1 /*
2  * Copyright (c) 2005-2011 Atheros Communications Inc.
3  * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17 
18 #include "core.h"
19 #include "htc.h"
20 #include "htt.h"
21 #include "txrx.h"
22 #include "debug.h"
23 #include "trace.h"
24 #include "mac.h"
25 
26 #include <linux/log2.h>
27 
28 #define HTT_RX_RING_SIZE HTT_RX_RING_SIZE_MAX
29 #define HTT_RX_RING_FILL_LEVEL (((HTT_RX_RING_SIZE) / 2) - 1)
30 
31 /* when under memory pressure rx ring refill may fail and needs a retry */
32 #define HTT_RX_RING_REFILL_RETRY_MS 50
33 
34 #define HTT_RX_RING_REFILL_RESCHED_MS 5
35 
36 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb);
37 
38 static struct sk_buff *
39 ath10k_htt_rx_find_skb_paddr(struct ath10k *ar, u32 paddr)
40 {
41 	struct ath10k_skb_rxcb *rxcb;
42 
43 	hash_for_each_possible(ar->htt.rx_ring.skb_table, rxcb, hlist, paddr)
44 		if (rxcb->paddr == paddr)
45 			return ATH10K_RXCB_SKB(rxcb);
46 
47 	WARN_ON_ONCE(1);
48 	return NULL;
49 }
50 
51 static void ath10k_htt_rx_ring_free(struct ath10k_htt *htt)
52 {
53 	struct sk_buff *skb;
54 	struct ath10k_skb_rxcb *rxcb;
55 	struct hlist_node *n;
56 	int i;
57 
58 	if (htt->rx_ring.in_ord_rx) {
59 		hash_for_each_safe(htt->rx_ring.skb_table, i, n, rxcb, hlist) {
60 			skb = ATH10K_RXCB_SKB(rxcb);
61 			dma_unmap_single(htt->ar->dev, rxcb->paddr,
62 					 skb->len + skb_tailroom(skb),
63 					 DMA_FROM_DEVICE);
64 			hash_del(&rxcb->hlist);
65 			dev_kfree_skb_any(skb);
66 		}
67 	} else {
68 		for (i = 0; i < htt->rx_ring.size; i++) {
69 			skb = htt->rx_ring.netbufs_ring[i];
70 			if (!skb)
71 				continue;
72 
73 			rxcb = ATH10K_SKB_RXCB(skb);
74 			dma_unmap_single(htt->ar->dev, rxcb->paddr,
75 					 skb->len + skb_tailroom(skb),
76 					 DMA_FROM_DEVICE);
77 			dev_kfree_skb_any(skb);
78 		}
79 	}
80 
81 	htt->rx_ring.fill_cnt = 0;
82 	hash_init(htt->rx_ring.skb_table);
83 	memset(htt->rx_ring.netbufs_ring, 0,
84 	       htt->rx_ring.size * sizeof(htt->rx_ring.netbufs_ring[0]));
85 }
86 
87 static int __ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
88 {
89 	struct htt_rx_desc *rx_desc;
90 	struct ath10k_skb_rxcb *rxcb;
91 	struct sk_buff *skb;
92 	dma_addr_t paddr;
93 	int ret = 0, idx;
94 
95 	/* The Full Rx Reorder firmware has no way of telling the host
96 	 * implicitly when it copied HTT Rx Ring buffers to MAC Rx Ring.
97 	 * To keep things simple make sure ring is always half empty. This
98 	 * guarantees there'll be no replenishment overruns possible.
