xref: /openbmc/linux/drivers/net/wireless/ath/ath10k/htt_rx.c (revision 812f77b749a8ae11f58dacf0d3ed65e7ede47458)
1 /*
2  * Copyright (c) 2005-2011 Atheros Communications Inc.
3  * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17 
18 #include "core.h"
19 #include "htc.h"
20 #include "htt.h"
21 #include "txrx.h"
22 #include "debug.h"
23 #include "trace.h"
24 #include "mac.h"
25 
26 #include <linux/log2.h>
27 
28 #define HTT_RX_RING_SIZE HTT_RX_RING_SIZE_MAX
29 #define HTT_RX_RING_FILL_LEVEL (((HTT_RX_RING_SIZE) / 2) - 1)
30 
31 /* when under memory pressure rx ring refill may fail and needs a retry */
32 #define HTT_RX_RING_REFILL_RETRY_MS 50
33 
34 #define HTT_RX_RING_REFILL_RESCHED_MS 5
35 
36 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb);
37 
38 static struct sk_buff *
39 ath10k_htt_rx_find_skb_paddr(struct ath10k *ar, u32 paddr)
40 {
41 	struct ath10k_skb_rxcb *rxcb;
42 
43 	hash_for_each_possible(ar->htt.rx_ring.skb_table, rxcb, hlist, paddr)
44 		if (rxcb->paddr == paddr)
45 			return ATH10K_RXCB_SKB(rxcb);
46 
47 	WARN_ON_ONCE(1);
48 	return NULL;
49 }
50 
51 static void ath10k_htt_rx_ring_free(struct ath10k_htt *htt)
52 {
53 	struct sk_buff *skb;
54 	struct ath10k_skb_rxcb *rxcb;
55 	struct hlist_node *n;
56 	int i;
57 
58 	if (htt->rx_ring.in_ord_rx) {
59 		hash_for_each_safe(htt->rx_ring.skb_table, i, n, rxcb, hlist) {
60 			skb = ATH10K_RXCB_SKB(rxcb);
61 			dma_unmap_single(htt->ar->dev, rxcb->paddr,
62 					 skb->len + skb_tailroom(skb),
63 					 DMA_FROM_DEVICE);
64 			hash_del(&rxcb->hlist);
65 			dev_kfree_skb_any(skb);
66 		}
67 	} else {
68 		for (i = 0; i < htt->rx_ring.size; i++) {
69 			skb = htt->rx_ring.netbufs_ring[i];
70 			if (!skb)
71 				continue;
72 
73 			rxcb = ATH10K_SKB_RXCB(skb);
74 			dma_unmap_single(htt->ar->dev, rxcb->paddr,
75 					 skb->len + skb_tailroom(skb),
76 					 DMA_FROM_DEVICE);
77 			dev_kfree_skb_any(skb);
78 		}
79 	}
80 
81 	htt->rx_ring.fill_cnt = 0;
82 	hash_init(htt->rx_ring.skb_table);
83 	memset(htt->rx_ring.netbufs_ring, 0,
84 	       htt->rx_ring.size * sizeof(htt->rx_ring.netbufs_ring[0]));
85 }
86 
87 static int __ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
88 {
89 	struct htt_rx_desc *rx_desc;
90 	struct ath10k_skb_rxcb *rxcb;
91 	struct sk_buff *skb;
92 	dma_addr_t paddr;
93 	int ret = 0, idx;
94 
95 	/* The Full Rx Reorder firmware has no way of telling the host
96 	 * implicitly when it copied HTT Rx Ring buffers to MAC Rx Ring.
97 	 * To keep things simple make sure ring is always half empty. This
98 	 * guarantees there'll be no replenishment overruns possible.
99 	 */
100 	BUILD_BUG_ON(HTT_RX_RING_FILL_LEVEL >= HTT_RX_RING_SIZE / 2);
101 
102 	idx = __le32_to_cpu(*htt->rx_ring.alloc_idx.vaddr);
103 	while (num > 0) {
104 		skb = dev_alloc_skb(HTT_RX_BUF_SIZE + HTT_RX_DESC_ALIGN);
105 		if (!skb) {
106 			ret = -ENOMEM;
107 			goto fail;
108 		}
109 
110 		if (!IS_ALIGNED((unsigned long)skb->data, HTT_RX_DESC_ALIGN))
111 			skb_pull(skb,
112 				 PTR_ALIGN(skb->data, HTT_RX_DESC_ALIGN) -
113 				 skb->data);
114 
115 		/* Clear rx_desc attention word before posting to Rx ring */
116 		rx_desc = (struct htt_rx_desc *)skb->data;
117 		rx_desc->attention.flags = __cpu_to_le32(0);
118 
119 		paddr = dma_map_single(htt->ar->dev, skb->data,
120 				       skb->len + skb_tailroom(skb),
121 				       DMA_FROM_DEVICE);
122 
123 		if (unlikely(dma_mapping_error(htt->ar->dev, paddr))) {
124 			dev_kfree_skb_any(skb);
125 			ret = -ENOMEM;
126 			goto fail;
127 		}
128 
129 		rxcb = ATH10K_SKB_RXCB(skb);
130 		rxcb->paddr = paddr;
131 		htt->rx_ring.netbufs_ring[idx] = skb;
132 		htt->rx_ring.paddrs_ring[idx] = __cpu_to_le32(paddr);
133 		htt->rx_ring.fill_cnt++;
134 
135 		if (htt->rx_ring.in_ord_rx) {
136 			hash_add(htt->rx_ring.skb_table,
137 				 &ATH10K_SKB_RXCB(skb)->hlist,
138 				 (u32)paddr);
139 		}
140 
141 		num--;
142 		idx++;
143 		idx &= htt->rx_ring.size_mask;
144 	}
145 
146 fail:
147 	/*
148 	 * Make sure the rx buffer is updated before available buffer
149 	 * index to avoid any potential rx ring corruption.
150 	 */
151 	mb();
152 	*htt->rx_ring.alloc_idx.vaddr = __cpu_to_le32(idx);
153 	return ret;
154 }
155 
156 static int ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
157 {
158 	lockdep_assert_held(&htt->rx_ring.lock);
159 	return __ath10k_htt_rx_ring_fill_n(htt, num);
160 }
161 
162 static void ath10k_htt_rx_msdu_buff_replenish(struct ath10k_htt *htt)
163 {
164 	int ret, num_deficit, num_to_fill;
165 
166 	/* Refilling the whole RX ring buffer proves to be a bad idea. The
167 	 * reason is RX may take up significant amount of CPU cycles and starve
168 	 * other tasks, e.g. TX on an ethernet device while acting as a bridge
169 	 * with ath10k wlan interface. This ended up with very poor performance
170 	 * once CPU the host system was overwhelmed with RX on ath10k.
171 	 *
172 	 * By limiting the number of refills the replenishing occurs
173 	 * progressively. This in turns makes use of the fact tasklets are
174 	 * processed in FIFO order. This means actual RX processing can starve
175 	 * out refilling. If there's not enough buffers on RX ring FW will not
176 	 * report RX until it is refilled with enough buffers. This
177 	 * automatically balances load wrt to CPU power.
178 	 *
179 	 * This probably comes at a cost of lower maximum throughput but
180 	 * improves the average and stability.
181 	 */
182 	spin_lock_bh(&htt->rx_ring.lock);
183 	num_deficit = htt->rx_ring.fill_level - htt->rx_ring.fill_cnt;
184 	num_to_fill = min(ATH10K_HTT_MAX_NUM_REFILL, num_deficit);
185 	num_deficit -= num_to_fill;
186 	ret = ath10k_htt_rx_ring_fill_n(htt, num_to_fill);
187 	if (ret == -ENOMEM) {
188 		/*
189 		 * Failed to fill it to the desired level -
190 		 * we'll start a timer and try again next time.
191 		 * As long as enough buffers are left in the ring for
192 		 * another A-MPDU rx, no special recovery is needed.
193 		 */
194 		mod_timer(&htt->rx_ring.refill_retry_timer, jiffies +
195 			  msecs_to_jiffies(HTT_RX_RING_REFILL_RETRY_MS));
196 	} else if (num_deficit > 0) {
197 		mod_timer(&htt->rx_ring.refill_retry_timer, jiffies +
198 			  msecs_to_jiffies(HTT_RX_RING_REFILL_RESCHED_MS));
199 	}
200 	spin_unlock_bh(&htt->rx_ring.lock);
201 }
202 
203 static void ath10k_htt_rx_ring_refill_retry(struct timer_list *t)
204 {
205 	struct ath10k_htt *htt = from_timer(htt, t, rx_ring.refill_retry_timer);
206 
207 	ath10k_htt_rx_msdu_buff_replenish(htt);
208 }
209 
210 int ath10k_htt_rx_ring_refill(struct ath10k *ar)
211 {
212 	struct ath10k_htt *htt = &ar->htt;
213 	int ret;
214 
215 	spin_lock_bh(&htt->rx_ring.lock);
216 	ret = ath10k_htt_rx_ring_fill_n(htt, (htt->rx_ring.fill_level -
217 					      htt->rx_ring.fill_cnt));
218 	spin_unlock_bh(&htt->rx_ring.lock);
219 
220 	if (ret)
221 		ath10k_htt_rx_ring_free(htt);
222 
223 	return ret;
224 }
225 
226 void ath10k_htt_rx_free(struct ath10k_htt *htt)
227 {
228 	del_timer_sync(&htt->rx_ring.refill_retry_timer);
229 
230 	skb_queue_purge(&htt->rx_compl_q);
231 	skb_queue_purge(&htt->rx_in_ord_compl_q);
232 	skb_queue_purge(&htt->tx_fetch_ind_q);
233 
234 	ath10k_htt_rx_ring_free(htt);
235 
236 	dma_free_coherent(htt->ar->dev,
237 			  (htt->rx_ring.size *
238 			   sizeof(htt->rx_ring.paddrs_ring)),
239 			  htt->rx_ring.paddrs_ring,
240 			  htt->rx_ring.base_paddr);
241 
242 	dma_free_coherent(htt->ar->dev,
243 			  sizeof(*htt->rx_ring.alloc_idx.vaddr),
244 			  htt->rx_ring.alloc_idx.vaddr,
245 			  htt->rx_ring.alloc_idx.paddr);
246 
247 	kfree(htt->rx_ring.netbufs_ring);
248 }
249 
250 static inline struct sk_buff *ath10k_htt_rx_netbuf_pop(struct ath10k_htt *htt)
251 {
252 	struct ath10k *ar = htt->ar;
253 	int idx;
254 	struct sk_buff *msdu;
255 
256 	lockdep_assert_held(&htt->rx_ring.lock);
257 
258 	if (htt->rx_ring.fill_cnt == 0) {
259 		ath10k_warn(ar, "tried to pop sk_buff from an empty rx ring\n");
260 		return NULL;
261 	}
262 
263 	idx = htt->rx_ring.sw_rd_idx.msdu_payld;
264 	msdu = htt->rx_ring.netbufs_ring[idx];
265 	htt->rx_ring.netbufs_ring[idx] = NULL;
266 	htt->rx_ring.paddrs_ring[idx] = 0;
267 
268 	idx++;
269 	idx &= htt->rx_ring.size_mask;
270 	htt->rx_ring.sw_rd_idx.msdu_payld = idx;
271 	htt->rx_ring.fill_cnt--;
272 
273 	dma_unmap_single(htt->ar->dev,
274 			 ATH10K_SKB_RXCB(msdu)->paddr,
275 			 msdu->len + skb_tailroom(msdu),
276 			 DMA_FROM_DEVICE);
277 	ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ",
278 			msdu->data, msdu->len + skb_tailroom(msdu));
279 
280 	return msdu;
281 }
282 
283 /* return: < 0 fatal error, 0 - non chained msdu, 1 chained msdu */
284 static int ath10k_htt_rx_amsdu_pop(struct ath10k_htt *htt,
285 				   struct sk_buff_head *amsdu)
286 {
287 	struct ath10k *ar = htt->ar;
288 	int msdu_len, msdu_chaining = 0;
289 	struct sk_buff *msdu;
290 	struct htt_rx_desc *rx_desc;
291 
292 	lockdep_assert_held(&htt->rx_ring.lock);
293 
294 	for (;;) {
295 		int last_msdu, msdu_len_invalid, msdu_chained;
296 
297 		msdu = ath10k_htt_rx_netbuf_pop(htt);
298 		if (!msdu) {
299 			__skb_queue_purge(amsdu);
300 			return -ENOENT;
301 		}
302 
303 		__skb_queue_tail(amsdu, msdu);
304 
305 		rx_desc = (struct htt_rx_desc *)msdu->data;
306 
307 		/* FIXME: we must report msdu payload since this is what caller
308 		 * expects now
309 		 */
310 		skb_put(msdu, offsetof(struct htt_rx_desc, msdu_payload));
311 		skb_pull(msdu, offsetof(struct htt_rx_desc, msdu_payload));
312 
313 		/*
314 		 * Sanity check - confirm the HW is finished filling in the
315 		 * rx data.
316 		 * If the HW and SW are working correctly, then it's guaranteed
317 		 * that the HW's MAC DMA is done before this point in the SW.
318 		 * To prevent the case that we handle a stale Rx descriptor,
319 		 * just assert for now until we have a way to recover.
320 		 */
321 		if (!(__le32_to_cpu(rx_desc->attention.flags)
322 				& RX_ATTENTION_FLAGS_MSDU_DONE)) {
323 			__skb_queue_purge(amsdu);
324 			return -EIO;
325 		}
326 
327 		msdu_len_invalid = !!(__le32_to_cpu(rx_desc->attention.flags)
328 					& (RX_ATTENTION_FLAGS_MPDU_LENGTH_ERR |
329 					   RX_ATTENTION_FLAGS_MSDU_LENGTH_ERR));
330 		msdu_len = MS(__le32_to_cpu(rx_desc->msdu_start.common.info0),
331 			      RX_MSDU_START_INFO0_MSDU_LENGTH);
332 		msdu_chained = rx_desc->frag_info.ring2_more_count;
333 
334 		if (msdu_len_invalid)
335 			msdu_len = 0;
336 
337 		skb_trim(msdu, 0);
338 		skb_put(msdu, min(msdu_len, HTT_RX_MSDU_SIZE));
339 		msdu_len -= msdu->len;
340 
341 		/* Note: Chained buffers do not contain rx descriptor */
342 		while (msdu_chained--) {
343 			msdu = ath10k_htt_rx_netbuf_pop(htt);
344 			if (!msdu) {
345 				__skb_queue_purge(amsdu);
346 				return -ENOENT;
347 			}
348 
349 			__skb_queue_tail(amsdu, msdu);
350 			skb_trim(msdu, 0);
351 			skb_put(msdu, min(msdu_len, HTT_RX_BUF_SIZE));
352 			msdu_len -= msdu->len;
353 			msdu_chaining = 1;
354 		}
355 
356 		last_msdu = __le32_to_cpu(rx_desc->msdu_end.common.info0) &
357 				RX_MSDU_END_INFO0_LAST_MSDU;
358 
359 		trace_ath10k_htt_rx_desc(ar, &rx_desc->attention,
360 					 sizeof(*rx_desc) - sizeof(u32));
361 
362 		if (last_msdu)
363 			break;
364 	}
365 
366 	if (skb_queue_empty(amsdu))
367 		msdu_chaining = -1;
368 
369 	/*
370 	 * Don't refill the ring yet.
