1 // SPDX-License-Identifier: ISC 2 /* 3 * Copyright (c) 2005-2011 Atheros Communications Inc. 4 * Copyright (c) 2011-2017 Qualcomm Atheros, Inc. 5 * Copyright (c) 2018, The Linux Foundation. All rights reserved. 6 */ 7 8 #include "core.h" 9 #include "htc.h" 10 #include "htt.h" 11 #include "txrx.h" 12 #include "debug.h" 13 #include "trace.h" 14 #include "mac.h" 15 16 #include <linux/log2.h> 17 #include <linux/bitfield.h> 18 19 /* when under memory pressure rx ring refill may fail and needs a retry */ 20 #define HTT_RX_RING_REFILL_RETRY_MS 50 21 22 #define HTT_RX_RING_REFILL_RESCHED_MS 5 23 24 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb); 25 26 static struct sk_buff * 27 ath10k_htt_rx_find_skb_paddr(struct ath10k *ar, u64 paddr) 28 { 29 struct ath10k_skb_rxcb *rxcb; 30 31 hash_for_each_possible(ar->htt.rx_ring.skb_table, rxcb, hlist, paddr) 32 if (rxcb->paddr == paddr) 33 return ATH10K_RXCB_SKB(rxcb); 34 35 WARN_ON_ONCE(1); 36 return NULL; 37 } 38 39 static void ath10k_htt_rx_ring_free(struct ath10k_htt *htt) 40 { 41 struct sk_buff *skb; 42 struct ath10k_skb_rxcb *rxcb; 43 struct hlist_node *n; 44 int i; 45 46 if (htt->rx_ring.in_ord_rx) { 47 hash_for_each_safe(htt->rx_ring.skb_table, i, n, rxcb, hlist) { 48 skb = ATH10K_RXCB_SKB(rxcb); 49 dma_unmap_single(htt->ar->dev, rxcb->paddr, 50 skb->len + skb_tailroom(skb), 51 DMA_FROM_DEVICE); 52 hash_del(&rxcb->hlist); 53 dev_kfree_skb_any(skb); 54 } 55 } else { 56 for (i = 0; i < htt->rx_ring.size; i++) { 57 skb = htt->rx_ring.netbufs_ring[i]; 58 if (!skb) 59 continue; 60 61 rxcb = ATH10K_SKB_RXCB(skb); 62 dma_unmap_single(htt->ar->dev, rxcb->paddr, 63 skb->len + skb_tailroom(skb), 64 DMA_FROM_DEVICE); 65 dev_kfree_skb_any(skb); 66 } 67 } 68 69 htt->rx_ring.fill_cnt = 0; 70 hash_init(htt->rx_ring.skb_table); 71 memset(htt->rx_ring.netbufs_ring, 0, 72 htt->rx_ring.size * sizeof(htt->rx_ring.netbufs_ring[0])); 73 } 74 75 static size_t ath10k_htt_get_rx_ring_size_32(struct ath10k_htt *htt) 76 { 77 return htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring_32); 78 } 79 80 static size_t ath10k_htt_get_rx_ring_size_64(struct ath10k_htt *htt) 81 { 82 return htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring_64); 83 } 84 85 static void ath10k_htt_config_paddrs_ring_32(struct ath10k_htt *htt, 86 void *vaddr) 87 { 88 htt->rx_ring.paddrs_ring_32 = vaddr; 89 } 90 91 static void ath10k_htt_config_paddrs_ring_64(struct ath10k_htt *htt, 92 void *vaddr) 93 { 94 htt->rx_ring.paddrs_ring_64 = vaddr; 95 } 96 97 static void ath10k_htt_set_paddrs_ring_32(struct ath10k_htt *htt, 98 dma_addr_t paddr, int idx) 99 { 100 htt->rx_ring.paddrs_ring_32[idx] = __cpu_to_le32(paddr); 101 } 102 103 static void ath10k_htt_set_paddrs_ring_64(struct ath10k_htt *htt, 104 dma_addr_t paddr, int idx) 105 { 106 htt->rx_ring.paddrs_ring_64[idx] = __cpu_to_le64(paddr); 107 } 108 109 static void ath10k_htt_reset_paddrs_ring_32(struct ath10k_htt *htt, int idx) 110 { 111 htt->rx_ring.paddrs_ring_32[idx] = 0; 112 } 113 114 static void ath10k_htt_reset_paddrs_ring_64(struct ath10k_htt *htt, int idx) 115 { 116 htt->rx_ring.paddrs_ring_64[idx] = 0; 117 } 118 119 static void *ath10k_htt_get_vaddr_ring_32(struct ath10k_htt *htt) 120 { 121 return (void *)htt->rx_ring.paddrs_ring_32; 122 } 123 124 static void *ath10k_htt_get_vaddr_ring_64(struct ath10k_htt *htt) 125 { 126 return (void *)htt->rx_ring.paddrs_ring_64; 127 } 128 129 static int __ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num) 130 { 131 struct htt_rx_desc *rx_desc; 132 struct ath10k_skb_rxcb *rxcb; 133 struct sk_buff *skb; 134 dma_addr_t paddr; 135 int ret = 0, idx; 136 137 /* The Full Rx Reorder firmware has no way of telling the host 138 * implicitly when it copied HTT Rx Ring buffers to MAC Rx Ring. 139 * To keep things simple make sure ring is always half empty. This 140 * guarantees there'll be no replenishment overruns possible. 141 */ 142 BUILD_BUG_ON(HTT_RX_RING_FILL_LEVEL >= HTT_RX_RING_SIZE / 2); 143 144 idx = __le32_to_cpu(*htt->rx_ring.alloc_idx.vaddr); 145 146 if (idx < 0 || idx >= htt->rx_ring.size) { 147 ath10k_err(htt->ar, "rx ring index is not valid, firmware malfunctioning?\n"); 148 idx &= htt->rx_ring.size_mask; 149 ret = -ENOMEM; 150 goto fail; 151 } 152 153 while (num > 0) { 154 skb = dev_alloc_skb(HTT_RX_BUF_SIZE + HTT_RX_DESC_ALIGN); 155 if (!skb) { 156 ret = -ENOMEM; 157 goto fail; 158 } 159 160 if (!IS_ALIGNED((unsigned long)skb->data, HTT_RX_DESC_ALIGN)) 161 skb_pull(skb, 162 PTR_ALIGN(skb->data, HTT_RX_DESC_ALIGN) - 163 skb->data); 164 165 /* Clear rx_desc attention word before posting to Rx ring */ 166 rx_desc = (struct htt_rx_desc *)skb->data; 167 rx_desc->attention.flags = __cpu_to_le32(0); 168 169 paddr = dma_map_single(htt->ar->dev, skb->data, 170 skb->len + skb_tailroom(skb), 171 DMA_FROM_DEVICE); 172 173 if (unlikely(dma_mapping_error(htt->ar->dev, paddr))) { 174 dev_kfree_skb_any(skb); 175 ret = -ENOMEM; 176 goto fail; 177 } 178 179 rxcb = ATH10K_SKB_RXCB(skb); 180 rxcb->paddr = paddr; 181 htt->rx_ring.netbufs_ring[idx] = skb; 182 ath10k_htt_set_paddrs_ring(htt, paddr, idx); 183 htt->rx_ring.fill_cnt++; 184 185 if (htt->rx_ring.in_ord_rx) { 186 hash_add(htt->rx_ring.skb_table, 187 &ATH10K_SKB_RXCB(skb)->hlist, 188 paddr); 189 } 190 191 num--; 192 idx++; 193 idx &= htt->rx_ring.size_mask; 194 } 195 196 fail: 197 /* 198 * Make sure the rx buffer is updated before available buffer 199 * index to avoid any potential rx ring corruption. 200 */ 201 mb(); 202 *htt->rx_ring.alloc_idx.vaddr = __cpu_to_le32(idx); 203 return ret; 204 } 205 206 static int ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num) 207 { 208 lockdep_assert_held(&htt->rx_ring.lock); 209 return __ath10k_htt_rx_ring_fill_n(htt, num); 210 } 211 212 static void ath10k_htt_rx_msdu_buff_replenish(struct ath10k_htt *htt) 213 { 214 int ret, num_deficit, num_to_fill; 215 216 /* Refilling the whole RX ring buffer proves to be a bad idea. The 217 * reason is RX may take up significant amount of CPU cycles and starve 218 * other tasks, e.g. TX on an ethernet device while acting as a bridge 219 * with ath10k wlan interface. This ended up with very poor performance 220 * once CPU the host system was overwhelmed with RX on ath10k. 221 * 222 * By limiting the number of refills the replenishing occurs 223 * progressively. This in turns makes use of the fact tasklets are 224 * processed in FIFO order. This means actual RX processing can starve 225 * out refilling. If there's not enough buffers on RX ring FW will not 226 * report RX until it is refilled with enough buffers. This 227 * automatically balances load wrt to CPU power. 228 * 229 * This probably comes at a cost of lower maximum throughput but 230 * improves the average and stability. 231 */ 232 spin_lock_bh(&htt->rx_ring.lock); 233 num_deficit = htt->rx_ring.fill_level - htt->rx_ring.fill_cnt; 234 num_to_fill = min(ATH10K_HTT_MAX_NUM_REFILL, num_deficit); 235 num_deficit -= num_to_fill; 236 ret = ath10k_htt_rx_ring_fill_n(htt, num_to_fill); 237 if (ret == -ENOMEM) { 238 /* 239 * Failed to fill it to the desired level - 240 * we'll start a timer and try again next time. 241 * As long as enough buffers are left in the ring for 242 * another A-MPDU rx, no special recovery is needed. 243 */ 244 mod_timer(&htt->rx_ring.refill_retry_timer, jiffies + 245 msecs_to_jiffies(HTT_RX_RING_REFILL_RETRY_MS)); 246 } else if (num_deficit > 0) { 247 mod_timer(&htt->rx_ring.refill_retry_timer, jiffies + 248 msecs_to_jiffies(HTT_RX_RING_REFILL_RESCHED_MS)); 249 } 250 spin_unlock_bh(&htt->rx_ring.lock); 251 } 252 253 static void ath10k_htt_rx_ring_refill_retry(struct timer_list *t) 254 { 255 struct ath10k_htt *htt = from_timer(htt, t, rx_ring.refill_retry_timer); 256 257 ath10k_htt_rx_msdu_buff_replenish(htt); 258 } 259 260 int ath10k_htt_rx_ring_refill(struct ath10k *ar) 261 { 262 struct ath10k_htt *htt = &ar->htt; 263 int ret; 264 265 if (ar->bus_param.dev_type == ATH10K_DEV_TYPE_HL) 266 return 0; 267 268 spin_lock_bh(&htt->rx_ring.lock); 269 ret = ath10k_htt_rx_ring_fill_n(htt, (htt->rx_ring.fill_level - 270 htt->rx_ring.fill_cnt)); 271 272 if (ret) 273 ath10k_htt_rx_ring_free(htt); 274 275 spin_unlock_bh(&htt->rx_ring.lock); 276 277 return ret; 278 } 279 280 void ath10k_htt_rx_free(struct ath10k_htt *htt) 281 { 282 if (htt->ar->bus_param.dev_type == ATH10K_DEV_TYPE_HL) 283 return; 284 285 del_timer_sync(&htt->rx_ring.refill_retry_timer); 286 287 skb_queue_purge(&htt->rx_msdus_q); 288 skb_queue_purge(&htt->rx_in_ord_compl_q); 289 skb_queue_purge(&htt->tx_fetch_ind_q); 290 291 spin_lock_bh(&htt->rx_ring.lock); 292 ath10k_htt_rx_ring_free(htt); 293 spin_unlock_bh(&htt->rx_ring.lock); 294 295 dma_free_coherent(htt->ar->dev, 296 ath10k_htt_get_rx_ring_size(htt), 297 ath10k_htt_get_vaddr_ring(htt), 298 htt->rx_ring.base_paddr); 299 300 dma_free_coherent(htt->ar->dev, 301 sizeof(*htt->rx_ring.alloc_idx.vaddr), 302 htt->rx_ring.alloc_idx.vaddr, 303 htt->rx_ring.alloc_idx.paddr); 304 305 kfree(htt->rx_ring.netbufs_ring); 306 } 307 308 static inline struct sk_buff *ath10k_htt_rx_netbuf_pop(struct ath10k_htt *htt) 309 { 310 struct ath10k *ar = htt->ar; 311 int idx; 312 struct sk_buff *msdu; 313 314 lockdep_assert_held(&htt->rx_ring.lock); 315 316 if (htt->rx_ring.fill_cnt == 0) { 317 ath10k_warn(ar, "tried to pop sk_buff from an empty rx ring\n"); 318 return NULL; 319 } 320 321 idx = htt->rx_ring.sw_rd_idx.msdu_payld; 322 msdu = htt->rx_ring.netbufs_ring[idx]; 323 htt->rx_ring.netbufs_ring[idx] = NULL; 324 ath10k_htt_reset_paddrs_ring(htt, idx); 325 326 idx++; 327 idx &= htt->rx_ring.size_mask; 328 htt->rx_ring.sw_rd_idx.msdu_payld = idx; 329 htt->rx_ring.fill_cnt--; 330 331 dma_unmap_single(htt->ar->dev, 332 ATH10K_SKB_RXCB(msdu)->paddr, 333 msdu->len + skb_tailroom(msdu), 334 DMA_FROM_DEVICE); 335 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ", 336 msdu->data, msdu->len + skb_tailroom(msdu)); 337 338 return msdu; 339 } 340 341 /* return: < 0 fatal error, 0 - non chained msdu, 1 chained msdu */ 342 static int ath10k_htt_rx_amsdu_pop(struct ath10k_htt *htt, 343 struct sk_buff_head *amsdu) 344 { 345 struct ath10k *ar = htt->ar; 346 int msdu_len, msdu_chaining = 0; 347 struct sk_buff *msdu; 348 struct htt_rx_desc *rx_desc; 349 350 lockdep_assert_held(&htt->rx_ring.lock); 351 352 for (;;) { 353 int last_msdu, msdu_len_invalid, msdu_chained; 354 355 msdu = ath10k_htt_rx_netbuf_pop(htt); 356 if (!msdu) { 357 __skb_queue_purge(amsdu); 358 return -ENOENT; 359 } 360 361 __skb_queue_tail(amsdu, msdu); 362 363 rx_desc = (struct htt_rx_desc *)msdu->data; 364 365 /* FIXME: we must report msdu payload since this is what caller 366 * expects now 367 */ 368 skb_put(msdu, offsetof(struct htt_rx_desc, msdu_payload)); 369 skb_pull(msdu, offsetof(struct htt_rx_desc, msdu_payload)); 370 371 /* 372 * Sanity check - confirm the HW is finished filling in the 373 * rx data. 374 * If the HW and SW are working correctly, then it's guaranteed 375 * that the HW's MAC DMA is done before this point in the SW. 376 * To prevent the case that we handle a stale Rx descriptor, 377 * just assert for now until we have a way to recover. 378 */ 379 if (!(__le32_to_cpu(rx_desc->attention.flags) 380 & RX_ATTENTION_FLAGS_MSDU_DONE)) { 381 __skb_queue_purge(amsdu); 382 return -EIO; 383 } 384 385 msdu_len_invalid = !!(__le32_to_cpu(rx_desc->attention.flags) 386 & (RX_ATTENTION_FLAGS_MPDU_LENGTH_ERR | 387 RX_ATTENTION_FLAGS_MSDU_LENGTH_ERR)); 388 msdu_len = MS(__le32_to_cpu(rx_desc->msdu_start.common.info0), 389 RX_MSDU_START_INFO0_MSDU_LENGTH); 390 msdu_chained = rx_desc->frag_info.ring2_more_count; 391 392 if (msdu_len_invalid) 393 msdu_len = 0; 394 395 skb_trim(msdu, 0); 396 skb_put(msdu, min(msdu_len, HTT_RX_MSDU_SIZE)); 397 msdu_len -= msdu->len; 398 399 /* Note: Chained buffers do not contain rx descriptor */ 400 while (msdu_chained--) { 401 msdu = ath10k_htt_rx_netbuf_pop(htt); 402 if (!msdu) { 403 __skb_queue_purge(amsdu); 404 return -ENOENT; 405 } 406 407 __skb_queue_tail(amsdu, msdu); 408 skb_trim(msdu, 0); 409 skb_put(msdu, min(msdu_len, HTT_RX_BUF_SIZE)); 410 msdu_len -= msdu->len; 411 msdu_chaining = 1; 412 } 413 414 last_msdu = __le32_to_cpu(rx_desc->msdu_end.common.info0) & 415 RX_MSDU_END_INFO0_LAST_MSDU; 416 417 trace_ath10k_htt_rx_desc(ar, &rx_desc->attention, 418 sizeof(*rx_desc) - sizeof(u32)); 419 420 if (last_msdu) 421 break; 422 } 423 424 if (skb_queue_empty(amsdu)) 425 msdu_chaining = -1; 426 427 /* 428 * Don't refill the ring yet. 429 * 430 * First, the elements popped here are still in use - it is not 431 * safe to overwrite them until the matching call to 432 * mpdu_desc_list_next. Second, for efficiency it is preferable to 433 * refill the rx ring with 1 PPDU's worth of rx buffers (something 434 * like 32 x 3 buffers), rather than one MPDU's worth of rx buffers 435 * (something like 3 buffers). Consequently, we'll rely on the txrx 436 * SW to tell us when it is done pulling all the PPDU's rx buffers 437 * out of the rx ring, and then refill it just once. 438 */ 439 440 return msdu_chaining; 441 } 442 443 static struct sk_buff *ath10k_htt_rx_pop_paddr(struct ath10k_htt *htt, 444 u64 paddr) 445 { 446 struct ath10k *ar = htt->ar; 447 struct ath10k_skb_rxcb *rxcb; 448 struct sk_buff *msdu; 449 450 lockdep_assert_held(&htt->rx_ring.lock); 451 452 msdu = ath10k_htt_rx_find_skb_paddr(ar, paddr); 453 if (!msdu) 454 return NULL; 455 456 rxcb = ATH10K_SKB_RXCB(msdu); 457 hash_del(&rxcb->hlist); 458 htt->rx_ring.fill_cnt--; 459 460 dma_unmap_single(htt->ar->dev, rxcb->paddr, 461 msdu->len + skb_tailroom(msdu), 462 DMA_FROM_DEVICE); 463 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ", 464 msdu->data, msdu->len + skb_tailroom(msdu)); 465 466 return msdu; 467 } 468 469 static inline void ath10k_htt_append_frag_list(struct sk_buff *skb_head, 470 struct sk_buff *frag_list, 471 unsigned int frag_len) 472 { 473 skb_shinfo(skb_head)->frag_list = frag_list; 474 skb_head->data_len = frag_len; 475 skb_head->len += skb_head->data_len; 476 } 477 478 static int ath10k_htt_rx_handle_amsdu_mon_32(struct ath10k_htt *htt, 479 struct sk_buff *msdu, 480 struct htt_rx_in_ord_msdu_desc **msdu_desc) 481 { 482 struct ath10k *ar = htt->ar; 483 u32 paddr; 484 struct sk_buff *frag_buf; 485 struct sk_buff *prev_frag_buf; 486 u8 last_frag; 487 struct htt_rx_in_ord_msdu_desc *ind_desc = *msdu_desc; 488 struct htt_rx_desc *rxd; 489 int amsdu_len = __le16_to_cpu(ind_desc->msdu_len); 490 491 rxd = (void *)msdu->data; 492 trace_ath10k_htt_rx_desc(ar, rxd, sizeof(*rxd)); 493 494 skb_put(msdu, sizeof(struct htt_rx_desc)); 495 skb_pull(msdu, sizeof(struct htt_rx_desc)); 496 skb_put(msdu, min(amsdu_len, HTT_RX_MSDU_SIZE)); 497 amsdu_len -= msdu->len; 498 499 last_frag = ind_desc->reserved; 500 if (last_frag) { 501 if (amsdu_len) { 502 ath10k_warn(ar, "invalid amsdu len %u, left %d", 503 __le16_to_cpu(ind_desc->msdu_len), 504 amsdu_len); 505 } 506 return 0; 507 } 508 509 ind_desc++; 510 paddr = __le32_to_cpu(ind_desc->msdu_paddr); 511 frag_buf = ath10k_htt_rx_pop_paddr(htt, paddr); 512 if (!frag_buf) { 513 ath10k_warn(ar, "failed to pop frag-1 paddr: 0x%x", paddr); 514 return -ENOENT; 515 } 516 517 skb_put(frag_buf, min(amsdu_len, HTT_RX_BUF_SIZE)); 518 ath10k_htt_append_frag_list(msdu, frag_buf, amsdu_len); 519 520 amsdu_len -= frag_buf->len; 521 prev_frag_buf = frag_buf; 522 last_frag = ind_desc->reserved; 523 while (!last_frag) { 524 ind_desc++; 525 paddr = __le32_to_cpu(ind_desc->msdu_paddr); 526 frag_buf = ath10k_htt_rx_pop_paddr(htt, paddr); 527 if (!frag_buf) { 528 ath10k_warn(ar, "failed to pop frag-n paddr: 0x%x", 529 paddr); 530 prev_frag_buf->next = NULL; 531 return -ENOENT; 532 } 533 534 skb_put(frag_buf, min(amsdu_len, HTT_RX_BUF_SIZE)); 535 last_frag = ind_desc->reserved; 536 amsdu_len -= frag_buf->len; 537 538 prev_frag_buf->next = frag_buf; 539 prev_frag_buf = frag_buf; 540 } 541 542 if (amsdu_len) { 543 ath10k_warn(ar, "invalid amsdu len %u, left %d", 544 __le16_to_cpu(ind_desc->msdu_len), amsdu_len); 545 } 546 547 *msdu_desc = ind_desc; 548 549 prev_frag_buf->next = NULL; 550 return 0; 551 } 552 553 static int 554 ath10k_htt_rx_handle_amsdu_mon_64(struct ath10k_htt *htt, 555 struct sk_buff *msdu, 556 struct htt_rx_in_ord_msdu_desc_ext **msdu_desc) 557 { 558 struct ath10k *ar = htt->ar; 559 u64 paddr; 560 struct sk_buff *frag_buf; 561 struct sk_buff *prev_frag_buf; 562 u8 last_frag; 563 struct htt_rx_in_ord_msdu_desc_ext *ind_desc = *msdu_desc; 564 struct htt_rx_desc *rxd; 565 int amsdu_len = __le16_to_cpu(ind_desc->msdu_len); 566 567 rxd = (void *)msdu->data; 568 trace_ath10k_htt_rx_desc(ar, rxd, sizeof(*rxd)); 569 570 skb_put(msdu, sizeof(struct htt_rx_desc)); 571 skb_pull(msdu, sizeof(struct htt_rx_desc)); 572 skb_put(msdu, min(amsdu_len, HTT_RX_MSDU_SIZE)); 573 amsdu_len -= msdu->len; 574 575 last_frag = ind_desc->reserved; 576 if (last_frag) { 577 if (amsdu_len) { 578 ath10k_warn(ar, "invalid amsdu len %u, left %d", 579 __le16_to_cpu(ind_desc->msdu_len), 580 amsdu_len); 581 } 582 return 0; 583 } 584 585 ind_desc++; 586 paddr = __le64_to_cpu(ind_desc->msdu_paddr); 587 frag_buf = ath10k_htt_rx_pop_paddr(htt, paddr); 588 if (!frag_buf) { 589 ath10k_warn(ar, "failed to pop frag-1 paddr: 0x%llx", paddr); 590 return -ENOENT; 591 } 592 593 skb_put(frag_buf, min(amsdu_len, HTT_RX_BUF_SIZE)); 594 ath10k_htt_append_frag_list(msdu, frag_buf, amsdu_len); 595 596 amsdu_len -= frag_buf->len; 597 prev_frag_buf = frag_buf; 598 last_frag = ind_desc->reserved; 599 while (!last_frag) { 600 ind_desc++; 601 paddr = __le64_to_cpu(ind_desc->msdu_paddr); 602 frag_buf = ath10k_htt_rx_pop_paddr(htt, paddr); 603 if (!frag_buf) { 604 ath10k_warn(ar, "failed to pop frag-n paddr: 0x%llx", 605 paddr); 606 prev_frag_buf->next = NULL; 607 return -ENOENT; 608 } 609 610 skb_put(frag_buf, min(amsdu_len, HTT_RX_BUF_SIZE)); 611 last_frag = ind_desc->reserved; 612 amsdu_len -= frag_buf->len; 613 614 prev_frag_buf->next = frag_buf; 615 prev_frag_buf = frag_buf; 616 } 617 618 if (amsdu_len) { 619 ath10k_warn(ar, "invalid amsdu len %u, left %d", 620 __le16_to_cpu(ind_desc->msdu_len), amsdu_len); 621 } 622 623 *msdu_desc = ind_desc; 624 625 prev_frag_buf->next = NULL; 626 return 0; 627 } 628 629 static int ath10k_htt_rx_pop_paddr32_list(struct ath10k_htt *htt, 630 struct htt_rx_in_ord_ind *ev, 631 struct sk_buff_head *list) 632 { 633 struct ath10k *ar = htt->ar; 634 struct htt_rx_in_ord_msdu_desc *msdu_desc = ev->msdu_descs32; 635 struct htt_rx_desc *rxd; 636 struct sk_buff *msdu; 637 int msdu_count, ret; 638 bool is_offload; 639 u32 paddr; 640 641 lockdep_assert_held(&htt->rx_ring.lock); 642 643 msdu_count = __le16_to_cpu(ev->msdu_count); 644 is_offload = !!