xref: /openbmc/linux/drivers/net/wireless/ath/ath10k/htt_rx.c (revision 63f59b73e80a0f7431f6f91383fcc3f5fac49bb8)
1 /*
2  * Copyright (c) 2005-2011 Atheros Communications Inc.
3  * Copyright (c) 2011-2017 Qualcomm Atheros, Inc.
4  * Copyright (c) 2018, The Linux Foundation. All rights reserved.
5  *
6  * Permission to use, copy, modify, and/or distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #include "core.h"
20 #include "htc.h"
21 #include "htt.h"
22 #include "txrx.h"
23 #include "debug.h"
24 #include "trace.h"
25 #include "mac.h"
26 
27 #include <linux/log2.h>
28 #include <linux/bitfield.h>
29 
30 /* when under memory pressure rx ring refill may fail and needs a retry */
31 #define HTT_RX_RING_REFILL_RETRY_MS 50
32 
33 #define HTT_RX_RING_REFILL_RESCHED_MS 5
34 
35 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb);
36 
37 static struct sk_buff *
38 ath10k_htt_rx_find_skb_paddr(struct ath10k *ar, u64 paddr)
39 {
40 	struct ath10k_skb_rxcb *rxcb;
41 
42 	hash_for_each_possible(ar->htt.rx_ring.skb_table, rxcb, hlist, paddr)
43 		if (rxcb->paddr == paddr)
44 			return ATH10K_RXCB_SKB(rxcb);
45 
46 	WARN_ON_ONCE(1);
47 	return NULL;
48 }
49 
50 static void ath10k_htt_rx_ring_free(struct ath10k_htt *htt)
51 {
52 	struct sk_buff *skb;
53 	struct ath10k_skb_rxcb *rxcb;
54 	struct hlist_node *n;
55 	int i;
56 
57 	if (htt->rx_ring.in_ord_rx) {
58 		hash_for_each_safe(htt->rx_ring.skb_table, i, n, rxcb, hlist) {
59 			skb = ATH10K_RXCB_SKB(rxcb);
60 			dma_unmap_single(htt->ar->dev, rxcb->paddr,
61 					 skb->len + skb_tailroom(skb),
62 					 DMA_FROM_DEVICE);
63 			hash_del(&rxcb->hlist);
64 			dev_kfree_skb_any(skb);
65 		}
66 	} else {
67 		for (i = 0; i < htt->rx_ring.size; i++) {
68 			skb = htt->rx_ring.netbufs_ring[i];
69 			if (!skb)
70 				continue;
71 
72 			rxcb = ATH10K_SKB_RXCB(skb);
73 			dma_unmap_single(htt->ar->dev, rxcb->paddr,
74 					 skb->len + skb_tailroom(skb),
75 					 DMA_FROM_DEVICE);
76 			dev_kfree_skb_any(skb);
77 		}
78 	}
79 
80 	htt->rx_ring.fill_cnt = 0;
81 	hash_init(htt->rx_ring.skb_table);
82 	memset(htt->rx_ring.netbufs_ring, 0,
83 	       htt->rx_ring.size * sizeof(htt->rx_ring.netbufs_ring[0]));
84 }
85 
86 static size_t ath10k_htt_get_rx_ring_size_32(struct ath10k_htt *htt)
87 {
88 	return htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring_32);
89 }
90 
91 static size_t ath10k_htt_get_rx_ring_size_64(struct ath10k_htt *htt)
92 {
93 	return htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring_64);
94 }
95 
96 static void ath10k_htt_config_paddrs_ring_32(struct ath10k_htt *htt,
97 					     void *vaddr)
98 {
99 	htt->rx_ring.paddrs_ring_32 = vaddr;
100 }
101 
102 static void ath10k_htt_config_paddrs_ring_64(struct ath10k_htt *htt,
103 					     void *vaddr)
104 {
105 	htt->rx_ring.paddrs_ring_64 = vaddr;
106 }
107 
108 static void ath10k_htt_set_paddrs_ring_32(struct ath10k_htt *htt,
109 					  dma_addr_t paddr, int idx)
110 {
111 	htt->rx_ring.paddrs_ring_32[idx] = __cpu_to_le32(paddr);
112 }
113 
114 static void ath10k_htt_set_paddrs_ring_64(struct ath10k_htt *htt,
115 					  dma_addr_t paddr, int idx)
116 {
117 	htt->rx_ring.paddrs_ring_64[idx] = __cpu_to_le64(paddr);
118 }
119 
120 static void ath10k_htt_reset_paddrs_ring_32(struct ath10k_htt *htt, int idx)
121 {
122 	htt->rx_ring.paddrs_ring_32[idx] = 0;
123 }
124 
125 static void ath10k_htt_reset_paddrs_ring_64(struct ath10k_htt *htt, int idx)
126 {
127 	htt->rx_ring.paddrs_ring_64[idx] = 0;
128 }
129 
130 static void *ath10k_htt_get_vaddr_ring_32(struct ath10k_htt *htt)
131 {
132 	return (void *)htt->rx_ring.paddrs_ring_32;
133 }
134 
135 static void *ath10k_htt_get_vaddr_ring_64(struct ath10k_htt *htt)
136 {
137 	return (void *)htt->rx_ring.paddrs_ring_64;
138 }
139 
140 static int __ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
141 {
142 	struct htt_rx_desc *rx_desc;
143 	struct ath10k_skb_rxcb *rxcb;
144 	struct sk_buff *skb;
145 	dma_addr_t paddr;
146 	int ret = 0, idx;
147 
148 	/* The Full Rx Reorder firmware has no way of telling the host
149 	 * implicitly when it copied HTT Rx Ring buffers to MAC Rx Ring.
150 	 * To keep things simple make sure ring is always half empty. This
151 	 * guarantees there'll be no replenishment overruns possible.
152 	 */
153 	BUILD_BUG_ON(HTT_RX_RING_FILL_LEVEL >= HTT_RX_RING_SIZE / 2);
154 
155 	idx = __le32_to_cpu(*htt->rx_ring.alloc_idx.vaddr);
156 	while (num > 0) {
157 		skb = dev_alloc_skb(HTT_RX_BUF_SIZE + HTT_RX_DESC_ALIGN);
158 		if (!skb) {
159 			ret = -ENOMEM;
160 			goto fail;
161 		}
162 
163 		if (!IS_ALIGNED((unsigned long)skb->data, HTT_RX_DESC_ALIGN))
164 			skb_pull(skb,
165 				 PTR_ALIGN(skb->data, HTT_RX_DESC_ALIGN) -
166 				 skb->data);
167 
168 		/* Clear rx_desc attention word before posting to Rx ring */
169 		rx_desc = (struct htt_rx_desc *)skb->data;
170 		rx_desc->attention.flags = __cpu_to_le32(0);
171 
172 		paddr = dma_map_single(htt->ar->dev, skb->data,
173 				       skb->len + skb_tailroom(skb),
174 				       DMA_FROM_DEVICE);
175 
176 		if (unlikely(dma_mapping_error(htt->ar->dev, paddr))) {
177 			dev_kfree_skb_any(skb);
178 			ret = -ENOMEM;
179 			goto fail;
180 		}
181 
182 		rxcb = ATH10K_SKB_RXCB(skb);
183 		rxcb->paddr = paddr;
184 		htt->rx_ring.netbufs_ring[idx] = skb;
185 		ath10k_htt_set_paddrs_ring(htt, paddr, idx);
186 		htt->rx_ring.fill_cnt++;
187 
188 		if (htt->rx_ring.in_ord_rx) {
189 			hash_add(htt->rx_ring.skb_table,
190 				 &ATH10K_SKB_RXCB(skb)->hlist,
191 				 paddr);
192 		}
193 
194 		num--;
195 		idx++;
196 		idx &= htt->rx_ring.size_mask;
197 	}
198 
199 fail:
200 	/*
201 	 * Make sure the rx buffer is updated before available buffer
202 	 * index to avoid any potential rx ring corruption.
203 	 */
204 	mb();
205 	*htt->rx_ring.alloc_idx.vaddr = __cpu_to_le32(idx);
206 	return ret;
207 }
208 
209 static int ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
210 {
211 	lockdep_assert_held(&htt->rx_ring.lock);
212 	return __ath10k_htt_rx_ring_fill_n(htt, num);
213 }
214 
215 static void ath10k_htt_rx_msdu_buff_replenish(struct ath10k_htt *htt)
216 {
217 	int ret, num_deficit, num_to_fill;
218 
219 	/* Refilling the whole RX ring buffer proves to be a bad idea. The
220 	 * reason is RX may take up significant amount of CPU cycles and starve
221 	 * other tasks, e.g. TX on an ethernet device while acting as a bridge
222 	 * with ath10k wlan interface. This ended up with very poor performance
223 	 * once CPU the host system was overwhelmed with RX on ath10k.
224 	 *
225 	 * By limiting the number of refills the replenishing occurs
226 	 * progressively. This in turns makes use of the fact tasklets are
227 	 * processed in FIFO order. This means actual RX processing can starve
228 	 * out refilling. If there's not enough buffers on RX ring FW will not
229 	 * report RX until it is refilled with enough buffers. This
230 	 * automatically balances load wrt to CPU power.
231 	 *
232 	 * This probably comes at a cost of lower maximum throughput but
233 	 * improves the average and stability.
234 	 */
235 	spin_lock_bh(&htt->rx_ring.lock);
236 	num_deficit = htt->rx_ring.fill_level - htt->rx_ring.fill_cnt;
237 	num_to_fill = min(ATH10K_HTT_MAX_NUM_REFILL, num_deficit);
238 	num_deficit -= num_to_fill;
239 	ret = ath10k_htt_rx_ring_fill_n(htt, num_to_fill);
240 	if (ret == -ENOMEM) {
241 		/*
242 		 * Failed to fill it to the desired level -
243 		 * we'll start a timer and try again next time.
244 		 * As long as enough buffers are left in the ring for
245 		 * another A-MPDU rx, no special recovery is needed.
246 		 */
247 		mod_timer(&htt->rx_ring.refill_retry_timer, jiffies +
248 			  msecs_to_jiffies(HTT_RX_RING_REFILL_RETRY_MS));
249 	} else if (num_deficit > 0) {
250 		mod_timer(&htt->rx_ring.refill_retry_timer, jiffies +
251 			  msecs_to_jiffies(HTT_RX_RING_REFILL_RESCHED_MS));
252 	}
253 	spin_unlock_bh(&htt->rx_ring.lock);
254 }
255 
256 static void ath10k_htt_rx_ring_refill_retry(struct timer_list *t)
257 {
258 	struct ath10k_htt *htt = from_timer(htt, t, rx_ring.refill_retry_timer);
259 
260 	ath10k_htt_rx_msdu_buff_replenish(htt);
261 }
262 
263 int ath10k_htt_rx_ring_refill(struct ath10k *ar)
264 {
265 	struct ath10k_htt *htt = &ar->htt;
266 	int ret;
267 
268 	spin_lock_bh(&htt->rx_ring.lock);
269 	ret = ath10k_htt_rx_ring_fill_n(htt, (htt->rx_ring.fill_level -
270 					      htt->rx_ring.fill_cnt));
271 
272 	if (ret)
273 		ath10k_htt_rx_ring_free(htt);
274 
275 	spin_unlock_bh(&htt->rx_ring.lock);
276 
277 	return ret;
278 }
279 
280 void ath10k_htt_rx_free(struct ath10k_htt *htt)
281 {
282 	del_timer_sync(&htt->rx_ring.refill_retry_timer);
283 
284 	skb_queue_purge(&htt->rx_msdus_q);
285 	skb_queue_purge(&htt->rx_in_ord_compl_q);
286 	skb_queue_purge(&htt->tx_fetch_ind_q);
287 
288 	spin_lock_bh(&htt->rx_ring.lock);
289 	ath10k_htt_rx_ring_free(htt);
290 	spin_unlock_bh(&htt->rx_ring.lock);
291 
292 	dma_free_coherent(htt->ar->dev,
293 			  ath10k_htt_get_rx_ring_size(htt),
294 			  ath10k_htt_get_vaddr_ring(htt),
295 			  htt->rx_ring.base_paddr);
296 
297 	dma_free_coherent(htt->ar->dev,
298 			  sizeof(*htt->rx_ring.alloc_idx.vaddr),
299 			  htt->rx_ring.alloc_idx.vaddr,
300 			  htt->rx_ring.alloc_idx.paddr);
301 
302 	kfree(htt->rx_ring.netbufs_ring);
303 }
304 
305 static inline struct sk_buff *ath10k_htt_rx_netbuf_pop(struct ath10k_htt *htt)
306 {
307 	struct ath10k *ar = htt->ar;
308 	int idx;
309 	struct sk_buff *msdu;
310 
311 	lockdep_assert_held(&htt->rx_ring.lock);
312 
313 	if (htt->rx_ring.fill_cnt == 0) {
314 		ath10k_warn(ar, "tried to pop sk_buff from an empty rx ring\n");
315 		return NULL;
316 	}
317 
318 	idx = htt->rx_ring.sw_rd_idx.msdu_payld;
319 	msdu = htt->rx_ring.netbufs_ring[idx];
320 	htt->rx_ring.netbufs_ring[idx] = NULL;
321 	ath10k_htt_reset_paddrs_ring(htt, idx);
322 
323 	idx++;
324 	idx &= htt->rx_ring.size_mask;
325 	htt->rx_ring.sw_rd_idx.msdu_payld = idx;
326 	htt->rx_ring.fill_cnt--;
327 
328 	dma_unmap_single(htt->ar->dev,
329 			 ATH10K_SKB_RXCB(msdu)->paddr,
330 			 msdu->len + skb_tailroom(msdu),
331 			 DMA_FROM_DEVICE);
332 	ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ",
333 			msdu->data, msdu->len + skb_tailroom(msdu));
334 
335 	return msdu;
336 }
337 
338 /* return: < 0 fatal error, 0 - non chained msdu, 1 chained msdu */
339 static int ath10k_htt_rx_amsdu_pop(struct ath10k_htt *htt,
340 				   struct sk_buff_head *amsdu)
341 {
342 	struct ath10k *ar = htt->ar;
343 	int msdu_len, msdu_chaining = 0;
344 	struct sk_buff *msdu;
345 	struct htt_rx_desc *rx_desc;
346 
347 	lockdep_assert_held(&htt->rx_ring.lock);
348 
349 	for (;;) {
350 		int last_msdu, msdu_len_invalid, msdu_chained;
351 
352 		msdu = ath10k_htt_rx_netbuf_pop(htt);
353 		if (!msdu) {
354 			__skb_queue_purge(amsdu);
355 			return -ENOENT;
356 		}
357 
358 		__skb_queue_tail(amsdu, msdu);
359 
360 		rx_desc = (struct htt_rx_desc *)msdu->data;
361 
362 		/* FIXME: we must report msdu payload since this is what caller
363 		 * expects now
364 		 */
365 		skb_put(msdu, offsetof(struct htt_rx_desc, msdu_payload));
366 		skb_pull(msdu, offsetof(struct htt_rx_desc, msdu_payload));
367 
368 		/*
369 		 * Sanity check - confirm the HW is finished filling in the
370 		 * rx data.
371 		 * If the HW and SW are working correctly, then it's guaranteed
372 		 * that the HW's MAC DMA is done before this point in the SW.
373 		 * To prevent the case that we handle a stale Rx descriptor,
374 		 * just assert for now until we have a way to recover.