371 	 *
372 	 * First, the elements popped here are still in use - it is not
373 	 * safe to overwrite them until the matching call to
374 	 * mpdu_desc_list_next. Second, for efficiency it is preferable to
375 	 * refill the rx ring with 1 PPDU's worth of rx buffers (something
376 	 * like 32 x 3 buffers), rather than one MPDU's worth of rx buffers
377 	 * (something like 3 buffers). Consequently, we'll rely on the txrx
378 	 * SW to tell us when it is done pulling all the PPDU's rx buffers
379 	 * out of the rx ring, and then refill it just once.
380 	 */
381 
382 	return msdu_chaining;
383 }
384 
385 static struct sk_buff *ath10k_htt_rx_pop_paddr(struct ath10k_htt *htt,
386 					       u32 paddr)
387 {
388 	struct ath10k *ar = htt->ar;
389 	struct ath10k_skb_rxcb *rxcb;
390 	struct sk_buff *msdu;
391 
392 	lockdep_assert_held(&htt->rx_ring.lock);
393 
394 	msdu = ath10k_htt_rx_find_skb_paddr(ar, paddr);
395 	if (!msdu)
396 		return NULL;
397 
398 	rxcb = ATH10K_SKB_RXCB(msdu);
399 	hash_del(&rxcb->hlist);
400 	htt->rx_ring.fill_cnt--;
401 
402 	dma_unmap_single(htt->ar->dev, rxcb->paddr,
403 			 msdu->len + skb_tailroom(msdu),
404 			 DMA_FROM_DEVICE);
405 	ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ",
406 			msdu->data, msdu->len + skb_tailroom(msdu));
407 
408 	return msdu;
409 }
410 
411 static int ath10k_htt_rx_pop_paddr_list(struct ath10k_htt *htt,
412 					struct htt_rx_in_ord_ind *ev,
413 					struct sk_buff_head *list)
414 {
415 	struct ath10k *ar = htt->ar;
416 	struct htt_rx_in_ord_msdu_desc *msdu_desc = ev->msdu_descs;
417 	struct htt_rx_desc *rxd;
418 	struct sk_buff *msdu;
419 	int msdu_count;
420 	bool is_offload;
421 	u32 paddr;
422 
423 	lockdep_assert_held(&htt->rx_ring.lock);
424 
425 	msdu_count = __le16_to_cpu(ev->msdu_count);
426 	is_offload = !!(ev->info & HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK);
427 
428 	while (msdu_count--) {
429 		paddr = __le32_to_cpu(msdu_desc->msdu_paddr);
430 
431 		msdu = ath10k_htt_rx_pop_paddr(htt, paddr);
432 		if (!msdu) {
433 			__skb_queue_purge(list);
434 			return -ENOENT;
435 		}
436 
437 		__skb_queue_tail(list, msdu);
438 
439 		if (!is_offload) {
440 			rxd = (void *)msdu->data;
441 
442 			trace_ath10k_htt_rx_desc(ar, rxd, sizeof(*rxd));
443 
444 			skb_put(msdu, sizeof(*rxd));
445 			skb_pull(msdu, sizeof(*rxd));
446 			skb_put(msdu, __le16_to_cpu(msdu_desc->msdu_len));
447 
448 			if (!(__le32_to_cpu(rxd->attention.flags) &
449 			      RX_ATTENTION_FLAGS_MSDU_DONE)) {
450 				ath10k_warn(htt->ar, "tried to pop an incomplete frame, oops!\n");
451 				return -EIO;
452 			}
453 		}
454 
455 		msdu_desc++;
456 	}
457 
458 	return 0;
459 }
460 
461 int ath10k_htt_rx_alloc(struct ath10k_htt *htt)
462 {
463 	struct ath10k *ar = htt->ar;
464 	dma_addr_t paddr;
465 	void *vaddr;
466 	size_t size;
467 	struct timer_list *timer = &htt->rx_ring.refill_retry_timer;
468 
469 	htt->rx_confused = false;
470 
471 	/* XXX: The fill level could be changed during runtime in response to
472 	 * the host processing latency. Is this really worth it?
473 	 */
474 	htt->rx_ring.size = HTT_RX_RING_SIZE;
475 	htt->rx_ring.size_mask = htt->rx_ring.size - 1;
476 	htt->rx_ring.fill_level = HTT_RX_RING_FILL_LEVEL;
477 
478 	if (!is_power_of_2(htt->rx_ring.size)) {
479 		ath10k_warn(ar, "htt rx ring size is not power of 2\n");
480 		return -EINVAL;
481 	}
482 
483 	htt->rx_ring.netbufs_ring =
484 		kzalloc(htt->rx_ring.size * sizeof(struct sk_buff *),
485 			GFP_KERNEL);
486 	if (!htt->rx_ring.netbufs_ring)
487 		goto err_netbuf;
488 
489 	size = htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring);
490 
491 	vaddr = dma_alloc_coherent(htt->ar->dev, size, &paddr, GFP_KERNEL);
492 	if (!vaddr)
493 		goto err_dma_ring;
494 
495 	htt->rx_ring.paddrs_ring = vaddr;
496 	htt->rx_ring.base_paddr = paddr;
497 
498 	vaddr = dma_alloc_coherent(htt->ar->dev,
499 				   sizeof(*htt->rx_ring.alloc_idx.vaddr),
500 				   &paddr, GFP_KERNEL);
501 	if (!vaddr)
502 		goto err_dma_idx;
503 
504 	htt->rx_ring.alloc_idx.vaddr = vaddr;
505 	htt->rx_ring.alloc_idx.paddr = paddr;
506 	htt->rx_ring.sw_rd_idx.msdu_payld = htt->rx_ring.size_mask;
507 	*htt->rx_ring.alloc_idx.vaddr = 0;
508 
509 	/* Initialize the Rx refill retry timer */
510 	timer_setup(timer, ath10k_htt_rx_ring_refill_retry, 0);
511 
512 	spin_lock_init(&htt->rx_ring.lock);
513 
514 	htt->rx_ring.fill_cnt = 0;
515 	htt->rx_ring.sw_rd_idx.msdu_payld = 0;
516 	hash_init(htt->rx_ring.skb_table);
517 
518 	skb_queue_head_init(&htt->rx_compl_q);
519 	skb_queue_head_init(&htt->rx_in_ord_compl_q);
520 	skb_queue_head_init(&htt->tx_fetch_ind_q);
521 	atomic_set(&htt->num_mpdus_ready, 0);
522 
523 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "htt rx ring size %d fill_level %d\n",
524 		   htt->rx_ring.size, htt->rx_ring.fill_level);
525 	return 0;
526 
527 err_dma_idx:
528 	dma_free_coherent(htt->ar->dev,
529 			  (htt->rx_ring.size *
530 			   sizeof(htt->rx_ring.paddrs_ring)),
531 			  htt->rx_ring.paddrs_ring,
532 			  htt->rx_ring.base_paddr);
533 err_dma_ring:
534 	kfree(htt->rx_ring.netbufs_ring);
535 err_netbuf:
536 	return -ENOMEM;
537 }
538 
539 static int ath10k_htt_rx_crypto_param_len(struct ath10k *ar,
540 					  enum htt_rx_mpdu_encrypt_type type)
541 {
542 	switch (type) {
543 	case HTT_RX_MPDU_ENCRYPT_NONE:
544 		return 0;
545 	case HTT_RX_MPDU_ENCRYPT_WEP40:
546 	case HTT_RX_MPDU_ENCRYPT_WEP104:
547 		return IEEE80211_WEP_IV_LEN;
548 	case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
549 	case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
550 		return IEEE80211_TKIP_IV_LEN;
551 	case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
552 		return IEEE80211_CCMP_HDR_LEN;
553 	case HTT_RX_MPDU_ENCRYPT_AES_CCM256_WPA2:
554 		return IEEE80211_CCMP_256_HDR_LEN;
555 	case HTT_RX_MPDU_ENCRYPT_AES_GCMP_WPA2:
556 	case HTT_RX_MPDU_ENCRYPT_AES_GCMP256_WPA2:
557 		return IEEE80211_GCMP_HDR_LEN;
558 	case HTT_RX_MPDU_ENCRYPT_WEP128:
559 	case HTT_RX_MPDU_ENCRYPT_WAPI:
560 		break;
561 	}
562 
563 	ath10k_warn(ar, "unsupported encryption type %d\n", type);
564 	return 0;
565 }
566 
567 #define MICHAEL_MIC_LEN 8
568 
569 static int ath10k_htt_rx_crypto_mic_len(struct ath10k *ar,
570 					enum htt_rx_mpdu_encrypt_type type)
571 {
572 	switch (type) {
573 	case HTT_RX_MPDU_ENCRYPT_NONE:
574 	case HTT_RX_MPDU_ENCRYPT_WEP40:
575 	case HTT_RX_MPDU_ENCRYPT_WEP104:
576 	case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
577 	case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
578 		return 0;
579 	case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
580 		return IEEE80211_CCMP_MIC_LEN;
581 	case HTT_RX_MPDU_ENCRYPT_AES_CCM256_WPA2:
582 		return IEEE80211_CCMP_256_MIC_LEN;
583 	case HTT_RX_MPDU_ENCRYPT_AES_GCMP_WPA2:
584 	case HTT_RX_MPDU_ENCRYPT_AES_GCMP256_WPA2:
585 		return IEEE80211_GCMP_MIC_LEN;
586 	case HTT_RX_MPDU_ENCRYPT_WEP128:
587 	case HTT_RX_MPDU_ENCRYPT_WAPI:
588 		break;
589 	}
590 
591 	ath10k_warn(ar, "unsupported encryption type %d\n", type);
592 	return 0;
593 }
594 
595 static int ath10k_htt_rx_crypto_icv_len(struct ath10k *ar,
596 					enum htt_rx_mpdu_encrypt_type type)
597 {
598 	switch (type) {
599 	case HTT_RX_MPDU_ENCRYPT_NONE:
600 	case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
601 	case HTT_RX_MPDU_ENCRYPT_AES_CCM256_WPA2:
602 	case HTT_RX_MPDU_ENCRYPT_AES_GCMP_WPA2:
603 	case HTT_RX_MPDU_ENCRYPT_AES_GCMP256_WPA2:
604 		return 0;
605 	case HTT_RX_MPDU_ENCRYPT_WEP40:
606 	case HTT_RX_MPDU_ENCRYPT_WEP104:
607 		return IEEE80211_WEP_ICV_LEN;
608 	case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
609 	case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
610 		return IEEE80211_TKIP_ICV_LEN;
611 	case HTT_RX_MPDU_ENCRYPT_WEP128:
612 	case HTT_RX_MPDU_ENCRYPT_WAPI:
613 		break;
614 	}
615 
616 	ath10k_warn(ar, "unsupported encryption type %d\n", type);
617 	return 0;
618 }
619 
620 struct amsdu_subframe_hdr {
621 	u8 dst[ETH_ALEN];
622 	u8 src[ETH_ALEN];
623 	__be16 len;
624 } __packed;
625 
626 #define GROUP_ID_IS_SU_MIMO(x) ((x) == 0 || (x) == 63)
627 
628 static void ath10k_htt_rx_h_rates(struct ath10k *ar,
629 				  struct ieee80211_rx_status *status,
630 				  struct htt_rx_desc *rxd)
631 {
632 	struct ieee80211_supported_band *sband;
633 	u8 cck, rate, bw, sgi, mcs, nss;
634 	u8 preamble = 0;
635 	u8 group_id;
636 	u32 info1, info2, info3;
637 
638 	info1 = __le32_to_cpu(rxd->ppdu_start.info1);
639 	info2 = __le32_to_cpu(rxd->ppdu_start.info2);
640 	info3 = __le32_to_cpu(rxd->ppdu_start.info3);
641 
642 	preamble = MS(info1, RX_PPDU_START_INFO1_PREAMBLE_TYPE);
643 
644 	switch (preamble) {
645 	case HTT_RX_LEGACY:
646 		/* To get legacy rate index band is required. Since band can't
647 		 * be undefined check if freq is non-zero.
648 		 */
649 		if (!status->freq)
650 			return;
651 
652 		cck = info1 & RX_PPDU_START_INFO1_L_SIG_RATE_SELECT;
653 		rate = MS(info1, RX_PPDU_START_INFO1_L_SIG_RATE);
654 		rate &= ~RX_PPDU_START_RATE_FLAG;
655 
656 		sband = &ar->mac.sbands[status->band];
657 		status->rate_idx = ath10k_mac_hw_rate_to_idx(sband, rate, cck);
658 		break;
659 	case HTT_RX_HT:
660 	case HTT_RX_HT_WITH_TXBF:
661 		/* HT-SIG - Table 20-11 in info2 and info3 */
662 		mcs = info2 & 0x1F;
663 		nss = mcs >> 3;
664 		bw = (info2 >> 7) & 1;
665 		sgi = (info3 >> 7) & 1;
666 
667 		status->rate_idx = mcs;
668 		status->encoding = RX_ENC_HT;
669 		if (sgi)
670 			status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
671 		if (bw)
672 			status->bw = RATE_INFO_BW_40;
673 		break;
674 	case HTT_RX_VHT:
675 	case HTT_RX_VHT_WITH_TXBF:
676 		/* VHT-SIG-A1 in info2, VHT-SIG-A2 in info3
677 		 * TODO check this
678 		 */
679 		bw = info2 & 3;
680 		sgi = info3 & 1;
681 		group_id = (info2 >> 4) & 0x3F;
682 
683 		if (GROUP_ID_IS_SU_MIMO(group_id)) {
684 			mcs = (info3 >> 4) & 0x0F;
685 			nss = ((info2 >> 10) & 0x07) + 1;
686 		} else {
687 			/* Hardware doesn't decode VHT-SIG-B into Rx descriptor
688 			 * so it's impossible to decode MCS. Also since
689 			 * firmware consumes Group Id Management frames host
690 			 * has no knowledge regarding group/user position
691 			 * mapping so it's impossible to pick the correct Nsts
692 			 * from VHT-SIG-A1.
693 			 *
694 			 * Bandwidth and SGI are valid so report the rateinfo
695 			 * on best-effort basis.