(ev->info & HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK); 645 646 while (msdu_count--) { 647 paddr = __le32_to_cpu(msdu_desc->msdu_paddr); 648 649 msdu = ath10k_htt_rx_pop_paddr(htt, paddr); 650 if (!msdu) { 651 __skb_queue_purge(list); 652 return -ENOENT; 653 } 654 655 if (!is_offload && ar->monitor_arvif) { 656 ret = ath10k_htt_rx_handle_amsdu_mon_32(htt, msdu, 657 &msdu_desc); 658 if (ret) { 659 __skb_queue_purge(list); 660 return ret; 661 } 662 __skb_queue_tail(list, msdu); 663 msdu_desc++; 664 continue; 665 } 666 667 __skb_queue_tail(list, msdu); 668 669 if (!is_offload) { 670 rxd = (void *)msdu->data; 671 672 trace_ath10k_htt_rx_desc(ar, rxd, sizeof(*rxd)); 673 674 skb_put(msdu, sizeof(*rxd)); 675 skb_pull(msdu, sizeof(*rxd)); 676 skb_put(msdu, __le16_to_cpu(msdu_desc->msdu_len)); 677 678 if (!(__le32_to_cpu(rxd->attention.flags) & 679 RX_ATTENTION_FLAGS_MSDU_DONE)) { 680 ath10k_warn(htt->ar, "tried to pop an incomplete frame, oops!\n"); 681 return -EIO; 682 } 683 } 684 685 msdu_desc++; 686 } 687 688 return 0; 689 } 690 691 static int ath10k_htt_rx_pop_paddr64_list(struct ath10k_htt *htt, 692 struct htt_rx_in_ord_ind *ev, 693 struct sk_buff_head *list) 694 { 695 struct ath10k *ar = htt->ar; 696 struct htt_rx_in_ord_msdu_desc_ext *msdu_desc = ev->msdu_descs64; 697 struct htt_rx_desc *rxd; 698 struct sk_buff *msdu; 699 int msdu_count, ret; 700 bool is_offload; 701 u64 paddr; 702 703 lockdep_assert_held(&htt->rx_ring.lock); 704 705 msdu_count = __le16_to_cpu(ev->msdu_count); 706 is_offload = !!(ev->info & HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK); 707 708 while (msdu_count--) { 709 paddr = __le64_to_cpu(msdu_desc->msdu_paddr); 710 msdu = ath10k_htt_rx_pop_paddr(htt, paddr); 711 if (!msdu) { 712 __skb_queue_purge(list); 713 return -ENOENT; 714 } 715 716 if (!is_offload && ar->monitor_arvif) { 717 ret = ath10k_htt_rx_handle_amsdu_mon_64(htt, msdu, 718 &msdu_desc); 719 if (ret) { 720 __skb_queue_purge(list); 721 return ret; 722 } 723 __skb_queue_tail(list, msdu); 724 msdu_desc++; 725 continue; 726 } 727 728 __skb_queue_tail(list, msdu); 729 730 if (!is_offload) { 731 rxd = (void *)msdu->data; 732 733 trace_ath10k_htt_rx_desc(ar, rxd, sizeof(*rxd)); 734 735 skb_put(msdu, sizeof(*rxd)); 736 skb_pull(msdu, sizeof(*rxd)); 737 skb_put(msdu, __le16_to_cpu(msdu_desc->msdu_len)); 738 739 if (!(__le32_to_cpu(rxd->attention.flags) & 740 RX_ATTENTION_FLAGS_MSDU_DONE)) { 741 ath10k_warn(htt->ar, "tried to pop an incomplete frame, oops!\n"); 742 return -EIO; 743 } 744 } 745 746 msdu_desc++; 747 } 748 749 return 0; 750 } 751 752 int ath10k_htt_rx_alloc(struct ath10k_htt *htt) 753 { 754 struct ath10k *ar = htt->ar; 755 dma_addr_t paddr; 756 void *vaddr, *vaddr_ring; 757 size_t size; 758 struct timer_list *timer = &htt->rx_ring.refill_retry_timer; 759 760 if (ar->bus_param.dev_type == ATH10K_DEV_TYPE_HL) 761 return 0; 762 763 htt->rx_confused = false; 764 765 /* XXX: The fill level could be changed during runtime in response to 766 * the host processing latency. Is this really worth it? 767 */ 768 htt->rx_ring.size = HTT_RX_RING_SIZE; 769 htt->rx_ring.size_mask = htt->rx_ring.size - 1; 770 htt->rx_ring.fill_level = ar->hw_params.rx_ring_fill_level; 771 772 if (!is_power_of_2(htt->rx_ring.size)) { 773 ath10k_warn(ar, "htt rx ring size is not power of 2\n"); 774 return -EINVAL; 775 } 776 777 htt->rx_ring.netbufs_ring = 778 kcalloc(htt->rx_ring.size, sizeof(struct sk_buff *), 779 GFP_KERNEL); 780 if (!htt->rx_ring.netbufs_ring) 781 goto err_netbuf; 782 783 size = ath10k_htt_get_rx_ring_size(htt); 784 785 vaddr_ring = dma_alloc_coherent(htt->ar->dev, size, &paddr, GFP_KERNEL); 786 if (!vaddr_ring) 787 goto err_dma_ring; 788 789 ath10k_htt_config_paddrs_ring(htt, vaddr_ring); 790 htt->rx_ring.base_paddr = paddr; 791 792 vaddr = dma_alloc_coherent(htt->ar->dev, 793 sizeof(*htt->rx_ring.alloc_idx.vaddr), 794 &paddr, GFP_KERNEL); 795 if (!vaddr) 796 goto err_dma_idx; 797 798 htt->rx_ring.alloc_idx.vaddr = vaddr; 799 htt->rx_ring.alloc_idx.paddr = paddr; 800 htt->rx_ring.sw_rd_idx.msdu_payld = htt->rx_ring.size_mask; 801 *htt->rx_ring.alloc_idx.vaddr = 0; 802 803 /* Initialize the Rx refill retry timer */ 804 timer_setup(timer, ath10k_htt_rx_ring_refill_retry, 0); 805 806 spin_lock_init(&htt->rx_ring.lock); 807 808 htt->rx_ring.fill_cnt = 0; 809 htt->rx_ring.sw_rd_idx.msdu_payld = 0; 810 hash_init(htt->rx_ring.skb_table); 811 812 skb_queue_head_init(&htt->rx_msdus_q); 813 skb_queue_head_init(&htt->rx_in_ord_compl_q); 814 skb_queue_head_init(&htt->tx_fetch_ind_q); 815 atomic_set(&htt->num_mpdus_ready, 0); 816 817 ath10k_dbg(ar, ATH10K_DBG_BOOT, "htt rx ring size %d fill_level %d\n", 818 htt->rx_ring.size, htt->rx_ring.fill_level); 819 return 0; 820 821 err_dma_idx: 822 dma_free_coherent(htt->ar->dev, 823 ath10k_htt_get_rx_ring_size(htt), 824 vaddr_ring, 825 htt->rx_ring.base_paddr); 826 err_dma_ring: 827 kfree(htt->rx_ring.netbufs_ring); 828 err_netbuf: 829 return -ENOMEM; 830 } 831 832 static int ath10k_htt_rx_crypto_param_len(struct ath10k *ar, 833 enum htt_rx_mpdu_encrypt_type type) 834 { 835 switch (type) { 836 case HTT_RX_MPDU_ENCRYPT_NONE: 837 return 0; 838 case HTT_RX_MPDU_ENCRYPT_WEP40: 839 case HTT_RX_MPDU_ENCRYPT_WEP104: 840 return IEEE80211_WEP_IV_LEN; 841 case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC: 842 case HTT_RX_MPDU_ENCRYPT_TKIP_WPA: 843 return IEEE80211_TKIP_IV_LEN; 844 case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2: 845 return IEEE80211_CCMP_HDR_LEN; 846 case HTT_RX_MPDU_ENCRYPT_AES_CCM256_WPA2: 847 return IEEE80211_CCMP_256_HDR_LEN; 848 case HTT_RX_MPDU_ENCRYPT_AES_GCMP_WPA2: 849 case HTT_RX_MPDU_ENCRYPT_AES_GCMP256_WPA2: 850 return IEEE80211_GCMP_HDR_LEN; 851 case HTT_RX_MPDU_ENCRYPT_WEP128: 852 case HTT_RX_MPDU_ENCRYPT_WAPI: 853 break; 854 } 855 856 ath10k_warn(ar, "unsupported encryption type %d\n", type); 857 return 0; 858 } 859 860 #define MICHAEL_MIC_LEN 8 861 862 static int ath10k_htt_rx_crypto_mic_len(struct ath10k *ar, 863 enum htt_rx_mpdu_encrypt_type type) 864 { 865 switch (type) { 866 case HTT_RX_MPDU_ENCRYPT_NONE: 867 case HTT_RX_MPDU_ENCRYPT_WEP40: 868 case HTT_RX_MPDU_ENCRYPT_WEP104: 869 case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC: 870 case HTT_RX_MPDU_ENCRYPT_TKIP_WPA: 871 return 0; 872 case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2: 873 return IEEE80211_CCMP_MIC_LEN; 874 case HTT_RX_MPDU_ENCRYPT_AES_CCM256_WPA2: 875 return IEEE80211_CCMP_256_MIC_LEN; 876 case HTT_RX_MPDU_ENCRYPT_AES_GCMP_WPA2: 877 case HTT_RX_MPDU_ENCRYPT_AES_GCMP256_WPA2: 878 return IEEE80211_GCMP_MIC_LEN; 879 case HTT_RX_MPDU_ENCRYPT_WEP128: 880 case HTT_RX_MPDU_ENCRYPT_WAPI: 881 break; 882 } 883 884 ath10k_warn(ar, "unsupported encryption type %d\n", type); 885 return 0; 886 } 887 888 static int ath10k_htt_rx_crypto_icv_len(struct ath10k *ar, 889 enum htt_rx_mpdu_encrypt_type type) 890 { 891 switch (type) { 892 case HTT_RX_MPDU_ENCRYPT_NONE: 893 case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2: 894 case HTT_RX_MPDU_ENCRYPT_AES_CCM256_WPA2: 895 case HTT_RX_MPDU_ENCRYPT_AES_GCMP_WPA2: 896 case HTT_RX_MPDU_ENCRYPT_AES_GCMP256_WPA2: 897 return 0; 898 case HTT_RX_MPDU_ENCRYPT_WEP40: 899 case HTT_RX_MPDU_ENCRYPT_WEP104: 900 return IEEE80211_WEP_ICV_LEN; 901 case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC: 902 case HTT_RX_MPDU_ENCRYPT_TKIP_WPA: 903 return IEEE80211_TKIP_ICV_LEN; 904 case HTT_RX_MPDU_ENCRYPT_WEP128: 905 case HTT_RX_MPDU_ENCRYPT_WAPI: 906 break; 907 } 908 909 ath10k_warn(ar, "unsupported encryption type %d\n", type); 910 return 0; 911 } 912 913 struct amsdu_subframe_hdr { 914 u8 dst[ETH_ALEN]; 915 u8 src[ETH_ALEN]; 916 __be16 len; 917 } __packed; 918 919 #define GROUP_ID_IS_SU_MIMO(x) ((x) == 0 || (x) == 63) 920 921 static inline u8 ath10k_bw_to_mac80211_bw(u8 bw) 922 { 923 u8 ret = 0; 924 925 switch (bw) { 926 case 0: 927 ret = RATE_INFO_BW_20; 928 break; 929 case 1: 930 ret = RATE_INFO_BW_40; 931 break; 932 case 2: 933 ret = RATE_INFO_BW_80; 934 break; 935 case 3: 936 ret = RATE_INFO_BW_160; 937 break; 938 } 939 940 return ret; 941 } 942 943 static void ath10k_htt_rx_h_rates(struct ath10k *ar, 944 struct ieee80211_rx_status *status, 945 struct htt_rx_desc *rxd) 946 { 947 struct ieee80211_supported_band *sband; 948 u8 cck, rate, bw, sgi, mcs, nss; 949 u8 preamble = 0; 950 u8 group_id; 951 u32 info1, info2, info3; 952 u32 stbc, nsts_su; 953 954 info1 = __le32_to_cpu(rxd->ppdu_start.info1); 955 info2 = __le32_to_cpu(rxd->ppdu_start.info2); 956 info3 = __le32_to_cpu(rxd->ppdu_start.info3); 957 958 preamble = MS(info1, RX_PPDU_START_INFO1_PREAMBLE_TYPE); 959 960 switch (preamble) { 961 case HTT_RX_LEGACY: 962 /* To get legacy rate index band is required. Since band can't 963 * be undefined check if freq is non-zero. 964 */ 965 if (!status->freq) 966 return; 967 968 cck = info1 & RX_PPDU_START_INFO1_L_SIG_RATE_SELECT; 969 rate = MS(info1, RX_PPDU_START_INFO1_L_SIG_RATE); 970 rate &= ~RX_PPDU_START_RATE_FLAG; 971 972 sband = &ar->mac.sbands[status->band]; 973 status->rate_idx = ath10k_mac_hw_rate_to_idx(sband, rate, cck); 974 break; 975 case HTT_RX_HT: 976 case HTT_RX_HT_WITH_TXBF: 977 /* HT-SIG - Table 20-11 in info2 and info3 */ 978 mcs = info2 & 0x1F; 979 nss = mcs >> 3; 980 bw = (info2 >> 7) & 1; 981 sgi = (info3 >> 7) & 1; 982 983 status->rate_idx = mcs; 984 status->encoding = RX_ENC_HT; 985 if (sgi) 986 status->enc_flags |= RX_ENC_FLAG_SHORT_GI; 987 if (bw) 988 status->bw = RATE_INFO_BW_40; 989 break; 990 case HTT_RX_VHT: 991 case HTT_RX_VHT_WITH_TXBF: 992 /* VHT-SIG-A1 in info2, VHT-SIG-A2 in info3 993 * TODO check this 994 */ 995 bw = info2 & 3; 996 sgi = info3 & 1; 997 stbc = (info2 >> 3) & 1; 998 group_id = (info2 >> 4) & 0x3F; 999 1000 if (GROUP_ID_IS_SU_MIMO(group_id)) { 1001 mcs = (info3 >> 4) & 0x0F; 1002 nsts_su = ((info2 >> 10) & 0x07); 1003 if (stbc) 1004 nss = (nsts_su >> 2) + 1; 1005 else 1006 nss = (nsts_su + 1); 1007 } else { 1008 /* Hardware doesn't decode VHT-SIG-B into Rx descriptor 1009 * so it's impossible to decode MCS. Also since 1010 * firmware consumes Group Id Management frames host 1011 * has no knowledge regarding group/user position 1012 * mapping so it's impossible to pick the correct Nsts 1013 * from VHT-SIG-A1. 1014 * 1015 * Bandwidth and SGI are valid so report the rateinfo 1016 * on best-effort basis. 1017 */ 1018 mcs = 0; 1019 nss = 1; 1020 } 1021 1022 if (mcs > 0x09) { 1023 ath10k_warn(ar, "invalid MCS received %u\n", mcs); 1024 ath10k_warn(ar, "rxd %08x mpdu start %08x %08x msdu start %08x %08x ppdu start %08x %08x %08x %08x %08x\n", 1025 __le32_to_cpu(rxd->attention.flags), 1026 __le32_to_cpu(rxd->mpdu_start.info0), 1027 __le32_to_cpu(rxd->mpdu_start.info1), 1028 __le32_to_cpu(rxd->msdu_start.common.info0), 1029 __le32_to_cpu(rxd->msdu_start.common.info1), 1030 rxd->ppdu_start.info0, 1031 __le32_to_cpu(rxd->ppdu_start.info1), 1032 __le32_to_cpu(rxd->ppdu_start.info2), 1033 __le32_to_cpu(rxd->ppdu_start.info3), 1034 __le32_to_cpu(rxd->ppdu_start.info4)); 1035 1036 ath10k_warn(ar, "msdu end %08x mpdu end %08x\n", 1037 __le32_to_cpu(rxd->msdu_end.common.info0), 1038 __le32_to_cpu(rxd->mpdu_end.info0)); 1039 1040 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, 1041 "rx desc msdu payload: ", 1042 rxd->msdu_payload, 50); 1043 } 1044 1045 status->rate_idx = mcs; 1046 status->nss = nss; 1047 1048 if (sgi) 1049 status->enc_flags |= RX_ENC_FLAG_SHORT_GI; 1050 1051 status->bw = ath10k_bw_to_mac80211_bw(bw); 1052 status->encoding = RX_ENC_VHT; 1053 break; 1054 default: 1055 break; 1056 } 1057 } 1058 1059 static struct ieee80211_channel * 1060 ath10k_htt_rx_h_peer_channel(struct ath10k *ar, struct htt_rx_desc *rxd) 1061 { 1062 struct ath10k_peer *peer; 1063 struct ath10k_vif *arvif; 1064 struct cfg80211_chan_def def; 1065 u16 peer_id; 1066 1067 lockdep_assert_held(&ar->data_lock); 1068 1069 if (!rxd) 1070 return NULL; 1071 1072 if (rxd->attention.flags & 1073 __cpu_to_le32(RX_ATTENTION_FLAGS_PEER_IDX_INVALID)) 1074 return NULL; 1075 1076 if (!(rxd->msdu_end.common.info0 & 1077 __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU))) 1078 return NULL; 1079 1080 peer_id = MS(__le32_to_cpu(rxd->mpdu_start.info0), 1081 RX_MPDU_START_INFO0_PEER_IDX); 1082 1083 peer = ath10k_peer_find_by_id(ar, peer_id); 1084 if (!peer) 1085 return NULL; 1086 1087 arvif = ath10k_get_arvif(ar, peer->vdev_id); 1088 if (WARN_ON_ONCE(!arvif)) 1089 return NULL; 1090 1091 if (ath10k_mac_vif_chan(arvif->vif, &def)) 1092 return NULL; 1093 1094 return def.chan; 1095 } 1096 1097 static struct ieee80211_channel * 1098 ath10k_htt_rx_h_vdev_channel(struct ath10k *ar, u32 vdev_id) 1099 { 1100 struct ath10k_vif *arvif; 1101 struct cfg80211_chan_def def; 1102 1103 lockdep_assert_held(&ar->data_lock); 1104 1105 list_for_each_entry(arvif, &ar->arvifs, list) { 1106 if (arvif->vdev_id == vdev_id && 1107 ath10k_mac_vif_chan(arvif->vif, &def) == 0) 1108 return def.chan; 1109 } 1110 1111 return NULL; 1112 } 1113 1114 static void 1115 ath10k_htt_rx_h_any_chan_iter(struct ieee80211_hw *hw, 1116 struct ieee80211_chanctx_conf *conf, 1117 void *data) 1118 { 1119 struct cfg80211_chan_def *def = data; 1120 1121 *def = conf->def; 1122 } 1123 1124 static struct ieee80211_channel * 1125 ath10k_htt_rx_h_any_channel(struct ath10k *ar) 1126 { 1127 struct cfg80211_chan_def def = {}; 1128 1129 ieee80211_iter_chan_contexts_atomic(ar->hw, 1130 ath10k_htt_rx_h_any_chan_iter, 1131 &def); 1132 1133 return def.chan; 1134 } 1135 1136 static bool ath10k_htt_rx_h_channel(struct ath10k *ar, 1137 struct ieee80211_rx_status *status, 1138 struct htt_rx_desc *rxd, 1139 u32 vdev_id) 1140 { 1141 struct ieee80211_channel *ch; 1142 1143 spin_lock_bh(&ar->data_lock); 1144 ch = ar->scan_channel; 1145 if (!ch) 1146 ch = ar->rx_channel; 1147 if (!ch) 1148 ch = ath10k_htt_rx_h_peer_channel(ar, rxd); 1149 if (!ch) 1150 ch = ath10k_htt_rx_h_vdev_channel(ar, vdev_id); 1151 if (!ch) 1152 ch = ath10k_htt_rx_h_any_channel(ar); 1153 if (!ch) 1154 ch = ar->tgt_oper_chan; 1155 spin_unlock_bh(&ar->data_lock); 1156 1157 if (!ch) 1158 return false; 1159 1160 status->band = ch->band; 1161 status->freq = ch->center_freq; 1162 1163 return true; 1164 } 1165 1166 static void ath10k_htt_rx_h_signal(struct ath10k *ar, 1167 struct ieee80211_rx_status *status, 1168 struct htt_rx_desc *rxd) 1169 { 1170 int i; 1171 1172 for (i = 0; i < IEEE80211_MAX_CHAINS ; i++) { 1173 status->chains &= ~BIT(i); 1174 1175 if (rxd->ppdu_start.rssi_chains[i].pri20_mhz != 0x80) { 1176 status->chain_signal[i] = ATH10K_DEFAULT_NOISE_FLOOR + 1177 rxd->ppdu_start.rssi_chains[i].pri20_mhz; 1178 1179 status->chains |= BIT(i); 1180 } 1181 } 1182 1183 /* FIXME: Get real NF */ 1184 status->signal = ATH10K_DEFAULT_NOISE_FLOOR + 1185 rxd->ppdu_start.rssi_comb; 1186 status->flag &= ~RX_FLAG_NO_SIGNAL_VAL; 1187 } 1188 1189 static void ath10k_htt_rx_h_mactime(struct ath10k *ar, 1190 struct ieee80211_rx_status *status, 1191 struct htt_rx_desc *rxd) 1192 { 1193 /* FIXME: TSF is known only at the end of PPDU, in the last MPDU. This 1194 * means all prior MSDUs in a PPDU are reported to mac80211 without the 1195 * TSF. Is it worth holding frames until end of PPDU is known? 