1 /*
2  * Copyright (c) 2005-2011 Atheros Communications Inc.
3  * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17 
18 #include "core.h"
19 #include "htc.h"
20 #include "htt.h"
21 #include "txrx.h"
22 #include "debug.h"
23 #include "trace.h"
24 
25 #include <linux/log2.h>
26 
27 /* slightly larger than one large A-MPDU */
28 #define HTT_RX_RING_SIZE_MIN 128
29 
30 /* roughly 20 ms @ 1 Gbps of 1500B MSDUs */
31 #define HTT_RX_RING_SIZE_MAX 2048
32 
33 #define HTT_RX_AVG_FRM_BYTES 1000
34 
35 /* ms, very conservative */
36 #define HTT_RX_HOST_LATENCY_MAX_MS 20
37 
38 /* ms, conservative */
39 #define HTT_RX_HOST_LATENCY_WORST_LIKELY_MS 10
40 
41 /* when under memory pressure rx ring refill may fail and needs a retry */
42 #define HTT_RX_RING_REFILL_RETRY_MS 50
43 
44 
45 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb);
46 
47 
48 static int ath10k_htt_rx_ring_size(struct ath10k_htt *htt)
49 {
50 	int size;
51 
52 	/*
53 	 * It is expected that the host CPU will typically be able to
54 	 * service the rx indication from one A-MPDU before the rx
55 	 * indication from the subsequent A-MPDU happens, roughly 1-2 ms
56 	 * later. However, the rx ring should be sized very conservatively,
57 	 * to accomodate the worst reasonable delay before the host CPU
58 	 * services a rx indication interrupt.
59 	 *
60 	 * The rx ring need not be kept full of empty buffers. In theory,
61 	 * the htt host SW can dynamically track the low-water mark in the
62 	 * rx ring, and dynamically adjust the level to which the rx ring
63 	 * is filled with empty buffers, to dynamically meet the desired
64 	 * low-water mark.
65 	 *
66 	 * In contrast, it's difficult to resize the rx ring itself, once
67 	 * it's in use. Thus, the ring itself should be sized very
68 	 * conservatively, while the degree to which the ring is filled
69 	 * with empty buffers should be sized moderately conservatively.
70 	 */
71 
72 	/* 1e6 bps/mbps / 1e3 ms per sec = 1000 */
73 	size =
74 	    htt->max_throughput_mbps +
75 	    1000  /
76 	    (8 * HTT_RX_AVG_FRM_BYTES) * HTT_RX_HOST_LATENCY_MAX_MS;
77 
78 	if (size < HTT_RX_RING_SIZE_MIN)
79 		size = HTT_RX_RING_SIZE_MIN;
80 
81 	if (size > HTT_RX_RING_SIZE_MAX)
82 		size = HTT_RX_RING_SIZE_MAX;
83 
84 	size = roundup_pow_of_two(size);
85 
86 	return size;
87 }
88 
89 static int ath10k_htt_rx_ring_fill_level(struct ath10k_htt *htt)
90 {
91 	int size;
92 
93 	/* 1e6 bps/mbps / 1e3 ms per sec = 1000 */
94 	size =
95 	    htt->max_throughput_mbps *
96 	    1000  /
97 	    (8 * HTT_RX_AVG_FRM_BYTES) * HTT_RX_HOST_LATENCY_WORST_LIKELY_MS;
98 
99 	/*
100 	 * Make sure the fill level is at least 1 less than the ring size.
101 	 * Leaving 1 element empty allows the SW to easily distinguish
102 	 * between a full ring vs. an empty ring.
103 	 */
104 	if (size >= htt->rx_ring.size)
105 		size = htt->rx_ring.size - 1;
106 
107 	return size;
108 }
109 
110 static void ath10k_htt_rx_ring_free(struct ath10k_htt *htt)
111 {
112 	struct sk_buff *skb;
113 	struct ath10k_skb_cb *cb;
114 	int i;
115 
116 	for (i = 0; i < htt->rx_ring.fill_cnt; i++) {
117 		skb = htt->rx_ring.netbufs_ring[i];
118 		cb = ATH10K_SKB_CB(skb);
119 		dma_unmap_single(htt->ar->dev, cb->paddr,
120 				 skb->len + skb_tailroom(skb),
121 				 DMA_FROM_DEVICE);
122 		dev_kfree_skb_any(skb);
123 	}
124 
125 	htt->rx_ring.fill_cnt = 0;
126 }
127 
128 static int __ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
129 {
130 	struct htt_rx_desc *rx_desc;
131 	struct sk_buff *skb;
132 	dma_addr_t paddr;
133 	int ret = 0, idx;
134 
135 	idx = __le32_to_cpu(*(htt->rx_ring.alloc_idx.vaddr));
136 	while (num > 0) {
137 		skb = dev_alloc_skb(HTT_RX_BUF_SIZE + HTT_RX_DESC_ALIGN);
138 		if (!skb) {
139 			ret = -ENOMEM;
140 			goto fail;
141 		}
142 
143 		if (!IS_ALIGNED((unsigned long)skb->data, HTT_RX_DESC_ALIGN))
144 			skb_pull(skb,
145 				 PTR_ALIGN(skb->data, HTT_RX_DESC_ALIGN) -
146 				 skb->data);
147 
148 		/* Clear rx_desc attention word before posting to Rx ring */
149 		rx_desc = (struct htt_rx_desc *)skb->data;
150 		rx_desc->attention.flags = __cpu_to_le32(0);
151 
152 		paddr = dma_map_single(htt->ar->dev, skb->data,
153 				       skb->len + skb_tailroom(skb),
154 				       DMA_FROM_DEVICE);
155 
156 		if (unlikely(dma_mapping_error(htt->ar->dev, paddr))) {
157 			dev_kfree_skb_any(skb);
158 			ret = -ENOMEM;
159 			goto fail;
160 		}
161 
162 		ATH10K_SKB_CB(skb)->paddr = paddr;
163 		htt->rx_ring.netbufs_ring[idx] = skb;
164 		htt->rx_ring.paddrs_ring[idx] = __cpu_to_le32(paddr);
165 		htt->rx_ring.fill_cnt++;
166 
167 		num--;
168 		idx++;
169 		idx &= htt->rx_ring.size_mask;
170 	}
171 
172 fail:
173 	*(htt->rx_ring.alloc_idx.vaddr) = __cpu_to_le32(idx);
174 	return ret;
175 }
176 
177 static int ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
178 {
179 	lockdep_assert_held(&htt->rx_ring.lock);
180 	return __ath10k_htt_rx_ring_fill_n(htt, num);
181 }
182 
183 static void ath10k_htt_rx_msdu_buff_replenish(struct ath10k_htt *htt)
184 {
185 	int ret, num_deficit, num_to_fill;
186 
187 	/* Refilling the whole RX ring buffer proves to be a bad idea. The
188 	 * reason is RX may take up significant amount of CPU cycles and starve
189 	 * other tasks, e.g. TX on an ethernet device while acting as a bridge
190 	 * with ath10k wlan interface. This ended up with very poor performance
191 	 * once CPU the host system was overwhelmed with RX on ath10k.