696 			 */
697 			mcs = 0;
698 			nss = 1;
699 		}
700 
701 		if (mcs > 0x09) {
702 			ath10k_warn(ar, "invalid MCS received %u\n", mcs);
703 			ath10k_warn(ar, "rxd %08x mpdu start %08x %08x msdu start %08x %08x ppdu start %08x %08x %08x %08x %08x\n",
704 				    __le32_to_cpu(rxd->attention.flags),
705 				    __le32_to_cpu(rxd->mpdu_start.info0),
706 				    __le32_to_cpu(rxd->mpdu_start.info1),
707 				    __le32_to_cpu(rxd->msdu_start.common.info0),
708 				    __le32_to_cpu(rxd->msdu_start.common.info1),
709 				    rxd->ppdu_start.info0,
710 				    __le32_to_cpu(rxd->ppdu_start.info1),
711 				    __le32_to_cpu(rxd->ppdu_start.info2),
712 				    __le32_to_cpu(rxd->ppdu_start.info3),
713 				    __le32_to_cpu(rxd->ppdu_start.info4));
714 
715 			ath10k_warn(ar, "msdu end %08x mpdu end %08x\n",
716 				    __le32_to_cpu(rxd->msdu_end.common.info0),
717 				    __le32_to_cpu(rxd->mpdu_end.info0));
718 
719 			ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL,
720 					"rx desc msdu payload: ",
721 					rxd->msdu_payload, 50);
722 		}
723 
724 		status->rate_idx = mcs;
725 		status->nss = nss;
726 
727 		if (sgi)
728 			status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
729 
730 		switch (bw) {
731 		/* 20MHZ */
732 		case 0:
733 			break;
734 		/* 40MHZ */
735 		case 1:
736 			status->bw = RATE_INFO_BW_40;
737 			break;
738 		/* 80MHZ */
739 		case 2:
740 			status->bw = RATE_INFO_BW_80;
741 			break;
742 		case 3:
743 			status->bw = RATE_INFO_BW_160;
744 			break;
745 		}
746 
747 		status->encoding = RX_ENC_VHT;
748 		break;
749 	default:
750 		break;
751 	}
752 }
753 
754 static struct ieee80211_channel *
755 ath10k_htt_rx_h_peer_channel(struct ath10k *ar, struct htt_rx_desc *rxd)
756 {
757 	struct ath10k_peer *peer;
758 	struct ath10k_vif *arvif;
759 	struct cfg80211_chan_def def;
760 	u16 peer_id;
761 
762 	lockdep_assert_held(&ar->data_lock);
763 
764 	if (!rxd)
765 		return NULL;
766 
767 	if (rxd->attention.flags &
768 	    __cpu_to_le32(RX_ATTENTION_FLAGS_PEER_IDX_INVALID))
769 		return NULL;
770 
771 	if (!(rxd->msdu_end.common.info0 &
772 	      __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU)))
773 		return NULL;
774 
775 	peer_id = MS(__le32_to_cpu(rxd->mpdu_start.info0),
776 		     RX_MPDU_START_INFO0_PEER_IDX);
777 
778 	peer = ath10k_peer_find_by_id(ar, peer_id);
779 	if (!peer)
780 		return NULL;
781 
782 	arvif = ath10k_get_arvif(ar, peer->vdev_id);
783 	if (WARN_ON_ONCE(!arvif))
784 		return NULL;
785 
786 	if (ath10k_mac_vif_chan(arvif->vif, &def))
787 		return NULL;
788 
789 	return def.chan;
790 }
791 
792 static struct ieee80211_channel *
793 ath10k_htt_rx_h_vdev_channel(struct ath10k *ar, u32 vdev_id)
794 {
795 	struct ath10k_vif *arvif;
796 	struct cfg80211_chan_def def;
797 
798 	lockdep_assert_held(&ar->data_lock);
799 
800 	list_for_each_entry(arvif, &ar->arvifs, list) {
801 		if (arvif->vdev_id == vdev_id &&
802 		    ath10k_mac_vif_chan(arvif->vif, &def) == 0)
803 			return def.chan;
804 	}
805 
806 	return NULL;
807 }
808 
809 static void
810 ath10k_htt_rx_h_any_chan_iter(struct ieee80211_hw *hw,
811 			      struct ieee80211_chanctx_conf *conf,
812 			      void *data)
813 {
814 	struct cfg80211_chan_def *def = data;
815 
816 	*def = conf->def;
817 }
818 
819 static struct ieee80211_channel *
820 ath10k_htt_rx_h_any_channel(struct ath10k *ar)
821 {
822 	struct cfg80211_chan_def def = {};
823 
824 	ieee80211_iter_chan_contexts_atomic(ar->hw,
825 					    ath10k_htt_rx_h_any_chan_iter,
826 					    &def);
827 
828 	return def.chan;
829 }
830 
831 static bool ath10k_htt_rx_h_channel(struct ath10k *ar,
832 				    struct ieee80211_rx_status *status,
833 				    struct htt_rx_desc *rxd,
834 				    u32 vdev_id)
835 {
836 	struct ieee80211_channel *ch;
837 
838 	spin_lock_bh(&ar->data_lock);
839 	ch = ar->scan_channel;
840 	if (!ch)
841 		ch = ar->rx_channel;
842 	if (!ch)
843 		ch = ath10k_htt_rx_h_peer_channel(ar, rxd);
844 	if (!ch)
845 		ch = ath10k_htt_rx_h_vdev_channel(ar, vdev_id);
846 	if (!ch)
847 		ch = ath10k_htt_rx_h_any_channel(ar);
848 	if (!ch)
849 		ch = ar->tgt_oper_chan;
850 	spin_unlock_bh(&ar->data_lock);
851 
852 	if (!ch)
853 		return false;
854 
855 	status->band = ch->band;
856 	status->freq = ch->center_freq;
857 
858 	return true;
859 }
860 
861 static void ath10k_htt_rx_h_signal(struct ath10k *ar,
862 				   struct ieee80211_rx_status *status,
863 				   struct htt_rx_desc *rxd)
864 {
865 	int i;
866 
867 	for (i = 0; i < IEEE80211_MAX_CHAINS ; i++) {
868 		status->chains &= ~BIT(i);
869 
870 		if (rxd->ppdu_start.rssi_chains[i].pri20_mhz != 0x80) {
871 			status->chain_signal[i] = ATH10K_DEFAULT_NOISE_FLOOR +
872 				rxd->ppdu_start.rssi_chains[i].pri20_mhz;
873 
874 			status->chains |= BIT(i);
875 		}
876 	}
877 
878 	/* FIXME: Get real NF */
879 	status->signal = ATH10K_DEFAULT_NOISE_FLOOR +
880 			 rxd->ppdu_start.rssi_comb;
881 	status->flag &= ~RX_FLAG_NO_SIGNAL_VAL;
882 }
883 
884 static void ath10k_htt_rx_h_mactime(struct ath10k *ar,
885 				    struct ieee80211_rx_status *status,
886 				    struct htt_rx_desc *rxd)
887 {
888 	/* FIXME: TSF is known only at the end of PPDU, in the last MPDU. This
889 	 * means all prior MSDUs in a PPDU are reported to mac80211 without the
890 	 * TSF. Is it worth holding frames until end of PPDU is known?
891 	 *
892 	 * FIXME: Can we get/compute 64bit TSF?
893 	 */
894 	status->mactime = __le32_to_cpu(rxd->ppdu_end.common.tsf_timestamp);
895 	status->flag |= RX_FLAG_MACTIME_END;
896 }
897 
898 static void ath10k_htt_rx_h_ppdu(struct ath10k *ar,
899 				 struct sk_buff_head *amsdu,
900 				 struct ieee80211_rx_status *status,
901 				 u32 vdev_id)
902 {
903 	struct sk_buff *first;
904 	struct htt_rx_desc *rxd;
905 	bool is_first_ppdu;
906 	bool is_last_ppdu;
907 
908 	if (skb_queue_empty(amsdu))
909 		return;
910 
911 	first = skb_peek(amsdu);
912 	rxd = (void *)first->data - sizeof(*rxd);
913 
914 	is_first_ppdu = !!(rxd->attention.flags &
915 			   __cpu_to_le32(RX_ATTENTION_FLAGS_FIRST_MPDU));
916 	is_last_ppdu = !!(rxd->attention.flags &
917 			  __cpu_to_le32(RX_ATTENTION_FLAGS_LAST_MPDU));
918 
919 	if (is_first_ppdu) {
920 		/* New PPDU starts so clear out the old per-PPDU status. */
921 		status->freq = 0;
922 		status->rate_idx = 0;
923 		status->nss = 0;
924 		status->encoding = RX_ENC_LEGACY;
925 		status->bw = RATE_INFO_BW_20;
926 
927 		status->flag &= ~RX_FLAG_MACTIME_END;
928 		status->flag |= RX_FLAG_NO_SIGNAL_VAL;
929 
930 		status->flag &= ~(RX_FLAG_AMPDU_IS_LAST);
931 		status->flag |= RX_FLAG_AMPDU_DETAILS | RX_FLAG_AMPDU_LAST_KNOWN;
932 		status->ampdu_reference = ar->ampdu_reference;
933 
934 		ath10k_htt_rx_h_signal(ar, status, rxd);
935 		ath10k_htt_rx_h_channel(ar, status, rxd, vdev_id);
936 		ath10k_htt_rx_h_rates(ar, status, rxd);
937 	}
938 
939 	if (is_last_ppdu) {
940 		ath10k_htt_rx_h_mactime(ar, status, rxd);
941 
942 		/* set ampdu last segment flag */
943 		status->flag |= RX_FLAG_AMPDU_IS_LAST;
944 		ar->ampdu_reference++;
945 	}
946 }
947 
948 static const char * const tid_to_ac[] = {
949 	"BE",
950 	"BK",
951 	"BK",
952 	"BE",
953 	"VI",
954 	"VI",
955 	"VO",
956 	"VO",
957 };
958 
959 static char *ath10k_get_tid(struct ieee80211_hdr *hdr, char *out, size_t size)
960 {
961 	u8 *qc;
962 	int tid;
963 
964 	if (!ieee80211_is_data_qos(hdr->frame_control))
965 		return "";
966 
967 	qc = ieee80211_get_qos_ctl(hdr);
968 	tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
969 	if (tid < 8)
970 		snprintf(out, size, "tid %d (%s)", tid, tid_to_ac[tid]);
971 	else
972 		snprintf(out, size, "tid %d", tid);
973 
974 	return out;
975 }
976 
977 static void ath10k_process_rx(struct ath10k *ar,
978 			      struct ieee80211_rx_status *rx_status,
979 			      struct sk_buff *skb)
980 {
981 	struct ieee80211_rx_status *status;
982 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
983 	char tid[32];
984 
985 	status = IEEE80211_SKB_RXCB(skb);
986 	*status = *rx_status;
987 
988 	ath10k_dbg(ar, ATH10K_DBG_DATA,
989 		   "rx skb %pK len %u peer %pM %s %s sn %u %s%s%s%s%s%s %srate_idx %u vht_nss %u freq %u band %u flag 0x%x fcs-err %i mic-err %i amsdu-more %i\n",
990 		   skb,
991 		   skb->len,
992 		   ieee80211_get_SA(hdr),
993 		   ath10k_get_tid(hdr, tid, sizeof(tid)),
994 		   is_multicast_ether_addr(ieee80211_get_DA(hdr)) ?
995 							"mcast" : "ucast",
996 		   (__le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_SEQ) >> 4,
997 		   (status->encoding == RX_ENC_LEGACY) ? "legacy" : "",
998 		   (status->encoding == RX_ENC_HT) ? "ht" : "",
999 		   (status->encoding == RX_ENC_VHT) ? "vht" : "",
1000 		   (status->bw == RATE_INFO_BW_40) ? "40" : "",
1001 		   (status->bw == RATE_INFO_BW_80) ? "80" : "",
1002 		   (status->bw == RATE_INFO_BW_160) ? "160" : "",
1003 		   status->enc_flags & RX_ENC_FLAG_SHORT_GI ? "sgi " : "",
1004 		   status->rate_idx,
1005 		   status->nss,
1006 		   status->freq,
1007 		   status->band, status->flag,
1008 		   !!(status->flag & RX_FLAG_FAILED_FCS_CRC),
1009 		   !!(status->flag & RX_FLAG_MMIC_ERROR),
1010 		   !!(status->flag & RX_FLAG_AMSDU_MORE));
1011 	ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "rx skb: ",
1012 			skb->data, skb->len);
1013 	trace_ath10k_rx_hdr(ar, skb->data, skb->len);
1014 	trace_ath10k_rx_payload(ar, skb->data, skb->len);
1015 
1016 	ieee80211_rx_napi(ar->hw, NULL, skb, &ar->napi);
1017 }
1018 
1019 static int ath10k_htt_rx_nwifi_hdrlen(struct ath10k *ar,
1020 				      struct ieee80211_hdr *hdr)
1021 {
1022 	int len = ieee80211_hdrlen(hdr->frame_control);
1023 
1024 	if (!test_bit(ATH10K_FW_FEATURE_NO_NWIFI_DECAP_4ADDR_PADDING,
1025 		      ar->running_fw->fw_file.fw_features))
1026 		len = round_up(len, 4);
1027 
1028 	return len;
1029 }
1030 
1031 static void ath10k_htt_rx_h_undecap_raw(struct ath10k *ar,
1032 					struct sk_buff *msdu,
1033 					struct ieee80211_rx_status *status,
1034 					enum htt_rx_mpdu_encrypt_type enctype,
1035 					bool is_decrypted)
1036 {
1037 	struct ieee80211_hdr *hdr;
1038 	struct htt_rx_desc *rxd;
1039 	size_t hdr_len;
1040 	size_t crypto_len;
1041 	bool is_first;
1042 	bool is_last;
1043 
1044 	rxd = (void *)msdu->data - sizeof(*rxd);
1045 	is_first = !!(rxd->msdu_end.common.info0 &
1046 		      __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU));
1047 	is_last = !!(rxd->msdu_end.common.info0 &
1048 		     __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU));
1049 
1050 	/* Delivered decapped frame:
1051 	 * [802.11 header]
1052 	 * [crypto param] <-- can be trimmed if !fcs_err &&
1053 	 *                    !decrypt_err && !peer_idx_invalid
1054 	 * [amsdu header] <-- only if A-MSDU
1055 	 * [rfc1042/llc]
1056 	 * [payload]
1057 	 * [FCS] <-- at end, needs to be trimmed
1058 	 */
1059 
1060 	/* This probably shouldn't happen but warn just in case */
1061 	if (unlikely(WARN_ON_ONCE(!is_first)))
1062 		return;
1063 
1064 	/* This probably shouldn't happen but warn just in case */
1065 	if (unlikely(WARN_ON_ONCE(!(is_first && is_last))))
1066 		return;
1067 
1068 	skb_trim(msdu, msdu->len - FCS_LEN);
1069 
1070 	/* In most cases this will be true for sniffed frames. It makes sense
1071 	 * to deliver them as-is without stripping the crypto param. This is
1072 	 * necessary for software based decryption.
1073 	 *
1074 	 * If there's no error then the frame is decrypted. At least that is
1075 	 * the case for frames that come in via fragmented rx indication.
