1 /*
2  * Copyright (c) 2005-2011 Atheros Communications Inc.
3  * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17 
18 #include "core.h"
19 #include "htc.h"
20 #include "htt.h"
21 #include "txrx.h"
22 #include "debug.h"
23 #include "trace.h"
24 #include "mac.h"
25 
26 #include <linux/log2.h>
27 
28 /* slightly larger than one large A-MPDU */
29 #define HTT_RX_RING_SIZE_MIN 128
30 
31 /* roughly 20 ms @ 1 Gbps of 1500B MSDUs */
32 #define HTT_RX_RING_SIZE_MAX 2048
33 
34 #define HTT_RX_AVG_FRM_BYTES 1000
35 
36 /* ms, very conservative */
37 #define HTT_RX_HOST_LATENCY_MAX_MS 20
38 
39 /* ms, conservative */
40 #define HTT_RX_HOST_LATENCY_WORST_LIKELY_MS 10
41 
42 /* when under memory pressure rx ring refill may fail and needs a retry */
43 #define HTT_RX_RING_REFILL_RETRY_MS 50
44 
45 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb);
46 static void ath10k_htt_txrx_compl_task(unsigned long ptr);
47 
48 static int ath10k_htt_rx_ring_size(struct ath10k_htt *htt)
49 {
50 	int size;
51 
52 	/*
53 	 * It is expected that the host CPU will typically be able to
54 	 * service the rx indication from one A-MPDU before the rx
55 	 * indication from the subsequent A-MPDU happens, roughly 1-2 ms
56 	 * later. However, the rx ring should be sized very conservatively,
57 	 * to accomodate the worst reasonable delay before the host CPU
58 	 * services a rx indication interrupt.
59 	 *
60 	 * The rx ring need not be kept full of empty buffers. In theory,
61 	 * the htt host SW can dynamically track the low-water mark in the
62 	 * rx ring, and dynamically adjust the level to which the rx ring
63 	 * is filled with empty buffers, to dynamically meet the desired
64 	 * low-water mark.
65 	 *
66 	 * In contrast, it's difficult to resize the rx ring itself, once
67 	 * it's in use. Thus, the ring itself should be sized very
68 	 * conservatively, while the degree to which the ring is filled
69 	 * with empty buffers should be sized moderately conservatively.
70 	 */
71 
72 	/* 1e6 bps/mbps / 1e3 ms per sec = 1000 */
73 	size =
74 	    htt->max_throughput_mbps +
75 	    1000  /
76 	    (8 * HTT_RX_AVG_FRM_BYTES) * HTT_RX_HOST_LATENCY_MAX_MS;
77 
78 	if (size < HTT_RX_RING_SIZE_MIN)
79 		size = HTT_RX_RING_SIZE_MIN;
80 
81 	if (size > HTT_RX_RING_SIZE_MAX)
82 		size = HTT_RX_RING_SIZE_MAX;
83 
84 	size = roundup_pow_of_two(size);
85 
86 	return size;
87 }
88 
89 static int ath10k_htt_rx_ring_fill_level(struct ath10k_htt *htt)
90 {
91 	int size;
92 
93 	/* 1e6 bps/mbps / 1e3 ms per sec = 1000 */
94 	size =
95 	    htt->max_throughput_mbps *
96 	    1000  /
97 	    (8 * HTT_RX_AVG_FRM_BYTES) * HTT_RX_HOST_LATENCY_WORST_LIKELY_MS;
98 
99 	/*
100 	 * Make sure the fill level is at least 1 less than the ring size.
101 	 * Leaving 1 element empty allows the SW to easily distinguish
102 	 * between a full ring vs. an empty ring.
103 	 */
104 	if (size >= htt->rx_ring.size)
105 		size = htt->rx_ring.size - 1;
106 
107 	return size;
108 }
109 
110 static void ath10k_htt_rx_ring_free(struct ath10k_htt *htt)
111 {
112 	struct sk_buff *skb;
113 	struct ath10k_skb_cb *cb;
114 	int i;
115 
116 	for (i = 0; i < htt->rx_ring.fill_cnt; i++) {
117 		skb = htt->rx_ring.netbufs_ring[i];
118 		cb = ATH10K_SKB_CB(skb);
119 		dma_unmap_single(htt->ar->dev, cb->paddr,
120 				 skb->len + skb_tailroom(skb),
121 				 DMA_FROM_DEVICE);
122 		dev_kfree_skb_any(skb);
123 	}
124 
125 	htt->rx_ring.fill_cnt = 0;
126 }
127 
128 static int __ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
129 {
130 	struct htt_rx_desc *rx_desc;
131 	struct sk_buff *skb;
132 	dma_addr_t paddr;
133 	int ret = 0, idx;
134 
135 	idx = __le32_to_cpu(*htt->rx_ring.alloc_idx.vaddr);
136 	while (num > 0) {
137 		skb = dev_alloc_skb(HTT_RX_BUF_SIZE + HTT_RX_DESC_ALIGN);
138 		if (!skb) {
139 			ret = -ENOMEM;
140 			goto fail;
141 		}
142 
143 		if (!IS_ALIGNED((unsigned long)skb->data, HTT_RX_DESC_ALIGN))
144 			skb_pull(skb,
145 				 PTR_ALIGN(skb->data, HTT_RX_DESC_ALIGN) -
146 				 skb->data);
147 
148 		/* Clear rx_desc attention word before posting to Rx ring */
149 		rx_desc = (struct htt_rx_desc *)skb->data;
150 		rx_desc->attention.flags = __cpu_to_le32(0);
151 
152 		paddr = dma_map_single(htt->ar->dev, skb->data,
153 				       skb->len + skb_tailroom(skb),
154 				       DMA_FROM_DEVICE);
155 
156 		if (unlikely(dma_mapping_error(htt->ar->dev, paddr))) {
157 			dev_kfree_skb_any(skb);
158 			ret = -ENOMEM;
159 			goto fail;
160 		}
161 
162 		ATH10K_SKB_CB(skb)->paddr = paddr;
163 		htt->rx_ring.netbufs_ring[idx] = skb;
164 		htt->rx_ring.paddrs_ring[idx] = __cpu_to_le32(paddr);
165 		htt->rx_ring.fill_cnt++;
166 
167 		num--;
168 		idx++;
169 		idx &= htt->rx_ring.size_mask;
170 	}
171 
172 fail:
173 	*htt->rx_ring.alloc_idx.vaddr = __cpu_to_le32(idx);
174 	return ret;
175 }
176 
177 static int ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
178 {
179 	lockdep_assert_held(&htt->rx_ring.lock);
180 	return __ath10k_htt_rx_ring_fill_n(htt, num);
181 }
182 
183 static void ath10k_htt_rx_msdu_buff_replenish(struct ath10k_htt *htt)
184 {
185 	int ret, num_deficit, num_to_fill;
186 
187 	/* Refilling the whole RX ring buffer proves to be a bad idea. The
188 	 * reason is RX may take up significant amount of CPU cycles and starve
189 	 * other tasks, e.g. TX on an ethernet device while acting as a bridge
190 	 * with ath10k wlan interface. This ended up with very poor performance
191 	 * once CPU the host system was overwhelmed with RX on ath10k.
192 	 *
193 	 * By limiting the number of refills the replenishing occurs
194 	 * progressively. This in turns makes use of the fact tasklets are
195 	 * processed in FIFO order. This means actual RX processing can starve
196 	 * out refilling. If there's not enough buffers on RX ring FW will not
197 	 * report RX until it is refilled with enough buffers. This
198 	 * automatically balances load wrt to CPU power.
199 	 *
200 	 * This probably comes at a cost of lower maximum throughput but
201 	 * improves the avarage and stability. */
202 	spin_lock_bh(&htt->rx_ring.lock);
203 	num_deficit = htt->rx_ring.fill_level - htt->rx_ring.fill_cnt;
204 	num_to_fill = min(ATH10K_HTT_MAX_NUM_REFILL, num_deficit);
205 	num_deficit -= num_to_fill;
206 	ret = ath10k_htt_rx_ring_fill_n(htt, num_to_fill);
207 	if (ret == -ENOMEM) {
208 		/*
209 		 * Failed to fill it to the desired level -
210 		 * we'll start a timer and try again next time.
211 		 * As long as enough buffers are left in the ring for
212 		 * another A-MPDU rx, no special recovery is needed.