192 	 *
193 	 * By limiting the number of refills the replenishing occurs
194 	 * progressively. This in turns makes use of the fact tasklets are
195 	 * processed in FIFO order. This means actual RX processing can starve
196 	 * out refilling. If there's not enough buffers on RX ring FW will not
197 	 * report RX until it is refilled with enough buffers. This
198 	 * automatically balances load wrt to CPU power.
199 	 *
200 	 * This probably comes at a cost of lower maximum throughput but
201 	 * improves the avarage and stability. */
202 	spin_lock_bh(&htt->rx_ring.lock);
203 	num_deficit = htt->rx_ring.fill_level - htt->rx_ring.fill_cnt;
204 	num_to_fill = min(ATH10K_HTT_MAX_NUM_REFILL, num_deficit);
205 	num_deficit -= num_to_fill;
206 	ret = ath10k_htt_rx_ring_fill_n(htt, num_to_fill);
207 	if (ret == -ENOMEM) {
208 		/*
209 		 * Failed to fill it to the desired level -
210 		 * we'll start a timer and try again next time.
211 		 * As long as enough buffers are left in the ring for
212 		 * another A-MPDU rx, no special recovery is needed.
213 		 */
214 		mod_timer(&htt->rx_ring.refill_retry_timer, jiffies +
215 			  msecs_to_jiffies(HTT_RX_RING_REFILL_RETRY_MS));
216 	} else if (num_deficit > 0) {
217 		tasklet_schedule(&htt->rx_replenish_task);
218 	}
219 	spin_unlock_bh(&htt->rx_ring.lock);
220 }
221 
222 static void ath10k_htt_rx_ring_refill_retry(unsigned long arg)
223 {
224 	struct ath10k_htt *htt = (struct ath10k_htt *)arg;
225 	ath10k_htt_rx_msdu_buff_replenish(htt);
226 }
227 
228 static unsigned ath10k_htt_rx_ring_elems(struct ath10k_htt *htt)
229 {
230 	return (__le32_to_cpu(*htt->rx_ring.alloc_idx.vaddr) -
231 		htt->rx_ring.sw_rd_idx.msdu_payld) & htt->rx_ring.size_mask;
232 }
233 
234 void ath10k_htt_rx_detach(struct ath10k_htt *htt)
235 {
236 	int sw_rd_idx = htt->rx_ring.sw_rd_idx.msdu_payld;
237 
238 	del_timer_sync(&htt->rx_ring.refill_retry_timer);
239 	tasklet_kill(&htt->rx_replenish_task);
240 
241 	while (sw_rd_idx != __le32_to_cpu(*(htt->rx_ring.alloc_idx.vaddr))) {
242 		struct sk_buff *skb =
243 				htt->rx_ring.netbufs_ring[sw_rd_idx];
244 		struct ath10k_skb_cb *cb = ATH10K_SKB_CB(skb);
245 
246 		dma_unmap_single(htt->ar->dev, cb->paddr,
247 				 skb->len + skb_tailroom(skb),
248 				 DMA_FROM_DEVICE);
249 		dev_kfree_skb_any(htt->rx_ring.netbufs_ring[sw_rd_idx]);
250 		sw_rd_idx++;
251 		sw_rd_idx &= htt->rx_ring.size_mask;
252 	}
253 
254 	dma_free_coherent(htt->ar->dev,
255 			  (htt->rx_ring.size *
256 			   sizeof(htt->rx_ring.paddrs_ring)),
257 			  htt->rx_ring.paddrs_ring,
258 			  htt->rx_ring.base_paddr);
259 
260 	dma_free_coherent(htt->ar->dev,
261 			  sizeof(*htt->rx_ring.alloc_idx.vaddr),
262 			  htt->rx_ring.alloc_idx.vaddr,
263 			  htt->rx_ring.alloc_idx.paddr);
264 
265 	kfree(htt->rx_ring.netbufs_ring);
266 }
267 
268 static inline struct sk_buff *ath10k_htt_rx_netbuf_pop(struct ath10k_htt *htt)
269 {
270 	int idx;
271 	struct sk_buff *msdu;
272 
273 	spin_lock_bh(&htt->rx_ring.lock);
274 
275 	if (ath10k_htt_rx_ring_elems(htt) == 0)
276 		ath10k_warn("htt rx ring is empty!\n");
277 
278 	idx = htt->rx_ring.sw_rd_idx.msdu_payld;
279 	msdu = htt->rx_ring.netbufs_ring[idx];
280 
281 	idx++;
282 	idx &= htt->rx_ring.size_mask;
283 	htt->rx_ring.sw_rd_idx.msdu_payld = idx;
284 	htt->rx_ring.fill_cnt--;
285 
286 	spin_unlock_bh(&htt->rx_ring.lock);
287 	return msdu;
288 }
289 
290 static void ath10k_htt_rx_free_msdu_chain(struct sk_buff *skb)
291 {
292 	struct sk_buff *next;
293 
294 	while (skb) {
295 		next = skb->next;
296 		dev_kfree_skb_any(skb);
297 		skb = next;
298 	}
299 }
300 
301 static int ath10k_htt_rx_amsdu_pop(struct ath10k_htt *htt,
302 				   u8 **fw_desc, int *fw_desc_len,
303 				   struct sk_buff **head_msdu,
304 				   struct sk_buff **tail_msdu)
305 {
306 	int msdu_len, msdu_chaining = 0;
307 	struct sk_buff *msdu;
308 	struct htt_rx_desc *rx_desc;
309 
310 	if (ath10k_htt_rx_ring_elems(htt) == 0)
311 		ath10k_warn("htt rx ring is empty!\n");
312 
313 	if (htt->rx_confused) {
314 		ath10k_warn("htt is confused. refusing rx\n");
315 		return 0;
316 	}
317 
318 	msdu = *head_msdu = ath10k_htt_rx_netbuf_pop(htt);
319 	while (msdu) {
320 		int last_msdu, msdu_len_invalid, msdu_chained;
321 
322 		dma_unmap_single(htt->ar->dev,
323 				 ATH10K_SKB_CB(msdu)->paddr,
324 				 msdu->len + skb_tailroom(msdu),
325 				 DMA_FROM_DEVICE);
326 
327 		ath10k_dbg_dump(ATH10K_DBG_HTT_DUMP, NULL, "htt rx: ",
328 				msdu->data, msdu->len + skb_tailroom(msdu));
329 
330 		rx_desc = (struct htt_rx_desc *)msdu->data;
331 
332 		/* FIXME: we must report msdu payload since this is what caller
333 		 *        expects now */
334 		skb_put(msdu, offsetof(struct htt_rx_desc, msdu_payload));
335 		skb_pull(msdu, offsetof(struct htt_rx_desc, msdu_payload));
336 
337 		/*
338 		 * Sanity check - confirm the HW is finished filling in the
339 		 * rx data.
