __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU)); 1041 1042 /* Delivered decapped frame: 1043 * [802.11 header] 1044 * [crypto param] <-- can be trimmed if !fcs_err && 1045 * !decrypt_err && !peer_idx_invalid 1046 * [amsdu header] <-- only if A-MSDU 1047 * [rfc1042/llc] 1048 * [payload] 1049 * [FCS] <-- at end, needs to be trimmed 1050 */ 1051 1052 /* This probably shouldn't happen but warn just in case */ 1053 if (unlikely(WARN_ON_ONCE(!is_first))) 1054 return; 1055 1056 /* This probably shouldn't happen but warn just in case */ 1057 if (unlikely(WARN_ON_ONCE(!(is_first && is_last)))) 1058 return; 1059 1060 skb_trim(msdu, msdu->len - FCS_LEN); 1061 1062 /* In most cases this will be true for sniffed frames. It makes sense 1063 * to deliver them as-is without stripping the crypto param. This is 1064 * necessary for software based decryption. 1065 * 1066 * If there's no error then the frame is decrypted. At least that is 1067 * the case for frames that come in via fragmented rx indication. 1068 */ 1069 if (!is_decrypted) 1070 return; 1071 1072 /* The payload is decrypted so strip crypto params. Start from tail 1073 * since hdr is used to compute some stuff. 1074 */ 1075 1076 hdr = (void *)msdu->data; 1077 1078 /* Tail */ 1079 skb_trim(msdu, msdu->len - ath10k_htt_rx_crypto_tail_len(ar, enctype)); 1080 1081 /* MMIC */ 1082 if (!ieee80211_has_morefrags(hdr->frame_control) && 1083 enctype == HTT_RX_MPDU_ENCRYPT_TKIP_WPA) 1084 skb_trim(msdu, msdu->len - 8); 1085 1086 /* Head */ 1087 hdr_len = ieee80211_hdrlen(hdr->frame_control); 1088 crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype); 1089 1090 memmove((void *)msdu->data + crypto_len, 1091 (void *)msdu->data, hdr_len); 1092 skb_pull(msdu, crypto_len); 1093 } 1094 1095 static void ath10k_htt_rx_h_undecap_nwifi(struct ath10k *ar, 1096 struct sk_buff *msdu, 1097 struct ieee80211_rx_status *status, 1098 const u8 first_hdr[64]) 1099 { 1100 struct ieee80211_hdr *hdr; 1101 size_t hdr_len; 1102 u8 da[ETH_ALEN]; 1103 u8 sa[ETH_ALEN]; 1104 1105 /* Delivered decapped frame: 1106 * [nwifi 802.11 header] <-- replaced with 802.11 hdr 1107 * [rfc1042/llc] 1108 * 1109 * Note: The nwifi header doesn't have QoS Control and is 1110 * (always?) a 3addr frame. 1111 * 1112 * Note2: There's no A-MSDU subframe header. Even if it's part 1113 * of an A-MSDU. 1114 */ 1115 1116 /* pull decapped header and copy SA & DA */ 1117 hdr = (struct ieee80211_hdr *)msdu->data; 1118 hdr_len = ath10k_htt_rx_nwifi_hdrlen(ar, hdr); 1119 ether_addr_copy(da, ieee80211_get_DA(hdr)); 1120 ether_addr_copy(sa, ieee80211_get_SA(hdr)); 1121 skb_pull(msdu, hdr_len); 1122 1123 /* push original 802.11 header */ 1124 hdr = (struct ieee80211_hdr *)first_hdr; 1125 hdr_len = ieee80211_hdrlen(hdr->frame_control); 1126 memcpy(skb_push(msdu, hdr_len), hdr, hdr_len); 1127 1128 /* original 802.11 header has a different DA and in 1129 * case of 4addr it may also have different SA 1130 */ 1131 hdr = (struct ieee80211_hdr *)msdu->data; 1132 ether_addr_copy(ieee80211_get_DA(hdr), da); 1133 ether_addr_copy(ieee80211_get_SA(hdr), sa); 1134 } 1135 1136 static void *ath10k_htt_rx_h_find_rfc1042(struct ath10k *ar, 1137 struct sk_buff *msdu, 1138 enum htt_rx_mpdu_encrypt_type enctype) 1139 { 1140 struct ieee80211_hdr *hdr; 1141 struct htt_rx_desc *rxd; 1142 size_t hdr_len, crypto_len; 1143 void *rfc1042; 1144 bool is_first, is_last, is_amsdu; 1145 1146 rxd = (void *)msdu->data - sizeof(*rxd); 1147 hdr = (void *)rxd->rx_hdr_status; 1148 1149 is_first = !!(rxd->msdu_end.common.info0 & 1150 __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU)); 1151 is_last = !!(rxd->msdu_end.common.info0 & 1152 __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU)); 1153 is_amsdu = !