1 /* 2 * Copyright (c) 2005-2011 Atheros Communications Inc. 3 * Copyright (c) 2011-2013 Qualcomm Atheros, Inc. 4 * 5 * Permission to use, copy, modify, and/or distribute this software for any 6 * purpose with or without fee is hereby granted, provided that the above 7 * copyright notice and this permission notice appear in all copies. 8 * 9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 16 */ 17 18 #include "core.h" 19 #include "htc.h" 20 #include "htt.h" 21 #include "txrx.h" 22 #include "debug.h" 23 #include "trace.h" 24 #include "mac.h" 25 26 #include <linux/log2.h> 27 28 #define HTT_RX_RING_SIZE 1024 29 #define HTT_RX_RING_FILL_LEVEL 1000 30 31 /* when under memory pressure rx ring refill may fail and needs a retry */ 32 #define HTT_RX_RING_REFILL_RETRY_MS 50 33 34 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb); 35 static void ath10k_htt_txrx_compl_task(unsigned long ptr); 36 37 static void ath10k_htt_rx_ring_free(struct ath10k_htt *htt) 38 { 39 struct sk_buff *skb; 40 struct ath10k_skb_cb *cb; 41 int i; 42 43 for (i = 0; i < htt->rx_ring.fill_cnt; i++) { 44 skb = htt->rx_ring.netbufs_ring[i]; 45 cb = ATH10K_SKB_CB(skb); 46 dma_unmap_single(htt->ar->dev, cb->paddr, 47 skb->len + skb_tailroom(skb), 48 DMA_FROM_DEVICE); 49 dev_kfree_skb_any(skb); 50 } 51 52 htt->rx_ring.fill_cnt = 0; 53 } 54 55 static int __ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num) 56 { 57 struct htt_rx_desc *rx_desc; 58 struct sk_buff *skb; 59 dma_addr_t paddr; 60 int ret = 0, idx; 61 62 idx = __le32_to_cpu(*htt->rx_ring.alloc_idx.vaddr); 63 while (num > 0) { 64 skb = dev_alloc_skb(HTT_RX_BUF_SIZE + HTT_RX_DESC_ALIGN); 65 if (!skb) { 66 ret = -ENOMEM; 67 goto fail; 68 } 69 70 if (!IS_ALIGNED((unsigned long)skb->data, HTT_RX_DESC_ALIGN)) 71 skb_pull(skb, 72 PTR_ALIGN(skb->data, HTT_RX_DESC_ALIGN) - 73 skb->data); 74 75 /* Clear rx_desc attention word before posting to Rx ring */ 76 rx_desc = (struct htt_rx_desc *)skb->data; 77 rx_desc->attention.flags = __cpu_to_le32(0); 78 79 paddr = dma_map_single(htt->ar->dev, skb->data, 80 skb->len + skb_tailroom(skb), 81 DMA_FROM_DEVICE); 82 83 if (unlikely(dma_mapping_error(htt->ar->dev, paddr))) { 84 dev_kfree_skb_any(skb); 85 ret = -ENOMEM; 86 goto fail; 87 } 88 89 ATH10K_SKB_CB(skb)->paddr = paddr; 90 htt->rx_ring.netbufs_ring[idx] = skb; 91 htt->rx_ring.paddrs_ring[idx] = __cpu_to_le32(paddr); 92 htt->rx_ring.fill_cnt++; 93 94 num--; 95 idx++; 96 idx &= htt->rx_ring.size_mask; 97 } 98 99 fail: 100 *htt->rx_ring.alloc_idx.vaddr = __cpu_to_le32(idx); 101 return ret; 102 } 103 104 static int ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num) 105 { 106 lockdep_assert_held(&htt->rx_ring.lock); 107 return __ath10k_htt_rx_ring_fill_n(htt, num); 108 } 109 110 static void ath10k_htt_rx_msdu_buff_replenish(struct ath10k_htt *htt) 111 { 112 int ret, num_deficit, num_to_fill; 113 114 /* Refilling the whole RX ring buffer proves to be a bad idea. The 115 * reason is RX may take up significant amount of CPU cycles and starve 116 * other tasks, e.g. TX on an ethernet device while acting as a bridge 117 * with ath10k wlan interface. This ended up with very poor performance 118 * once CPU the host system was overwhelmed with RX on ath10k. 119 * 120 * By limiting the number of refills the replenishing occurs 121 * progressively. This in turns makes use of the fact tasklets are 122 * processed in FIFO order. This means actual RX processing can starve 123 * out refilling. If there's not enough buffers on RX ring FW will not 124 * report RX until it is refilled with enough buffers. This 125 * automatically balances load wrt to CPU power. 126 * 127 * This probably comes at a cost of lower maximum throughput but 128 * improves the avarage and stability. */ 129 spin_lock_bh(&htt->rx_ring.lock); 130 num_deficit = htt->rx_ring.fill_level - htt->rx_ring.fill_cnt; 131 num_to_fill = min(ATH10K_HTT_MAX_NUM_REFILL, num_deficit); 132 num_deficit -= num_to_fill; 133 ret = ath10k_htt_rx_ring_fill_n(htt, num_to_fill); 134 if (ret == -ENOMEM) { 135 /* 136 * Failed to fill it to the desired level - 137 * we'll start a timer and try again next time. 138 * As long as enough buffers are left in the ring for 139 * another A-MPDU rx, no special recovery is needed. 140 */ 141 mod_timer(&htt->rx_ring.refill_retry_timer, jiffies + 142 msecs_to_jiffies(HTT_RX_RING_REFILL_RETRY_MS)); 143 } else if (num_deficit > 0) { 144 tasklet_schedule(&htt->rx_replenish_task); 145 } 146 spin_unlock_bh(&htt->rx_ring.lock); 147 } 148 149 static void ath10k_htt_rx_ring_refill_retry(unsigned long arg) 150 { 151 struct ath10k_htt *htt = (struct ath10k_htt *)arg; 152 153 ath10k_htt_rx_msdu_buff_replenish(htt); 154 } 155 156 static void ath10k_htt_rx_ring_clean_up(struct ath10k_htt *htt) 157 { 158 struct sk_buff *skb; 159 int i; 160 161 for (i = 0; i < htt->rx_ring.size; i++) { 162 skb = htt->rx_ring.netbufs_ring[i]; 163 if (!skb) 164 continue; 165 166 dma_unmap_single(htt->ar->dev, ATH10K_SKB_CB(skb)->paddr, 167 skb->len + skb_tailroom(skb), 168 DMA_FROM_DEVICE); 169 dev_kfree_skb_any(skb); 170 htt->rx_ring.netbufs_ring[i] = NULL; 171 } 172 } 173 174 void ath10k_htt_rx_free(struct ath10k_htt *htt) 175 { 176 del_timer_sync(&htt->rx_ring.refill_retry_timer); 177 tasklet_kill(&htt->rx_replenish_task); 178 tasklet_kill(&htt->txrx_compl_task); 179 180 skb_queue_purge(&htt->tx_compl_q); 181 skb_queue_purge(&htt->rx_compl_q); 182 183 ath10k_htt_rx_ring_clean_up(htt); 184 185 dma_free_coherent(htt->ar->dev, 186 (htt->rx_ring.size * 187 sizeof(htt->rx_ring.paddrs_ring)), 188 htt->rx_ring.paddrs_ring, 189 htt->rx_ring.base_paddr); 190 191 dma_free_coherent(htt->ar->dev, 192 sizeof(*htt->rx_ring.alloc_idx.vaddr), 193 htt->rx_ring.alloc_idx.vaddr, 194 htt->rx_ring.alloc_idx.paddr); 195 196 kfree(htt->rx_ring.netbufs_ring); 197 } 198 199 static inline struct sk_buff *ath10k_htt_rx_netbuf_pop(struct ath10k_htt *htt) 200 { 201 struct ath10k *ar = htt->ar; 202 int idx; 203 struct sk_buff *msdu; 204 205 lockdep_assert_held(&htt->rx_ring.lock); 206 207 if (htt->rx_ring.fill_cnt == 0) { 208 ath10k_warn(ar, "tried to pop sk_buff from an empty rx ring\n"); 209 return NULL; 210 } 211 212 idx = htt->rx_ring.sw_rd_idx.msdu_payld; 213 msdu = htt->rx_ring.netbufs_ring[idx]; 214 htt->rx_ring.netbufs_ring[idx] = NULL; 215 216 idx++; 217 idx &= htt->rx_ring.size_mask; 218 htt->rx_ring.sw_rd_idx.msdu_payld = idx; 219 htt->rx_ring.fill_cnt--; 220 221 dma_unmap_single(htt->ar->dev, 222 