340 		 * If the HW and SW are working correctly, then it's guaranteed
341 		 * that the HW's MAC DMA is done before this point in the SW.
342 		 * To prevent the case that we handle a stale Rx descriptor,
343 		 * just assert for now until we have a way to recover.
344 		 */
345 		if (!(__le32_to_cpu(rx_desc->attention.flags)
346 				& RX_ATTENTION_FLAGS_MSDU_DONE)) {
347 			ath10k_htt_rx_free_msdu_chain(*head_msdu);
348 			*head_msdu = NULL;
349 			msdu = NULL;
350 			ath10k_err("htt rx stopped. cannot recover\n");
351 			htt->rx_confused = true;
352 			break;
353 		}
354 
355 		/*
356 		 * Copy the FW rx descriptor for this MSDU from the rx
357 		 * indication message into the MSDU's netbuf. HL uses the
358 		 * same rx indication message definition as LL, and simply
359 		 * appends new info (fields from the HW rx desc, and the
360 		 * MSDU payload itself). So, the offset into the rx
361 		 * indication message only has to account for the standard
362 		 * offset of the per-MSDU FW rx desc info within the
363 		 * message, and how many bytes of the per-MSDU FW rx desc
364 		 * info have already been consumed. (And the endianness of
365 		 * the host, since for a big-endian host, the rx ind
366 		 * message contents, including the per-MSDU rx desc bytes,
367 		 * were byteswapped during upload.)
368 		 */
369 		if (*fw_desc_len > 0) {
370 			rx_desc->fw_desc.info0 = **fw_desc;
371 			/*
372 			 * The target is expected to only provide the basic
373 			 * per-MSDU rx descriptors. Just to be sure, verify
374 			 * that the target has not attached extension data
375 			 * (e.g. LRO flow ID).
376 			 */
377 
378 			/* or more, if there's extension data */
379 			(*fw_desc)++;
380 			(*fw_desc_len)--;
381 		} else {
382 			/*
383 			 * When an oversized AMSDU happened, FW will lost
384 			 * some of MSDU status - in this case, the FW
385 			 * descriptors provided will be less than the
386 			 * actual MSDUs inside this MPDU. Mark the FW
387 			 * descriptors so that it will still deliver to
388 			 * upper stack, if no CRC error for this MPDU.
389 			 *
390 			 * FIX THIS - the FW descriptors are actually for
391 			 * MSDUs in the end of this A-MSDU instead of the
392 			 * beginning.
393 			 */
394 			rx_desc->fw_desc.info0 = 0;
395 		}
396 
397 		msdu_len_invalid = !!(__le32_to_cpu(rx_desc->attention.flags)
398 					& (RX_ATTENTION_FLAGS_MPDU_LENGTH_ERR |
399 					   RX_ATTENTION_FLAGS_MSDU_LENGTH_ERR));
400 		msdu_len = MS(__le32_to_cpu(rx_desc->msdu_start.info0),
401 			      RX_MSDU_START_INFO0_MSDU_LENGTH);
402 		msdu_chained = rx_desc->frag_info.ring2_more_count;
403 
404 		if (msdu_len_invalid)
405 			msdu_len = 0;
406 
407 		skb_trim(msdu, 0);
408 		skb_put(msdu, min(msdu_len, HTT_RX_MSDU_SIZE));
409 		msdu_len -= msdu->len;
410 
411 		/* FIXME: Do chained buffers include htt_rx_desc or not? */
412 		while (msdu_chained--) {
413 			struct sk_buff *next = ath10k_htt_rx_netbuf_pop(htt);
414 
415 			dma_unmap_single(htt->ar->dev,
416 					 ATH10K_SKB_CB(next)->paddr,
417 					 next->len + skb_tailroom(next),
418 					 DMA_FROM_DEVICE);
419 
420 			ath10k_dbg_dump(ATH10K_DBG_HTT_DUMP, NULL, "htt rx: ",
421 					next->data,
422 					next->len + skb_tailroom(next));
423 
424 			skb_trim(next, 0);
425 			skb_put(next, min(msdu_len, HTT_RX_BUF_SIZE));
426 			msdu_len -= next->len;
427 
428 			msdu->next = next;
429 			msdu = next;
430 			msdu_chaining = 1;
431 		}
432 
433 		if (msdu_len > 0) {
434 			/* This may suggest FW bug? */
435 			ath10k_warn("htt rx msdu len not consumed (%d)\n",
436 				    msdu_len);
437 		}
438 
439 		last_msdu = __le32_to_cpu(rx_desc->msdu_end.info0) &
440 				RX_MSDU_END_INFO0_LAST_MSDU;
441 
442 		if (last_msdu) {
443 			msdu->next = NULL;
444 			break;
445 		} else {
446 			struct sk_buff *next = ath10k_htt_rx_netbuf_pop(htt);
447 			msdu->next = next;
448 			msdu = next;
449 		}
450 	}
451 	*tail_msdu = msdu;
452 
453 	/*
454 	 * Don't refill the ring yet.
455 	 *
456 	 * First, the elements popped here are still in use - it is not
457 	 * safe to overwrite them until the matching call to
458 	 * mpdu_desc_list_next. Second, for efficiency it is preferable to
459 	 * refill the rx ring with 1 PPDU's worth of rx buffers (something
460 	 * like 32 x 3 buffers), rather than one MPDU's worth of rx buffers
461 	 * (something like 3 buffers). Consequently, we'll rely on the txrx
462 	 * SW to tell us when it is done pulling all the PPDU's rx buffers
463 	 * out of the rx ring, and then refill it just once.
464 	 */
465 
466 	return msdu_chaining;
467 }
468 
469 static void ath10k_htt_rx_replenish_task(unsigned long ptr)
470 {
471 	struct ath10k_htt *htt = (struct ath10k_htt *)ptr;
472 	ath10k_htt_rx_msdu_buff_replenish(htt);
473 }
474 
475 int ath10k_htt_rx_attach(struct ath10k_htt *htt)
476 {
477 	dma_addr_t paddr;
478 	void *vaddr;
479 	struct timer_list *timer = &htt->rx_ring.refill_retry_timer;
480 
481 	htt->rx_ring.size = ath10k_htt_rx_ring_size(htt);
482 	if (!is_power_of_2(htt->rx_ring.size)) {
483 		ath10k_warn("htt rx ring size is not power of 2\n");
484 		return -EINVAL;
485 	}
486 
487 	htt->rx_ring.size_mask = htt->rx_ring.size - 1;
488 
489 	/*
490 	 * Set the initial value for the level to which the rx ring
491 	 * should be filled, based on the max throughput and the
492 	 * worst likely latency for the host to fill the rx ring
493 	 * with new buffers. In theory, this fill level can be
494 	 * dynamically adjusted from the initial value set here, to
495 	 * reflect the actual host latency rather than a
496 	 * conservative assumption about the host latency.