(is_first && is_last); 1154 1155 rfc1042 = hdr; 1156 1157 if (is_first) { 1158 hdr_len = ieee80211_hdrlen(hdr->frame_control); 1159 crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype); 1160 1161 rfc1042 += round_up(hdr_len, 4) + 1162 round_up(crypto_len, 4); 1163 } 1164 1165 if (is_amsdu) 1166 rfc1042 += sizeof(struct amsdu_subframe_hdr); 1167 1168 return rfc1042; 1169 } 1170 1171 static void ath10k_htt_rx_h_undecap_eth(struct ath10k *ar, 1172 struct sk_buff *msdu, 1173 struct ieee80211_rx_status *status, 1174 const u8 first_hdr[64], 1175 enum htt_rx_mpdu_encrypt_type enctype) 1176 { 1177 struct ieee80211_hdr *hdr; 1178 struct ethhdr *eth; 1179 size_t hdr_len; 1180 void *rfc1042; 1181 u8 da[ETH_ALEN]; 1182 u8 sa[ETH_ALEN]; 1183 1184 /* Delivered decapped frame: 1185 * [eth header] <-- replaced with 802.11 hdr & rfc1042/llc 1186 * [payload] 1187 */ 1188 1189 rfc1042 = ath10k_htt_rx_h_find_rfc1042(ar, msdu, enctype); 1190 if (WARN_ON_ONCE(!rfc1042)) 1191 return; 1192 1193 /* pull decapped header and copy SA & DA */ 1194 eth = (struct ethhdr *)msdu->data; 1195 ether_addr_copy(da, eth->h_dest); 1196 ether_addr_copy(sa, eth->h_source); 1197 skb_pull(msdu, sizeof(struct ethhdr)); 1198 1199 /* push rfc1042/llc/snap */ 1200 memcpy(skb_push(msdu, sizeof(struct rfc1042_hdr)), rfc1042, 1201 sizeof(struct rfc1042_hdr)); 1202 1203 /* push original 802.11 header */ 1204 hdr = (struct ieee80211_hdr *)first_hdr; 1205 hdr_len = ieee80211_hdrlen(hdr->frame_control); 1206 memcpy(skb_push(msdu, hdr_len), hdr, hdr_len); 1207 1208 /* original 802.11 header has a different DA and in 1209 * case of 4addr it may also have different SA 1210 */ 1211 hdr = (struct ieee80211_hdr *)msdu->data; 1212 ether_addr_copy(ieee80211_get_DA(hdr), da); 1213 ether_addr_copy(ieee80211_get_SA(hdr), sa); 1214 } 1215 1216 static void ath10k_htt_rx_h_undecap_snap(struct ath10k *ar, 1217 struct sk_buff *msdu, 1218 struct ieee80211_rx_status *status, 1219 const u8 first_hdr[64]) 1220 { 1221 struct ieee80211_hdr *hdr; 1222 size_t hdr_len; 1223 1224 /* Delivered decapped frame: 1225 * [amsdu header] <-- replaced with 802.11 hdr 1226 * [rfc1042/llc] 1227 * [payload] 1228 */ 1229 1230 skb_pull(msdu, sizeof(struct amsdu_subframe_hdr)); 1231 1232 hdr = (struct ieee80211_hdr *)first_hdr; 1233 hdr_len = ieee80211_hdrlen(hdr->frame_control); 1234 memcpy(skb_push(msdu, hdr_len), hdr, hdr_len); 1235 } 1236 1237 static void ath10k_htt_rx_h_undecap(struct ath10k *ar, 1238 struct sk_buff *msdu, 1239 struct ieee80211_rx_status *status, 1240 u8 first_hdr[64], 1241 enum htt_rx_mpdu_encrypt_type enctype, 1242 bool is_decrypted) 1243 { 1244 struct htt_rx_desc *rxd; 1245 enum rx_msdu_decap_format decap; 1246 1247 /* First msdu's decapped header: 1248 * [802.11 header] <-- padded to 4 bytes long 1249 * [crypto param] <-- padded to 4 bytes long 1250 * [amsdu header] <-- only if A-MSDU 1251 * [rfc1042/llc] 1252 * 1253 * Other (2nd, 3rd, ..) msdu's decapped header: 1254 * [amsdu header] <-- only if A-MSDU 1255 * [rfc1042/llc] 1256 */ 1257 1258 rxd = (void *)msdu->data - sizeof(*rxd); 1259 decap = MS(__le32_to_cpu(rxd->msdu_start.common.info1), 1260 RX_MSDU_START_INFO1_DECAP_FORMAT); 1261 1262 switch (decap) { 1263 case RX_MSDU_DECAP_RAW: 1264 ath10k_htt_rx_h_undecap_raw(ar, msdu, status, enctype, 1265 is_decrypted); 1266 break; 1267 case RX_MSDU_DECAP_NATIVE_WIFI: 1268 ath10k_htt_rx_h_undecap_nwifi(ar, msdu, status, first_hdr); 1269 break; 1270 case RX_MSDU_DECAP_ETHERNET2_DIX: 1271 ath10k_htt_rx_h_undecap_eth(ar, msdu, status, first_hdr, enctype); 1272 break; 1273 case RX_MSDU_DECAP_8023_SNAP_LLC: 1274 ath10k_htt_rx_h_undecap_snap(ar, msdu, status, first_hdr); 1275 break; 1276 } 1277 } 1278 1279 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb) 1280 { 1281 struct htt_rx_desc *rxd; 1282 u32 flags, info; 1283 bool is_ip4, is_ip6; 1284 bool is_tcp, is_udp; 1285 bool ip_csum_ok, tcpudp_csum_ok; 1286 1287 rxd = (void *)skb->data - sizeof(*rxd); 1288 flags = __le32_to_cpu(rxd->attention.flags); 1289 info = __le32_to_cpu(rxd->msdu_start.common.info1); 1290 1291 is_ip4 = !!(info & RX_MSDU_START_INFO1_IPV4_PROTO); 1292 is_ip6 = !!(info & RX_MSDU_START_INFO1_IPV6_PROTO); 1293 is_tcp = !!(info & RX_MSDU_START_INFO1_TCP_PROTO); 1294 is_udp = !!(info & RX_MSDU_START_INFO1_UDP_PROTO); 1295 ip_csum_ok = !(flags & RX_ATTENTION_FLAGS_IP_CHKSUM_FAIL); 1296 tcpudp_csum_ok = !