213 		 */
214 		mod_timer(&htt->rx_ring.refill_retry_timer, jiffies +
215 			  msecs_to_jiffies(HTT_RX_RING_REFILL_RETRY_MS));
216 	} else if (num_deficit > 0) {
217 		tasklet_schedule(&htt->rx_replenish_task);
218 	}
219 	spin_unlock_bh(&htt->rx_ring.lock);
220 }
221 
222 static void ath10k_htt_rx_ring_refill_retry(unsigned long arg)
223 {
224 	struct ath10k_htt *htt = (struct ath10k_htt *)arg;
225 
226 	ath10k_htt_rx_msdu_buff_replenish(htt);
227 }
228 
229 static void ath10k_htt_rx_ring_clean_up(struct ath10k_htt *htt)
230 {
231 	struct sk_buff *skb;
232 	int i;
233 
234 	for (i = 0; i < htt->rx_ring.size; i++) {
235 		skb = htt->rx_ring.netbufs_ring[i];
236 		if (!skb)
237 			continue;
238 
239 		dma_unmap_single(htt->ar->dev, ATH10K_SKB_CB(skb)->paddr,
240 				 skb->len + skb_tailroom(skb),
241 				 DMA_FROM_DEVICE);
242 		dev_kfree_skb_any(skb);
243 		htt->rx_ring.netbufs_ring[i] = NULL;
244 	}
245 }
246 
247 void ath10k_htt_rx_free(struct ath10k_htt *htt)
248 {
249 	del_timer_sync(&htt->rx_ring.refill_retry_timer);
250 	tasklet_kill(&htt->rx_replenish_task);
251 	tasklet_kill(&htt->txrx_compl_task);
252 
253 	skb_queue_purge(&htt->tx_compl_q);
254 	skb_queue_purge(&htt->rx_compl_q);
255 
256 	ath10k_htt_rx_ring_clean_up(htt);
257 
258 	dma_free_coherent(htt->ar->dev,
259 			  (htt->rx_ring.size *
260 			   sizeof(htt->rx_ring.paddrs_ring)),
261 			  htt->rx_ring.paddrs_ring,
262 			  htt->rx_ring.base_paddr);
263 
264 	dma_free_coherent(htt->ar->dev,
265 			  sizeof(*htt->rx_ring.alloc_idx.vaddr),
266 			  htt->rx_ring.alloc_idx.vaddr,
267 			  htt->rx_ring.alloc_idx.paddr);
268 
269 	kfree(htt->rx_ring.netbufs_ring);
270 }
271 
272 static inline struct sk_buff *ath10k_htt_rx_netbuf_pop(struct ath10k_htt *htt)
273 {
274 	struct ath10k *ar = htt->ar;
275 	int idx;
276 	struct sk_buff *msdu;
277 
278 	lockdep_assert_held(&htt->rx_ring.lock);
279 
280 	if (htt->rx_ring.fill_cnt == 0) {
281 		ath10k_warn(ar, "tried to pop sk_buff from an empty rx ring\n");
282 		return NULL;
283 	}
284 
285 	idx = htt->rx_ring.sw_rd_idx.msdu_payld;
286 	msdu = htt->rx_ring.netbufs_ring[idx];
287 	htt->rx_ring.netbufs_ring[idx] = NULL;
288 
289 	idx++;
290 	idx &= htt->rx_ring.size_mask;
291 	htt->rx_ring.sw_rd_idx.msdu_payld = idx;
292 	htt->rx_ring.fill_cnt--;
293 
294 	return msdu;
295 }
296 
297 static void ath10k_htt_rx_free_msdu_chain(struct sk_buff *skb)
298 {
299 	struct sk_buff *next;
300 
301 	while (skb) {
302 		next = skb->next;
303 		dev_kfree_skb_any(skb);
304 		skb = next;
305 	}
306 }
307 
308 /* return: < 0 fatal error, 0 - non chained msdu, 1 chained msdu */
309 static int ath10k_htt_rx_amsdu_pop(struct ath10k_htt *htt,
310 				   u8 **fw_desc, int *fw_desc_len,
311 				   struct sk_buff **head_msdu,
312 				   struct sk_buff **tail_msdu,
313 				   u32 *attention)
314 {
315 	struct ath10k *ar = htt->ar;
316 	int msdu_len, msdu_chaining = 0;
317 	struct sk_buff *msdu, *next;
318 	struct htt_rx_desc *rx_desc;
319 
320 	lockdep_assert_held(&htt->rx_ring.lock);
321 
322 	if (htt->rx_confused) {
323 		ath10k_warn(ar, "htt is confused. refusing rx\n");
324 		return -1;
325 	}
326 
327 	msdu = *head_msdu = ath10k_htt_rx_netbuf_pop(htt);
328 	while (msdu) {
329 		int last_msdu, msdu_len_invalid, msdu_chained;
330 
331 		dma_unmap_single(htt->ar->dev,
332 				 ATH10K_SKB_CB(msdu)->paddr,
333 				 msdu->len + skb_tailroom(msdu),
334 				 DMA_FROM_DEVICE);
335 
336 		ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx pop: ",
337 				msdu->data, msdu->len + skb_tailroom(msdu));
338 
339 		rx_desc = (struct htt_rx_desc *)msdu->data;
340 
341 		/* FIXME: we must report msdu payload since this is what caller
342 		 *        expects now */
343 		skb_put(msdu, offsetof(struct htt_rx_desc, msdu_payload));
344 		skb_pull(msdu, offsetof(struct htt_rx_desc, msdu_payload));
345 
346 		/*
347 		 * Sanity check - confirm the HW is finished filling in the
348 		 * rx data.
349 		 * If the HW and SW are working correctly, then it's guaranteed
350 		 * that the HW's MAC DMA is done before this point in the SW.
351 		 * To prevent the case that we handle a stale Rx descriptor,
352 		 * just assert for now until we have a way to recover.
353 		 */
354 		if (!(__le32_to_cpu(rx_desc->attention.flags)
355 				& RX_ATTENTION_FLAGS_MSDU_DONE)) {
356 			ath10k_htt_rx_free_msdu_chain(*head_msdu);
357 			*head_msdu = NULL;
358 			msdu = NULL;
359 			ath10k_err(ar, "htt rx stopped. cannot recover\n");
360 			htt->rx_confused = true;
361 			break;
362 		}
363 
364 		*attention |= __le32_to_cpu(rx_desc->attention.flags) &
365 					    (RX_ATTENTION_FLAGS_TKIP_MIC_ERR |
366 					     RX_ATTENTION_FLAGS_DECRYPT_ERR |
367 					     RX_ATTENTION_FLAGS_FCS_ERR |
368 					     RX_ATTENTION_FLAGS_MGMT_TYPE);
369 		/*
370 		 * Copy the FW rx descriptor for this MSDU from the rx
371 		 * indication message into the MSDU's netbuf. HL uses the
372 		 * same rx indication message definition as LL, and simply
373 		 * appends new info (fields from the HW rx desc, and the
374 		 * MSDU payload itself). So, the offset into the rx
375 		 * indication message only has to account for the standard
376 		 * offset of the per-MSDU FW rx desc info within the
377 		 * message, and how many bytes of the per-MSDU FW rx desc
378 		 * info have already been consumed. (And the endianness of
379 		 * the host, since for a big-endian host, the rx ind
380 		 * message contents, including the per-MSDU rx desc bytes,
381 		 * were byteswapped during upload.)
382 		 */
383 		if (*fw_desc_len > 0) {
384 			rx_desc->fw_desc.info0 = **fw_desc;
385 			/*
386 			 * The target is expected to only provide the basic
387 			 * per-MSDU rx descriptors. Just to be sure, verify
388 			 * that the target has not attached extension data
389 			 * (e.g. LRO flow ID).
390 			 */
391 
392 			/* or more, if there's extension data */
393 			(*fw_desc)++;
394 			(*fw_desc_len)--;
395 		} else {
396 			/*
397 			 * When an oversized AMSDU happened, FW will lost
398 			 * some of MSDU status - in this case, the FW
399 			 * descriptors provided will be less than the
400 			 * actual MSDUs inside this MPDU. Mark the FW
401 			 * descriptors so that it will still deliver to
402 			 * upper stack, if no CRC error for this MPDU.
403 			 *
404 			 * FIX THIS - the FW descriptors are actually for
405 			 * MSDUs in the end of this A-MSDU instead of the
406 			 * beginning.
407 			 */
408 			rx_desc->fw_desc.info0 = 0;
409 		}
410 
411 		msdu_len_invalid = !!(__le32_to_cpu(rx_desc->attention.flags)
412 					& (RX_ATTENTION_FLAGS_MPDU_LENGTH_ERR |
413 					   RX_ATTENTION_FLAGS_MSDU_LENGTH_ERR));
414 		msdu_len = MS(__le32_to_cpu(rx_desc->msdu_start.info0),
415 			      RX_MSDU_START_INFO0_MSDU_LENGTH);
416 		msdu_chained = rx_desc->frag_info.ring2_more_count;
417 
418 		if (msdu_len_invalid)
419 			msdu_len = 0;
420 
421 		skb_trim(msdu, 0);
422 		skb_put(msdu, min(msdu_len, HTT_RX_MSDU_SIZE));
423 		msdu_len -= msdu->len;
424 
425 		/* FIXME: Do chained buffers include htt_rx_desc or not? */
426 		while (msdu_chained--) {
427 			struct sk_buff *next = ath10k_htt_rx_netbuf_pop(htt);
428 
429 			dma_unmap_single(htt->ar->dev,
430 					 ATH10K_SKB_CB(next)->paddr,
431 					 next->len + skb_tailroom(next),
432 					 DMA_FROM_DEVICE);
433 
434 			ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL,
435 					"htt rx chained: ", next->data,
436 					next->len + skb_tailroom(next));
437 
438 			skb_trim(next, 0);
439 			skb_put(next, min(msdu_len, HTT_RX_BUF_SIZE));
440 			msdu_len -= next->len;
441 
442 			msdu->next = next;
443 			msdu = next;
444 			msdu_chaining = 1;
445 		}
446 
447 		last_msdu = __le32_to_cpu(rx_desc->msdu_end.info0) &
448 				RX_MSDU_END_INFO0_LAST_MSDU;
449 
450 		if (last_msdu) {
451 			msdu->next = NULL;
452 			break;
453 		}
454 
455 		next = ath10k_htt_rx_netbuf_pop(htt);
456 		msdu->next = next;
457 		msdu = next;
458 	}
459 	*tail_msdu = msdu;
460 
461 	if (*head_msdu == NULL)
462 		msdu_chaining = -1;
463 
464 	/*
465 	 * Don't refill the ring yet.