497 	 */
498 	htt->rx_ring.fill_level = ath10k_htt_rx_ring_fill_level(htt);
499 
500 	htt->rx_ring.netbufs_ring =
501 		kmalloc(htt->rx_ring.size * sizeof(struct sk_buff *),
502 			GFP_KERNEL);
503 	if (!htt->rx_ring.netbufs_ring)
504 		goto err_netbuf;
505 
506 	vaddr = dma_alloc_coherent(htt->ar->dev,
507 		   (htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring)),
508 		   &paddr, GFP_DMA);
509 	if (!vaddr)
510 		goto err_dma_ring;
511 
512 	htt->rx_ring.paddrs_ring = vaddr;
513 	htt->rx_ring.base_paddr = paddr;
514 
515 	vaddr = dma_alloc_coherent(htt->ar->dev,
516 				   sizeof(*htt->rx_ring.alloc_idx.vaddr),
517 				   &paddr, GFP_DMA);
518 	if (!vaddr)
519 		goto err_dma_idx;
520 
521 	htt->rx_ring.alloc_idx.vaddr = vaddr;
522 	htt->rx_ring.alloc_idx.paddr = paddr;
523 	htt->rx_ring.sw_rd_idx.msdu_payld = 0;
524 	*htt->rx_ring.alloc_idx.vaddr = 0;
525 
526 	/* Initialize the Rx refill retry timer */
527 	setup_timer(timer, ath10k_htt_rx_ring_refill_retry, (unsigned long)htt);
528 
529 	spin_lock_init(&htt->rx_ring.lock);
530 
531 	htt->rx_ring.fill_cnt = 0;
532 	if (__ath10k_htt_rx_ring_fill_n(htt, htt->rx_ring.fill_level))
533 		goto err_fill_ring;
534 
535 	tasklet_init(&htt->rx_replenish_task, ath10k_htt_rx_replenish_task,
536 		     (unsigned long)htt);
537 
538 	ath10k_dbg(ATH10K_DBG_BOOT, "htt rx ring size %d fill_level %d\n",
539 		   htt->rx_ring.size, htt->rx_ring.fill_level);
540 	return 0;
541 
542 err_fill_ring:
543 	ath10k_htt_rx_ring_free(htt);
544 	dma_free_coherent(htt->ar->dev,
545 			  sizeof(*htt->rx_ring.alloc_idx.vaddr),
546 			  htt->rx_ring.alloc_idx.vaddr,
547 			  htt->rx_ring.alloc_idx.paddr);
548 err_dma_idx:
549 	dma_free_coherent(htt->ar->dev,
550 			  (htt->rx_ring.size *
551 			   sizeof(htt->rx_ring.paddrs_ring)),
552 			  htt->rx_ring.paddrs_ring,
553 			  htt->rx_ring.base_paddr);
554 err_dma_ring:
555 	kfree(htt->rx_ring.netbufs_ring);
556 err_netbuf:
557 	return -ENOMEM;
558 }
559 
560 static int ath10k_htt_rx_crypto_param_len(enum htt_rx_mpdu_encrypt_type type)
561 {
562 	switch (type) {
563 	case HTT_RX_MPDU_ENCRYPT_WEP40:
564 	case HTT_RX_MPDU_ENCRYPT_WEP104:
565 		return 4;
566 	case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
567 	case HTT_RX_MPDU_ENCRYPT_WEP128: /* not tested */
568 	case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
569 	case HTT_RX_MPDU_ENCRYPT_WAPI: /* not tested */
570 	case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
571 		return 8;
572 	case HTT_RX_MPDU_ENCRYPT_NONE:
573 		return 0;
574 	}
575 
576 	ath10k_warn("unknown encryption type %d\n", type);
577 	return 0;
578 }
579 
580 static int ath10k_htt_rx_crypto_tail_len(enum htt_rx_mpdu_encrypt_type type)
581 {
582 	switch (type) {
583 	case HTT_RX_MPDU_ENCRYPT_NONE:
584 	case HTT_RX_MPDU_ENCRYPT_WEP40:
585 	case HTT_RX_MPDU_ENCRYPT_WEP104:
586 	case HTT_RX_MPDU_ENCRYPT_WEP128:
587 	case HTT_RX_MPDU_ENCRYPT_WAPI:
588 		return 0;
589 	case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
590 	case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
591 		return 4;
592 	case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
593 		return 8;
594 	}
595 
596 	ath10k_warn("unknown encryption type %d\n", type);
597 	return 0;
598 }
599 
600 /* Applies for first msdu in chain, before altering it. */
601 static struct ieee80211_hdr *ath10k_htt_rx_skb_get_hdr(struct sk_buff *skb)
602 {
603 	struct htt_rx_desc *rxd;
604 	enum rx_msdu_decap_format fmt;
605 
606 	rxd = (void *)skb->data - sizeof(*rxd);
607 	fmt = MS(__le32_to_cpu(rxd->msdu_start.info1),
608 			RX_MSDU_START_INFO1_DECAP_FORMAT);
609 
610 	if (fmt == RX_MSDU_DECAP_RAW)
611 		return (void *)skb->data;
612 	else
613 		return (void *)skb->data - RX_HTT_HDR_STATUS_LEN;
614 }
615 
616 /* This function only applies for first msdu in an msdu chain */
617 static bool ath10k_htt_rx_hdr_is_amsdu(struct ieee80211_hdr *hdr)
618 {
619 	if (ieee80211_is_data_qos(hdr->frame_control)) {
620 		u8 *qc = ieee80211_get_qos_ctl(hdr);
621 		if (qc[0] & 0x80)
622 			return true;
623 	}
624 	return false;
625 }
626 
627 struct rfc1042_hdr {
628 	u8 llc_dsap;
629 	u8 llc_ssap;
630 	u8 llc_ctrl;
631 	u8 snap_oui[3];
632 	__be16 snap_type;
633 } __packed;
634 
635 struct amsdu_subframe_hdr {
636 	u8 dst[ETH_ALEN];
637 	u8 src[ETH_ALEN];
638 	__be16 len;
639 } __packed;
640 
641 static void ath10k_htt_rx_amsdu(struct ath10k_htt *htt,
642 				struct htt_rx_info *info)
643 {
644 	struct htt_rx_desc *rxd;
645 	struct sk_buff *first;
646 	struct sk_buff *skb = info->skb;
647 	enum rx_msdu_decap_format fmt;
648 	enum htt_rx_mpdu_encrypt_type enctype;
649 	struct ieee80211_hdr *hdr;
650 	u8 hdr_buf[64], addr[ETH_ALEN], *qos;
651 	unsigned int hdr_len;
652 
653 	rxd = (void *)skb->data - sizeof(*rxd);
654 	enctype = MS(__le32_to_cpu(rxd->mpdu_start.info0),
655 			RX_MPDU_START_INFO0_ENCRYPT_TYPE);
656 
657 	hdr = (struct ieee80211_hdr *)rxd->rx_hdr_status;
658 	hdr_len = ieee80211_hdrlen(hdr->frame_control);
659 	memcpy(hdr_buf, hdr, hdr_len);
660 	hdr = (struct ieee80211_hdr *)hdr_buf;
661 
662 	/* FIXME: Hopefully this is a temporary measure.