375 		 */
376 		if (!(__le32_to_cpu(rx_desc->attention.flags)
377 				& RX_ATTENTION_FLAGS_MSDU_DONE)) {
378 			__skb_queue_purge(amsdu);
379 			return -EIO;
380 		}
381 
382 		msdu_len_invalid = !!(__le32_to_cpu(rx_desc->attention.flags)
383 					& (RX_ATTENTION_FLAGS_MPDU_LENGTH_ERR |
384 					   RX_ATTENTION_FLAGS_MSDU_LENGTH_ERR));
385 		msdu_len = MS(__le32_to_cpu(rx_desc->msdu_start.common.info0),
386 			      RX_MSDU_START_INFO0_MSDU_LENGTH);
387 		msdu_chained = rx_desc->frag_info.ring2_more_count;
388 
389 		if (msdu_len_invalid)
390 			msdu_len = 0;
391 
392 		skb_trim(msdu, 0);
393 		skb_put(msdu, min(msdu_len, HTT_RX_MSDU_SIZE));
394 		msdu_len -= msdu->len;
395 
396 		/* Note: Chained buffers do not contain rx descriptor */
397 		while (msdu_chained--) {
398 			msdu = ath10k_htt_rx_netbuf_pop(htt);
399 			if (!msdu) {
400 				__skb_queue_purge(amsdu);
401 				return -ENOENT;
402 			}
403 
404 			__skb_queue_tail(amsdu, msdu);
405 			skb_trim(msdu, 0);
406 			skb_put(msdu, min(msdu_len, HTT_RX_BUF_SIZE));
407 			msdu_len -= msdu->len;
408 			msdu_chaining = 1;
409 		}
410 
411 		last_msdu = __le32_to_cpu(rx_desc->msdu_end.common.info0) &
412 				RX_MSDU_END_INFO0_LAST_MSDU;
413 
414 		trace_ath10k_htt_rx_desc(ar, &rx_desc->attention,
415 					 sizeof(*rx_desc) - sizeof(u32));
416 
417 		if (last_msdu)
418 			break;
419 	}
420 
421 	if (skb_queue_empty(amsdu))
422 		msdu_chaining = -1;
423 
424 	/*
425 	 * Don't refill the ring yet.
426 	 *
427 	 * First, the elements popped here are still in use - it is not
428 	 * safe to overwrite them until the matching call to
429 	 * mpdu_desc_list_next. Second, for efficiency it is preferable to
430 	 * refill the rx ring with 1 PPDU's worth of rx buffers (something
431 	 * like 32 x 3 buffers), rather than one MPDU's worth of rx buffers
432 	 * (something like 3 buffers). Consequently, we'll rely on the txrx
433 	 * SW to tell us when it is done pulling all the PPDU's rx buffers
434 	 * out of the rx ring, and then refill it just once.
435 	 */
436 
437 	return msdu_chaining;
438 }
439 
440 static struct sk_buff *ath10k_htt_rx_pop_paddr(struct ath10k_htt *htt,
441 					       u64 paddr)
442 {
443 	struct ath10k *ar = htt->ar;
444 	struct ath10k_skb_rxcb *rxcb;
445 	struct sk_buff *msdu;
446 
447 	lockdep_assert_held(&htt->rx_ring.lock);
448 
449 	msdu = ath10k_htt_rx_find_skb_paddr(ar, paddr);
450 	if (!msdu)
451 		return NULL;
452 
453 	rxcb = ATH10K_SKB_RXCB(msdu);
454 	hash_del(&rxcb->hlist);
455 	htt->rx_ring.fill_cnt--;
456 
457 	dma_unmap_single(htt->ar->dev, rxcb->paddr,
458 			 msdu->len + skb_tailroom(msdu),
459 			 DMA_FROM_DEVICE);
460 	ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ",
461 			msdu->data, msdu->len + skb_tailroom(msdu));
462 
463 	return msdu;
464 }
465 
466 static int ath10k_htt_rx_pop_paddr32_list(struct ath10k_htt *htt,
467 					  struct htt_rx_in_ord_ind *ev,
468 					  struct sk_buff_head *list)
469 {
470 	struct ath10k *ar = htt->ar;
471 	struct htt_rx_in_ord_msdu_desc *msdu_desc = ev->msdu_descs32;
472 	struct htt_rx_desc *rxd;
473 	struct sk_buff *msdu;
474 	int msdu_count;
475 	bool is_offload;
476 	u32 paddr;
477 
478 	lockdep_assert_held(&htt->rx_ring.lock);
479 
480 	msdu_count = __le16_to_cpu(ev->msdu_count);
481 	is_offload = !!(ev->info & HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK);
482 
483 	while (msdu_count--) {
484 		paddr = __le32_to_cpu(msdu_desc->msdu_paddr);
485 
486 		msdu = ath10k_htt_rx_pop_paddr(htt, paddr);
487 		if (!msdu) {
488 			__skb_queue_purge(list);
489 			return -ENOENT;
490 		}
491 
492 		__skb_queue_tail(list, msdu);
493 
494 		if (!is_offload) {
495 			rxd = (void *)msdu->data;
496 
497 			trace_ath10k_htt_rx_desc(ar, rxd, sizeof(*rxd));
498 
499 			skb_put(msdu, sizeof(*rxd));
500 			skb_pull(msdu, sizeof(*rxd));
501 			skb_put(msdu, __le16_to_cpu(msdu_desc->msdu_len));
502 
503 			if (!(__le32_to_cpu(rxd->attention.flags) &
504 			      RX_ATTENTION_FLAGS_MSDU_DONE)) {
505 				ath10k_warn(htt->ar, "tried to pop an incomplete frame, oops!\n");
506 				return -EIO;
507 			}
508 		}
509 
510 		msdu_desc++;
511 	}
512 
513 	return 0;
514 }
515 
516 static int ath10k_htt_rx_pop_paddr64_list(struct ath10k_htt *htt,
517 					  struct htt_rx_in_ord_ind *ev,
518 					  struct sk_buff_head *list)
519 {
520 	struct ath10k *ar = htt->ar;
521 	struct htt_rx_in_ord_msdu_desc_ext *msdu_desc = ev->msdu_descs64;
522 	struct htt_rx_desc *rxd;
523 	struct sk_buff *msdu;
524 	int msdu_count;
525 	bool is_offload;
526 	u64 paddr;
527 
528 	lockdep_assert_held(&htt->rx_ring.lock);
529 
530 	msdu_count = __le16_to_cpu(ev->msdu_count);
531 	is_offload = !!(ev->info & HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK);
532 
533 	while (msdu_count--) {
534 		paddr = __le64_to_cpu(msdu_desc->msdu_paddr);
535 		msdu = ath10k_htt_rx_pop_paddr(htt, paddr);
536 		if (!msdu) {
537 			__skb_queue_purge(list);
538 			return -ENOENT;
539 		}
540 
541 		__skb_queue_tail(list, msdu);
542 
543 		if (!is_offload) {
544 			rxd = (void *)msdu->data;
545 
546 			trace_ath10k_htt_rx_desc(ar, rxd, sizeof(*rxd));
547 
548 			skb_put(msdu, sizeof(*rxd));
549 			skb_pull(msdu, sizeof(*rxd));
550 			skb_put(msdu, __le16_to_cpu(msdu_desc->msdu_len));
551 
552 			if (!(__le32_to_cpu(rxd->attention.flags) &
553 			      RX_ATTENTION_FLAGS_MSDU_DONE)) {
554 				ath10k_warn(htt->ar, "tried to pop an incomplete frame, oops!\n");
555 				return -EIO;
556 			}
557 		}
558 
559 		msdu_desc++;
560 	}
561 
562 	return 0;
563 }
564 
565 int ath10k_htt_rx_alloc(struct ath10k_htt *htt)
566 {
567 	struct ath10k *ar = htt->ar;
568 	dma_addr_t paddr;
569 	void *vaddr, *vaddr_ring;
570 	size_t size;
571 	struct timer_list *timer = &htt->rx_ring.refill_retry_timer;
572 
573 	htt->rx_confused = false;
574 
575 	/* XXX: The fill level could be changed during runtime in response to
576 	 * the host processing latency. Is this really worth it?
577 	 */
578 	htt->rx_ring.size = HTT_RX_RING_SIZE;
579 	htt->rx_ring.size_mask = htt->rx_ring.size - 1;
580 	htt->rx_ring.fill_level = ar->hw_params.rx_ring_fill_level;
581 
582 	if (!is_power_of_2(htt->rx_ring.size)) {
583 		ath10k_warn(ar, "htt rx ring size is not power of 2\n");
584 		return -EINVAL;
585 	}
586 
587 	htt->rx_ring.netbufs_ring =
588 		kcalloc(htt->rx_ring.size, sizeof(struct sk_buff *),
589 			GFP_KERNEL);
590 	if (!htt->rx_ring.netbufs_ring)
591 		goto err_netbuf;
592 
593 	size = ath10k_htt_get_rx_ring_size(htt);
594 
595 	vaddr_ring = dma_alloc_coherent(htt->ar->dev, size, &paddr, GFP_KERNEL);
596 	if (!vaddr_ring)
597 		goto err_dma_ring;
598 
599 	ath10k_htt_config_paddrs_ring(htt, vaddr_ring);
600 	htt->rx_ring.base_paddr = paddr;
601 
602 	vaddr = dma_alloc_coherent(htt->ar->dev,
603 				   sizeof(*htt->rx_ring.alloc_idx.vaddr),
604 				   &paddr, GFP_KERNEL);
605 	if (!vaddr)
606 		goto err_dma_idx;
607 
608 	htt->rx_ring.alloc_idx.vaddr = vaddr;
609 	htt->rx_ring.alloc_idx.paddr = paddr;
610 	htt->rx_ring.sw_rd_idx.msdu_payld = htt->rx_ring.size_mask;
611 	*htt->rx_ring.alloc_idx.vaddr = 0;
612 
613 	/* Initialize the Rx refill retry timer */
614 	timer_setup(timer, ath10k_htt_rx_ring_refill_retry, 0);
615 
616 	spin_lock_init(&htt->rx_ring.lock);
617 
618 	htt->rx_ring.fill_cnt = 0;
619 	htt->rx_ring.sw_rd_idx.msdu_payld = 0;
620 	hash_init(htt->rx_ring.skb_table);
621 
622 	skb_queue_head_init(&htt->rx_msdus_q);
623 	skb_queue_head_init(&htt->rx_in_ord_compl_q);
624 	skb_queue_head_init(&htt->tx_fetch_ind_q);
625 	atomic_set(&htt->num_mpdus_ready, 0);
626 
627 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "htt rx ring size %d fill_level %d\n",
628 		   htt->rx_ring.size, htt->rx_ring.fill_level);
629 	return 0;
630 
631 err_dma_idx:
632 	dma_free_coherent(htt->ar->dev,
633 			  ath10k_htt_get_rx_ring_size(htt),
634 			  vaddr_ring,
635 			  htt->rx_ring.base_paddr);
636 err_dma_ring:
637 	kfree(htt->rx_ring.netbufs_ring);
638 err_netbuf:
639 	return -ENOMEM;
640 }
641 
642 static int ath10k_htt_rx_crypto_param_len(struct ath10k *ar,
643 					  enum htt_rx_mpdu_encrypt_type type)
644 {
645 	switch (type) {
646 	case HTT_RX_MPDU_ENCRYPT_NONE:
647 		return 0;
648 	case HTT_RX_MPDU_ENCRYPT_WEP40:
649 	case HTT_RX_MPDU_ENCRYPT_WEP104:
650 		return IEEE80211_WEP_IV_LEN;
651 	case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
652 	case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
653 		return IEEE80211_TKIP_IV_LEN;
654 	case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
655 		return IEEE80211_CCMP_HDR_LEN;
656 	case HTT_RX_MPDU_ENCRYPT_AES_CCM256_WPA2:
657 		return IEEE80211_CCMP_256_HDR_LEN;
658 	case HTT_RX_MPDU_ENCRYPT_AES_GCMP_WPA2:
659 	case HTT_RX_MPDU_ENCRYPT_AES_GCMP256_WPA2:
660 		return IEEE80211_GCMP_HDR_LEN;
661 	case HTT_RX_MPDU_ENCRYPT_WEP128:
662 	case HTT_RX_MPDU_ENCRYPT_WAPI:
663 		break;
664 	}
665 
666 	ath10k_warn(ar, "unsupported encryption type %d\n", type);
667 	return 0;
668 }
669 
670 #define MICHAEL_MIC_LEN 8
671 
672 static int ath10k_htt_rx_crypto_mic_len(struct ath10k *ar,
673 					enum htt_rx_mpdu_encrypt_type type)
674 {
675 	switch (type) {
676 	case HTT_RX_MPDU_ENCRYPT_NONE:
677 	case HTT_RX_MPDU_ENCRYPT_WEP40:
678 	case HTT_RX_MPDU_ENCRYPT_WEP104:
679 	case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
680 	case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
681 		return 0;
682 	case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
683 		return IEEE80211_CCMP_MIC_LEN;
684 	case HTT_RX_MPDU_ENCRYPT_AES_CCM256_WPA2:
685 		return IEEE80211_CCMP_256_MIC_LEN;
686 	case HTT_RX_MPDU_ENCRYPT_AES_GCMP_WPA2:
687 	case HTT_RX_MPDU_ENCRYPT_AES_GCMP256_WPA2:
688 		return IEEE80211_GCMP_MIC_LEN;
689 	case HTT_RX_MPDU_ENCRYPT_WEP128:
690 	case HTT_RX_MPDU_ENCRYPT_WAPI:
691 		break;
692 	}
693 
694 	ath10k_warn(ar, "unsupported encryption type %d\n", type);
695 	return 0;
696 }
697 
698 static int ath10k_htt_rx_crypto_icv_len(struct ath10k *ar,
699 					enum htt_rx_mpdu_encrypt_type type)
700 {
701 	switch (type) {
702 	case HTT_RX_MPDU_ENCRYPT_NONE:
703 	case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
704 	case HTT_RX_MPDU_ENCRYPT_AES_CCM256_WPA2:
705 	case HTT_RX_MPDU_ENCRYPT_AES_GCMP_WPA2:
706 	case HTT_RX_MPDU_ENCRYPT_AES_GCMP256_WPA2:
707 		return 0;
708 	case HTT_RX_MPDU_ENCRYPT_WEP40:
709 	case HTT_RX_MPDU_ENCRYPT_WEP104:
710 		return IEEE80211_WEP_ICV_LEN;
711 	case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
712 	case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
713 		return IEEE80211_TKIP_ICV_LEN;
714 	case HTT_RX_MPDU_ENCRYPT_WEP128:
715 	case HTT_RX_MPDU_ENCRYPT_WAPI:
716 		break;
717 	}
718 
719 	ath10k_warn(ar, "unsupported encryption type %d\n", type);
720 	return 0;
721 }
722 
723 struct amsdu_subframe_hdr {
724 	u8 dst[ETH_ALEN];
725 	u8 src[ETH_ALEN];
726 	__be16 len;
727 } __packed;
728 
729 #define GROUP_ID_IS_SU_MIMO(x) ((x) == 0 || (x) == 63)
730 
731 static inline u8 ath10k_bw_to_mac80211_bw(u8 bw)
732 {
733 	u8 ret = 0;
734 
735 	switch (bw) {
736 	case 0:
737 		ret = RATE_INFO_BW_20;
738 		break;
739 	case 1:
740 		ret = RATE_INFO_BW_40;
741 		break;
742 	case 2:
743 		ret = RATE_INFO_BW_80;
744 		break;
745 	case 3:
746 		ret = RATE_INFO_BW_160;
747 		break;
748 	}
749 
750 	return ret;
751 }
752 
753 static void ath10k_htt_rx_h_rates(struct ath10k *ar,
754 				  struct ieee80211_rx_status *status,
755 				  struct htt_rx_desc *rxd)
756 {
757 	struct ieee80211_supported_band *sband;
758 	u8 cck, rate, bw, sgi, mcs, nss;
759 	u8 preamble = 0;
760 	u8 group_id;
761 	u32 info1, info2, info3;
762 
763 	info1 = __le32_to_cpu(rxd->ppdu_start.info1);
764 	info2 = __le32_to_cpu(rxd->ppdu_start.info2);
765 	info3 = __le32_to_cpu(rxd->ppdu_start.info3);
766 
767 	preamble = MS(info1, RX_PPDU_START_INFO1_PREAMBLE_TYPE);
768 
769 	switch (preamble) {
770 	case HTT_RX_LEGACY:
771 		/* To get legacy rate index band is required. Since band can't
772 		 * be undefined check if freq is non-zero.