466 	 *
467 	 * First, the elements popped here are still in use - it is not
468 	 * safe to overwrite them until the matching call to
469 	 * mpdu_desc_list_next. Second, for efficiency it is preferable to
470 	 * refill the rx ring with 1 PPDU's worth of rx buffers (something
471 	 * like 32 x 3 buffers), rather than one MPDU's worth of rx buffers
472 	 * (something like 3 buffers). Consequently, we'll rely on the txrx
473 	 * SW to tell us when it is done pulling all the PPDU's rx buffers
474 	 * out of the rx ring, and then refill it just once.
475 	 */
476 
477 	return msdu_chaining;
478 }
479 
480 static void ath10k_htt_rx_replenish_task(unsigned long ptr)
481 {
482 	struct ath10k_htt *htt = (struct ath10k_htt *)ptr;
483 
484 	ath10k_htt_rx_msdu_buff_replenish(htt);
485 }
486 
487 int ath10k_htt_rx_alloc(struct ath10k_htt *htt)
488 {
489 	struct ath10k *ar = htt->ar;
490 	dma_addr_t paddr;
491 	void *vaddr;
492 	size_t size;
493 	struct timer_list *timer = &htt->rx_ring.refill_retry_timer;
494 
495 	htt->rx_ring.size = ath10k_htt_rx_ring_size(htt);
496 	if (!is_power_of_2(htt->rx_ring.size)) {
497 		ath10k_warn(ar, "htt rx ring size is not power of 2\n");
498 		return -EINVAL;
499 	}
500 
501 	htt->rx_ring.size_mask = htt->rx_ring.size - 1;
502 
503 	/*
504 	 * Set the initial value for the level to which the rx ring
505 	 * should be filled, based on the max throughput and the
506 	 * worst likely latency for the host to fill the rx ring
507 	 * with new buffers. In theory, this fill level can be
508 	 * dynamically adjusted from the initial value set here, to
509 	 * reflect the actual host latency rather than a
510 	 * conservative assumption about the host latency.
511 	 */
512 	htt->rx_ring.fill_level = ath10k_htt_rx_ring_fill_level(htt);
513 
514 	htt->rx_ring.netbufs_ring =
515 		kzalloc(htt->rx_ring.size * sizeof(struct sk_buff *),
516 			GFP_KERNEL);
517 	if (!htt->rx_ring.netbufs_ring)
518 		goto err_netbuf;
519 
520 	size = htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring);
521 
522 	vaddr = dma_alloc_coherent(htt->ar->dev, size, &paddr, GFP_DMA);
523 	if (!vaddr)
524 		goto err_dma_ring;
525 
526 	htt->rx_ring.paddrs_ring = vaddr;
527 	htt->rx_ring.base_paddr = paddr;
528 
529 	vaddr = dma_alloc_coherent(htt->ar->dev,
530 				   sizeof(*htt->rx_ring.alloc_idx.vaddr),
531 				   &paddr, GFP_DMA);
532 	if (!vaddr)
533 		goto err_dma_idx;
534 
535 	htt->rx_ring.alloc_idx.vaddr = vaddr;
536 	htt->rx_ring.alloc_idx.paddr = paddr;
537 	htt->rx_ring.sw_rd_idx.msdu_payld = 0;
538 	*htt->rx_ring.alloc_idx.vaddr = 0;
539 
540 	/* Initialize the Rx refill retry timer */
541 	setup_timer(timer, ath10k_htt_rx_ring_refill_retry, (unsigned long)htt);
542 
543 	spin_lock_init(&htt->rx_ring.lock);
544 
545 	htt->rx_ring.fill_cnt = 0;
546 	if (__ath10k_htt_rx_ring_fill_n(htt, htt->rx_ring.fill_level))
547 		goto err_fill_ring;
548 
549 	tasklet_init(&htt->rx_replenish_task, ath10k_htt_rx_replenish_task,
550 		     (unsigned long)htt);
551 
552 	skb_queue_head_init(&htt->tx_compl_q);
553 	skb_queue_head_init(&htt->rx_compl_q);
554 
555 	tasklet_init(&htt->txrx_compl_task, ath10k_htt_txrx_compl_task,
556 		     (unsigned long)htt);
557 
558 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "htt rx ring size %d fill_level %d\n",
559 		   htt->rx_ring.size, htt->rx_ring.fill_level);
560 	return 0;
561 
562 err_fill_ring:
563 	ath10k_htt_rx_ring_free(htt);
564 	dma_free_coherent(htt->ar->dev,
565 			  sizeof(*htt->rx_ring.alloc_idx.vaddr),
566 			  htt->rx_ring.alloc_idx.vaddr,
567 			  htt->rx_ring.alloc_idx.paddr);
568 err_dma_idx:
569 	dma_free_coherent(htt->ar->dev,
570 			  (htt->rx_ring.size *
571 			   sizeof(htt->rx_ring.paddrs_ring)),
572 			  htt->rx_ring.paddrs_ring,
573 			  htt->rx_ring.base_paddr);
574 err_dma_ring:
575 	kfree(htt->rx_ring.netbufs_ring);
576 err_netbuf:
577 	return -ENOMEM;
578 }
579 
580 static int ath10k_htt_rx_crypto_param_len(struct ath10k *ar,
581 					  enum htt_rx_mpdu_encrypt_type type)
582 {
583 	switch (type) {
584 	case HTT_RX_MPDU_ENCRYPT_WEP40:
585 	case HTT_RX_MPDU_ENCRYPT_WEP104:
586 		return 4;
587 	case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
588 	case HTT_RX_MPDU_ENCRYPT_WEP128: /* not tested */
589 	case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
590 	case HTT_RX_MPDU_ENCRYPT_WAPI: /* not tested */
591 	case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
592 		return 8;
593 	case HTT_RX_MPDU_ENCRYPT_NONE:
594 		return 0;
595 	}
596 
597 	ath10k_warn(ar, "unknown encryption type %d\n", type);
598 	return 0;
599 }
600 
601 static int ath10k_htt_rx_crypto_tail_len(struct ath10k *ar,
602 					 enum htt_rx_mpdu_encrypt_type type)
603 {
604 	switch (type) {
605 	case HTT_RX_MPDU_ENCRYPT_NONE:
606 	case HTT_RX_MPDU_ENCRYPT_WEP40:
607 	case HTT_RX_MPDU_ENCRYPT_WEP104:
608 	case HTT_RX_MPDU_ENCRYPT_WEP128:
609 	case HTT_RX_MPDU_ENCRYPT_WAPI:
610 		return 0;
611 	case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
612 	case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
613 		return 4;
614 	case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
615 		return 8;
616 	}
617 
618 	ath10k_warn(ar, "unknown encryption type %d\n", type);
619 	return 0;
620 }
621 
622 /* Applies for first msdu in chain, before altering it. */
623 static struct ieee80211_hdr *ath10k_htt_rx_skb_get_hdr(struct sk_buff *skb)
624 {
625 	struct htt_rx_desc *rxd;
626 	enum rx_msdu_decap_format fmt;
627 
628 	rxd = (void *)skb->data - sizeof(*rxd);
629 	fmt = MS(__le32_to_cpu(rxd->msdu_start.info1),
630 		 RX_MSDU_START_INFO1_DECAP_FORMAT);
631 
632 	if (fmt == RX_MSDU_DECAP_RAW)
633 		return (void *)skb->data;
634 
635 	return (void *)skb->data - RX_HTT_HDR_STATUS_LEN;
636 }
637 
638 /* This function only applies for first msdu in an msdu chain */
639 static bool ath10k_htt_rx_hdr_is_amsdu(struct ieee80211_hdr *hdr)
640 {
641 	u8 *qc;
642 
643 	if (ieee80211_is_data_qos(hdr->frame_control)) {
644 		qc = ieee80211_get_qos_ctl(hdr);
645 		if (qc[0] & 0x80)
646 			return true;
647 	}
648 	return false;
649 }
650 