663 	 *
664 	 * Reporting individual A-MSDU subframes means each reported frame
665 	 * shares the same sequence number.
666 	 *
667 	 * mac80211 drops frames it recognizes as duplicates, i.e.
668 	 * retransmission flag is set and sequence number matches sequence
669 	 * number from a previous frame (as per IEEE 802.11-2012: 9.3.2.10
670 	 * "Duplicate detection and recovery")
671 	 *
672 	 * To avoid frames being dropped clear retransmission flag for all
673 	 * received A-MSDUs.
674 	 *
675 	 * Worst case: actual duplicate frames will be reported but this should
676 	 * still be handled gracefully by other OSI/ISO layers. */
677 	hdr->frame_control &= cpu_to_le16(~IEEE80211_FCTL_RETRY);
678 
679 	first = skb;
680 	while (skb) {
681 		void *decap_hdr;
682 		int len;
683 
684 		rxd = (void *)skb->data - sizeof(*rxd);
685 		fmt = MS(__le32_to_cpu(rxd->msdu_start.info1),
686 			 RX_MSDU_START_INFO1_DECAP_FORMAT);
687 		decap_hdr = (void *)rxd->rx_hdr_status;
688 
689 		skb->ip_summed = ath10k_htt_rx_get_csum_state(skb);
690 
691 		/* First frame in an A-MSDU chain has more decapped data. */
692 		if (skb == first) {
693 			len = round_up(ieee80211_hdrlen(hdr->frame_control), 4);
694 			len += round_up(ath10k_htt_rx_crypto_param_len(enctype),
695 					4);
696 			decap_hdr += len;
697 		}
698 
699 		switch (fmt) {
700 		case RX_MSDU_DECAP_RAW:
701 			/* remove trailing FCS */
702 			skb_trim(skb, skb->len - FCS_LEN);
703 			break;
704 		case RX_MSDU_DECAP_NATIVE_WIFI:
705 			/* pull decapped header and copy DA */
706 			hdr = (struct ieee80211_hdr *)skb->data;
707 			hdr_len = ieee80211_hdrlen(hdr->frame_control);
708 			memcpy(addr, ieee80211_get_DA(hdr), ETH_ALEN);
709 			skb_pull(skb, hdr_len);
710 
711 			/* push original 802.11 header */
712 			hdr = (struct ieee80211_hdr *)hdr_buf;
713 			hdr_len = ieee80211_hdrlen(hdr->frame_control);
714 			memcpy(skb_push(skb, hdr_len), hdr, hdr_len);
715 
716 			/* original A-MSDU header has the bit set but we're
717 			 * not including A-MSDU subframe header */
718 			hdr = (struct ieee80211_hdr *)skb->data;
719 			qos = ieee80211_get_qos_ctl(hdr);
720 			qos[0] &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
721 
722 			/* original 802.11 header has a different DA */
723 			memcpy(ieee80211_get_DA(hdr), addr, ETH_ALEN);
724 			break;
725 		case RX_MSDU_DECAP_ETHERNET2_DIX:
726 			/* strip ethernet header and insert decapped 802.11
727 			 * header, amsdu subframe header and rfc1042 header */
728 
729 			len = 0;
730 			len += sizeof(struct rfc1042_hdr);
731 			len += sizeof(struct amsdu_subframe_hdr);
732 
733 			skb_pull(skb, sizeof(struct ethhdr));
734 			memcpy(skb_push(skb, len), decap_hdr, len);
735 			memcpy(skb_push(skb, hdr_len), hdr, hdr_len);
736 			break;
737 		case RX_MSDU_DECAP_8023_SNAP_LLC:
738 			/* insert decapped 802.11 header making a singly
739 			 * A-MSDU */
740 			memcpy(skb_push(skb, hdr_len), hdr, hdr_len);
741 			break;
742 		}
743 
744 		info->skb = skb;
745 		info->encrypt_type = enctype;
746 		skb = skb->next;
747 		info->skb->next = NULL;
748 
749 		ath10k_process_rx(htt->ar, info);
750 	}
751 
752 	/* FIXME: It might be nice to re-assemble the A-MSDU when there's a
753 	 * monitor interface active for sniffing purposes. */
754 }
755 
756 static void ath10k_htt_rx_msdu(struct ath10k_htt *htt, struct htt_rx_info *info)
757 {
758 	struct sk_buff *skb = info->skb;
759 	struct htt_rx_desc *rxd;
760 	struct ieee80211_hdr *hdr;
761 	enum rx_msdu_decap_format fmt;
762 	enum htt_rx_mpdu_encrypt_type enctype;
763 	int hdr_len;
764 	void *rfc1042;
765 
766 	/* This shouldn't happen. If it does than it may be a FW bug. */
767 	if (skb->next) {
768 		ath10k_warn("received chained non A-MSDU frame\n");
769 		ath10k_htt_rx_free_msdu_chain(skb->next);
770 		skb->next = NULL;
771 	}
772 
773 	rxd = (void *)skb->data - sizeof(*rxd);
774 	fmt = MS(__le32_to_cpu(rxd->msdu_start.info1),
775 			RX_MSDU_START_INFO1_DECAP_FORMAT);
776 	enctype = MS(__le32_to_cpu(rxd->mpdu_start.info0),
777 			RX_MPDU_START_INFO0_ENCRYPT_TYPE);
778 	hdr = (struct ieee80211_hdr *)rxd->rx_hdr_status;
779 	hdr_len = ieee80211_hdrlen(hdr->frame_control);
780 
781 	skb->ip_summed = ath10k_htt_rx_get_csum_state(skb);
782 
783 	switch (fmt) {
784 	case RX_MSDU_DECAP_RAW:
785 		/* remove trailing FCS */
786 		skb_trim(skb, skb->len - FCS_LEN);
787 		break;
788 	case RX_MSDU_DECAP_NATIVE_WIFI:
789 		/* Pull decapped header */
790 		hdr = (struct ieee80211_hdr *)skb->data;
791 		hdr_len = ieee80211_hdrlen(hdr->frame_control);
792 		skb_pull(skb, hdr_len);
793 
794 		/* Push original header */
795 		hdr = (struct ieee80211_hdr *)rxd->rx_hdr_status;
796 		hdr_len = ieee80211_hdrlen(hdr->frame_control);
797 		memcpy(skb_push(skb, hdr_len), hdr, hdr_len);
798 		break;
799 	case RX_MSDU_DECAP_ETHERNET2_DIX:
800 		/* strip ethernet header and insert decapped 802.11 header and
801 		 * rfc1042 header */
802 
803 		rfc1042 = hdr;
804 		rfc1042 += roundup(hdr_len, 4);
805 		rfc1042 += roundup(ath10k_htt_rx_crypto_param_len(enctype), 4);
806 
807 		skb_pull(skb, sizeof(struct ethhdr));
808 		memcpy(skb_push(skb, sizeof(struct rfc1042_hdr)),
809 		       rfc1042, sizeof(struct rfc1042_hdr));
810 		memcpy(skb_push(skb, hdr_len), hdr, hdr_len);
811 		break;
812 	case RX_MSDU_DECAP_8023_SNAP_LLC:
813 		/* remove A-MSDU subframe header and insert
814 		 * decapped 802.11 header. rfc1042 header is already there */
815 
816 		skb_pull(skb, sizeof(struct amsdu_subframe_hdr));
817 		memcpy(skb_push(skb, hdr_len), hdr, hdr_len);
818 		break;
819 	}
820 
821 	info->skb = skb;
822 	info->encrypt_type = enctype;
823 
824 	ath10k_process_rx(htt->ar, info);
825 }
826 
827 static bool ath10k_htt_rx_has_decrypt_err(struct sk_buff *skb)
828 {
829 	struct htt_rx_desc *rxd;
830 	u32 flags;
831 
832 	rxd = (void *)skb->data - sizeof(*rxd);
833 	flags = __le32_to_cpu(rxd->attention.flags);
834 
835 	if (flags & RX_ATTENTION_FLAGS_DECRYPT_ERR)
836 		return true;
837 
838 	return false;
839 }
840 
841 static bool ath10k_htt_rx_has_fcs_err(struct sk_buff *skb)
842 {
843 	struct htt_rx_desc *rxd;
844 	u32 flags;
845 
846 	rxd = (void *)skb->data - sizeof(*rxd);
847 	flags = __le32_to_cpu(rxd->attention.flags);
848 
849 	if (flags & RX_ATTENTION_FLAGS_FCS_ERR)
850 		return true;
851 
852 	return false;
853 }
854 
855 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb)
856 {
857 	struct htt_rx_desc *rxd;
858 	u32 flags, info;
859 	bool is_ip4, is_ip6;
860 	bool is_tcp, is_udp;
861 	bool ip_csum_ok, tcpudp_csum_ok;
862 
863 	rxd = (void *)skb->data - sizeof(*rxd);
864 	flags = __le32_to_cpu(rxd->attention.flags);
865 	info = __le32_to_cpu(rxd->msdu_start.info1);
866 
867 	is_ip4 = !!(info & RX_MSDU_START_INFO1_IPV4_PROTO);
868 	is_ip6 = !!(info & RX_MSDU_START_INFO1_IPV6_PROTO);
869 	is_tcp = !!(info & RX_MSDU_START_INFO1_TCP_PROTO);
870 	is_udp = !!(info & RX_MSDU_START_INFO1_UDP_PROTO);
871 	ip_csum_ok = !(flags & RX_ATTENTION_FLAGS_IP_CHKSUM_FAIL);
872 	tcpudp_csum_ok = !(flags & RX_ATTENTION_FLAGS_TCP_UDP_CHKSUM_FAIL);
873 
874 	if (!is_ip4 && !is_ip6)
875 		return CHECKSUM_NONE;
876 	if (!is_tcp && !is_udp)
877 		return CHECKSUM_NONE;
878 	if (!ip_csum_ok)
879 		return CHECKSUM_NONE;
880 	if (!tcpudp_csum_ok)
881 		return CHECKSUM_NONE;
882 
883 	return CHECKSUM_UNNECESSARY;
884 }
885 
886 static void ath10k_htt_rx_handler(struct ath10k_htt *htt,
887 				  struct htt_rx_indication *rx)
888 {
889 	struct htt_rx_info info;
890 	struct htt_rx_indication_mpdu_range *mpdu_ranges;
891 	struct ieee80211_hdr *hdr;
892 	int num_mpdu_ranges;
893 	int fw_desc_len;
894 	u8 *fw_desc;
895 	int i, j;
896 
897 	memset(&info, 0, sizeof(info));
898 
899 	fw_desc_len = __le16_to_cpu(rx->prefix.fw_rx_desc_bytes);
900 	fw_desc = (u8 *)&rx->fw_desc;
901 
902 	num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1),
903 			     HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES);
904 	mpdu_ranges = htt_rx_ind_get_mpdu_ranges(rx);
905 
906 	ath10k_dbg_dump(ATH10K_DBG_HTT_DUMP, NULL, "htt rx ind: ",
907 			rx, sizeof(*rx) +
908 			(sizeof(struct htt_rx_indication_mpdu_range) *
909 				num_mpdu_ranges));
910 
911 	for (i = 0; i < num_mpdu_ranges; i++) {
912 		info.status = mpdu_ranges[i].mpdu_range_status;
913 
914 		for (j = 0; j < mpdu_ranges[i].mpdu_count; j++) {
915 			struct sk_buff *msdu_head, *msdu_tail;
916 			enum htt_rx_mpdu_status status;
917 			int msdu_chaining;
918 
919 			msdu_head = NULL;
920 			msdu_tail = NULL;
921 			msdu_chaining = ath10k_htt_rx_amsdu_pop(htt,
922 							 &fw_desc,
923 							 &fw_desc_len,
924 							 &msdu_head,
925 							 &msdu_tail);
926 
927 			if (!msdu_head) {
928 				ath10k_warn("htt rx no data!\n");
929 				continue;
930 			}
931 
932 			if (msdu_head->len == 0) {
933 				ath10k_dbg(ATH10K_DBG_HTT,
934 					   "htt rx dropping due to zero-len\n");
935 				ath10k_htt_rx_free_msdu_chain(msdu_head);
936 				continue;
937 			}
938 
939 			if (ath10k_htt_rx_has_decrypt_err(msdu_head)) {
940 				ath10k_htt_rx_free_msdu_chain(msdu_head);
941 				continue;
942 			}
943 
944 			status = info.status;
945 
946 			/* Skip mgmt frames while we handle this in WMI */
947 			if (status == HTT_RX_IND_MPDU_STATUS_MGMT_CTRL) {
948 				ath10k_htt_rx_free_msdu_chain(msdu_head);
949 				continue;
950 			}
951 
952 			if (status != HTT_RX_IND_MPDU_STATUS_OK &&
953 			    status != HTT_RX_IND_MPDU_STATUS_TKIP_MIC_ERR &&
954 			    !htt->ar->monitor_enabled) {
955 				ath10k_dbg(ATH10K_DBG_HTT,
956 					   "htt rx ignoring frame w/ status %d\n",
957 					   status);
958 				ath10k_htt_rx_free_msdu_chain(msdu_head);
959 				continue;
960 			}
961 
962 			/* FIXME: we do not support chaining yet.