(flags & RX_ATTENTION_FLAGS_TCP_UDP_CHKSUM_FAIL); 1297 1298 if (!is_ip4 && !is_ip6) 1299 return CHECKSUM_NONE; 1300 if (!is_tcp && !is_udp) 1301 return CHECKSUM_NONE; 1302 if (!ip_csum_ok) 1303 return CHECKSUM_NONE; 1304 if (!tcpudp_csum_ok) 1305 return CHECKSUM_NONE; 1306 1307 return CHECKSUM_UNNECESSARY; 1308 } 1309 1310 static void ath10k_htt_rx_h_csum_offload(struct sk_buff *msdu) 1311 { 1312 msdu->ip_summed = ath10k_htt_rx_get_csum_state(msdu); 1313 } 1314 1315 static void ath10k_htt_rx_h_mpdu(struct ath10k *ar, 1316 struct sk_buff_head *amsdu, 1317 struct ieee80211_rx_status *status) 1318 { 1319 struct sk_buff *first; 1320 struct sk_buff *last; 1321 struct sk_buff *msdu; 1322 struct htt_rx_desc *rxd; 1323 struct ieee80211_hdr *hdr; 1324 enum htt_rx_mpdu_encrypt_type enctype; 1325 u8 first_hdr[64]; 1326 u8 *qos; 1327 size_t hdr_len; 1328 bool has_fcs_err; 1329 bool has_crypto_err; 1330 bool has_tkip_err; 1331 bool has_peer_idx_invalid; 1332 bool is_decrypted; 1333 u32 attention; 1334 1335 if (skb_queue_empty(amsdu)) 1336 return; 1337 1338 first = skb_peek(amsdu); 1339 rxd = (void *)first->data - sizeof(*rxd); 1340 1341 enctype = MS(__le32_to_cpu(rxd->mpdu_start.info0), 1342 RX_MPDU_START_INFO0_ENCRYPT_TYPE); 1343 1344 /* First MSDU's Rx descriptor in an A-MSDU contains full 802.11 1345 * decapped header. It'll be used for undecapping of each MSDU. 1346 */ 1347 hdr = (void *)rxd->rx_hdr_status; 1348 hdr_len = ieee80211_hdrlen(hdr->frame_control); 1349 memcpy(first_hdr, hdr, hdr_len); 1350 1351 /* Each A-MSDU subframe will use the original header as the base and be 1352 * reported as a separate MSDU so strip the A-MSDU bit from QoS Ctl. 1353 */ 1354 hdr = (void *)first_hdr; 1355 qos = ieee80211_get_qos_ctl(hdr); 1356 qos[0] &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT; 1357 1358 /* Some attention flags are valid only in the last MSDU. */ 1359 last = skb_peek_tail(amsdu); 1360 rxd = (void *)last->data - sizeof(*rxd); 1361 attention = __le32_to_cpu(rxd->attention.flags); 1362 1363 has_fcs_err = !!(attention & RX_ATTENTION_FLAGS_FCS_ERR); 1364 has_crypto_err = !!(attention & RX_ATTENTION_FLAGS_DECRYPT_ERR); 1365 has_tkip_err = !!(attention & RX_ATTENTION_FLAGS_TKIP_MIC_ERR); 1366 has_peer_idx_invalid = !!(attention & RX_ATTENTION_FLAGS_PEER_IDX_INVALID); 1367 1368 /* Note: If hardware captures an encrypted frame that it can't decrypt, 1369 * e.g. due to fcs error, missing peer or invalid key data it will 1370 * report the frame as raw. 1371 */ 1372 is_decrypted = (enctype != HTT_RX_MPDU_ENCRYPT_NONE && 1373 !has_fcs_err && 1374 !has_crypto_err && 1375 !has_peer_idx_invalid); 1376 1377 /* Clear per-MPDU flags while leaving per-PPDU flags intact. */ 1378 status->flag &= ~(RX_FLAG_FAILED_FCS_CRC | 1379 RX_FLAG_MMIC_ERROR | 1380 RX_FLAG_DECRYPTED | 1381 RX_FLAG_IV_STRIPPED | 1382 RX_FLAG_MMIC_STRIPPED); 1383 1384 if (has_fcs_err) 1385 status->flag |= RX_FLAG_FAILED_FCS_CRC; 1386 1387 if (has_tkip_err) 1388 status->flag |= RX_FLAG_MMIC_ERROR; 1389 1390 if (is_decrypted) 1391 status->flag |= RX_FLAG_DECRYPTED | 1392 RX_FLAG_IV_STRIPPED | 1393 RX_FLAG_MMIC_STRIPPED; 1394 1395 skb_queue_walk(amsdu, msdu) { 1396 ath10k_htt_rx_h_csum_offload(msdu); 1397 ath10k_htt_rx_h_undecap(ar, msdu, status, first_hdr, enctype, 1398 is_decrypted); 1399 1400 /* Undecapping involves copying the original 802.11 header back 1401 * to sk_buff. If frame is protected and hardware has decrypted 1402 * it then remove the protected bit. 1403 */ 1404 if (!is_decrypted) 1405 continue; 1406 1407 hdr = (void *)msdu->data; 1408 hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED); 1409 } 1410 } 1411 1412 static void ath10k_htt_rx_h_deliver(struct ath10k *ar, 1413 struct sk_buff_head *amsdu, 1414 struct ieee80211_rx_status *status) 1415 { 1416 struct sk_buff *msdu; 1417 1418 while ((msdu = __skb_dequeue(amsdu))) { 1419 /* Setup per-MSDU flags */ 1420 if (skb_queue_empty(amsdu)) 1421 status->flag &= ~RX_FLAG_AMSDU_MORE; 1422 else 1423 status->flag |= RX_FLAG_AMSDU_MORE; 1424 1425 ath10k_process_rx(ar, status, msdu); 1426 } 1427 } 1428 1429 static int ath10k_unchain_msdu(struct sk_buff_head *amsdu) 1430 { 1431 struct sk_buff *skb, *first; 1432 int space; 1433 int total_len = 0; 1434 1435 /* TODO: Might could optimize this by using 1436 * skb_try_coalesce or similar method to 1437 * decrease copying, or maybe get mac80211 to 1438 * provide a way to just receive a list of 1439 * skb? 1440 */ 1441 1442 first = __skb_dequeue(amsdu); 1443 1444 /* Allocate total length all at once. */ 1445 skb_queue_walk(amsdu, skb) 1446 total_len += skb->len; 1447 1448 space = total_len - skb_tailroom(first); 1449 if ((space > 0) && 1450 (pskb_expand_head(first, 0, space, GFP_ATOMIC) < 0)) { 1451 /* TODO: bump some rx-oom error stat */ 1452 /* put it back together so we can free the 1453 * whole list at once. 1454 */ 1455 __skb_queue_head(amsdu, first); 