651 struct rfc1042_hdr {
652 	u8 llc_dsap;
653 	u8 llc_ssap;
654 	u8 llc_ctrl;
655 	u8 snap_oui[3];
656 	__be16 snap_type;
657 } __packed;
658 
659 struct amsdu_subframe_hdr {
660 	u8 dst[ETH_ALEN];
661 	u8 src[ETH_ALEN];
662 	__be16 len;
663 } __packed;
664 
665 static const u8 rx_legacy_rate_idx[] = {
666 	3,	/* 0x00  - 11Mbps  */
667 	2,	/* 0x01  - 5.5Mbps */
668 	1,	/* 0x02  - 2Mbps   */
669 	0,	/* 0x03  - 1Mbps   */
670 	3,	/* 0x04  - 11Mbps  */
671 	2,	/* 0x05  - 5.5Mbps */
672 	1,	/* 0x06  - 2Mbps   */
673 	0,	/* 0x07  - 1Mbps   */
674 	10,	/* 0x08  - 48Mbps  */
675 	8,	/* 0x09  - 24Mbps  */
676 	6,	/* 0x0A  - 12Mbps  */
677 	4,	/* 0x0B  - 6Mbps   */
678 	11,	/* 0x0C  - 54Mbps  */
679 	9,	/* 0x0D  - 36Mbps  */
680 	7,	/* 0x0E  - 18Mbps  */
681 	5,	/* 0x0F  - 9Mbps   */
682 };
683 
684 static void ath10k_htt_rx_h_rates(struct ath10k *ar,
685 				  enum ieee80211_band band,
686 				  u8 info0, u32 info1, u32 info2,
687 				  struct ieee80211_rx_status *status)
688 {
689 	u8 cck, rate, rate_idx, bw, sgi, mcs, nss;
690 	u8 preamble = 0;
691 
692 	/* Check if valid fields */
693 	if (!(info0 & HTT_RX_INDICATION_INFO0_START_VALID))
694 		return;
695 
696 	preamble = MS(info1, HTT_RX_INDICATION_INFO1_PREAMBLE_TYPE);
697 
698 	switch (preamble) {
699 	case HTT_RX_LEGACY:
700 		cck = info0 & HTT_RX_INDICATION_INFO0_LEGACY_RATE_CCK;
701 		rate = MS(info0, HTT_RX_INDICATION_INFO0_LEGACY_RATE);
702 		rate_idx = 0;
703 
704 		if (rate < 0x08 || rate > 0x0F)
705 			break;
706 
707 		switch (band) {
708 		case IEEE80211_BAND_2GHZ:
709 			if (cck)
710 				rate &= ~BIT(3);
711 			rate_idx = rx_legacy_rate_idx[rate];
712 			break;
713 		case IEEE80211_BAND_5GHZ:
714 			rate_idx = rx_legacy_rate_idx[rate];
715 			/* We are using same rate table registering
716 			   HW - ath10k_rates[]. In case of 5GHz skip
717 			   CCK rates, so -4 here */
718 			rate_idx -= 4;
719 			break;
720 		default:
721 			break;
722 		}
723 
724 		status->rate_idx = rate_idx;
725 		break;
726 	case HTT_RX_HT:
727 	case HTT_RX_HT_WITH_TXBF:
728 		/* HT-SIG - Table 20-11 in info1 and info2 */
729 		mcs = info1 & 0x1F;
730 		nss = mcs >> 3;
731 		bw = (info1 >> 7) & 1;
732 		sgi = (info2 >> 7) & 1;
733 
734 		status->rate_idx = mcs;
735 		status->flag |= RX_FLAG_HT;
736 		if (sgi)
737 			status->flag |= RX_FLAG_SHORT_GI;
738 		if (bw)
739 			status->flag |= RX_FLAG_40MHZ;
740 		break;
741 	case HTT_RX_VHT:
742 	case HTT_RX_VHT_WITH_TXBF:
743 		/* VHT-SIG-A1 in info 1, VHT-SIG-A2 in info2
744 		   TODO check this */
745 		mcs = (info2 >> 4) & 0x0F;
746 		nss = ((info1 >> 10) & 0x07) + 1;
747 		bw = info1 & 3;
748 		sgi = info2 & 1;
749 
750 		status->rate_idx = mcs;
751 		status->vht_nss = nss;
752 
753 		if (sgi)
754 			status->flag |= RX_FLAG_SHORT_GI;
755 
756 		switch (bw) {
757 		/* 20MHZ */
758 		case 0:
759 			break;
760 		/* 40MHZ */
761 		case 1:
762 			status->flag |= RX_FLAG_40MHZ;
763 			break;
764 		/* 80MHZ */
765 		case 2:
766 			status->vht_flag |= RX_VHT_FLAG_80MHZ;
767 		}
768 
769 		status->flag |= RX_FLAG_VHT;
770 		break;
771 	default:
772 		break;
773 	}
774 }
775 
776 static void ath10k_htt_rx_h_protected(struct ath10k_htt *htt,
777 				      struct ieee80211_rx_status *rx_status,
778 				      struct sk_buff *skb,
779 				      enum htt_rx_mpdu_encrypt_type enctype,
780 				      enum rx_msdu_decap_format fmt,
781 				      bool dot11frag)
782 {
783 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
784 
785 	rx_status->flag &= ~(RX_FLAG_DECRYPTED |
786 			     RX_FLAG_IV_STRIPPED |
787 			     RX_FLAG_MMIC_STRIPPED);
788 
789 	if (enctype == HTT_RX_MPDU_ENCRYPT_NONE)
790 		return;
791 
792 	/*
793 	 * There's no explicit rx descriptor flag to indicate whether a given
794 	 * frame has been decrypted or not. We're forced to use the decap
795 	 * format as an implicit indication. However fragmentation rx is always
796 	 * raw and it probably never reports undecrypted raws.
797 	 *
798 	 * This makes sure sniffed frames are reported as-is without stripping
799 	 * the protected flag.
800 	 */
801 	if (fmt == RX_MSDU_DECAP_RAW && !dot11frag)
802 		return;
803 
804 	rx_status->flag |= RX_FLAG_DECRYPTED |
805 			   RX_FLAG_IV_STRIPPED |
806 			   RX_FLAG_MMIC_STRIPPED;
807 	hdr->frame_control = __cpu_to_le16(__le16_to_cpu(hdr->frame_control) &
808 					   ~IEEE80211_FCTL_PROTECTED);
809 }
810 
811 static bool ath10k_htt_rx_h_channel(struct ath10k *ar,
812 				    struct ieee80211_rx_status *status)
813 {
814 	struct ieee80211_channel *ch;
815 
816 	spin_lock_bh(&ar->data_lock);
817 	ch = ar->scan_channel;
818 	if (!ch)
819 		ch = ar->rx_channel;
820 	spin_unlock_bh(&ar->data_lock);
821 
822 	if (!ch)
823 		return false;
824 
825 	status->band = ch->band;
826 	status->freq = ch->center_freq;
827 
828 	return true;
829 }
830 
831 static const char * const tid_to_ac[] = {
832 	"BE",
833 	"BK",
834 	"BK",
835 	"BE",
836 	"VI",
837 	"VI",
838 	"VO",
839 	"VO",
840 };
841 
842 static char *ath10k_get_tid(struct ieee80211_hdr *hdr, char *out, size_t size)
843 {
844 	u8 *qc;
845 	int tid;
846 
847 	if (!ieee80211_is_data_qos(hdr->frame_control))
848 		return "";
849 
850 	qc = ieee80211_get_qos_ctl(hdr);
851 	tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
852 	if (tid < 8)
853 		snprintf(out, size, "tid %d (%s)", tid, tid_to_ac[tid]);
854 	else
855 		snprintf(out, size, "tid %d", tid);
856 
857 	return out;
858 }
859 
860 static void ath10k_process_rx(struct ath10k *ar,
861 			      struct ieee80211_rx_status *rx_status,
862 			      struct sk_buff *skb)
863 {
864 	struct ieee80211_rx_status *status;
865 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
866 	char tid[32];
867 
868 	status = IEEE80211_SKB_RXCB(skb);
869 	*status = *rx_status;
870 
871 	ath10k_dbg(ar, ATH10K_DBG_DATA,
872 		   "rx skb %p len %u peer %pM %s %s sn %u %s%s%s%s%s %srate_idx %u vht_nss %u freq %u band %u flag 0x%x fcs-err %i mic-err %i amsdu-more %i\n",
873 		   skb,
874 		   skb->len,
875 		   ieee80211_get_SA(hdr),
876 		   ath10k_get_tid(hdr, tid, sizeof(tid)),
877 		   is_multicast_ether_addr(ieee80211_get_DA(hdr)) ?