1196 * 1197 * FIXME: Can we get/compute 64bit TSF? 1198 */ 1199 status->mactime = __le32_to_cpu(rxd->ppdu_end.common.tsf_timestamp); 1200 status->flag |= RX_FLAG_MACTIME_END; 1201 } 1202 1203 static void ath10k_htt_rx_h_ppdu(struct ath10k *ar, 1204 struct sk_buff_head *amsdu, 1205 struct ieee80211_rx_status *status, 1206 u32 vdev_id) 1207 { 1208 struct sk_buff *first; 1209 struct htt_rx_desc *rxd; 1210 bool is_first_ppdu; 1211 bool is_last_ppdu; 1212 1213 if (skb_queue_empty(amsdu)) 1214 return; 1215 1216 first = skb_peek(amsdu); 1217 rxd = (void *)first->data - sizeof(*rxd); 1218 1219 is_first_ppdu = !!(rxd->attention.flags & 1220 __cpu_to_le32(RX_ATTENTION_FLAGS_FIRST_MPDU)); 1221 is_last_ppdu = !!(rxd->attention.flags & 1222 __cpu_to_le32(RX_ATTENTION_FLAGS_LAST_MPDU)); 1223 1224 if (is_first_ppdu) { 1225 /* New PPDU starts so clear out the old per-PPDU status. */ 1226 status->freq = 0; 1227 status->rate_idx = 0; 1228 status->nss = 0; 1229 status->encoding = RX_ENC_LEGACY; 1230 status->bw = RATE_INFO_BW_20; 1231 1232 status->flag &= ~RX_FLAG_MACTIME_END; 1233 status->flag |= RX_FLAG_NO_SIGNAL_VAL; 1234 1235 status->flag &= ~(RX_FLAG_AMPDU_IS_LAST); 1236 status->flag |= RX_FLAG_AMPDU_DETAILS | RX_FLAG_AMPDU_LAST_KNOWN; 1237 status->ampdu_reference = ar->ampdu_reference; 1238 1239 ath10k_htt_rx_h_signal(ar, status, rxd); 1240 ath10k_htt_rx_h_channel(ar, status, rxd, vdev_id); 1241 ath10k_htt_rx_h_rates(ar, status, rxd); 1242 } 1243 1244 if (is_last_ppdu) { 1245 ath10k_htt_rx_h_mactime(ar, status, rxd); 1246 1247 /* set ampdu last segment flag */ 1248 status->flag |= RX_FLAG_AMPDU_IS_LAST; 1249 ar->ampdu_reference++; 1250 } 1251 } 1252 1253 static const char * const tid_to_ac[] = { 1254 "BE", 1255 "BK", 1256 "BK", 1257 "BE", 1258 "VI", 1259 "VI", 1260 "VO", 1261 "VO", 1262 }; 1263 1264 static char *ath10k_get_tid(struct ieee80211_hdr *hdr, char *out, size_t size) 1265 { 1266 u8 *qc; 1267 int tid; 1268 1269 if (!ieee80211_is_data_qos(hdr->frame_control)) 1270 return ""; 1271 1272 qc = ieee80211_get_qos_ctl(hdr); 1273 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 1274 if (tid < 8) 1275 snprintf(out, size, "tid %d (%s)", tid, tid_to_ac[tid]); 1276 else 1277 snprintf(out, size, "tid %d", tid); 1278 1279 return out; 1280 } 1281 1282 static void ath10k_htt_rx_h_queue_msdu(struct ath10k *ar, 1283 struct ieee80211_rx_status *rx_status, 1284 struct sk_buff *skb) 1285 { 1286 struct ieee80211_rx_status *status; 1287 1288 status = IEEE80211_SKB_RXCB(skb); 1289 *status = *rx_status; 1290 1291 skb_queue_tail(&ar->htt.rx_msdus_q, skb); 1292 } 1293 1294 static void ath10k_process_rx(struct ath10k *ar, struct sk_buff *skb) 1295 { 1296 struct ieee80211_rx_status *status; 1297 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1298 char tid[32]; 1299 1300 status = IEEE80211_SKB_RXCB(skb); 1301 1302 if (!(ar->filter_flags & FIF_FCSFAIL) && 1303 status->flag & RX_FLAG_FAILED_FCS_CRC) { 1304 ar->stats.rx_crc_err_drop++; 1305 dev_kfree_skb_any(skb); 1306 return; 1307 } 1308 1309 ath10k_dbg(ar, ATH10K_DBG_DATA, 1310 "rx skb %pK len %u peer %pM %s %s sn %u %s%s%s%s%s%s %srate_idx %u vht_nss %u freq %u band %u flag 0x%x fcs-err %i mic-err %i amsdu-more %i\n", 1311 skb, 1312 skb->len, 1313 ieee80211_get_SA(hdr), 1314 ath10k_get_tid(hdr, tid, sizeof(tid)), 1315 is_multicast_ether_addr(ieee80211_get_DA(hdr)) ? 1316 "mcast" : "ucast", 1317 (__le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_SEQ) >> 4, 1318 (status->encoding == RX_ENC_LEGACY) ? "legacy" : "", 1319 (status->encoding == RX_ENC_HT) ? "ht" : "", 1320 (status->encoding == RX_ENC_VHT) ? "vht" : "", 1321 (status->bw == RATE_INFO_BW_40) ? "40" : "", 1322 (status->bw == RATE_INFO_BW_80) ? "80" : "", 1323 (status->bw == RATE_INFO_BW_160) ? "160" : "", 1324 status->enc_flags & RX_ENC_FLAG_SHORT_GI ? "sgi " : "", 1325 status->rate_idx, 1326 status->nss, 1327 status->freq, 1328 status->band, status->flag, 1329 !!(status->flag & RX_FLAG_FAILED_FCS_CRC), 1330 !!(status->flag & RX_FLAG_MMIC_ERROR), 1331 !!(status->flag & RX_FLAG_AMSDU_MORE)); 1332 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "rx skb: ", 1333 skb->data, skb->len); 1334 trace_ath10k_rx_hdr(ar, skb->data, skb->len); 1335 trace_ath10k_rx_payload(ar, skb->data, skb->len); 1336 1337 ieee80211_rx_napi(ar->hw, NULL, skb, &ar->napi); 1338 } 1339 1340 static int ath10k_htt_rx_nwifi_hdrlen(struct ath10k *ar, 1341 struct ieee80211_hdr *hdr) 1342 { 1343 int len = ieee80211_hdrlen(hdr->frame_control); 1344 1345 if (!test_bit(ATH10K_FW_FEATURE_NO_NWIFI_DECAP_4ADDR_PADDING, 1346 ar->running_fw->fw_file.fw_features)) 1347 len = round_up(len, 4); 1348 1349 return len; 1350 } 1351 1352 static void ath10k_htt_rx_h_undecap_raw(struct ath10k *ar, 1353 struct sk_buff *msdu, 1354 struct ieee80211_rx_status *status, 1355 enum htt_rx_mpdu_encrypt_type enctype, 1356 bool is_decrypted, 1357 const u8 first_hdr[64]) 1358 { 1359 struct ieee80211_hdr *hdr; 1360 struct htt_rx_desc *rxd; 1361 size_t hdr_len; 1362 size_t crypto_len; 1363 bool is_first; 1364 bool is_last; 1365 bool msdu_limit_err; 1366 int bytes_aligned = ar->hw_params.decap_align_bytes; 1367 u8 *qos; 1368 1369 rxd = (void *)msdu->data - sizeof(*rxd); 1370 is_first = !!(rxd->msdu_end.common.info0 & 1371 __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU)); 1372 is_last = !!(rxd->msdu_end.common.info0 & 1373 __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU)); 1374 1375 /* Delivered decapped frame: 1376 * [802.11 header] 1377 * [crypto param] <-- can be trimmed if !fcs_err && 1378 * !decrypt_err && !peer_idx_invalid 1379 * [amsdu header] <-- only if A-MSDU 1380 * [rfc1042/llc] 1381 * [payload] 1382 * [FCS] <-- at end, needs to be trimmed 1383 */ 1384 1385 /* Some hardwares(QCA99x0 variants) limit number of msdus in a-msdu when 1386 * deaggregate, so that unwanted MSDU-deaggregation is avoided for 1387 * error packets. If limit exceeds, hw sends all remaining MSDUs as 1388 * a single last MSDU with this msdu limit error set. 1389 */ 1390 msdu_limit_err = ath10k_rx_desc_msdu_limit_error(&ar->hw_params, rxd); 1391 1392 /* If MSDU limit error happens, then don't warn on, the partial raw MSDU 1393 * without first MSDU is expected in that case, and handled later here. 1394 */ 1395 /* This probably shouldn't happen but warn just in case */ 1396 if (WARN_ON_ONCE(!is_first && !msdu_limit_err)) 1397 return; 1398 1399 /* This probably shouldn't happen but warn just in case */ 1400 if (WARN_ON_ONCE(!(is_first && is_last) && !msdu_limit_err)) 1401 return; 1402 1403 skb_trim(msdu, msdu->len - FCS_LEN); 1404 1405 /* Push original 80211 header */ 1406 if (unlikely(msdu_limit_err)) { 1407 hdr = (struct ieee80211_hdr *)first_hdr; 1408 hdr_len = ieee80211_hdrlen(hdr->frame_control); 1409 crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype); 1410 1411 if (ieee80211_is_data_qos(hdr->frame_control)) { 1412 qos = ieee80211_get_qos_ctl(hdr); 1413 qos[0] |= IEEE80211_QOS_CTL_A_MSDU_PRESENT; 1414 } 1415 1416 if (crypto_len) 1417 memcpy(skb_push(msdu, crypto_len), 1418 (void *)hdr + round_up(hdr_len, bytes_aligned), 1419 crypto_len); 1420 1421 memcpy(skb_push(msdu, hdr_len), hdr, hdr_len); 1422 } 1423 1424 /* In most cases this will be true for sniffed frames. It makes sense 1425 * to deliver them as-is without stripping the crypto param. This is 1426 * necessary for software based decryption. 1427 * 1428 * If there's no error then the frame is decrypted. At least that is 1429 * the case for frames that come in via fragmented rx indication. 1430 */ 1431 if (!is_decrypted) 1432 return; 1433 1434 /* The payload is decrypted so strip crypto params. Start from tail 1435 * since hdr is used to compute some stuff. 1436 */ 1437 1438 hdr = (void *)msdu->data; 1439 1440 /* Tail */ 1441 if (status->flag & RX_FLAG_IV_STRIPPED) { 1442 skb_trim(msdu, msdu->len - 1443 ath10k_htt_rx_crypto_mic_len(ar, enctype)); 1444 1445 skb_trim(msdu, msdu->len - 1446 ath10k_htt_rx_crypto_icv_len(ar, enctype)); 1447 } else { 1448 /* MIC */ 1449 if (status->flag & RX_FLAG_MIC_STRIPPED) 1450 skb_trim(msdu, msdu->len - 1451 ath10k_htt_rx_crypto_mic_len(ar, enctype)); 1452 1453 /* ICV */ 1454 if (status->flag & RX_FLAG_ICV_STRIPPED) 1455 skb_trim(msdu, msdu->len - 1456 ath10k_htt_rx_crypto_icv_len(ar, enctype)); 1457 } 1458 1459 /* MMIC */ 1460 if ((status->flag & RX_FLAG_MMIC_STRIPPED) && 1461 !ieee80211_has_morefrags(hdr->frame_control) && 1462 enctype == HTT_RX_MPDU_ENCRYPT_TKIP_WPA) 1463 skb_trim(msdu, msdu->len - MICHAEL_MIC_LEN); 1464 1465 /* Head */ 1466 if (status->flag & RX_FLAG_IV_STRIPPED) { 1467 hdr_len = ieee80211_hdrlen(hdr->frame_control); 1468 crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype); 1469 1470 memmove((void *)msdu->data + crypto_len, 1471 (void *)msdu->data, hdr_len); 1472 skb_pull(msdu, crypto_len); 1473 } 1474 } 1475 1476 static void ath10k_htt_rx_h_undecap_nwifi(struct ath10k *ar, 1477 struct sk_buff *msdu, 1478 struct ieee80211_rx_status *status, 1479 const u8 first_hdr[64], 1480 enum htt_rx_mpdu_encrypt_type enctype) 1481 { 1482 struct ieee80211_hdr *hdr; 1483 struct htt_rx_desc *rxd; 1484 size_t hdr_len; 1485 u8 da[ETH_ALEN]; 1486 u8 sa[ETH_ALEN]; 1487 int l3_pad_bytes; 1488 int bytes_aligned = ar->hw_params.decap_align_bytes; 1489 1490 /* Delivered decapped frame: 1491 * [nwifi 802.11 header] <-- replaced with 802.11 hdr 1492 * [rfc1042/llc] 1493 * 1494 * Note: The nwifi header doesn't have QoS Control and is 1495 * (always?) a 3addr frame. 1496 * 1497 * Note2: There's no A-MSDU subframe header. Even if it's part 1498 * of an A-MSDU. 1499 */ 1500 1501 /* pull decapped header and copy SA & DA */ 1502 rxd = (void *)msdu->data - sizeof(*rxd); 1503 1504 l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd); 1505 skb_put(msdu, l3_pad_bytes); 1506 1507 hdr = (struct ieee80211_hdr *)(msdu->data + l3_pad_bytes); 1508 1509 hdr_len = ath10k_htt_rx_nwifi_hdrlen(ar, hdr); 1510 ether_addr_copy(da, ieee80211_get_DA(hdr)); 1511 ether_addr_copy(sa, ieee80211_get_SA(hdr)); 1512 skb_pull(msdu, hdr_len); 1513 1514 /* push original 802.11 header */ 1515 hdr = (struct ieee80211_hdr *)first_hdr; 1516 hdr_len = ieee80211_hdrlen(hdr->frame_control); 1517 1518 if (!(status->flag & RX_FLAG_IV_STRIPPED)) { 1519 memcpy(skb_push(msdu, 1520 ath10k_htt_rx_crypto_param_len(ar, enctype)), 1521 (void *)hdr + round_up(hdr_len, bytes_aligned), 1522 ath10k_htt_rx_crypto_param_len(ar, enctype)); 1523 } 1524 1525 memcpy(skb_push(msdu, hdr_len), hdr, hdr_len); 1526 1527 /* original 802.11 header has a different DA and in 1528 * case of 4addr it may also have different SA 1529 */ 1530 hdr = (struct ieee80211_hdr *)msdu->data; 1531 ether_addr_copy(ieee80211_get_DA(hdr), da); 1532 ether_addr_copy(ieee80211_get_SA(hdr), sa); 1533 } 1534 1535 static void *ath10k_htt_rx_h_find_rfc1042(struct ath10k *ar, 1536 struct sk_buff *msdu, 1537 enum htt_rx_mpdu_encrypt_type enctype) 1538 { 1539 struct ieee80211_hdr *hdr; 1540 struct htt_rx_desc *rxd; 1541 size_t hdr_len, crypto_len; 1542 void *rfc1042; 1543 bool is_first, is_last, is_amsdu; 1544 int bytes_aligned = ar->hw_params.decap_align_bytes; 1545 1546 rxd = (void *)msdu->data - sizeof(*rxd); 1547 hdr = (void *)rxd->rx_hdr_status; 1548 1549 is_first = !!(rxd->msdu_end.common.info0 & 1550 __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU)); 1551 is_last = !!(rxd->msdu_end.common.info0 & 1552 __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU)); 1553 is_amsdu = !(is_first && is_last); 1554 1555 rfc1042 = hdr; 1556 1557 if (is_first) { 1558 hdr_len = ieee80211_hdrlen(hdr->frame_control); 1559 crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype); 1560 1561 rfc1042 += round_up(hdr_len, bytes_aligned) + 1562 round_up(crypto_len, bytes_aligned); 1563 } 1564 1565 if (is_amsdu) 1566 rfc1042 += sizeof(struct amsdu_subframe_hdr); 1567 1568 return rfc1042; 1569 } 1570 1571 static void ath10k_htt_rx_h_undecap_eth(struct ath10k *ar, 1572 struct sk_buff *msdu, 1573 struct ieee80211_rx_status *status, 1574 const u8 first_hdr[64], 1575 enum htt_rx_mpdu_encrypt_type enctype) 1576 { 1577 struct ieee80211_hdr *hdr; 1578 struct ethhdr *eth; 1579 size_t hdr_len; 1580 void *rfc1042; 1581 u8 da[ETH_ALEN]; 1582 u8 sa[ETH_ALEN]; 1583 int l3_pad_bytes; 1584 struct htt_rx_desc *rxd; 1585 int bytes_aligned = ar->hw_params.decap_align_bytes; 1586 1587 /* Delivered decapped frame: 1588 * [eth header] <-- replaced with 802.11 hdr & rfc1042/llc 1589 * [payload] 1590 */ 1591 1592 rfc1042 = ath10k_htt_rx_h_find_rfc1042(ar, msdu, enctype); 1593 if (WARN_ON_ONCE(!rfc1042)) 1594 return; 1595 1596 rxd = (void *)msdu->data - sizeof(*rxd); 1597 l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd); 1598 skb_put(msdu, l3_pad_bytes); 1599 skb_pull(msdu, l3_pad_bytes); 1600 1601 /* pull decapped header and copy SA & DA */ 1602 eth = (struct ethhdr *)msdu->data; 1603 ether_addr_copy(da, eth->h_dest); 1604 ether_addr_copy(sa, eth->h_source); 1605 skb_pull(msdu, sizeof(struct ethhdr)); 1606 1607 /* push rfc1042/llc/snap */ 1608 memcpy(skb_push(msdu, sizeof(struct rfc1042_hdr)), rfc1042, 1609 sizeof(struct rfc1042_hdr)); 1610 1611 /* push original 802.11 header */ 1612 hdr = (struct ieee80211_hdr *)first_hdr; 1613 hdr_len = ieee80211_hdrlen(hdr->frame_control); 1614 1615 if (!(status->flag & RX_FLAG_IV_STRIPPED)) { 1616 memcpy(skb_push(msdu, 1617 ath10k_htt_rx_crypto_param_len(ar, enctype)), 1618 (void *)hdr + round_up(hdr_len, bytes_aligned), 1619 ath10k_htt_rx_crypto_param_len(ar, enctype)); 1620 } 1621 1622 memcpy(skb_push(msdu, hdr_len), hdr, hdr_len); 1623 1624 /* original 802.11 header has a different DA and in 1625 * case of 4addr it may also have different SA 1626 */ 1627 hdr = (struct ieee80211_hdr *)msdu->data; 1628 ether_addr_copy(ieee80211_get_DA(hdr), da); 1629 ether_addr_copy(ieee80211_get_SA(hdr), sa); 1630 } 1631 1632 static void ath10k_htt_rx_h_undecap_snap(struct ath10k *ar, 1633 struct sk_buff *msdu, 1634 struct ieee80211_rx_status *status, 1635 const u8 first_hdr[64], 1636 enum htt_rx_mpdu_encrypt_type enctype) 1637 { 1638 struct ieee80211_hdr *hdr; 1639 size_t hdr_len; 1640 int l3_pad_bytes; 1641 struct htt_rx_desc *rxd; 1642 int bytes_aligned = ar->hw_params.decap_align_bytes; 1643 1644 /* Delivered decapped frame: 1645 * [amsdu header] <-- replaced with 802.11 hdr 1646 * [rfc1042/llc] 1647 * [payload] 1648 */ 1649 1650 rxd = (void *)msdu->data - sizeof(*rxd); 1651 l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd); 1652 1653 skb_put(msdu, l3_pad_bytes); 1654 skb_pull(msdu, sizeof(struct amsdu_subframe_hdr) + l3_pad_bytes); 1655 1656 hdr = (struct ieee80211_hdr *)first_hdr; 1657 hdr_len = ieee80211_hdrlen(hdr->frame_control); 1658 1659 if (!(status->flag & RX_FLAG_IV_STRIPPED)) { 1660 memcpy(skb_push(msdu, 1661 ath10k_htt_rx_crypto_param_len(ar, enctype)), 1662 (void *)hdr + round_up(hdr_len, bytes_aligned), 1663 ath10k_htt_rx_crypto_param_len(ar, enctype)); 1664 } 1665 1666 memcpy(skb_push(msdu, hdr_len), hdr, hdr_len); 1667 } 1668 1669 static void ath10k_htt_rx_h_undecap(struct ath10k *ar, 1670 struct sk_buff *msdu, 1671 struct ieee80211_rx_status *status, 1672 u8 first_hdr[64], 1673 enum htt_rx_mpdu_encrypt_type enctype, 1674 bool is_decrypted) 1675 { 1676 struct htt_rx_desc *rxd; 1677 enum rx_msdu_decap_format decap; 1678 1679 /* First msdu's decapped header: 1680 * [802.11 header] <-- padded to 4 bytes long 1681 * [crypto param] <-- padded to 4 bytes long 1682 * [amsdu header] <-- only if A-MSDU 1683 * [rfc1042/llc] 1684 * 1685 * Other (2nd, 3rd, ..) msdu's decapped header: 1686 * [amsdu header] <-- only if A-MSDU 1687 * [rfc1042/llc] 1688 */ 1689 1690 rxd = (void *)msdu->data - sizeof(*rxd); 1691 decap = MS(__le32_to_cpu(rxd->msdu_start.common.info1), 1692 RX_MSDU_START_INFO1_DECAP_FORMAT); 1693 1694 switch (decap) { 1695 case RX_MSDU_DECAP_RAW: 1696 ath10k_htt_rx_h_undecap_raw(ar, msdu, status, enctype, 1697 is_decrypted, first_hdr); 1698 break; 1699 case RX_MSDU_DECAP_NATIVE_WIFI: 1700 ath10k_htt_rx_h_undecap_nwifi(ar, msdu, status, first_hdr, 1701 enctype); 1702 break; 1703 case RX_MSDU_DECAP_ETHERNET2_DIX: 1704 ath10k_htt_rx_h_undecap_eth(ar, msdu, status, first_hdr, enctype); 1705 break; 1706 case RX_MSDU_DECAP_8023_SNAP_LLC: 1707 ath10k_htt_rx_h_undecap_snap(ar, msdu, status, first_hdr, 1708 enctype); 1709 break; 1710 } 1711 } 1712 1713 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb) 1714 { 1715 struct htt_rx_desc *rxd; 1716 u32 flags, info; 1717 bool is_ip4, is_ip6; 1718 bool is_tcp, is_udp; 1719 bool ip_csum_ok, tcpudp_csum_ok; 1720 1721 rxd = (void *)skb->data - sizeof(*rxd); 1722 flags = __le32_to_cpu(rxd->attention.flags); 1723 info = __le32_to_cpu(rxd->msdu_start.common.info1); 1724 1725 is_ip4 = !!