1456 return -1; 1457 } 1458 1459 /* Walk list again, copying contents into 1460 * msdu_head 1461 */ 1462 while ((skb = __skb_dequeue(amsdu))) { 1463 skb_copy_from_linear_data(skb, skb_put(first, skb->len), 1464 skb->len); 1465 dev_kfree_skb_any(skb); 1466 } 1467 1468 __skb_queue_head(amsdu, first); 1469 return 0; 1470 } 1471 1472 static void ath10k_htt_rx_h_unchain(struct ath10k *ar, 1473 struct sk_buff_head *amsdu, 1474 bool chained) 1475 { 1476 struct sk_buff *first; 1477 struct htt_rx_desc *rxd; 1478 enum rx_msdu_decap_format decap; 1479 1480 first = skb_peek(amsdu); 1481 rxd = (void *)first->data - sizeof(*rxd); 1482 decap = MS(__le32_to_cpu(rxd->msdu_start.common.info1), 1483 RX_MSDU_START_INFO1_DECAP_FORMAT); 1484 1485 if (!chained) 1486 return; 1487 1488 /* FIXME: Current unchaining logic can only handle simple case of raw 1489 * msdu chaining. If decapping is other than raw the chaining may be 1490 * more complex and this isn't handled by the current code. Don't even 1491 * try re-constructing such frames - it'll be pretty much garbage. 1492 */ 1493 if (decap != RX_MSDU_DECAP_RAW || 1494 skb_queue_len(amsdu) != 1 + rxd->frag_info.ring2_more_count) { 1495 __skb_queue_purge(amsdu); 1496 return; 1497 } 1498 1499 ath10k_unchain_msdu(amsdu); 1500 } 1501 1502 static bool ath10k_htt_rx_amsdu_allowed(struct ath10k *ar, 1503 struct sk_buff_head *amsdu, 1504 struct ieee80211_rx_status *rx_status) 1505 { 1506 struct sk_buff *msdu; 1507 struct htt_rx_desc *rxd; 1508 bool is_mgmt; 1509 bool has_fcs_err; 1510 1511 msdu = skb_peek(amsdu); 1512 rxd = (void *)msdu->data - sizeof(*rxd); 1513 1514 /* FIXME: It might be a good idea to do some fuzzy-testing to drop 1515 * invalid/dangerous frames. 1516 */ 1517 1518 if (!rx_status->freq) { 1519 ath10k_warn(ar, "no channel configured; ignoring frame(s)!\n"); 1520 return false; 1521 } 1522 1523 is_mgmt = !!(rxd->attention.flags & 1524 __cpu_to_le32(RX_ATTENTION_FLAGS_MGMT_TYPE)); 1525 has_fcs_err = !!(rxd->attention.flags & 1526 __cpu_to_le32(RX_ATTENTION_FLAGS_FCS_ERR)); 1527 1528 /* Management frames are handled via WMI events. The pros of such 1529 * approach is that channel is explicitly provided in WMI events 1530 * whereas HTT doesn't provide channel information for Rxed frames. 1531 * 1532 * However some firmware revisions don't report corrupted frames via 1533 * WMI so don't drop them. 1534 */ 1535 if (is_mgmt && !has_fcs_err) { 1536 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx mgmt ctrl\n"); 1537 return false; 1538 } 1539 1540 if (test_bit(ATH10K_CAC_RUNNING, &ar->dev_flags)) { 1541 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx cac running\n"); 1542 return false; 1543 } 1544 1545 return true; 1546 } 1547 1548 static void ath10k_htt_rx_h_filter(struct ath10k *ar, 1549 struct sk_buff_head *amsdu, 1550 struct ieee80211_rx_status *rx_status) 1551 { 1552 if (skb_queue_empty(amsdu)) 1553 return; 1554 1555 if (ath10k_htt_rx_amsdu_allowed(ar, amsdu, rx_status)) 1556 return; 1557 1558 __skb_queue_purge(amsdu); 1559 } 1560 1561 static void ath10k_htt_rx_handler(struct ath10k_htt *htt, 1562 struct htt_rx_indication *rx) 1563 { 1564 struct ath10k *ar = htt->ar; 1565 struct ieee80211_rx_status *rx_status = &htt->rx_status; 1566 struct htt_rx_indication_mpdu_range *mpdu_ranges; 1567 struct sk_buff_head amsdu; 1568 int num_mpdu_ranges; 1569 int fw_desc_len; 1570 u8 *fw_desc; 1571 int i, ret, mpdu_count = 0; 1572 1573 lockdep_assert_held(&htt->rx_ring.lock); 1574 1575 if (htt->rx_confused) 1576 return; 1577 1578 fw_desc_len = __le16_to_cpu(rx->prefix.fw_rx_desc_bytes); 1579 fw_desc = (u8 *)&rx->fw_desc; 1580 1581 num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1), 1582 HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES); 1583 mpdu_ranges = htt_rx_ind_get_mpdu_ranges(rx); 1584 1585 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx ind: ", 1586 rx, sizeof(*rx) + 1587 (sizeof(struct htt_rx_indication_mpdu_range) * 1588 num_mpdu_ranges)); 1589 1590 for (i = 0; i < num_mpdu_ranges; i++) 1591 mpdu_count += mpdu_ranges[i].mpdu_count; 1592 1593 while (mpdu_count--) { 1594 __skb_queue_head_init(&amsdu); 1595 ret = ath10k_htt_rx_amsdu_pop(htt, &fw_desc, 1596 &fw_desc_len, &amsdu); 1597 if (ret < 0) { 1598 ath10k_warn(ar, "rx ring became corrupted: %d\n", ret); 1599 __skb_queue_purge(&amsdu); 1600 /* FIXME: It's probably a good idea to reboot the 1601 * device instead of leaving it inoperable. 