878 							"mcast" : "ucast",
879 		   (__le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_SEQ) >> 4,
880 		   status->flag == 0 ? "legacy" : "",
881 		   status->flag & RX_FLAG_HT ? "ht" : "",
882 		   status->flag & RX_FLAG_VHT ? "vht" : "",
883 		   status->flag & RX_FLAG_40MHZ ? "40" : "",
884 		   status->vht_flag & RX_VHT_FLAG_80MHZ ? "80" : "",
885 		   status->flag & RX_FLAG_SHORT_GI ? "sgi " : "",
886 		   status->rate_idx,
887 		   status->vht_nss,
888 		   status->freq,
889 		   status->band, status->flag,
890 		   !!(status->flag & RX_FLAG_FAILED_FCS_CRC),
891 		   !!(status->flag & RX_FLAG_MMIC_ERROR),
892 		   !!(status->flag & RX_FLAG_AMSDU_MORE));
893 	ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "rx skb: ",
894 			skb->data, skb->len);
895 
896 	ieee80211_rx(ar->hw, skb);
897 }
898 
899 static int ath10k_htt_rx_nwifi_hdrlen(struct ieee80211_hdr *hdr)
900 {
901 	/* nwifi header is padded to 4 bytes. this fixes 4addr rx */
902 	return round_up(ieee80211_hdrlen(hdr->frame_control), 4);
903 }
904 
905 static void ath10k_htt_rx_amsdu(struct ath10k_htt *htt,
906 				struct ieee80211_rx_status *rx_status,
907 				struct sk_buff *skb_in)
908 {
909 	struct ath10k *ar = htt->ar;
910 	struct htt_rx_desc *rxd;
911 	struct sk_buff *skb = skb_in;
912 	struct sk_buff *first;
913 	enum rx_msdu_decap_format fmt;
914 	enum htt_rx_mpdu_encrypt_type enctype;
915 	struct ieee80211_hdr *hdr;
916 	u8 hdr_buf[64], da[ETH_ALEN], sa[ETH_ALEN], *qos;
917 	unsigned int hdr_len;
918 
919 	rxd = (void *)skb->data - sizeof(*rxd);
920 	enctype = MS(__le32_to_cpu(rxd->mpdu_start.info0),
921 		     RX_MPDU_START_INFO0_ENCRYPT_TYPE);
922 
923 	hdr = (struct ieee80211_hdr *)rxd->rx_hdr_status;
924 	hdr_len = ieee80211_hdrlen(hdr->frame_control);
925 	memcpy(hdr_buf, hdr, hdr_len);
926 	hdr = (struct ieee80211_hdr *)hdr_buf;
927 
928 	first = skb;
929 	while (skb) {
930 		void *decap_hdr;
931 		int len;
932 
933 		rxd = (void *)skb->data - sizeof(*rxd);
934 		fmt = MS(__le32_to_cpu(rxd->msdu_start.info1),
935 			 RX_MSDU_START_INFO1_DECAP_FORMAT);
936 		decap_hdr = (void *)rxd->rx_hdr_status;
937 
938 		skb->ip_summed = ath10k_htt_rx_get_csum_state(skb);
939 
940 		/* First frame in an A-MSDU chain has more decapped data. */
941 		if (skb == first) {
942 			len = round_up(ieee80211_hdrlen(hdr->frame_control), 4);
943 			len += round_up(ath10k_htt_rx_crypto_param_len(ar,
944 						enctype), 4);
945 			decap_hdr += len;
946 		}
947 
948 		switch (fmt) {
949 		case RX_MSDU_DECAP_RAW:
950 			/* remove trailing FCS */
951 			skb_trim(skb, skb->len - FCS_LEN);
952 			break;
953 		case RX_MSDU_DECAP_NATIVE_WIFI:
954 			/* pull decapped header and copy SA & DA */
955 			hdr = (struct ieee80211_hdr *)skb->data;
956 			hdr_len = ath10k_htt_rx_nwifi_hdrlen(hdr);
957 			ether_addr_copy(da, ieee80211_get_DA(hdr));
958 			ether_addr_copy(sa, ieee80211_get_SA(hdr));
959 			skb_pull(skb, hdr_len);
960 
961 			/* push original 802.11 header */
962 			hdr = (struct ieee80211_hdr *)hdr_buf;
963 			hdr_len = ieee80211_hdrlen(hdr->frame_control);
964 			memcpy(skb_push(skb, hdr_len), hdr, hdr_len);
965 
966 			/* original A-MSDU header has the bit set but we're
967 			 * not including A-MSDU subframe header */
968 			hdr = (struct ieee80211_hdr *)skb->data;
969 			qos = ieee80211_get_qos_ctl(hdr);
970 			qos[0] &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
971 
972 			/* original 802.11 header has a different DA and in
973 			 * case of 4addr it may also have different SA
974 			 */
975 			ether_addr_copy(ieee80211_get_DA(hdr), da);
976 			ether_addr_copy(ieee80211_get_SA(hdr), sa);
977 			break;
978 		case RX_MSDU_DECAP_ETHERNET2_DIX:
979 			/* strip ethernet header and insert decapped 802.11
980 			 * header, amsdu subframe header and rfc1042 header */
981 
982 			len = 0;
983 			len += sizeof(struct rfc1042_hdr);
984 			len += sizeof(struct amsdu_subframe_hdr);
985 
986 			skb_pull(skb, sizeof(struct ethhdr));
987 			memcpy(skb_push(skb, len), decap_hdr, len);
988 			memcpy(skb_push(skb, hdr_len), hdr, hdr_len);
989 			break;
990 		case RX_MSDU_DECAP_8023_SNAP_LLC:
991 			/* insert decapped 802.11 header making a singly
992 			 * A-MSDU */
993 			memcpy(skb_push(skb, hdr_len), hdr, hdr_len);
994 			break;
995 		}
996 
997 		skb_in = skb;
998 		ath10k_htt_rx_h_protected(htt, rx_status, skb_in, enctype, fmt,
999 					  false);
1000 		skb = skb->next;
1001 		skb_in->next = NULL;
1002 
1003 		if (skb)
1004 			rx_status->flag |= RX_FLAG_AMSDU_MORE;
1005 		else
1006 			rx_status->flag &= ~RX_FLAG_AMSDU_MORE;
1007 
1008 		ath10k_process_rx(htt->ar, rx_status, skb_in);
1009 	}
1010 
1011 	/* FIXME: It might be nice to re-assemble the A-MSDU when there's a
1012 	 * monitor interface active for sniffing purposes. */
1013 }
1014 
1015 static void ath10k_htt_rx_msdu(struct ath10k_htt *htt,
1016 			       struct ieee80211_rx_status *rx_status,
1017 			       struct sk_buff *skb)
1018 {
1019 	struct ath10k *ar = htt->ar;
1020 	struct htt_rx_desc *rxd;
1021 	struct ieee80211_hdr *hdr;
1022 	enum rx_msdu_decap_format fmt;
1023 	enum htt_rx_mpdu_encrypt_type enctype;
1024 	int hdr_len;
1025 	void *rfc1042;
1026 
1027 	/* This shouldn't happen. If it does than it may be a FW bug. */
1028 	if (skb->next) {
1029 		ath10k_warn(ar, "htt rx received chained non A-MSDU frame\n");
1030 		ath10k_htt_rx_free_msdu_chain(skb->next);
1031 		skb->next = NULL;
1032 	}
1033 
1034 	rxd = (void *)skb->data - sizeof(*rxd);
1035 	fmt = MS(__le32_to_cpu(rxd->msdu_start.info1),
1036 		 RX_MSDU_START_INFO1_DECAP_FORMAT);
1037 	enctype = MS(__le32_to_cpu(rxd->mpdu_start.info0),
1038 		     RX_MPDU_START_INFO0_ENCRYPT_TYPE);
1039 	hdr = (struct ieee80211_hdr *)rxd->rx_hdr_status;
1040 	hdr_len = ieee80211_hdrlen(hdr->frame_control);
1041 
1042 	skb->ip_summed = ath10k_htt_rx_get_csum_state(skb);
1043 
1044 	switch (fmt) {
1045 	case RX_MSDU_DECAP_RAW:
1046 		/* remove trailing FCS */
1047 		skb_trim(skb, skb->len - FCS_LEN);
1048 		break;
1049 	case RX_MSDU_DECAP_NATIVE_WIFI:
1050 		/* Pull decapped header */
1051 		hdr = (struct ieee80211_hdr *)skb->data;
1052 		hdr_len = ath10k_htt_rx_nwifi_hdrlen(hdr);
1053 		skb_pull(skb, hdr_len);
1054 
1055 		/* Push original header */
1056 		hdr = (struct ieee80211_hdr *)rxd->rx_hdr_status;
1057 		hdr_len = ieee80211_hdrlen(hdr->frame_control);
1058 		memcpy(skb_push(skb, hdr_len), hdr, hdr_len);
1059 		break;
1060 	case RX_MSDU_DECAP_ETHERNET2_DIX:
1061 		/* strip ethernet header and insert decapped 802.11 header and
1062 		 * rfc1042 header */
1063 
1064 		rfc1042 = hdr;
1065 		rfc1042 += roundup(hdr_len, 4);
1066 		rfc1042 += roundup(ath10k_htt_rx_crypto_param_len(ar,
1067 					enctype), 4);
1068 
1069 		skb_pull(skb, sizeof(struct ethhdr));
1070 		memcpy(skb_push(skb, sizeof(struct rfc1042_hdr)),
1071 		       rfc1042, sizeof(struct rfc1042_hdr));
1072 		memcpy(skb_push(skb, hdr_len), hdr, hdr_len);
1073 		break;
1074 	case RX_MSDU_DECAP_8023_SNAP_LLC:
1075 		/* remove A-MSDU subframe header and insert
1076 		 * decapped 802.11 header. rfc1042 header is already there */
1077 
1078 		skb_pull(skb, sizeof(struct amsdu_subframe_hdr));
1079 		memcpy(skb_push(skb, hdr_len), hdr, hdr_len);
1080 		break;
1081 	}
1082 
1083 	ath10k_htt_rx_h_protected(htt, rx_status, skb, enctype, fmt, false);
1084 
1085 	ath10k_process_rx(htt->ar, rx_status, skb);
1086 }
1087 
1088 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb)
1089 {
1090 	struct htt_rx_desc *rxd;
1091 	u32 flags, info;
1092 	bool is_ip4, is_ip6;
1093 	bool is_tcp, is_udp;
1094 	bool ip_csum_ok, tcpudp_csum_ok;
1095 
1096 	rxd = (void *)skb->data - sizeof(*rxd);
1097 	flags = __le32_to_cpu(rxd->attention.flags);
1098 	info = __le32_to_cpu(rxd->msdu_start.info1);
1099 
1100 	is_ip4 = !!(info & RX_MSDU_START_INFO1_IPV4_PROTO);
1101 	is_ip6 = !!(info & RX_MSDU_START_INFO1_IPV6_PROTO);
1102 	is_tcp = !!(info & RX_MSDU_START_INFO1_TCP_PROTO);
1103 	is_udp = !!(info & RX_MSDU_START_INFO1_UDP_PROTO);
1104 	ip_csum_ok = !(flags & RX_ATTENTION_FLAGS_IP_CHKSUM_FAIL);
1105 	tcpudp_csum_ok = !(flags & RX_ATTENTION_FLAGS_TCP_UDP_CHKSUM_FAIL);
1106 
1107 	if (!is_ip4 && !is_ip6)
1108 		return CHECKSUM_NONE;
1109 	if (!is_tcp && !is_udp)
1110 		return CHECKSUM_NONE;
1111 	if (!ip_csum_ok)
1112 		return CHECKSUM_NONE;
1113 	if (!tcpudp_csum_ok)
1114 		return CHECKSUM_NONE;
1115 
1116 	return CHECKSUM_UNNECESSARY;
1117 }
1118 
1119 static int ath10k_unchain_msdu(struct sk_buff *msdu_head)
1120 {
1121 	struct sk_buff *next = msdu_head->next;
1122 	struct sk_buff *to_free = next;
1123 	int space;
1124 	int total_len = 0;
1125 
1126 	/* TODO:  Might could optimize this by using
1127 	 * skb_try_coalesce or similar method to
1128 	 * decrease copying, or maybe get mac80211 to
1129 	 * provide a way to just receive a list of
1130 	 * skb?