(info & RX_MSDU_START_INFO1_IPV4_PROTO); 1726 is_ip6 = !!(info & RX_MSDU_START_INFO1_IPV6_PROTO); 1727 is_tcp = !!(info & RX_MSDU_START_INFO1_TCP_PROTO); 1728 is_udp = !!(info & RX_MSDU_START_INFO1_UDP_PROTO); 1729 ip_csum_ok = !(flags & RX_ATTENTION_FLAGS_IP_CHKSUM_FAIL); 1730 tcpudp_csum_ok = !(flags & RX_ATTENTION_FLAGS_TCP_UDP_CHKSUM_FAIL); 1731 1732 if (!is_ip4 && !is_ip6) 1733 return CHECKSUM_NONE; 1734 if (!is_tcp && !is_udp) 1735 return CHECKSUM_NONE; 1736 if (!ip_csum_ok) 1737 return CHECKSUM_NONE; 1738 if (!tcpudp_csum_ok) 1739 return CHECKSUM_NONE; 1740 1741 return CHECKSUM_UNNECESSARY; 1742 } 1743 1744 static void ath10k_htt_rx_h_csum_offload(struct sk_buff *msdu) 1745 { 1746 msdu->ip_summed = ath10k_htt_rx_get_csum_state(msdu); 1747 } 1748 1749 static u64 ath10k_htt_rx_h_get_pn(struct ath10k *ar, struct sk_buff *skb, 1750 u16 offset, 1751 enum htt_rx_mpdu_encrypt_type enctype) 1752 { 1753 struct ieee80211_hdr *hdr; 1754 u64 pn = 0; 1755 u8 *ehdr; 1756 1757 hdr = (struct ieee80211_hdr *)(skb->data + offset); 1758 ehdr = skb->data + offset + ieee80211_hdrlen(hdr->frame_control); 1759 1760 if (enctype == HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2) { 1761 pn = ehdr[0]; 1762 pn |= (u64)ehdr[1] << 8; 1763 pn |= (u64)ehdr[4] << 16; 1764 pn |= (u64)ehdr[5] << 24; 1765 pn |= (u64)ehdr[6] << 32; 1766 pn |= (u64)ehdr[7] << 40; 1767 } 1768 return pn; 1769 } 1770 1771 static bool ath10k_htt_rx_h_frag_multicast_check(struct ath10k *ar, 1772 struct sk_buff *skb, 1773 u16 offset) 1774 { 1775 struct ieee80211_hdr *hdr; 1776 1777 hdr = (struct ieee80211_hdr *)(skb->data + offset); 1778 return !is_multicast_ether_addr(hdr->addr1); 1779 } 1780 1781 static bool ath10k_htt_rx_h_frag_pn_check(struct ath10k *ar, 1782 struct sk_buff *skb, 1783 u16 peer_id, 1784 u16 offset, 1785 enum htt_rx_mpdu_encrypt_type enctype) 1786 { 1787 struct ath10k_peer *peer; 1788 union htt_rx_pn_t *last_pn, new_pn = {0}; 1789 struct ieee80211_hdr *hdr; 1790 bool more_frags; 1791 u8 tid, frag_number; 1792 u32 seq; 1793 1794 peer = ath10k_peer_find_by_id(ar, peer_id); 1795 if (!peer) { 1796 ath10k_dbg(ar, ATH10K_DBG_HTT, "invalid peer for frag pn check\n"); 1797 return false; 1798 } 1799 1800 hdr = (struct ieee80211_hdr *)(skb->data + offset); 1801 if (ieee80211_is_data_qos(hdr->frame_control)) 1802 tid = ieee80211_get_tid(hdr); 1803 else 1804 tid = ATH10K_TXRX_NON_QOS_TID; 1805 1806 last_pn = &peer->frag_tids_last_pn[tid]; 1807 new_pn.pn48 = ath10k_htt_rx_h_get_pn(ar, skb, offset, enctype); 1808 more_frags = ieee80211_has_morefrags(hdr->frame_control); 1809 frag_number = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG; 1810 seq = (__le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_SEQ) >> 4; 1811 1812 if (frag_number == 0) { 1813 last_pn->pn48 = new_pn.pn48; 1814 peer->frag_tids_seq[tid] = seq; 1815 } else { 1816 if (seq != peer->frag_tids_seq[tid]) 1817 return false; 1818 1819 if (new_pn.pn48 != last_pn->pn48 + 1) 1820 return false; 1821 1822 last_pn->pn48 = new_pn.pn48; 1823 } 1824 1825 return true; 1826 } 1827 1828 static void ath10k_htt_rx_h_mpdu(struct ath10k *ar, 1829 struct sk_buff_head *amsdu, 1830 struct ieee80211_rx_status *status, 1831 bool fill_crypt_header, 1832 u8 *rx_hdr, 1833 enum ath10k_pkt_rx_err *err, 1834 u16 peer_id, 1835 bool frag) 1836 { 1837 struct sk_buff *first; 1838 struct sk_buff *last; 1839 struct sk_buff *msdu, *temp; 1840 struct htt_rx_desc *rxd; 1841 struct ieee80211_hdr *hdr; 1842 enum htt_rx_mpdu_encrypt_type enctype; 1843 u8 first_hdr[64]; 1844 u8 *qos; 1845 bool has_fcs_err; 1846 bool has_crypto_err; 1847 bool has_tkip_err; 1848 bool has_peer_idx_invalid; 1849 bool is_decrypted; 1850 bool is_mgmt; 1851 u32 attention; 1852 bool frag_pn_check = true, multicast_check = true; 1853 1854 if (skb_queue_empty(amsdu)) 1855 return; 1856 1857 first = skb_peek(amsdu); 1858 rxd = (void *)first->data - sizeof(*rxd); 1859 1860 is_mgmt = !!(rxd->attention.flags & 1861 __cpu_to_le32(RX_ATTENTION_FLAGS_MGMT_TYPE)); 1862 1863 enctype = MS(__le32_to_cpu(rxd->mpdu_start.info0), 1864 RX_MPDU_START_INFO0_ENCRYPT_TYPE); 1865 1866 /* First MSDU's Rx descriptor in an A-MSDU contains full 802.11 1867 * decapped header. It'll be used for undecapping of each MSDU. 1868 */ 1869 hdr = (void *)rxd->rx_hdr_status; 1870 memcpy(first_hdr, hdr, RX_HTT_HDR_STATUS_LEN); 1871 1872 if (rx_hdr) 1873 memcpy(rx_hdr, hdr, RX_HTT_HDR_STATUS_LEN); 1874 1875 /* Each A-MSDU subframe will use the original header as the base and be 1876 * reported as a separate MSDU so strip the A-MSDU bit from QoS Ctl. 1877 */ 1878 hdr = (void *)first_hdr; 1879 1880 if (ieee80211_is_data_qos(hdr->frame_control)) { 1881 qos = ieee80211_get_qos_ctl(hdr); 1882 qos[0] &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT; 1883 } 1884 1885 /* Some attention flags are valid only in the last MSDU. */ 1886 last = skb_peek_tail(amsdu); 1887 rxd = (void *)last->data - sizeof(*rxd); 1888 attention = __le32_to_cpu(rxd->attention.flags); 1889 1890 has_fcs_err = !!(attention & RX_ATTENTION_FLAGS_FCS_ERR); 1891 has_crypto_err = !!(attention & RX_ATTENTION_FLAGS_DECRYPT_ERR); 1892 has_tkip_err = !!(attention & RX_ATTENTION_FLAGS_TKIP_MIC_ERR); 1893 has_peer_idx_invalid = !!(attention & RX_ATTENTION_FLAGS_PEER_IDX_INVALID); 1894 1895 /* Note: If hardware captures an encrypted frame that it can't decrypt, 1896 * e.g. due to fcs error, missing peer or invalid key data it will 1897 * report the frame as raw. 1898 */ 1899 is_decrypted = (enctype != HTT_RX_MPDU_ENCRYPT_NONE && 1900 !has_fcs_err && 1901 !has_crypto_err && 1902 !has_peer_idx_invalid); 1903 1904 /* Clear per-MPDU flags while leaving per-PPDU flags intact. */ 1905 status->flag &= ~(RX_FLAG_FAILED_FCS_CRC | 1906 RX_FLAG_MMIC_ERROR | 1907 RX_FLAG_DECRYPTED | 1908 RX_FLAG_IV_STRIPPED | 1909 RX_FLAG_ONLY_MONITOR | 1910 RX_FLAG_MMIC_STRIPPED); 1911 1912 if (has_fcs_err) 1913 status->flag |= RX_FLAG_FAILED_FCS_CRC; 1914 1915 if (has_tkip_err) 1916 status->flag |= RX_FLAG_MMIC_ERROR; 1917 1918 if (err) { 1919 if (has_fcs_err) 1920 *err = ATH10K_PKT_RX_ERR_FCS; 1921 else if (has_tkip_err) 1922 *err = ATH10K_PKT_RX_ERR_TKIP; 1923 else if (has_crypto_err) 1924 *err = ATH10K_PKT_RX_ERR_CRYPT; 1925 else if (has_peer_idx_invalid) 1926 *err = ATH10K_PKT_RX_ERR_PEER_IDX_INVAL; 1927 } 1928 1929 /* Firmware reports all necessary management frames via WMI already. 1930 * They are not reported to monitor interfaces at all so pass the ones 1931 * coming via HTT to monitor interfaces instead. This simplifies 1932 * matters a lot. 1933 */ 1934 if (is_mgmt) 1935 status->flag |= RX_FLAG_ONLY_MONITOR; 1936 1937 if (is_decrypted) { 1938 status->flag |= RX_FLAG_DECRYPTED; 1939 1940 if (likely(!is_mgmt)) 1941 status->flag |= RX_FLAG_MMIC_STRIPPED; 1942 1943 if (fill_crypt_header) 1944 status->flag |= RX_FLAG_MIC_STRIPPED | 1945 RX_FLAG_ICV_STRIPPED; 1946 else 1947 status->flag |= RX_FLAG_IV_STRIPPED; 1948 } 1949 1950 skb_queue_walk(amsdu, msdu) { 1951 if (frag && !fill_crypt_header && is_decrypted && 1952 enctype == HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2) 1953 frag_pn_check = ath10k_htt_rx_h_frag_pn_check(ar, 1954 msdu, 1955 peer_id, 1956 0, 1957 enctype); 1958 1959 if (frag) 1960 multicast_check = ath10k_htt_rx_h_frag_multicast_check(ar, 1961 msdu, 1962 0); 1963 1964 if (!frag_pn_check || !multicast_check) { 1965 /* Discard the fragment with invalid PN or multicast DA 1966 */ 1967 temp = msdu->prev; 1968 __skb_unlink(msdu, amsdu); 1969 dev_kfree_skb_any(msdu); 1970 msdu = temp; 1971 frag_pn_check = true; 1972 multicast_check = true; 1973 continue; 1974 } 1975 1976 ath10k_htt_rx_h_csum_offload(msdu); 1977 1978 if (frag && !fill_crypt_header && 1979 enctype == HTT_RX_MPDU_ENCRYPT_TKIP_WPA) 1980 status->flag &= ~RX_FLAG_MMIC_STRIPPED; 1981 1982 ath10k_htt_rx_h_undecap(ar, msdu, status, first_hdr, enctype, 1983 is_decrypted); 1984 1985 /* Undecapping involves copying the original 802.11 header back 1986 * to sk_buff. If frame is protected and hardware has decrypted 1987 * it then remove the protected bit. 1988 */ 1989 if (!is_decrypted) 1990 continue; 1991 if (is_mgmt) 1992 continue; 1993 1994 if (fill_crypt_header) 1995 continue; 1996 1997 hdr = (void *)msdu->data; 1998 hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED); 1999 2000 if (frag && !fill_crypt_header && 2001 enctype == HTT_RX_MPDU_ENCRYPT_TKIP_WPA) 2002 status->flag &= ~RX_FLAG_IV_STRIPPED & 2003 ~RX_FLAG_MMIC_STRIPPED; 2004 } 2005 } 2006 2007 static void ath10k_htt_rx_h_enqueue(struct ath10k *ar, 2008 struct sk_buff_head *amsdu, 2009 struct ieee80211_rx_status *status) 2010 { 2011 struct sk_buff *msdu; 2012 struct sk_buff *first_subframe; 2013 2014 first_subframe = skb_peek(amsdu); 2015 2016 while ((msdu = __skb_dequeue(amsdu))) { 2017 /* Setup per-MSDU flags */ 2018 if (skb_queue_empty(amsdu)) 2019 status->flag &= ~RX_FLAG_AMSDU_MORE; 2020 else 2021 status->flag |= RX_FLAG_AMSDU_MORE; 2022 2023 if (msdu == first_subframe) { 2024 first_subframe = NULL; 2025 status->flag &= ~RX_FLAG_ALLOW_SAME_PN; 2026 } else { 2027 status->flag |= RX_FLAG_ALLOW_SAME_PN; 2028 } 2029 2030 ath10k_htt_rx_h_queue_msdu(ar, status, msdu); 2031 } 2032 } 2033 2034 static int ath10k_unchain_msdu(struct sk_buff_head *amsdu, 2035 unsigned long *unchain_cnt) 2036 { 2037 struct sk_buff *skb, *first; 2038 int space; 2039 int total_len = 0; 2040 int amsdu_len = skb_queue_len(amsdu); 2041 2042 /* TODO: Might could optimize this by using 2043 * skb_try_coalesce or similar method to 2044 * decrease copying, or maybe get mac80211 to 2045 * provide a way to just receive a list of 2046 * skb? 2047 */ 2048 2049 first = __skb_dequeue(amsdu); 2050 2051 /* Allocate total length all at once. */ 2052 skb_queue_walk(amsdu, skb) 2053 total_len += skb->len; 2054 2055 space = total_len - skb_tailroom(first); 2056 if ((space > 0) && 2057 (pskb_expand_head(first, 0, space, GFP_ATOMIC) < 0)) { 2058 /* TODO: bump some rx-oom error stat */ 2059 /* put it back together so we can free the 2060 * whole list at once. 2061 */ 2062 __skb_queue_head(amsdu, first); 2063 return -1; 2064 } 2065 2066 /* Walk list again, copying contents into 2067 * msdu_head 2068 */ 2069 while ((skb = __skb_dequeue(amsdu))) { 2070 skb_copy_from_linear_data(skb, skb_put(first, skb->len), 2071 skb->len); 2072 dev_kfree_skb_any(skb); 2073 } 2074 2075 __skb_queue_head(amsdu, first); 2076 2077 *unchain_cnt += amsdu_len - 1; 2078 2079 return 0; 2080 } 2081 2082 static void ath10k_htt_rx_h_unchain(struct ath10k *ar, 2083 struct sk_buff_head *amsdu, 2084 unsigned long *drop_cnt, 2085 unsigned long *unchain_cnt) 2086 { 2087 struct sk_buff *first; 2088 struct htt_rx_desc *rxd; 2089 enum rx_msdu_decap_format decap; 2090 2091 first = skb_peek(amsdu); 2092 rxd = (void *)first->data - sizeof(*rxd); 2093 decap = MS(__le32_to_cpu(rxd->msdu_start.common.info1), 2094 RX_MSDU_START_INFO1_DECAP_FORMAT); 2095 2096 /* FIXME: Current unchaining logic can only handle simple case of raw 2097 * msdu chaining. If decapping is other than raw the chaining may be 2098 * more complex and this isn't handled by the current code. Don't even 2099 * try re-constructing such frames - it'll be pretty much garbage. 2100 */ 2101 if (decap != RX_MSDU_DECAP_RAW || 2102 skb_queue_len(amsdu) != 1 + rxd->frag_info.ring2_more_count) { 2103 *drop_cnt += skb_queue_len(amsdu); 2104 __skb_queue_purge(amsdu); 2105 return; 2106 } 2107 2108 ath10k_unchain_msdu(amsdu, unchain_cnt); 2109 } 2110 2111 static bool ath10k_htt_rx_validate_amsdu(struct ath10k *ar, 2112 struct sk_buff_head *amsdu) 2113 { 2114 u8 *subframe_hdr; 2115 struct sk_buff *first; 2116 bool is_first, is_last; 2117 struct htt_rx_desc *rxd; 2118 struct ieee80211_hdr *hdr; 2119 size_t hdr_len, crypto_len; 2120 enum htt_rx_mpdu_encrypt_type enctype; 2121 int bytes_aligned = ar->hw_params.decap_align_bytes; 2122 2123 first = skb_peek(amsdu); 2124 2125 rxd = (void *)first->data - sizeof(*rxd); 2126 hdr = (void *)rxd->rx_hdr_status; 2127 2128 is_first = !!(rxd->msdu_end.common.info0 & 2129 __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU)); 2130 is_last = !!(rxd->msdu_end.common.info0 & 2131 __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU)); 2132 2133 /* Return in case of non-aggregated msdu */ 2134 if (is_first && is_last) 2135 return true; 2136 2137 /* First msdu flag is not set for the first msdu of the list */ 2138 if (!is_first) 2139 return false; 2140 2141 enctype = MS(__le32_to_cpu(rxd->mpdu_start.info0), 2142 RX_MPDU_START_INFO0_ENCRYPT_TYPE); 2143 2144 hdr_len = ieee80211_hdrlen(hdr->frame_control); 2145 crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype); 2146 2147 subframe_hdr = (u8 *)hdr + round_up(hdr_len, bytes_aligned) + 2148 crypto_len; 2149 2150 /* Validate if the amsdu has a proper first subframe. 2151 * There are chances a single msdu can be received as amsdu when 2152 * the unauthenticated amsdu flag of a QoS header 2153 * gets flipped in non-SPP AMSDU's, in such cases the first 2154 * subframe has llc/snap header in place of a valid da. 2155 * return false if the da matches rfc1042 pattern 2156 */ 2157 if (ether_addr_equal(subframe_hdr, rfc1042_header)) 2158 return false; 2159 2160 return true; 2161 } 2162 2163 static bool ath10k_htt_rx_amsdu_allowed(struct ath10k *ar, 2164 struct sk_buff_head *amsdu, 2165 struct ieee80211_rx_status *rx_status) 2166 { 2167 if (!rx_status->freq) { 2168 ath10k_dbg(ar, ATH10K_DBG_HTT, "no channel configured; ignoring frame(s)!\n"); 2169 return false; 2170 } 2171 2172 if (test_bit(ATH10K_CAC_RUNNING, &ar->dev_flags)) { 2173 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx cac running\n"); 2174 return false; 2175 } 2176 2177 if (!ath10k_htt_rx_validate_amsdu(ar, amsdu)) { 2178 ath10k_dbg(ar, ATH10K_DBG_HTT, "invalid amsdu received\n"); 2179 return false; 2180 } 2181 2182 return true; 2183 } 2184 2185 static void ath10k_htt_rx_h_filter(struct ath10k *ar, 2186 struct sk_buff_head *amsdu, 2187 struct ieee80211_rx_status *rx_status, 2188 unsigned long *drop_cnt) 2189 { 2190 if (skb_queue_empty(amsdu)) 2191 return; 2192 2193 if (ath10k_htt_rx_amsdu_allowed(ar, amsdu, rx_status)) 2194 return; 2195 2196 if (drop_cnt) 2197 *drop_cnt += skb_queue_len(amsdu); 2198 2199 __skb_queue_purge(amsdu); 2200 } 2201 2202 static int ath10k_htt_rx_handle_amsdu(struct ath10k_htt *htt) 2203 { 2204 struct ath10k *ar = htt->ar; 2205 struct ieee80211_rx_status *rx_status = &htt->rx_status; 2206 struct sk_buff_head amsdu; 2207 int ret; 2208 unsigned long drop_cnt = 0; 2209 unsigned long unchain_cnt = 0; 2210 unsigned long drop_cnt_filter = 0; 2211 unsigned long msdus_to_queue, num_msdus; 2212 enum ath10k_pkt_rx_err err = ATH10K_PKT_RX_ERR_MAX; 2213 u8 first_hdr[RX_HTT_HDR_STATUS_LEN]; 2214 2215 __skb_queue_head_init(&amsdu); 2216 2217 spin_lock_bh(&htt->rx_ring.lock); 2218 if (htt->rx_confused) { 2219 spin_unlock_bh(&htt->rx_ring.lock); 2220 return -EIO; 2221 } 2222 ret = ath10k_htt_rx_amsdu_pop(htt, &amsdu); 2223 spin_unlock_bh(&htt->rx_ring.lock); 2224 2225 if (ret < 0) { 2226 ath10k_warn(ar, "rx ring became corrupted: %d\n", ret); 2227 __skb_queue_purge(&amsdu); 2228 /* FIXME: It's probably a good idea to reboot the 2229 * device instead of leaving it inoperable. 2230 */ 2231 htt->rx_confused = true; 2232 return ret; 2233 } 2234 2235 num_msdus = skb_queue_len(&amsdu); 2236 2237 ath10k_htt_rx_h_ppdu(ar, &amsdu, rx_status, 0xffff); 2238 2239 /* only for ret = 1 indicates chained msdus */ 2240 if (ret > 0) 2241 ath10k_htt_rx_h_unchain(ar, &amsdu, &drop_cnt, &unchain_cnt); 2242 2243 ath10k_htt_rx_h_filter(ar, &amsdu, rx_status, &drop_cnt_filter); 2244 ath10k_htt_rx_h_mpdu(ar, &amsdu, rx_status, true, first_hdr, &err, 0, 2245 false); 2246 msdus_to_queue = skb_queue_len(&amsdu); 2247 ath10k_htt_rx_h_enqueue(ar, &amsdu, rx_status); 2248 2249 ath10k_sta_update_rx_tid_stats(ar, first_hdr, num_msdus, err, 2250 unchain_cnt, drop_cnt, drop_cnt_filter, 2251 msdus_to_queue); 2252 2253 return 0; 2254 } 2255 2256 static void ath10k_htt_rx_mpdu_desc_pn_hl(struct htt_hl_rx_desc *rx_desc, 2257 union htt_rx_pn_t *pn, 2258 int pn_len_bits) 2259 { 2260 switch (pn_len_bits) { 2261 case 48: 2262 pn->pn48 = __le32_to_cpu(rx_desc->pn_31_0) + 2263 ((u64)(__le32_to_cpu(rx_desc->u0.pn_63_32) & 0xFFFF) << 32); 2264 break; 2265 case 24: 2266 pn->pn24 = __le32_to_cpu(rx_desc->pn_31_0); 2267 break; 2268 } 2269 } 2270 2271 static bool ath10k_htt_rx_pn_cmp48(union htt_rx_pn_t *new_pn, 2272 union htt_rx_pn_t *old_pn) 2273 { 2274 return ((new_pn->pn48 & 0xffffffffffffULL) <= 2275 (old_pn->pn48 & 0xffffffffffffULL)); 2276 } 2277 2278 static bool ath10k_htt_rx_pn_check_replay_hl(struct ath10k *ar, 2279 struct ath10k_peer *peer, 2280 struct htt_rx_indication_hl *rx) 2281 { 2282 bool last_pn_valid, pn_invalid = false; 2283 enum htt_txrx_sec_cast_type sec_index; 2284 enum htt_security_types sec_type; 2285 union htt_rx_pn_t new_pn = {0}; 2286 struct htt_hl_rx_desc *rx_desc; 2287 union htt_rx_pn_t *last_pn; 2288 u32 rx_desc_info, tid; 2289 int num_mpdu_ranges; 2290 2291 lockdep_assert_held(&ar->data_lock); 2292 2293 if (!peer) 2294 return false; 2295 2296 if (!