99 	 */
100 	BUILD_BUG_ON(HTT_RX_RING_FILL_LEVEL >= HTT_RX_RING_SIZE / 2);
101 
102 	idx = __le32_to_cpu(*htt->rx_ring.alloc_idx.vaddr);
103 	while (num > 0) {
104 		skb = dev_alloc_skb(HTT_RX_BUF_SIZE + HTT_RX_DESC_ALIGN);
105 		if (!skb) {
106 			ret = -ENOMEM;
107 			goto fail;
108 		}
109 
110 		if (!IS_ALIGNED((unsigned long)skb->data, HTT_RX_DESC_ALIGN))
111 			skb_pull(skb,
112 				 PTR_ALIGN(skb->data, HTT_RX_DESC_ALIGN) -
113 				 skb->data);
114 
115 		/* Clear rx_desc attention word before posting to Rx ring */
116 		rx_desc = (struct htt_rx_desc *)skb->data;
117 		rx_desc->attention.flags = __cpu_to_le32(0);
118 
119 		paddr = dma_map_single(htt->ar->dev, skb->data,
120 				       skb->len + skb_tailroom(skb),
121 				       DMA_FROM_DEVICE);
122 
123 		if (unlikely(dma_mapping_error(htt->ar->dev, paddr))) {
124 			dev_kfree_skb_any(skb);
125 			ret = -ENOMEM;
126 			goto fail;
127 		}
128 
129 		rxcb = ATH10K_SKB_RXCB(skb);
130 		rxcb->paddr = paddr;
131 		htt->rx_ring.netbufs_ring[idx] = skb;
132 		htt->rx_ring.paddrs_ring[idx] = __cpu_to_le32(paddr);
133 		htt->rx_ring.fill_cnt++;
134 
135 		if (htt->rx_ring.in_ord_rx) {
136 			hash_add(htt->rx_ring.skb_table,
137 				 &ATH10K_SKB_RXCB(skb)->hlist,
138 				 (u32)paddr);
139 		}
140 
141 		num--;
142 		idx++;
143 		idx &= htt->rx_ring.size_mask;
144 	}
145 
146 fail:
147 	/*
148 	 * Make sure the rx buffer is updated before available buffer
149 	 * index to avoid any potential rx ring corruption.
150 	 */
151 	mb();
152 	*htt->rx_ring.alloc_idx.vaddr = __cpu_to_le32(idx);
153 	return ret;
154 }
155 
156 static int ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
157 {
158 	lockdep_assert_held(&htt->rx_ring.lock);
159 	return __ath10k_htt_rx_ring_fill_n(htt, num);
160 }
161 
162 static void ath10k_htt_rx_msdu_buff_replenish(struct ath10k_htt *htt)
163 {
164 	int ret, num_deficit, num_to_fill;
165 
166 	/* Refilling the whole RX ring buffer proves to be a bad idea. The
167 	 * reason is RX may take up significant amount of CPU cycles and starve
168 	 * other tasks, e.g. TX on an ethernet device while acting as a bridge
169 	 * with ath10k wlan interface. This ended up with very poor performance
170 	 * once CPU the host system was overwhelmed with RX on ath10k.
171 	 *
172 	 * By limiting the number of refills the replenishing occurs
173 	 * progressively. This in turns makes use of the fact tasklets are
174 	 * processed in FIFO order. This means actual RX processing can starve
175 	 * out refilling. If there's not enough buffers on RX ring FW will not
176 	 * report RX until it is refilled with enough buffers. This
177 	 * automatically balances load wrt to CPU power.
178 	 *
179 	 * This probably comes at a cost of lower maximum throughput but
180 	 * improves the average and stability. */
181 	spin_lock_bh(&htt->rx_ring.lock);
182 	num_deficit = htt->rx_ring.fill_level - htt->rx_ring.fill_cnt;
183 	num_to_fill = min(ATH10K_HTT_MAX_NUM_REFILL, num_deficit);
184 	num_deficit -= num_to_fill;
185 	ret = ath10k_htt_rx_ring_fill_n(htt, num_to_fill);
186 	if (ret == -ENOMEM) {
187 		/*
188 		 * Failed to fill it to the desired level -
189 		 * we'll start a timer and try again next time.
190 		 * As long as enough buffers are left in the ring for
191 		 * another A-MPDU rx, no special recovery is needed.