1602 */ 1603 htt->rx_confused = true; 1604 break; 1605 } 1606 1607 ath10k_htt_rx_h_ppdu(ar, &amsdu, rx_status, 0xffff); 1608 ath10k_htt_rx_h_unchain(ar, &amsdu, ret > 0); 1609 ath10k_htt_rx_h_filter(ar, &amsdu, rx_status); 1610 ath10k_htt_rx_h_mpdu(ar, &amsdu, rx_status); 1611 ath10k_htt_rx_h_deliver(ar, &amsdu, rx_status); 1612 } 1613 1614 tasklet_schedule(&htt->rx_replenish_task); 1615 } 1616 1617 static void ath10k_htt_rx_frag_handler(struct ath10k_htt *htt, 1618 struct htt_rx_fragment_indication *frag) 1619 { 1620 struct ath10k *ar = htt->ar; 1621 struct ieee80211_rx_status *rx_status = &htt->rx_status; 1622 struct sk_buff_head amsdu; 1623 int ret; 1624 u8 *fw_desc; 1625 int fw_desc_len; 1626 1627 fw_desc_len = __le16_to_cpu(frag->fw_rx_desc_bytes); 1628 fw_desc = (u8 *)frag->fw_msdu_rx_desc; 1629 1630 __skb_queue_head_init(&amsdu); 1631 1632 spin_lock_bh(&htt->rx_ring.lock); 1633 ret = ath10k_htt_rx_amsdu_pop(htt, &fw_desc, &fw_desc_len, 1634 &amsdu); 1635 spin_unlock_bh(&htt->rx_ring.lock); 1636 1637 tasklet_schedule(&htt->rx_replenish_task); 1638 1639 ath10k_dbg(ar, ATH10K_DBG_HTT_DUMP, "htt rx frag ahead\n"); 1640 1641 if (ret) { 1642 ath10k_warn(ar, "failed to pop amsdu from httr rx ring for fragmented rx %d\n", 1643 ret); 1644 __skb_queue_purge(&amsdu); 1645 return; 1646 } 1647 1648 if (skb_queue_len(&amsdu) != 1) { 1649 ath10k_warn(ar, "failed to pop frag amsdu: too many msdus\n"); 1650 __skb_queue_purge(&amsdu); 1651 return; 1652 } 1653 1654 ath10k_htt_rx_h_ppdu(ar, &amsdu, rx_status, 0xffff); 1655 ath10k_htt_rx_h_filter(ar, &amsdu, rx_status); 1656 ath10k_htt_rx_h_mpdu(ar, &amsdu, rx_status); 1657 ath10k_htt_rx_h_deliver(ar, &amsdu, rx_status); 1658 1659 if (fw_desc_len > 0) { 1660 ath10k_dbg(ar, ATH10K_DBG_HTT, 1661 "expecting more fragmented rx in one indication %d\n", 1662 fw_desc_len); 1663 } 1664 } 1665 1666 static void ath10k_htt_rx_frm_tx_compl(struct ath10k *ar, 1667 struct sk_buff *skb) 1668 { 1669 struct ath10k_htt *htt = &ar->htt; 1670 struct htt_resp *resp = (struct htt_resp *)skb->data; 1671 struct htt_tx_done tx_done = {}; 1672 int status = MS(resp->data_tx_completion.flags, HTT_DATA_TX_STATUS); 1673 __le16 msdu_id; 1674 int i; 1675 1676 switch (status) { 1677 case HTT_DATA_TX_STATUS_NO_ACK: 1678 tx_done.no_ack = true; 1679 break; 1680 case HTT_DATA_TX_STATUS_OK: 1681 tx_done.success = true; 1682 break; 1683 case HTT_DATA_TX_STATUS_DISCARD: 1684 case HTT_DATA_TX_STATUS_POSTPONE: 1685 case HTT_DATA_TX_STATUS_DOWNLOAD_FAIL: 1686 tx_done.discard = true; 1687 break; 1688 default: 1689 ath10k_warn(ar, "unhandled tx completion status %d\n", status); 1690 tx_done.discard = true; 1691 break; 1692 } 1693 1694 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx completion num_msdus %d\n", 1695 resp->data_tx_completion.num_msdus); 1696 1697 for (i = 0; i < resp->data_tx_completion.num_msdus; i++) { 1698 msdu_id = resp->data_tx_completion.msdus[i]; 1699 tx_done.msdu_id = __le16_to_cpu(msdu_id); 1700 ath10k_txrx_tx_unref(htt, &tx_done); 1701 } 1702 } 1703 1704 static void ath10k_htt_rx_addba(struct ath10k *ar, struct htt_resp *resp) 1705 { 1706 struct htt_rx_addba *ev = &resp->rx_addba; 1707 struct ath10k_peer *peer; 1708 struct ath10k_vif *arvif; 1709 u16 info0, tid, peer_id; 1710 1711 info0 = __le16_to_cpu(ev->info0); 1712 tid = MS(info0, HTT_RX_BA_INFO0_TID); 1713 peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID); 1714 1715 ath10k_dbg(ar, ATH10K_DBG_HTT, 1716 "htt rx addba tid %hu peer_id %hu size %hhu\n", 1717 tid, peer_id, ev->window_size); 1718 1719 spin_lock_bh(&ar->data_lock); 1720 peer = ath10k_peer_find_by_id(ar, peer_id); 1721 if (!peer) { 1722 ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n", 1723 peer_id); 1724 spin_unlock_bh(&ar->data_lock); 1725 return; 1726 } 1727 1728 arvif = ath10k_get_arvif(ar, peer->vdev_id); 1729 if (!arvif) { 1730 ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n", 1731 peer->vdev_id); 1732 spin_unlock_bh(&ar->data_lock); 1733 return; 1734 } 1735 1736 ath10k_dbg(ar, ATH10K_DBG_HTT, 1737 "htt rx start rx ba session sta %pM tid %hu size %hhu\n", 1738 peer->addr, tid, ev->window_size); 1739 1740 ieee80211_start_rx_ba_session_offl(arvif->vif, peer->addr, tid); 1741 spin_unlock_bh(&ar->data_lock); 