ATH10K_SKB_CB(msdu)->paddr, 223 msdu->len + skb_tailroom(msdu), 224 DMA_FROM_DEVICE); 225 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ", 226 msdu->data, msdu->len + skb_tailroom(msdu)); 227 228 return msdu; 229 } 230 231 /* return: < 0 fatal error, 0 - non chained msdu, 1 chained msdu */ 232 static int ath10k_htt_rx_amsdu_pop(struct ath10k_htt *htt, 233 u8 **fw_desc, int *fw_desc_len, 234 struct sk_buff_head *amsdu) 235 { 236 struct ath10k *ar = htt->ar; 237 int msdu_len, msdu_chaining = 0; 238 struct sk_buff *msdu; 239 struct htt_rx_desc *rx_desc; 240 241 lockdep_assert_held(&htt->rx_ring.lock); 242 243 for (;;) { 244 int last_msdu, msdu_len_invalid, msdu_chained; 245 246 msdu = ath10k_htt_rx_netbuf_pop(htt); 247 if (!msdu) { 248 __skb_queue_purge(amsdu); 249 return -ENOENT; 250 } 251 252 __skb_queue_tail(amsdu, msdu); 253 254 rx_desc = (struct htt_rx_desc *)msdu->data; 255 256 /* FIXME: we must report msdu payload since this is what caller 257 * expects now */ 258 skb_put(msdu, offsetof(struct htt_rx_desc, msdu_payload)); 259 skb_pull(msdu, offsetof(struct htt_rx_desc, msdu_payload)); 260 261 /* 262 * Sanity check - confirm the HW is finished filling in the 263 * rx data. 264 * If the HW and SW are working correctly, then it's guaranteed 265 * that the HW's MAC DMA is done before this point in the SW. 266 * To prevent the case that we handle a stale Rx descriptor, 267 * just assert for now until we have a way to recover. 268 */ 269 if (!(__le32_to_cpu(rx_desc->attention.flags) 270 & RX_ATTENTION_FLAGS_MSDU_DONE)) { 271 __skb_queue_purge(amsdu); 272 return -EIO; 273 } 274 275 /* 276 * Copy the FW rx descriptor for this MSDU from the rx 277 * indication message into the MSDU's netbuf. HL uses the 278 * same rx indication message definition as LL, and simply 279 * appends new info (fields from the HW rx desc, and the 280 * MSDU payload itself). So, the offset into the rx 281 * indication message only has to account for the standard 282 * offset of the per-MSDU FW rx desc info within the 283 * message, and how many bytes of the per-MSDU FW rx desc 284 * info have already been consumed. (And the endianness of 285 * the host, since for a big-endian host, the rx ind 286 * message contents, including the per-MSDU rx desc bytes, 287 * were byteswapped during upload.) 288 */ 289 if (*fw_desc_len > 0) { 290 rx_desc->fw_desc.info0 = **fw_desc; 291 /* 292 * The target is expected to only provide the basic 293 * per-MSDU rx descriptors. Just to be sure, verify 294 * that the target has not attached extension data 295 * (e.g. LRO flow ID). 296 */ 297 298 /* or more, if there's extension data */ 299 (*fw_desc)++; 300 (*fw_desc_len)--; 301 } else { 302 /* 303 * When an oversized AMSDU happened, FW will lost 304 * some of MSDU status - in this case, the FW 305 * descriptors provided will be less than the 306 * actual MSDUs inside this MPDU. Mark the FW 307 * descriptors so that it will still deliver to 308 * upper stack, if no CRC error for this MPDU. 309 * 310 * FIX THIS - the FW descriptors are actually for 311 * MSDUs in the end of this A-MSDU instead of the 312 * beginning. 313 */ 314 rx_desc->fw_desc.info0 = 0; 315 } 316 317 msdu_len_invalid = !!(__le32_to_cpu(rx_desc->attention.flags) 318 & (RX_ATTENTION_FLAGS_MPDU_LENGTH_ERR | 319 RX_ATTENTION_FLAGS_MSDU_LENGTH_ERR)); 320 msdu_len = MS(__le32_to_cpu(rx_desc->msdu_start.info0), 321 RX_MSDU_START_INFO0_MSDU_LENGTH); 322 msdu_chained = rx_desc->frag_info.ring2_more_count; 323 324 if (msdu_len_invalid) 325 msdu_len = 0; 326 327 skb_trim(msdu, 0); 328 skb_put(msdu, min(msdu_len, HTT_RX_MSDU_SIZE)); 329 msdu_len -= msdu->len; 330 331 /* Note: Chained buffers do not contain rx descriptor */ 332 while (msdu_chained--) { 333 msdu = ath10k_htt_rx_netbuf_pop(htt); 334 if (!msdu) { 335 __skb_queue_purge(amsdu); 336 return -ENOENT; 337 } 338 339 __skb_queue_tail(amsdu, msdu); 340 skb_trim(msdu, 0); 341 skb_put(msdu, min(msdu_len, HTT_RX_BUF_SIZE)); 342 msdu_len -= msdu->len; 343 msdu_chaining = 1; 344 } 345 346 last_msdu = __le32_to_cpu(rx_desc->msdu_end.info0) & 347 RX_MSDU_END_INFO0_LAST_MSDU; 348 349 trace_ath10k_htt_rx_desc(ar, &rx_desc->attention, 350 sizeof(*rx_desc) - sizeof(u32)); 351 352 if (last_msdu) 353 break; 354 } 355 356 if (skb_queue_empty(amsdu)) 357 msdu_chaining = -1; 358 359 /* 360 * Don't refill the ring yet. 361 * 362 * First, the elements popped here are still in use - it is not 363 * safe to overwrite them until the matching call to 364 * mpdu_desc_list_next. Second, for efficiency it is preferable to 365 * refill the rx ring with 1 PPDU's worth of rx buffers (something 366 * like 32 x 3 buffers), rather than one MPDU's worth of rx buffers 367 * (something like 3 buffers). Consequently, we'll rely on the txrx 368 * SW to tell us when it is done pulling all the PPDU's rx buffers 369 * out of the rx ring, and then refill it just once. 370 */ 371 372 return msdu_chaining; 373 } 374 375 static void ath10k_htt_rx_replenish_task(unsigned long ptr) 376 { 377 struct ath10k_htt *htt = (struct ath10k_htt *)ptr; 378 379 ath10k_htt_rx_msdu_buff_replenish(htt); 380 } 381 382 int ath10k_htt_rx_alloc(struct ath10k_htt *htt) 383 { 384 struct ath10k *ar = htt->ar; 385 dma_addr_t paddr; 386 void *vaddr; 387 size_t size; 388 struct timer_list *timer = &htt->rx_ring.refill_retry_timer; 389 390 htt->rx_confused = false; 391 392 /* XXX: The fill level could be changed during runtime in response to 393 * the host processing latency. Is this really worth it? 394 */ 395 htt->rx_ring.size = HTT_RX_RING_SIZE; 396 htt->rx_ring.size_mask = htt->rx_ring.size - 1; 397 htt->rx_ring.fill_level = HTT_RX_RING_FILL_LEVEL; 398 399 if (!is_power_of_2(htt->rx_ring.size)) { 400 ath10k_warn(ar, "htt rx ring size is not power of 2\n"); 401 return -EINVAL; 402 } 403 404 htt->rx_ring.netbufs_ring = 405 kzalloc(htt->rx_ring.size * sizeof(struct sk_buff *), 406 GFP_KERNEL); 407 if (!htt->rx_ring.netbufs_ring) 408 goto err_netbuf; 409 410 size = htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring); 411 412 vaddr = dma_alloc_coherent(htt->ar->dev, size, &paddr, GFP_DMA); 413 if (!vaddr) 414 goto err_dma_ring; 415 416 htt->rx_ring.paddrs_ring = vaddr; 417 htt->rx_ring.base_paddr = paddr; 418 419 vaddr = dma_alloc_coherent(htt->ar->dev, 420 sizeof(*htt->rx_ring.alloc_idx.vaddr), 421 &paddr, GFP_DMA); 422 if (!vaddr) 423 goto err_dma_idx; 424 425 htt->rx_ring.alloc_idx.vaddr = vaddr; 426 htt->rx_ring.alloc_idx.paddr = paddr; 427 htt->rx_ring.sw_rd_idx.msdu_payld = 0; 428 *htt->rx_ring.alloc_idx.vaddr = 0; 429 430 /* Initialize the Rx refill retry timer */ 431 setup_timer(timer, ath10k_htt_rx_ring_refill_retry, (unsigned long)htt); 432 433 spin_lock_init(&htt->rx_ring.lock); 434 435 htt->rx_ring.fill_cnt = 0; 436 if (__ath10k_htt_rx_ring_fill_n(htt, htt->rx_ring.fill_level)) 437 goto err_fill_ring; 438 439 tasklet_init(&htt->rx_replenish_task, ath10k_htt_rx_replenish_task, 440 (unsigned long)htt); 441 442 skb_queue_head_init(&htt->tx_compl_q); 443 skb_queue_head_init(&htt->rx_compl_q); 444 445 tasklet_init(&htt->txrx_compl_task, ath10k_htt_txrx_compl_task, 446 (unsigned long)htt); 447 448 ath10k_dbg(ar, ATH10K_DBG_BOOT, "htt rx ring size %d fill_level %d\n", 449 htt->rx_ring.size, htt->rx_ring.fill_level); 450 return 0; 451 452 err_fill_ring: 453 ath10k_htt_rx_ring_free(htt); 454 dma_free_coherent(htt->ar->dev, 455 sizeof(*htt->rx_ring.alloc_idx.vaddr), 456 htt->rx_ring.alloc_idx.vaddr, 457 htt->rx_ring.alloc_idx.paddr); 458 err_dma_idx: 459 dma_free_coherent(htt->ar->dev, 460 (htt->rx_ring.size * 461 sizeof(htt->rx_ring.paddrs_ring)), 462 htt->rx_ring.paddrs_ring, 463 htt->rx_ring.base_paddr); 464 err_dma_ring: 465 kfree(htt->rx_ring.netbufs_ring); 466 err_netbuf: 467 return -ENOMEM; 468 } 469 470 static int ath10k_htt_rx_crypto_param_len(struct ath10k *ar, 471 enum htt_rx_mpdu_encrypt_type type) 472 { 473 switch (type) { 474 case HTT_RX_MPDU_ENCRYPT_NONE: 475 return 0; 476 case HTT_RX_MPDU_ENCRYPT_WEP40: 477 case HTT_RX_MPDU_ENCRYPT_WEP104: 478 return IEEE80211_WEP_IV_LEN; 479 case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC: 480 case HTT_RX_MPDU_ENCRYPT_TKIP_WPA: 481 return IEEE80211_TKIP_IV_LEN; 482 case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2: 483 return IEEE80211_CCMP_HDR_LEN; 484 case HTT_RX_MPDU_ENCRYPT_WEP128: 485 case HTT_RX_MPDU_ENCRYPT_WAPI: 486 break; 487 } 488 489 ath10k_warn(ar, "unsupported encryption type %d\n", type); 490 return 0; 491 } 492 493 #define MICHAEL_MIC_LEN 8 494 495 static int ath10k_htt_rx_crypto_tail_len(struct ath10k *ar, 496 enum htt_rx_mpdu_encrypt_type type) 497 { 498 switch (type) { 499 case HTT_RX_MPDU_ENCRYPT_NONE: 500 return 0; 501 case HTT_RX_MPDU_ENCRYPT_WEP40: 502 case HTT_RX_MPDU_ENCRYPT_WEP104: 503 return IEEE80211_WEP_ICV_LEN; 504 case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC: 505 case HTT_RX_MPDU_ENCRYPT_TKIP_WPA: 506 return IEEE80211_TKIP_ICV_LEN; 507 case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2: 508 return IEEE80211_CCMP_MIC_LEN; 509 case HTT_RX_MPDU_ENCRYPT_WEP128: 510 case HTT_RX_MPDU_ENCRYPT_WAPI: 511 break; 512 } 513 514 ath10k_warn(ar, "unsupported encryption type %d\n", type); 515 return 0; 516 } 517 518 struct rfc1042_hdr { 519 u8 llc_dsap; 520 u8 llc_ssap; 521 u8 llc_ctrl; 522 u8 snap_oui[3]; 523 __be16 snap_type; 524 } __packed; 525 526 struct amsdu_subframe_hdr { 527 u8 dst[ETH_ALEN]; 528 u8 src[ETH_ALEN]; 529 __be16 len; 530 } __packed; 531 532 static const u8 rx_legacy_rate_idx[] = { 533 3, /* 0x00 - 11Mbps */ 534 2, /* 0x01 - 5.5Mbps */ 535 1, /* 0x02 - 2Mbps */ 536 0, /* 0x03 - 1Mbps */ 537 3, /* 0x04 - 11Mbps */ 538 2, /* 0x05 - 5.5Mbps */ 539 1, /* 0x06 - 2Mbps */ 540 0, /* 0x07 - 1Mbps */ 541 10, /* 0x08 - 48Mbps */ 542 8, /* 0x09 - 24Mbps */ 543 6, /* 0x0A - 12Mbps */ 544 4, /* 0x0B - 6Mbps */ 545 11, /* 0x0C - 54Mbps */ 546 9, /* 0x0D - 36Mbps */ 547 7, /* 0x0E - 18Mbps */ 548 5, /* 0x0F - 9Mbps */ 549 }; 550 551 static void ath10k_htt_rx_h_rates(struct ath10k *ar, 552 struct ieee80211_rx_status *status, 553 struct htt_rx_desc *rxd) 554 { 555 enum ieee80211_band band; 556 u8 cck, rate, rate_idx, bw, sgi, mcs, nss; 557 u8 preamble = 0; 558 u32 info1, info2, info3; 559 560 /* Band value can't be set as undefined but freq can be 0 - use that to 561 * determine whether band is provided. 562 * 563 * FIXME: Perhaps this can go away if CCK rate reporting is a little 564 * reworked? 565 */ 566 if (!status->freq) 567 return; 568 569 band = status->band; 570 info1 = __le32_to_cpu(rxd->ppdu_start.info1); 571 info2 = __le32_to_cpu(rxd->ppdu_start.info2); 572 info3 = __le32_to_cpu(rxd->ppdu_start.info3); 573 574 preamble = MS(info1, RX_PPDU_START_INFO1_PREAMBLE_TYPE); 575 576 switch (preamble) { 577 case HTT_RX_LEGACY: 578 cck = info1 & RX_PPDU_START_INFO1_L_SIG_RATE_SELECT; 579 rate = MS(info1, RX_PPDU_START_INFO1_L_SIG_RATE); 580 rate_idx = 0; 581 582 if (rate < 0x08 || rate > 0x0F) 583 break; 584 585 switch (band) { 586 case IEEE80211_BAND_2GHZ: 587 if (cck) 588 rate &= ~BIT(3); 589 rate_idx = rx_legacy_rate_idx[rate]; 590 break; 591 case IEEE80211_BAND_5GHZ: 592 rate_idx = rx_legacy_rate_idx[rate]; 593 /* We are using same rate table registering 594 HW - ath10k_rates[]. In case of 5GHz skip 595 CCK rates, so -4 here */ 596 rate_idx -= 4; 597 break; 598 default: 599 break; 600 } 601 602 status->rate_idx = rate_idx; 603 break; 604 case HTT_RX_HT: 605 case HTT_RX_HT_WITH_TXBF: 606 /* HT-SIG - Table 20-11 in info2 and info3 */ 607 mcs = info2 & 0x1F; 608 nss = mcs >> 3; 609 bw = (info2 >> 7) & 1; 610 sgi = (info3 >> 7) & 1; 611 612 status->rate_idx = mcs; 613 status->flag |= RX_FLAG_HT; 614 if (sgi) 615 status->flag |= RX_FLAG_SHORT_GI; 616 if (bw) 617 status->flag |= RX_FLAG_40MHZ; 618 break; 619 case HTT_RX_VHT: 620 case HTT_RX_VHT_WITH_TXBF: 621 /* VHT-SIG-A1 in info2, VHT-SIG-A2 in info3 622 TODO check this */ 623 mcs = (info3 >> 4) & 0x0F; 624 nss = ((info2 >> 10) & 0x07) + 1; 625 bw = info2 & 3; 626 sgi = info3 & 1; 627 628 status->rate_idx = mcs; 629 status->vht_nss = nss; 630 631 if (sgi) 632 status->flag |= RX_FLAG_SHORT_GI; 633 634 switch (bw) { 635 /* 20MHZ */ 636 case 0: 637 break; 638 /* 40MHZ */ 639 case 1: 640 status->flag |= RX_FLAG_40MHZ; 641 break; 642 /* 80MHZ */ 643 case 2: 644 status->vht_flag |= RX_VHT_FLAG_80MHZ; 645 } 646 647 status->flag |= RX_FLAG_VHT; 648 break; 649 default: 650 break; 651 } 652 } 653 654 static bool ath10k_htt_rx_h_channel(struct ath10k *ar, 655 struct ieee80211_rx_status *status) 656 { 657 struct ieee80211_channel *ch; 658 659 spin_lock_bh(&ar->data_lock); 660 ch = ar->scan_channel; 661 if (!ch) 662 ch = ar->rx_channel; 663 spin_unlock_bh(&ar->data_lock); 664 665 if (!ch) 666 return false; 667 668 status->band = ch->band; 669 status->freq = ch->center_freq; 670 671 return true; 672 } 673 674 static void ath10k_htt_rx_h_signal(struct ath10k *ar, 675 struct ieee80211_rx_status *status, 676 struct htt_rx_desc *rxd) 677 { 678 /* FIXME: Get real NF */ 679 status->signal = ATH10K_DEFAULT_NOISE_FLOOR + 680 rxd->ppdu_start.rssi_comb; 681 status->flag &= ~RX_FLAG_NO_SIGNAL_VAL; 682 } 683 684 static void ath10k_htt_rx_h_mactime(struct ath10k *ar, 685 struct ieee80211_rx_status *status, 686 struct htt_rx_desc *rxd) 687 { 688 /* FIXME: TSF is known only at the end of PPDU, in the last MPDU. This 689 * means all prior MSDUs in a PPDU are reported to mac80211 without the 690 * TSF. Is it worth holding frames until end of PPDU is known? 