192 		 */
193 		mod_timer(&htt->rx_ring.refill_retry_timer, jiffies +
194 			  msecs_to_jiffies(HTT_RX_RING_REFILL_RETRY_MS));
195 	} else if (num_deficit > 0) {
196 		mod_timer(&htt->rx_ring.refill_retry_timer, jiffies +
197 			  msecs_to_jiffies(HTT_RX_RING_REFILL_RESCHED_MS));
198 	}
199 	spin_unlock_bh(&htt->rx_ring.lock);
200 }
201 
202 static void ath10k_htt_rx_ring_refill_retry(unsigned long arg)
203 {
204 	struct ath10k_htt *htt = (struct ath10k_htt *)arg;
205 
206 	ath10k_htt_rx_msdu_buff_replenish(htt);
207 }
208 
209 int ath10k_htt_rx_ring_refill(struct ath10k *ar)
210 {
211 	struct ath10k_htt *htt = &ar->htt;
212 	int ret;
213 
214 	spin_lock_bh(&htt->rx_ring.lock);
215 	ret = ath10k_htt_rx_ring_fill_n(htt, (htt->rx_ring.fill_level -
216 					      htt->rx_ring.fill_cnt));
217 	spin_unlock_bh(&htt->rx_ring.lock);
218 
219 	if (ret)
220 		ath10k_htt_rx_ring_free(htt);
221 
222 	return ret;
223 }
224 
225 void ath10k_htt_rx_free(struct ath10k_htt *htt)
226 {
227 	del_timer_sync(&htt->rx_ring.refill_retry_timer);
228 
229 	skb_queue_purge(&htt->rx_compl_q);
230 	skb_queue_purge(&htt->rx_in_ord_compl_q);
231 	skb_queue_purge(&htt->tx_fetch_ind_q);
232 
233 	ath10k_htt_rx_ring_free(htt);
234 
235 	dma_free_coherent(htt->ar->dev,
236 			  (htt->rx_ring.size *
237 			   sizeof(htt->rx_ring.paddrs_ring)),
238 			  htt->rx_ring.paddrs_ring,
239 			  htt->rx_ring.base_paddr);
240 
241 	dma_free_coherent(htt->ar->dev,
242 			  sizeof(*htt->rx_ring.alloc_idx.vaddr),
243 			  htt->rx_ring.alloc_idx.vaddr,
244 			  htt->rx_ring.alloc_idx.paddr);
245 
246 	kfree(htt->rx_ring.netbufs_ring);
247 }
248 
249 static inline struct sk_buff *ath10k_htt_rx_netbuf_pop(struct ath10k_htt *htt)
250 {
251 	struct ath10k *ar = htt->ar;
252 	int idx;
253 	struct sk_buff *msdu;
254 
255 	lockdep_assert_held(&htt->rx_ring.lock);
256 
257 	if (htt->rx_ring.fill_cnt == 0) {
258 		ath10k_warn(ar, "tried to pop sk_buff from an empty rx ring\n");
259 		return NULL;
260 	}
261 
262 	idx = htt->rx_ring.sw_rd_idx.msdu_payld;
263 	msdu = htt->rx_ring.netbufs_ring[idx];
264 	htt->rx_ring.netbufs_ring[idx] = NULL;
265 	htt->rx_ring.paddrs_ring[idx] = 0;
266 
267 	idx++;
268 	idx &= htt->rx_ring.size_mask;
269 	htt->rx_ring.sw_rd_idx.msdu_payld = idx;
270 	htt->rx_ring.fill_cnt--;
271 
272 	dma_unmap_single(htt->ar->dev,
273 			 ATH10K_SKB_RXCB(msdu)->paddr,
274 			 msdu->len + skb_tailroom(msdu),
275 			 DMA_FROM_DEVICE);
276 	ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ",
277 			msdu->data, msdu->len + skb_tailroom(msdu));
278 
279 	return msdu;
280 }
281 
282 /* return: < 0 fatal error, 0 - non chained msdu, 1 chained msdu */
283 static int ath10k_htt_rx_amsdu_pop(struct ath10k_htt *htt,
284 				   struct sk_buff_head *amsdu)
285 {
286 	struct ath10k *ar = htt->ar;
287 	int msdu_len, msdu_chaining = 0;
288 	struct sk_buff *msdu;
289 	struct htt_rx_desc *rx_desc;
290 
291 	lockdep_assert_held(&htt->rx_ring.lock);
292 
293 	for (;;) {
294 		int last_msdu, msdu_len_invalid, msdu_chained;
295 
296 		msdu = ath10k_htt_rx_netbuf_pop(htt);
297 		if (!msdu) {
298 			__skb_queue_purge(amsdu);
299 			return -ENOENT;
300 		}
301 
302 		__skb_queue_tail(amsdu, msdu);
303 
304 		rx_desc = (struct htt_rx_desc *)msdu->data;
305 
306 		/* FIXME: we must report msdu payload since this is what caller
307 		 *        expects now */
308 		skb_put(msdu, offsetof(struct htt_rx_desc, msdu_payload));
309 		skb_pull(msdu, offsetof(struct htt_rx_desc, msdu_payload));
310 
311 		/*
312 		 * Sanity check - confirm the HW is finished filling in the
313 		 * rx data.