(rx->fw_desc.flags & FW_RX_DESC_FLAGS_FIRST_MSDU)) 2297 return false; 2298 2299 num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1), 2300 HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES); 2301 2302 rx_desc = (struct htt_hl_rx_desc *)&rx->mpdu_ranges[num_mpdu_ranges]; 2303 rx_desc_info = __le32_to_cpu(rx_desc->info); 2304 2305 if (!MS(rx_desc_info, HTT_RX_DESC_HL_INFO_ENCRYPTED)) 2306 return false; 2307 2308 tid = MS(rx->hdr.info0, HTT_RX_INDICATION_INFO0_EXT_TID); 2309 last_pn_valid = peer->tids_last_pn_valid[tid]; 2310 last_pn = &peer->tids_last_pn[tid]; 2311 2312 if (MS(rx_desc_info, HTT_RX_DESC_HL_INFO_MCAST_BCAST)) 2313 sec_index = HTT_TXRX_SEC_MCAST; 2314 else 2315 sec_index = HTT_TXRX_SEC_UCAST; 2316 2317 sec_type = peer->rx_pn[sec_index].sec_type; 2318 ath10k_htt_rx_mpdu_desc_pn_hl(rx_desc, &new_pn, peer->rx_pn[sec_index].pn_len); 2319 2320 if (sec_type != HTT_SECURITY_AES_CCMP && 2321 sec_type != HTT_SECURITY_TKIP && 2322 sec_type != HTT_SECURITY_TKIP_NOMIC) 2323 return false; 2324 2325 if (last_pn_valid) 2326 pn_invalid = ath10k_htt_rx_pn_cmp48(&new_pn, last_pn); 2327 else 2328 peer->tids_last_pn_valid[tid] = true; 2329 2330 if (!pn_invalid) 2331 last_pn->pn48 = new_pn.pn48; 2332 2333 return pn_invalid; 2334 } 2335 2336 static bool ath10k_htt_rx_proc_rx_ind_hl(struct ath10k_htt *htt, 2337 struct htt_rx_indication_hl *rx, 2338 struct sk_buff *skb, 2339 enum htt_rx_pn_check_type check_pn_type, 2340 enum htt_rx_tkip_demic_type tkip_mic_type) 2341 { 2342 struct ath10k *ar = htt->ar; 2343 struct ath10k_peer *peer; 2344 struct htt_rx_indication_mpdu_range *mpdu_ranges; 2345 struct fw_rx_desc_hl *fw_desc; 2346 enum htt_txrx_sec_cast_type sec_index; 2347 enum htt_security_types sec_type; 2348 union htt_rx_pn_t new_pn = {0}; 2349 struct htt_hl_rx_desc *rx_desc; 2350 struct ieee80211_hdr *hdr; 2351 struct ieee80211_rx_status *rx_status; 2352 u16 peer_id; 2353 u8 rx_desc_len; 2354 int num_mpdu_ranges; 2355 size_t tot_hdr_len; 2356 struct ieee80211_channel *ch; 2357 bool pn_invalid, qos, first_msdu; 2358 u32 tid, rx_desc_info; 2359 2360 peer_id = __le16_to_cpu(rx->hdr.peer_id); 2361 tid = MS(rx->hdr.info0, HTT_RX_INDICATION_INFO0_EXT_TID); 2362 2363 spin_lock_bh(&ar->data_lock); 2364 peer = ath10k_peer_find_by_id(ar, peer_id); 2365 spin_unlock_bh(&ar->data_lock); 2366 if (!peer && peer_id != HTT_INVALID_PEERID) 2367 ath10k_warn(ar, "Got RX ind from invalid peer: %u\n", peer_id); 2368 2369 if (!peer) 2370 return true; 2371 2372 num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1), 2373 HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES); 2374 mpdu_ranges = htt_rx_ind_get_mpdu_ranges_hl(rx); 2375 fw_desc = &rx->fw_desc; 2376 rx_desc_len = fw_desc->len; 2377 2378 if (fw_desc->u.bits.discard) { 2379 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt discard mpdu\n"); 2380 goto err; 2381 } 2382 2383 /* I have not yet seen any case where num_mpdu_ranges > 1. 2384 * qcacld does not seem handle that case either, so we introduce the 2385 * same limitiation here as well. 2386 */ 2387 if (num_mpdu_ranges > 1) 2388 ath10k_warn(ar, 2389 "Unsupported number of MPDU ranges: %d, ignoring all but the first\n", 2390 num_mpdu_ranges); 2391 2392 if (mpdu_ranges->mpdu_range_status != 2393 HTT_RX_IND_MPDU_STATUS_OK && 2394 mpdu_ranges->mpdu_range_status != 2395 HTT_RX_IND_MPDU_STATUS_TKIP_MIC_ERR) { 2396 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt mpdu_range_status %d\n", 2397 mpdu_ranges->mpdu_range_status); 2398 goto err; 2399 } 2400 2401 rx_desc = (struct htt_hl_rx_desc *)&rx->mpdu_ranges[num_mpdu_ranges]; 2402 rx_desc_info = __le32_to_cpu(rx_desc->info); 2403 2404 if (MS(rx_desc_info, HTT_RX_DESC_HL_INFO_MCAST_BCAST)) 2405 sec_index = HTT_TXRX_SEC_MCAST; 2406 else 2407 sec_index = HTT_TXRX_SEC_UCAST; 2408 2409 sec_type = peer->rx_pn[sec_index].sec_type; 2410 first_msdu = rx->fw_desc.flags & FW_RX_DESC_FLAGS_FIRST_MSDU; 2411 2412 ath10k_htt_rx_mpdu_desc_pn_hl(rx_desc, &new_pn, peer->rx_pn[sec_index].pn_len); 2413 2414 if (check_pn_type == HTT_RX_PN_CHECK && tid >= IEEE80211_NUM_TIDS) { 2415 spin_lock_bh(&ar->data_lock); 2416 pn_invalid = ath10k_htt_rx_pn_check_replay_hl(ar, peer, rx); 2417 spin_unlock_bh(&ar->data_lock); 2418 2419 if (pn_invalid) 2420 goto err; 2421 } 2422 2423 /* Strip off all headers before the MAC header before delivery to 2424 * mac80211 2425 */ 2426 tot_hdr_len = sizeof(struct htt_resp_hdr) + sizeof(rx->hdr) + 2427 sizeof(rx->ppdu) + sizeof(rx->prefix) + 2428 sizeof(rx->fw_desc) + 2429 sizeof(*mpdu_ranges) * num_mpdu_ranges + rx_desc_len; 2430 2431 skb_pull(skb, tot_hdr_len); 2432 2433 hdr = (struct ieee80211_hdr *)skb->data; 2434 qos = ieee80211_is_data_qos(hdr->frame_control); 2435 2436 rx_status = IEEE80211_SKB_RXCB(skb); 2437 memset(rx_status, 0, sizeof(*rx_status)); 2438 2439 if (rx->ppdu.combined_rssi == 0) { 2440 /* SDIO firmware does not provide signal */ 2441 rx_status->signal = 0; 2442 rx_status->flag |= RX_FLAG_NO_SIGNAL_VAL; 2443 } else { 2444 rx_status->signal = ATH10K_DEFAULT_NOISE_FLOOR + 2445 rx->ppdu.combined_rssi; 2446 rx_status->flag &= ~RX_FLAG_NO_SIGNAL_VAL; 2447 } 2448 2449 spin_lock_bh(&ar->data_lock); 2450 ch = ar->scan_channel; 2451 if (!ch) 2452 ch = ar->rx_channel; 2453 if (!ch) 2454 ch = ath10k_htt_rx_h_any_channel(ar); 2455 if (!ch) 2456 ch = ar->tgt_oper_chan; 2457 spin_unlock_bh(&ar->data_lock); 2458 2459 if (ch) { 2460 rx_status->band = ch->band; 2461 rx_status->freq = ch->center_freq; 2462 } 2463 if (rx->fw_desc.flags & FW_RX_DESC_FLAGS_LAST_MSDU) 2464 rx_status->flag &= ~RX_FLAG_AMSDU_MORE; 2465 else 2466 rx_status->flag |= RX_FLAG_AMSDU_MORE; 2467 2468 /* Not entirely sure about this, but all frames from the chipset has 2469 * the protected flag set even though they have already been decrypted. 2470 * Unmasking this flag is necessary in order for mac80211 not to drop 2471 * the frame. 2472 * TODO: Verify this is always the case or find out a way to check 2473 * if there has been hw decryption. 2474 */ 2475 if (ieee80211_has_protected(hdr->frame_control)) { 2476 hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED); 2477 rx_status->flag |= RX_FLAG_DECRYPTED | 2478 RX_FLAG_IV_STRIPPED | 2479 RX_FLAG_MMIC_STRIPPED; 2480 2481 if (tid < IEEE80211_NUM_TIDS && 2482 first_msdu && 2483 check_pn_type == HTT_RX_PN_CHECK && 2484 (sec_type == HTT_SECURITY_AES_CCMP || 2485 sec_type == HTT_SECURITY_TKIP || 2486 sec_type == HTT_SECURITY_TKIP_NOMIC)) { 2487 u8 offset, *ivp, i; 2488 s8 keyidx = 0; 2489 __le64 pn48 = cpu_to_le64(new_pn.pn48); 2490 2491 hdr = (struct ieee80211_hdr *)skb->data; 2492 offset = ieee80211_hdrlen(hdr->frame_control); 2493 hdr->frame_control |= __cpu_to_le16(IEEE80211_FCTL_PROTECTED); 2494 rx_status->flag &= ~RX_FLAG_IV_STRIPPED; 2495 2496 memmove(skb->data - IEEE80211_CCMP_HDR_LEN, 2497 skb->data, offset); 2498 skb_push(skb, IEEE80211_CCMP_HDR_LEN); 2499 ivp = skb->data + offset; 2500 memset(skb->data + offset, 0, IEEE80211_CCMP_HDR_LEN); 2501 /* Ext IV */ 2502 ivp[IEEE80211_WEP_IV_LEN - 1] |= ATH10K_IEEE80211_EXTIV; 2503 2504 for (i = 0; i < ARRAY_SIZE(peer->keys); i++) { 2505 if (peer->keys[i] && 2506 peer->keys[i]->flags & IEEE80211_KEY_FLAG_PAIRWISE) 2507 keyidx = peer->keys[i]->keyidx; 2508 } 2509 2510 /* Key ID */ 2511 ivp[IEEE80211_WEP_IV_LEN - 1] |= keyidx << 6; 2512 2513 if (sec_type == HTT_SECURITY_AES_CCMP) { 2514 rx_status->flag |= RX_FLAG_MIC_STRIPPED; 2515 /* pn 0, pn 1 */ 2516 memcpy(skb->data + offset, &pn48, 2); 2517 /* pn 1, pn 3 , pn 34 , pn 5 */ 2518 memcpy(skb->data + offset + 4, ((u8 *)&pn48) + 2, 4); 2519 } else { 2520 rx_status->flag |= RX_FLAG_ICV_STRIPPED; 2521 /* TSC 0 */ 2522 memcpy(skb->data + offset + 2, &pn48, 1); 2523 /* TSC 1 */ 2524 memcpy(skb->data + offset, ((u8 *)&pn48) + 1, 1); 2525 /* TSC 2 , TSC 3 , TSC 4 , TSC 5*/ 2526 memcpy(skb->data + offset + 4, ((u8 *)&pn48) + 2, 4); 2527 } 2528 } 2529 } 2530 2531 if (tkip_mic_type == HTT_RX_TKIP_MIC) 2532 rx_status->flag &= ~RX_FLAG_IV_STRIPPED & 2533 ~RX_FLAG_MMIC_STRIPPED; 2534 2535 if (mpdu_ranges->mpdu_range_status == HTT_RX_IND_MPDU_STATUS_TKIP_MIC_ERR) 2536 rx_status->flag |= RX_FLAG_MMIC_ERROR; 2537 2538 if (!qos && tid < IEEE80211_NUM_TIDS) { 2539 u8 offset; 2540 __le16 qos_ctrl = 0; 2541 2542 hdr = (struct ieee80211_hdr *)skb->data; 2543 offset = ieee80211_hdrlen(hdr->frame_control); 2544 2545 hdr->frame_control |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA); 2546 memmove(skb->data - IEEE80211_QOS_CTL_LEN, skb->data, offset); 2547 skb_push(skb, IEEE80211_QOS_CTL_LEN); 2548 qos_ctrl = cpu_to_le16(tid); 2549 memcpy(skb->data + offset, &qos_ctrl, IEEE80211_QOS_CTL_LEN); 2550 } 2551 2552 if (ar->napi.dev) 2553 ieee80211_rx_napi(ar->hw, NULL, skb, &ar->napi); 2554 else 2555 ieee80211_rx_ni(ar->hw, skb); 2556 2557 /* We have delivered the skb to the upper layers (mac80211) so we 2558 * must not free it. 2559 */ 2560 return false; 2561 err: 2562 /* Tell the caller that it must free the skb since we have not 2563 * consumed it 2564 */ 2565 return true; 2566 } 2567 2568 static int ath10k_htt_rx_frag_tkip_decap_nomic(struct sk_buff *skb, 2569 u16 head_len, 2570 u16 hdr_len) 2571 { 2572 u8 *ivp, *orig_hdr; 2573 2574 orig_hdr = skb->data; 2575 ivp = orig_hdr + hdr_len + head_len; 2576 2577 /* the ExtIV bit is always set to 1 for TKIP */ 2578 if (!(ivp[IEEE80211_WEP_IV_LEN - 1] & ATH10K_IEEE80211_EXTIV)) 2579 return -EINVAL; 2580 2581 memmove(orig_hdr + IEEE80211_TKIP_IV_LEN, orig_hdr, head_len + hdr_len); 2582 skb_pull(skb, IEEE80211_TKIP_IV_LEN); 2583 skb_trim(skb, skb->len - ATH10K_IEEE80211_TKIP_MICLEN); 2584 return 0; 2585 } 2586 2587 static int ath10k_htt_rx_frag_tkip_decap_withmic(struct sk_buff *skb, 2588 u16 head_len, 2589 u16 hdr_len) 2590 { 2591 u8 *ivp, *orig_hdr; 2592 2593 orig_hdr = skb->data; 2594 ivp = orig_hdr + hdr_len + head_len; 2595 2596 /* the ExtIV bit is always set to 1 for TKIP */ 2597 if (!(ivp[IEEE80211_WEP_IV_LEN - 1] & ATH10K_IEEE80211_EXTIV)) 2598 return -EINVAL; 2599 2600 memmove(orig_hdr + IEEE80211_TKIP_IV_LEN, orig_hdr, head_len + hdr_len); 2601 skb_pull(skb, IEEE80211_TKIP_IV_LEN); 2602 skb_trim(skb, skb->len - IEEE80211_TKIP_ICV_LEN); 2603 return 0; 2604 } 2605 2606 static int ath10k_htt_rx_frag_ccmp_decap(struct sk_buff *skb, 2607 u16 head_len, 2608 u16 hdr_len) 2609 { 2610 u8 *ivp, *orig_hdr; 2611 2612 orig_hdr = skb->data; 2613 ivp = orig_hdr + hdr_len + head_len; 2614 2615 /* the ExtIV bit is always set to 1 for CCMP */ 2616 if (!(ivp[IEEE80211_WEP_IV_LEN - 1] & ATH10K_IEEE80211_EXTIV)) 2617 return -EINVAL; 2618 2619 skb_trim(skb, skb->len - IEEE80211_CCMP_MIC_LEN); 2620 memmove(orig_hdr + IEEE80211_CCMP_HDR_LEN, orig_hdr, head_len + hdr_len); 2621 skb_pull(skb, IEEE80211_CCMP_HDR_LEN); 2622 return 0; 2623 } 2624 2625 static int ath10k_htt_rx_frag_wep_decap(struct sk_buff *skb, 2626 u16 head_len, 2627 u16 hdr_len) 2628 { 2629 u8 *orig_hdr; 2630 2631 orig_hdr = skb->data; 2632 2633 memmove(orig_hdr + IEEE80211_WEP_IV_LEN, 2634 orig_hdr, head_len + hdr_len); 2635 skb_pull(skb, IEEE80211_WEP_IV_LEN); 2636 skb_trim(skb, skb->len - IEEE80211_WEP_ICV_LEN); 2637 return 0; 2638 } 2639 2640 static bool ath10k_htt_rx_proc_rx_frag_ind_hl(struct ath10k_htt *htt, 2641 struct htt_rx_fragment_indication *rx, 2642 struct sk_buff *skb) 2643 { 2644 struct ath10k *ar = htt->ar; 2645 enum htt_rx_tkip_demic_type tkip_mic = HTT_RX_NON_TKIP_MIC; 2646 enum htt_txrx_sec_cast_type sec_index; 2647 struct htt_rx_indication_hl *rx_hl; 2648 enum htt_security_types sec_type; 2649 u32 tid, frag, seq, rx_desc_info; 2650 union htt_rx_pn_t new_pn = {0}; 2651 struct htt_hl_rx_desc *rx_desc; 2652 u16 peer_id, sc, hdr_space; 2653 union htt_rx_pn_t *last_pn; 2654 struct ieee80211_hdr *hdr; 2655 int ret, num_mpdu_ranges; 2656 struct ath10k_peer *peer; 2657 struct htt_resp *resp; 2658 size_t tot_hdr_len; 2659 2660 resp = (struct htt_resp *)(skb->data + HTT_RX_FRAG_IND_INFO0_HEADER_LEN); 2661 skb_pull(skb, HTT_RX_FRAG_IND_INFO0_HEADER_LEN); 2662 skb_trim(skb, skb->len - FCS_LEN); 2663 2664 peer_id = __le16_to_cpu(rx->peer_id); 2665 rx_hl = (struct htt_rx_indication_hl *)(&resp->rx_ind_hl); 2666 2667 spin_lock_bh(&ar->data_lock); 2668 peer = ath10k_peer_find_by_id(ar, peer_id); 2669 if (!peer) { 2670 ath10k_dbg(ar, ATH10K_DBG_HTT, "invalid peer: %u\n", peer_id); 2671 goto err; 2672 } 2673 2674 num_mpdu_ranges = MS(__le32_to_cpu(rx_hl->hdr.info1), 2675 HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES); 2676 2677 tot_hdr_len = sizeof(struct htt_resp_hdr) + 2678 sizeof(rx_hl->hdr) + 2679 sizeof(rx_hl->ppdu) + 2680 sizeof(rx_hl->prefix) + 2681 sizeof(rx_hl->fw_desc) + 2682 sizeof(struct htt_rx_indication_mpdu_range) * num_mpdu_ranges; 2683 2684 tid = MS(rx_hl->hdr.info0, HTT_RX_INDICATION_INFO0_EXT_TID); 2685 rx_desc = (struct htt_hl_rx_desc *)(skb->data + tot_hdr_len); 2686 rx_desc_info = __le32_to_cpu(rx_desc->info); 2687 2688 hdr = (struct ieee80211_hdr *)((u8 *)rx_desc + rx_hl->fw_desc.len); 2689 2690 if (is_multicast_ether_addr(hdr->addr1)) { 2691 /* Discard the fragment with multicast DA */ 2692 goto err; 2693 } 2694 2695 if (!MS(rx_desc_info, HTT_RX_DESC_HL_INFO_ENCRYPTED)) { 2696 spin_unlock_bh(&ar->data_lock); 2697 return ath10k_htt_rx_proc_rx_ind_hl(htt, &resp->rx_ind_hl, skb, 2698 HTT_RX_NON_PN_CHECK, 2699 HTT_RX_NON_TKIP_MIC); 2700 } 2701 2702 if (ieee80211_has_retry(hdr->frame_control)) 2703 goto err; 2704 2705 hdr_space = ieee80211_hdrlen(hdr->frame_control); 2706 sc = __le16_to_cpu(hdr->seq_ctrl); 2707 seq = (sc & IEEE80211_SCTL_SEQ) >> 4; 2708 frag = sc & IEEE80211_SCTL_FRAG; 2709 2710 sec_index = MS(rx_desc_info, HTT_RX_DESC_HL_INFO_MCAST_BCAST) ? 