691 * 692 * FIXME: Can we get/compute 64bit TSF? 693 */ 694 status->mactime = __le32_to_cpu(rxd->ppdu_end.tsf_timestamp); 695 status->flag |= RX_FLAG_MACTIME_END; 696 } 697 698 static void ath10k_htt_rx_h_ppdu(struct ath10k *ar, 699 struct sk_buff_head *amsdu, 700 struct ieee80211_rx_status *status) 701 { 702 struct sk_buff *first; 703 struct htt_rx_desc *rxd; 704 bool is_first_ppdu; 705 bool is_last_ppdu; 706 707 if (skb_queue_empty(amsdu)) 708 return; 709 710 first = skb_peek(amsdu); 711 rxd = (void *)first->data - sizeof(*rxd); 712 713 is_first_ppdu = !!(rxd->attention.flags & 714 __cpu_to_le32(RX_ATTENTION_FLAGS_FIRST_MPDU)); 715 is_last_ppdu = !!(rxd->attention.flags & 716 __cpu_to_le32(RX_ATTENTION_FLAGS_LAST_MPDU)); 717 718 if (is_first_ppdu) { 719 /* New PPDU starts so clear out the old per-PPDU status. */ 720 status->freq = 0; 721 status->rate_idx = 0; 722 status->vht_nss = 0; 723 status->vht_flag &= ~RX_VHT_FLAG_80MHZ; 724 status->flag &= ~(RX_FLAG_HT | 725 RX_FLAG_VHT | 726 RX_FLAG_SHORT_GI | 727 RX_FLAG_40MHZ | 728 RX_FLAG_MACTIME_END); 729 status->flag |= RX_FLAG_NO_SIGNAL_VAL; 730 731 ath10k_htt_rx_h_signal(ar, status, rxd); 732 ath10k_htt_rx_h_channel(ar, status); 733 ath10k_htt_rx_h_rates(ar, status, rxd); 734 } 735 736 if (is_last_ppdu) 737 ath10k_htt_rx_h_mactime(ar, status, rxd); 738 } 739 740 static const char * const tid_to_ac[] = { 741 "BE", 742 "BK", 743 "BK", 744 "BE", 745 "VI", 746 "VI", 747 "VO", 748 "VO", 749 }; 750 751 static char *ath10k_get_tid(struct ieee80211_hdr *hdr, char *out, size_t size) 752 { 753 u8 *qc; 754 int tid; 755 756 if (!ieee80211_is_data_qos(hdr->frame_control)) 757 return ""; 758 759 qc = ieee80211_get_qos_ctl(hdr); 760 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 761 if (tid < 8) 762 snprintf(out, size, "tid %d (%s)", tid, tid_to_ac[tid]); 763 else 764 snprintf(out, size, "tid %d", tid); 765 766 return out; 767 } 768 769 static void ath10k_process_rx(struct ath10k *ar, 770 struct ieee80211_rx_status *rx_status, 771 struct sk_buff *skb) 772 { 773 struct ieee80211_rx_status *status; 774 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 775 char tid[32]; 776 777 status = IEEE80211_SKB_RXCB(skb); 778 *status = *rx_status; 779 780 ath10k_dbg(ar, ATH10K_DBG_DATA, 781 "rx skb %p len %u peer %pM %s %s sn %u %s%s%s%s%s %srate_idx %u vht_nss %u freq %u band %u flag 0x%x fcs-err %i mic-err %i amsdu-more %i\n", 782 skb, 783 skb->len, 784 ieee80211_get_SA(hdr), 785 ath10k_get_tid(hdr, tid, sizeof(tid)), 786 is_multicast_ether_addr(ieee80211_get_DA(hdr)) ? 787 "mcast" : "ucast", 788 (__le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_SEQ) >> 4, 789 status->flag == 0 ? "legacy" : "", 790 status->flag & RX_FLAG_HT ? "ht" : "", 791 status->flag & RX_FLAG_VHT ? "vht" : "", 792 status->flag & RX_FLAG_40MHZ ? "40" : "", 793 status->vht_flag & RX_VHT_FLAG_80MHZ ? "80" : "", 794 status->flag & RX_FLAG_SHORT_GI ? "sgi " : "", 795 status->rate_idx, 796 status->vht_nss, 797 status->freq, 798 status->band, status->flag, 799 !!(status->flag & RX_FLAG_FAILED_FCS_CRC), 800 !!(status->flag & RX_FLAG_MMIC_ERROR), 801 !!(status->flag & RX_FLAG_AMSDU_MORE)); 802 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "rx skb: ", 803 skb->data, skb->len); 804 trace_ath10k_rx_hdr(ar, skb->data, skb->len); 805 trace_ath10k_rx_payload(ar, skb->data, skb->len); 806 807 ieee80211_rx(ar->hw, skb); 808 } 809 810 static int ath10k_htt_rx_nwifi_hdrlen(struct ieee80211_hdr *hdr) 811 { 812 /* nwifi header is padded to 4 bytes. this fixes 4addr rx */ 813 return round_up(ieee80211_hdrlen(hdr->frame_control), 4); 814 } 815 816 static void ath10k_htt_rx_h_undecap_raw(struct ath10k *ar, 817 struct sk_buff *msdu, 818 struct ieee80211_rx_status *status, 819 enum htt_rx_mpdu_encrypt_type enctype, 820 bool is_decrypted) 821 { 822 struct ieee80211_hdr *hdr; 823 struct htt_rx_desc *rxd; 824 size_t hdr_len; 825 size_t crypto_len; 826 bool is_first; 827 bool is_last; 828 829 rxd = (void *)msdu->data - sizeof(*rxd); 830 is_first = !!(rxd->msdu_end.info0 & 831 __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU)); 832 is_last = !!(rxd->msdu_end.info0 & 833 __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU)); 834 835 /* Delivered decapped frame: 836 * [802.11 header] 837 * [crypto param] <-- can be trimmed if !fcs_err && 838 * !decrypt_err && !peer_idx_invalid 839 * [amsdu header] <-- only if A-MSDU 840 * [rfc1042/llc] 841 * [payload] 842 * [FCS] <-- at end, needs to be trimmed 843 */ 844 845 /* This probably shouldn't happen but warn just in case */ 846 if (unlikely(WARN_ON_ONCE(!is_first))) 847 return; 848 849 /* This probably shouldn't happen but warn just in case */ 850 if (unlikely(WARN_ON_ONCE(!(is_first && is_last)))) 851 return; 852 853 skb_trim(msdu, msdu->len - FCS_LEN); 854 855 /* In most cases this will be true for sniffed frames. It makes sense 856 * to deliver them as-is without stripping the crypto param. This would 857 * also make sense for software based decryption (which is not 858 * implemented in ath10k). 859 * 860 * If there's no error then the frame is decrypted. At least that is 861 * the case for frames that come in via fragmented rx indication. 862 */ 863 if (!is_decrypted) 864 return; 865 866 /* The payload is decrypted so strip crypto params. Start from tail 867 * since hdr is used to compute some stuff. 868 */ 869 870 hdr = (void *)msdu->data; 871 872 /* Tail */ 873 skb_trim(msdu, msdu->len - ath10k_htt_rx_crypto_tail_len(ar, enctype)); 874 875 /* MMIC */ 876 if (!ieee80211_has_morefrags(hdr->frame_control) && 877 enctype == HTT_RX_MPDU_ENCRYPT_TKIP_WPA) 878 skb_trim(msdu, msdu->len - 8); 879 880 /* Head */ 881 hdr_len = ieee80211_hdrlen(hdr->frame_control); 882 crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype); 883 884 memmove((void *)msdu->data + crypto_len, 885 (void *)msdu->data, hdr_len); 886 skb_pull(msdu, crypto_len); 887 } 888 889 static void ath10k_htt_rx_h_undecap_nwifi(struct ath10k *ar, 890 struct sk_buff *msdu, 891 struct ieee80211_rx_status *status, 892 const u8 first_hdr[64]) 893 { 894 struct ieee80211_hdr *hdr; 895 size_t hdr_len; 896 u8 da[ETH_ALEN]; 897 u8 sa[ETH_ALEN]; 898 899 /* Delivered decapped frame: 900 * [nwifi 802.11 header] <-- replaced with 802.11 hdr 901 * [rfc1042/llc] 902 * 903 * Note: The nwifi header doesn't have QoS Control and is 904 * (always?) a 3addr frame. 