1076 	 */
1077 	if (!is_decrypted)
1078 		return;
1079 
1080 	/* The payload is decrypted so strip crypto params. Start from tail
1081 	 * since hdr is used to compute some stuff.
1082 	 */
1083 
1084 	hdr = (void *)msdu->data;
1085 
1086 	/* Tail */
1087 	if (status->flag & RX_FLAG_IV_STRIPPED) {
1088 		skb_trim(msdu, msdu->len -
1089 			 ath10k_htt_rx_crypto_mic_len(ar, enctype));
1090 
1091 		skb_trim(msdu, msdu->len -
1092 			 ath10k_htt_rx_crypto_icv_len(ar, enctype));
1093 	} else {
1094 		/* MIC */
1095 		if (status->flag & RX_FLAG_MIC_STRIPPED)
1096 			skb_trim(msdu, msdu->len -
1097 				 ath10k_htt_rx_crypto_mic_len(ar, enctype));
1098 
1099 		/* ICV */
1100 		if (status->flag & RX_FLAG_ICV_STRIPPED)
1101 			skb_trim(msdu, msdu->len -
1102 				 ath10k_htt_rx_crypto_icv_len(ar, enctype));
1103 	}
1104 
1105 	/* MMIC */
1106 	if ((status->flag & RX_FLAG_MMIC_STRIPPED) &&
1107 	    !ieee80211_has_morefrags(hdr->frame_control) &&
1108 	    enctype == HTT_RX_MPDU_ENCRYPT_TKIP_WPA)
1109 		skb_trim(msdu, msdu->len - MICHAEL_MIC_LEN);
1110 
1111 	/* Head */
1112 	if (status->flag & RX_FLAG_IV_STRIPPED) {
1113 		hdr_len = ieee80211_hdrlen(hdr->frame_control);
1114 		crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype);
1115 
1116 		memmove((void *)msdu->data + crypto_len,
1117 			(void *)msdu->data, hdr_len);
1118 		skb_pull(msdu, crypto_len);
1119 	}
1120 }
1121 
1122 static void ath10k_htt_rx_h_undecap_nwifi(struct ath10k *ar,
1123 					  struct sk_buff *msdu,
1124 					  struct ieee80211_rx_status *status,
1125 					  const u8 first_hdr[64],
1126 					  enum htt_rx_mpdu_encrypt_type enctype)
1127 {
1128 	struct ieee80211_hdr *hdr;
1129 	struct htt_rx_desc *rxd;
1130 	size_t hdr_len;
1131 	u8 da[ETH_ALEN];
1132 	u8 sa[ETH_ALEN];
1133 	int l3_pad_bytes;
1134 	int bytes_aligned = ar->hw_params.decap_align_bytes;
1135 
1136 	/* Delivered decapped frame:
1137 	 * [nwifi 802.11 header] <-- replaced with 802.11 hdr
1138 	 * [rfc1042/llc]
1139 	 *
1140 	 * Note: The nwifi header doesn't have QoS Control and is
1141 	 * (always?) a 3addr frame.
1142 	 *
1143 	 * Note2: There's no A-MSDU subframe header. Even if it's part
1144 	 * of an A-MSDU.
1145 	 */
1146 
1147 	/* pull decapped header and copy SA & DA */
1148 	rxd = (void *)msdu->data - sizeof(*rxd);
1149 
1150 	l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd);
1151 	skb_put(msdu, l3_pad_bytes);
1152 
1153 	hdr = (struct ieee80211_hdr *)(msdu->data + l3_pad_bytes);
1154 
1155 	hdr_len = ath10k_htt_rx_nwifi_hdrlen(ar, hdr);
1156 	ether_addr_copy(da, ieee80211_get_DA(hdr));
1157 	ether_addr_copy(sa, ieee80211_get_SA(hdr));
1158 	skb_pull(msdu, hdr_len);
1159 
1160 	/* push original 802.11 header */
1161 	hdr = (struct ieee80211_hdr *)first_hdr;
1162 	hdr_len = ieee80211_hdrlen(hdr->frame_control);
1163 
1164 	if (!(status->flag & RX_FLAG_IV_STRIPPED)) {
1165 		memcpy(skb_push(msdu,
1166 				ath10k_htt_rx_crypto_param_len(ar, enctype)),
1167 		       (void *)hdr + round_up(hdr_len, bytes_aligned),
1168 			ath10k_htt_rx_crypto_param_len(ar, enctype));
1169 	}
1170 
1171 	memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1172 
1173 	/* original 802.11 header has a different DA and in
1174 	 * case of 4addr it may also have different SA
1175 	 */
1176 	hdr = (struct ieee80211_hdr *)msdu->data;
1177 	ether_addr_copy(ieee80211_get_DA(hdr), da);
1178 	ether_addr_copy(ieee80211_get_SA(hdr), sa);
1179 }
1180 
1181 static void *ath10k_htt_rx_h_find_rfc1042(struct ath10k *ar,
1182 					  struct sk_buff *msdu,
1183 					  enum htt_rx_mpdu_encrypt_type enctype)
1184 {
1185 	struct ieee80211_hdr *hdr;
1186 	struct htt_rx_desc *rxd;
1187 	size_t hdr_len, crypto_len;
1188 	void *rfc1042;
1189 	bool is_first, is_last, is_amsdu;
1190 	int bytes_aligned = ar->hw_params.decap_align_bytes;
1191 
1192 	rxd = (void *)msdu->data - sizeof(*rxd);
1193 	hdr = (void *)rxd->rx_hdr_status;
1194 
1195 	is_first = !!(rxd->msdu_end.common.info0 &
1196 		      __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU));
1197 	is_last = !!(rxd->msdu_end.common.info0 &
1198 		     __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU));
1199 	is_amsdu = !(is_first && is_last);
1200 
1201 	rfc1042 = hdr;
1202 
1203 	if (is_first) {
1204 		hdr_len = ieee80211_hdrlen(hdr->frame_control);
1205 		crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype);
1206 
1207 		rfc1042 += round_up(hdr_len, bytes_aligned) +
1208 			   round_up(crypto_len, bytes_aligned);
1209 	}
1210 
1211 	if (is_amsdu)
1212 		rfc1042 += sizeof(struct amsdu_subframe_hdr);
1213 
1214 	return rfc1042;
1215 }
1216 
1217 static void ath10k_htt_rx_h_undecap_eth(struct ath10k *ar,
1218 					struct sk_buff *msdu,
1219 					struct ieee80211_rx_status *status,
1220 					const u8 first_hdr[64],
1221 					enum htt_rx_mpdu_encrypt_type enctype)
1222 {
1223 	struct ieee80211_hdr *hdr;
1224 	struct ethhdr *eth;
1225 	size_t hdr_len;
1226 	void *rfc1042;
1227 	u8 da[ETH_ALEN];
1228 	u8 sa[ETH_ALEN];
1229 	int l3_pad_bytes;
1230 	struct htt_rx_desc *rxd;
1231 	int bytes_aligned = ar->hw_params.decap_align_bytes;
1232 
1233 	/* Delivered decapped frame:
1234 	 * [eth header] <-- replaced with 802.11 hdr & rfc1042/llc
1235 	 * [payload]
1236 	 */
1237 
1238 	rfc1042 = ath10k_htt_rx_h_find_rfc1042(ar, msdu, enctype);
1239 	if (WARN_ON_ONCE(!rfc1042))
1240 		return;
1241 
1242 	rxd = (void *)msdu->data - sizeof(*rxd);
1243 	l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd);
1244 	skb_put(msdu, l3_pad_bytes);
1245 	skb_pull(msdu, l3_pad_bytes);
1246 
1247 	/* pull decapped header and copy SA & DA */
1248 	eth = (struct ethhdr *)msdu->data;
1249 	ether_addr_copy(da, eth->h_dest);
1250 	ether_addr_copy(sa, eth->h_source);
1251 	skb_pull(msdu, sizeof(struct ethhdr));
1252 
1253 	/* push rfc1042/llc/snap */
1254 	memcpy(skb_push(msdu, sizeof(struct rfc1042_hdr)), rfc1042,
1255 	       sizeof(struct rfc1042_hdr));
1256 
1257 	/* push original 802.11 header */
1258 	hdr = (struct ieee80211_hdr *)first_hdr;
1259 	hdr_len = ieee80211_hdrlen(hdr->frame_control);
1260 
1261 	if (!(status->flag & RX_FLAG_IV_STRIPPED)) {
1262 		memcpy(skb_push(msdu,
1263 				ath10k_htt_rx_crypto_param_len(ar, enctype)),
1264 		       (void *)hdr + round_up(hdr_len, bytes_aligned),
1265 			ath10k_htt_rx_crypto_param_len(ar, enctype));
1266 	}
1267 
1268 	memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1269 
1270 	/* original 802.11 header has a different DA and in
1271 	 * case of 4addr it may also have different SA
1272 	 */
1273 	hdr = (struct ieee80211_hdr *)msdu->data;
1274 	ether_addr_copy(ieee80211_get_DA(hdr), da);
1275 	ether_addr_copy(ieee80211_get_SA(hdr), sa);
1276 }
1277 
1278 static void ath10k_htt_rx_h_undecap_snap(struct ath10k *ar,
1279 					 struct sk_buff *msdu,
1280 					 struct ieee80211_rx_status *status,
1281 					 const u8 first_hdr[64],
1282 					 enum htt_rx_mpdu_encrypt_type enctype)
1283 {
1284 	struct ieee80211_hdr *hdr;
1285 	size_t hdr_len;
1286 	int l3_pad_bytes;
1287 	struct htt_rx_desc *rxd;
1288 	int bytes_aligned = ar->hw_params.decap_align_bytes;
1289 
1290 	/* Delivered decapped frame:
1291 	 * [amsdu header] <-- replaced with 802.11 hdr
1292 	 * [rfc1042/llc]
1293 	 * [payload]
1294 	 */
1295 
1296 	rxd = (void *)msdu->data - sizeof(*rxd);
1297 	l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd);
1298 
1299 	skb_put(msdu, l3_pad_bytes);
1300 	skb_pull(msdu, sizeof(struct amsdu_subframe_hdr) + l3_pad_bytes);
1301 
1302 	hdr = (struct ieee80211_hdr *)first_hdr;
1303 	hdr_len = ieee80211_hdrlen(hdr->frame_control);
1304 
1305 	if (!(status->flag & RX_FLAG_IV_STRIPPED)) {
1306 		memcpy(skb_push(msdu,
1307 				ath10k_htt_rx_crypto_param_len(ar, enctype)),
1308 		       (void *)hdr + round_up(hdr_len, bytes_aligned),
1309 			ath10k_htt_rx_crypto_param_len(ar, enctype));
1310 	}
1311 
1312 	memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1313 }
1314 
1315 static void ath10k_htt_rx_h_undecap(struct ath10k *ar,
1316 				    struct sk_buff *msdu,
1317 				    struct ieee80211_rx_status *status,
1318 				    u8 first_hdr[64],
1319 				    enum htt_rx_mpdu_encrypt_type enctype,
1320 				    bool is_decrypted)
1321 {
1322 	struct htt_rx_desc *rxd;
1323 	enum rx_msdu_decap_format decap;
1324 
1325 	/* First msdu's decapped header:
1326 	 * [802.11 header] <-- padded to 4 bytes long
1327 	 * [crypto param] <-- padded to 4 bytes long
1328 	 * [amsdu header] <-- only if A-MSDU
1329 	 * [rfc1042/llc]
1330 	 *
1331 	 * Other (2nd, 3rd, ..) msdu's decapped header:
1332 	 * [amsdu header] <-- only if A-MSDU
1333 	 * [rfc1042/llc]
1334 	 */
1335 
1336 	rxd = (void *)msdu->data - sizeof(*rxd);
1337 	decap = MS(__le32_to_cpu(rxd->msdu_start.common.info1),
1338 		   RX_MSDU_START_INFO1_DECAP_FORMAT);
1339 
1340 	switch (decap) {
1341 	case RX_MSDU_DECAP_RAW:
1342 		ath10k_htt_rx_h_undecap_raw(ar, msdu, status, enctype,
1343 					    is_decrypted);
1344 		break;
1345 	case RX_MSDU_DECAP_NATIVE_WIFI:
1346 		ath10k_htt_rx_h_undecap_nwifi(ar, msdu, status, first_hdr,
1347 					      enctype);
1348 		break;
1349 	case RX_MSDU_DECAP_ETHERNET2_DIX:
1350 		ath10k_htt_rx_h_undecap_eth(ar, msdu, status, first_hdr, enctype);
1351 		break;
1352 	case RX_MSDU_DECAP_8023_SNAP_LLC:
1353 		ath10k_htt_rx_h_undecap_snap(ar, msdu, status, first_hdr,
1354 					     enctype);
1355 		break;
1356 	}
1357 }
1358 
1359 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb)
1360 {
1361 	struct htt_rx_desc *rxd;
1362 	u32 flags, info;
1363 	bool is_ip4, is_ip6;
1364 	bool is_tcp, is_udp;
1365 	bool ip_csum_ok, tcpudp_csum_ok;
1366 
1367 	rxd = (void *)skb->data - sizeof(*rxd);
1368 	flags = __le32_to_cpu(rxd->attention.flags);
1369 	info = __le32_to_cpu(rxd->msdu_start.common.info1);
1370 
1371 	is_ip4 = !!(info & RX_MSDU_START_INFO1_IPV4_PROTO);
1372 	is_ip6 = !!(info & RX_MSDU_START_INFO1_IPV6_PROTO);
1373 	is_tcp = !!(info & RX_MSDU_START_INFO1_TCP_PROTO);
1374 	is_udp = !!(info & RX_MSDU_START_INFO1_UDP_PROTO);
1375 	ip_csum_ok = !(flags & RX_ATTENTION_FLAGS_IP_CHKSUM_FAIL);
1376 	tcpudp_csum_ok = !(flags & RX_ATTENTION_FLAGS_TCP_UDP_CHKSUM_FAIL);
1377 
1378 	if (!is_ip4 && !is_ip6)
1379 		return CHECKSUM_NONE;
1380 	if (!is_tcp && !is_udp)
1381 		return CHECKSUM_NONE;
1382 	if (!ip_csum_ok)
1383 		return CHECKSUM_NONE;
1384 	if (!tcpudp_csum_ok)
1385 		return CHECKSUM_NONE;
1386 
1387 	return CHECKSUM_UNNECESSARY;
1388 }
1389 
1390 static void ath10k_htt_rx_h_csum_offload(struct sk_buff *msdu)
1391 {
1392 	msdu->ip_summed = ath10k_htt_rx_get_csum_state(msdu);
1393 }
1394 
1395 static void ath10k_htt_rx_h_mpdu(struct ath10k *ar,
1396 				 struct sk_buff_head *amsdu,
1397 				 struct ieee80211_rx_status *status,
1398 				 bool fill_crypt_header)
1399 {
1400 	struct sk_buff *first;
1401 	struct sk_buff *last;
1402 	struct sk_buff *msdu;
1403 	struct htt_rx_desc *rxd;
1404 	struct ieee80211_hdr *hdr;
1405 	enum htt_rx_mpdu_encrypt_type enctype;
1406 	u8 first_hdr[64];
1407 	u8 *qos;
1408 	bool has_fcs_err;
1409 	bool has_crypto_err;
1410 	bool has_tkip_err;
1411 	bool has_peer_idx_invalid;
1412 	bool is_decrypted;
1413 	bool is_mgmt;
1414 	u32 attention;
1415 
1416 	if (skb_queue_empty(amsdu))
1417 		return;
1418 
1419 	first = skb_peek(amsdu);
1420 	rxd = (void *)first->data - sizeof(*rxd);
1421 
1422 	is_mgmt = !!(rxd->attention.flags &
1423 		     __cpu_to_le32(RX_ATTENTION_FLAGS_MGMT_TYPE));
1424 
1425 	enctype = MS(__le32_to_cpu(rxd->mpdu_start.info0),
1426 		     RX_MPDU_START_INFO0_ENCRYPT_TYPE);
1427 
1428 	/* First MSDU's Rx descriptor in an A-MSDU contains full 802.11
1429 	 * decapped header. It'll be used for undecapping of each MSDU.