963 			 * this needs investigation */
964 			if (msdu_chaining) {
965 				ath10k_warn("msdu_chaining is true\n");
966 				ath10k_htt_rx_free_msdu_chain(msdu_head);
967 				continue;
968 			}
969 
970 			info.skb     = msdu_head;
971 			info.fcs_err = ath10k_htt_rx_has_fcs_err(msdu_head);
972 			info.signal  = ATH10K_DEFAULT_NOISE_FLOOR;
973 			info.signal += rx->ppdu.combined_rssi;
974 
975 			info.rate.info0 = rx->ppdu.info0;
976 			info.rate.info1 = __le32_to_cpu(rx->ppdu.info1);
977 			info.rate.info2 = __le32_to_cpu(rx->ppdu.info2);
978 
979 			hdr = ath10k_htt_rx_skb_get_hdr(msdu_head);
980 
981 			if (ath10k_htt_rx_hdr_is_amsdu(hdr))
982 				ath10k_htt_rx_amsdu(htt, &info);
983 			else
984 				ath10k_htt_rx_msdu(htt, &info);
985 		}
986 	}
987 
988 	tasklet_schedule(&htt->rx_replenish_task);
989 }
990 
991 static void ath10k_htt_rx_frag_handler(struct ath10k_htt *htt,
992 				struct htt_rx_fragment_indication *frag)
993 {
994 	struct sk_buff *msdu_head, *msdu_tail;
995 	struct htt_rx_desc *rxd;
996 	enum rx_msdu_decap_format fmt;
997 	struct htt_rx_info info = {};
998 	struct ieee80211_hdr *hdr;
999 	int msdu_chaining;
1000 	bool tkip_mic_err;
1001 	bool decrypt_err;
1002 	u8 *fw_desc;
1003 	int fw_desc_len, hdrlen, paramlen;
1004 	int trim;
1005 
1006 	fw_desc_len = __le16_to_cpu(frag->fw_rx_desc_bytes);
1007 	fw_desc = (u8 *)frag->fw_msdu_rx_desc;
1008 
1009 	msdu_head = NULL;
1010 	msdu_tail = NULL;
1011 	msdu_chaining = ath10k_htt_rx_amsdu_pop(htt, &fw_desc, &fw_desc_len,
1012 						&msdu_head, &msdu_tail);
1013 
1014 	ath10k_dbg(ATH10K_DBG_HTT_DUMP, "htt rx frag ahead\n");
1015 
1016 	if (!msdu_head) {
1017 		ath10k_warn("htt rx frag no data\n");
1018 		return;
1019 	}
1020 
1021 	if (msdu_chaining || msdu_head != msdu_tail) {
1022 		ath10k_warn("aggregation with fragmentation?!\n");
1023 		ath10k_htt_rx_free_msdu_chain(msdu_head);
1024 		return;
1025 	}
1026 
1027 	/* FIXME: implement signal strength */
1028 
1029 	hdr = (struct ieee80211_hdr *)msdu_head->data;
1030 	rxd = (void *)msdu_head->data - sizeof(*rxd);
1031 	tkip_mic_err = !!(__le32_to_cpu(rxd->attention.flags) &
1032 				RX_ATTENTION_FLAGS_TKIP_MIC_ERR);
1033 	decrypt_err = !!(__le32_to_cpu(rxd->attention.flags) &
1034 				RX_ATTENTION_FLAGS_DECRYPT_ERR);
1035 	fmt = MS(__le32_to_cpu(rxd->msdu_start.info1),
1036 			RX_MSDU_START_INFO1_DECAP_FORMAT);
1037 
1038 	if (fmt != RX_MSDU_DECAP_RAW) {
1039 		ath10k_warn("we dont support non-raw fragmented rx yet\n");
1040 		dev_kfree_skb_any(msdu_head);
1041 		goto end;
1042 	}
1043 
1044 	info.skb = msdu_head;
1045 	info.status = HTT_RX_IND_MPDU_STATUS_OK;
1046 	info.encrypt_type = MS(__le32_to_cpu(rxd->mpdu_start.info0),
1047 				RX_MPDU_START_INFO0_ENCRYPT_TYPE);
1048 	info.skb->ip_summed = ath10k_htt_rx_get_csum_state(info.skb);
1049 
1050 	if (tkip_mic_err) {
1051 		ath10k_warn("tkip mic error\n");
1052 		info.status = HTT_RX_IND_MPDU_STATUS_TKIP_MIC_ERR;
1053 	}
1054 
1055 	if (decrypt_err) {
1056 		ath10k_warn("decryption err in fragmented rx\n");
1057 		dev_kfree_skb_any(info.skb);
1058 		goto end;
1059 	}
1060 
1061 	if (info.encrypt_type != HTT_RX_MPDU_ENCRYPT_NONE) {
1062 		hdrlen = ieee80211_hdrlen(hdr->frame_control);
1063 		paramlen = ath10k_htt_rx_crypto_param_len(info.encrypt_type);
1064 
1065 		/* It is more efficient to move the header than the payload */
1066 		memmove((void *)info.skb->data + paramlen,
1067 			(void *)info.skb->data,
1068 			hdrlen);
1069 		skb_pull(info.skb, paramlen);
1070 		hdr = (struct ieee80211_hdr *)info.skb->data;
1071 	}
1072 
1073 	/* remove trailing FCS */
1074 	trim  = 4;
1075 
1076 	/* remove crypto trailer */
1077 	trim += ath10k_htt_rx_crypto_tail_len(info.encrypt_type);
1078 
1079 	/* last fragment of TKIP frags has MIC */
1080 	if (!ieee80211_has_morefrags(hdr->frame_control) &&
1081 	    info.encrypt_type == HTT_RX_MPDU_ENCRYPT_TKIP_WPA)
1082 		trim += 8;
1083 
1084 	if (trim > info.skb->len) {
1085 		ath10k_warn("htt rx fragment: trailer longer than the frame itself? drop\n");
1086 		dev_kfree_skb_any(info.skb);
1087 		goto end;
1088 	}
1089 
1090 	skb_trim(info.skb, info.skb->len - trim);
1091 
1092 	ath10k_dbg_dump(ATH10K_DBG_HTT_DUMP, NULL, "htt frag mpdu: ",
1093 			info.skb->data, info.skb->len);
1094 	ath10k_process_rx(htt->ar, &info);
1095 
1096 end:
1097 	if (fw_desc_len > 0) {
1098 		ath10k_dbg(ATH10K_DBG_HTT,
1099 			   "expecting more fragmented rx in one indication %d\n",