773 		 */
774 		if (!status->freq)
775 			return;
776 
777 		cck = info1 & RX_PPDU_START_INFO1_L_SIG_RATE_SELECT;
778 		rate = MS(info1, RX_PPDU_START_INFO1_L_SIG_RATE);
779 		rate &= ~RX_PPDU_START_RATE_FLAG;
780 
781 		sband = &ar->mac.sbands[status->band];
782 		status->rate_idx = ath10k_mac_hw_rate_to_idx(sband, rate, cck);
783 		break;
784 	case HTT_RX_HT:
785 	case HTT_RX_HT_WITH_TXBF:
786 		/* HT-SIG - Table 20-11 in info2 and info3 */
787 		mcs = info2 & 0x1F;
788 		nss = mcs >> 3;
789 		bw = (info2 >> 7) & 1;
790 		sgi = (info3 >> 7) & 1;
791 
792 		status->rate_idx = mcs;
793 		status->encoding = RX_ENC_HT;
794 		if (sgi)
795 			status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
796 		if (bw)
797 			status->bw = RATE_INFO_BW_40;
798 		break;
799 	case HTT_RX_VHT:
800 	case HTT_RX_VHT_WITH_TXBF:
801 		/* VHT-SIG-A1 in info2, VHT-SIG-A2 in info3
802 		 * TODO check this
803 		 */
804 		bw = info2 & 3;
805 		sgi = info3 & 1;
806 		group_id = (info2 >> 4) & 0x3F;
807 
808 		if (GROUP_ID_IS_SU_MIMO(group_id)) {
809 			mcs = (info3 >> 4) & 0x0F;
810 			nss = ((info2 >> 10) & 0x07) + 1;
811 		} else {
812 			/* Hardware doesn't decode VHT-SIG-B into Rx descriptor
813 			 * so it's impossible to decode MCS. Also since
814 			 * firmware consumes Group Id Management frames host
815 			 * has no knowledge regarding group/user position
816 			 * mapping so it's impossible to pick the correct Nsts
817 			 * from VHT-SIG-A1.
818 			 *
819 			 * Bandwidth and SGI are valid so report the rateinfo
820 			 * on best-effort basis.
821 			 */
822 			mcs = 0;
823 			nss = 1;
824 		}
825 
826 		if (mcs > 0x09) {
827 			ath10k_warn(ar, "invalid MCS received %u\n", mcs);
828 			ath10k_warn(ar, "rxd %08x mpdu start %08x %08x msdu start %08x %08x ppdu start %08x %08x %08x %08x %08x\n",
829 				    __le32_to_cpu(rxd->attention.flags),
830 				    __le32_to_cpu(rxd->mpdu_start.info0),
831 				    __le32_to_cpu(rxd->mpdu_start.info1),
832 				    __le32_to_cpu(rxd->msdu_start.common.info0),
833 				    __le32_to_cpu(rxd->msdu_start.common.info1),
834 				    rxd->ppdu_start.info0,
835 				    __le32_to_cpu(rxd->ppdu_start.info1),
836 				    __le32_to_cpu(rxd->ppdu_start.info2),
837 				    __le32_to_cpu(rxd->ppdu_start.info3),
838 				    __le32_to_cpu(rxd->ppdu_start.info4));
839 
840 			ath10k_warn(ar, "msdu end %08x mpdu end %08x\n",
841 				    __le32_to_cpu(rxd->msdu_end.common.info0),
842 				    __le32_to_cpu(rxd->mpdu_end.info0));
843 
844 			ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL,
845 					"rx desc msdu payload: ",
846 					rxd->msdu_payload, 50);
847 		}
848 
849 		status->rate_idx = mcs;
850 		status->nss = nss;
851 
852 		if (sgi)
853 			status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
854 
855 		status->bw = ath10k_bw_to_mac80211_bw(bw);
856 		status->encoding = RX_ENC_VHT;
857 		break;
858 	default:
859 		break;
860 	}
861 }
862 
863 static struct ieee80211_channel *
864 ath10k_htt_rx_h_peer_channel(struct ath10k *ar, struct htt_rx_desc *rxd)
865 {
866 	struct ath10k_peer *peer;
867 	struct ath10k_vif *arvif;
868 	struct cfg80211_chan_def def;
869 	u16 peer_id;
870 
871 	lockdep_assert_held(&ar->data_lock);
872 
873 	if (!rxd)
874 		return NULL;
875 
876 	if (rxd->attention.flags &
877 	    __cpu_to_le32(RX_ATTENTION_FLAGS_PEER_IDX_INVALID))
878 		return NULL;
879 
880 	if (!(rxd->msdu_end.common.info0 &
881 	      __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU)))
882 		return NULL;
883 
884 	peer_id = MS(__le32_to_cpu(rxd->mpdu_start.info0),
885 		     RX_MPDU_START_INFO0_PEER_IDX);
886 
887 	peer = ath10k_peer_find_by_id(ar, peer_id);
888 	if (!peer)
889 		return NULL;
890 
891 	arvif = ath10k_get_arvif(ar, peer->vdev_id);
892 	if (WARN_ON_ONCE(!arvif))
893 		return NULL;
894 
895 	if (ath10k_mac_vif_chan(arvif->vif, &def))
896 		return NULL;
897 
898 	return def.chan;
899 }
900 
901 static struct ieee80211_channel *
902 ath10k_htt_rx_h_vdev_channel(struct ath10k *ar, u32 vdev_id)
903 {
904 	struct ath10k_vif *arvif;
905 	struct cfg80211_chan_def def;
906 
907 	lockdep_assert_held(&ar->data_lock);
908 
909 	list_for_each_entry(arvif, &ar->arvifs, list) {
910 		if (arvif->vdev_id == vdev_id &&
911 		    ath10k_mac_vif_chan(arvif->vif, &def) == 0)
912 			return def.chan;
913 	}
914 
915 	return NULL;
916 }
917 
918 static void
919 ath10k_htt_rx_h_any_chan_iter(struct ieee80211_hw *hw,
920 			      struct ieee80211_chanctx_conf *conf,
921 			      void *data)
922 {
923 	struct cfg80211_chan_def *def = data;
924 
925 	*def = conf->def;
926 }
927 
928 static struct ieee80211_channel *
929 ath10k_htt_rx_h_any_channel(struct ath10k *ar)
930 {
931 	struct cfg80211_chan_def def = {};
932 
933 	ieee80211_iter_chan_contexts_atomic(ar->hw,
934 					    ath10k_htt_rx_h_any_chan_iter,
935 					    &def);
936 
937 	return def.chan;
938 }
939 
940 static bool ath10k_htt_rx_h_channel(struct ath10k *ar,
941 				    struct ieee80211_rx_status *status,
942 				    struct htt_rx_desc *rxd,
943 				    u32 vdev_id)
944 {
945 	struct ieee80211_channel *ch;
946 
947 	spin_lock_bh(&ar->data_lock);
948 	ch = ar->scan_channel;
949 	if (!ch)
950 		ch = ar->rx_channel;
951 	if (!ch)
952 		ch = ath10k_htt_rx_h_peer_channel(ar, rxd);
953 	if (!ch)
954 		ch = ath10k_htt_rx_h_vdev_channel(ar, vdev_id);
955 	if (!ch)
956 		ch = ath10k_htt_rx_h_any_channel(ar);
957 	if (!ch)
958 		ch = ar->tgt_oper_chan;
959 	spin_unlock_bh(&ar->data_lock);
960 
961 	if (!ch)
962 		return false;
963 
964 	status->band = ch->band;
965 	status->freq = ch->center_freq;
966 
967 	return true;
968 }
969 
970 static void ath10k_htt_rx_h_signal(struct ath10k *ar,
971 				   struct ieee80211_rx_status *status,
972 				   struct htt_rx_desc *rxd)
973 {
974 	int i;
975 
976 	for (i = 0; i < IEEE80211_MAX_CHAINS ; i++) {
977 		status->chains &= ~BIT(i);
978 
979 		if (rxd->ppdu_start.rssi_chains[i].pri20_mhz != 0x80) {
980 			status->chain_signal[i] = ATH10K_DEFAULT_NOISE_FLOOR +
981 				rxd->ppdu_start.rssi_chains[i].pri20_mhz;
982 
983 			status->chains |= BIT(i);
984 		}
985 	}
986 
987 	/* FIXME: Get real NF */
988 	status->signal = ATH10K_DEFAULT_NOISE_FLOOR +
989 			 rxd->ppdu_start.rssi_comb;
990 	status->flag &= ~RX_FLAG_NO_SIGNAL_VAL;
991 }
992 
993 static void ath10k_htt_rx_h_mactime(struct ath10k *ar,
994 				    struct ieee80211_rx_status *status,
995 				    struct htt_rx_desc *rxd)
996 {
997 	/* FIXME: TSF is known only at the end of PPDU, in the last MPDU. This
998 	 * means all prior MSDUs in a PPDU are reported to mac80211 without the
999 	 * TSF. Is it worth holding frames until end of PPDU is known?
1000 	 *
1001 	 * FIXME: Can we get/compute 64bit TSF?
1002 	 */
1003 	status->mactime = __le32_to_cpu(rxd->ppdu_end.common.tsf_timestamp);
1004 	status->flag |= RX_FLAG_MACTIME_END;
1005 }
1006 
1007 static void ath10k_htt_rx_h_ppdu(struct ath10k *ar,
1008 				 struct sk_buff_head *amsdu,
1009 				 struct ieee80211_rx_status *status,
1010 				 u32 vdev_id)
1011 {
1012 	struct sk_buff *first;
1013 	struct htt_rx_desc *rxd;
1014 	bool is_first_ppdu;
1015 	bool is_last_ppdu;
1016 
1017 	if (skb_queue_empty(amsdu))
1018 		return;
1019 
1020 	first = skb_peek(amsdu);
1021 	rxd = (void *)first->data - sizeof(*rxd);
1022 
1023 	is_first_ppdu = !!(rxd->attention.flags &
1024 			   __cpu_to_le32(RX_ATTENTION_FLAGS_FIRST_MPDU));
1025 	is_last_ppdu = !!(rxd->attention.flags &
1026 			  __cpu_to_le32(RX_ATTENTION_FLAGS_LAST_MPDU));
1027 
1028 	if (is_first_ppdu) {
1029 		/* New PPDU starts so clear out the old per-PPDU status. */
1030 		status->freq = 0;
1031 		status->rate_idx = 0;
1032 		status->nss = 0;
1033 		status->encoding = RX_ENC_LEGACY;
1034 		status->bw = RATE_INFO_BW_20;
1035 
1036 		status->flag &= ~RX_FLAG_MACTIME_END;
1037 		status->flag |= RX_FLAG_NO_SIGNAL_VAL;
1038 
1039 		status->flag &= ~(RX_FLAG_AMPDU_IS_LAST);
1040 		status->flag |= RX_FLAG_AMPDU_DETAILS | RX_FLAG_AMPDU_LAST_KNOWN;
1041 		status->ampdu_reference = ar->ampdu_reference;
1042 
1043 		ath10k_htt_rx_h_signal(ar, status, rxd);
1044 		ath10k_htt_rx_h_channel(ar, status, rxd, vdev_id);
1045 		ath10k_htt_rx_h_rates(ar, status, rxd);
1046 	}
1047 
1048 	if (is_last_ppdu) {
1049 		ath10k_htt_rx_h_mactime(ar, status, rxd);
1050 
1051 		/* set ampdu last segment flag */
1052 		status->flag |= RX_FLAG_AMPDU_IS_LAST;
1053 		ar->ampdu_reference++;
1054 	}
1055 }
1056 
1057 static const char * const tid_to_ac[] = {
1058 	"BE",
1059 	"BK",
1060 	"BK",
1061 	"BE",
1062 	"VI",
1063 	"VI",
1064 	"VO",
1065 	"VO",
1066 };
1067 
1068 static char *ath10k_get_tid(struct ieee80211_hdr *hdr, char *out, size_t size)
1069 {
1070 	u8 *qc;
1071 	int tid;
1072 
1073 	if (!ieee80211_is_data_qos(hdr->frame_control))
1074 		return "";
1075 
1076 	qc = ieee80211_get_qos_ctl(hdr);
1077 	tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
1078 	if (tid < 8)
1079 		snprintf(out, size, "tid %d (%s)", tid, tid_to_ac[tid]);
1080 	else
1081 		snprintf(out, size, "tid %d", tid);
1082 
1083 	return out;
1084 }
1085 
1086 static void ath10k_htt_rx_h_queue_msdu(struct ath10k *ar,
1087 				       struct ieee80211_rx_status *rx_status,
1088 				       struct sk_buff *skb)
1089 {
1090 	struct ieee80211_rx_status *status;
1091 
1092 	status = IEEE80211_SKB_RXCB(skb);
1093 	*status = *rx_status;
1094 
1095 	skb_queue_tail(&ar->htt.rx_msdus_q, skb);
1096 }
1097 
1098 static void ath10k_process_rx(struct ath10k *ar, struct sk_buff *skb)
1099 {
1100 	struct ieee80211_rx_status *status;
1101 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1102 	char tid[32];
1103 
1104 	status = IEEE80211_SKB_RXCB(skb);
1105 
1106 	ath10k_dbg(ar, ATH10K_DBG_DATA,
1107 		   "rx skb %pK len %u peer %pM %s %s sn %u %s%s%s%s%s%s %srate_idx %u vht_nss %u freq %u band %u flag 0x%x fcs-err %i mic-err %i amsdu-more %i\n",
1108 		   skb,
1109 		   skb->len,
1110 		   ieee80211_get_SA(hdr),
1111 		   ath10k_get_tid(hdr, tid, sizeof(tid)),
1112 		   is_multicast_ether_addr(ieee80211_get_DA(hdr)) ?
1113 							"mcast" : "ucast",
1114 		   (__le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_SEQ) >> 4,
1115 		   (status->encoding == RX_ENC_LEGACY) ? "legacy" : "",
1116 		   (status->encoding == RX_ENC_HT) ? "ht" : "",
1117 		   (status->encoding == RX_ENC_VHT) ? "vht" : "",
1118 		   (status->bw == RATE_INFO_BW_40) ? "40" : "",
1119 		   (status->bw == RATE_INFO_BW_80) ? "80" : "",
1120 		   (status->bw == RATE_INFO_BW_160) ? "160" : "",
1121 		   status->enc_flags & RX_ENC_FLAG_SHORT_GI ? "sgi " : "",
1122 		   status->rate_idx,
1123 		   status->nss,
1124 		   status->freq,
1125 		   status->band, status->flag,
1126 		   !!(status->flag & RX_FLAG_FAILED_FCS_CRC),
1127 		   !!(status->flag & RX_FLAG_MMIC_ERROR),
1128 		   !!(status->flag & RX_FLAG_AMSDU_MORE));
1129 	ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "rx skb: ",
1130 			skb->data, skb->len);
1131 	trace_ath10k_rx_hdr(ar, skb->data, skb->len);
1132 	trace_ath10k_rx_payload(ar, skb->data, skb->len);
1133 
1134 	ieee80211_rx_napi(ar->hw, NULL, skb, &ar->napi);
1135 }
1136 
1137 static int ath10k_htt_rx_nwifi_hdrlen(struct ath10k *ar,
1138 				      struct ieee80211_hdr *hdr)
1139 {
1140 	int len = ieee80211_hdrlen(hdr->frame_control);
1141 
1142 	if (!test_bit(ATH10K_FW_FEATURE_NO_NWIFI_DECAP_4ADDR_PADDING,
1143 		      ar->running_fw->fw_file.fw_features))
1144 		len = round_up(len, 4);
1145 
1146 	return len;
1147 }
1148 
1149 static void ath10k_htt_rx_h_undecap_raw(struct ath10k *ar,
1150 					struct sk_buff *msdu,
1151 					struct ieee80211_rx_status *status,
1152 					enum htt_rx_mpdu_encrypt_type enctype,
1153 					bool is_decrypted)
1154 {
1155 	struct ieee80211_hdr *hdr;
1156 	struct htt_rx_desc *rxd;
1157 	size_t hdr_len;
1158 	size_t crypto_len;
1159 	bool is_first;
1160 	bool is_last;
1161 
1162 	rxd = (void *)msdu->data - sizeof(*rxd);
1163 	is_first = !!(rxd->msdu_end.common.info0 &
1164 		      __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU));
1165 	is_last = !!(rxd->msdu_end.common.info0 &
1166 		     __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU));
1167 
1168 	/* Delivered decapped frame:
1169 	 * [802.11 header]
1170 	 * [crypto param] <-- can be trimmed if !fcs_err &&
1171 	 *                    !decrypt_err && !peer_idx_invalid
1172 	 * [amsdu header] <-- only if A-MSDU
1173 	 * [rfc1042/llc]
1174 	 * [payload]
1175 	 * [FCS] <-- at end, needs to be trimmed
1176 	 */
1177 
1178 	/* This probably shouldn't happen but warn just in case */
1179 	if (unlikely(WARN_ON_ONCE(!is_first)))
1180 		return;
1181 
1182 	/* This probably shouldn't happen but warn just in case */
1183 	if (unlikely(WARN_ON_ONCE(!(is_first && is_last))))
1184 		return;
1185 
1186 	skb_trim(msdu, msdu->len - FCS_LEN);
1187 
1188 	/* In most cases this will be true for sniffed frames. It makes sense
1189 	 * to deliver them as-is without stripping the crypto param. This is
1190 	 * necessary for software based decryption.