1742 } 1743 1744 static void ath10k_htt_rx_delba(struct ath10k *ar, struct htt_resp *resp) 1745 { 1746 struct htt_rx_delba *ev = &resp->rx_delba; 1747 struct ath10k_peer *peer; 1748 struct ath10k_vif *arvif; 1749 u16 info0, tid, peer_id; 1750 1751 info0 = __le16_to_cpu(ev->info0); 1752 tid = MS(info0, HTT_RX_BA_INFO0_TID); 1753 peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID); 1754 1755 ath10k_dbg(ar, ATH10K_DBG_HTT, 1756 "htt rx delba tid %hu peer_id %hu\n", 1757 tid, peer_id); 1758 1759 spin_lock_bh(&ar->data_lock); 1760 peer = ath10k_peer_find_by_id(ar, peer_id); 1761 if (!peer) { 1762 ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n", 1763 peer_id); 1764 spin_unlock_bh(&ar->data_lock); 1765 return; 1766 } 1767 1768 arvif = ath10k_get_arvif(ar, peer->vdev_id); 1769 if (!arvif) { 1770 ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n", 1771 peer->vdev_id); 1772 spin_unlock_bh(&ar->data_lock); 1773 return; 1774 } 1775 1776 ath10k_dbg(ar, ATH10K_DBG_HTT, 1777 "htt rx stop rx ba session sta %pM tid %hu\n", 1778 peer->addr, tid); 1779 1780 ieee80211_stop_rx_ba_session_offl(arvif->vif, peer->addr, tid); 1781 spin_unlock_bh(&ar->data_lock); 1782 } 1783 1784 static int ath10k_htt_rx_extract_amsdu(struct sk_buff_head *list, 1785 struct sk_buff_head *amsdu) 1786 { 1787 struct sk_buff *msdu; 1788 struct htt_rx_desc *rxd; 1789 1790 if (skb_queue_empty(list)) 1791 return -ENOBUFS; 1792 1793 if (WARN_ON(!skb_queue_empty(amsdu))) 1794 return -EINVAL; 1795 1796 while ((msdu = __skb_dequeue(list))) { 1797 __skb_queue_tail(amsdu, msdu); 1798 1799 rxd = (void *)msdu->data - sizeof(*rxd); 1800 if (rxd->msdu_end.common.info0 & 1801 __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU)) 1802 break; 1803 } 1804 1805 msdu = skb_peek_tail(amsdu); 1806 rxd = (void *)msdu->data - sizeof(*rxd); 1807 if (!(rxd->msdu_end.common.info0 & 1808 __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU))) { 1809 skb_queue_splice_init(amsdu, list); 1810 return -EAGAIN; 1811 } 1812 1813 return 0; 1814 } 1815 1816 static void ath10k_htt_rx_h_rx_offload_prot(struct ieee80211_rx_status *status, 1817 struct sk_buff *skb) 1818 { 1819 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1820 1821 if (!ieee80211_has_protected(hdr->frame_control)) 1822 return; 1823 1824 /* Offloaded frames are already decrypted but firmware insists they are 1825 * protected in the 802.11 header. Strip the flag. Otherwise mac80211 1826 * will drop the frame. 1827 */ 1828 1829 hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED); 1830 status->flag |= RX_FLAG_DECRYPTED | 1831 RX_FLAG_IV_STRIPPED | 1832 RX_FLAG_MMIC_STRIPPED; 1833 } 1834 1835 static void ath10k_htt_rx_h_rx_offload(struct ath10k *ar, 1836 struct sk_buff_head *list) 1837 { 1838 struct ath10k_htt *htt = &ar->htt; 1839 struct ieee80211_rx_status *status = &htt->rx_status; 1840 struct htt_rx_offload_msdu *rx; 1841 struct sk_buff *msdu; 1842 size_t offset; 1843 1844 while ((msdu = __skb_dequeue(list))) { 1845 /* Offloaded frames don't have Rx descriptor. Instead they have 1846 * a short meta information header. 1847 */ 1848 1849 rx = (void *)msdu->data; 1850 1851 skb_put(msdu, sizeof(*rx)); 1852 skb_pull(msdu, sizeof(*rx)); 1853 1854 if (skb_tailroom(msdu) < __le16_to_cpu(rx->msdu_len)) { 1855 ath10k_warn(ar, "dropping frame: offloaded rx msdu is too long!\n"); 1856 dev_kfree_skb_any(msdu); 1857 continue; 1858 } 1859 1860 skb_put(msdu, __le16_to_cpu(rx->msdu_len)); 1861 1862 /* Offloaded rx header length isn't multiple of 2 nor 4 so the 1863 * actual payload is unaligned. Align the frame. Otherwise 1864 * mac80211 complains. This shouldn't reduce performance much 1865 * because these offloaded frames are rare. 1866 */ 1867 offset = 4 - ((unsigned long)msdu->data & 3); 1868 skb_put(msdu, offset); 1869 memmove(msdu->data + offset, msdu->data, msdu->len); 1870 skb_pull(msdu, offset); 1871 1872 /* FIXME: The frame is NWifi. Re-construct QoS Control 1873 * if possible later. 