2711 HTT_TXRX_SEC_MCAST : HTT_TXRX_SEC_UCAST; 2712 sec_type = peer->rx_pn[sec_index].sec_type; 2713 ath10k_htt_rx_mpdu_desc_pn_hl(rx_desc, &new_pn, peer->rx_pn[sec_index].pn_len); 2714 2715 switch (sec_type) { 2716 case HTT_SECURITY_TKIP: 2717 tkip_mic = HTT_RX_TKIP_MIC; 2718 ret = ath10k_htt_rx_frag_tkip_decap_withmic(skb, 2719 tot_hdr_len + 2720 rx_hl->fw_desc.len, 2721 hdr_space); 2722 if (ret) 2723 goto err; 2724 break; 2725 case HTT_SECURITY_TKIP_NOMIC: 2726 ret = ath10k_htt_rx_frag_tkip_decap_nomic(skb, 2727 tot_hdr_len + 2728 rx_hl->fw_desc.len, 2729 hdr_space); 2730 if (ret) 2731 goto err; 2732 break; 2733 case HTT_SECURITY_AES_CCMP: 2734 ret = ath10k_htt_rx_frag_ccmp_decap(skb, 2735 tot_hdr_len + rx_hl->fw_desc.len, 2736 hdr_space); 2737 if (ret) 2738 goto err; 2739 break; 2740 case HTT_SECURITY_WEP128: 2741 case HTT_SECURITY_WEP104: 2742 case HTT_SECURITY_WEP40: 2743 ret = ath10k_htt_rx_frag_wep_decap(skb, 2744 tot_hdr_len + rx_hl->fw_desc.len, 2745 hdr_space); 2746 if (ret) 2747 goto err; 2748 break; 2749 default: 2750 break; 2751 } 2752 2753 resp = (struct htt_resp *)(skb->data); 2754 2755 if (sec_type != HTT_SECURITY_AES_CCMP && 2756 sec_type != HTT_SECURITY_TKIP && 2757 sec_type != HTT_SECURITY_TKIP_NOMIC) { 2758 spin_unlock_bh(&ar->data_lock); 2759 return ath10k_htt_rx_proc_rx_ind_hl(htt, &resp->rx_ind_hl, skb, 2760 HTT_RX_NON_PN_CHECK, 2761 HTT_RX_NON_TKIP_MIC); 2762 } 2763 2764 last_pn = &peer->frag_tids_last_pn[tid]; 2765 2766 if (frag == 0) { 2767 if (ath10k_htt_rx_pn_check_replay_hl(ar, peer, &resp->rx_ind_hl)) 2768 goto err; 2769 2770 last_pn->pn48 = new_pn.pn48; 2771 peer->frag_tids_seq[tid] = seq; 2772 } else if (sec_type == HTT_SECURITY_AES_CCMP) { 2773 if (seq != peer->frag_tids_seq[tid]) 2774 goto err; 2775 2776 if (new_pn.pn48 != last_pn->pn48 + 1) 2777 goto err; 2778 2779 last_pn->pn48 = new_pn.pn48; 2780 last_pn = &peer->tids_last_pn[tid]; 2781 last_pn->pn48 = new_pn.pn48; 2782 } 2783 2784 spin_unlock_bh(&ar->data_lock); 2785 2786 return ath10k_htt_rx_proc_rx_ind_hl(htt, &resp->rx_ind_hl, skb, 2787 HTT_RX_NON_PN_CHECK, tkip_mic); 2788 2789 err: 2790 spin_unlock_bh(&ar->data_lock); 2791 2792 /* Tell the caller that it must free the skb since we have not 2793 * consumed it 2794 */ 2795 return true; 2796 } 2797 2798 static void ath10k_htt_rx_proc_rx_ind_ll(struct ath10k_htt *htt, 2799 struct htt_rx_indication *rx) 2800 { 2801 struct ath10k *ar = htt->ar; 2802 struct htt_rx_indication_mpdu_range *mpdu_ranges; 2803 int num_mpdu_ranges; 2804 int i, mpdu_count = 0; 2805 u16 peer_id; 2806 u8 tid; 2807 2808 num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1), 2809 HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES); 2810 peer_id = __le16_to_cpu(rx->hdr.peer_id); 2811 tid = MS(rx->hdr.info0, HTT_RX_INDICATION_INFO0_EXT_TID); 2812 2813 mpdu_ranges = htt_rx_ind_get_mpdu_ranges(rx); 2814 2815 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx ind: ", 2816 rx, struct_size(rx, mpdu_ranges, num_mpdu_ranges)); 2817 2818 for (i = 0; i < num_mpdu_ranges; i++) 2819 mpdu_count += mpdu_ranges[i].mpdu_count; 2820 2821 atomic_add(mpdu_count, &htt->num_mpdus_ready); 2822 2823 ath10k_sta_update_rx_tid_stats_ampdu(ar, peer_id, tid, mpdu_ranges, 2824 num_mpdu_ranges); 2825 } 2826 2827 static void ath10k_htt_rx_tx_compl_ind(struct ath10k *ar, 2828 struct sk_buff *skb) 2829 { 2830 struct ath10k_htt *htt = &ar->htt; 2831 struct htt_resp *resp = (struct htt_resp *)skb->data; 2832 struct htt_tx_done tx_done = {}; 2833 int status = MS(resp->data_tx_completion.flags, HTT_DATA_TX_STATUS); 2834 __le16 msdu_id, *msdus; 2835 bool rssi_enabled = false; 2836 u8 msdu_count = 0, num_airtime_records, tid; 2837 int i, htt_pad = 0; 2838 struct htt_data_tx_compl_ppdu_dur *ppdu_info; 2839 struct ath10k_peer *peer; 2840 u16 ppdu_info_offset = 0, peer_id; 2841 u32 tx_duration; 2842 2843 switch (status) { 2844 case HTT_DATA_TX_STATUS_NO_ACK: 2845 tx_done.status = HTT_TX_COMPL_STATE_NOACK; 2846 break; 2847 case HTT_DATA_TX_STATUS_OK: 2848 tx_done.status = HTT_TX_COMPL_STATE_ACK; 2849 break; 2850 case HTT_DATA_TX_STATUS_DISCARD: 2851 case HTT_DATA_TX_STATUS_POSTPONE: 2852 case HTT_DATA_TX_STATUS_DOWNLOAD_FAIL: 2853 tx_done.status = HTT_TX_COMPL_STATE_DISCARD; 2854 break; 2855 default: 2856 ath10k_warn(ar, "unhandled tx completion status %d\n", status); 2857 tx_done.status = HTT_TX_COMPL_STATE_DISCARD; 2858 break; 2859 } 2860 2861 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx completion num_msdus %d\n", 2862 resp->data_tx_completion.num_msdus); 2863 2864 msdu_count = resp->data_tx_completion.num_msdus; 2865 msdus = resp->data_tx_completion.msdus; 2866 rssi_enabled = ath10k_is_rssi_enable(&ar->hw_params, resp); 2867 2868 if (rssi_enabled) 2869 htt_pad = ath10k_tx_data_rssi_get_pad_bytes(&ar->hw_params, 2870 resp); 2871 2872 for (i = 0; i < msdu_count; i++) { 2873 msdu_id = msdus[i]; 2874 tx_done.msdu_id = __le16_to_cpu(msdu_id); 2875 2876 if (rssi_enabled) { 2877 /* Total no of MSDUs should be even, 2878 * if odd MSDUs are sent firmware fills 2879 * last msdu id with 0xffff 2880 */ 2881 if (msdu_count & 0x01) { 2882 msdu_id = msdus[msdu_count + i + 1 + htt_pad]; 2883 tx_done.ack_rssi = __le16_to_cpu(msdu_id); 2884 } else { 2885 msdu_id = msdus[msdu_count + i + htt_pad]; 2886 tx_done.ack_rssi = __le16_to_cpu(msdu_id); 2887 } 2888 } 2889 2890 /* kfifo_put: In practice firmware shouldn't fire off per-CE 2891 * interrupt and main interrupt (MSI/-X range case) for the same 2892 * HTC service so it should be safe to use kfifo_put w/o lock. 2893 * 2894 * From kfifo_put() documentation: 2895 * Note that with only one concurrent reader and one concurrent 2896 * writer, you don't need extra locking to use these macro. 2897 */ 2898 if (ar->bus_param.dev_type == ATH10K_DEV_TYPE_HL) { 2899 ath10k_txrx_tx_unref(htt, &tx_done); 2900 } else if (!kfifo_put(&htt->txdone_fifo, tx_done)) { 2901 ath10k_warn(ar, "txdone fifo overrun, msdu_id %d status %d\n", 2902 tx_done.msdu_id, tx_done.status); 2903 ath10k_txrx_tx_unref(htt, &tx_done); 2904 } 2905 } 2906 2907 if (!(resp->data_tx_completion.flags2 & HTT_TX_CMPL_FLAG_PPDU_DURATION_PRESENT)) 2908 return; 2909 2910 ppdu_info_offset = (msdu_count & 0x01) ? msdu_count + 1 : msdu_count; 2911 2912 if (rssi_enabled) 2913 ppdu_info_offset += ppdu_info_offset; 2914 2915 if (resp->data_tx_completion.flags2 & 2916 (HTT_TX_CMPL_FLAG_PPID_PRESENT | HTT_TX_CMPL_FLAG_PA_PRESENT)) 2917 ppdu_info_offset += 2; 2918 2919 ppdu_info = (struct htt_data_tx_compl_ppdu_dur *)&msdus[ppdu_info_offset]; 2920 num_airtime_records = FIELD_GET(HTT_TX_COMPL_PPDU_DUR_INFO0_NUM_ENTRIES_MASK, 2921 __le32_to_cpu(ppdu_info->info0)); 2922 2923 for (i = 0; i < num_airtime_records; i++) { 2924 struct htt_data_tx_ppdu_dur *ppdu_dur; 2925 u32 info0; 2926 2927 ppdu_dur = &ppdu_info->ppdu_dur[i]; 2928 info0 = __le32_to_cpu(ppdu_dur->info0); 2929 2930 peer_id = FIELD_GET(HTT_TX_PPDU_DUR_INFO0_PEER_ID_MASK, 2931 info0); 2932 rcu_read_lock(); 2933 spin_lock_bh(&ar->data_lock); 2934 2935 peer = ath10k_peer_find_by_id(ar, peer_id); 2936 if (!peer || !peer->sta) { 2937 spin_unlock_bh(&ar->data_lock); 2938 rcu_read_unlock(); 2939 continue; 2940 } 2941 2942 tid = FIELD_GET(HTT_TX_PPDU_DUR_INFO0_TID_MASK, info0) & 2943 IEEE80211_QOS_CTL_TID_MASK; 2944 tx_duration = __le32_to_cpu(ppdu_dur->tx_duration); 2945 2946 ieee80211_sta_register_airtime(peer->sta, tid, tx_duration, 0); 2947 2948 spin_unlock_bh(&ar->data_lock); 2949 rcu_read_unlock(); 2950 } 2951 } 2952 2953 static void ath10k_htt_rx_addba(struct ath10k *ar, struct htt_resp *resp) 2954 { 2955 struct htt_rx_addba *ev = &resp->rx_addba; 2956 struct ath10k_peer *peer; 2957 struct ath10k_vif *arvif; 2958 u16 info0, tid, peer_id; 2959 2960 info0 = __le16_to_cpu(ev->info0); 2961 tid = MS(info0, HTT_RX_BA_INFO0_TID); 2962 peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID); 2963 2964 ath10k_dbg(ar, ATH10K_DBG_HTT, 2965 "htt rx addba tid %u peer_id %u size %u\n", 2966 tid, peer_id, ev->window_size); 2967 2968 spin_lock_bh(&ar->data_lock); 2969 peer = ath10k_peer_find_by_id(ar, peer_id); 2970 if (!peer) { 2971 ath10k_warn(ar, "received addba event for invalid peer_id: %u\n", 2972 peer_id); 2973 spin_unlock_bh(&ar->data_lock); 2974 return; 2975 } 2976 2977 arvif = ath10k_get_arvif(ar, peer->vdev_id); 2978 if (!arvif) { 2979 ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n", 2980 peer->vdev_id); 2981 spin_unlock_bh(&ar->data_lock); 2982 return; 2983 } 2984 2985 ath10k_dbg(ar, ATH10K_DBG_HTT, 2986 "htt rx start rx ba session sta %pM tid %u size %u\n", 2987 peer->addr, tid, ev->window_size); 2988 2989 ieee80211_start_rx_ba_session_offl(arvif->vif, peer->addr, tid); 2990 spin_unlock_bh(&ar->data_lock); 2991 } 2992 2993 static void ath10k_htt_rx_delba(struct ath10k *ar, struct htt_resp *resp) 2994 { 2995 struct htt_rx_delba *ev = &resp->rx_delba; 2996 struct ath10k_peer *peer; 2997 struct ath10k_vif *arvif; 2998 u16 info0, tid, peer_id; 2999 3000 info0 = __le16_to_cpu(ev->info0); 3001 tid = MS(info0, HTT_RX_BA_INFO0_TID); 3002 peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID); 3003 3004 ath10k_dbg(ar, ATH10K_DBG_HTT, 3005 "htt rx delba tid %u peer_id %u\n", 3006 tid, peer_id); 3007 3008 spin_lock_bh(&ar->data_lock); 3009 peer = ath10k_peer_find_by_id(ar, peer_id); 3010 if (!peer) { 3011 ath10k_warn(ar, "received addba event for invalid peer_id: %u\n", 3012 peer_id); 3013 spin_unlock_bh(&ar->data_lock); 3014 return; 3015 } 3016 3017 arvif = ath10k_get_arvif(ar, peer->vdev_id); 3018 if (!arvif) { 3019 ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n", 3020 peer->vdev_id); 3021 spin_unlock_bh(&ar->data_lock); 3022 return; 3023 } 3024 3025 ath10k_dbg(ar, ATH10K_DBG_HTT, 3026 "htt rx stop rx ba session sta %pM tid %u\n", 3027 peer->addr, tid); 3028 3029 ieee80211_stop_rx_ba_session_offl(arvif->vif, peer->addr, tid); 3030 spin_unlock_bh(&ar->data_lock); 3031 } 3032 3033 static int ath10k_htt_rx_extract_amsdu(struct sk_buff_head *list, 3034 struct sk_buff_head *amsdu) 3035 { 3036 struct sk_buff *msdu; 3037 struct htt_rx_desc *rxd; 3038 3039 if (skb_queue_empty(list)) 3040 return -ENOBUFS; 3041 3042 if (WARN_ON(!skb_queue_empty(amsdu))) 3043 return -EINVAL; 3044 3045 while ((msdu = __skb_dequeue(list))) { 3046 __skb_queue_tail(amsdu, msdu); 3047 3048 rxd = (void *)msdu->data - sizeof(*rxd); 3049 if (rxd->msdu_end.common.info0 & 3050 __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU)) 3051 break; 3052 } 3053 3054 msdu = skb_peek_tail(amsdu); 3055 rxd = (void *)msdu->data - sizeof(*rxd); 3056 if (!(rxd->msdu_end.common.info0 & 3057 __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU))) { 3058 skb_queue_splice_init(amsdu, list); 3059 return -EAGAIN; 3060 } 3061 3062 return 0; 3063 } 3064 3065 static void ath10k_htt_rx_h_rx_offload_prot(struct ieee80211_rx_status *status, 3066 struct sk_buff *skb) 3067 { 3068 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 3069 3070 if (!ieee80211_has_protected(hdr->frame_control)) 3071 return; 3072 3073 /* Offloaded frames are already decrypted but firmware insists they are 3074 * protected in the 802.11 header. Strip the flag. Otherwise mac80211 3075 * will drop the frame. 3076 */ 3077 3078 hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED); 3079 status->flag |= RX_FLAG_DECRYPTED | 3080 RX_FLAG_IV_STRIPPED | 3081 RX_FLAG_MMIC_STRIPPED; 3082 } 3083 3084 static void ath10k_htt_rx_h_rx_offload(struct ath10k *ar, 3085 struct sk_buff_head *list) 3086 { 3087 struct ath10k_htt *htt = &ar->htt; 3088 struct ieee80211_rx_status *status = &htt->rx_status; 3089 struct htt_rx_offload_msdu *rx; 3090 struct sk_buff *msdu; 3091 size_t offset; 3092 3093 while ((msdu = __skb_dequeue(list))) { 3094 /* Offloaded frames don't have Rx descriptor. Instead they have 3095 * a short meta information header. 3096 */ 3097 3098 rx = (void *)msdu->data; 3099 3100 skb_put(msdu, sizeof(*rx)); 3101 skb_pull(msdu, sizeof(*rx)); 3102 3103 if (skb_tailroom(msdu) < __le16_to_cpu(rx->msdu_len)) { 3104 ath10k_warn(ar, "dropping frame: offloaded rx msdu is too long!\n"); 3105 dev_kfree_skb_any(msdu); 3106 continue; 3107 } 3108 3109 skb_put(msdu, __le16_to_cpu(rx->msdu_len)); 3110 3111 /* Offloaded rx header length isn't multiple of 2 nor 4 so the 3112 * actual payload is unaligned. Align the frame. Otherwise 3113 * mac80211 complains. This shouldn't reduce performance much 3114 * because these offloaded frames are rare. 3115 */ 3116 offset = 4 - ((unsigned long)msdu->data & 3); 3117 skb_put(msdu, offset); 3118 memmove(msdu->data + offset, msdu->data, msdu->len); 3119 skb_pull(msdu, offset); 3120 3121 /* FIXME: The frame is NWifi. Re-construct QoS Control 3122 * if possible later. 3123 */ 3124 3125 memset(status, 0, sizeof(*status)); 3126 status->flag |= RX_FLAG_NO_SIGNAL_VAL; 3127 3128 ath10k_htt_rx_h_rx_offload_prot(status, msdu); 3129 ath10k_htt_rx_h_channel(ar, status, NULL, rx->vdev_id); 3130 ath10k_htt_rx_h_queue_msdu(ar, status, msdu); 3131 } 3132 } 3133 3134 static int ath10k_htt_rx_in_ord_ind(struct ath10k *ar, struct sk_buff *skb) 3135 { 3136 struct ath10k_htt *htt = &ar->htt; 3137 struct htt_resp *resp = (void *)skb->data; 3138 struct ieee80211_rx_status *status = &htt->rx_status; 3139 struct sk_buff_head list; 3140 struct sk_buff_head amsdu; 3141 u16 peer_id; 3142 u16 msdu_count; 3143 u8 vdev_id; 3144 u8 tid; 3145 bool offload; 3146 bool frag; 3147 int ret; 3148 3149 lockdep_assert_held(&htt->rx_ring.lock); 3150 3151 if (htt->rx_confused) 3152 return -EIO; 3153 3154 skb_pull(skb, sizeof(resp->hdr)); 3155 skb_pull(skb, sizeof(resp->rx_in_ord_ind)); 3156 3157 peer_id = __le16_to_cpu(resp->rx_in_ord_ind.peer_id); 3158 msdu_count = __le16_to_cpu(resp->rx_in_ord_ind.msdu_count); 3159 vdev_id = resp->rx_in_ord_ind.vdev_id; 3160 tid = SM(resp->rx_in_ord_ind.info, HTT_RX_IN_ORD_IND_INFO_TID); 3161 offload = !!(resp->rx_in_ord_ind.info & 3162 HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK); 3163 frag = !!(resp->rx_in_ord_ind.info & HTT_RX_IN_ORD_IND_INFO_FRAG_MASK); 3164 3165 ath10k_dbg(ar, ATH10K_DBG_HTT, 3166 "htt rx in ord vdev %i peer %i tid %i offload %i frag %i msdu count %i\n", 3167 vdev_id, peer_id, tid, offload, frag, msdu_count); 3168 3169 if (skb->len < msdu_count * sizeof(*resp->rx_in_ord_ind.msdu_descs32)) { 3170 ath10k_warn(ar, "dropping invalid in order rx indication\n"); 3171 return -EINVAL; 3172 } 3173 3174 /* The event can deliver more than 1 A-MSDU. Each A-MSDU is later 3175 * extracted and processed. 3176 */ 3177 __skb_queue_head_init(&list); 3178 if (ar->hw_params.target_64bit) 3179 ret = ath10k_htt_rx_pop_paddr64_list(htt, &resp->rx_in_ord_ind, 3180 &list); 3181 else 3182 ret = ath10k_htt_rx_pop_paddr32_list(htt, &resp->rx_in_ord_ind, 3183 &list); 3184 3185 if (ret < 0) { 3186 ath10k_warn(ar, "failed to pop paddr list: %d\n", ret); 3187 htt->rx_confused = true; 3188 return -EIO; 3189 } 3190 3191 /* Offloaded frames are very different and need to be handled 3192 * separately. 3193 */ 3194 if (offload) 3195 ath10k_htt_rx_h_rx_offload(ar, &list); 3196 3197 while (!skb_queue_empty(&list)) { 3198 __skb_queue_head_init(&amsdu); 3199 ret = ath10k_htt_rx_extract_amsdu(&list, &amsdu); 3200 switch (ret) { 3201 case 0: 3202 /* Note: The in-order indication may report interleaved 3203 * frames from different PPDUs meaning reported rx rate 3204 * to mac80211 isn't accurate/reliable. It's still 3205 * better to report something than nothing though. This 3206 * should still give an idea about rx rate to the user. 3207 */ 3208 ath10k_htt_rx_h_ppdu(ar, &amsdu, status, vdev_id); 3209 ath10k_htt_rx_h_filter(ar, &amsdu, status, NULL); 3210 ath10k_htt_rx_h_mpdu(ar, &amsdu, status, false, NULL, 3211 NULL, peer_id, frag); 3212 ath10k_htt_rx_h_enqueue(ar, &amsdu, status); 3213 break; 3214 case -EAGAIN: 3215 fallthrough; 3216 default: 3217 /* Should not happen. */ 3218 ath10k_warn(ar, "failed to extract amsdu: %d\n", ret); 3219 htt->rx_confused = true; 3220 __skb_queue_purge(&list); 3221 return -EIO; 3222 } 3223 } 3224 return ret; 3225 } 3226 3227 static void ath10k_htt_rx_tx_fetch_resp_id_confirm(struct ath10k *ar, 3228 const __le32 *resp_ids, 3229 int num_resp_ids) 3230 { 3231 int i; 3232 u32 resp_id; 3233 3234 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm num_resp_ids %d\n", 3235 num_resp_ids); 3236 3237 for (i = 0; i < num_resp_ids; i++) { 3238 resp_id = le32_to_cpu(resp_ids[i]); 3239 3240 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm resp_id %u\n", 3241 resp_id); 3242 3243 /* TODO: free resp_id */ 3244 } 3245 } 3246 3247 static void ath10k_htt_rx_tx_fetch_ind(struct ath10k *ar, struct sk_buff *skb) 3248 { 3249 struct ieee80211_hw *hw = ar->hw; 3250 struct ieee80211_txq *txq; 3251 struct htt_resp *resp = (struct htt_resp *)skb->data; 3252 struct htt_tx_fetch_record *record; 3253 size_t len; 3254 size_t max_num_bytes; 3255 size_t max_num_msdus; 3256 size_t num_bytes; 3257 size_t num_msdus; 3258 const __le32 *resp_ids; 3259 u16 num_records; 3260 u16 num_resp_ids; 3261 u16 peer_id; 3262 u8 tid; 3263 int ret; 3264 int i; 3265 bool may_tx; 3266 3267 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch ind\n"); 3268 3269 len = sizeof(resp->hdr) + sizeof(resp->tx_fetch_ind); 3270 if (unlikely(skb->len < len)) { 3271 ath10k_warn(ar, "received corrupted tx_fetch_ind event: buffer too short\n"); 3272 return; 3273 } 3274 3275 num_records = le16_to_cpu(resp->tx_fetch_ind.num_records); 3276 num_resp_ids = le16_to_cpu(resp->tx_fetch_ind.num_resp_ids); 3277 3278 len += sizeof(resp->tx_fetch_ind.records[0]) * num_records; 3279 len += sizeof(resp->tx_fetch_ind.resp_ids[0]) * num_resp_ids; 3280 3281 if (unlikely(skb->len < len)) { 3282 ath10k_warn(ar, "received corrupted tx_fetch_ind event: too many records/resp_ids\n"); 3283 return; 3284 } 3285 3286 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch ind num records %u num resps %u seq %u\n", 3287 num_records, num_resp_ids, 3288 le16_to_cpu(resp->tx_fetch_ind.fetch_seq_num)); 3289 3290 if (!ar->htt.tx_q_state.enabled) { 3291 ath10k_warn(ar, "received unexpected tx_fetch_ind event: not enabled\n"); 3292 return; 3293 } 3294 3295 if (ar->htt.tx_q_state.mode == HTT_TX_MODE_SWITCH_PUSH) { 3296 ath10k_warn(ar, "received unexpected tx_fetch_ind event: in push mode\n"); 3297 return; 3298 } 3299 3300 rcu_read_lock(); 3301 3302 for (i = 0; i < num_records; i++) { 3303 record = &resp->tx_fetch_ind.records[i]; 3304 peer_id = MS(le16_to_cpu(record->info), 3305 HTT_TX_FETCH_RECORD_INFO_PEER_ID); 3306 tid = MS(le16_to_cpu(record->info), 3307 HTT_TX_FETCH_RECORD_INFO_TID); 3308 max_num_msdus = le16_to_cpu(record->num_msdus); 3309 max_num_bytes = le32_to_cpu(record->num_bytes); 3310 3311 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch record %i peer_id %u tid %u msdus %zu bytes %zu\n", 3312 i, peer_id, tid, max_num_msdus, max_num_bytes); 3313 3314 if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) || 3315 unlikely(tid >= ar->htt.tx_q_state.num_tids)) { 3316 ath10k_warn(ar, "received out of range peer_id %u tid %u\n", 3317 peer_id, tid); 3318 continue; 3319 } 