1191 	 *
1192 	 * If there's no error then the frame is decrypted. At least that is
1193 	 * the case for frames that come in via fragmented rx indication.
1194 	 */
1195 	if (!is_decrypted)
1196 		return;
1197 
1198 	/* The payload is decrypted so strip crypto params. Start from tail
1199 	 * since hdr is used to compute some stuff.
1200 	 */
1201 
1202 	hdr = (void *)msdu->data;
1203 
1204 	/* Tail */
1205 	if (status->flag & RX_FLAG_IV_STRIPPED) {
1206 		skb_trim(msdu, msdu->len -
1207 			 ath10k_htt_rx_crypto_mic_len(ar, enctype));
1208 
1209 		skb_trim(msdu, msdu->len -
1210 			 ath10k_htt_rx_crypto_icv_len(ar, enctype));
1211 	} else {
1212 		/* MIC */
1213 		if (status->flag & RX_FLAG_MIC_STRIPPED)
1214 			skb_trim(msdu, msdu->len -
1215 				 ath10k_htt_rx_crypto_mic_len(ar, enctype));
1216 
1217 		/* ICV */
1218 		if (status->flag & RX_FLAG_ICV_STRIPPED)
1219 			skb_trim(msdu, msdu->len -
1220 				 ath10k_htt_rx_crypto_icv_len(ar, enctype));
1221 	}
1222 
1223 	/* MMIC */
1224 	if ((status->flag & RX_FLAG_MMIC_STRIPPED) &&
1225 	    !ieee80211_has_morefrags(hdr->frame_control) &&
1226 	    enctype == HTT_RX_MPDU_ENCRYPT_TKIP_WPA)
1227 		skb_trim(msdu, msdu->len - MICHAEL_MIC_LEN);
1228 
1229 	/* Head */
1230 	if (status->flag & RX_FLAG_IV_STRIPPED) {
1231 		hdr_len = ieee80211_hdrlen(hdr->frame_control);
1232 		crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype);
1233 
1234 		memmove((void *)msdu->data + crypto_len,
1235 			(void *)msdu->data, hdr_len);
1236 		skb_pull(msdu, crypto_len);
1237 	}
1238 }
1239 
1240 static void ath10k_htt_rx_h_undecap_nwifi(struct ath10k *ar,
1241 					  struct sk_buff *msdu,
1242 					  struct ieee80211_rx_status *status,
1243 					  const u8 first_hdr[64],
1244 					  enum htt_rx_mpdu_encrypt_type enctype)
1245 {
1246 	struct ieee80211_hdr *hdr;
1247 	struct htt_rx_desc *rxd;
1248 	size_t hdr_len;
1249 	u8 da[ETH_ALEN];
1250 	u8 sa[ETH_ALEN];
1251 	int l3_pad_bytes;
1252 	int bytes_aligned = ar->hw_params.decap_align_bytes;
1253 
1254 	/* Delivered decapped frame:
1255 	 * [nwifi 802.11 header] <-- replaced with 802.11 hdr
1256 	 * [rfc1042/llc]
1257 	 *
1258 	 * Note: The nwifi header doesn't have QoS Control and is
1259 	 * (always?) a 3addr frame.
1260 	 *
1261 	 * Note2: There's no A-MSDU subframe header. Even if it's part
1262 	 * of an A-MSDU.
1263 	 */
1264 
1265 	/* pull decapped header and copy SA & DA */
1266 	rxd = (void *)msdu->data - sizeof(*rxd);
1267 
1268 	l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd);
1269 	skb_put(msdu, l3_pad_bytes);
1270 
1271 	hdr = (struct ieee80211_hdr *)(msdu->data + l3_pad_bytes);
1272 
1273 	hdr_len = ath10k_htt_rx_nwifi_hdrlen(ar, hdr);
1274 	ether_addr_copy(da, ieee80211_get_DA(hdr));
1275 	ether_addr_copy(sa, ieee80211_get_SA(hdr));
1276 	skb_pull(msdu, hdr_len);
1277 
1278 	/* push original 802.11 header */
1279 	hdr = (struct ieee80211_hdr *)first_hdr;
1280 	hdr_len = ieee80211_hdrlen(hdr->frame_control);
1281 
1282 	if (!(status->flag & RX_FLAG_IV_STRIPPED)) {
1283 		memcpy(skb_push(msdu,
1284 				ath10k_htt_rx_crypto_param_len(ar, enctype)),
1285 		       (void *)hdr + round_up(hdr_len, bytes_aligned),
1286 			ath10k_htt_rx_crypto_param_len(ar, enctype));
1287 	}
1288 
1289 	memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1290 
1291 	/* original 802.11 header has a different DA and in
1292 	 * case of 4addr it may also have different SA
1293 	 */
1294 	hdr = (struct ieee80211_hdr *)msdu->data;
1295 	ether_addr_copy(ieee80211_get_DA(hdr), da);
1296 	ether_addr_copy(ieee80211_get_SA(hdr), sa);
1297 }
1298 
1299 static void *ath10k_htt_rx_h_find_rfc1042(struct ath10k *ar,
1300 					  struct sk_buff *msdu,
1301 					  enum htt_rx_mpdu_encrypt_type enctype)
1302 {
1303 	struct ieee80211_hdr *hdr;
1304 	struct htt_rx_desc *rxd;
1305 	size_t hdr_len, crypto_len;
1306 	void *rfc1042;
1307 	bool is_first, is_last, is_amsdu;
1308 	int bytes_aligned = ar->hw_params.decap_align_bytes;
1309 
1310 	rxd = (void *)msdu->data - sizeof(*rxd);
1311 	hdr = (void *)rxd->rx_hdr_status;
1312 
1313 	is_first = !!(rxd->msdu_end.common.info0 &
1314 		      __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU));
1315 	is_last = !!(rxd->msdu_end.common.info0 &
1316 		     __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU));
1317 	is_amsdu = !(is_first && is_last);
1318 
1319 	rfc1042 = hdr;
1320 
1321 	if (is_first) {
1322 		hdr_len = ieee80211_hdrlen(hdr->frame_control);
1323 		crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype);
1324 
1325 		rfc1042 += round_up(hdr_len, bytes_aligned) +
1326 			   round_up(crypto_len, bytes_aligned);
1327 	}
1328 
1329 	if (is_amsdu)
1330 		rfc1042 += sizeof(struct amsdu_subframe_hdr);
1331 
1332 	return rfc1042;
1333 }
1334 
1335 static void ath10k_htt_rx_h_undecap_eth(struct ath10k *ar,
1336 					struct sk_buff *msdu,
1337 					struct ieee80211_rx_status *status,
1338 					const u8 first_hdr[64],
1339 					enum htt_rx_mpdu_encrypt_type enctype)
1340 {
1341 	struct ieee80211_hdr *hdr;
1342 	struct ethhdr *eth;
1343 	size_t hdr_len;
1344 	void *rfc1042;
1345 	u8 da[ETH_ALEN];
1346 	u8 sa[ETH_ALEN];
1347 	int l3_pad_bytes;
1348 	struct htt_rx_desc *rxd;
1349 	int bytes_aligned = ar->hw_params.decap_align_bytes;
1350 
1351 	/* Delivered decapped frame:
1352 	 * [eth header] <-- replaced with 802.11 hdr & rfc1042/llc
1353 	 * [payload]
1354 	 */
1355 
1356 	rfc1042 = ath10k_htt_rx_h_find_rfc1042(ar, msdu, enctype);
1357 	if (WARN_ON_ONCE(!rfc1042))
1358 		return;
1359 
1360 	rxd = (void *)msdu->data - sizeof(*rxd);
1361 	l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd);
1362 	skb_put(msdu, l3_pad_bytes);
1363 	skb_pull(msdu, l3_pad_bytes);
1364 
1365 	/* pull decapped header and copy SA & DA */
1366 	eth = (struct ethhdr *)msdu->data;
1367 	ether_addr_copy(da, eth->h_dest);
1368 	ether_addr_copy(sa, eth->h_source);
1369 	skb_pull(msdu, sizeof(struct ethhdr));
1370 
1371 	/* push rfc1042/llc/snap */
1372 	memcpy(skb_push(msdu, sizeof(struct rfc1042_hdr)), rfc1042,
1373 	       sizeof(struct rfc1042_hdr));
1374 
1375 	/* push original 802.11 header */
1376 	hdr = (struct ieee80211_hdr *)first_hdr;
1377 	hdr_len = ieee80211_hdrlen(hdr->frame_control);
1378 
1379 	if (!(status->flag & RX_FLAG_IV_STRIPPED)) {
1380 		memcpy(skb_push(msdu,
1381 				ath10k_htt_rx_crypto_param_len(ar, enctype)),
1382 		       (void *)hdr + round_up(hdr_len, bytes_aligned),
1383 			ath10k_htt_rx_crypto_param_len(ar, enctype));
1384 	}
1385 
1386 	memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1387 
1388 	/* original 802.11 header has a different DA and in
1389 	 * case of 4addr it may also have different SA
1390 	 */
1391 	hdr = (struct ieee80211_hdr *)msdu->data;
1392 	ether_addr_copy(ieee80211_get_DA(hdr), da);
1393 	ether_addr_copy(ieee80211_get_SA(hdr), sa);
1394 }
1395 
1396 static void ath10k_htt_rx_h_undecap_snap(struct ath10k *ar,
1397 					 struct sk_buff *msdu,
1398 					 struct ieee80211_rx_status *status,
1399 					 const u8 first_hdr[64],
1400 					 enum htt_rx_mpdu_encrypt_type enctype)
1401 {
1402 	struct ieee80211_hdr *hdr;
1403 	size_t hdr_len;
1404 	int l3_pad_bytes;
1405 	struct htt_rx_desc *rxd;
1406 	int bytes_aligned = ar->hw_params.decap_align_bytes;
1407 
1408 	/* Delivered decapped frame:
1409 	 * [amsdu header] <-- replaced with 802.11 hdr
1410 	 * [rfc1042/llc]
1411 	 * [payload]
1412 	 */
1413 
1414 	rxd = (void *)msdu->data - sizeof(*rxd);
1415 	l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd);
1416 
1417 	skb_put(msdu, l3_pad_bytes);
1418 	skb_pull(msdu, sizeof(struct amsdu_subframe_hdr) + l3_pad_bytes);
1419 
1420 	hdr = (struct ieee80211_hdr *)first_hdr;
1421 	hdr_len = ieee80211_hdrlen(hdr->frame_control);
1422 
1423 	if (!(status->flag & RX_FLAG_IV_STRIPPED)) {
1424 		memcpy(skb_push(msdu,
1425 				ath10k_htt_rx_crypto_param_len(ar, enctype)),
1426 		       (void *)hdr + round_up(hdr_len, bytes_aligned),
1427 			ath10k_htt_rx_crypto_param_len(ar, enctype));
1428 	}
1429 
1430 	memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1431 }
1432 
1433 static void ath10k_htt_rx_h_undecap(struct ath10k *ar,
1434 				    struct sk_buff *msdu,
1435 				    struct ieee80211_rx_status *status,
1436 				    u8 first_hdr[64],
1437 				    enum htt_rx_mpdu_encrypt_type enctype,
1438 				    bool is_decrypted)
1439 {
1440 	struct htt_rx_desc *rxd;
1441 	enum rx_msdu_decap_format decap;
1442 
1443 	/* First msdu's decapped header:
1444 	 * [802.11 header] <-- padded to 4 bytes long
1445 	 * [crypto param] <-- padded to 4 bytes long
1446 	 * [amsdu header] <-- only if A-MSDU
1447 	 * [rfc1042/llc]
1448 	 *
1449 	 * Other (2nd, 3rd, ..) msdu's decapped header:
1450 	 * [amsdu header] <-- only if A-MSDU
1451 	 * [rfc1042/llc]
1452 	 */
1453 
1454 	rxd = (void *)msdu->data - sizeof(*rxd);
1455 	decap = MS(__le32_to_cpu(rxd->msdu_start.common.info1),
1456 		   RX_MSDU_START_INFO1_DECAP_FORMAT);
1457 
1458 	switch (decap) {
1459 	case RX_MSDU_DECAP_RAW:
1460 		ath10k_htt_rx_h_undecap_raw(ar, msdu, status, enctype,
1461 					    is_decrypted);
1462 		break;
1463 	case RX_MSDU_DECAP_NATIVE_WIFI:
1464 		ath10k_htt_rx_h_undecap_nwifi(ar, msdu, status, first_hdr,
1465 					      enctype);
1466 		break;
1467 	case RX_MSDU_DECAP_ETHERNET2_DIX:
1468 		ath10k_htt_rx_h_undecap_eth(ar, msdu, status, first_hdr, enctype);
1469 		break;
1470 	case RX_MSDU_DECAP_8023_SNAP_LLC:
1471 		ath10k_htt_rx_h_undecap_snap(ar, msdu, status, first_hdr,
1472 					     enctype);
1473 		break;
1474 	}
1475 }
1476 
1477 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb)
1478 {
1479 	struct htt_rx_desc *rxd;
1480 	u32 flags, info;
1481 	bool is_ip4, is_ip6;
1482 	bool is_tcp, is_udp;
1483 	bool ip_csum_ok, tcpudp_csum_ok;
1484 
1485 	rxd = (void *)skb->data - sizeof(*rxd);
1486 	flags = __le32_to_cpu(rxd->attention.flags);
1487 	info = __le32_to_cpu(rxd->msdu_start.common.info1);
1488 
1489 	is_ip4 = !!(info & RX_MSDU_START_INFO1_IPV4_PROTO);
1490 	is_ip6 = !!(info & RX_MSDU_START_INFO1_IPV6_PROTO);
1491 	is_tcp = !!(info & RX_MSDU_START_INFO1_TCP_PROTO);
1492 	is_udp = !!(info & RX_MSDU_START_INFO1_UDP_PROTO);
1493 	ip_csum_ok = !(flags & RX_ATTENTION_FLAGS_IP_CHKSUM_FAIL);
1494 	tcpudp_csum_ok = !(flags & RX_ATTENTION_FLAGS_TCP_UDP_CHKSUM_FAIL);
1495 
1496 	if (!is_ip4 && !is_ip6)
1497 		return CHECKSUM_NONE;
1498 	if (!is_tcp && !is_udp)
1499 		return CHECKSUM_NONE;
1500 	if (!ip_csum_ok)
1501 		return CHECKSUM_NONE;
1502 	if (!tcpudp_csum_ok)
1503 		return CHECKSUM_NONE;
1504 
1505 	return CHECKSUM_UNNECESSARY;
1506 }
1507 
1508 static void ath10k_htt_rx_h_csum_offload(struct sk_buff *msdu)
1509 {
1510 	msdu->ip_summed = ath10k_htt_rx_get_csum_state(msdu);
1511 }
1512 
1513 static void ath10k_htt_rx_h_mpdu(struct ath10k *ar,
1514 				 struct sk_buff_head *amsdu,
1515 				 struct ieee80211_rx_status *status,
1516 				 bool fill_crypt_header,
1517 				 u8 *rx_hdr,
1518 				 enum ath10k_pkt_rx_err *err)
1519 {
1520 	struct sk_buff *first;
1521 	struct sk_buff *last;
1522 	struct sk_buff *msdu;
1523 	struct htt_rx_desc *rxd;
1524 	struct ieee80211_hdr *hdr;
1525 	enum htt_rx_mpdu_encrypt_type enctype;
1526 	u8 first_hdr[64];
1527 	u8 *qos;
1528 	bool has_fcs_err;
1529 	bool has_crypto_err;
1530 	bool has_tkip_err;
1531 	bool has_peer_idx_invalid;
1532 	bool is_decrypted;
1533 	bool is_mgmt;
1534 	u32 attention;
1535 
1536 	if (skb_queue_empty(amsdu))
1537 		return;
1538 
1539 	first = skb_peek(amsdu);
1540 	rxd = (void *)first->data - sizeof(*rxd);
1541 
1542 	is_mgmt = !!(rxd->attention.flags &
1543 		     __cpu_to_le32(RX_ATTENTION_FLAGS_MGMT_TYPE));
1544 
1545 	enctype = MS(__le32_to_cpu(rxd->mpdu_start.info0),
1546 		     RX_MPDU_START_INFO0_ENCRYPT_TYPE);
1547 
1548 	/* First MSDU's Rx descriptor in an A-MSDU contains full 802.11
1549 	 * decapped header. It'll be used for undecapping of each MSDU.