905 * 906 * Note2: There's no A-MSDU subframe header. Even if it's part 907 * of an A-MSDU. 908 */ 909 910 /* pull decapped header and copy SA & DA */ 911 hdr = (struct ieee80211_hdr *)msdu->data; 912 hdr_len = ath10k_htt_rx_nwifi_hdrlen(hdr); 913 ether_addr_copy(da, ieee80211_get_DA(hdr)); 914 ether_addr_copy(sa, ieee80211_get_SA(hdr)); 915 skb_pull(msdu, hdr_len); 916 917 /* push original 802.11 header */ 918 hdr = (struct ieee80211_hdr *)first_hdr; 919 hdr_len = ieee80211_hdrlen(hdr->frame_control); 920 memcpy(skb_push(msdu, hdr_len), hdr, hdr_len); 921 922 /* original 802.11 header has a different DA and in 923 * case of 4addr it may also have different SA 924 */ 925 hdr = (struct ieee80211_hdr *)msdu->data; 926 ether_addr_copy(ieee80211_get_DA(hdr), da); 927 ether_addr_copy(ieee80211_get_SA(hdr), sa); 928 } 929 930 static void *ath10k_htt_rx_h_find_rfc1042(struct ath10k *ar, 931 struct sk_buff *msdu, 932 enum htt_rx_mpdu_encrypt_type enctype) 933 { 934 struct ieee80211_hdr *hdr; 935 struct htt_rx_desc *rxd; 936 size_t hdr_len, crypto_len; 937 void *rfc1042; 938 bool is_first, is_last, is_amsdu; 939 940 rxd = (void *)msdu->data - sizeof(*rxd); 941 hdr = (void *)rxd->rx_hdr_status; 942 943 is_first = !!(rxd->msdu_end.info0 & 944 __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU)); 945 is_last = !!(rxd->msdu_end.info0 & 946 __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU)); 947 is_amsdu = !(is_first && is_last); 948 949 rfc1042 = hdr; 950 951 if (is_first) { 952 hdr_len = ieee80211_hdrlen(hdr->frame_control); 953 crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype); 954 955 rfc1042 += round_up(hdr_len, 4) + 956 round_up(crypto_len, 4); 957 } 958 959 if (is_amsdu) 960 rfc1042 += sizeof(struct amsdu_subframe_hdr); 961 962 return rfc1042; 963 } 964 965 static void ath10k_htt_rx_h_undecap_eth(struct ath10k *ar, 966 struct sk_buff *msdu, 967 struct ieee80211_rx_status *status, 968 const u8 first_hdr[64], 969 enum htt_rx_mpdu_encrypt_type enctype) 970 { 971 struct ieee80211_hdr *hdr; 972 struct ethhdr *eth; 973 size_t hdr_len; 974 void *rfc1042; 975 u8 da[ETH_ALEN]; 976 u8 sa[ETH_ALEN]; 977 978 /* Delivered decapped frame: 979 * [eth header] <-- replaced with 802.11 hdr & rfc1042/llc 980 * [payload] 981 */ 982 983 rfc1042 = ath10k_htt_rx_h_find_rfc1042(ar, msdu, enctype); 984 if (WARN_ON_ONCE(!rfc1042)) 985 return; 986 987 /* pull decapped header and copy SA & DA */ 988 eth = (struct ethhdr *)msdu->data; 989 ether_addr_copy(da, eth->h_dest); 990 ether_addr_copy(sa, eth->h_source); 991 skb_pull(msdu, sizeof(struct ethhdr)); 992 993 /* push rfc1042/llc/snap */ 994 memcpy(skb_push(msdu, sizeof(struct rfc1042_hdr)), rfc1042, 995 sizeof(struct rfc1042_hdr)); 996 997 /* push original 802.11 header */ 998 hdr = (struct ieee80211_hdr *)first_hdr; 999 hdr_len = ieee80211_hdrlen(hdr->frame_control); 1000 memcpy(skb_push(msdu, hdr_len), hdr, hdr_len); 1001 1002 /* original 802.11 header has a different DA and in 1003 * case of 4addr it may also have different SA 1004 */ 1005 hdr = (struct ieee80211_hdr *)msdu->data; 1006 ether_addr_copy(ieee80211_get_DA(hdr), da); 1007 ether_addr_copy(ieee80211_get_SA(hdr), sa); 1008 } 1009 1010 static void ath10k_htt_rx_h_undecap_snap(struct ath10k *ar, 1011 struct sk_buff *msdu, 1012 struct ieee80211_rx_status *status, 1013 const u8 first_hdr[64]) 1014 { 1015 struct ieee80211_hdr *hdr; 1016 size_t hdr_len; 1017 1018 /* Delivered decapped frame: 1019 * [amsdu header] <-- replaced with 802.11 hdr 1020 * [rfc1042/llc] 1021 * [payload] 1022 */ 1023 1024 skb_pull(msdu, sizeof(struct amsdu_subframe_hdr)); 1025 1026 hdr = (struct ieee80211_hdr *)first_hdr; 1027 hdr_len = ieee80211_hdrlen(hdr->frame_control); 1028 memcpy(skb_push(msdu, hdr_len), hdr, hdr_len); 1029 } 1030 1031 static void ath10k_htt_rx_h_undecap(struct ath10k *ar, 1032 struct sk_buff *msdu, 1033 struct ieee80211_rx_status *status, 1034 u8 first_hdr[64], 1035 enum htt_rx_mpdu_encrypt_type enctype, 1036 bool is_decrypted) 1037 { 1038 struct htt_rx_desc *rxd; 1039 enum rx_msdu_decap_format decap; 1040 struct ieee80211_hdr *hdr; 1041 1042 /* First msdu's decapped header: 1043 * [802.11 header] <-- padded to 4 bytes long 1044 * [crypto param] <-- padded to 4 bytes long 1045 * [amsdu header] <-- only if A-MSDU 1046 * [rfc1042/llc] 1047 * 1048 * Other (2nd, 3rd, ..) msdu's decapped header: 1049 * [amsdu header] <-- only if A-MSDU 1050 * [rfc1042/llc] 1051 */ 1052 1053 rxd = (void *)msdu->data - sizeof(*rxd); 1054 hdr = (void *)rxd->rx_hdr_status; 1055 decap = MS(__le32_to_cpu(rxd->msdu_start.info1), 1056 RX_MSDU_START_INFO1_DECAP_FORMAT); 1057 1058 switch (decap) { 1059 case RX_MSDU_DECAP_RAW: 1060 ath10k_htt_rx_h_undecap_raw(ar, msdu, status, enctype, 1061 is_decrypted); 1062 break; 1063 case RX_MSDU_DECAP_NATIVE_WIFI: 1064 ath10k_htt_rx_h_undecap_nwifi(ar, msdu, status, first_hdr); 1065 break; 1066 case RX_MSDU_DECAP_ETHERNET2_DIX: 1067 ath10k_htt_rx_h_undecap_eth(ar, msdu, status, first_hdr, enctype); 1068 break; 1069 case RX_MSDU_DECAP_8023_SNAP_LLC: 1070 ath10k_htt_rx_h_undecap_snap(ar, msdu, status, first_hdr); 1071 break; 1072 } 1073 } 1074 1075 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb) 1076 { 1077 struct htt_rx_desc *rxd; 1078 u32 flags, info; 1079 bool is_ip4, is_ip6; 1080 bool is_tcp, is_udp; 1081 bool ip_csum_ok, tcpudp_csum_ok; 1082 1083 rxd = (void *)skb->data - sizeof(*rxd); 1084 flags = __le32_to_cpu(rxd->attention.flags); 1085 info = __le32_to_cpu(rxd->msdu_start.info1); 1086 1087 is_ip4 = !!(info & RX_MSDU_START_INFO1_IPV4_PROTO); 1088 is_ip6 = !!(info & RX_MSDU_START_INFO1_IPV6_PROTO); 1089 is_tcp = !!(info & RX_MSDU_START_INFO1_TCP_PROTO); 1090 is_udp = !!(info & RX_MSDU_START_INFO1_UDP_PROTO); 1091 ip_csum_ok = !(flags & RX_ATTENTION_FLAGS_IP_CHKSUM_FAIL); 1092 tcpudp_csum_ok = !