314 		 * If the HW and SW are working correctly, then it's guaranteed
315 		 * that the HW's MAC DMA is done before this point in the SW.
316 		 * To prevent the case that we handle a stale Rx descriptor,
317 		 * just assert for now until we have a way to recover.
318 		 */
319 		if (!(__le32_to_cpu(rx_desc->attention.flags)
320 				& RX_ATTENTION_FLAGS_MSDU_DONE)) {
321 			__skb_queue_purge(amsdu);
322 			return -EIO;
323 		}
324 
325 		msdu_len_invalid = !!(__le32_to_cpu(rx_desc->attention.flags)
326 					& (RX_ATTENTION_FLAGS_MPDU_LENGTH_ERR |
327 					   RX_ATTENTION_FLAGS_MSDU_LENGTH_ERR));
328 		msdu_len = MS(__le32_to_cpu(rx_desc->msdu_start.common.info0),
329 			      RX_MSDU_START_INFO0_MSDU_LENGTH);
330 		msdu_chained = rx_desc->frag_info.ring2_more_count;
331 
332 		if (msdu_len_invalid)
333 			msdu_len = 0;
334 
335 		skb_trim(msdu, 0);
336 		skb_put(msdu, min(msdu_len, HTT_RX_MSDU_SIZE));
337 		msdu_len -= msdu->len;
338 
339 		/* Note: Chained buffers do not contain rx descriptor */
340 		while (msdu_chained--) {
341 			msdu = ath10k_htt_rx_netbuf_pop(htt);
342 			if (!msdu) {
343 				__skb_queue_purge(amsdu);
344 				return -ENOENT;
345 			}
346 
347 			__skb_queue_tail(amsdu, msdu);
348 			skb_trim(msdu, 0);
349 			skb_put(msdu, min(msdu_len, HTT_RX_BUF_SIZE));
350 			msdu_len -= msdu->len;
351 			msdu_chaining = 1;
352 		}
353 
354 		last_msdu = __le32_to_cpu(rx_desc->msdu_end.common.info0) &
355 				RX_MSDU_END_INFO0_LAST_MSDU;
356 
357 		trace_ath10k_htt_rx_desc(ar, &rx_desc->attention,
358 					 sizeof(*rx_desc) - sizeof(u32));
359 
360 		if (last_msdu)
361 			break;
362 	}
363 
364 	if (skb_queue_empty(amsdu))
365 		msdu_chaining = -1;
366 
367 	/*
368 	 * Don't refill the ring yet.
369 	 *
370 	 * First, the elements popped here are still in use - it is not
371 	 * safe to overwrite them until the matching call to
372 	 * mpdu_desc_list_next. Second, for efficiency it is preferable to
373 	 * refill the rx ring with 1 PPDU's worth of rx buffers (something
374 	 * like 32 x 3 buffers), rather than one MPDU's worth of rx buffers
375 	 * (something like 3 buffers). Consequently, we'll rely on the txrx
376 	 * SW to tell us when it is done pulling all the PPDU's rx buffers
377 	 * out of the rx ring, and then refill it just once.