1550 	 */
1551 	hdr = (void *)rxd->rx_hdr_status;
1552 	memcpy(first_hdr, hdr, RX_HTT_HDR_STATUS_LEN);
1553 
1554 	if (rx_hdr)
1555 		memcpy(rx_hdr, hdr, RX_HTT_HDR_STATUS_LEN);
1556 
1557 	/* Each A-MSDU subframe will use the original header as the base and be
1558 	 * reported as a separate MSDU so strip the A-MSDU bit from QoS Ctl.
1559 	 */
1560 	hdr = (void *)first_hdr;
1561 
1562 	if (ieee80211_is_data_qos(hdr->frame_control)) {
1563 		qos = ieee80211_get_qos_ctl(hdr);
1564 		qos[0] &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
1565 	}
1566 
1567 	/* Some attention flags are valid only in the last MSDU. */
1568 	last = skb_peek_tail(amsdu);
1569 	rxd = (void *)last->data - sizeof(*rxd);
1570 	attention = __le32_to_cpu(rxd->attention.flags);
1571 
1572 	has_fcs_err = !!(attention & RX_ATTENTION_FLAGS_FCS_ERR);
1573 	has_crypto_err = !!(attention & RX_ATTENTION_FLAGS_DECRYPT_ERR);
1574 	has_tkip_err = !!(attention & RX_ATTENTION_FLAGS_TKIP_MIC_ERR);
1575 	has_peer_idx_invalid = !!(attention & RX_ATTENTION_FLAGS_PEER_IDX_INVALID);
1576 
1577 	/* Note: If hardware captures an encrypted frame that it can't decrypt,
1578 	 * e.g. due to fcs error, missing peer or invalid key data it will
1579 	 * report the frame as raw.
1580 	 */
1581 	is_decrypted = (enctype != HTT_RX_MPDU_ENCRYPT_NONE &&
1582 			!has_fcs_err &&
1583 			!has_crypto_err &&
1584 			!has_peer_idx_invalid);
1585 
1586 	/* Clear per-MPDU flags while leaving per-PPDU flags intact. */
1587 	status->flag &= ~(RX_FLAG_FAILED_FCS_CRC |
1588 			  RX_FLAG_MMIC_ERROR |
1589 			  RX_FLAG_DECRYPTED |
1590 			  RX_FLAG_IV_STRIPPED |
1591 			  RX_FLAG_ONLY_MONITOR |
1592 			  RX_FLAG_MMIC_STRIPPED);
1593 
1594 	if (has_fcs_err)
1595 		status->flag |= RX_FLAG_FAILED_FCS_CRC;
1596 
1597 	if (has_tkip_err)
1598 		status->flag |= RX_FLAG_MMIC_ERROR;
1599 
1600 	if (err) {
1601 		if (has_fcs_err)
1602 			*err = ATH10K_PKT_RX_ERR_FCS;
1603 		else if (has_tkip_err)
1604 			*err = ATH10K_PKT_RX_ERR_TKIP;
1605 		else if (has_crypto_err)
1606 			*err = ATH10K_PKT_RX_ERR_CRYPT;
1607 		else if (has_peer_idx_invalid)
1608 			*err = ATH10K_PKT_RX_ERR_PEER_IDX_INVAL;
1609 	}
1610 
1611 	/* Firmware reports all necessary management frames via WMI already.
1612 	 * They are not reported to monitor interfaces at all so pass the ones
1613 	 * coming via HTT to monitor interfaces instead. This simplifies
1614 	 * matters a lot.
1615 	 */
1616 	if (is_mgmt)
1617 		status->flag |= RX_FLAG_ONLY_MONITOR;
1618 
1619 	if (is_decrypted) {
1620 		status->flag |= RX_FLAG_DECRYPTED;
1621 
1622 		if (likely(!is_mgmt))
1623 			status->flag |= RX_FLAG_MMIC_STRIPPED;
1624 
1625 		if (fill_crypt_header)
1626 			status->flag |= RX_FLAG_MIC_STRIPPED |
1627 					RX_FLAG_ICV_STRIPPED;
1628 		else
1629 			status->flag |= RX_FLAG_IV_STRIPPED;
1630 	}
1631 
1632 	skb_queue_walk(amsdu, msdu) {
1633 		ath10k_htt_rx_h_csum_offload(msdu);
1634 		ath10k_htt_rx_h_undecap(ar, msdu, status, first_hdr, enctype,
1635 					is_decrypted);
1636 
1637 		/* Undecapping involves copying the original 802.11 header back
1638 		 * to sk_buff. If frame is protected and hardware has decrypted
1639 		 * it then remove the protected bit.
1640 		 */
1641 		if (!is_decrypted)
1642 			continue;
1643 		if (is_mgmt)
1644 			continue;
1645 
1646 		if (fill_crypt_header)
1647 			continue;
1648 
1649 		hdr = (void *)msdu->data;
1650 		hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED);
1651 	}
1652 }
1653 
1654 static void ath10k_htt_rx_h_enqueue(struct ath10k *ar,
1655 				    struct sk_buff_head *amsdu,
1656 				    struct ieee80211_rx_status *status)
1657 {
1658 	struct sk_buff *msdu;
1659 	struct sk_buff *first_subframe;
1660 
1661 	first_subframe = skb_peek(amsdu);
1662 
1663 	while ((msdu = __skb_dequeue(amsdu))) {
1664 		/* Setup per-MSDU flags */
1665 		if (skb_queue_empty(amsdu))
1666 			status->flag &= ~RX_FLAG_AMSDU_MORE;
1667 		else
1668 			status->flag |= RX_FLAG_AMSDU_MORE;
1669 
1670 		if (msdu == first_subframe) {
1671 			first_subframe = NULL;
1672 			status->flag &= ~RX_FLAG_ALLOW_SAME_PN;
1673 		} else {
1674 			status->flag |= RX_FLAG_ALLOW_SAME_PN;
1675 		}
1676 
1677 		ath10k_htt_rx_h_queue_msdu(ar, status, msdu);
1678 	}
1679 }
1680 
1681 static int ath10k_unchain_msdu(struct sk_buff_head *amsdu,
1682 			       unsigned long int *unchain_cnt)
1683 {
1684 	struct sk_buff *skb, *first;
1685 	int space;
1686 	int total_len = 0;
1687 	int amsdu_len = skb_queue_len(amsdu);
1688 
1689 	/* TODO:  Might could optimize this by using
1690 	 * skb_try_coalesce or similar method to
1691 	 * decrease copying, or maybe get mac80211 to
1692 	 * provide a way to just receive a list of
1693 	 * skb?
1694 	 */
1695 
1696 	first = __skb_dequeue(amsdu);
1697 
1698 	/* Allocate total length all at once. */
1699 	skb_queue_walk(amsdu, skb)
1700 		total_len += skb->len;
1701 
1702 	space = total_len - skb_tailroom(first);
1703 	if ((space > 0) &&
1704 	    (pskb_expand_head(first, 0, space, GFP_ATOMIC) < 0)) {
1705 		/* TODO:  bump some rx-oom error stat */
1706 		/* put it back together so we can free the
1707 		 * whole list at once.
1708 		 */
1709 		__skb_queue_head(amsdu, first);
1710 		return -1;
1711 	}
1712 
1713 	/* Walk list again, copying contents into
1714 	 * msdu_head
1715 	 */
1716 	while ((skb = __skb_dequeue(amsdu))) {
1717 		skb_copy_from_linear_data(skb, skb_put(first, skb->len),
1718 					  skb->len);
1719 		dev_kfree_skb_any(skb);
1720 	}
1721 
1722 	__skb_queue_head(amsdu, first);
1723 
1724 	*unchain_cnt += amsdu_len - 1;
1725 
1726 	return 0;
1727 }
1728 
1729 static void ath10k_htt_rx_h_unchain(struct ath10k *ar,
1730 				    struct sk_buff_head *amsdu,
1731 				    unsigned long int *drop_cnt,
1732 				    unsigned long int *unchain_cnt)
1733 {
1734 	struct sk_buff *first;
1735 	struct htt_rx_desc *rxd;
1736 	enum rx_msdu_decap_format decap;
1737 
1738 	first = skb_peek(amsdu);
1739 	rxd = (void *)first->data - sizeof(*rxd);
1740 	decap = MS(__le32_to_cpu(rxd->msdu_start.common.info1),
1741 		   RX_MSDU_START_INFO1_DECAP_FORMAT);
1742 
1743 	/* FIXME: Current unchaining logic can only handle simple case of raw
1744 	 * msdu chaining. If decapping is other than raw the chaining may be
1745 	 * more complex and this isn't handled by the current code. Don't even
1746 	 * try re-constructing such frames - it'll be pretty much garbage.
1747 	 */
1748 	if (decap != RX_MSDU_DECAP_RAW ||
1749 	    skb_queue_len(amsdu) != 1 + rxd->frag_info.ring2_more_count) {
1750 		*drop_cnt += skb_queue_len(amsdu);
1751 		__skb_queue_purge(amsdu);
1752 		return;
1753 	}
1754 
1755 	ath10k_unchain_msdu(amsdu, unchain_cnt);
1756 }
1757 
1758 static bool ath10k_htt_rx_amsdu_allowed(struct ath10k *ar,
1759 					struct sk_buff_head *amsdu,
1760 					struct ieee80211_rx_status *rx_status)
1761 {
1762 	/* FIXME: It might be a good idea to do some fuzzy-testing to drop
1763 	 * invalid/dangerous frames.
1764 	 */
1765 
1766 	if (!rx_status->freq) {
1767 		ath10k_dbg(ar, ATH10K_DBG_HTT, "no channel configured; ignoring frame(s)!\n");
1768 		return false;
1769 	}
1770 
1771 	if (test_bit(ATH10K_CAC_RUNNING, &ar->dev_flags)) {
1772 		ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx cac running\n");
1773 		return false;
1774 	}
1775 
1776 	return true;
1777 }
1778 
1779 static void ath10k_htt_rx_h_filter(struct ath10k *ar,
1780 				   struct sk_buff_head *amsdu,
1781 				   struct ieee80211_rx_status *rx_status,
1782 				   unsigned long int *drop_cnt)
1783 {
1784 	if (skb_queue_empty(amsdu))
1785 		return;
1786 
1787 	if (ath10k_htt_rx_amsdu_allowed(ar, amsdu, rx_status))
1788 		return;
1789 
1790 	if (drop_cnt)
1791 		*drop_cnt += skb_queue_len(amsdu);
1792 
1793 	__skb_queue_purge(amsdu);
1794 }
1795 
1796 static int ath10k_htt_rx_handle_amsdu(struct ath10k_htt *htt)
1797 {
1798 	struct ath10k *ar = htt->ar;
1799 	struct ieee80211_rx_status *rx_status = &htt->rx_status;
1800 	struct sk_buff_head amsdu;
1801 	int ret;
1802 	unsigned long int drop_cnt = 0;
1803 	unsigned long int unchain_cnt = 0;
1804 	unsigned long int drop_cnt_filter = 0;
1805 	unsigned long int msdus_to_queue, num_msdus;
1806 	enum ath10k_pkt_rx_err err = ATH10K_PKT_RX_ERR_MAX;
1807 	u8 first_hdr[RX_HTT_HDR_STATUS_LEN];
1808 
1809 	__skb_queue_head_init(&amsdu);
1810 
1811 	spin_lock_bh(&htt->rx_ring.lock);
1812 	if (htt->rx_confused) {
1813 		spin_unlock_bh(&htt->rx_ring.lock);
1814 		return -EIO;
1815 	}
1816 	ret = ath10k_htt_rx_amsdu_pop(htt, &amsdu);
1817 	spin_unlock_bh(&htt->rx_ring.lock);
1818 
1819 	if (ret < 0) {
1820 		ath10k_warn(ar, "rx ring became corrupted: %d\n", ret);
1821 		__skb_queue_purge(&amsdu);
1822 		/* FIXME: It's probably a good idea to reboot the
1823 		 * device instead of leaving it inoperable.
1824 		 */
1825 		htt->rx_confused = true;
1826 		return ret;
1827 	}
1828 
1829 	num_msdus = skb_queue_len(&amsdu);
1830 
1831 	ath10k_htt_rx_h_ppdu(ar, &amsdu, rx_status, 0xffff);
1832 
1833 	/* only for ret = 1 indicates chained msdus */
1834 	if (ret > 0)
1835 		ath10k_htt_rx_h_unchain(ar, &amsdu, &drop_cnt, &unchain_cnt);
1836 
1837 	ath10k_htt_rx_h_filter(ar, &amsdu, rx_status, &drop_cnt_filter);
1838 	ath10k_htt_rx_h_mpdu(ar, &amsdu, rx_status, true, first_hdr, &err);
1839 	msdus_to_queue = skb_queue_len(&amsdu);
1840 	ath10k_htt_rx_h_enqueue(ar, &amsdu, rx_status);
1841 
1842 	ath10k_sta_update_rx_tid_stats(ar, first_hdr, num_msdus, err,
1843 				       unchain_cnt, drop_cnt, drop_cnt_filter,
1844 				       msdus_to_queue);
1845 
1846 	return 0;
1847 }
1848 
1849 static void ath10k_htt_rx_proc_rx_ind(struct ath10k_htt *htt,
1850 				      struct htt_rx_indication *rx)
1851 {
1852 	struct ath10k *ar = htt->ar;
1853 	struct htt_rx_indication_mpdu_range *mpdu_ranges;
1854 	int num_mpdu_ranges;
1855 	int i, mpdu_count = 0;
1856 	u16 peer_id;
1857 	u8 tid;
1858 
1859 	num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1),
1860 			     HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES);
1861 	peer_id = __le16_to_cpu(rx->hdr.peer_id);
1862 	tid =  MS(rx->hdr.info0, HTT_RX_INDICATION_INFO0_EXT_TID);
1863 
1864 	mpdu_ranges = htt_rx_ind_get_mpdu_ranges(rx);
1865 
1866 	ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx ind: ",
1867 			rx, sizeof(*rx) +
1868 			(sizeof(struct htt_rx_indication_mpdu_range) *
1869 				num_mpdu_ranges));
1870 
1871 	for (i = 0; i < num_mpdu_ranges; i++)
1872 		mpdu_count += mpdu_ranges[i].mpdu_count;
1873 
1874 	atomic_add(mpdu_count, &htt->num_mpdus_ready);
1875 
1876 	ath10k_sta_update_rx_tid_stats_ampdu(ar, peer_id, tid, mpdu_ranges,
1877 					     num_mpdu_ranges);
1878 }
1879 
1880 static void ath10k_htt_rx_tx_compl_ind(struct ath10k *ar,
1881 				       struct sk_buff *skb)
1882 {
1883 	struct ath10k_htt *htt = &ar->htt;
1884 	struct htt_resp *resp = (struct htt_resp *)skb->data;
1885 	struct htt_tx_done tx_done = {};
1886 	int status = MS(resp->data_tx_completion.flags, HTT_DATA_TX_STATUS);
1887 	__le16 msdu_id;
1888 	int i;
1889 
1890 	switch (status) {
1891 	case HTT_DATA_TX_STATUS_NO_ACK:
1892 		tx_done.status = HTT_TX_COMPL_STATE_NOACK;
1893 		break;
1894 	case HTT_DATA_TX_STATUS_OK:
1895 		tx_done.status = HTT_TX_COMPL_STATE_ACK;
1896 		break;
1897 	case HTT_DATA_TX_STATUS_DISCARD:
1898 	case HTT_DATA_TX_STATUS_POSTPONE:
1899 	case HTT_DATA_TX_STATUS_DOWNLOAD_FAIL:
1900 		tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
1901 		break;
1902 	default:
1903 		ath10k_warn(ar, "unhandled tx completion status %d\n", status);
1904 		tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
1905 		break;
1906 	}
1907 
1908 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx completion num_msdus %d\n",
1909 		   resp->data_tx_completion.num_msdus);
1910 
1911 	for (i = 0; i < resp->data_tx_completion.num_msdus; i++) {
1912 		msdu_id = resp->data_tx_completion.msdus[i];
1913 		tx_done.msdu_id = __le16_to_cpu(msdu_id);
1914 
1915 		/* kfifo_put: In practice firmware shouldn't fire off per-CE
1916 		 * interrupt and main interrupt (MSI/-X range case) for the same
1917 		 * HTC service so it should be safe to use kfifo_put w/o lock.