1874 */ 1875 1876 memset(status, 0, sizeof(*status)); 1877 status->flag |= RX_FLAG_NO_SIGNAL_VAL; 1878 1879 ath10k_htt_rx_h_rx_offload_prot(status, msdu); 1880 ath10k_htt_rx_h_channel(ar, status, NULL, rx->vdev_id); 1881 ath10k_process_rx(ar, status, msdu); 1882 } 1883 } 1884 1885 static void ath10k_htt_rx_in_ord_ind(struct ath10k *ar, struct sk_buff *skb) 1886 { 1887 struct ath10k_htt *htt = &ar->htt; 1888 struct htt_resp *resp = (void *)skb->data; 1889 struct ieee80211_rx_status *status = &htt->rx_status; 1890 struct sk_buff_head list; 1891 struct sk_buff_head amsdu; 1892 u16 peer_id; 1893 u16 msdu_count; 1894 u8 vdev_id; 1895 u8 tid; 1896 bool offload; 1897 bool frag; 1898 int ret; 1899 1900 lockdep_assert_held(&htt->rx_ring.lock); 1901 1902 if (htt->rx_confused) 1903 return; 1904 1905 skb_pull(skb, sizeof(resp->hdr)); 1906 skb_pull(skb, sizeof(resp->rx_in_ord_ind)); 1907 1908 peer_id = __le16_to_cpu(resp->rx_in_ord_ind.peer_id); 1909 msdu_count = __le16_to_cpu(resp->rx_in_ord_ind.msdu_count); 1910 vdev_id = resp->rx_in_ord_ind.vdev_id; 1911 tid = SM(resp->rx_in_ord_ind.info, HTT_RX_IN_ORD_IND_INFO_TID); 1912 offload = !!(resp->rx_in_ord_ind.info & 1913 HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK); 1914 frag = !!(resp->rx_in_ord_ind.info & HTT_RX_IN_ORD_IND_INFO_FRAG_MASK); 1915 1916 ath10k_dbg(ar, ATH10K_DBG_HTT, 1917 "htt rx in ord vdev %i peer %i tid %i offload %i frag %i msdu count %i\n", 1918 vdev_id, peer_id, tid, offload, frag, msdu_count); 1919 1920 if (skb->len < msdu_count * sizeof(*resp->rx_in_ord_ind.msdu_descs)) { 1921 ath10k_warn(ar, "dropping invalid in order rx indication\n"); 1922 return; 1923 } 1924 1925 /* The event can deliver more than 1 A-MSDU. Each A-MSDU is later 1926 * extracted and processed. 1927 */ 1928 __skb_queue_head_init(&list); 1929 ret = ath10k_htt_rx_pop_paddr_list(htt, &resp->rx_in_ord_ind, &list); 1930 if (ret < 0) { 1931 ath10k_warn(ar, "failed to pop paddr list: %d\n", ret); 1932 htt->rx_confused = true; 1933 return; 1934 } 1935 1936 /* Offloaded frames are very different and need to be handled 1937 * separately. 1938 */ 1939 if (offload) 1940 ath10k_htt_rx_h_rx_offload(ar, &list); 1941 1942 while (!skb_queue_empty(&list)) { 1943 __skb_queue_head_init(&amsdu); 1944 ret = ath10k_htt_rx_extract_amsdu(&list, &amsdu); 1945 switch (ret) { 1946 case 0: 1947 /* Note: The in-order indication may report interleaved 1948 * frames from different PPDUs meaning reported rx rate 1949 * to mac80211 isn't accurate/reliable. It's still 1950 * better to report something than nothing though. This 1951 * should still give an idea about rx rate to the user. 1952 */ 1953 ath10k_htt_rx_h_ppdu(ar, &amsdu, status, vdev_id); 1954 ath10k_htt_rx_h_filter(ar, &amsdu, status); 1955 ath10k_htt_rx_h_mpdu(ar, &amsdu, status); 1956 ath10k_htt_rx_h_deliver(ar, &amsdu, status); 1957 break; 1958 case -EAGAIN: 1959 /* fall through */ 1960 default: 1961 /* Should not happen. */ 1962 ath10k_warn(ar, "failed to extract amsdu: %d\n", ret); 1963 htt->rx_confused = true; 1964 __skb_queue_purge(&list); 1965 return; 1966 } 1967 } 1968 1969 tasklet_schedule(&htt->rx_replenish_task); 1970 } 1971 1972 void ath10k_htt_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb) 1973 { 1974 struct ath10k_htt *htt = &ar->htt; 1975 struct htt_resp *resp = (struct htt_resp *)skb->data; 1976 enum htt_t2h_msg_type type; 1977 1978 /* confirm alignment */ 1979 if (!IS_ALIGNED((unsigned long)skb->data, 4)) 1980 ath10k_warn(ar, "unaligned htt message, expect trouble\n"); 1981 1982 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, msg_type: 0x%0X\n", 1983 resp->hdr.msg_type); 1984 1985 if (resp->hdr.msg_type >= ar->htt.t2h_msg_types_max) { 1986 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, unsupported msg_type: 0x%0X\n max: 0x%0X", 1987 resp->hdr.msg_type, ar->htt.t2h_msg_types_max); 1988 dev_kfree_skb_any(skb); 1989 return; 1990 } 1991 type = ar->htt.t2h_msg_types[resp->hdr.msg_type]; 1992 1993 switch (type) { 1994 case HTT_T2H_MSG_TYPE_VERSION_CONF: { 1995 htt->target_version_major = resp->ver_resp.major; 1996 htt->target_version_minor = resp->ver_resp.minor; 1997 complete(&htt->target_version_received); 1998 break; 1999 } 2000 case HTT_T2H_MSG_TYPE_RX_IND: 2001 spin_lock_bh(&htt->rx_ring.lock); 2002 __skb_queue_tail(&htt->rx_compl_q, skb); 2003 spin_unlock_bh(&htt->rx_ring.lock); 2004 tasklet_schedule(&htt->txrx_compl_task); 2005 return; 2006 case HTT_T2H_MSG_TYPE_PEER_MAP: { 2007 struct htt_peer_map_event ev = { 2008 .vdev_id = resp->peer_map.vdev_id, 2009 .peer_id = __le16_to_cpu(resp->peer_map.peer_id), 2010 }; 2011 memcpy(ev.addr, resp->peer_map.addr, sizeof(ev.addr)); 2012 ath10k_peer_map_event(htt, &ev); 2013 