1131 	 */
1132 
1133 	msdu_head->next = NULL;
1134 
1135 	/* Allocate total length all at once. */
1136 	while (next) {
1137 		total_len += next->len;
1138 		next = next->next;
1139 	}
1140 
1141 	space = total_len - skb_tailroom(msdu_head);
1142 	if ((space > 0) &&
1143 	    (pskb_expand_head(msdu_head, 0, space, GFP_ATOMIC) < 0)) {
1144 		/* TODO:  bump some rx-oom error stat */
1145 		/* put it back together so we can free the
1146 		 * whole list at once.
1147 		 */
1148 		msdu_head->next = to_free;
1149 		return -1;
1150 	}
1151 
1152 	/* Walk list again, copying contents into
1153 	 * msdu_head
1154 	 */
1155 	next = to_free;
1156 	while (next) {
1157 		skb_copy_from_linear_data(next, skb_put(msdu_head, next->len),
1158 					  next->len);
1159 		next = next->next;
1160 	}
1161 
1162 	/* If here, we have consolidated skb.  Free the
1163 	 * fragments and pass the main skb on up the
1164 	 * stack.
1165 	 */
1166 	ath10k_htt_rx_free_msdu_chain(to_free);
1167 	return 0;
1168 }
1169 
1170 static bool ath10k_htt_rx_amsdu_allowed(struct ath10k_htt *htt,
1171 					struct sk_buff *head,
1172 					enum htt_rx_mpdu_status status,
1173 					bool channel_set,
1174 					u32 attention)
1175 {
1176 	struct ath10k *ar = htt->ar;
1177 
1178 	if (head->len == 0) {
1179 		ath10k_dbg(ar, ATH10K_DBG_HTT,
1180 			   "htt rx dropping due to zero-len\n");
1181 		return false;
1182 	}
1183 
1184 	if (attention & RX_ATTENTION_FLAGS_DECRYPT_ERR) {
1185 		ath10k_dbg(ar, ATH10K_DBG_HTT,
1186 			   "htt rx dropping due to decrypt-err\n");
1187 		return false;
1188 	}
1189 
1190 	if (!channel_set) {
1191 		ath10k_warn(ar, "no channel configured; ignoring frame!\n");
1192 		return false;
1193 	}
1194 
1195 	/* Skip mgmt frames while we handle this in WMI */
1196 	if (status == HTT_RX_IND_MPDU_STATUS_MGMT_CTRL ||
1197 	    attention & RX_ATTENTION_FLAGS_MGMT_TYPE) {
1198 		ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx mgmt ctrl\n");
1199 		return false;
1200 	}
1201 
1202 	if (status != HTT_RX_IND_MPDU_STATUS_OK &&
1203 	    status != HTT_RX_IND_MPDU_STATUS_TKIP_MIC_ERR &&
1204 	    status != HTT_RX_IND_MPDU_STATUS_ERR_INV_PEER &&
1205 	    !htt->ar->monitor_started) {
1206 		ath10k_dbg(ar, ATH10K_DBG_HTT,
1207 			   "htt rx ignoring frame w/ status %d\n",
1208 			   status);
1209 		return false;
1210 	}
1211 
1212 	if (test_bit(ATH10K_CAC_RUNNING, &htt->ar->dev_flags)) {
1213 		ath10k_dbg(ar, ATH10K_DBG_HTT,
1214 			   "htt rx CAC running\n");
1215 		return false;
1216 	}
1217 
1218 	return true;
1219 }
1220 
1221 static void ath10k_htt_rx_handler(struct ath10k_htt *htt,
1222 				  struct htt_rx_indication *rx)
1223 {
1224 	struct ath10k *ar = htt->ar;
1225 	struct ieee80211_rx_status *rx_status = &htt->rx_status;
1226 	struct htt_rx_indication_mpdu_range *mpdu_ranges;
1227 	struct htt_rx_desc *rxd;
1228 	enum htt_rx_mpdu_status status;
1229 	struct ieee80211_hdr *hdr;
1230 	int num_mpdu_ranges;
1231 	u32 attention;
1232 	int fw_desc_len;
1233 	u8 *fw_desc;
1234 	bool channel_set;
1235 	int i, j;
1236 	int ret;
1237 
1238 	lockdep_assert_held(&htt->rx_ring.lock);
1239 
1240 	fw_desc_len = __le16_to_cpu(rx->prefix.fw_rx_desc_bytes);
1241 	fw_desc = (u8 *)&rx->fw_desc;
1242 
1243 	num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1),
1244 			     HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES);
1245 	mpdu_ranges = htt_rx_ind_get_mpdu_ranges(rx);
1246 
1247 	/* Fill this once, while this is per-ppdu */
1248 	if (rx->ppdu.info0 & HTT_RX_INDICATION_INFO0_START_VALID) {
1249 		memset(rx_status, 0, sizeof(*rx_status));
1250 		rx_status->signal  = ATH10K_DEFAULT_NOISE_FLOOR +
1251 				     rx->ppdu.combined_rssi;
1252 	}
1253 
1254 	if (rx->ppdu.info0 & HTT_RX_INDICATION_INFO0_END_VALID) {
1255 		/* TSF available only in 32-bit */
1256 		rx_status->mactime = __le32_to_cpu(rx->ppdu.tsf) & 0xffffffff;
1257 		rx_status->flag |= RX_FLAG_MACTIME_END;
1258 	}
1259 
1260 	channel_set = ath10k_htt_rx_h_channel(htt->ar, rx_status);
1261 
1262 	if (channel_set) {
1263 		ath10k_htt_rx_h_rates(htt->ar, rx_status->band,
1264 				      rx->ppdu.info0,
1265 				      __le32_to_cpu(rx->ppdu.info1),
1266 				      __le32_to_cpu(rx->ppdu.info2),
1267 				      rx_status);
1268 	}
1269 
1270 	ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx ind: ",
1271 			rx, sizeof(*rx) +
1272 			(sizeof(struct htt_rx_indication_mpdu_range) *
1273 				num_mpdu_ranges));
1274 
1275 	for (i = 0; i < num_mpdu_ranges; i++) {
1276 		status = mpdu_ranges[i].mpdu_range_status;
1277 
1278 		for (j = 0; j < mpdu_ranges[i].mpdu_count; j++) {
1279 			struct sk_buff *msdu_head, *msdu_tail;
1280 
1281 			attention = 0;
1282 			msdu_head = NULL;
1283 			msdu_tail = NULL;
1284 			ret = ath10k_htt_rx_amsdu_pop(htt,
1285 						      &fw_desc,
1286 						      &fw_desc_len,
1287 						      &msdu_head,
1288 						      &msdu_tail,
1289 						      &attention);
1290 
1291 			if (ret < 0) {
1292 				ath10k_warn(ar, "failed to pop amsdu from htt rx ring %d\n",
1293 					    ret);
1294 				ath10k_htt_rx_free_msdu_chain(msdu_head);
1295 				continue;
1296 			}
1297 
1298 			rxd = container_of((void *)msdu_head->data,
1299 					   struct htt_rx_desc,
1300 					   msdu_payload);
1301 
1302 			if (!ath10k_htt_rx_amsdu_allowed(htt, msdu_head,
1303 							 status,
1304 							 channel_set,
1305 							 attention)) {
1306 				ath10k_htt_rx_free_msdu_chain(msdu_head);
1307 				continue;
1308 			}
1309 
1310 			if (ret > 0 &&
1311 			    ath10k_unchain_msdu(msdu_head) < 0) {
1312 				ath10k_htt_rx_free_msdu_chain(msdu_head);
1313 				continue;
1314 			}
1315 
1316 			if (attention & RX_ATTENTION_FLAGS_FCS_ERR)
1317 				rx_status->flag |= RX_FLAG_FAILED_FCS_CRC;
1318 			else
1319 				rx_status->flag &= ~RX_FLAG_FAILED_FCS_CRC;
1320 
1321 			if (attention & RX_ATTENTION_FLAGS_TKIP_MIC_ERR)
1322 				rx_status->flag |= RX_FLAG_MMIC_ERROR;
1323 			else
1324 				rx_status->flag &= ~RX_FLAG_MMIC_ERROR;
1325 
1326 			hdr = ath10k_htt_rx_skb_get_hdr(msdu_head);
1327 
1328 			if (ath10k_htt_rx_hdr_is_amsdu(hdr))
1329 				ath10k_htt_rx_amsdu(htt, rx_status, msdu_head);
1330 			else
1331 				ath10k_htt_rx_msdu(htt, rx_status, msdu_head);
1332 		}
1333 	}
1334 
1335 	tasklet_schedule(&htt->rx_replenish_task);
1336 }
1337 