1918 		 *
1919 		 * From kfifo_put() documentation:
1920 		 *  Note that with only one concurrent reader and one concurrent
1921 		 *  writer, you don't need extra locking to use these macro.
1922 		 */
1923 		if (!kfifo_put(&htt->txdone_fifo, tx_done)) {
1924 			ath10k_warn(ar, "txdone fifo overrun, msdu_id %d status %d\n",
1925 				    tx_done.msdu_id, tx_done.status);
1926 			ath10k_txrx_tx_unref(htt, &tx_done);
1927 		}
1928 	}
1929 }
1930 
1931 static void ath10k_htt_rx_addba(struct ath10k *ar, struct htt_resp *resp)
1932 {
1933 	struct htt_rx_addba *ev = &resp->rx_addba;
1934 	struct ath10k_peer *peer;
1935 	struct ath10k_vif *arvif;
1936 	u16 info0, tid, peer_id;
1937 
1938 	info0 = __le16_to_cpu(ev->info0);
1939 	tid = MS(info0, HTT_RX_BA_INFO0_TID);
1940 	peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID);
1941 
1942 	ath10k_dbg(ar, ATH10K_DBG_HTT,
1943 		   "htt rx addba tid %hu peer_id %hu size %hhu\n",
1944 		   tid, peer_id, ev->window_size);
1945 
1946 	spin_lock_bh(&ar->data_lock);
1947 	peer = ath10k_peer_find_by_id(ar, peer_id);
1948 	if (!peer) {
1949 		ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n",
1950 			    peer_id);
1951 		spin_unlock_bh(&ar->data_lock);
1952 		return;
1953 	}
1954 
1955 	arvif = ath10k_get_arvif(ar, peer->vdev_id);
1956 	if (!arvif) {
1957 		ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n",
1958 			    peer->vdev_id);
1959 		spin_unlock_bh(&ar->data_lock);
1960 		return;
1961 	}
1962 
1963 	ath10k_dbg(ar, ATH10K_DBG_HTT,
1964 		   "htt rx start rx ba session sta %pM tid %hu size %hhu\n",
1965 		   peer->addr, tid, ev->window_size);
1966 
1967 	ieee80211_start_rx_ba_session_offl(arvif->vif, peer->addr, tid);
1968 	spin_unlock_bh(&ar->data_lock);
1969 }
1970 
1971 static void ath10k_htt_rx_delba(struct ath10k *ar, struct htt_resp *resp)
1972 {
1973 	struct htt_rx_delba *ev = &resp->rx_delba;
1974 	struct ath10k_peer *peer;
1975 	struct ath10k_vif *arvif;
1976 	u16 info0, tid, peer_id;
1977 
1978 	info0 = __le16_to_cpu(ev->info0);
1979 	tid = MS(info0, HTT_RX_BA_INFO0_TID);
1980 	peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID);
1981 
1982 	ath10k_dbg(ar, ATH10K_DBG_HTT,
1983 		   "htt rx delba tid %hu peer_id %hu\n",
1984 		   tid, peer_id);
1985 
1986 	spin_lock_bh(&ar->data_lock);
1987 	peer = ath10k_peer_find_by_id(ar, peer_id);
1988 	if (!peer) {
1989 		ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n",
1990 			    peer_id);
1991 		spin_unlock_bh(&ar->data_lock);
1992 		return;
1993 	}
1994 
1995 	arvif = ath10k_get_arvif(ar, peer->vdev_id);
1996 	if (!arvif) {
1997 		ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n",
1998 			    peer->vdev_id);
1999 		spin_unlock_bh(&ar->data_lock);
2000 		return;
2001 	}
2002 
2003 	ath10k_dbg(ar, ATH10K_DBG_HTT,
2004 		   "htt rx stop rx ba session sta %pM tid %hu\n",
2005 		   peer->addr, tid);
2006 
2007 	ieee80211_stop_rx_ba_session_offl(arvif->vif, peer->addr, tid);
2008 	spin_unlock_bh(&ar->data_lock);
2009 }
2010 
2011 static int ath10k_htt_rx_extract_amsdu(struct sk_buff_head *list,
2012 				       struct sk_buff_head *amsdu)
2013 {
2014 	struct sk_buff *msdu;
2015 	struct htt_rx_desc *rxd;
2016 
2017 	if (skb_queue_empty(list))
2018 		return -ENOBUFS;
2019 
2020 	if (WARN_ON(!skb_queue_empty(amsdu)))
2021 		return -EINVAL;
2022 
2023 	while ((msdu = __skb_dequeue(list))) {
2024 		__skb_queue_tail(amsdu, msdu);
2025 
2026 		rxd = (void *)msdu->data - sizeof(*rxd);
2027 		if (rxd->msdu_end.common.info0 &
2028 		    __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU))
2029 			break;
2030 	}
2031 
2032 	msdu = skb_peek_tail(amsdu);
2033 	rxd = (void *)msdu->data - sizeof(*rxd);
2034 	if (!(rxd->msdu_end.common.info0 &
2035 	      __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU))) {
2036 		skb_queue_splice_init(amsdu, list);
2037 		return -EAGAIN;
2038 	}
2039 
2040 	return 0;
2041 }
2042 
2043 static void ath10k_htt_rx_h_rx_offload_prot(struct ieee80211_rx_status *status,
2044 					    struct sk_buff *skb)
2045 {
2046 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2047 
2048 	if (!ieee80211_has_protected(hdr->frame_control))
2049 		return;
2050 
2051 	/* Offloaded frames are already decrypted but firmware insists they are
2052 	 * protected in the 802.11 header. Strip the flag.  Otherwise mac80211
2053 	 * will drop the frame.
2054 	 */
2055 
2056 	hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED);
2057 	status->flag |= RX_FLAG_DECRYPTED |
2058 			RX_FLAG_IV_STRIPPED |
2059 			RX_FLAG_MMIC_STRIPPED;
2060 }
2061 
2062 static void ath10k_htt_rx_h_rx_offload(struct ath10k *ar,
2063 				       struct sk_buff_head *list)
2064 {
2065 	struct ath10k_htt *htt = &ar->htt;
2066 	struct ieee80211_rx_status *status = &htt->rx_status;
2067 	struct htt_rx_offload_msdu *rx;
2068 	struct sk_buff *msdu;
2069 	size_t offset;
2070 
2071 	while ((msdu = __skb_dequeue(list))) {
2072 		/* Offloaded frames don't have Rx descriptor. Instead they have
2073 		 * a short meta information header.
2074 		 */
2075 
2076 		rx = (void *)msdu->data;
2077 
2078 		skb_put(msdu, sizeof(*rx));
2079 		skb_pull(msdu, sizeof(*rx));
2080 
2081 		if (skb_tailroom(msdu) < __le16_to_cpu(rx->msdu_len)) {
2082 			ath10k_warn(ar, "dropping frame: offloaded rx msdu is too long!\n");
2083 			dev_kfree_skb_any(msdu);
2084 			continue;
2085 		}
2086 
2087 		skb_put(msdu, __le16_to_cpu(rx->msdu_len));
2088 
2089 		/* Offloaded rx header length isn't multiple of 2 nor 4 so the
2090 		 * actual payload is unaligned. Align the frame.  Otherwise
2091 		 * mac80211 complains.  This shouldn't reduce performance much
2092 		 * because these offloaded frames are rare.
2093 		 */
2094 		offset = 4 - ((unsigned long)msdu->data & 3);
2095 		skb_put(msdu, offset);
2096 		memmove(msdu->data + offset, msdu->data, msdu->len);
2097 		skb_pull(msdu, offset);
2098 
2099 		/* FIXME: The frame is NWifi. Re-construct QoS Control
2100 		 * if possible later.
2101 		 */
2102 
2103 		memset(status, 0, sizeof(*status));
2104 		status->flag |= RX_FLAG_NO_SIGNAL_VAL;
2105 
2106 		ath10k_htt_rx_h_rx_offload_prot(status, msdu);
2107 		ath10k_htt_rx_h_channel(ar, status, NULL, rx->vdev_id);
2108 		ath10k_htt_rx_h_queue_msdu(ar, status, msdu);
2109 	}
2110 }
2111 
2112 static int ath10k_htt_rx_in_ord_ind(struct ath10k *ar, struct sk_buff *skb)
2113 {
2114 	struct ath10k_htt *htt = &ar->htt;
2115 	struct htt_resp *resp = (void *)skb->data;
2116 	struct ieee80211_rx_status *status = &htt->rx_status;
2117 	struct sk_buff_head list;
2118 	struct sk_buff_head amsdu;
2119 	u16 peer_id;
2120 	u16 msdu_count;
2121 	u8 vdev_id;
2122 	u8 tid;
2123 	bool offload;
2124 	bool frag;
2125 	int ret;
2126 
2127 	lockdep_assert_held(&htt->rx_ring.lock);
2128 
2129 	if (htt->rx_confused)
2130 		return -EIO;
2131 
2132 	skb_pull(skb, sizeof(resp->hdr));
2133 	skb_pull(skb, sizeof(resp->rx_in_ord_ind));
2134 
2135 	peer_id = __le16_to_cpu(resp->rx_in_ord_ind.peer_id);
2136 	msdu_count = __le16_to_cpu(resp->rx_in_ord_ind.msdu_count);
2137 	vdev_id = resp->rx_in_ord_ind.vdev_id;
2138 	tid = SM(resp->rx_in_ord_ind.info, HTT_RX_IN_ORD_IND_INFO_TID);
2139 	offload = !!(resp->rx_in_ord_ind.info &
2140 			HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK);
2141 	frag = !!(resp->rx_in_ord_ind.info & HTT_RX_IN_ORD_IND_INFO_FRAG_MASK);
2142 
2143 	ath10k_dbg(ar, ATH10K_DBG_HTT,
2144 		   "htt rx in ord vdev %i peer %i tid %i offload %i frag %i msdu count %i\n",
2145 		   vdev_id, peer_id, tid, offload, frag, msdu_count);
2146 
2147 	if (skb->len < msdu_count * sizeof(*resp->rx_in_ord_ind.msdu_descs32)) {
2148 		ath10k_warn(ar, "dropping invalid in order rx indication\n");
2149 		return -EINVAL;
2150 	}
2151 
2152 	/* The event can deliver more than 1 A-MSDU. Each A-MSDU is later
2153 	 * extracted and processed.
2154 	 */
2155 	__skb_queue_head_init(&list);
2156 	if (ar->hw_params.target_64bit)
2157 		ret = ath10k_htt_rx_pop_paddr64_list(htt, &resp->rx_in_ord_ind,
2158 						     &list);
2159 	else
2160 		ret = ath10k_htt_rx_pop_paddr32_list(htt, &resp->rx_in_ord_ind,
2161 						     &list);
2162 
2163 	if (ret < 0) {
2164 		ath10k_warn(ar, "failed to pop paddr list: %d\n", ret);
2165 		htt->rx_confused = true;
2166 		return -EIO;
2167 	}
2168 
2169 	/* Offloaded frames are very different and need to be handled
2170 	 * separately.
2171 	 */
2172 	if (offload)
2173 		ath10k_htt_rx_h_rx_offload(ar, &list);
2174 
2175 	while (!skb_queue_empty(&list)) {
2176 		__skb_queue_head_init(&amsdu);
2177 		ret = ath10k_htt_rx_extract_amsdu(&list, &amsdu);
2178 		switch (ret) {
2179 		case 0:
2180 			/* Note: The in-order indication may report interleaved
2181 			 * frames from different PPDUs meaning reported rx rate
2182 			 * to mac80211 isn't accurate/reliable. It's still
2183 			 * better to report something than nothing though. This
2184 			 * should still give an idea about rx rate to the user.
2185 			 */
2186 			ath10k_htt_rx_h_ppdu(ar, &amsdu, status, vdev_id);
2187 			ath10k_htt_rx_h_filter(ar, &amsdu, status, NULL);
2188 			ath10k_htt_rx_h_mpdu(ar, &amsdu, status, false, NULL,
2189 					     NULL);
2190 			ath10k_htt_rx_h_enqueue(ar, &amsdu, status);
2191 			break;
2192 		case -EAGAIN:
2193 			/* fall through */
2194 		default:
2195 			/* Should not happen. */
2196 			ath10k_warn(ar, "failed to extract amsdu: %d\n", ret);
2197 			htt->rx_confused = true;
2198 			__skb_queue_purge(&list);
2199 			return -EIO;
2200 		}
2201 	}
2202 	return ret;
2203 }
2204 
2205 static void ath10k_htt_rx_tx_fetch_resp_id_confirm(struct ath10k *ar,
2206 						   const __le32 *resp_ids,
2207 						   int num_resp_ids)
2208 {
2209 	int i;
2210 	u32 resp_id;
2211 
2212 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm num_resp_ids %d\n",
2213 		   num_resp_ids);
2214 
2215 	for (i = 0; i < num_resp_ids; i++) {
2216 		resp_id = le32_to_cpu(resp_ids[i]);
2217 
2218 		ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm resp_id %u\n",
2219 			   resp_id);
2220 
2221 		/* TODO: free resp_id */
2222 	}
2223 }
2224 
2225 static void ath10k_htt_rx_tx_fetch_ind(struct ath10k *ar, struct sk_buff *skb)
2226 {
2227 	struct ieee80211_hw *hw = ar->hw;
2228 	struct ieee80211_txq *txq;
2229 	struct htt_resp *resp = (struct htt_resp *)skb->data;
2230 	struct htt_tx_fetch_record *record;
2231 	size_t len;
2232 	size_t max_num_bytes;
2233 	size_t max_num_msdus;
2234 	size_t num_bytes;
2235 	size_t num_msdus;
2236 	const __le32 *resp_ids;
2237 	u16 num_records;
2238 	u16 num_resp_ids;
2239 	u16 peer_id;
2240 	u8 tid;
2241 	int ret;
2242 	int i;
2243 
2244 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch ind\n");
2245 
2246 	len = sizeof(resp->hdr) + sizeof(resp->tx_fetch_ind);
2247 	if (unlikely(skb->len < len)) {
2248 		ath10k_warn(ar, "received corrupted tx_fetch_ind event: buffer too short\n");
2249 		return;
2250 	}
2251 
2252 	num_records = le16_to_cpu(resp->tx_fetch_ind.num_records);
2253 	num_resp_ids = le16_to_cpu(resp->tx_fetch_ind.num_resp_ids);
2254 
2255 	len += sizeof(resp->tx_fetch_ind.records[0]) * num_records;
2256 	len += sizeof(resp->tx_fetch_ind.resp_ids[0]) * num_resp_ids;
2257 
2258 	if (unlikely(skb->len < len)) {
2259 		ath10k_warn(ar, "received corrupted tx_fetch_ind event: too many records/resp_ids\n");
2260 		return;
2261 	}
2262 
2263 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch ind num records %hu num resps %hu seq %hu\n",
2264 		   num_records, num_resp_ids,
2265 		   le16_to_cpu(resp->tx_fetch_ind.fetch_seq_num));
2266 
2267 	if (!ar->htt.tx_q_state.enabled) {
2268 		ath10k_warn(ar, "received unexpected tx_fetch_ind event: not enabled\n");
2269 		return;
2270 	}
2271 
2272 	if (ar->htt.tx_q_state.mode == HTT_TX_MODE_SWITCH_PUSH) {
2273 		ath10k_warn(ar, "received unexpected tx_fetch_ind event: in push mode\n");
2274 		return;
2275 	}
2276 
2277 	rcu_read_lock();
2278 
2279 	for (i = 0; i < num_records; i++) {
2280 		record = &resp->tx_fetch_ind.records[i];
2281 		peer_id = MS(le16_to_cpu(record->info),
2282 			     HTT_TX_FETCH_RECORD_INFO_PEER_ID);
2283 		tid = MS(le16_to_cpu(record->info),
2284 			 HTT_TX_FETCH_RECORD_INFO_TID);
2285 		max_num_msdus = le16_to_cpu(record->num_msdus);
2286 		max_num_bytes = le32_to_cpu(record->num_bytes);
2287 
2288 		ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch record %i peer_id %hu tid %hhu msdus %zu bytes %zu\n",
2289 			   i, peer_id, tid, max_num_msdus, max_num_bytes);
2290 
2291 		if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) ||
2292 		    unlikely(tid >= ar->htt.tx_q_state.num_tids)) {
2293 			ath10k_warn(ar, "received out of range peer_id %hu tid %hhu\n",
2294 				    peer_id, tid);
2295 			continue;
2296 		}
2297 
2298 		spin_lock_bh(&ar->data_lock);
2299 		txq = ath10k_mac_txq_lookup(ar, peer_id, tid);
2300 		spin_unlock_bh(&ar->data_lock);
2301 
2302 		/* It is okay to release the lock and use txq because RCU read
2303 		 * lock is held.