(flags & RX_ATTENTION_FLAGS_TCP_UDP_CHKSUM_FAIL); 1093 1094 if (!is_ip4 && !is_ip6) 1095 return CHECKSUM_NONE; 1096 if (!is_tcp && !is_udp) 1097 return CHECKSUM_NONE; 1098 if (!ip_csum_ok) 1099 return CHECKSUM_NONE; 1100 if (!tcpudp_csum_ok) 1101 return CHECKSUM_NONE; 1102 1103 return CHECKSUM_UNNECESSARY; 1104 } 1105 1106 static void ath10k_htt_rx_h_csum_offload(struct sk_buff *msdu) 1107 { 1108 msdu->ip_summed = ath10k_htt_rx_get_csum_state(msdu); 1109 } 1110 1111 static void ath10k_htt_rx_h_mpdu(struct ath10k *ar, 1112 struct sk_buff_head *amsdu, 1113 struct ieee80211_rx_status *status) 1114 { 1115 struct sk_buff *first; 1116 struct sk_buff *last; 1117 struct sk_buff *msdu; 1118 struct htt_rx_desc *rxd; 1119 struct ieee80211_hdr *hdr; 1120 enum htt_rx_mpdu_encrypt_type enctype; 1121 u8 first_hdr[64]; 1122 u8 *qos; 1123 size_t hdr_len; 1124 bool has_fcs_err; 1125 bool has_crypto_err; 1126 bool has_tkip_err; 1127 bool has_peer_idx_invalid; 1128 bool is_decrypted; 1129 u32 attention; 1130 1131 if (skb_queue_empty(amsdu)) 1132 return; 1133 1134 first = skb_peek(amsdu); 1135 rxd = (void *)first->data - sizeof(*rxd); 1136 1137 enctype = MS(__le32_to_cpu(rxd->mpdu_start.info0), 1138 RX_MPDU_START_INFO0_ENCRYPT_TYPE); 1139 1140 /* First MSDU's Rx descriptor in an A-MSDU contains full 802.11 1141 * decapped header. It'll be used for undecapping of each MSDU. 1142 */ 1143 hdr = (void *)rxd->rx_hdr_status; 1144 hdr_len = ieee80211_hdrlen(hdr->frame_control); 1145 memcpy(first_hdr, hdr, hdr_len); 1146 1147 /* Each A-MSDU subframe will use the original header as the base and be 1148 * reported as a separate MSDU so strip the A-MSDU bit from QoS Ctl. 1149 */ 1150 hdr = (void *)first_hdr; 1151 qos = ieee80211_get_qos_ctl(hdr); 1152 qos[0] &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT; 1153 1154 /* Some attention flags are valid only in the last MSDU. */ 1155 last = skb_peek_tail(amsdu); 1156 rxd = (void *)last->data - sizeof(*rxd); 1157 attention = __le32_to_cpu(rxd->attention.flags); 1158 1159 has_fcs_err = !!(attention & RX_ATTENTION_FLAGS_FCS_ERR); 1160 has_crypto_err = !!(attention & RX_ATTENTION_FLAGS_DECRYPT_ERR); 1161 has_tkip_err = !!(attention & RX_ATTENTION_FLAGS_TKIP_MIC_ERR); 1162 has_peer_idx_invalid = !!(attention & RX_ATTENTION_FLAGS_PEER_IDX_INVALID); 1163 1164 /* Note: If hardware captures an encrypted frame that it can't decrypt, 1165 * e.g. due to fcs error, missing peer or invalid key data it will 1166 * report the frame as raw. 1167 */ 1168 is_decrypted = (enctype != HTT_RX_MPDU_ENCRYPT_NONE && 1169 !has_fcs_err && 1170 !has_crypto_err && 1171 !has_peer_idx_invalid); 1172 1173 /* Clear per-MPDU flags while leaving per-PPDU flags intact. */ 1174 status->flag &= ~(RX_FLAG_FAILED_FCS_CRC | 1175 RX_FLAG_MMIC_ERROR | 1176 RX_FLAG_DECRYPTED | 1177 RX_FLAG_IV_STRIPPED | 1178 RX_FLAG_MMIC_STRIPPED); 1179 1180 if (has_fcs_err) 1181 status->flag |= RX_FLAG_FAILED_FCS_CRC; 1182 1183 if (has_tkip_err) 1184 status->flag |= RX_FLAG_MMIC_ERROR; 1185 1186 if (is_decrypted) 1187 status->flag |= RX_FLAG_DECRYPTED | 1188 RX_FLAG_IV_STRIPPED | 1189 RX_FLAG_MMIC_STRIPPED; 1190 1191 skb_queue_walk(amsdu, msdu) { 1192 ath10k_htt_rx_h_csum_offload(msdu); 1193 ath10k_htt_rx_h_undecap(ar, msdu, status, first_hdr, enctype, 1194 is_decrypted); 1195 1196 /* Undecapping involves copying the original 802.11 header back 1197 * to sk_buff. If frame is protected and hardware has decrypted 1198 * it then remove the protected bit. 1199 */ 1200 if (!is_decrypted) 1201 continue; 1202 1203 hdr = (void *)msdu->data; 1204 hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED); 1205 } 1206 } 1207 1208 static void ath10k_htt_rx_h_deliver(struct ath10k *ar, 1209 struct sk_buff_head *amsdu, 1210 struct ieee80211_rx_status *status) 1211 { 1212 struct sk_buff *msdu; 1213 1214 while ((msdu = __skb_dequeue(amsdu))) { 1215 /* Setup per-MSDU flags */ 1216 if (skb_queue_empty(amsdu)) 1217 status->flag &= ~RX_FLAG_AMSDU_MORE; 1218 else 1219 status->flag |= RX_FLAG_AMSDU_MORE; 1220 1221 ath10k_process_rx(ar, status, msdu); 1222 } 1223 } 1224 1225 static int ath10k_unchain_msdu(struct sk_buff_head *amsdu) 1226 { 1227 struct sk_buff *skb, *first; 1228 int space; 1229 int total_len = 0; 1230 1231 /* TODO: Might could optimize this by using 1232 * skb_try_coalesce or similar method to 1233 * decrease copying, or maybe get mac80211 to 1234 * provide a way to just receive a list of 1235 * skb? 1236 */ 1237 1238 first = __skb_dequeue(amsdu); 1239 1240 /* Allocate total length all at once. */ 1241 skb_queue_walk(amsdu, skb) 1242 total_len += skb->len; 1243 1244 space = total_len - skb_tailroom(first); 1245 if ((space > 0) && 1246 (pskb_expand_head(first, 0, space, GFP_ATOMIC) < 0)) { 1247 /* TODO: bump some rx-oom error stat */ 1248 /* put it back together so we can free the 1249 * whole list at once. 1250 */ 1251 __skb_queue_head(amsdu, first); 1252 return -1; 1253 } 1254 1255 /* Walk list again, copying contents into 1256 * msdu_head 1257 */ 1258 while ((skb = __skb_dequeue(amsdu))) { 1259 skb_copy_from_linear_data(skb, skb_put(first, skb->len), 1260 skb->len); 1261 dev_kfree_skb_any(skb); 1262 } 1263 1264 __skb_queue_head(amsdu, first); 1265 return 0; 1266 } 1267 1268 static void ath10k_htt_rx_h_unchain(struct ath10k *ar, 1269 struct sk_buff_head *amsdu, 1270 bool chained) 1271 { 1272 struct sk_buff *first; 1273 struct htt_rx_desc *rxd; 1274 enum rx_msdu_decap_format decap; 1275 1276 first = skb_peek(amsdu); 1277 rxd = (void *)first->data - sizeof(*rxd); 1278 decap = MS(__le32_to_cpu(rxd->msdu_start.info1), 1279 RX_MSDU_START_INFO1_DECAP_FORMAT); 1280 1281 if (!chained) 1282 return; 1283 1284 /* FIXME: Current unchaining logic can only handle simple case of raw 1285 * msdu chaining. If decapping is other than raw the chaining may be 1286 * more complex and this isn't handled by the current code. Don't even 1287 * try re-constructing such frames - it'll be pretty much garbage. 1288 */ 1289 if (decap != RX_MSDU_DECAP_RAW || 1290 skb_queue_len(amsdu) != 1 + rxd->frag_info.ring2_more_count) { 1291 __skb_queue_purge(amsdu); 1292 return; 1293 } 1294 1295 ath10k_unchain_msdu(amsdu); 1296 } 1297 1298 static bool ath10k_htt_rx_amsdu_allowed(struct ath10k *ar, 1299 struct sk_buff_head *amsdu, 1300 struct ieee80211_rx_status *rx_status) 1301 { 1302 struct sk_buff *msdu; 1303 struct htt_rx_desc *rxd; 1304 bool is_mgmt; 1305 bool has_fcs_err; 1306 1307 msdu = skb_peek(amsdu); 1308 rxd = (void *)msdu->data - sizeof(*rxd); 1309 1310 /* FIXME: It might be a good idea to do some fuzzy-testing to drop 1311 * invalid/dangerous frames. 1312 */ 1313 1314 if (!rx_status->freq) { 1315 ath10k_warn(ar, "no channel configured; ignoring frame(s)!\n"); 1316 return false; 1317 } 1318 1319 is_mgmt = !!