break; 2014 } 2015 case HTT_T2H_MSG_TYPE_PEER_UNMAP: { 2016 struct htt_peer_unmap_event ev = { 2017 .peer_id = __le16_to_cpu(resp->peer_unmap.peer_id), 2018 }; 2019 ath10k_peer_unmap_event(htt, &ev); 2020 break; 2021 } 2022 case HTT_T2H_MSG_TYPE_MGMT_TX_COMPLETION: { 2023 struct htt_tx_done tx_done = {}; 2024 int status = __le32_to_cpu(resp->mgmt_tx_completion.status); 2025 2026 tx_done.msdu_id = 2027 __le32_to_cpu(resp->mgmt_tx_completion.desc_id); 2028 2029 switch (status) { 2030 case HTT_MGMT_TX_STATUS_OK: 2031 tx_done.success = true; 2032 break; 2033 case HTT_MGMT_TX_STATUS_RETRY: 2034 tx_done.no_ack = true; 2035 break; 2036 case HTT_MGMT_TX_STATUS_DROP: 2037 tx_done.discard = true; 2038 break; 2039 } 2040 2041 ath10k_txrx_tx_unref(htt, &tx_done); 2042 break; 2043 } 2044 case HTT_T2H_MSG_TYPE_TX_COMPL_IND: 2045 skb_queue_tail(&htt->tx_compl_q, skb); 2046 tasklet_schedule(&htt->txrx_compl_task); 2047 return; 2048 case HTT_T2H_MSG_TYPE_SEC_IND: { 2049 struct ath10k *ar = htt->ar; 2050 struct htt_security_indication *ev = &resp->security_indication; 2051 2052 ath10k_dbg(ar, ATH10K_DBG_HTT, 2053 "sec ind peer_id %d unicast %d type %d\n", 2054 __le16_to_cpu(ev->peer_id), 2055 !!(ev->flags & HTT_SECURITY_IS_UNICAST), 2056 MS(ev->flags, HTT_SECURITY_TYPE)); 2057 complete(&ar->install_key_done); 2058 break; 2059 } 2060 case HTT_T2H_MSG_TYPE_RX_FRAG_IND: { 2061 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ", 2062 skb->data, skb->len); 2063 ath10k_htt_rx_frag_handler(htt, &resp->rx_frag_ind); 2064 break; 2065 } 2066 case HTT_T2H_MSG_TYPE_TEST: 2067 break; 2068 case HTT_T2H_MSG_TYPE_STATS_CONF: 2069 trace_ath10k_htt_stats(ar, skb->data, skb->len); 2070 break; 2071 case HTT_T2H_MSG_TYPE_TX_INSPECT_IND: 2072 /* Firmware can return tx frames if it's unable to fully 2073 * process them and suspects host may be able to fix it. ath10k 2074 * sends all tx frames as already inspected so this shouldn't 2075 * happen unless fw has a bug. 2076 */ 2077 ath10k_warn(ar, "received an unexpected htt tx inspect event\n"); 2078 break; 2079 case HTT_T2H_MSG_TYPE_RX_ADDBA: 2080 ath10k_htt_rx_addba(ar, resp); 2081 break; 2082 case HTT_T2H_MSG_TYPE_RX_DELBA: 2083 ath10k_htt_rx_delba(ar, resp); 2084 break; 2085 case HTT_T2H_MSG_TYPE_PKTLOG: { 2086 struct ath10k_pktlog_hdr *hdr = 2087 (struct ath10k_pktlog_hdr *)resp->pktlog_msg.payload; 2088 2089 trace_ath10k_htt_pktlog(ar, resp->pktlog_msg.payload, 2090 sizeof(*hdr) + 2091 __le16_to_cpu(hdr->size)); 2092 break; 2093 } 2094 case HTT_T2H_MSG_TYPE_RX_FLUSH: { 2095 /* Ignore this event because mac80211 takes care of Rx 2096 * aggregation reordering. 2097 */ 2098 break; 2099 } 2100 case HTT_T2H_MSG_TYPE_RX_IN_ORD_PADDR_IND: { 2101 spin_lock_bh(&htt->rx_ring.lock); 2102 __skb_queue_tail(&htt->rx_in_ord_compl_q, skb); 2103 spin_unlock_bh(&htt->rx_ring.lock); 2104 tasklet_schedule(&htt->txrx_compl_task); 2105 return; 2106 } 2107 case HTT_T2H_MSG_TYPE_TX_CREDIT_UPDATE_IND: 2108 break; 2109 case HTT_T2H_MSG_TYPE_CHAN_CHANGE: 2110 break; 2111 case HTT_T2H_MSG_TYPE_AGGR_CONF: 2112 break; 2113 case HTT_T2H_MSG_TYPE_EN_STATS: 2114 case HTT_T2H_MSG_TYPE_TX_FETCH_IND: 2115 case HTT_T2H_MSG_TYPE_TX_FETCH_CONF: 2116 case HTT_T2H_MSG_TYPE_TX_LOW_LATENCY_IND: 2117 default: 2118 ath10k_warn(ar, "htt event (%d) not handled\n", 2119 resp->hdr.msg_type); 2120 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ", 2121 skb->data, skb->len); 2122 break; 2123 }; 2124 2125 /* Free the indication buffer */ 2126 dev_kfree_skb_any(skb); 2127 } 2128 EXPORT_SYMBOL(ath10k_htt_t2h_msg_handler); 2129 2130 static void ath10k_htt_txrx_compl_task(unsigned long ptr) 2131 { 2132 struct ath10k_htt *htt = (struct ath10k_htt *)ptr; 2133 struct ath10k *ar = htt->ar; 2134 struct htt_resp *resp; 2135 struct sk_buff *skb; 2136 2137 while ((skb = skb_dequeue(&htt->tx_compl_q))) { 2138 ath10k_htt_rx_frm_tx_compl(htt->ar, skb); 2139 dev_kfree_skb_any(skb); 2140 } 2141 2142 spin_lock_bh(&htt->rx_ring.lock); 2143 while ((skb = __skb_dequeue(&htt->rx_compl_q))) { 2144 resp = (struct htt_resp *)skb->data; 2145 ath10k_htt_rx_handler(htt, &resp->rx_ind); 2146 dev_kfree_skb_any(skb); 2147 } 2148 2149 while ((skb = __skb_dequeue(&htt->rx_in_ord_compl_q))) { 2150 ath10k_htt_rx_in_ord_ind(ar, skb); 2151 dev_kfree_skb_any(skb); 2152 } 2153 spin_unlock_bh(&htt->rx_ring.lock); 2154 } 2155