1338 static void ath10k_htt_rx_frag_handler(struct ath10k_htt *htt,
1339 				       struct htt_rx_fragment_indication *frag)
1340 {
1341 	struct ath10k *ar = htt->ar;
1342 	struct sk_buff *msdu_head, *msdu_tail;
1343 	enum htt_rx_mpdu_encrypt_type enctype;
1344 	struct htt_rx_desc *rxd;
1345 	enum rx_msdu_decap_format fmt;
1346 	struct ieee80211_rx_status *rx_status = &htt->rx_status;
1347 	struct ieee80211_hdr *hdr;
1348 	int ret;
1349 	bool tkip_mic_err;
1350 	bool decrypt_err;
1351 	u8 *fw_desc;
1352 	int fw_desc_len, hdrlen, paramlen;
1353 	int trim;
1354 	u32 attention = 0;
1355 
1356 	fw_desc_len = __le16_to_cpu(frag->fw_rx_desc_bytes);
1357 	fw_desc = (u8 *)frag->fw_msdu_rx_desc;
1358 
1359 	msdu_head = NULL;
1360 	msdu_tail = NULL;
1361 
1362 	spin_lock_bh(&htt->rx_ring.lock);
1363 	ret = ath10k_htt_rx_amsdu_pop(htt, &fw_desc, &fw_desc_len,
1364 				      &msdu_head, &msdu_tail,
1365 				      &attention);
1366 	spin_unlock_bh(&htt->rx_ring.lock);
1367 
1368 	ath10k_dbg(ar, ATH10K_DBG_HTT_DUMP, "htt rx frag ahead\n");
1369 
1370 	if (ret) {
1371 		ath10k_warn(ar, "failed to pop amsdu from httr rx ring for fragmented rx %d\n",
1372 			    ret);
1373 		ath10k_htt_rx_free_msdu_chain(msdu_head);
1374 		return;
1375 	}
1376 
1377 	/* FIXME: implement signal strength */
1378 	rx_status->flag |= RX_FLAG_NO_SIGNAL_VAL;
1379 
1380 	hdr = (struct ieee80211_hdr *)msdu_head->data;
1381 	rxd = (void *)msdu_head->data - sizeof(*rxd);
1382 	tkip_mic_err = !!(attention & RX_ATTENTION_FLAGS_TKIP_MIC_ERR);
1383 	decrypt_err = !!(attention & RX_ATTENTION_FLAGS_DECRYPT_ERR);
1384 	fmt = MS(__le32_to_cpu(rxd->msdu_start.info1),
1385 		 RX_MSDU_START_INFO1_DECAP_FORMAT);
1386 
1387 	if (fmt != RX_MSDU_DECAP_RAW) {
1388 		ath10k_warn(ar, "we dont support non-raw fragmented rx yet\n");
1389 		dev_kfree_skb_any(msdu_head);
1390 		goto end;
1391 	}
1392 
1393 	enctype = MS(__le32_to_cpu(rxd->mpdu_start.info0),
1394 		     RX_MPDU_START_INFO0_ENCRYPT_TYPE);
1395 	ath10k_htt_rx_h_protected(htt, rx_status, msdu_head, enctype, fmt,
1396 				  true);
1397 	msdu_head->ip_summed = ath10k_htt_rx_get_csum_state(msdu_head);
1398 
1399 	if (tkip_mic_err)
1400 		ath10k_warn(ar, "tkip mic error\n");
1401 
1402 	if (decrypt_err) {
1403 		ath10k_warn(ar, "decryption err in fragmented rx\n");
1404 		dev_kfree_skb_any(msdu_head);
1405 		goto end;
1406 	}
1407 
1408 	if (enctype != HTT_RX_MPDU_ENCRYPT_NONE) {
1409 		hdrlen = ieee80211_hdrlen(hdr->frame_control);
1410 		paramlen = ath10k_htt_rx_crypto_param_len(ar, enctype);
1411 
1412 		/* It is more efficient to move the header than the payload */
1413 		memmove((void *)msdu_head->data + paramlen,
1414 			(void *)msdu_head->data,
1415 			hdrlen);
1416 		skb_pull(msdu_head, paramlen);
1417 		hdr = (struct ieee80211_hdr *)msdu_head->data;
1418 	}
1419 
1420 	/* remove trailing FCS */
1421 	trim  = 4;
1422 
1423 	/* remove crypto trailer */
1424 	trim += ath10k_htt_rx_crypto_tail_len(ar, enctype);
1425 
1426 	/* last fragment of TKIP frags has MIC */
1427 	if (!ieee80211_has_morefrags(hdr->frame_control) &&
1428 	    enctype == HTT_RX_MPDU_ENCRYPT_TKIP_WPA)
1429 		trim += 8;
1430 
1431 	if (trim > msdu_head->len) {
1432 		ath10k_warn(ar, "htt rx fragment: trailer longer than the frame itself? drop\n");
1433 		dev_kfree_skb_any(msdu_head);
1434 		goto end;
1435 	}
1436 
1437 	skb_trim(msdu_head, msdu_head->len - trim);
1438 
1439 	ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx frag mpdu: ",
1440 			msdu_head->data, msdu_head->len);
1441 	ath10k_process_rx(htt->ar, rx_status, msdu_head);
1442 
1443 end:
1444 	if (fw_desc_len > 0) {
1445 		ath10k_dbg(ar, ATH10K_DBG_HTT,
1446 			   "expecting more fragmented rx in one indication %d\n",
1447 			   fw_desc_len);
1448 	}
1449 }
1450 
1451 static void ath10k_htt_rx_frm_tx_compl(struct ath10k *ar,
1452 				       struct sk_buff *skb)
1453 {
1454 	struct ath10k_htt *htt = &ar->htt;
1455 	struct htt_resp *resp = (struct htt_resp *)skb->data;
1456 	struct htt_tx_done tx_done = {};
1457 	int status = MS(resp->data_tx_completion.flags, HTT_DATA_TX_STATUS);
1458 	__le16 msdu_id;
1459 	int i;
1460 
1461 	lockdep_assert_held(&htt->tx_lock);
1462 
1463 	switch (status) {
1464 	case HTT_DATA_TX_STATUS_NO_ACK:
1465 		tx_done.no_ack = true;
1466 		break;
1467 	case HTT_DATA_TX_STATUS_OK:
1468 		break;
1469 	case HTT_DATA_TX_STATUS_DISCARD:
1470 	case HTT_DATA_TX_STATUS_POSTPONE:
1471 	case HTT_DATA_TX_STATUS_DOWNLOAD_FAIL:
1472 		tx_done.discard = true;
1473 		break;
1474 	default:
1475 		ath10k_warn(ar, "unhandled tx completion status %d\n", status);
1476 		tx_done.discard = true;
1477 		break;
1478 	}
1479 
1480 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx completion num_msdus %d\n",
1481 		   resp->data_tx_completion.num_msdus);
1482 
1483 	for (i = 0; i < resp->data_tx_completion.num_msdus; i++) {
1484 		msdu_id = resp->data_tx_completion.msdus[i];
1485 		tx_done.msdu_id = __le16_to_cpu(msdu_id);
1486 		ath10k_txrx_tx_unref(htt, &tx_done);
1487 	}
1488 }
1489 
1490 static void ath10k_htt_rx_addba(struct ath10k *ar, struct htt_resp *resp)
1491 {
1492 	struct htt_rx_addba *ev = &resp->rx_addba;
1493 	struct ath10k_peer *peer;
1494 	struct ath10k_vif *arvif;
1495 	u16 info0, tid, peer_id;
1496 
1497 	info0 = __le16_to_cpu(ev->info0);
1498 	tid = MS(info0, HTT_RX_BA_INFO0_TID);
1499 	peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID);
1500 
1501 	ath10k_dbg(ar, ATH10K_DBG_HTT,
1502 		   "htt rx addba tid %hu peer_id %hu size %hhu\n",
1503 		   tid, peer_id, ev->window_size);
1504 
1505 	spin_lock_bh(&ar->data_lock);
1506 	peer = ath10k_peer_find_by_id(ar, peer_id);
1507 	if (!peer) {
1508 		ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n",
1509 			    peer_id);
1510 		spin_unlock_bh(&ar->data_lock);
1511 		return;
1512 	}
1513 
1514 	arvif = ath10k_get_arvif(ar, peer->vdev_id);
1515 	if (!arvif) {
1516 		ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n",
1517 			    peer->vdev_id);
1518 		spin_unlock_bh(&ar->data_lock);
1519 		return;
1520 	}
1521 
1522 	ath10k_dbg(ar, ATH10K_DBG_HTT,
1523 		   "htt rx start rx ba session sta %pM tid %hu size %hhu\n",
1524 		   peer->addr, tid, ev->window_size);
1525 
1526 	ieee80211_start_rx_ba_session_offl(arvif->vif, peer->addr, tid);