(rxd->attention.flags & 1320 __cpu_to_le32(RX_ATTENTION_FLAGS_MGMT_TYPE)); 1321 has_fcs_err = !!(rxd->attention.flags & 1322 __cpu_to_le32(RX_ATTENTION_FLAGS_FCS_ERR)); 1323 1324 /* Management frames are handled via WMI events. The pros of such 1325 * approach is that channel is explicitly provided in WMI events 1326 * whereas HTT doesn't provide channel information for Rxed frames. 1327 * 1328 * However some firmware revisions don't report corrupted frames via 1329 * WMI so don't drop them. 1330 */ 1331 if (is_mgmt && !has_fcs_err) { 1332 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx mgmt ctrl\n"); 1333 return false; 1334 } 1335 1336 if (test_bit(ATH10K_CAC_RUNNING, &ar->dev_flags)) { 1337 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx cac running\n"); 1338 return false; 1339 } 1340 1341 return true; 1342 } 1343 1344 static void ath10k_htt_rx_h_filter(struct ath10k *ar, 1345 struct sk_buff_head *amsdu, 1346 struct ieee80211_rx_status *rx_status) 1347 { 1348 if (skb_queue_empty(amsdu)) 1349 return; 1350 1351 if (ath10k_htt_rx_amsdu_allowed(ar, amsdu, rx_status)) 1352 return; 1353 1354 __skb_queue_purge(amsdu); 1355 } 1356 1357 static void ath10k_htt_rx_handler(struct ath10k_htt *htt, 1358 struct htt_rx_indication *rx) 1359 { 1360 struct ath10k *ar = htt->ar; 1361 struct ieee80211_rx_status *rx_status = &htt->rx_status; 1362 struct htt_rx_indication_mpdu_range *mpdu_ranges; 1363 struct sk_buff_head amsdu; 1364 int num_mpdu_ranges; 1365 int fw_desc_len; 1366 u8 *fw_desc; 1367 int i, ret, mpdu_count = 0; 1368 1369 lockdep_assert_held(&htt->rx_ring.lock); 1370 1371 if (htt->rx_confused) 1372 return; 1373 1374 fw_desc_len = __le16_to_cpu(rx->prefix.fw_rx_desc_bytes); 1375 fw_desc = (u8 *)&rx->fw_desc; 1376 1377 num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1), 1378 HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES); 1379 mpdu_ranges = htt_rx_ind_get_mpdu_ranges(rx); 1380 1381 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx ind: ", 1382 rx, sizeof(*rx) + 1383 (sizeof(struct htt_rx_indication_mpdu_range) * 1384 num_mpdu_ranges)); 1385 1386 for (i = 0; i < num_mpdu_ranges; i++) 1387 mpdu_count += mpdu_ranges[i].mpdu_count; 1388 1389 while (mpdu_count--) { 1390 __skb_queue_head_init(&amsdu); 1391 ret = ath10k_htt_rx_amsdu_pop(htt, &fw_desc, 1392 &fw_desc_len, &amsdu); 1393 if (ret < 0) { 1394 ath10k_warn(ar, "rx ring became corrupted: %d\n", ret); 1395 __skb_queue_purge(&amsdu); 1396 /* FIXME: It's probably a good idea to reboot the 1397 * device instead of leaving it inoperable. 1398 */ 1399 htt->rx_confused = true; 1400 break; 1401 } 1402 1403 ath10k_htt_rx_h_ppdu(ar, &amsdu, rx_status); 1404 ath10k_htt_rx_h_unchain(ar, &amsdu, ret > 0); 1405 ath10k_htt_rx_h_filter(ar, &amsdu, rx_status); 1406 ath10k_htt_rx_h_mpdu(ar, &amsdu, rx_status); 1407 ath10k_htt_rx_h_deliver(ar, &amsdu, rx_status); 1408 } 1409 1410 tasklet_schedule(&htt->rx_replenish_task); 1411 } 1412 1413 static void ath10k_htt_rx_frag_handler(struct ath10k_htt *htt, 1414 struct htt_rx_fragment_indication *frag) 1415 { 1416 struct ath10k *ar = htt->ar; 1417 struct ieee80211_rx_status *rx_status = &htt->rx_status; 1418 struct sk_buff_head amsdu; 1419 int ret; 1420 u8 *fw_desc; 1421 int fw_desc_len; 1422 1423 fw_desc_len = __le16_to_cpu(frag->fw_rx_desc_bytes); 1424 fw_desc = (u8 *)frag->fw_msdu_rx_desc; 1425 1426 __skb_queue_head_init(&amsdu); 1427 1428 spin_lock_bh(&htt->rx_ring.lock); 1429 ret = ath10k_htt_rx_amsdu_pop(htt, &fw_desc, &fw_desc_len, 1430 &amsdu); 1431 spin_unlock_bh(&htt->rx_ring.lock); 1432 1433 tasklet_schedule(&htt->rx_replenish_task); 1434 1435 ath10k_dbg(ar, ATH10K_DBG_HTT_DUMP, "htt rx frag ahead\n"); 1436 1437 if (ret) { 1438 ath10k_warn(ar, "failed to pop amsdu from httr rx ring for fragmented rx %d\n", 1439 ret); 1440 __skb_queue_purge(&amsdu); 1441 return; 1442 } 1443 1444 if (skb_queue_len(&amsdu) != 1) { 1445 ath10k_warn(ar, "failed to pop frag amsdu: too many msdus\n"); 1446 __skb_queue_purge(&amsdu); 1447 return; 1448 } 1449 1450 ath10k_htt_rx_h_ppdu(ar, &amsdu, rx_status); 1451 ath10k_htt_rx_h_filter(ar, &amsdu, rx_status); 1452 ath10k_htt_rx_h_mpdu(ar, &amsdu, rx_status); 1453 ath10k_htt_rx_h_deliver(ar, &amsdu, rx_status); 1454 1455 if (fw_desc_len > 0) { 1456 ath10k_dbg(ar, ATH10K_DBG_HTT, 1457 "expecting more fragmented rx in one indication %d\n", 1458 fw_desc_len); 1459 } 1460 } 1461 1462 static void ath10k_htt_rx_frm_tx_compl(struct ath10k *ar, 1463 struct sk_buff *skb) 1464 { 1465 struct ath10k_htt *htt = &ar->htt; 1466 struct htt_resp *resp = (struct htt_resp *)skb->data; 1467 struct htt_tx_done tx_done = {}; 1468 int status = MS(resp->data_tx_completion.flags, HTT_DATA_TX_STATUS); 1469 __le16 msdu_id; 1470 int i; 1471 1472 lockdep_assert_held(&htt->tx_lock); 1473 1474 switch (status) { 1475 case HTT_DATA_TX_STATUS_NO_ACK: 1476 tx_done.no_ack = true; 1477 break; 1478 case HTT_DATA_TX_STATUS_OK: 1479 break; 1480 case HTT_DATA_TX_STATUS_DISCARD: 1481 case HTT_DATA_TX_STATUS_POSTPONE: 1482 case HTT_DATA_TX_STATUS_DOWNLOAD_FAIL: 1483 tx_done.discard = true; 1484 break; 1485 default: 1486 ath10k_warn(ar, "unhandled tx completion status %d\n", status); 1487 tx_done.discard = true; 1488 break; 1489 } 1490 1491 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx completion num_msdus %d\n", 1492 resp->data_tx_completion.num_msdus); 1493 1494 for (i = 0; i < resp->data_tx_completion.num_msdus; i++) { 1495 msdu_id = resp->data_tx_completion.msdus[i]; 1496 tx_done.msdu_id = __le16_to_cpu(msdu_id); 1497 ath10k_txrx_tx_unref(htt, &tx_done); 1498 } 1499 } 1500 1501 static void ath10k_htt_rx_addba(struct ath10k *ar, struct htt_resp *resp) 1502 { 1503 struct htt_rx_addba *ev = &resp->rx_addba; 1504 struct ath10k_peer *peer; 1505 struct ath10k_vif *arvif; 1506 u16 info0, tid, peer_id; 1507 1508 info0 = __le16_to_cpu(ev->info0); 1509 tid = MS(info0, HTT_RX_BA_INFO0_TID); 1510 peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID); 1511 1512 ath10k_dbg(ar, ATH10K_DBG_HTT, 1513 "htt rx addba tid %hu peer_id %hu size %hhu\n", 1514 tid, peer_id, ev->window_size); 1515 1516 spin_lock_bh(&ar->data_lock); 1517 peer = ath10k_peer_find_by_id(ar, peer_id); 1518 if (!peer) { 1519 ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n", 1520 peer_id); 1521 spin_unlock_bh(&ar->data_lock); 1522 return; 1523 } 1524 1525 arvif = ath10k_get_arvif(ar, peer->vdev_id); 1526 if (!arvif) { 1527 ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n", 