1430 	 */
1431 	hdr = (void *)rxd->rx_hdr_status;
1432 	memcpy(first_hdr, hdr, RX_HTT_HDR_STATUS_LEN);
1433 
1434 	/* Each A-MSDU subframe will use the original header as the base and be
1435 	 * reported as a separate MSDU so strip the A-MSDU bit from QoS Ctl.
1436 	 */
1437 	hdr = (void *)first_hdr;
1438 
1439 	if (ieee80211_is_data_qos(hdr->frame_control)) {
1440 		qos = ieee80211_get_qos_ctl(hdr);
1441 		qos[0] &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
1442 	}
1443 
1444 	/* Some attention flags are valid only in the last MSDU. */
1445 	last = skb_peek_tail(amsdu);
1446 	rxd = (void *)last->data - sizeof(*rxd);
1447 	attention = __le32_to_cpu(rxd->attention.flags);
1448 
1449 	has_fcs_err = !!(attention & RX_ATTENTION_FLAGS_FCS_ERR);
1450 	has_crypto_err = !!(attention & RX_ATTENTION_FLAGS_DECRYPT_ERR);
1451 	has_tkip_err = !!(attention & RX_ATTENTION_FLAGS_TKIP_MIC_ERR);
1452 	has_peer_idx_invalid = !!(attention & RX_ATTENTION_FLAGS_PEER_IDX_INVALID);
1453 
1454 	/* Note: If hardware captures an encrypted frame that it can't decrypt,
1455 	 * e.g. due to fcs error, missing peer or invalid key data it will
1456 	 * report the frame as raw.
1457 	 */
1458 	is_decrypted = (enctype != HTT_RX_MPDU_ENCRYPT_NONE &&
1459 			!has_fcs_err &&
1460 			!has_crypto_err &&
1461 			!has_peer_idx_invalid);
1462 
1463 	/* Clear per-MPDU flags while leaving per-PPDU flags intact. */
1464 	status->flag &= ~(RX_FLAG_FAILED_FCS_CRC |
1465 			  RX_FLAG_MMIC_ERROR |
1466 			  RX_FLAG_DECRYPTED |
1467 			  RX_FLAG_IV_STRIPPED |
1468 			  RX_FLAG_ONLY_MONITOR |
1469 			  RX_FLAG_MMIC_STRIPPED);
1470 
1471 	if (has_fcs_err)
1472 		status->flag |= RX_FLAG_FAILED_FCS_CRC;
1473 
1474 	if (has_tkip_err)
1475 		status->flag |= RX_FLAG_MMIC_ERROR;
1476 
1477 	/* Firmware reports all necessary management frames via WMI already.
1478 	 * They are not reported to monitor interfaces at all so pass the ones
1479 	 * coming via HTT to monitor interfaces instead. This simplifies
1480 	 * matters a lot.
1481 	 */
1482 	if (is_mgmt)
1483 		status->flag |= RX_FLAG_ONLY_MONITOR;
1484 
1485 	if (is_decrypted) {
1486 		status->flag |= RX_FLAG_DECRYPTED;
1487 
1488 		if (likely(!is_mgmt))
1489 			status->flag |= RX_FLAG_MMIC_STRIPPED;
1490 
1491 		if (fill_crypt_header)
1492 			status->flag |= RX_FLAG_MIC_STRIPPED |
1493 					RX_FLAG_ICV_STRIPPED;
1494 		else
1495 			status->flag |= RX_FLAG_IV_STRIPPED;
1496 	}
1497 
1498 	skb_queue_walk(amsdu, msdu) {
1499 		ath10k_htt_rx_h_csum_offload(msdu);
1500 		ath10k_htt_rx_h_undecap(ar, msdu, status, first_hdr, enctype,
1501 					is_decrypted);
1502 
1503 		/* Undecapping involves copying the original 802.11 header back
1504 		 * to sk_buff. If frame is protected and hardware has decrypted
1505 		 * it then remove the protected bit.
1506 		 */
1507 		if (!is_decrypted)
1508 			continue;
1509 		if (is_mgmt)
1510 			continue;
1511 
1512 		if (fill_crypt_header)
1513 			continue;
1514 
1515 		hdr = (void *)msdu->data;
1516 		hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED);
1517 	}
1518 }
1519 
1520 static void ath10k_htt_rx_h_deliver(struct ath10k *ar,
1521 				    struct sk_buff_head *amsdu,
1522 				    struct ieee80211_rx_status *status)
1523 {
1524 	struct sk_buff *msdu;
1525 	struct sk_buff *first_subframe;
1526 
1527 	first_subframe = skb_peek(amsdu);
1528 
1529 	while ((msdu = __skb_dequeue(amsdu))) {
1530 		/* Setup per-MSDU flags */
1531 		if (skb_queue_empty(amsdu))
1532 			status->flag &= ~RX_FLAG_AMSDU_MORE;
1533 		else
1534 			status->flag |= RX_FLAG_AMSDU_MORE;
1535 
1536 		if (msdu == first_subframe) {
1537 			first_subframe = NULL;
1538 			status->flag &= ~RX_FLAG_ALLOW_SAME_PN;
1539 		} else {
1540 			status->flag |= RX_FLAG_ALLOW_SAME_PN;
1541 		}
1542 
1543 		ath10k_process_rx(ar, status, msdu);
1544 	}
1545 }
1546 
1547 static int ath10k_unchain_msdu(struct sk_buff_head *amsdu)
1548 {
1549 	struct sk_buff *skb, *first;
1550 	int space;
1551 	int total_len = 0;
1552 
1553 	/* TODO:  Might could optimize this by using
1554 	 * skb_try_coalesce or similar method to
1555 	 * decrease copying, or maybe get mac80211 to
1556 	 * provide a way to just receive a list of
1557 	 * skb?
1558 	 */
1559 
1560 	first = __skb_dequeue(amsdu);
1561 
1562 	/* Allocate total length all at once. */
1563 	skb_queue_walk(amsdu, skb)
1564 		total_len += skb->len;
1565 
1566 	space = total_len - skb_tailroom(first);
1567 	if ((space > 0) &&
1568 	    (pskb_expand_head(first, 0, space, GFP_ATOMIC) < 0)) {
1569 		/* TODO:  bump some rx-oom error stat */
1570 		/* put it back together so we can free the
1571 		 * whole list at once.
1572 		 */
1573 		__skb_queue_head(amsdu, first);
1574 		return -1;
1575 	}
1576 
1577 	/* Walk list again, copying contents into
1578 	 * msdu_head
1579 	 */
1580 	while ((skb = __skb_dequeue(amsdu))) {
1581 		skb_copy_from_linear_data(skb, skb_put(first, skb->len),
1582 					  skb->len);
1583 		dev_kfree_skb_any(skb);
1584 	}
1585 
1586 	__skb_queue_head(amsdu, first);
1587 	return 0;
1588 }
1589 
1590 static void ath10k_htt_rx_h_unchain(struct ath10k *ar,
1591 				    struct sk_buff_head *amsdu)
1592 {
1593 	struct sk_buff *first;
1594 	struct htt_rx_desc *rxd;
1595 	enum rx_msdu_decap_format decap;
1596 
1597 	first = skb_peek(amsdu);
1598 	rxd = (void *)first->data - sizeof(*rxd);
1599 	decap = MS(__le32_to_cpu(rxd->msdu_start.common.info1),
1600 		   RX_MSDU_START_INFO1_DECAP_FORMAT);
1601 
1602 	/* FIXME: Current unchaining logic can only handle simple case of raw
1603 	 * msdu chaining. If decapping is other than raw the chaining may be
1604 	 * more complex and this isn't handled by the current code. Don't even
1605 	 * try re-constructing such frames - it'll be pretty much garbage.
1606 	 */
1607 	if (decap != RX_MSDU_DECAP_RAW ||
1608 	    skb_queue_len(amsdu) != 1 + rxd->frag_info.ring2_more_count) {
1609 		__skb_queue_purge(amsdu);
1610 		return;
1611 	}
1612 
1613 	ath10k_unchain_msdu(amsdu);
1614 }
1615 
1616 static bool ath10k_htt_rx_amsdu_allowed(struct ath10k *ar,
1617 					struct sk_buff_head *amsdu,
1618 					struct ieee80211_rx_status *rx_status)
1619 {
1620 	/* FIXME: It might be a good idea to do some fuzzy-testing to drop
1621 	 * invalid/dangerous frames.
1622 	 */
1623 
1624 	if (!rx_status->freq) {
1625 		ath10k_dbg(ar, ATH10K_DBG_HTT, "no channel configured; ignoring frame(s)!\n");
1626 		return false;
1627 	}
1628 
1629 	if (test_bit(ATH10K_CAC_RUNNING, &ar->dev_flags)) {
1630 		ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx cac running\n");
1631 		return false;
1632 	}
1633 
1634 	return true;
1635 }
1636 
1637 static void ath10k_htt_rx_h_filter(struct ath10k *ar,
1638 				   struct sk_buff_head *amsdu,
1639 				   struct ieee80211_rx_status *rx_status)
1640 {
1641 	if (skb_queue_empty(amsdu))
1642 		return;
1643 
1644 	if (ath10k_htt_rx_amsdu_allowed(ar, amsdu, rx_status))
1645 		return;
1646 
1647 	__skb_queue_purge(amsdu);
1648 }
1649 
1650 static int ath10k_htt_rx_handle_amsdu(struct ath10k_htt *htt)
1651 {
1652 	struct ath10k *ar = htt->ar;
1653 	struct ieee80211_rx_status *rx_status = &htt->rx_status;
1654 	struct sk_buff_head amsdu;
1655 	int ret, num_msdus;
1656 
1657 	__skb_queue_head_init(&amsdu);
1658 
1659 	spin_lock_bh(&htt->rx_ring.lock);
1660 	if (htt->rx_confused) {
1661 		spin_unlock_bh(&htt->rx_ring.lock);
1662 		return -EIO;
1663 	}
1664 	ret = ath10k_htt_rx_amsdu_pop(htt, &amsdu);
1665 	spin_unlock_bh(&htt->rx_ring.lock);
1666 
1667 	if (ret < 0) {
1668 		ath10k_warn(ar, "rx ring became corrupted: %d\n", ret);
1669 		__skb_queue_purge(&amsdu);
1670 		/* FIXME: It's probably a good idea to reboot the
1671 		 * device instead of leaving it inoperable.
1672 		 */
1673 		htt->rx_confused = true;
1674 		return ret;
1675 	}
1676 
1677 	num_msdus = skb_queue_len(&amsdu);
1678 	ath10k_htt_rx_h_ppdu(ar, &amsdu, rx_status, 0xffff);
1679 
1680 	/* only for ret = 1 indicates chained msdus */
1681 	if (ret > 0)
1682 		ath10k_htt_rx_h_unchain(ar, &amsdu);
1683 
1684 	ath10k_htt_rx_h_filter(ar, &amsdu, rx_status);
1685 	ath10k_htt_rx_h_mpdu(ar, &amsdu, rx_status, true);
1686 	ath10k_htt_rx_h_deliver(ar, &amsdu, rx_status);
1687 
1688 	return num_msdus;
1689 }
1690 
1691 static void ath10k_htt_rx_proc_rx_ind(struct ath10k_htt *htt,
1692 				      struct htt_rx_indication *rx)
1693 {
1694 	struct ath10k *ar = htt->ar;
1695 	struct htt_rx_indication_mpdu_range *mpdu_ranges;
1696 	int num_mpdu_ranges;
1697 	int i, mpdu_count = 0;
1698 
1699 	num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1),
1700 			     HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES);
1701 	mpdu_ranges = htt_rx_ind_get_mpdu_ranges(rx);
1702 
1703 	ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx ind: ",
1704 			rx, sizeof(*rx) +
1705 			(sizeof(struct htt_rx_indication_mpdu_range) *
1706 				num_mpdu_ranges));
1707 
1708 	for (i = 0; i < num_mpdu_ranges; i++)
1709 		mpdu_count += mpdu_ranges[i].mpdu_count;
1710 
1711 	atomic_add(mpdu_count, &htt->num_mpdus_ready);
1712 }
1713 
1714 static void ath10k_htt_rx_tx_compl_ind(struct ath10k *ar,
1715 				       struct sk_buff *skb)
1716 {
1717 	struct ath10k_htt *htt = &ar->htt;
1718 	struct htt_resp *resp = (struct htt_resp *)skb->data;
1719 	struct htt_tx_done tx_done = {};
1720 	int status = MS(resp->data_tx_completion.flags, HTT_DATA_TX_STATUS);
1721 	__le16 msdu_id;
1722 	int i;
1723 
1724 	switch (status) {
1725 	case HTT_DATA_TX_STATUS_NO_ACK:
1726 		tx_done.status = HTT_TX_COMPL_STATE_NOACK;
1727 		break;
1728 	case HTT_DATA_TX_STATUS_OK:
1729 		tx_done.status = HTT_TX_COMPL_STATE_ACK;
1730 		break;
1731 	case HTT_DATA_TX_STATUS_DISCARD:
1732 	case HTT_DATA_TX_STATUS_POSTPONE:
1733 	case HTT_DATA_TX_STATUS_DOWNLOAD_FAIL:
1734 		tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
1735 		break;
1736 	default:
1737 		ath10k_warn(ar, "unhandled tx completion status %d\n", status);
1738 		tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
1739 		break;
1740 	}
1741 
1742 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx completion num_msdus %d\n",
1743 		   resp->data_tx_completion.num_msdus);
1744 
1745 	for (i = 0; i < resp->data_tx_completion.num_msdus; i++) {
1746 		msdu_id = resp->data_tx_completion.msdus[i];
1747 		tx_done.msdu_id = __le16_to_cpu(msdu_id);
1748 
1749 		/* kfifo_put: In practice firmware shouldn't fire off per-CE
1750 		 * interrupt and main interrupt (MSI/-X range case) for the same
1751 		 * HTC service so it should be safe to use kfifo_put w/o lock.