378 	 */
379 
380 	return msdu_chaining;
381 }
382 
383 static struct sk_buff *ath10k_htt_rx_pop_paddr(struct ath10k_htt *htt,
384 					       u32 paddr)
385 {
386 	struct ath10k *ar = htt->ar;
387 	struct ath10k_skb_rxcb *rxcb;
388 	struct sk_buff *msdu;
389 
390 	lockdep_assert_held(&htt->rx_ring.lock);
391 
392 	msdu = ath10k_htt_rx_find_skb_paddr(ar, paddr);
393 	if (!msdu)
394 		return NULL;
395 
396 	rxcb = ATH10K_SKB_RXCB(msdu);
397 	hash_del(&rxcb->hlist);
398 	htt->rx_ring.fill_cnt--;
399 
400 	dma_unmap_single(htt->ar->dev, rxcb->paddr,
401 			 msdu->len + skb_tailroom(msdu),
402 			 DMA_FROM_DEVICE);
403 	ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ",
404 			msdu->data, msdu->len + skb_tailroom(msdu));
405 
406 	return msdu;
407 }
408 
409 static int ath10k_htt_rx_pop_paddr_list(struct ath10k_htt *htt,
410 					struct htt_rx_in_ord_ind *ev,
411 					struct sk_buff_head *list)
412 {
413 	struct ath10k *ar = htt->ar;
414 	struct htt_rx_in_ord_msdu_desc *msdu_desc = ev->msdu_descs;
415 	struct htt_rx_desc *rxd;
416 	struct sk_buff *msdu;
417 	int msdu_count;
418 	bool is_offload;
419 	u32 paddr;
420 
421 	lockdep_assert_held(&htt->rx_ring.lock);
422 
423 	msdu_count = __le16_to_cpu(ev->msdu_count);
424 	is_offload = !!(ev->info & HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK);
425 
426 	while (msdu_count--) {
427 		paddr = __le32_to_cpu(msdu_desc->msdu_paddr);
428 
429 		msdu = ath10k_htt_rx_pop_paddr(htt, paddr);
430 		if (!msdu) {
431 			__skb_queue_purge(list);
432 			return -ENOENT;
433 		}
434 
435 		__skb_queue_tail(list, msdu);
436 
437 		if (!is_offload) {
438 			rxd = (void *)msdu->data;
439 
440 			trace_ath10k_htt_rx_desc(ar, rxd, sizeof(*rxd));
441 
442 			skb_put(msdu, sizeof(*rxd));
443 			skb_pull(msdu, sizeof(*rxd));
444 			skb_put(msdu, __le16_to_cpu(msdu_desc->msdu_len));
445 
446 			if (!(__le32_to_cpu(rxd->attention.flags) &
447 			      RX_ATTENTION_FLAGS_MSDU_DONE)) {
448 				ath10k_warn(htt->ar, "tried to pop an incomplete frame, oops!\n");
449 				return -EIO;
450 			}
451 		}
452 
453 		msdu_desc++;
454 	}
455 
456 	return 0;
457 }
458 
459 int ath10k_htt_rx_alloc(struct ath10k_htt *htt)
460 {
461 	struct ath10k *ar = htt->ar;
462 	dma_addr_t paddr;
463 	void *vaddr;
464 	size_t size;
465 	struct timer_list *timer = &htt->rx_ring.refill_retry_timer;
466 
467 	htt->rx_confused = false;
468 
469 	/* XXX: The fill level could be changed during runtime in response to
470 	 * the host processing latency. Is this really worth it?
471 	 */
472 	htt->rx_ring.size = HTT_RX_RING_SIZE;
473 	htt->rx_ring.size_mask = htt->rx_ring.size - 1;
474 	htt->rx_ring.fill_level = HTT_RX_RING_FILL_LEVEL;
475 
476 	if (!is_power_of_2(htt->rx_ring.size)) {
477 		ath10k_warn(ar, "htt rx ring size is not power of 2\n");
478 		return -EINVAL;
479 	}
480 
481 	htt->rx_ring.netbufs_ring =
482 		kzalloc(htt->rx_ring.size * sizeof(struct sk_buff *),
483 			GFP_KERNEL);
484 	if (!htt->rx_ring.netbufs_ring)
485 		goto err_netbuf;
486 
487 	size = htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring);
488 
489 	vaddr = dma_alloc_coherent(htt->ar->dev, size, &paddr, GFP_KERNEL);
490 	if (!vaddr)
491 		goto err_dma_ring;
492 
493 	htt->rx_ring.paddrs_ring = vaddr;
494 	htt->rx_ring.base_paddr = paddr;
495 
496 	vaddr = dma_alloc_coherent(htt->ar->dev,
497 				   sizeof(*htt->rx_ring.alloc_idx.vaddr),
498 				   &paddr, GFP_KERNEL);
499 	if (!vaddr)
500 		goto err_dma_idx;
501 
502 	htt->rx_ring.alloc_idx.vaddr = vaddr;