1528 peer->vdev_id); 1529 spin_unlock_bh(&ar->data_lock); 1530 return; 1531 } 1532 1533 ath10k_dbg(ar, ATH10K_DBG_HTT, 1534 "htt rx start rx ba session sta %pM tid %hu size %hhu\n", 1535 peer->addr, tid, ev->window_size); 1536 1537 ieee80211_start_rx_ba_session_offl(arvif->vif, peer->addr, tid); 1538 spin_unlock_bh(&ar->data_lock); 1539 } 1540 1541 static void ath10k_htt_rx_delba(struct ath10k *ar, struct htt_resp *resp) 1542 { 1543 struct htt_rx_delba *ev = &resp->rx_delba; 1544 struct ath10k_peer *peer; 1545 struct ath10k_vif *arvif; 1546 u16 info0, tid, peer_id; 1547 1548 info0 = __le16_to_cpu(ev->info0); 1549 tid = MS(info0, HTT_RX_BA_INFO0_TID); 1550 peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID); 1551 1552 ath10k_dbg(ar, ATH10K_DBG_HTT, 1553 "htt rx delba tid %hu peer_id %hu\n", 1554 tid, peer_id); 1555 1556 spin_lock_bh(&ar->data_lock); 1557 peer = ath10k_peer_find_by_id(ar, peer_id); 1558 if (!peer) { 1559 ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n", 1560 peer_id); 1561 spin_unlock_bh(&ar->data_lock); 1562 return; 1563 } 1564 1565 arvif = ath10k_get_arvif(ar, peer->vdev_id); 1566 if (!arvif) { 1567 ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n", 1568 peer->vdev_id); 1569 spin_unlock_bh(&ar->data_lock); 1570 return; 1571 } 1572 1573 ath10k_dbg(ar, ATH10K_DBG_HTT, 1574 "htt rx stop rx ba session sta %pM tid %hu\n", 1575 peer->addr, tid); 1576 1577 ieee80211_stop_rx_ba_session_offl(arvif->vif, peer->addr, tid); 1578 spin_unlock_bh(&ar->data_lock); 1579 } 1580 1581 void ath10k_htt_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb) 1582 { 1583 struct ath10k_htt *htt = &ar->htt; 1584 struct htt_resp *resp = (struct htt_resp *)skb->data; 1585 1586 /* confirm alignment */ 1587 if (!IS_ALIGNED((unsigned long)skb->data, 4)) 1588 ath10k_warn(ar, "unaligned htt message, expect trouble\n"); 1589 1590 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, msg_type: 0x%0X\n", 1591 resp->hdr.msg_type); 1592 switch (resp->hdr.msg_type) { 1593 case HTT_T2H_MSG_TYPE_VERSION_CONF: { 1594 htt->target_version_major = resp->ver_resp.major; 1595 htt->target_version_minor = resp->ver_resp.minor; 1596 complete(&htt->target_version_received); 1597 break; 1598 } 1599 case HTT_T2H_MSG_TYPE_RX_IND: 1600 spin_lock_bh(&htt->rx_ring.lock); 1601 __skb_queue_tail(&htt->rx_compl_q, skb); 1602 spin_unlock_bh(&htt->rx_ring.lock); 1603 tasklet_schedule(&htt->txrx_compl_task); 1604 return; 1605 case HTT_T2H_MSG_TYPE_PEER_MAP: { 1606 struct htt_peer_map_event ev = { 1607 .vdev_id = resp->peer_map.vdev_id, 1608 .peer_id = __le16_to_cpu(resp->peer_map.peer_id), 1609 }; 1610 memcpy(ev.addr, resp->peer_map.addr, sizeof(ev.addr)); 1611 ath10k_peer_map_event(htt, &ev); 1612 break; 1613 } 1614 case HTT_T2H_MSG_TYPE_PEER_UNMAP: { 1615 struct htt_peer_unmap_event ev = { 1616 .peer_id = __le16_to_cpu(resp->peer_unmap.peer_id), 1617 }; 1618 ath10k_peer_unmap_event(htt, &ev); 1619 break; 1620 } 1621 case HTT_T2H_MSG_TYPE_MGMT_TX_COMPLETION: { 1622 struct htt_tx_done tx_done = {}; 1623 int status = __le32_to_cpu(resp->mgmt_tx_completion.status); 1624 1625 tx_done.msdu_id = 1626 __le32_to_cpu(resp->mgmt_tx_completion.desc_id); 1627 1628 switch (status) { 1629 case HTT_MGMT_TX_STATUS_OK: 1630 break; 1631 case HTT_MGMT_TX_STATUS_RETRY: 1632 tx_done.no_ack = true; 1633 break; 1634 case HTT_MGMT_TX_STATUS_DROP: 1635 tx_done.discard = true; 1636 break; 1637 } 1638 1639 spin_lock_bh(&htt->tx_lock); 1640 ath10k_txrx_tx_unref(htt, &tx_done); 1641 spin_unlock_bh(&htt->tx_lock); 1642 break; 1643 } 1644 case HTT_T2H_MSG_TYPE_TX_COMPL_IND: 1645 spin_lock_bh(&htt->tx_lock); 1646 __skb_queue_tail(&htt->tx_compl_q, skb); 1647 spin_unlock_bh(&htt->tx_lock); 1648 tasklet_schedule(&htt->txrx_compl_task); 1649 return; 1650 case HTT_T2H_MSG_TYPE_SEC_IND: { 1651 struct ath10k *ar = htt->ar; 1652 struct htt_security_indication *ev = &resp->security_indication; 1653 1654 ath10k_dbg(ar, ATH10K_DBG_HTT, 1655 "sec ind peer_id %d unicast %d type %d\n", 1656 __le16_to_cpu(ev->peer_id), 1657 !!(ev->flags & HTT_SECURITY_IS_UNICAST), 1658 MS(ev->flags, HTT_SECURITY_TYPE)); 1659 complete(&ar->install_key_done); 1660 break; 1661 } 1662 case HTT_T2H_MSG_TYPE_RX_FRAG_IND: { 1663 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ", 1664 skb->data, skb->len); 1665 ath10k_htt_rx_frag_handler(htt, &resp->rx_frag_ind); 1666 break; 1667 } 1668 case HTT_T2H_MSG_TYPE_TEST: 1669 /* FIX THIS */ 1670 break; 1671 case HTT_T2H_MSG_TYPE_STATS_CONF: 1672 trace_ath10k_htt_stats(ar, skb->data, skb->len); 1673 break; 1674 case HTT_T2H_MSG_TYPE_TX_INSPECT_IND: 1675 /* Firmware can return tx frames if it's unable to fully 1676 * process them and suspects host may be able to fix it. ath10k 1677 * sends all tx frames as already inspected so this shouldn't 1678 * happen unless fw has a bug. 1679 */ 1680 ath10k_warn(ar, "received an unexpected htt tx inspect event\n"); 1681 break; 1682 case HTT_T2H_MSG_TYPE_RX_ADDBA: 1683 ath10k_htt_rx_addba(ar, resp); 1684 break; 1685 case HTT_T2H_MSG_TYPE_RX_DELBA: 1686 ath10k_htt_rx_delba(ar, resp); 1687 break; 1688 case HTT_T2H_MSG_TYPE_PKTLOG: { 1689 struct ath10k_pktlog_hdr *hdr = 1690 (struct ath10k_pktlog_hdr *)resp->pktlog_msg.payload; 1691 1692 trace_ath10k_htt_pktlog(ar, resp->pktlog_msg.payload, 1693 sizeof(*hdr) + 1694 __le16_to_cpu(hdr->size)); 1695 break; 1696 } 1697 case HTT_T2H_MSG_TYPE_RX_FLUSH: { 1698 /* Ignore this event because mac80211 takes care of Rx 1699 * aggregation reordering. 1700 */ 1701 break; 1702 } 1703 default: 1704 ath10k_warn(ar, "htt event (%d) not handled\n", 1705 resp->hdr.msg_type); 1706 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ", 1707 skb->data, skb->len); 1708 break; 1709 }; 1710 1711 /* Free the indication buffer */ 1712 dev_kfree_skb_any(skb); 1713 } 1714 1715 static void ath10k_htt_txrx_compl_task(unsigned long ptr) 1716 { 1717 struct ath10k_htt *htt = (struct ath10k_htt *)ptr; 1718 struct htt_resp *resp; 1719 struct sk_buff *skb; 1720 1721 spin_lock_bh(&htt->tx_lock); 1722 while ((skb = __skb_dequeue(&htt->tx_compl_q))) { 1723 ath10k_htt_rx_frm_tx_compl(htt->ar, skb); 1724 dev_kfree_skb_any(skb); 1725 } 1726 spin_unlock_bh(&htt->tx_lock); 1727 1728 spin_lock_bh(&htt->rx_ring.lock); 1729 while ((skb = __skb_dequeue(&htt->rx_compl_q))) { 1730 resp = (struct htt_resp *)skb->data; 1731 ath10k_htt_rx_handler(htt, &resp->rx_ind); 1732 dev_kfree_skb_any(skb); 1733 } 1734 spin_unlock_bh(&htt->rx_ring.lock); 1735 } 1736