3320 3321 spin_lock_bh(&ar->data_lock); 3322 txq = ath10k_mac_txq_lookup(ar, peer_id, tid); 3323 spin_unlock_bh(&ar->data_lock); 3324 3325 /* It is okay to release the lock and use txq because RCU read 3326 * lock is held. 3327 */ 3328 3329 if (unlikely(!txq)) { 3330 ath10k_warn(ar, "failed to lookup txq for peer_id %u tid %u\n", 3331 peer_id, tid); 3332 continue; 3333 } 3334 3335 num_msdus = 0; 3336 num_bytes = 0; 3337 3338 ieee80211_txq_schedule_start(hw, txq->ac); 3339 may_tx = ieee80211_txq_may_transmit(hw, txq); 3340 while (num_msdus < max_num_msdus && 3341 num_bytes < max_num_bytes) { 3342 if (!may_tx) 3343 break; 3344 3345 ret = ath10k_mac_tx_push_txq(hw, txq); 3346 if (ret < 0) 3347 break; 3348 3349 num_msdus++; 3350 num_bytes += ret; 3351 } 3352 ieee80211_return_txq(hw, txq, false); 3353 ieee80211_txq_schedule_end(hw, txq->ac); 3354 3355 record->num_msdus = cpu_to_le16(num_msdus); 3356 record->num_bytes = cpu_to_le32(num_bytes); 3357 3358 ath10k_htt_tx_txq_recalc(hw, txq); 3359 } 3360 3361 rcu_read_unlock(); 3362 3363 resp_ids = ath10k_htt_get_tx_fetch_ind_resp_ids(&resp->tx_fetch_ind); 3364 ath10k_htt_rx_tx_fetch_resp_id_confirm(ar, resp_ids, num_resp_ids); 3365 3366 ret = ath10k_htt_tx_fetch_resp(ar, 3367 resp->tx_fetch_ind.token, 3368 resp->tx_fetch_ind.fetch_seq_num, 3369 resp->tx_fetch_ind.records, 3370 num_records); 3371 if (unlikely(ret)) { 3372 ath10k_warn(ar, "failed to submit tx fetch resp for token 0x%08x: %d\n", 3373 le32_to_cpu(resp->tx_fetch_ind.token), ret); 3374 /* FIXME: request fw restart */ 3375 } 3376 3377 ath10k_htt_tx_txq_sync(ar); 3378 } 3379 3380 static void ath10k_htt_rx_tx_fetch_confirm(struct ath10k *ar, 3381 struct sk_buff *skb) 3382 { 3383 const struct htt_resp *resp = (void *)skb->data; 3384 size_t len; 3385 int num_resp_ids; 3386 3387 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm\n"); 3388 3389 len = sizeof(resp->hdr) + sizeof(resp->tx_fetch_confirm); 3390 if (unlikely(skb->len < len)) { 3391 ath10k_warn(ar, "received corrupted tx_fetch_confirm event: buffer too short\n"); 3392 return; 3393 } 3394 3395 num_resp_ids = le16_to_cpu(resp->tx_fetch_confirm.num_resp_ids); 3396 len += sizeof(resp->tx_fetch_confirm.resp_ids[0]) * num_resp_ids; 3397 3398 if (unlikely(skb->len < len)) { 3399 ath10k_warn(ar, "received corrupted tx_fetch_confirm event: resp_ids buffer overflow\n"); 3400 return; 3401 } 3402 3403 ath10k_htt_rx_tx_fetch_resp_id_confirm(ar, 3404 resp->tx_fetch_confirm.resp_ids, 3405 num_resp_ids); 3406 } 3407 3408 static void ath10k_htt_rx_tx_mode_switch_ind(struct ath10k *ar, 3409 struct sk_buff *skb) 3410 { 3411 const struct htt_resp *resp = (void *)skb->data; 3412 const struct htt_tx_mode_switch_record *record; 3413 struct ieee80211_txq *txq; 3414 struct ath10k_txq *artxq; 3415 size_t len; 3416 size_t num_records; 3417 enum htt_tx_mode_switch_mode mode; 3418 bool enable; 3419 u16 info0; 3420 u16 info1; 3421 u16 threshold; 3422 u16 peer_id; 3423 u8 tid; 3424 int i; 3425 3426 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx mode switch ind\n"); 3427 3428 len = sizeof(resp->hdr) + sizeof(resp->tx_mode_switch_ind); 3429 if (unlikely(skb->len < len)) { 3430 ath10k_warn(ar, "received corrupted tx_mode_switch_ind event: buffer too short\n"); 3431 return; 3432 } 3433 3434 info0 = le16_to_cpu(resp->tx_mode_switch_ind.info0); 3435 info1 = le16_to_cpu(resp->tx_mode_switch_ind.info1); 3436 3437 enable = !!(info0 & HTT_TX_MODE_SWITCH_IND_INFO0_ENABLE); 3438 num_records = MS(info0, HTT_TX_MODE_SWITCH_IND_INFO1_THRESHOLD); 3439 mode = MS(info1, HTT_TX_MODE_SWITCH_IND_INFO1_MODE); 3440 threshold = MS(info1, HTT_TX_MODE_SWITCH_IND_INFO1_THRESHOLD); 3441 3442 ath10k_dbg(ar, ATH10K_DBG_HTT, 3443 "htt rx tx mode switch ind info0 0x%04hx info1 0x%04x enable %d num records %zd mode %d threshold %u\n", 3444 info0, info1, enable, num_records, mode, threshold); 3445 3446 len += sizeof(resp->tx_mode_switch_ind.records[0]) * num_records; 3447 3448 if (unlikely(skb->len < len)) { 3449 ath10k_warn(ar, "received corrupted tx_mode_switch_mode_ind event: too many records\n"); 3450 return; 3451 } 3452 3453 switch (mode) { 3454 case HTT_TX_MODE_SWITCH_PUSH: 3455 case HTT_TX_MODE_SWITCH_PUSH_PULL: 3456 break; 3457 default: 3458 ath10k_warn(ar, "received invalid tx_mode_switch_mode_ind mode %d, ignoring\n", 3459 mode); 3460 return; 3461 } 3462 3463 if (!enable) 3464 return; 3465 3466 ar->htt.tx_q_state.enabled = enable; 3467 ar->htt.tx_q_state.mode = mode; 3468 ar->htt.tx_q_state.num_push_allowed = threshold; 3469 3470 rcu_read_lock(); 3471 3472 for (i = 0; i < num_records; i++) { 3473 record = &resp->tx_mode_switch_ind.records[i]; 3474 info0 = le16_to_cpu(record->info0); 3475 peer_id = MS(info0, HTT_TX_MODE_SWITCH_RECORD_INFO0_PEER_ID); 3476 tid = MS(info0, HTT_TX_MODE_SWITCH_RECORD_INFO0_TID); 3477 3478 if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) || 3479 unlikely(tid >= ar->htt.tx_q_state.num_tids)) { 3480 ath10k_warn(ar, "received out of range peer_id %u tid %u\n", 3481 peer_id, tid); 3482 continue; 3483 } 3484 3485 spin_lock_bh(&ar->data_lock); 3486 txq = ath10k_mac_txq_lookup(ar, peer_id, tid); 3487 spin_unlock_bh(&ar->data_lock); 3488 3489 /* It is okay to release the lock and use txq because RCU read 3490 * lock is held. 3491 */ 3492 3493 if (unlikely(!txq)) { 3494 ath10k_warn(ar, "failed to lookup txq for peer_id %u tid %u\n", 3495 peer_id, tid); 3496 continue; 3497 } 3498 3499 spin_lock_bh(&ar->htt.tx_lock); 3500 artxq = (void *)txq->drv_priv; 3501 artxq->num_push_allowed = le16_to_cpu(record->num_max_msdus); 3502 spin_unlock_bh(&ar->htt.tx_lock); 3503 } 3504 3505 rcu_read_unlock(); 3506 3507 ath10k_mac_tx_push_pending(ar); 3508 } 3509 3510 void ath10k_htt_htc_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb) 3511 { 3512 bool release; 3513 3514 release = ath10k_htt_t2h_msg_handler(ar, skb); 3515 3516 /* Free the indication buffer */ 3517 if (release) 3518 dev_kfree_skb_any(skb); 3519 } 3520 3521 static inline s8 ath10k_get_legacy_rate_idx(struct ath10k *ar, u8 rate) 3522 { 3523 static const u8 legacy_rates[] = {1, 2, 5, 11, 6, 9, 12, 3524 18, 24, 36, 48, 54}; 3525 int i; 3526 3527 for (i = 0; i < ARRAY_SIZE(legacy_rates); i++) { 3528 if (rate == legacy_rates[i]) 3529 return i; 3530 } 3531 3532 ath10k_warn(ar, "Invalid legacy rate %d peer stats", rate); 3533 return -EINVAL; 3534 } 3535 3536 static void 3537 ath10k_accumulate_per_peer_tx_stats(struct ath10k *ar, 3538 struct ath10k_sta *arsta, 3539 struct ath10k_per_peer_tx_stats *pstats, 3540 s8 legacy_rate_idx) 3541 { 3542 struct rate_info *txrate = &arsta->txrate; 3543 struct ath10k_htt_tx_stats *tx_stats; 3544 int idx, ht_idx, gi, mcs, bw, nss; 3545 unsigned long flags; 3546 3547 if (!arsta->tx_stats) 3548 return; 3549 3550 tx_stats = arsta->tx_stats; 3551 flags = txrate->flags; 3552 gi = test_bit(ATH10K_RATE_INFO_FLAGS_SGI_BIT, &flags); 3553 mcs = ATH10K_HW_MCS_RATE(pstats->ratecode); 3554 bw = txrate->bw; 3555 nss = txrate->nss; 3556 ht_idx = mcs + (nss - 1) * 8; 3557 idx = mcs * 8 + 8 * 10 * (nss - 1); 3558 idx += bw * 2 + gi; 3559 3560 #define STATS_OP_FMT(name) tx_stats->stats[ATH10K_STATS_TYPE_##name] 3561 3562 if (txrate->flags & RATE_INFO_FLAGS_VHT_MCS) { 3563 STATS_OP_FMT(SUCC).vht[0][mcs] += pstats->succ_bytes; 3564 STATS_OP_FMT(SUCC).vht[1][mcs] += pstats->succ_pkts; 3565 STATS_OP_FMT(FAIL).vht[0][mcs] += pstats->failed_bytes; 3566 STATS_OP_FMT(FAIL).vht[1][mcs] += pstats->failed_pkts; 3567 STATS_OP_FMT(RETRY).vht[0][mcs] += pstats->retry_bytes; 3568 STATS_OP_FMT(RETRY).vht[1][mcs] += pstats->retry_pkts; 3569 } else if (txrate->flags & RATE_INFO_FLAGS_MCS) { 3570 STATS_OP_FMT(SUCC).ht[0][ht_idx] += pstats->succ_bytes; 3571 STATS_OP_FMT(SUCC).ht[1][ht_idx] += pstats->succ_pkts; 3572 STATS_OP_FMT(FAIL).ht[0][ht_idx] += pstats->failed_bytes; 3573 STATS_OP_FMT(FAIL).ht[1][ht_idx] += pstats->failed_pkts; 3574 STATS_OP_FMT(RETRY).ht[0][ht_idx] += pstats->retry_bytes; 3575 STATS_OP_FMT(RETRY).ht[1][ht_idx] += pstats->retry_pkts; 3576 } else { 3577 mcs = legacy_rate_idx; 3578 3579 STATS_OP_FMT(SUCC).legacy[0][mcs] += pstats->succ_bytes; 3580 STATS_OP_FMT(SUCC).legacy[1][mcs] += pstats->succ_pkts; 3581 STATS_OP_FMT(FAIL).legacy[0][mcs] += pstats->failed_bytes; 3582 STATS_OP_FMT(FAIL).legacy[1][mcs] += pstats->failed_pkts; 3583 STATS_OP_FMT(RETRY).legacy[0][mcs] += pstats->retry_bytes; 3584 STATS_OP_FMT(RETRY).legacy[1][mcs] += pstats->retry_pkts; 3585 } 3586 3587 if (ATH10K_HW_AMPDU(pstats->flags)) { 3588 tx_stats->ba_fails += ATH10K_HW_BA_FAIL(pstats->flags); 3589 3590 if (txrate->flags & RATE_INFO_FLAGS_MCS) { 3591 STATS_OP_FMT(AMPDU).ht[0][ht_idx] += 3592 pstats->succ_bytes + pstats->retry_bytes; 3593 STATS_OP_FMT(AMPDU).ht[1][ht_idx] += 3594 pstats->succ_pkts + pstats->retry_pkts; 3595 } else { 3596 STATS_OP_FMT(AMPDU).vht[0][mcs] += 3597 pstats->succ_bytes + pstats->retry_bytes; 3598 STATS_OP_FMT(AMPDU).vht[1][mcs] += 3599 pstats->succ_pkts + pstats->retry_pkts; 3600 } 3601 STATS_OP_FMT(AMPDU).bw[0][bw] += 3602 pstats->succ_bytes + pstats->retry_bytes; 3603 STATS_OP_FMT(AMPDU).nss[0][nss - 1] += 3604 pstats->succ_bytes + pstats->retry_bytes; 3605 STATS_OP_FMT(AMPDU).gi[0][gi] += 3606 pstats->succ_bytes + pstats->retry_bytes; 3607 STATS_OP_FMT(AMPDU).rate_table[0][idx] += 3608 pstats->succ_bytes + pstats->retry_bytes; 3609 STATS_OP_FMT(AMPDU).bw[1][bw] += 3610 pstats->succ_pkts + pstats->retry_pkts; 3611 STATS_OP_FMT(AMPDU).nss[1][nss - 1] += 3612 pstats->succ_pkts + pstats->retry_pkts; 3613 STATS_OP_FMT(AMPDU).gi[1][gi] += 3614 pstats->succ_pkts + pstats->retry_pkts; 3615 STATS_OP_FMT(AMPDU).rate_table[1][idx] += 3616 pstats->succ_pkts + pstats->retry_pkts; 3617 } else { 3618 tx_stats->ack_fails += 3619 ATH10K_HW_BA_FAIL(pstats->flags); 3620 } 3621 3622 STATS_OP_FMT(SUCC).bw[0][bw] += pstats->succ_bytes; 3623 STATS_OP_FMT(SUCC).nss[0][nss - 1] += pstats->succ_bytes; 3624 STATS_OP_FMT(SUCC).gi[0][gi] += pstats->succ_bytes; 3625 3626 STATS_OP_FMT(SUCC).bw[1][bw] += pstats->succ_pkts; 3627 STATS_OP_FMT(SUCC).nss[1][nss - 1] += pstats->succ_pkts; 3628 STATS_OP_FMT(SUCC).gi[1][gi] += pstats->succ_pkts; 3629 3630 STATS_OP_FMT(FAIL).bw[0][bw] += pstats->failed_bytes; 3631 STATS_OP_FMT(FAIL).nss[0][nss - 1] += pstats->failed_bytes; 3632 STATS_OP_FMT(FAIL).gi[0][gi] += pstats->failed_bytes; 3633 3634 STATS_OP_FMT(FAIL).bw[1][bw] += pstats->failed_pkts; 3635 STATS_OP_FMT(FAIL).nss[1][nss - 1] += pstats->failed_pkts; 3636 STATS_OP_FMT(FAIL).gi[1][gi] += pstats->failed_pkts; 3637 3638 STATS_OP_FMT(RETRY).bw[0][bw] += pstats->retry_bytes; 3639 STATS_OP_FMT(RETRY).nss[0][nss - 1] += pstats->retry_bytes; 3640 STATS_OP_FMT(RETRY).gi[0][gi] += pstats->retry_bytes; 3641 3642 STATS_OP_FMT(RETRY).bw[1][bw] += pstats->retry_pkts; 3643 STATS_OP_FMT(RETRY).nss[1][nss - 1] += pstats->retry_pkts; 3644 STATS_OP_FMT(RETRY).gi[1][gi] += pstats->retry_pkts; 3645 3646 if (txrate->flags >= RATE_INFO_FLAGS_MCS) { 3647 STATS_OP_FMT(SUCC).rate_table[0][idx] += pstats->succ_bytes; 3648 STATS_OP_FMT(SUCC).rate_table[1][idx] += pstats->succ_pkts; 3649 STATS_OP_FMT(FAIL).rate_table[0][idx] += pstats->failed_bytes; 3650 STATS_OP_FMT(FAIL).rate_table[1][idx] += pstats->failed_pkts; 3651 STATS_OP_FMT(RETRY).rate_table[0][idx] += pstats->retry_bytes; 3652 STATS_OP_FMT(RETRY).rate_table[1][idx] += pstats->retry_pkts; 3653 } 3654 3655 tx_stats->tx_duration += pstats->duration; 3656 } 3657 3658 static void 3659 ath10k_update_per_peer_tx_stats(struct ath10k *ar, 3660 struct ieee80211_sta *sta, 3661 struct ath10k_per_peer_tx_stats *peer_stats) 3662 { 3663 struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv; 3664 struct ieee80211_chanctx_conf *conf = NULL; 3665 u8 rate = 0, sgi; 3666 s8 rate_idx = 0; 3667 bool skip_auto_rate; 3668 struct rate_info txrate; 3669 3670 lockdep_assert_held(&ar->data_lock); 3671 3672 txrate.flags = ATH10K_HW_PREAMBLE(peer_stats->ratecode); 3673 txrate.bw = ATH10K_HW_BW(peer_stats->flags); 3674 txrate.nss = ATH10K_HW_NSS(peer_stats->ratecode); 3675 txrate.mcs = ATH10K_HW_MCS_RATE(peer_stats->ratecode); 3676 sgi = ATH10K_HW_GI(peer_stats->flags); 3677 skip_auto_rate = ATH10K_FW_SKIPPED_RATE_CTRL(peer_stats->flags); 3678 3679 /* Firmware's rate control skips broadcast/management frames, 3680 * if host has configure fixed rates and in some other special cases. 3681 */ 3682 if (skip_auto_rate) 3683 return; 3684 3685 if (txrate.flags == WMI_RATE_PREAMBLE_VHT && txrate.mcs > 9) { 3686 ath10k_warn(ar, "Invalid VHT mcs %d peer stats", txrate.mcs); 3687 return; 3688 } 3689 3690 if (txrate.flags == WMI_RATE_PREAMBLE_HT && 3691 (txrate.mcs > 7 || txrate.nss < 1)) { 3692 ath10k_warn(ar, "Invalid HT mcs %d nss %d peer stats", 3693 txrate.mcs, txrate.nss); 3694 return; 3695 } 3696 3697 memset(&arsta->txrate, 0, sizeof(arsta->txrate)); 3698 memset(&arsta->tx_info.status, 0, sizeof(arsta->tx_info.status)); 3699 if (txrate.flags == WMI_RATE_PREAMBLE_CCK || 3700 txrate.flags == WMI_RATE_PREAMBLE_OFDM) { 3701 rate = ATH10K_HW_LEGACY_RATE(peer_stats->ratecode); 3702 /* This is hacky, FW sends CCK rate 5.5Mbps as 6 */ 3703 if (rate == 6 && txrate.flags == WMI_RATE_PREAMBLE_CCK) 3704 rate = 5; 3705 rate_idx = ath10k_get_legacy_rate_idx(ar, rate); 3706 if (rate_idx < 0) 3707 return; 3708 arsta->txrate.legacy = rate; 3709 } else if (txrate.flags == WMI_RATE_PREAMBLE_HT) { 3710 arsta->txrate.flags = RATE_INFO_FLAGS_MCS; 3711 arsta->txrate.mcs = txrate.mcs + 8 * (txrate.nss - 1); 3712 } else { 3713 arsta->txrate.flags = RATE_INFO_FLAGS_VHT_MCS; 3714 arsta->txrate.mcs = txrate.mcs; 3715 } 3716 3717 switch (txrate.flags) { 3718 case WMI_RATE_PREAMBLE_OFDM: 3719 if (arsta->arvif && arsta->arvif->vif) 3720 conf = rcu_dereference(arsta->arvif->vif->chanctx_conf); 3721 if (conf && conf->def.chan->band == NL80211_BAND_5GHZ) 3722 arsta->tx_info.status.rates[0].idx = rate_idx - 4; 3723 break; 3724 case WMI_RATE_PREAMBLE_CCK: 3725 arsta->tx_info.status.rates[0].idx = rate_idx; 3726 if (sgi) 3727 arsta->tx_info.status.rates[0].flags |= 3728 (IEEE80211_TX_RC_USE_SHORT_PREAMBLE | 3729 IEEE80211_TX_RC_SHORT_GI); 3730 break; 3731 case WMI_RATE_PREAMBLE_HT: 3732 arsta->tx_info.status.rates[0].idx = 3733 txrate.mcs + ((txrate.nss - 1) * 8); 3734 if (sgi) 3735 arsta->tx_info.status.rates[0].flags |= 3736 IEEE80211_TX_RC_SHORT_GI; 3737 arsta->tx_info.status.rates[0].flags |= IEEE80211_TX_RC_MCS; 3738 break; 3739 case WMI_RATE_PREAMBLE_VHT: 3740 ieee80211_rate_set_vht(&arsta->tx_info.status.rates[0], 3741 txrate.mcs, txrate.nss); 3742 if (sgi) 3743 arsta->tx_info.status.rates[0].flags |= 3744 IEEE80211_TX_RC_SHORT_GI; 3745 arsta->tx_info.status.rates[0].flags |= IEEE80211_TX_RC_VHT_MCS; 3746 break; 3747 } 3748 3749 arsta->txrate.nss = txrate.nss; 3750 arsta->txrate.bw = ath10k_bw_to_mac80211_bw(txrate.bw); 3751 arsta->last_tx_bitrate = cfg80211_calculate_bitrate(&arsta->txrate); 3752 if (sgi) 3753 arsta->txrate.flags |= RATE_INFO_FLAGS_SHORT_GI; 3754 3755 switch (arsta->txrate.bw) { 3756 case RATE_INFO_BW_40: 3757 arsta->tx_info.status.rates[0].flags |= 3758 IEEE80211_TX_RC_40_MHZ_WIDTH; 3759 break; 3760 case RATE_INFO_BW_80: 3761 arsta->tx_info.status.rates[0].flags |= 3762 IEEE80211_TX_RC_80_MHZ_WIDTH; 3763 break; 3764 } 3765 3766 if (peer_stats->succ_pkts) { 3767 arsta->tx_info.flags = IEEE80211_TX_STAT_ACK; 3768 arsta->tx_info.status.rates[0].count = 1; 3769 ieee80211_tx_rate_update(ar->hw, sta, &arsta->tx_info); 3770 } 3771 3772 if (ar->htt.disable_tx_comp) { 3773 arsta->tx_failed += peer_stats->failed_pkts; 3774 ath10k_dbg(ar, ATH10K_DBG_HTT, "tx failed %d\n", 3775 arsta->tx_failed); 3776 } 3777 3778 arsta->tx_retries += peer_stats->retry_pkts; 3779 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx retries %d", arsta->tx_retries); 3780 3781 if (ath10k_debug_is_extd_tx_stats_enabled(ar)) 3782 ath10k_accumulate_per_peer_tx_stats(ar, arsta, peer_stats, 3783 rate_idx); 3784 } 3785 3786 static void ath10k_htt_fetch_peer_stats(struct ath10k *ar, 3787 struct sk_buff *skb) 3788 { 3789 struct htt_resp *resp = (struct htt_resp *)skb->data; 3790 struct ath10k_per_peer_tx_stats *p_tx_stats = &ar->peer_tx_stats; 3791 struct htt_per_peer_tx_stats_ind *tx_stats; 3792 struct ieee80211_sta *sta; 3793 struct ath10k_peer *peer; 3794 int peer_id, i; 3795 u8 ppdu_len, num_ppdu; 3796 3797 num_ppdu = resp->peer_tx_stats.num_ppdu; 3798 ppdu_len = resp->peer_tx_stats.ppdu_len * sizeof(__le32); 3799 3800 if (skb->len < sizeof(struct htt_resp_hdr) + num_ppdu * ppdu_len) { 3801 ath10k_warn(ar, "Invalid peer stats buf length %d\n", skb->len); 3802 return; 3803 } 3804 3805 tx_stats = (struct htt_per_peer_tx_stats_ind *) 3806 (resp->peer_tx_stats.payload); 3807 peer_id = __le16_to_cpu(tx_stats->peer_id); 3808 3809 rcu_read_lock(); 3810 spin_lock_bh(&ar->data_lock); 