503 	htt->rx_ring.alloc_idx.paddr = paddr;
504 	htt->rx_ring.sw_rd_idx.msdu_payld = htt->rx_ring.size_mask;
505 	*htt->rx_ring.alloc_idx.vaddr = 0;
506 
507 	/* Initialize the Rx refill retry timer */
508 	setup_timer(timer, ath10k_htt_rx_ring_refill_retry, (unsigned long)htt);
509 
510 	spin_lock_init(&htt->rx_ring.lock);
511 
512 	htt->rx_ring.fill_cnt = 0;
513 	htt->rx_ring.sw_rd_idx.msdu_payld = 0;
514 	hash_init(htt->rx_ring.skb_table);
515 
516 	skb_queue_head_init(&htt->rx_compl_q);
517 	skb_queue_head_init(&htt->rx_in_ord_compl_q);
518 	skb_queue_head_init(&htt->tx_fetch_ind_q);
519 	atomic_set(&htt->num_mpdus_ready, 0);
520 
521 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "htt rx ring size %d fill_level %d\n",
522 		   htt->rx_ring.size, htt->rx_ring.fill_level);
523 	return 0;
524 
525 err_dma_idx:
526 	dma_free_coherent(htt->ar->dev,
527 			  (htt->rx_ring.size *
528 			   sizeof(htt->rx_ring.paddrs_ring)),
529 			  htt->rx_ring.paddrs_ring,
530 			  htt->rx_ring.base_paddr);
531 err_dma_ring:
532 	kfree(htt->rx_ring.netbufs_ring);
533 err_netbuf:
534 	return -ENOMEM;
535 }
536 
537 static int ath10k_htt_rx_crypto_param_len(struct ath10k *ar,
538 					  enum htt_rx_mpdu_encrypt_type type)
539 {
540 	switch (type) {
541 	case HTT_RX_MPDU_ENCRYPT_NONE:
542 		return 0;
543 	case HTT_RX_MPDU_ENCRYPT_WEP40:
544 	case HTT_RX_MPDU_ENCRYPT_WEP104:
545 		return IEEE80211_WEP_IV_LEN;
546 	case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
547 	case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
548 		return IEEE80211_TKIP_IV_LEN;
549 	case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
550 		return IEEE80211_CCMP_HDR_LEN;
551 	case HTT_RX_MPDU_ENCRYPT_WEP128:
552 	case HTT_RX_MPDU_ENCRYPT_WAPI:
553 		break;
554 	}
555 
556 	ath10k_warn(ar, "unsupported encryption type %d\n", type);
557 	return 0;
558 }
559 
560 #define MICHAEL_MIC_LEN 8
561 
562 static int ath10k_htt_rx_crypto_tail_len(struct ath10k *ar,
563 					 enum htt_rx_mpdu_encrypt_type type)
564 {
565 	switch (type) {
566 	case HTT_RX_MPDU_ENCRYPT_NONE:
567 		return 0;
568 	case HTT_RX_MPDU_ENCRYPT_WEP40:
569 	case HTT_RX_MPDU_ENCRYPT_WEP104:
570 		return IEEE80211_WEP_ICV_LEN;
571 	case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
572 	case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
573 		return IEEE80211_TKIP_ICV_LEN;
574 	case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
575 		return IEEE80211_CCMP_MIC_LEN;
576 	case HTT_RX_MPDU_ENCRYPT_WEP128:
577 	case HTT_RX_MPDU_ENCRYPT_WAPI:
578 		break;
579 	}
580 
581 	ath10k_warn(ar, "unsupported encryption type %d\n", type);
582 	return 0;
583 }
584 
585 struct amsdu_subframe_hdr {
586 	u8 dst[ETH_ALEN];
587 	u8 src[ETH_ALEN];
588 	__be16 len;
589 } __packed;
590 
591 #define GROUP_ID_IS_SU_MIMO(x) ((x) == 0 || (x) == 63)
592 
593 static void ath10k_htt_rx_h_rates(struct ath10k *ar,
594 				  struct ieee80211_rx_status *status,
595 				  struct htt_rx_desc *rxd)
596 {
597 	struct ieee80211_supported_band *sband;
598 	u8 cck, rate, bw, sgi, mcs, nss;
599 	u8 preamble = 0;
600 	u8 group_id;
601 	u32 info1, info2, info3;
602 
603 	info1 = __le32_to_cpu(rxd->ppdu_start.info1);
604 	info2 = __le32_to_cpu(rxd->ppdu_start.info2);
605 	info3 = __le32_to_cpu(rxd->ppdu_start.info3);
606 
607 	preamble = MS(info1, RX_PPDU_START_INFO1_PREAMBLE_TYPE);
608 
609 	switch (preamble) {
610 	case HTT_RX_LEGACY:
611 		/* To get legacy rate index band is required. Since band can't
612 		 * be undefined check if freq is non-zero.