2304 		 */
2305 
2306 		if (unlikely(!txq)) {
2307 			ath10k_warn(ar, "failed to lookup txq for peer_id %hu tid %hhu\n",
2308 				    peer_id, tid);
2309 			continue;
2310 		}
2311 
2312 		num_msdus = 0;
2313 		num_bytes = 0;
2314 
2315 		while (num_msdus < max_num_msdus &&
2316 		       num_bytes < max_num_bytes) {
2317 			ret = ath10k_mac_tx_push_txq(hw, txq);
2318 			if (ret < 0)
2319 				break;
2320 
2321 			num_msdus++;
2322 			num_bytes += ret;
2323 		}
2324 
2325 		record->num_msdus = cpu_to_le16(num_msdus);
2326 		record->num_bytes = cpu_to_le32(num_bytes);
2327 
2328 		ath10k_htt_tx_txq_recalc(hw, txq);
2329 	}
2330 
2331 	rcu_read_unlock();
2332 
2333 	resp_ids = ath10k_htt_get_tx_fetch_ind_resp_ids(&resp->tx_fetch_ind);
2334 	ath10k_htt_rx_tx_fetch_resp_id_confirm(ar, resp_ids, num_resp_ids);
2335 
2336 	ret = ath10k_htt_tx_fetch_resp(ar,
2337 				       resp->tx_fetch_ind.token,
2338 				       resp->tx_fetch_ind.fetch_seq_num,
2339 				       resp->tx_fetch_ind.records,
2340 				       num_records);
2341 	if (unlikely(ret)) {
2342 		ath10k_warn(ar, "failed to submit tx fetch resp for token 0x%08x: %d\n",
2343 			    le32_to_cpu(resp->tx_fetch_ind.token), ret);
2344 		/* FIXME: request fw restart */
2345 	}
2346 
2347 	ath10k_htt_tx_txq_sync(ar);
2348 }
2349 
2350 static void ath10k_htt_rx_tx_fetch_confirm(struct ath10k *ar,
2351 					   struct sk_buff *skb)
2352 {
2353 	const struct htt_resp *resp = (void *)skb->data;
2354 	size_t len;
2355 	int num_resp_ids;
2356 
2357 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm\n");
2358 
2359 	len = sizeof(resp->hdr) + sizeof(resp->tx_fetch_confirm);
2360 	if (unlikely(skb->len < len)) {
2361 		ath10k_warn(ar, "received corrupted tx_fetch_confirm event: buffer too short\n");
2362 		return;
2363 	}
2364 
2365 	num_resp_ids = le16_to_cpu(resp->tx_fetch_confirm.num_resp_ids);
2366 	len += sizeof(resp->tx_fetch_confirm.resp_ids[0]) * num_resp_ids;
2367 
2368 	if (unlikely(skb->len < len)) {
2369 		ath10k_warn(ar, "received corrupted tx_fetch_confirm event: resp_ids buffer overflow\n");
2370 		return;
2371 	}
2372 
2373 	ath10k_htt_rx_tx_fetch_resp_id_confirm(ar,
2374 					       resp->tx_fetch_confirm.resp_ids,
2375 					       num_resp_ids);
2376 }
2377 
2378 static void ath10k_htt_rx_tx_mode_switch_ind(struct ath10k *ar,
2379 					     struct sk_buff *skb)
2380 {
2381 	const struct htt_resp *resp = (void *)skb->data;
2382 	const struct htt_tx_mode_switch_record *record;
2383 	struct ieee80211_txq *txq;
2384 	struct ath10k_txq *artxq;
2385 	size_t len;
2386 	size_t num_records;
2387 	enum htt_tx_mode_switch_mode mode;
2388 	bool enable;
2389 	u16 info0;
2390 	u16 info1;
2391 	u16 threshold;
2392 	u16 peer_id;
2393 	u8 tid;
2394 	int i;
2395 
2396 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx mode switch ind\n");
2397 
2398 	len = sizeof(resp->hdr) + sizeof(resp->tx_mode_switch_ind);
2399 	if (unlikely(skb->len < len)) {
2400 		ath10k_warn(ar, "received corrupted tx_mode_switch_ind event: buffer too short\n");
2401 		return;
2402 	}
2403 
2404 	info0 = le16_to_cpu(resp->tx_mode_switch_ind.info0);
2405 	info1 = le16_to_cpu(resp->tx_mode_switch_ind.info1);
2406 
2407 	enable = !!(info0 & HTT_TX_MODE_SWITCH_IND_INFO0_ENABLE);
2408 	num_records = MS(info0, HTT_TX_MODE_SWITCH_IND_INFO1_THRESHOLD);
2409 	mode = MS(info1, HTT_TX_MODE_SWITCH_IND_INFO1_MODE);
2410 	threshold = MS(info1, HTT_TX_MODE_SWITCH_IND_INFO1_THRESHOLD);
2411 
2412 	ath10k_dbg(ar, ATH10K_DBG_HTT,
2413 		   "htt rx tx mode switch ind info0 0x%04hx info1 0x%04hx enable %d num records %zd mode %d threshold %hu\n",
2414 		   info0, info1, enable, num_records, mode, threshold);
2415 
2416 	len += sizeof(resp->tx_mode_switch_ind.records[0]) * num_records;
2417 
2418 	if (unlikely(skb->len < len)) {
2419 		ath10k_warn(ar, "received corrupted tx_mode_switch_mode_ind event: too many records\n");
2420 		return;
2421 	}
2422 
2423 	switch (mode) {
2424 	case HTT_TX_MODE_SWITCH_PUSH:
2425 	case HTT_TX_MODE_SWITCH_PUSH_PULL:
2426 		break;
2427 	default:
2428 		ath10k_warn(ar, "received invalid tx_mode_switch_mode_ind mode %d, ignoring\n",
2429 			    mode);
2430 		return;
2431 	}
2432 
2433 	if (!enable)
2434 		return;
2435 
2436 	ar->htt.tx_q_state.enabled = enable;
2437 	ar->htt.tx_q_state.mode = mode;
2438 	ar->htt.tx_q_state.num_push_allowed = threshold;
2439 
2440 	rcu_read_lock();
2441 
2442 	for (i = 0; i < num_records; i++) {
2443 		record = &resp->tx_mode_switch_ind.records[i];
2444 		info0 = le16_to_cpu(record->info0);
2445 		peer_id = MS(info0, HTT_TX_MODE_SWITCH_RECORD_INFO0_PEER_ID);
2446 		tid = MS(info0, HTT_TX_MODE_SWITCH_RECORD_INFO0_TID);
2447 
2448 		if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) ||
2449 		    unlikely(tid >= ar->htt.tx_q_state.num_tids)) {
2450 			ath10k_warn(ar, "received out of range peer_id %hu tid %hhu\n",
2451 				    peer_id, tid);
2452 			continue;
2453 		}
2454 
2455 		spin_lock_bh(&ar->data_lock);
2456 		txq = ath10k_mac_txq_lookup(ar, peer_id, tid);
2457 		spin_unlock_bh(&ar->data_lock);
2458 
2459 		/* It is okay to release the lock and use txq because RCU read
2460 		 * lock is held.
2461 		 */
2462 
2463 		if (unlikely(!txq)) {
2464 			ath10k_warn(ar, "failed to lookup txq for peer_id %hu tid %hhu\n",
2465 				    peer_id, tid);
2466 			continue;
2467 		}
2468 
2469 		spin_lock_bh(&ar->htt.tx_lock);
2470 		artxq = (void *)txq->drv_priv;
2471 		artxq->num_push_allowed = le16_to_cpu(record->num_max_msdus);
2472 		spin_unlock_bh(&ar->htt.tx_lock);
2473 	}
2474 
2475 	rcu_read_unlock();
2476 
2477 	ath10k_mac_tx_push_pending(ar);
2478 }
2479 
2480 void ath10k_htt_htc_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb)
2481 {
2482 	bool release;
2483 
2484 	release = ath10k_htt_t2h_msg_handler(ar, skb);
2485 
2486 	/* Free the indication buffer */
2487 	if (release)
2488 		dev_kfree_skb_any(skb);
2489 }
2490 
2491 static inline bool is_valid_legacy_rate(u8 rate)
2492 {
2493 	static const u8 legacy_rates[] = {1, 2, 5, 11, 6, 9, 12,
2494 					  18, 24, 36, 48, 54};
2495 	int i;
2496 
2497 	for (i = 0; i < ARRAY_SIZE(legacy_rates); i++) {
2498 		if (rate == legacy_rates[i])
2499 			return true;
2500 	}
2501 
2502 	return false;
2503 }
2504 
2505 static void
2506 ath10k_update_per_peer_tx_stats(struct ath10k *ar,
2507 				struct ieee80211_sta *sta,
2508 				struct ath10k_per_peer_tx_stats *peer_stats)
2509 {
2510 	struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv;
2511 	u8 rate = 0, sgi;
2512 	struct rate_info txrate;
2513 
2514 	lockdep_assert_held(&ar->data_lock);
2515 
2516 	txrate.flags = ATH10K_HW_PREAMBLE(peer_stats->ratecode);
2517 	txrate.bw = ATH10K_HW_BW(peer_stats->flags);
2518 	txrate.nss = ATH10K_HW_NSS(peer_stats->ratecode);
2519 	txrate.mcs = ATH10K_HW_MCS_RATE(peer_stats->ratecode);
2520 	sgi = ATH10K_HW_GI(peer_stats->flags);
2521 
2522 	if (txrate.flags == WMI_RATE_PREAMBLE_VHT && txrate.mcs > 9) {
2523 		ath10k_warn(ar, "Invalid VHT mcs %hhd peer stats",  txrate.mcs);
2524 		return;
2525 	}
2526 
2527 	if (txrate.flags == WMI_RATE_PREAMBLE_HT &&
2528 	    (txrate.mcs > 7 || txrate.nss < 1)) {
2529 		ath10k_warn(ar, "Invalid HT mcs %hhd nss %hhd peer stats",
2530 			    txrate.mcs, txrate.nss);
2531 		return;
2532 	}
2533 
2534 	memset(&arsta->txrate, 0, sizeof(arsta->txrate));
2535 
2536 	if (txrate.flags == WMI_RATE_PREAMBLE_CCK ||
2537 	    txrate.flags == WMI_RATE_PREAMBLE_OFDM) {
2538 		rate = ATH10K_HW_LEGACY_RATE(peer_stats->ratecode);
2539 
2540 		if (!is_valid_legacy_rate(rate)) {
2541 			ath10k_warn(ar, "Invalid legacy rate %hhd peer stats",
2542 				    rate);
2543 			return;
2544 		}
2545 
2546 		/* This is hacky, FW sends CCK rate 5.5Mbps as 6 */
2547 		rate *= 10;
2548 		if (rate == 60 && txrate.flags == WMI_RATE_PREAMBLE_CCK)
2549 			rate = rate - 5;
2550 		arsta->txrate.legacy = rate;
2551 	} else if (txrate.flags == WMI_RATE_PREAMBLE_HT) {
2552 		arsta->txrate.flags = RATE_INFO_FLAGS_MCS;
2553 		arsta->txrate.mcs = txrate.mcs + 8 * (txrate.nss - 1);
2554 	} else {
2555 		arsta->txrate.flags = RATE_INFO_FLAGS_VHT_MCS;
2556 		arsta->txrate.mcs = txrate.mcs;
2557 	}
2558 
2559 	if (sgi)
2560 		arsta->txrate.flags |= RATE_INFO_FLAGS_SHORT_GI;
2561 
2562 	arsta->txrate.nss = txrate.nss;
2563 	arsta->txrate.bw = ath10k_bw_to_mac80211_bw(txrate.bw);
2564 }
2565 
2566 static void ath10k_htt_fetch_peer_stats(struct ath10k *ar,
2567 					struct sk_buff *skb)
2568 {
2569 	struct htt_resp *resp = (struct htt_resp *)skb->data;
2570 	struct ath10k_per_peer_tx_stats *p_tx_stats = &ar->peer_tx_stats;
2571 	struct htt_per_peer_tx_stats_ind *tx_stats;
2572 	struct ieee80211_sta *sta;
2573 	struct ath10k_peer *peer;
2574 	int peer_id, i;
2575 	u8 ppdu_len, num_ppdu;
2576 
2577 	num_ppdu = resp->peer_tx_stats.num_ppdu;
2578 	ppdu_len = resp->peer_tx_stats.ppdu_len * sizeof(__le32);
2579 
2580 	if (skb->len < sizeof(struct htt_resp_hdr) + num_ppdu * ppdu_len) {
2581 		ath10k_warn(ar, "Invalid peer stats buf length %d\n", skb->len);
2582 		return;
2583 	}
2584 
2585 	tx_stats = (struct htt_per_peer_tx_stats_ind *)
2586 			(resp->peer_tx_stats.payload);
2587 	peer_id = __le16_to_cpu(tx_stats->peer_id);
2588 
2589 	rcu_read_lock();
2590 	spin_lock_bh(&ar->data_lock);
2591 	peer = ath10k_peer_find_by_id(ar, peer_id);
2592 	if (!peer) {
2593 		ath10k_warn(ar, "Invalid peer id %d peer stats buffer\n",
2594 			    peer_id);
2595 		goto out;
2596 	}
2597 
2598 	sta = peer->sta;
2599 	for (i = 0; i < num_ppdu; i++) {
2600 		tx_stats = (struct htt_per_peer_tx_stats_ind *)
2601 			   (resp->peer_tx_stats.payload + i * ppdu_len);
2602 
2603 		p_tx_stats->succ_bytes = __le32_to_cpu(tx_stats->succ_bytes);
2604 		p_tx_stats->retry_bytes = __le32_to_cpu(tx_stats->retry_bytes);
2605 		p_tx_stats->failed_bytes =
2606 				__le32_to_cpu(tx_stats->failed_bytes);
2607 		p_tx_stats->ratecode = tx_stats->ratecode;
2608 		p_tx_stats->flags = tx_stats->flags;
2609 		p_tx_stats->succ_pkts = __le16_to_cpu(tx_stats->succ_pkts);
2610 		p_tx_stats->retry_pkts = __le16_to_cpu(tx_stats->retry_pkts);
2611 		p_tx_stats->failed_pkts = __le16_to_cpu(tx_stats->failed_pkts);
2612 
2613 		ath10k_update_per_peer_tx_stats(ar, sta, p_tx_stats);
2614 	}
2615 
2616 out:
2617 	spin_unlock_bh(&ar->data_lock);
2618 	rcu_read_unlock();
2619 }
2620 
2621 static void ath10k_fetch_10_2_tx_stats(struct ath10k *ar, u8 *data)
2622 {
2623 	struct ath10k_pktlog_hdr *hdr = (struct ath10k_pktlog_hdr *)data;
2624 	struct ath10k_per_peer_tx_stats *p_tx_stats = &ar->peer_tx_stats;
2625 	struct ath10k_10_2_peer_tx_stats *tx_stats;
2626 	struct ieee80211_sta *sta;
2627 	struct ath10k_peer *peer;
2628 	u16 log_type = __le16_to_cpu(hdr->log_type);
2629 	u32 peer_id = 0, i;
2630 
2631 	if (log_type != ATH_PKTLOG_TYPE_TX_STAT)
2632 		return;
2633 
2634 	tx_stats = (struct ath10k_10_2_peer_tx_stats *)((hdr->payload) +
2635 		    ATH10K_10_2_TX_STATS_OFFSET);
2636 
2637 	if (!tx_stats->tx_ppdu_cnt)
2638 		return;
2639 
2640 	peer_id = tx_stats->peer_id;
2641 
2642 	rcu_read_lock();
2643 	spin_lock_bh(&ar->data_lock);
2644 	peer = ath10k_peer_find_by_id(ar, peer_id);
2645 	if (!peer) {
2646 		ath10k_warn(ar, "Invalid peer id %d in peer stats buffer\n",
2647 			    peer_id);
2648 		goto out;
2649 	}
2650 
2651 	sta = peer->sta;
2652 	for (i = 0; i < tx_stats->tx_ppdu_cnt; i++) {
2653 		p_tx_stats->succ_bytes =
2654 			__le16_to_cpu(tx_stats->success_bytes[i]);
2655 		p_tx_stats->retry_bytes =
2656 			__le16_to_cpu(tx_stats->retry_bytes[i]);