3811 peer = ath10k_peer_find_by_id(ar, peer_id); 3812 if (!peer || !peer->sta) { 3813 ath10k_warn(ar, "Invalid peer id %d peer stats buffer\n", 3814 peer_id); 3815 goto out; 3816 } 3817 3818 sta = peer->sta; 3819 for (i = 0; i < num_ppdu; i++) { 3820 tx_stats = (struct htt_per_peer_tx_stats_ind *) 3821 (resp->peer_tx_stats.payload + i * ppdu_len); 3822 3823 p_tx_stats->succ_bytes = __le32_to_cpu(tx_stats->succ_bytes); 3824 p_tx_stats->retry_bytes = __le32_to_cpu(tx_stats->retry_bytes); 3825 p_tx_stats->failed_bytes = 3826 __le32_to_cpu(tx_stats->failed_bytes); 3827 p_tx_stats->ratecode = tx_stats->ratecode; 3828 p_tx_stats->flags = tx_stats->flags; 3829 p_tx_stats->succ_pkts = __le16_to_cpu(tx_stats->succ_pkts); 3830 p_tx_stats->retry_pkts = __le16_to_cpu(tx_stats->retry_pkts); 3831 p_tx_stats->failed_pkts = __le16_to_cpu(tx_stats->failed_pkts); 3832 p_tx_stats->duration = __le16_to_cpu(tx_stats->tx_duration); 3833 3834 ath10k_update_per_peer_tx_stats(ar, sta, p_tx_stats); 3835 } 3836 3837 out: 3838 spin_unlock_bh(&ar->data_lock); 3839 rcu_read_unlock(); 3840 } 3841 3842 static void ath10k_fetch_10_2_tx_stats(struct ath10k *ar, u8 *data) 3843 { 3844 struct ath10k_pktlog_hdr *hdr = (struct ath10k_pktlog_hdr *)data; 3845 struct ath10k_per_peer_tx_stats *p_tx_stats = &ar->peer_tx_stats; 3846 struct ath10k_10_2_peer_tx_stats *tx_stats; 3847 struct ieee80211_sta *sta; 3848 struct ath10k_peer *peer; 3849 u16 log_type = __le16_to_cpu(hdr->log_type); 3850 u32 peer_id = 0, i; 3851 3852 if (log_type != ATH_PKTLOG_TYPE_TX_STAT) 3853 return; 3854 3855 tx_stats = (struct ath10k_10_2_peer_tx_stats *)((hdr->payload) + 3856 ATH10K_10_2_TX_STATS_OFFSET); 3857 3858 if (!tx_stats->tx_ppdu_cnt) 3859 return; 3860 3861 peer_id = tx_stats->peer_id; 3862 3863 rcu_read_lock(); 3864 spin_lock_bh(&ar->data_lock); 3865 peer = ath10k_peer_find_by_id(ar, peer_id); 3866 if (!peer || !peer->sta) { 3867 ath10k_warn(ar, "Invalid peer id %d in peer stats buffer\n", 3868 peer_id); 3869 goto out; 3870 } 3871 3872 sta = peer->sta; 3873 for (i = 0; i < tx_stats->tx_ppdu_cnt; i++) { 3874 p_tx_stats->succ_bytes = 3875 __le16_to_cpu(tx_stats->success_bytes[i]); 3876 p_tx_stats->retry_bytes = 3877 __le16_to_cpu(tx_stats->retry_bytes[i]); 3878 p_tx_stats->failed_bytes = 3879 __le16_to_cpu(tx_stats->failed_bytes[i]); 3880 p_tx_stats->ratecode = tx_stats->ratecode[i]; 3881 p_tx_stats->flags = tx_stats->flags[i]; 3882 p_tx_stats->succ_pkts = tx_stats->success_pkts[i]; 3883 p_tx_stats->retry_pkts = tx_stats->retry_pkts[i]; 3884 p_tx_stats->failed_pkts = tx_stats->failed_pkts[i]; 3885 3886 ath10k_update_per_peer_tx_stats(ar, sta, p_tx_stats); 3887 } 3888 spin_unlock_bh(&ar->data_lock); 3889 rcu_read_unlock(); 3890 3891 return; 3892 3893 out: 3894 spin_unlock_bh(&ar->data_lock); 3895 rcu_read_unlock(); 3896 } 3897 3898 static int ath10k_htt_rx_pn_len(enum htt_security_types sec_type) 3899 { 3900 switch (sec_type) { 3901 case HTT_SECURITY_TKIP: 3902 case HTT_SECURITY_TKIP_NOMIC: 3903 case HTT_SECURITY_AES_CCMP: 3904 return 48; 3905 default: 3906 return 0; 3907 } 3908 } 3909 3910 static void ath10k_htt_rx_sec_ind_handler(struct ath10k *ar, 3911 struct htt_security_indication *ev) 3912 { 3913 enum htt_txrx_sec_cast_type sec_index; 3914 enum htt_security_types sec_type; 3915 struct ath10k_peer *peer; 3916 3917 spin_lock_bh(&ar->data_lock); 3918 3919 peer = ath10k_peer_find_by_id(ar, __le16_to_cpu(ev->peer_id)); 3920 if (!peer) { 3921 ath10k_warn(ar, "failed to find peer id %d for security indication", 3922 __le16_to_cpu(ev->peer_id)); 3923 goto out; 3924 } 3925 3926 sec_type = MS(ev->flags, HTT_SECURITY_TYPE); 3927 3928 if (ev->flags & HTT_SECURITY_IS_UNICAST) 3929 sec_index = HTT_TXRX_SEC_UCAST; 3930 else 3931 sec_index = HTT_TXRX_SEC_MCAST; 3932 3933 peer->rx_pn[sec_index].sec_type = sec_type; 3934 peer->rx_pn[sec_index].pn_len = ath10k_htt_rx_pn_len(sec_type); 3935 3936 memset(peer->tids_last_pn_valid, 0, sizeof(peer->tids_last_pn_valid)); 3937 memset(peer->tids_last_pn, 0, sizeof(peer->tids_last_pn)); 3938 3939 out: 3940 spin_unlock_bh(&ar->data_lock); 3941 } 3942 3943 bool ath10k_htt_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb) 3944 { 3945 struct ath10k_htt *htt = &ar->htt; 3946 struct htt_resp *resp = (struct htt_resp *)skb->data; 3947 enum htt_t2h_msg_type type; 3948 3949 /* confirm alignment */ 3950 if (!IS_ALIGNED((unsigned long)skb->data, 4)) 3951 ath10k_warn(ar, "unaligned htt message, expect trouble\n"); 3952 3953 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, msg_type: 0x%0X\n", 3954 resp->hdr.msg_type); 3955 3956 if (resp->hdr.msg_type >= ar->htt.t2h_msg_types_max) { 3957 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, unsupported msg_type: 0x%0X\n max: 0x%0X", 3958 resp->hdr.msg_type, ar->htt.t2h_msg_types_max); 3959 return true; 3960 } 3961 type = ar->htt.t2h_msg_types[resp->hdr.msg_type]; 3962 3963 switch (type) { 3964 case HTT_T2H_MSG_TYPE_VERSION_CONF: { 3965 htt->target_version_major = resp->ver_resp.major; 3966 htt->target_version_minor = resp->ver_resp.minor; 3967 complete(&htt->target_version_received); 3968 break; 3969 } 3970 case HTT_T2H_MSG_TYPE_RX_IND: 3971 if (ar->bus_param.dev_type != ATH10K_DEV_TYPE_HL) { 3972 ath10k_htt_rx_proc_rx_ind_ll(htt, &resp->rx_ind); 3973 } else { 3974 skb_queue_tail(&htt->rx_indication_head, skb); 3975 return false; 3976 } 3977 break; 3978 case HTT_T2H_MSG_TYPE_PEER_MAP: { 3979 struct htt_peer_map_event ev = { 3980 .vdev_id = resp->peer_map.vdev_id, 3981 .peer_id = __le16_to_cpu(resp->peer_map.peer_id), 3982 }; 3983 memcpy(ev.addr, resp->peer_map.addr, sizeof(ev.addr)); 3984 ath10k_peer_map_event(htt, &ev); 3985 break; 3986 } 3987 case HTT_T2H_MSG_TYPE_PEER_UNMAP: { 3988 struct htt_peer_unmap_event ev = { 3989 .peer_id = __le16_to_cpu(resp->peer_unmap.peer_id), 3990 }; 3991 ath10k_peer_unmap_event(htt, &ev); 3992 break; 3993 } 3994 case HTT_T2H_MSG_TYPE_MGMT_TX_COMPLETION: { 3995 struct htt_tx_done tx_done = {}; 3996 struct ath10k_htt *htt = &ar->htt; 3997 struct ath10k_htc *htc = &ar->htc; 3998 struct ath10k_htc_ep *ep = &ar->htc.endpoint[htt->eid]; 3999 int status = __le32_to_cpu(resp->mgmt_tx_completion.status); 4000 int info = __le32_to_cpu(resp->mgmt_tx_completion.info); 4001 4002 tx_done.msdu_id = __le32_to_cpu(resp->mgmt_tx_completion.desc_id); 4003 4004 switch (status) { 4005 case HTT_MGMT_TX_STATUS_OK: 4006 tx_done.status = HTT_TX_COMPL_STATE_ACK; 4007 if (test_bit(WMI_SERVICE_HTT_MGMT_TX_COMP_VALID_FLAGS, 4008 ar->wmi.svc_map) && 4009 (resp->mgmt_tx_completion.flags & 4010 HTT_MGMT_TX_CMPL_FLAG_ACK_RSSI)) { 4011 tx_done.ack_rssi = 4012 FIELD_GET(HTT_MGMT_TX_CMPL_INFO_ACK_RSSI_MASK, 4013 info); 4014 } 4015 break; 4016 case HTT_MGMT_TX_STATUS_RETRY: 4017 tx_done.status = HTT_TX_COMPL_STATE_NOACK; 4018 break; 4019 case HTT_MGMT_TX_STATUS_DROP: 4020 tx_done.status = HTT_TX_COMPL_STATE_DISCARD; 4021 break; 4022 } 4023 4024 if (htt->disable_tx_comp) { 4025 spin_lock_bh(&htc->tx_lock); 4026 ep->tx_credits++; 4027 spin_unlock_bh(&htc->tx_lock); 4028 } 4029 4030 status = ath10k_txrx_tx_unref(htt, &tx_done); 4031 if (!status) { 4032 spin_lock_bh(&htt->tx_lock); 4033 ath10k_htt_tx_mgmt_dec_pending(htt); 4034 spin_unlock_bh(&htt->tx_lock); 4035 } 4036 break; 4037 } 4038 case HTT_T2H_MSG_TYPE_TX_COMPL_IND: 4039 ath10k_htt_rx_tx_compl_ind(htt->ar, skb); 4040 break; 4041 case HTT_T2H_MSG_TYPE_SEC_IND: { 4042 struct ath10k *ar = htt->ar; 4043 struct htt_security_indication *ev = &resp->security_indication; 4044 4045 ath10k_htt_rx_sec_ind_handler(ar, ev); 4046 ath10k_dbg(ar, ATH10K_DBG_HTT, 4047 "sec ind peer_id %d unicast %d type %d\n", 4048 __le16_to_cpu(ev->peer_id), 4049 !!(ev->flags & HTT_SECURITY_IS_UNICAST), 4050 MS(ev->flags, HTT_SECURITY_TYPE)); 4051 complete(&ar->install_key_done); 4052 break; 4053 } 4054 case HTT_T2H_MSG_TYPE_RX_FRAG_IND: { 4055 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ", 4056 skb->data, skb->len); 4057 atomic_inc(&htt->num_mpdus_ready); 4058 4059 return ath10k_htt_rx_proc_rx_frag_ind(htt, 4060 &resp->rx_frag_ind, 4061 skb); 4062 } 4063 case HTT_T2H_MSG_TYPE_TEST: 4064 break; 4065 case HTT_T2H_MSG_TYPE_STATS_CONF: 4066 trace_ath10k_htt_stats(ar, skb->data, skb->len); 4067 break; 4068 case HTT_T2H_MSG_TYPE_TX_INSPECT_IND: 4069 /* Firmware can return tx frames if it's unable to fully 4070 * process them and suspects host may be able to fix it. ath10k 4071 * sends all tx frames as already inspected so this shouldn't 4072 * happen unless fw has a bug. 4073 */ 4074 ath10k_warn(ar, "received an unexpected htt tx inspect event\n"); 4075 break; 4076 case HTT_T2H_MSG_TYPE_RX_ADDBA: 4077 ath10k_htt_rx_addba(ar, resp); 4078 break; 4079 case HTT_T2H_MSG_TYPE_RX_DELBA: 4080 ath10k_htt_rx_delba(ar, resp); 4081 break; 4082 case HTT_T2H_MSG_TYPE_PKTLOG: { 4083 trace_ath10k_htt_pktlog(ar, resp->pktlog_msg.payload, 4084 skb->len - 4085 offsetof(struct htt_resp, 4086 pktlog_msg.payload)); 4087 4088 if (ath10k_peer_stats_enabled(ar)) 4089 ath10k_fetch_10_2_tx_stats(ar, 4090 resp->pktlog_msg.payload); 4091 break; 4092 } 4093 case HTT_T2H_MSG_TYPE_RX_FLUSH: { 4094 /* Ignore this event because mac80211 takes care of Rx 4095 * aggregation reordering. 4096 */ 4097 break; 4098 } 4099 case HTT_T2H_MSG_TYPE_RX_IN_ORD_PADDR_IND: { 4100 skb_queue_tail(&htt->rx_in_ord_compl_q, skb); 4101 return false; 4102 } 4103 case HTT_T2H_MSG_TYPE_TX_CREDIT_UPDATE_IND: { 4104 struct ath10k_htt *htt = &ar->htt; 4105 struct ath10k_htc *htc = &ar->htc; 4106 struct ath10k_htc_ep *ep = &ar->htc.endpoint[htt->eid]; 4107 u32 msg_word = __le32_to_cpu(*(__le32 *)resp); 4108 int htt_credit_delta; 4109 4110 htt_credit_delta = HTT_TX_CREDIT_DELTA_ABS_GET(msg_word); 4111 if (HTT_TX_CREDIT_SIGN_BIT_GET(msg_word)) 4112 htt_credit_delta = -htt_credit_delta; 4113 4114 ath10k_dbg(ar, ATH10K_DBG_HTT, 4115 "htt credit update delta %d\n", 4116 htt_credit_delta); 4117 4118 if (htt->disable_tx_comp) { 4119 spin_lock_bh(&htc->tx_lock); 4120 ep->tx_credits += htt_credit_delta; 4121 spin_unlock_bh(&htc->tx_lock); 4122 ath10k_dbg(ar, ATH10K_DBG_HTT, 4123 "htt credit total %d\n", 4124 ep->tx_credits); 4125 ep->ep_ops.ep_tx_credits(htc->ar); 4126 } 4127 break; 4128 } 4129 case HTT_T2H_MSG_TYPE_CHAN_CHANGE: { 4130 u32 phymode = __le32_to_cpu(resp->chan_change.phymode); 4131 u32 freq = __le32_to_cpu(resp->chan_change.freq); 4132 4133 ar->tgt_oper_chan = ieee80211_get_channel(ar->hw->wiphy, freq); 4134 ath10k_dbg(ar, ATH10K_DBG_HTT, 4135 "htt chan change freq %u phymode %s\n", 4136 freq, ath10k_wmi_phymode_str(phymode)); 4137 break; 4138 } 4139 case HTT_T2H_MSG_TYPE_AGGR_CONF: 4140 break; 4141 case HTT_T2H_MSG_TYPE_TX_FETCH_IND: { 4142 struct sk_buff *tx_fetch_ind = skb_copy(skb, GFP_ATOMIC); 4143 4144 if (!tx_fetch_ind) { 4145 ath10k_warn(ar, "failed to copy htt tx fetch ind\n"); 4146 break; 4147 } 4148 skb_queue_tail(&htt->tx_fetch_ind_q, tx_fetch_ind); 4149 break; 4150 } 4151 case HTT_T2H_MSG_TYPE_TX_FETCH_CONFIRM: 4152 ath10k_htt_rx_tx_fetch_confirm(ar, skb); 4153 break; 4154 case HTT_T2H_MSG_TYPE_TX_MODE_SWITCH_IND: 4155 ath10k_htt_rx_tx_mode_switch_ind(ar, skb); 4156 break; 4157 case HTT_T2H_MSG_TYPE_PEER_STATS: 4158 ath10k_htt_fetch_peer_stats(ar, skb); 4159 break; 4160 case HTT_T2H_MSG_TYPE_EN_STATS: 4161 default: 4162 ath10k_warn(ar, "htt event (%d) not handled\n", 4163 resp->hdr.msg_type); 4164 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ", 4165 skb->data, skb->len); 4166 break; 4167 } 4168 return true; 4169 } 4170 EXPORT_SYMBOL(ath10k_htt_t2h_msg_handler); 4171 4172 void ath10k_htt_rx_pktlog_completion_handler(struct ath10k *ar, 4173 struct sk_buff *skb) 4174 { 4175 trace_ath10k_htt_pktlog(ar, skb->data, skb->len); 4176 dev_kfree_skb_any(skb); 4177 } 4178 EXPORT_SYMBOL(ath10k_htt_rx_pktlog_completion_handler); 4179 4180 static int ath10k_htt_rx_deliver_msdu(struct ath10k *ar, int quota, int budget) 4181 { 4182 struct sk_buff *skb; 4183 4184 while (quota < budget) { 4185 if (skb_queue_empty(&ar->htt.rx_msdus_q)) 4186 break; 4187 4188 skb = skb_dequeue(&ar->htt.rx_msdus_q); 4189 if (!skb) 4190 break; 4191 ath10k_process_rx(ar, skb); 4192 quota++; 4193 } 4194 4195 return quota; 4196 } 4197 4198 int ath10k_htt_rx_hl_indication(struct ath10k *ar, int budget) 4199 { 4200 struct htt_resp *resp; 4201 struct ath10k_htt *htt = &ar->htt; 4202 struct sk_buff *skb; 4203 bool release; 4204 int quota; 4205 4206 for (quota = 0; quota < budget; quota++) { 4207 skb = skb_dequeue(&htt->rx_indication_head); 4208 if (!skb) 4209 break; 4210 4211 resp = (struct htt_resp *)skb->data; 4212 4213 release = ath10k_htt_rx_proc_rx_ind_hl(htt, 4214 &resp->rx_ind_hl, 4215 skb, 4216 HTT_RX_PN_CHECK, 4217 HTT_RX_NON_TKIP_MIC); 4218 4219 if (release) 4220 dev_kfree_skb_any(skb); 4221 4222 ath10k_dbg(ar, ATH10K_DBG_HTT, "rx indication poll pending count:%d\n", 4223 skb_queue_len(&htt->rx_indication_head)); 4224 } 4225 return quota; 4226 } 4227 EXPORT_SYMBOL(ath10k_htt_rx_hl_indication); 4228 4229 int ath10k_htt_txrx_compl_task(struct ath10k *ar, int budget) 4230 { 4231 struct ath10k_htt *htt = &ar->htt; 4232 struct htt_tx_done tx_done = {}; 4233 struct sk_buff_head tx_ind_q; 4234 struct sk_buff *skb; 4235 unsigned long flags; 4236 int quota = 0, done, ret; 4237 bool resched_napi = false; 4238 4239 __skb_queue_head_init(&tx_ind_q); 4240 4241 /* Process pending frames before dequeuing more data 4242 * from hardware. 4243 */ 4244 quota = ath10k_htt_rx_deliver_msdu(ar, quota, budget); 4245 if (quota == budget) { 4246 resched_napi = true; 4247 goto exit; 4248 } 4249 4250 while ((skb = skb_dequeue(&htt->rx_in_ord_compl_q))) { 4251 spin_lock_bh(&htt->rx_ring.lock); 4252 ret = ath10k_htt_rx_in_ord_ind(ar, skb); 4253 spin_unlock_bh(&htt->rx_ring.lock); 4254 4255 dev_kfree_skb_any(skb); 4256 if (ret == -EIO) { 4257 resched_napi = true; 4258 goto exit; 4259 } 4260 } 4261 4262 while (atomic_read(&htt->num_mpdus_ready)) { 4263 ret = ath10k_htt_rx_handle_amsdu(htt); 4264 if (ret == -EIO) { 4265 resched_napi = true; 4266 goto exit; 4267 } 4268 atomic_dec(&htt->num_mpdus_ready); 4269 } 4270 4271 /* Deliver received data after processing data from hardware */ 4272 quota = ath10k_htt_rx_deliver_msdu(ar, quota, budget); 4273 4274 /* From NAPI documentation: 4275 * The napi poll() function may also process TX completions, in which 4276 * case if it processes the entire TX ring then it should count that 4277 * work as the rest of the budget. 4278 */ 4279 if ((quota < budget) && !kfifo_is_empty(&htt->txdone_fifo)) 4280 quota = budget; 4281 4282 /* kfifo_get: called only within txrx_tasklet so it's neatly serialized. 4283 * From kfifo_get() documentation: 4284 * Note that with only one concurrent reader and one concurrent writer, 4285 * you don't need extra locking to use these macro. 4286 */ 4287 while (kfifo_get(&htt->txdone_fifo, &tx_done)) 4288 ath10k_txrx_tx_unref(htt, &tx_done); 4289 4290 ath10k_mac_tx_push_pending(ar); 4291 4292 spin_lock_irqsave(&htt->tx_fetch_ind_q.lock, flags); 4293 skb_queue_splice_init(&htt->tx_fetch_ind_q, &tx_ind_q); 4294 spin_unlock_irqrestore(&htt->tx_fetch_ind_q.lock, flags); 4295 4296 while ((skb = __skb_dequeue(&tx_ind_q))) { 4297 ath10k_htt_rx_tx_fetch_ind(ar, skb); 4298 dev_kfree_skb_any(skb); 4299 } 4300 4301 exit: 4302 ath10k_htt_rx_msdu_buff_replenish(htt); 4303 /* In case of rx failure or more data to read, report budget 4304 * to reschedule NAPI poll 4305 */ 4306 done = resched_napi ? budget : quota; 4307 4308 return done; 4309 } 4310 EXPORT_SYMBOL(ath10k_htt_txrx_compl_task); 4311 4312 static const struct ath10k_htt_rx_ops htt_rx_ops_32 = { 4313 .htt_get_rx_ring_size = ath10k_htt_get_rx_ring_size_32, 4314 .htt_config_paddrs_ring = ath10k_htt_config_paddrs_ring_32, 4315 .htt_set_paddrs_ring = ath10k_htt_set_paddrs_ring_32, 4316 .htt_get_vaddr_ring = ath10k_htt_get_vaddr_ring_32, 4317 .htt_reset_paddrs_ring = ath10k_htt_reset_paddrs_ring_32, 4318 }; 4319 4320 static const struct ath10k_htt_rx_ops htt_rx_ops_64 = { 4321 .htt_get_rx_ring_size = ath10k_htt_get_rx_ring_size_64, 4322 .htt_config_paddrs_ring = ath10k_htt_config_paddrs_ring_64, 4323 .htt_set_paddrs_ring = ath10k_htt_set_paddrs_ring_64, 4324 .htt_get_vaddr_ring = ath10k_htt_get_vaddr_ring_64, 4325 .htt_reset_paddrs_ring = ath10k_htt_reset_paddrs_ring_64, 4326 }; 4327 4328 static const struct ath10k_htt_rx_ops htt_rx_ops_hl = { 4329 .htt_rx_proc_rx_frag_ind = ath10k_htt_rx_proc_rx_frag_ind_hl, 4330 }; 4331 4332 void ath10k_htt_set_rx_ops(struct ath10k_htt *htt) 4333 { 4334 struct ath10k *ar = htt->ar; 4335 4336 if (ar->bus_param.dev_type == ATH10K_DEV_TYPE_HL) 4337 htt->rx_ops = &htt_rx_ops_hl; 4338 else if (ar->hw_params.target_64bit) 4339 htt->rx_ops = &htt_rx_ops_64; 4340 else 4341 htt->rx_ops = &htt_rx_ops_32; 4342 } 4343