1752 		 *
1753 		 * From kfifo_put() documentation:
1754 		 *  Note that with only one concurrent reader and one concurrent
1755 		 *  writer, you don't need extra locking to use these macro.
1756 		 */
1757 		if (!kfifo_put(&htt->txdone_fifo, tx_done)) {
1758 			ath10k_warn(ar, "txdone fifo overrun, msdu_id %d status %d\n",
1759 				    tx_done.msdu_id, tx_done.status);
1760 			ath10k_txrx_tx_unref(htt, &tx_done);
1761 		}
1762 	}
1763 }
1764 
1765 static void ath10k_htt_rx_addba(struct ath10k *ar, struct htt_resp *resp)
1766 {
1767 	struct htt_rx_addba *ev = &resp->rx_addba;
1768 	struct ath10k_peer *peer;
1769 	struct ath10k_vif *arvif;
1770 	u16 info0, tid, peer_id;
1771 
1772 	info0 = __le16_to_cpu(ev->info0);
1773 	tid = MS(info0, HTT_RX_BA_INFO0_TID);
1774 	peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID);
1775 
1776 	ath10k_dbg(ar, ATH10K_DBG_HTT,
1777 		   "htt rx addba tid %hu peer_id %hu size %hhu\n",
1778 		   tid, peer_id, ev->window_size);
1779 
1780 	spin_lock_bh(&ar->data_lock);
1781 	peer = ath10k_peer_find_by_id(ar, peer_id);
1782 	if (!peer) {
1783 		ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n",
1784 			    peer_id);
1785 		spin_unlock_bh(&ar->data_lock);
1786 		return;
1787 	}
1788 
1789 	arvif = ath10k_get_arvif(ar, peer->vdev_id);
1790 	if (!arvif) {
1791 		ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n",
1792 			    peer->vdev_id);
1793 		spin_unlock_bh(&ar->data_lock);
1794 		return;
1795 	}
1796 
1797 	ath10k_dbg(ar, ATH10K_DBG_HTT,
1798 		   "htt rx start rx ba session sta %pM tid %hu size %hhu\n",
1799 		   peer->addr, tid, ev->window_size);
1800 
1801 	ieee80211_start_rx_ba_session_offl(arvif->vif, peer->addr, tid);
1802 	spin_unlock_bh(&ar->data_lock);
1803 }
1804 
1805 static void ath10k_htt_rx_delba(struct ath10k *ar, struct htt_resp *resp)
1806 {
1807 	struct htt_rx_delba *ev = &resp->rx_delba;
1808 	struct ath10k_peer *peer;
1809 	struct ath10k_vif *arvif;
1810 	u16 info0, tid, peer_id;
1811 
1812 	info0 = __le16_to_cpu(ev->info0);
1813 	tid = MS(info0, HTT_RX_BA_INFO0_TID);
1814 	peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID);
1815 
1816 	ath10k_dbg(ar, ATH10K_DBG_HTT,
1817 		   "htt rx delba tid %hu peer_id %hu\n",
1818 		   tid, peer_id);
1819 
1820 	spin_lock_bh(&ar->data_lock);
1821 	peer = ath10k_peer_find_by_id(ar, peer_id);
1822 	if (!peer) {
1823 		ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n",
1824 			    peer_id);
1825 		spin_unlock_bh(&ar->data_lock);
1826 		return;
1827 	}
1828 
1829 	arvif = ath10k_get_arvif(ar, peer->vdev_id);
1830 	if (!arvif) {
1831 		ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n",
1832 			    peer->vdev_id);
1833 		spin_unlock_bh(&ar->data_lock);
1834 		return;
1835 	}
1836 
1837 	ath10k_dbg(ar, ATH10K_DBG_HTT,
1838 		   "htt rx stop rx ba session sta %pM tid %hu\n",
1839 		   peer->addr, tid);
1840 
1841 	ieee80211_stop_rx_ba_session_offl(arvif->vif, peer->addr, tid);
1842 	spin_unlock_bh(&ar->data_lock);
1843 }
1844 
1845 static int ath10k_htt_rx_extract_amsdu(struct sk_buff_head *list,
1846 				       struct sk_buff_head *amsdu)
1847 {
1848 	struct sk_buff *msdu;
1849 	struct htt_rx_desc *rxd;
1850 
1851 	if (skb_queue_empty(list))
1852 		return -ENOBUFS;
1853 
1854 	if (WARN_ON(!skb_queue_empty(amsdu)))
1855 		return -EINVAL;
1856 
1857 	while ((msdu = __skb_dequeue(list))) {
1858 		__skb_queue_tail(amsdu, msdu);
1859 
1860 		rxd = (void *)msdu->data - sizeof(*rxd);
1861 		if (rxd->msdu_end.common.info0 &
1862 		    __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU))
1863 			break;
1864 	}
1865 
1866 	msdu = skb_peek_tail(amsdu);
1867 	rxd = (void *)msdu->data - sizeof(*rxd);
1868 	if (!(rxd->msdu_end.common.info0 &
1869 	      __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU))) {
1870 		skb_queue_splice_init(amsdu, list);
1871 		return -EAGAIN;
1872 	}
1873 
1874 	return 0;
1875 }
1876 
1877 static void ath10k_htt_rx_h_rx_offload_prot(struct ieee80211_rx_status *status,
1878 					    struct sk_buff *skb)
1879 {
1880 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1881 
1882 	if (!ieee80211_has_protected(hdr->frame_control))
1883 		return;
1884 
1885 	/* Offloaded frames are already decrypted but firmware insists they are
1886 	 * protected in the 802.11 header. Strip the flag.  Otherwise mac80211
1887 	 * will drop the frame.
1888 	 */
1889 
1890 	hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED);
1891 	status->flag |= RX_FLAG_DECRYPTED |
1892 			RX_FLAG_IV_STRIPPED |
1893 			RX_FLAG_MMIC_STRIPPED;
1894 }
1895 
1896 static int ath10k_htt_rx_h_rx_offload(struct ath10k *ar,
1897 				      struct sk_buff_head *list)
1898 {
1899 	struct ath10k_htt *htt = &ar->htt;
1900 	struct ieee80211_rx_status *status = &htt->rx_status;
1901 	struct htt_rx_offload_msdu *rx;
1902 	struct sk_buff *msdu;
1903 	size_t offset;
1904 	int num_msdu = 0;
1905 
1906 	while ((msdu = __skb_dequeue(list))) {
1907 		/* Offloaded frames don't have Rx descriptor. Instead they have
1908 		 * a short meta information header.
1909 		 */
1910 
1911 		rx = (void *)msdu->data;
1912 
1913 		skb_put(msdu, sizeof(*rx));
1914 		skb_pull(msdu, sizeof(*rx));
1915 
1916 		if (skb_tailroom(msdu) < __le16_to_cpu(rx->msdu_len)) {
1917 			ath10k_warn(ar, "dropping frame: offloaded rx msdu is too long!\n");
1918 			dev_kfree_skb_any(msdu);
1919 			continue;
1920 		}
1921 
1922 		skb_put(msdu, __le16_to_cpu(rx->msdu_len));
1923 
1924 		/* Offloaded rx header length isn't multiple of 2 nor 4 so the
1925 		 * actual payload is unaligned. Align the frame.  Otherwise
1926 		 * mac80211 complains.  This shouldn't reduce performance much
1927 		 * because these offloaded frames are rare.
1928 		 */
1929 		offset = 4 - ((unsigned long)msdu->data & 3);
1930 		skb_put(msdu, offset);
1931 		memmove(msdu->data + offset, msdu->data, msdu->len);
1932 		skb_pull(msdu, offset);
1933 
1934 		/* FIXME: The frame is NWifi. Re-construct QoS Control
1935 		 * if possible later.
1936 		 */
1937 
1938 		memset(status, 0, sizeof(*status));
1939 		status->flag |= RX_FLAG_NO_SIGNAL_VAL;
1940 
1941 		ath10k_htt_rx_h_rx_offload_prot(status, msdu);
1942 		ath10k_htt_rx_h_channel(ar, status, NULL, rx->vdev_id);
1943 		ath10k_process_rx(ar, status, msdu);
1944 		num_msdu++;
1945 	}
1946 	return num_msdu;
1947 }
1948 
1949 static int ath10k_htt_rx_in_ord_ind(struct ath10k *ar, struct sk_buff *skb)
1950 {
1951 	struct ath10k_htt *htt = &ar->htt;
1952 	struct htt_resp *resp = (void *)skb->data;
1953 	struct ieee80211_rx_status *status = &htt->rx_status;
1954 	struct sk_buff_head list;
1955 	struct sk_buff_head amsdu;
1956 	u16 peer_id;
1957 	u16 msdu_count;
1958 	u8 vdev_id;
1959 	u8 tid;
1960 	bool offload;
1961 	bool frag;
1962 	int ret, num_msdus = 0;
1963 
1964 	lockdep_assert_held(&htt->rx_ring.lock);
1965 
1966 	if (htt->rx_confused)
1967 		return -EIO;
1968 
1969 	skb_pull(skb, sizeof(resp->hdr));
1970 	skb_pull(skb, sizeof(resp->rx_in_ord_ind));
1971 
1972 	peer_id = __le16_to_cpu(resp->rx_in_ord_ind.peer_id);
1973 	msdu_count = __le16_to_cpu(resp->rx_in_ord_ind.msdu_count);
1974 	vdev_id = resp->rx_in_ord_ind.vdev_id;
1975 	tid = SM(resp->rx_in_ord_ind.info, HTT_RX_IN_ORD_IND_INFO_TID);
1976 	offload = !!(resp->rx_in_ord_ind.info &
1977 			HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK);
1978 	frag = !!(resp->rx_in_ord_ind.info & HTT_RX_IN_ORD_IND_INFO_FRAG_MASK);
1979 
1980 	ath10k_dbg(ar, ATH10K_DBG_HTT,
1981 		   "htt rx in ord vdev %i peer %i tid %i offload %i frag %i msdu count %i\n",
1982 		   vdev_id, peer_id, tid, offload, frag, msdu_count);
1983 
1984 	if (skb->len < msdu_count * sizeof(*resp->rx_in_ord_ind.msdu_descs)) {
1985 		ath10k_warn(ar, "dropping invalid in order rx indication\n");
1986 		return -EINVAL;
1987 	}
1988 
1989 	/* The event can deliver more than 1 A-MSDU. Each A-MSDU is later
1990 	 * extracted and processed.
1991 	 */
1992 	__skb_queue_head_init(&list);
1993 	ret = ath10k_htt_rx_pop_paddr_list(htt, &resp->rx_in_ord_ind, &list);
1994 	if (ret < 0) {
1995 		ath10k_warn(ar, "failed to pop paddr list: %d\n", ret);
1996 		htt->rx_confused = true;
1997 		return -EIO;
1998 	}
1999 
2000 	/* Offloaded frames are very different and need to be handled
2001 	 * separately.
2002 	 */
2003 	if (offload)
2004 		num_msdus = ath10k_htt_rx_h_rx_offload(ar, &list);
2005 
2006 	while (!skb_queue_empty(&list)) {
2007 		__skb_queue_head_init(&amsdu);
2008 		ret = ath10k_htt_rx_extract_amsdu(&list, &amsdu);
2009 		switch (ret) {
2010 		case 0:
2011 			/* Note: The in-order indication may report interleaved
2012 			 * frames from different PPDUs meaning reported rx rate
2013 			 * to mac80211 isn't accurate/reliable. It's still
2014 			 * better to report something than nothing though. This
2015 			 * should still give an idea about rx rate to the user.
2016 			 */
2017 			num_msdus += skb_queue_len(&amsdu);
2018 			ath10k_htt_rx_h_ppdu(ar, &amsdu, status, vdev_id);
2019 			ath10k_htt_rx_h_filter(ar, &amsdu, status);
2020 			ath10k_htt_rx_h_mpdu(ar, &amsdu, status, false);
2021 			ath10k_htt_rx_h_deliver(ar, &amsdu, status);
2022 			break;
2023 		case -EAGAIN:
2024 			/* fall through */
2025 		default:
2026 			/* Should not happen. */
2027 			ath10k_warn(ar, "failed to extract amsdu: %d\n", ret);
2028 			htt->rx_confused = true;
2029 			__skb_queue_purge(&list);
2030 			return -EIO;
2031 		}
2032 	}
2033 	return num_msdus;
2034 }
2035 
2036 static void ath10k_htt_rx_tx_fetch_resp_id_confirm(struct ath10k *ar,
2037 						   const __le32 *resp_ids,
2038 						   int num_resp_ids)
2039 {
2040 	int i;
2041 	u32 resp_id;
2042 
2043 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm num_resp_ids %d\n",
2044 		   num_resp_ids);
2045 
2046 	for (i = 0; i < num_resp_ids; i++) {
2047 		resp_id = le32_to_cpu(resp_ids[i]);
2048 
2049 		ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm resp_id %u\n",
2050 			   resp_id);
2051 
2052 		/* TODO: free resp_id */
2053 	}
2054 }
2055 
2056 static void ath10k_htt_rx_tx_fetch_ind(struct ath10k *ar, struct sk_buff *skb)
2057 {
2058 	struct ieee80211_hw *hw = ar->hw;
2059 	struct ieee80211_txq *txq;
2060 	struct htt_resp *resp = (struct htt_resp *)skb->data;
2061 	struct htt_tx_fetch_record *record;
2062 	size_t len;
2063 	size_t max_num_bytes;
2064 	size_t max_num_msdus;
2065 	size_t num_bytes;
2066 	size_t num_msdus;
2067 	const __le32 *resp_ids;
2068 	u16 num_records;
2069 	u16 num_resp_ids;
2070 	u16 peer_id;
2071 	u8 tid;
2072 	int ret;
2073 	int i;
2074 
2075 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch ind\n");
2076 
2077 	len = sizeof(resp->hdr) + sizeof(resp->tx_fetch_ind);
2078 	if (unlikely(skb->len < len)) {
2079 		ath10k_warn(ar, "received corrupted tx_fetch_ind event: buffer too short\n");
2080 		return;
2081 	}
2082 
2083 	num_records = le16_to_cpu(resp->tx_fetch_ind.num_records);
2084 	num_resp_ids = le16_to_cpu(resp->tx_fetch_ind.num_resp_ids);
2085 
2086 	len += sizeof(resp->tx_fetch_ind.records[0]) * num_records;
2087 	len += sizeof(resp->tx_fetch_ind.resp_ids[0]) * num_resp_ids;
2088 
2089 	if (unlikely(skb->len < len)) {
2090 		ath10k_warn(ar, "received corrupted tx_fetch_ind event: too many records/resp_ids\n");
2091 		return;
2092 	}
2093 
2094 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch ind num records %hu num resps %hu seq %hu\n",
2095 		   num_records, num_resp_ids,
2096 		   le16_to_cpu(resp->tx_fetch_ind.fetch_seq_num));
2097 
2098 	if (!ar->htt.tx_q_state.enabled) {
2099 		ath10k_warn(ar, "received unexpected tx_fetch_ind event: not enabled\n");
2100 		return;
2101 	}
2102 
2103 	if (ar->htt.tx_q_state.mode == HTT_TX_MODE_SWITCH_PUSH) {
2104 		ath10k_warn(ar, "received unexpected tx_fetch_ind event: in push mode\n");
2105 		return;
2106 	}
2107 
2108 	rcu_read_lock();
2109 
2110 	for (i = 0; i < num_records; i++) {
2111 		record = &resp->tx_fetch_ind.records[i];
2112 		peer_id = MS(le16_to_cpu(record->info),
2113 			     HTT_TX_FETCH_RECORD_INFO_PEER_ID);
2114 		tid = MS(le16_to_cpu(record->info),
2115 			 HTT_TX_FETCH_RECORD_INFO_TID);
2116 		max_num_msdus = le16_to_cpu(record->num_msdus);
2117 		max_num_bytes = le32_to_cpu(record->num_bytes);
2118 
2119 		ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch record %i peer_id %hu tid %hhu msdus %zu bytes %zu\n",
2120 			   i, peer_id, tid, max_num_msdus, max_num_bytes);
2121 
2122 		if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) ||
2123 		    unlikely(tid >= ar->htt.tx_q_state.num_tids)) {
2124 			ath10k_warn(ar, "received out of range peer_id %hu tid %hhu\n",
2125 				    peer_id, tid);
2126 			continue;
2127 		}
2128 
2129 		spin_lock_bh(&ar->data_lock);
2130 		txq = ath10k_mac_txq_lookup(ar, peer_id, tid);
2131 		spin_unlock_bh(&ar->data_lock);
2132 
2133 		/* It is okay to release the lock and use txq because RCU read
2134 		 * lock is held.