2657 		p_tx_stats->failed_bytes =
2658 			__le16_to_cpu(tx_stats->failed_bytes[i]);
2659 		p_tx_stats->ratecode = tx_stats->ratecode[i];
2660 		p_tx_stats->flags = tx_stats->flags[i];
2661 		p_tx_stats->succ_pkts = tx_stats->success_pkts[i];
2662 		p_tx_stats->retry_pkts = tx_stats->retry_pkts[i];
2663 		p_tx_stats->failed_pkts = tx_stats->failed_pkts[i];
2664 
2665 		ath10k_update_per_peer_tx_stats(ar, sta, p_tx_stats);
2666 	}
2667 	spin_unlock_bh(&ar->data_lock);
2668 	rcu_read_unlock();
2669 
2670 	return;
2671 
2672 out:
2673 	spin_unlock_bh(&ar->data_lock);
2674 	rcu_read_unlock();
2675 }
2676 
2677 bool ath10k_htt_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb)
2678 {
2679 	struct ath10k_htt *htt = &ar->htt;
2680 	struct htt_resp *resp = (struct htt_resp *)skb->data;
2681 	enum htt_t2h_msg_type type;
2682 
2683 	/* confirm alignment */
2684 	if (!IS_ALIGNED((unsigned long)skb->data, 4))
2685 		ath10k_warn(ar, "unaligned htt message, expect trouble\n");
2686 
2687 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, msg_type: 0x%0X\n",
2688 		   resp->hdr.msg_type);
2689 
2690 	if (resp->hdr.msg_type >= ar->htt.t2h_msg_types_max) {
2691 		ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, unsupported msg_type: 0x%0X\n max: 0x%0X",
2692 			   resp->hdr.msg_type, ar->htt.t2h_msg_types_max);
2693 		return true;
2694 	}
2695 	type = ar->htt.t2h_msg_types[resp->hdr.msg_type];
2696 
2697 	switch (type) {
2698 	case HTT_T2H_MSG_TYPE_VERSION_CONF: {
2699 		htt->target_version_major = resp->ver_resp.major;
2700 		htt->target_version_minor = resp->ver_resp.minor;
2701 		complete(&htt->target_version_received);
2702 		break;
2703 	}
2704 	case HTT_T2H_MSG_TYPE_RX_IND:
2705 		ath10k_htt_rx_proc_rx_ind(htt, &resp->rx_ind);
2706 		break;
2707 	case HTT_T2H_MSG_TYPE_PEER_MAP: {
2708 		struct htt_peer_map_event ev = {
2709 			.vdev_id = resp->peer_map.vdev_id,
2710 			.peer_id = __le16_to_cpu(resp->peer_map.peer_id),
2711 		};
2712 		memcpy(ev.addr, resp->peer_map.addr, sizeof(ev.addr));
2713 		ath10k_peer_map_event(htt, &ev);
2714 		break;
2715 	}
2716 	case HTT_T2H_MSG_TYPE_PEER_UNMAP: {
2717 		struct htt_peer_unmap_event ev = {
2718 			.peer_id = __le16_to_cpu(resp->peer_unmap.peer_id),
2719 		};
2720 		ath10k_peer_unmap_event(htt, &ev);
2721 		break;
2722 	}
2723 	case HTT_T2H_MSG_TYPE_MGMT_TX_COMPLETION: {
2724 		struct htt_tx_done tx_done = {};
2725 		int status = __le32_to_cpu(resp->mgmt_tx_completion.status);
2726 		int info = __le32_to_cpu(resp->mgmt_tx_completion.info);
2727 
2728 		tx_done.msdu_id = __le32_to_cpu(resp->mgmt_tx_completion.desc_id);
2729 
2730 		switch (status) {
2731 		case HTT_MGMT_TX_STATUS_OK:
2732 			tx_done.status = HTT_TX_COMPL_STATE_ACK;
2733 			if (test_bit(WMI_SERVICE_HTT_MGMT_TX_COMP_VALID_FLAGS,
2734 				     ar->wmi.svc_map) &&
2735 			    (resp->mgmt_tx_completion.flags &
2736 			     HTT_MGMT_TX_CMPL_FLAG_ACK_RSSI)) {
2737 				tx_done.ack_rssi =
2738 				FIELD_GET(HTT_MGMT_TX_CMPL_INFO_ACK_RSSI_MASK,
2739 					  info);
2740 			}
2741 			break;
2742 		case HTT_MGMT_TX_STATUS_RETRY:
2743 			tx_done.status = HTT_TX_COMPL_STATE_NOACK;
2744 			break;
2745 		case HTT_MGMT_TX_STATUS_DROP:
2746 			tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
2747 			break;
2748 		}
2749 
2750 		status = ath10k_txrx_tx_unref(htt, &tx_done);
2751 		if (!status) {
2752 			spin_lock_bh(&htt->tx_lock);
2753 			ath10k_htt_tx_mgmt_dec_pending(htt);
2754 			spin_unlock_bh(&htt->tx_lock);
2755 		}
2756 		break;
2757 	}
2758 	case HTT_T2H_MSG_TYPE_TX_COMPL_IND:
2759 		ath10k_htt_rx_tx_compl_ind(htt->ar, skb);
2760 		break;
2761 	case HTT_T2H_MSG_TYPE_SEC_IND: {
2762 		struct ath10k *ar = htt->ar;
2763 		struct htt_security_indication *ev = &resp->security_indication;
2764 
2765 		ath10k_dbg(ar, ATH10K_DBG_HTT,
2766 			   "sec ind peer_id %d unicast %d type %d\n",
2767 			  __le16_to_cpu(ev->peer_id),
2768 			  !!(ev->flags & HTT_SECURITY_IS_UNICAST),
2769 			  MS(ev->flags, HTT_SECURITY_TYPE));
2770 		complete(&ar->install_key_done);
2771 		break;
2772 	}
2773 	case HTT_T2H_MSG_TYPE_RX_FRAG_IND: {
2774 		ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
2775 				skb->data, skb->len);
2776 		atomic_inc(&htt->num_mpdus_ready);
2777 		break;
2778 	}
2779 	case HTT_T2H_MSG_TYPE_TEST:
2780 		break;
2781 	case HTT_T2H_MSG_TYPE_STATS_CONF:
2782 		trace_ath10k_htt_stats(ar, skb->data, skb->len);
2783 		break;
2784 	case HTT_T2H_MSG_TYPE_TX_INSPECT_IND:
2785 		/* Firmware can return tx frames if it's unable to fully
2786 		 * process them and suspects host may be able to fix it. ath10k
2787 		 * sends all tx frames as already inspected so this shouldn't
2788 		 * happen unless fw has a bug.
2789 		 */
2790 		ath10k_warn(ar, "received an unexpected htt tx inspect event\n");
2791 		break;
2792 	case HTT_T2H_MSG_TYPE_RX_ADDBA:
2793 		ath10k_htt_rx_addba(ar, resp);
2794 		break;
2795 	case HTT_T2H_MSG_TYPE_RX_DELBA:
2796 		ath10k_htt_rx_delba(ar, resp);
2797 		break;
2798 	case HTT_T2H_MSG_TYPE_PKTLOG: {
2799 		trace_ath10k_htt_pktlog(ar, resp->pktlog_msg.payload,
2800 					skb->len -
2801 					offsetof(struct htt_resp,
2802 						 pktlog_msg.payload));
2803 
2804 		if (ath10k_peer_stats_enabled(ar))
2805 			ath10k_fetch_10_2_tx_stats(ar,
2806 						   resp->pktlog_msg.payload);
2807 		break;
2808 	}
2809 	case HTT_T2H_MSG_TYPE_RX_FLUSH: {
2810 		/* Ignore this event because mac80211 takes care of Rx
2811 		 * aggregation reordering.
2812 		 */
2813 		break;
2814 	}
2815 	case HTT_T2H_MSG_TYPE_RX_IN_ORD_PADDR_IND: {
2816 		skb_queue_tail(&htt->rx_in_ord_compl_q, skb);
2817 		return false;
2818 	}
2819 	case HTT_T2H_MSG_TYPE_TX_CREDIT_UPDATE_IND:
2820 		break;
2821 	case HTT_T2H_MSG_TYPE_CHAN_CHANGE: {
2822 		u32 phymode = __le32_to_cpu(resp->chan_change.phymode);
2823 		u32 freq = __le32_to_cpu(resp->chan_change.freq);
2824 
2825 		ar->tgt_oper_chan = ieee80211_get_channel(ar->hw->wiphy, freq);
2826 		ath10k_dbg(ar, ATH10K_DBG_HTT,
2827 			   "htt chan change freq %u phymode %s\n",
2828 			   freq, ath10k_wmi_phymode_str(phymode));
2829 		break;
2830 	}
2831 	case HTT_T2H_MSG_TYPE_AGGR_CONF:
2832 		break;
2833 	case HTT_T2H_MSG_TYPE_TX_FETCH_IND: {
2834 		struct sk_buff *tx_fetch_ind = skb_copy(skb, GFP_ATOMIC);
2835 
2836 		if (!tx_fetch_ind) {
2837 			ath10k_warn(ar, "failed to copy htt tx fetch ind\n");
2838 			break;
2839 		}
2840 		skb_queue_tail(&htt->tx_fetch_ind_q, tx_fetch_ind);
2841 		break;
2842 	}
2843 	case HTT_T2H_MSG_TYPE_TX_FETCH_CONFIRM:
2844 		ath10k_htt_rx_tx_fetch_confirm(ar, skb);
2845 		break;
2846 	case HTT_T2H_MSG_TYPE_TX_MODE_SWITCH_IND:
2847 		ath10k_htt_rx_tx_mode_switch_ind(ar, skb);
2848 		break;
2849 	case HTT_T2H_MSG_TYPE_PEER_STATS:
2850 		ath10k_htt_fetch_peer_stats(ar, skb);
2851 		break;
2852 	case HTT_T2H_MSG_TYPE_EN_STATS:
2853 	default:
2854 		ath10k_warn(ar, "htt event (%d) not handled\n",
2855 			    resp->hdr.msg_type);
2856 		ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
2857 				skb->data, skb->len);
2858 		break;
2859 	}
2860 	return true;
2861 }
2862 EXPORT_SYMBOL(ath10k_htt_t2h_msg_handler);
2863 
2864 void ath10k_htt_rx_pktlog_completion_handler(struct ath10k *ar,
2865 					     struct sk_buff *skb)
2866 {
2867 	trace_ath10k_htt_pktlog(ar, skb->data, skb->len);
2868 	dev_kfree_skb_any(skb);
2869 }
2870 EXPORT_SYMBOL(ath10k_htt_rx_pktlog_completion_handler);
2871 
2872 static int ath10k_htt_rx_deliver_msdu(struct ath10k *ar, int quota, int budget)
2873 {
2874 	struct sk_buff *skb;
2875 
2876 	while (quota < budget) {
2877 		if (skb_queue_empty(&ar->htt.rx_msdus_q))
2878 			break;
2879 
2880 		skb = skb_dequeue(&ar->htt.rx_msdus_q);
2881 		if (!skb)
2882 			break;
2883 		ath10k_process_rx(ar, skb);
2884 		quota++;
2885 	}
2886 
2887 	return quota;
2888 }
2889 
2890 int ath10k_htt_txrx_compl_task(struct ath10k *ar, int budget)
2891 {
2892 	struct ath10k_htt *htt = &ar->htt;
2893 	struct htt_tx_done tx_done = {};
2894 	struct sk_buff_head tx_ind_q;
2895 	struct sk_buff *skb;
2896 	unsigned long flags;
2897 	int quota = 0, done, ret;
2898 	bool resched_napi = false;
2899 
2900 	__skb_queue_head_init(&tx_ind_q);
2901 
2902 	/* Process pending frames before dequeuing more data
2903 	 * from hardware.
2904 	 */
2905 	quota = ath10k_htt_rx_deliver_msdu(ar, quota, budget);
2906 	if (quota == budget) {
2907 		resched_napi = true;
2908 		goto exit;
2909 	}
2910 
2911 	while ((skb = skb_dequeue(&htt->rx_in_ord_compl_q))) {
2912 		spin_lock_bh(&htt->rx_ring.lock);
2913 		ret = ath10k_htt_rx_in_ord_ind(ar, skb);
2914 		spin_unlock_bh(&htt->rx_ring.lock);
2915 
2916 		dev_kfree_skb_any(skb);
2917 		if (ret == -EIO) {
2918 			resched_napi = true;
2919 			goto exit;
2920 		}
2921 	}
2922 
2923 	while (atomic_read(&htt->num_mpdus_ready)) {
2924 		ret = ath10k_htt_rx_handle_amsdu(htt);
2925 		if (ret == -EIO) {
2926 			resched_napi = true;
2927 			goto exit;
2928 		}
2929 		atomic_dec(&htt->num_mpdus_ready);
2930 	}
2931 
2932 	/* Deliver received data after processing data from hardware */
2933 	quota = ath10k_htt_rx_deliver_msdu(ar, quota, budget);
2934 
2935 	/* From NAPI documentation:
2936 	 *  The napi poll() function may also process TX completions, in which
2937 	 *  case if it processes the entire TX ring then it should count that
2938 	 *  work as the rest of the budget.
2939 	 */
2940 	if ((quota < budget) && !kfifo_is_empty(&htt->txdone_fifo))
2941 		quota = budget;
2942 
2943 	/* kfifo_get: called only within txrx_tasklet so it's neatly serialized.
2944 	 * From kfifo_get() documentation:
2945 	 *  Note that with only one concurrent reader and one concurrent writer,
2946 	 *  you don't need extra locking to use these macro.
2947 	 */
2948 	while (kfifo_get(&htt->txdone_fifo, &tx_done))
2949 		ath10k_txrx_tx_unref(htt, &tx_done);
2950 
2951 	ath10k_mac_tx_push_pending(ar);
2952 
2953 	spin_lock_irqsave(&htt->tx_fetch_ind_q.lock, flags);
2954 	skb_queue_splice_init(&htt->tx_fetch_ind_q, &tx_ind_q);
2955 	spin_unlock_irqrestore(&htt->tx_fetch_ind_q.lock, flags);
2956 
2957 	while ((skb = __skb_dequeue(&tx_ind_q))) {
2958 		ath10k_htt_rx_tx_fetch_ind(ar, skb);
2959 		dev_kfree_skb_any(skb);
2960 	}
2961 
2962 exit:
2963 	ath10k_htt_rx_msdu_buff_replenish(htt);
2964 	/* In case of rx failure or more data to read, report budget
2965 	 * to reschedule NAPI poll
2966 	 */
2967 	done = resched_napi ? budget : quota;
2968 
2969 	return done;
2970 }
2971 EXPORT_SYMBOL(ath10k_htt_txrx_compl_task);
2972 
2973 static const struct ath10k_htt_rx_ops htt_rx_ops_32 = {
2974 	.htt_get_rx_ring_size = ath10k_htt_get_rx_ring_size_32,
2975 	.htt_config_paddrs_ring = ath10k_htt_config_paddrs_ring_32,
2976 	.htt_set_paddrs_ring = ath10k_htt_set_paddrs_ring_32,
2977 	.htt_get_vaddr_ring = ath10k_htt_get_vaddr_ring_32,
2978 	.htt_reset_paddrs_ring = ath10k_htt_reset_paddrs_ring_32,
2979 };
2980 
2981 static const struct ath10k_htt_rx_ops htt_rx_ops_64 = {
2982 	.htt_get_rx_ring_size = ath10k_htt_get_rx_ring_size_64,
2983 	.htt_config_paddrs_ring = ath10k_htt_config_paddrs_ring_64,
2984 	.htt_set_paddrs_ring = ath10k_htt_set_paddrs_ring_64,
2985 	.htt_get_vaddr_ring = ath10k_htt_get_vaddr_ring_64,
2986 	.htt_reset_paddrs_ring = ath10k_htt_reset_paddrs_ring_64,
2987 };
2988 
2989 void ath10k_htt_set_rx_ops(struct ath10k_htt *htt)
2990 {
2991 	struct ath10k *ar = htt->ar;
2992 
2993 	if (ar->hw_params.target_64bit)
2994 		htt->rx_ops = &htt_rx_ops_64;
2995 	else
2996 		htt->rx_ops = &htt_rx_ops_32;
2997 }
2998