1100 			   fw_desc_len);
1101 	}
1102 }
1103 
1104 void ath10k_htt_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb)
1105 {
1106 	struct ath10k_htt *htt = &ar->htt;
1107 	struct htt_resp *resp = (struct htt_resp *)skb->data;
1108 
1109 	/* confirm alignment */
1110 	if (!IS_ALIGNED((unsigned long)skb->data, 4))
1111 		ath10k_warn("unaligned htt message, expect trouble\n");
1112 
1113 	ath10k_dbg(ATH10K_DBG_HTT, "HTT RX, msg_type: 0x%0X\n",
1114 		   resp->hdr.msg_type);
1115 	switch (resp->hdr.msg_type) {
1116 	case HTT_T2H_MSG_TYPE_VERSION_CONF: {
1117 		htt->target_version_major = resp->ver_resp.major;
1118 		htt->target_version_minor = resp->ver_resp.minor;
1119 		complete(&htt->target_version_received);
1120 		break;
1121 	}
1122 	case HTT_T2H_MSG_TYPE_RX_IND: {
1123 		ath10k_htt_rx_handler(htt, &resp->rx_ind);
1124 		break;
1125 	}
1126 	case HTT_T2H_MSG_TYPE_PEER_MAP: {
1127 		struct htt_peer_map_event ev = {
1128 			.vdev_id = resp->peer_map.vdev_id,
1129 			.peer_id = __le16_to_cpu(resp->peer_map.peer_id),
1130 		};
1131 		memcpy(ev.addr, resp->peer_map.addr, sizeof(ev.addr));
1132 		ath10k_peer_map_event(htt, &ev);
1133 		break;
1134 	}
1135 	case HTT_T2H_MSG_TYPE_PEER_UNMAP: {
1136 		struct htt_peer_unmap_event ev = {
1137 			.peer_id = __le16_to_cpu(resp->peer_unmap.peer_id),
1138 		};
1139 		ath10k_peer_unmap_event(htt, &ev);
1140 		break;
1141 	}
1142 	case HTT_T2H_MSG_TYPE_MGMT_TX_COMPLETION: {
1143 		struct htt_tx_done tx_done = {};
1144 		int status = __le32_to_cpu(resp->mgmt_tx_completion.status);
1145 
1146 		tx_done.msdu_id =
1147 			__le32_to_cpu(resp->mgmt_tx_completion.desc_id);
1148 
1149 		switch (status) {
1150 		case HTT_MGMT_TX_STATUS_OK:
1151 			break;
1152 		case HTT_MGMT_TX_STATUS_RETRY:
1153 			tx_done.no_ack = true;
1154 			break;
1155 		case HTT_MGMT_TX_STATUS_DROP:
1156 			tx_done.discard = true;
1157 			break;
1158 		}
1159 
1160 		ath10k_txrx_tx_unref(htt, &tx_done);
1161 		break;
1162 	}
1163 	case HTT_T2H_MSG_TYPE_TX_COMPL_IND: {
1164 		struct htt_tx_done tx_done = {};
1165 		int status = MS(resp->data_tx_completion.flags,
1166 				HTT_DATA_TX_STATUS);
1167 		__le16 msdu_id;
1168 		int i;
1169 
1170 		switch (status) {
1171 		case HTT_DATA_TX_STATUS_NO_ACK:
1172 			tx_done.no_ack = true;
1173 			break;
1174 		case HTT_DATA_TX_STATUS_OK:
1175 			break;
1176 		case HTT_DATA_TX_STATUS_DISCARD:
1177 		case HTT_DATA_TX_STATUS_POSTPONE:
1178 		case HTT_DATA_TX_STATUS_DOWNLOAD_FAIL:
1179 			tx_done.discard = true;
1180 			break;
1181 		default:
1182 			ath10k_warn("unhandled tx completion status %d\n",
1183 				    status);
1184 			tx_done.discard = true;
1185 			break;
1186 		}
1187 
1188 		ath10k_dbg(ATH10K_DBG_HTT, "htt tx completion num_msdus %d\n",
1189 			   resp->data_tx_completion.num_msdus);
1190 
1191 		for (i = 0; i < resp->data_tx_completion.num_msdus; i++) {
1192 			msdu_id = resp->data_tx_completion.msdus[i];
1193 			tx_done.msdu_id = __le16_to_cpu(msdu_id);
1194 			ath10k_txrx_tx_unref(htt, &tx_done);
1195 		}
1196 		break;
1197 	}
1198 	case HTT_T2H_MSG_TYPE_SEC_IND: {
1199 		struct ath10k *ar = htt->ar;
1200 		struct htt_security_indication *ev = &resp->security_indication;
1201 
1202 		ath10k_dbg(ATH10K_DBG_HTT,
1203 			   "sec ind peer_id %d unicast %d type %d\n",
1204 			  __le16_to_cpu(ev->peer_id),
1205 			  !!(ev->flags & HTT_SECURITY_IS_UNICAST),
1206 			  MS(ev->flags, HTT_SECURITY_TYPE));
1207 		complete(&ar->install_key_done);
1208 		break;
1209 	}
1210 	case HTT_T2H_MSG_TYPE_RX_FRAG_IND: {
1211 		ath10k_dbg_dump(ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
1212 				skb->data, skb->len);
1213 		ath10k_htt_rx_frag_handler(htt, &resp->rx_frag_ind);
1214 		break;
1215 	}
1216 	case HTT_T2H_MSG_TYPE_TEST:
1217 		/* FIX THIS */
1218 		break;
1219 	case HTT_T2H_MSG_TYPE_STATS_CONF:
1220 		trace_ath10k_htt_stats(skb->data, skb->len);
1221 		break;
1222 	case HTT_T2H_MSG_TYPE_TX_INSPECT_IND:
1223 	case HTT_T2H_MSG_TYPE_RX_ADDBA:
1224 	case HTT_T2H_MSG_TYPE_RX_DELBA:
1225 	case HTT_T2H_MSG_TYPE_RX_FLUSH:
1226 	default:
1227 		ath10k_dbg(ATH10K_DBG_HTT, "htt event (%d) not handled\n",
1228 			   resp->hdr.msg_type);
1229 		ath10k_dbg_dump(ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
1230 				skb->data, skb->len);
1231 		break;
1232 	};
1233 
1234 	/* Free the indication buffer */
1235 	dev_kfree_skb_any(skb);
1236 }
1237