2135 		 */
2136 
2137 		if (unlikely(!txq)) {
2138 			ath10k_warn(ar, "failed to lookup txq for peer_id %hu tid %hhu\n",
2139 				    peer_id, tid);
2140 			continue;
2141 		}
2142 
2143 		num_msdus = 0;
2144 		num_bytes = 0;
2145 
2146 		while (num_msdus < max_num_msdus &&
2147 		       num_bytes < max_num_bytes) {
2148 			ret = ath10k_mac_tx_push_txq(hw, txq);
2149 			if (ret < 0)
2150 				break;
2151 
2152 			num_msdus++;
2153 			num_bytes += ret;
2154 		}
2155 
2156 		record->num_msdus = cpu_to_le16(num_msdus);
2157 		record->num_bytes = cpu_to_le32(num_bytes);
2158 
2159 		ath10k_htt_tx_txq_recalc(hw, txq);
2160 	}
2161 
2162 	rcu_read_unlock();
2163 
2164 	resp_ids = ath10k_htt_get_tx_fetch_ind_resp_ids(&resp->tx_fetch_ind);
2165 	ath10k_htt_rx_tx_fetch_resp_id_confirm(ar, resp_ids, num_resp_ids);
2166 
2167 	ret = ath10k_htt_tx_fetch_resp(ar,
2168 				       resp->tx_fetch_ind.token,
2169 				       resp->tx_fetch_ind.fetch_seq_num,
2170 				       resp->tx_fetch_ind.records,
2171 				       num_records);
2172 	if (unlikely(ret)) {
2173 		ath10k_warn(ar, "failed to submit tx fetch resp for token 0x%08x: %d\n",
2174 			    le32_to_cpu(resp->tx_fetch_ind.token), ret);
2175 		/* FIXME: request fw restart */
2176 	}
2177 
2178 	ath10k_htt_tx_txq_sync(ar);
2179 }
2180 
2181 static void ath10k_htt_rx_tx_fetch_confirm(struct ath10k *ar,
2182 					   struct sk_buff *skb)
2183 {
2184 	const struct htt_resp *resp = (void *)skb->data;
2185 	size_t len;
2186 	int num_resp_ids;
2187 
2188 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm\n");
2189 
2190 	len = sizeof(resp->hdr) + sizeof(resp->tx_fetch_confirm);
2191 	if (unlikely(skb->len < len)) {
2192 		ath10k_warn(ar, "received corrupted tx_fetch_confirm event: buffer too short\n");
2193 		return;
2194 	}
2195 
2196 	num_resp_ids = le16_to_cpu(resp->tx_fetch_confirm.num_resp_ids);
2197 	len += sizeof(resp->tx_fetch_confirm.resp_ids[0]) * num_resp_ids;
2198 
2199 	if (unlikely(skb->len < len)) {
2200 		ath10k_warn(ar, "received corrupted tx_fetch_confirm event: resp_ids buffer overflow\n");
2201 		return;
2202 	}
2203 
2204 	ath10k_htt_rx_tx_fetch_resp_id_confirm(ar,
2205 					       resp->tx_fetch_confirm.resp_ids,
2206 					       num_resp_ids);
2207 }
2208 
2209 static void ath10k_htt_rx_tx_mode_switch_ind(struct ath10k *ar,
2210 					     struct sk_buff *skb)
2211 {
2212 	const struct htt_resp *resp = (void *)skb->data;
2213 	const struct htt_tx_mode_switch_record *record;
2214 	struct ieee80211_txq *txq;
2215 	struct ath10k_txq *artxq;
2216 	size_t len;
2217 	size_t num_records;
2218 	enum htt_tx_mode_switch_mode mode;
2219 	bool enable;
2220 	u16 info0;
2221 	u16 info1;
2222 	u16 threshold;
2223 	u16 peer_id;
2224 	u8 tid;
2225 	int i;
2226 
2227 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx mode switch ind\n");
2228 
2229 	len = sizeof(resp->hdr) + sizeof(resp->tx_mode_switch_ind);
2230 	if (unlikely(skb->len < len)) {
2231 		ath10k_warn(ar, "received corrupted tx_mode_switch_ind event: buffer too short\n");
2232 		return;
2233 	}
2234 
2235 	info0 = le16_to_cpu(resp->tx_mode_switch_ind.info0);
2236 	info1 = le16_to_cpu(resp->tx_mode_switch_ind.info1);
2237 
2238 	enable = !!(info0 & HTT_TX_MODE_SWITCH_IND_INFO0_ENABLE);
2239 	num_records = MS(info0, HTT_TX_MODE_SWITCH_IND_INFO1_THRESHOLD);
2240 	mode = MS(info1, HTT_TX_MODE_SWITCH_IND_INFO1_MODE);
2241 	threshold = MS(info1, HTT_TX_MODE_SWITCH_IND_INFO1_THRESHOLD);
2242 
2243 	ath10k_dbg(ar, ATH10K_DBG_HTT,
2244 		   "htt rx tx mode switch ind info0 0x%04hx info1 0x%04hx enable %d num records %zd mode %d threshold %hu\n",
2245 		   info0, info1, enable, num_records, mode, threshold);
2246 
2247 	len += sizeof(resp->tx_mode_switch_ind.records[0]) * num_records;
2248 
2249 	if (unlikely(skb->len < len)) {
2250 		ath10k_warn(ar, "received corrupted tx_mode_switch_mode_ind event: too many records\n");
2251 		return;
2252 	}
2253 
2254 	switch (mode) {
2255 	case HTT_TX_MODE_SWITCH_PUSH:
2256 	case HTT_TX_MODE_SWITCH_PUSH_PULL:
2257 		break;
2258 	default:
2259 		ath10k_warn(ar, "received invalid tx_mode_switch_mode_ind mode %d, ignoring\n",
2260 			    mode);
2261 		return;
2262 	}
2263 
2264 	if (!enable)
2265 		return;
2266 
2267 	ar->htt.tx_q_state.enabled = enable;
2268 	ar->htt.tx_q_state.mode = mode;
2269 	ar->htt.tx_q_state.num_push_allowed = threshold;
2270 
2271 	rcu_read_lock();
2272 
2273 	for (i = 0; i < num_records; i++) {
2274 		record = &resp->tx_mode_switch_ind.records[i];
2275 		info0 = le16_to_cpu(record->info0);
2276 		peer_id = MS(info0, HTT_TX_MODE_SWITCH_RECORD_INFO0_PEER_ID);
2277 		tid = MS(info0, HTT_TX_MODE_SWITCH_RECORD_INFO0_TID);
2278 
2279 		if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) ||
2280 		    unlikely(tid >= ar->htt.tx_q_state.num_tids)) {
2281 			ath10k_warn(ar, "received out of range peer_id %hu tid %hhu\n",
2282 				    peer_id, tid);
2283 			continue;
2284 		}
2285 
2286 		spin_lock_bh(&ar->data_lock);
2287 		txq = ath10k_mac_txq_lookup(ar, peer_id, tid);
2288 		spin_unlock_bh(&ar->data_lock);
2289 
2290 		/* It is okay to release the lock and use txq because RCU read
2291 		 * lock is held.
2292 		 */
2293 
2294 		if (unlikely(!txq)) {
2295 			ath10k_warn(ar, "failed to lookup txq for peer_id %hu tid %hhu\n",
2296 				    peer_id, tid);
2297 			continue;
2298 		}
2299 
2300 		spin_lock_bh(&ar->htt.tx_lock);
2301 		artxq = (void *)txq->drv_priv;
2302 		artxq->num_push_allowed = le16_to_cpu(record->num_max_msdus);
2303 		spin_unlock_bh(&ar->htt.tx_lock);
2304 	}
2305 
2306 	rcu_read_unlock();
2307 
2308 	ath10k_mac_tx_push_pending(ar);
2309 }
2310 
2311 void ath10k_htt_htc_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb)
2312 {
2313 	bool release;
2314 
2315 	release = ath10k_htt_t2h_msg_handler(ar, skb);
2316 
2317 	/* Free the indication buffer */
2318 	if (release)
2319 		dev_kfree_skb_any(skb);
2320 }
2321 
2322 static inline bool is_valid_legacy_rate(u8 rate)
2323 {
2324 	static const u8 legacy_rates[] = {1, 2, 5, 11, 6, 9, 12,
2325 					  18, 24, 36, 48, 54};
2326 	int i;
2327 
2328 	for (i = 0; i < ARRAY_SIZE(legacy_rates); i++) {
2329 		if (rate == legacy_rates[i])
2330 			return true;
2331 	}
2332 
2333 	return false;
2334 }
2335 
2336 static void
2337 ath10k_update_per_peer_tx_stats(struct ath10k *ar,
2338 				struct ieee80211_sta *sta,
2339 				struct ath10k_per_peer_tx_stats *peer_stats)
2340 {
2341 	struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv;
2342 	u8 rate = 0, sgi;
2343 	struct rate_info txrate;
2344 
2345 	lockdep_assert_held(&ar->data_lock);
2346 
2347 	txrate.flags = ATH10K_HW_PREAMBLE(peer_stats->ratecode);
2348 	txrate.bw = ATH10K_HW_BW(peer_stats->flags);
2349 	txrate.nss = ATH10K_HW_NSS(peer_stats->ratecode);
2350 	txrate.mcs = ATH10K_HW_MCS_RATE(peer_stats->ratecode);
2351 	sgi = ATH10K_HW_GI(peer_stats->flags);
2352 
2353 	if (txrate.flags == WMI_RATE_PREAMBLE_VHT && txrate.mcs > 9) {
2354 		ath10k_warn(ar, "Invalid VHT mcs %hhd peer stats",  txrate.mcs);
2355 		return;
2356 	}
2357 
2358 	if (txrate.flags == WMI_RATE_PREAMBLE_HT &&
2359 	    (txrate.mcs > 7 || txrate.nss < 1)) {
2360 		ath10k_warn(ar, "Invalid HT mcs %hhd nss %hhd peer stats",
2361 			    txrate.mcs, txrate.nss);
2362 		return;
2363 	}
2364 
2365 	memset(&arsta->txrate, 0, sizeof(arsta->txrate));
2366 
2367 	if (txrate.flags == WMI_RATE_PREAMBLE_CCK ||
2368 	    txrate.flags == WMI_RATE_PREAMBLE_OFDM) {
2369 		rate = ATH10K_HW_LEGACY_RATE(peer_stats->ratecode);
2370 
2371 		if (!is_valid_legacy_rate(rate)) {
2372 			ath10k_warn(ar, "Invalid legacy rate %hhd peer stats",
2373 				    rate);
2374 			return;
2375 		}
2376 
2377 		/* This is hacky, FW sends CCK rate 5.5Mbps as 6 */
2378 		rate *= 10;
2379 		if (rate == 60 && txrate.flags == WMI_RATE_PREAMBLE_CCK)
2380 			rate = rate - 5;
2381 		arsta->txrate.legacy = rate;
2382 	} else if (txrate.flags == WMI_RATE_PREAMBLE_HT) {
2383 		arsta->txrate.flags = RATE_INFO_FLAGS_MCS;
2384 		arsta->txrate.mcs = txrate.mcs + 8 * (txrate.nss - 1);
2385 	} else {
2386 		arsta->txrate.flags = RATE_INFO_FLAGS_VHT_MCS;
2387 		arsta->txrate.mcs = txrate.mcs;
2388 	}
2389 
2390 	if (sgi)
2391 		arsta->txrate.flags |= RATE_INFO_FLAGS_SHORT_GI;
2392 
2393 	arsta->txrate.nss = txrate.nss;
2394 	arsta->txrate.bw = txrate.bw + RATE_INFO_BW_20;
2395 }
2396 
2397 static void ath10k_htt_fetch_peer_stats(struct ath10k *ar,
2398 					struct sk_buff *skb)
2399 {
2400 	struct htt_resp *resp = (struct htt_resp *)skb->data;
2401 	struct ath10k_per_peer_tx_stats *p_tx_stats = &ar->peer_tx_stats;
2402 	struct htt_per_peer_tx_stats_ind *tx_stats;
2403 	struct ieee80211_sta *sta;
2404 	struct ath10k_peer *peer;
2405 	int peer_id, i;
2406 	u8 ppdu_len, num_ppdu;
2407 
2408 	num_ppdu = resp->peer_tx_stats.num_ppdu;
2409 	ppdu_len = resp->peer_tx_stats.ppdu_len * sizeof(__le32);
2410 
2411 	if (skb->len < sizeof(struct htt_resp_hdr) + num_ppdu * ppdu_len) {
2412 		ath10k_warn(ar, "Invalid peer stats buf length %d\n", skb->len);
2413 		return;
2414 	}
2415 
2416 	tx_stats = (struct htt_per_peer_tx_stats_ind *)
2417 			(resp->peer_tx_stats.payload);
2418 	peer_id = __le16_to_cpu(tx_stats->peer_id);
2419 
2420 	rcu_read_lock();
2421 	spin_lock_bh(&ar->data_lock);
2422 	peer = ath10k_peer_find_by_id(ar, peer_id);
2423 	if (!peer) {
2424 		ath10k_warn(ar, "Invalid peer id %d peer stats buffer\n",
2425 			    peer_id);
2426 		goto out;
2427 	}
2428 
2429 	sta = peer->sta;
2430 	for (i = 0; i < num_ppdu; i++) {
2431 		tx_stats = (struct htt_per_peer_tx_stats_ind *)
2432 			   (resp->peer_tx_stats.payload + i * ppdu_len);
2433 
2434 		p_tx_stats->succ_bytes = __le32_to_cpu(tx_stats->succ_bytes);
2435 		p_tx_stats->retry_bytes = __le32_to_cpu(tx_stats->retry_bytes);
2436 		p_tx_stats->failed_bytes =
2437 				__le32_to_cpu(tx_stats->failed_bytes);
2438 		p_tx_stats->ratecode = tx_stats->ratecode;