1527 	spin_unlock_bh(&ar->data_lock);
1528 }
1529 
1530 static void ath10k_htt_rx_delba(struct ath10k *ar, struct htt_resp *resp)
1531 {
1532 	struct htt_rx_delba *ev = &resp->rx_delba;
1533 	struct ath10k_peer *peer;
1534 	struct ath10k_vif *arvif;
1535 	u16 info0, tid, peer_id;
1536 
1537 	info0 = __le16_to_cpu(ev->info0);
1538 	tid = MS(info0, HTT_RX_BA_INFO0_TID);
1539 	peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID);
1540 
1541 	ath10k_dbg(ar, ATH10K_DBG_HTT,
1542 		   "htt rx delba tid %hu peer_id %hu\n",
1543 		   tid, peer_id);
1544 
1545 	spin_lock_bh(&ar->data_lock);
1546 	peer = ath10k_peer_find_by_id(ar, peer_id);
1547 	if (!peer) {
1548 		ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n",
1549 			    peer_id);
1550 		spin_unlock_bh(&ar->data_lock);
1551 		return;
1552 	}
1553 
1554 	arvif = ath10k_get_arvif(ar, peer->vdev_id);
1555 	if (!arvif) {
1556 		ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n",
1557 			    peer->vdev_id);
1558 		spin_unlock_bh(&ar->data_lock);
1559 		return;
1560 	}
1561 
1562 	ath10k_dbg(ar, ATH10K_DBG_HTT,
1563 		   "htt rx stop rx ba session sta %pM tid %hu\n",
1564 		   peer->addr, tid);
1565 
1566 	ieee80211_stop_rx_ba_session_offl(arvif->vif, peer->addr, tid);
1567 	spin_unlock_bh(&ar->data_lock);
1568 }
1569 
1570 void ath10k_htt_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb)
1571 {
1572 	struct ath10k_htt *htt = &ar->htt;
1573 	struct htt_resp *resp = (struct htt_resp *)skb->data;
1574 
1575 	/* confirm alignment */
1576 	if (!IS_ALIGNED((unsigned long)skb->data, 4))
1577 		ath10k_warn(ar, "unaligned htt message, expect trouble\n");
1578 
1579 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, msg_type: 0x%0X\n",
1580 		   resp->hdr.msg_type);
1581 	switch (resp->hdr.msg_type) {
1582 	case HTT_T2H_MSG_TYPE_VERSION_CONF: {
1583 		htt->target_version_major = resp->ver_resp.major;
1584 		htt->target_version_minor = resp->ver_resp.minor;
1585 		complete(&htt->target_version_received);
1586 		break;
1587 	}
1588 	case HTT_T2H_MSG_TYPE_RX_IND:
1589 		spin_lock_bh(&htt->rx_ring.lock);
1590 		__skb_queue_tail(&htt->rx_compl_q, skb);
1591 		spin_unlock_bh(&htt->rx_ring.lock);
1592 		tasklet_schedule(&htt->txrx_compl_task);
1593 		return;
1594 	case HTT_T2H_MSG_TYPE_PEER_MAP: {
1595 		struct htt_peer_map_event ev = {
1596 			.vdev_id = resp->peer_map.vdev_id,
1597 			.peer_id = __le16_to_cpu(resp->peer_map.peer_id),
1598 		};
1599 		memcpy(ev.addr, resp->peer_map.addr, sizeof(ev.addr));
1600 		ath10k_peer_map_event(htt, &ev);
1601 		break;
1602 	}
1603 	case HTT_T2H_MSG_TYPE_PEER_UNMAP: {
1604 		struct htt_peer_unmap_event ev = {
1605 			.peer_id = __le16_to_cpu(resp->peer_unmap.peer_id),
1606 		};
1607 		ath10k_peer_unmap_event(htt, &ev);
1608 		break;
1609 	}
1610 	case HTT_T2H_MSG_TYPE_MGMT_TX_COMPLETION: {
1611 		struct htt_tx_done tx_done = {};
1612 		int status = __le32_to_cpu(resp->mgmt_tx_completion.status);
1613 
1614 		tx_done.msdu_id =
1615 			__le32_to_cpu(resp->mgmt_tx_completion.desc_id);
1616 
1617 		switch (status) {
1618 		case HTT_MGMT_TX_STATUS_OK:
1619 			break;
1620 		case HTT_MGMT_TX_STATUS_RETRY:
1621 			tx_done.no_ack = true;
1622 			break;
1623 		case HTT_MGMT_TX_STATUS_DROP:
1624 			tx_done.discard = true;
1625 			break;
1626 		}
1627 
1628 		spin_lock_bh(&htt->tx_lock);
1629 		ath10k_txrx_tx_unref(htt, &tx_done);
1630 		spin_unlock_bh(&htt->tx_lock);
1631 		break;
1632 	}
1633 	case HTT_T2H_MSG_TYPE_TX_COMPL_IND:
1634 		spin_lock_bh(&htt->tx_lock);
1635 		__skb_queue_tail(&htt->tx_compl_q, skb);
1636 		spin_unlock_bh(&htt->tx_lock);
1637 		tasklet_schedule(&htt->txrx_compl_task);
1638 		return;
1639 	case HTT_T2H_MSG_TYPE_SEC_IND: {
1640 		struct ath10k *ar = htt->ar;
1641 		struct htt_security_indication *ev = &resp->security_indication;
1642 
1643 		ath10k_dbg(ar, ATH10K_DBG_HTT,
1644 			   "sec ind peer_id %d unicast %d type %d\n",
1645 			  __le16_to_cpu(ev->peer_id),
1646 			  !!(ev->flags & HTT_SECURITY_IS_UNICAST),
1647 			  MS(ev->flags, HTT_SECURITY_TYPE));
1648 		complete(&ar->install_key_done);
1649 		break;
1650 	}
1651 	case HTT_T2H_MSG_TYPE_RX_FRAG_IND: {
1652 		ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
1653 				skb->data, skb->len);
1654 		ath10k_htt_rx_frag_handler(htt, &resp->rx_frag_ind);
1655 		break;
1656 	}
1657 	case HTT_T2H_MSG_TYPE_TEST:
1658 		/* FIX THIS */
1659 		break;
1660 	case HTT_T2H_MSG_TYPE_STATS_CONF:
1661 		trace_ath10k_htt_stats(ar, skb->data, skb->len);
1662 		break;
1663 	case HTT_T2H_MSG_TYPE_TX_INSPECT_IND:
1664 		/* Firmware can return tx frames if it's unable to fully
1665 		 * process them and suspects host may be able to fix it. ath10k
1666 		 * sends all tx frames as already inspected so this shouldn't
1667 		 * happen unless fw has a bug.
1668 		 */
1669 		ath10k_warn(ar, "received an unexpected htt tx inspect event\n");
1670 		break;
1671 	case HTT_T2H_MSG_TYPE_RX_ADDBA:
1672 		ath10k_htt_rx_addba(ar, resp);
1673 		break;
1674 	case HTT_T2H_MSG_TYPE_RX_DELBA:
1675 		ath10k_htt_rx_delba(ar, resp);
1676 		break;
1677 	case HTT_T2H_MSG_TYPE_RX_FLUSH: {
1678 		/* Ignore this event because mac80211 takes care of Rx
1679 		 * aggregation reordering.
1680 		 */
1681 		break;
1682 	}
1683 	default:
1684 		ath10k_dbg(ar, ATH10K_DBG_HTT, "htt event (%d) not handled\n",
1685 			   resp->hdr.msg_type);
1686 		ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
1687 				skb->data, skb->len);
1688 		break;
1689 	};
1690 
1691 	/* Free the indication buffer */
1692 	dev_kfree_skb_any(skb);
1693 }
1694 
1695 static void ath10k_htt_txrx_compl_task(unsigned long ptr)
1696 {
1697 	struct ath10k_htt *htt = (struct ath10k_htt *)ptr;
1698 	struct htt_resp *resp;
1699 	struct sk_buff *skb;
1700 
1701 	spin_lock_bh(&htt->tx_lock);
1702 	while ((skb = __skb_dequeue(&htt->tx_compl_q))) {
1703 		ath10k_htt_rx_frm_tx_compl(htt->ar, skb);
1704 		dev_kfree_skb_any(skb);
1705 	}
1706 	spin_unlock_bh(&htt->tx_lock);
1707 
1708 	spin_lock_bh(&htt->rx_ring.lock);
1709 	while ((skb = __skb_dequeue(&htt->rx_compl_q))) {
1710 		resp = (struct htt_resp *)skb->data;
1711 		ath10k_htt_rx_handler(htt, &resp->rx_ind);
1712 		dev_kfree_skb_any(skb);
1713 	}
1714 	spin_unlock_bh(&htt->rx_ring.lock);
1715 }
1716