2439 		p_tx_stats->flags = tx_stats->flags;
2440 		p_tx_stats->succ_pkts = __le16_to_cpu(tx_stats->succ_pkts);
2441 		p_tx_stats->retry_pkts = __le16_to_cpu(tx_stats->retry_pkts);
2442 		p_tx_stats->failed_pkts = __le16_to_cpu(tx_stats->failed_pkts);
2443 
2444 		ath10k_update_per_peer_tx_stats(ar, sta, p_tx_stats);
2445 	}
2446 
2447 out:
2448 	spin_unlock_bh(&ar->data_lock);
2449 	rcu_read_unlock();
2450 }
2451 
2452 bool ath10k_htt_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb)
2453 {
2454 	struct ath10k_htt *htt = &ar->htt;
2455 	struct htt_resp *resp = (struct htt_resp *)skb->data;
2456 	enum htt_t2h_msg_type type;
2457 
2458 	/* confirm alignment */
2459 	if (!IS_ALIGNED((unsigned long)skb->data, 4))
2460 		ath10k_warn(ar, "unaligned htt message, expect trouble\n");
2461 
2462 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, msg_type: 0x%0X\n",
2463 		   resp->hdr.msg_type);
2464 
2465 	if (resp->hdr.msg_type >= ar->htt.t2h_msg_types_max) {
2466 		ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, unsupported msg_type: 0x%0X\n max: 0x%0X",
2467 			   resp->hdr.msg_type, ar->htt.t2h_msg_types_max);
2468 		return true;
2469 	}
2470 	type = ar->htt.t2h_msg_types[resp->hdr.msg_type];
2471 
2472 	switch (type) {
2473 	case HTT_T2H_MSG_TYPE_VERSION_CONF: {
2474 		htt->target_version_major = resp->ver_resp.major;
2475 		htt->target_version_minor = resp->ver_resp.minor;
2476 		complete(&htt->target_version_received);
2477 		break;
2478 	}
2479 	case HTT_T2H_MSG_TYPE_RX_IND:
2480 		ath10k_htt_rx_proc_rx_ind(htt, &resp->rx_ind);
2481 		break;
2482 	case HTT_T2H_MSG_TYPE_PEER_MAP: {
2483 		struct htt_peer_map_event ev = {
2484 			.vdev_id = resp->peer_map.vdev_id,
2485 			.peer_id = __le16_to_cpu(resp->peer_map.peer_id),
2486 		};
2487 		memcpy(ev.addr, resp->peer_map.addr, sizeof(ev.addr));
2488 		ath10k_peer_map_event(htt, &ev);
2489 		break;
2490 	}
2491 	case HTT_T2H_MSG_TYPE_PEER_UNMAP: {
2492 		struct htt_peer_unmap_event ev = {
2493 			.peer_id = __le16_to_cpu(resp->peer_unmap.peer_id),
2494 		};
2495 		ath10k_peer_unmap_event(htt, &ev);
2496 		break;
2497 	}
2498 	case HTT_T2H_MSG_TYPE_MGMT_TX_COMPLETION: {
2499 		struct htt_tx_done tx_done = {};
2500 		int status = __le32_to_cpu(resp->mgmt_tx_completion.status);
2501 
2502 		tx_done.msdu_id = __le32_to_cpu(resp->mgmt_tx_completion.desc_id);
2503 
2504 		switch (status) {
2505 		case HTT_MGMT_TX_STATUS_OK:
2506 			tx_done.status = HTT_TX_COMPL_STATE_ACK;
2507 			break;
2508 		case HTT_MGMT_TX_STATUS_RETRY:
2509 			tx_done.status = HTT_TX_COMPL_STATE_NOACK;
2510 			break;
2511 		case HTT_MGMT_TX_STATUS_DROP:
2512 			tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
2513 			break;
2514 		}
2515 
2516 		status = ath10k_txrx_tx_unref(htt, &tx_done);
2517 		if (!status) {
2518 			spin_lock_bh(&htt->tx_lock);
2519 			ath10k_htt_tx_mgmt_dec_pending(htt);
2520 			spin_unlock_bh(&htt->tx_lock);
2521 		}
2522 		break;
2523 	}
2524 	case HTT_T2H_MSG_TYPE_TX_COMPL_IND:
2525 		ath10k_htt_rx_tx_compl_ind(htt->ar, skb);
2526 		break;
2527 	case HTT_T2H_MSG_TYPE_SEC_IND: {
2528 		struct ath10k *ar = htt->ar;
2529 		struct htt_security_indication *ev = &resp->security_indication;
2530 
2531 		ath10k_dbg(ar, ATH10K_DBG_HTT,
2532 			   "sec ind peer_id %d unicast %d type %d\n",
2533 			  __le16_to_cpu(ev->peer_id),
2534 			  !!(ev->flags & HTT_SECURITY_IS_UNICAST),
2535 			  MS(ev->flags, HTT_SECURITY_TYPE));
2536 		complete(&ar->install_key_done);
2537 		break;
2538 	}
2539 	case HTT_T2H_MSG_TYPE_RX_FRAG_IND: {
2540 		ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
2541 				skb->data, skb->len);
2542 		atomic_inc(&htt->num_mpdus_ready);
2543 		break;
2544 	}
2545 	case HTT_T2H_MSG_TYPE_TEST:
2546 		break;
2547 	case HTT_T2H_MSG_TYPE_STATS_CONF:
2548 		trace_ath10k_htt_stats(ar, skb->data, skb->len);
2549 		break;
2550 	case HTT_T2H_MSG_TYPE_TX_INSPECT_IND:
2551 		/* Firmware can return tx frames if it's unable to fully
2552 		 * process them and suspects host may be able to fix it. ath10k
2553 		 * sends all tx frames as already inspected so this shouldn't
2554 		 * happen unless fw has a bug.
2555 		 */
2556 		ath10k_warn(ar, "received an unexpected htt tx inspect event\n");
2557 		break;
2558 	case HTT_T2H_MSG_TYPE_RX_ADDBA:
2559 		ath10k_htt_rx_addba(ar, resp);
2560 		break;
2561 	case HTT_T2H_MSG_TYPE_RX_DELBA:
2562 		ath10k_htt_rx_delba(ar, resp);
2563 		break;
2564 	case HTT_T2H_MSG_TYPE_PKTLOG: {
2565 		trace_ath10k_htt_pktlog(ar, resp->pktlog_msg.payload,
2566 					skb->len -
2567 					offsetof(struct htt_resp,
2568 						 pktlog_msg.payload));
2569 		break;
2570 	}
2571 	case HTT_T2H_MSG_TYPE_RX_FLUSH: {
2572 		/* Ignore this event because mac80211 takes care of Rx
2573 		 * aggregation reordering.
2574 		 */
2575 		break;
2576 	}
2577 	case HTT_T2H_MSG_TYPE_RX_IN_ORD_PADDR_IND: {
2578 		__skb_queue_tail(&htt->rx_in_ord_compl_q, skb);
2579 		return false;
2580 	}
2581 	case HTT_T2H_MSG_TYPE_TX_CREDIT_UPDATE_IND:
2582 		break;
2583 	case HTT_T2H_MSG_TYPE_CHAN_CHANGE: {
2584 		u32 phymode = __le32_to_cpu(resp->chan_change.phymode);
2585 		u32 freq = __le32_to_cpu(resp->chan_change.freq);
2586 
2587 		ar->tgt_oper_chan = ieee80211_get_channel(ar->hw->wiphy, freq);
2588 		ath10k_dbg(ar, ATH10K_DBG_HTT,
2589 			   "htt chan change freq %u phymode %s\n",
2590 			   freq, ath10k_wmi_phymode_str(phymode));
2591 		break;
2592 	}
2593 	case HTT_T2H_MSG_TYPE_AGGR_CONF:
2594 		break;
2595 	case HTT_T2H_MSG_TYPE_TX_FETCH_IND: {
2596 		struct sk_buff *tx_fetch_ind = skb_copy(skb, GFP_ATOMIC);
2597 
2598 		if (!tx_fetch_ind) {
2599 			ath10k_warn(ar, "failed to copy htt tx fetch ind\n");
2600 			break;
2601 		}
2602 		skb_queue_tail(&htt->tx_fetch_ind_q, tx_fetch_ind);
2603 		break;
2604 	}
2605 	case HTT_T2H_MSG_TYPE_TX_FETCH_CONFIRM:
2606 		ath10k_htt_rx_tx_fetch_confirm(ar, skb);
2607 		break;
2608 	case HTT_T2H_MSG_TYPE_TX_MODE_SWITCH_IND:
2609 		ath10k_htt_rx_tx_mode_switch_ind(ar, skb);
2610 		break;
2611 	case HTT_T2H_MSG_TYPE_PEER_STATS:
2612 		ath10k_htt_fetch_peer_stats(ar, skb);
2613 		break;
2614 	case HTT_T2H_MSG_TYPE_EN_STATS:
2615 	default:
2616 		ath10k_warn(ar, "htt event (%d) not handled\n",
2617 			    resp->hdr.msg_type);
2618 		ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
2619 				skb->data, skb->len);
2620 		break;
2621 	}
2622 	return true;
2623 }
2624 EXPORT_SYMBOL(ath10k_htt_t2h_msg_handler);
2625 
2626 void ath10k_htt_rx_pktlog_completion_handler(struct ath10k *ar,
2627 					     struct sk_buff *skb)
2628 {
2629 	trace_ath10k_htt_pktlog(ar, skb->data, skb->len);
2630 	dev_kfree_skb_any(skb);
2631 }
2632 EXPORT_SYMBOL(ath10k_htt_rx_pktlog_completion_handler);
2633 
2634 int ath10k_htt_txrx_compl_task(struct ath10k *ar, int budget)
2635 {
2636 	struct ath10k_htt *htt = &ar->htt;
2637 	struct htt_tx_done tx_done = {};
2638 	struct sk_buff_head tx_ind_q;
2639 	struct sk_buff *skb;
2640 	unsigned long flags;
2641 	int quota = 0, done, num_rx_msdus;
2642 	bool resched_napi = false;
2643 
2644 	__skb_queue_head_init(&tx_ind_q);
2645 
2646 	/* Since in-ord-ind can deliver more than 1 A-MSDU in single event,
2647 	 * process it first to utilize full available quota.
2648 	 */
2649 	while (quota < budget) {
2650 		if (skb_queue_empty(&htt->rx_in_ord_compl_q))
2651 			break;
2652 
2653 		skb = __skb_dequeue(&htt->rx_in_ord_compl_q);
2654 		if (!skb) {
2655 			resched_napi = true;
2656 			goto exit;
2657 		}
2658 
2659 		spin_lock_bh(&htt->rx_ring.lock);
2660 		num_rx_msdus = ath10k_htt_rx_in_ord_ind(ar, skb);
2661 		spin_unlock_bh(&htt->rx_ring.lock);
2662 		if (num_rx_msdus < 0) {
2663 			resched_napi = true;
2664 			goto exit;
2665 		}
2666 
2667 		dev_kfree_skb_any(skb);
2668 		if (num_rx_msdus > 0)
2669 			quota += num_rx_msdus;
2670 
2671 		if ((quota > ATH10K_NAPI_QUOTA_LIMIT) &&
2672 		    !skb_queue_empty(&htt->rx_in_ord_compl_q)) {
2673 			resched_napi = true;
2674 			goto exit;
2675 		}
2676 	}
2677 
2678 	while (quota < budget) {
2679 		/* no more data to receive */
2680 		if (!atomic_read(&htt->num_mpdus_ready))
2681 			break;
2682 
2683 		num_rx_msdus = ath10k_htt_rx_handle_amsdu(htt);
2684 		if (num_rx_msdus < 0) {
2685 			resched_napi = true;
2686 			goto exit;
2687 		}
2688 
2689 		quota += num_rx_msdus;
2690 		atomic_dec(&htt->num_mpdus_ready);
2691 		if ((quota > ATH10K_NAPI_QUOTA_LIMIT) &&
2692 		    atomic_read(&htt->num_mpdus_ready)) {
2693 			resched_napi = true;
2694 			goto exit;
2695 		}
2696 	}
2697 
2698 	/* From NAPI documentation:
2699 	 *  The napi poll() function may also process TX completions, in which
2700 	 *  case if it processes the entire TX ring then it should count that
2701 	 *  work as the rest of the budget.
2702 	 */
2703 	if ((quota < budget) && !kfifo_is_empty(&htt->txdone_fifo))
2704 		quota = budget;
2705 
2706 	/* kfifo_get: called only within txrx_tasklet so it's neatly serialized.
2707 	 * From kfifo_get() documentation:
2708 	 *  Note that with only one concurrent reader and one concurrent writer,
2709 	 *  you don't need extra locking to use these macro.
2710 	 */
2711 	while (kfifo_get(&htt->txdone_fifo, &tx_done))
2712 		ath10k_txrx_tx_unref(htt, &tx_done);
2713 
2714 	ath10k_mac_tx_push_pending(ar);
2715 
2716 	spin_lock_irqsave(&htt->tx_fetch_ind_q.lock, flags);
2717 	skb_queue_splice_init(&htt->tx_fetch_ind_q, &tx_ind_q);
2718 	spin_unlock_irqrestore(&htt->tx_fetch_ind_q.lock, flags);
2719 
2720 	while ((skb = __skb_dequeue(&tx_ind_q))) {
2721 		ath10k_htt_rx_tx_fetch_ind(ar, skb);
2722 		dev_kfree_skb_any(skb);
2723 	}
2724 
2725 exit:
2726 	ath10k_htt_rx_msdu_buff_replenish(htt);
2727 	/* In case of rx failure or more data to read, report budget
2728 	 * to reschedule NAPI poll
2729 	 */
2730 	done = resched_napi ? budget : quota;
2731 
2732 	return done;
2733 }
2734 EXPORT_SYMBOL(ath10k_htt_txrx_compl_task);
2735