613 		 */
614 		if (!status->freq)
615 			return;
616 
617 		cck = info1 & RX_PPDU_START_INFO1_L_SIG_RATE_SELECT;
618 		rate = MS(info1, RX_PPDU_START_INFO1_L_SIG_RATE);
619 		rate &= ~RX_PPDU_START_RATE_FLAG;
620 
621 		sband = &ar->mac.sbands[status->band];
622 		status->rate_idx = ath10k_mac_hw_rate_to_idx(sband, rate, cck);
623 		break;
624 	case HTT_RX_HT:
625 	case HTT_RX_HT_WITH_TXBF:
626 		/* HT-SIG - Table 20-11 in info2 and info3 */
627 		mcs = info2 & 0x1F;
628 		nss = mcs >> 3;
629 		bw = (info2 >> 7) & 1;
630 		sgi = (info3 >> 7) & 1;
631 
632 		status->rate_idx = mcs;
633 		status->flag |= RX_FLAG_HT;
634 		if (sgi)
635 			status->flag |= RX_FLAG_SHORT_GI;
636 		if (bw)
637 			status->flag |= RX_FLAG_40MHZ;
638 		break;
639 	case HTT_RX_VHT:
640 	case HTT_RX_VHT_WITH_TXBF:
641 		/* VHT-SIG-A1 in info2, VHT-SIG-A2 in info3
642 		   TODO check this */
643 		bw = info2 & 3;
644 		sgi = info3 & 1;
645 		group_id = (info2 >> 4) & 0x3F;
646 
647 		if (GROUP_ID_IS_SU_MIMO(group_id)) {
648 			mcs = (info3 >> 4) & 0x0F;
649 			nss = ((info2 >> 10) & 0x07) + 1;
650 		} else {
651 			/* Hardware doesn't decode VHT-SIG-B into Rx descriptor
652 			 * so it's impossible to decode MCS. Also since
653 			 * firmware consumes Group Id Management frames host
654 			 * has no knowledge regarding group/user position
655 			 * mapping so it's impossible to pick the correct Nsts
656 			 * from VHT-SIG-A1.
657 			 *
658 			 * Bandwidth and SGI are valid so report the rateinfo
659 			 * on best-effort basis.
660 			 */
661 			mcs = 0;
662 			nss = 1;
663 		}
664 
665 		if (mcs > 0x09) {
666 			ath10k_warn(ar, "invalid MCS received %u\n", mcs);
667 			ath10k_warn(ar, "rxd %08x mpdu start %08x %08x msdu start %08x %08x ppdu start %08x %08x %08x %08x %08x\n",
668 				    __le32_to_cpu(rxd->attention.flags),
669 				    __le32_to_cpu(rxd->mpdu_start.info0),
670 				    __le32_to_cpu(rxd->mpdu_start.info1),
671 				    __le32_to_cpu(rxd->msdu_start.common.info0),
672 				    __le32_to_cpu(rxd->msdu_start.common.info1),
673 				    rxd->ppdu_start.info0,
674 				    __le32_to_cpu(rxd->ppdu_start.info1),
675 				    __le32_to_cpu(rxd->ppdu_start.info2),
676 				    __le32_to_cpu(rxd->ppdu_start.info3),
677 				    __le32_to_cpu(rxd->ppdu_start.info4));
678 
679 			ath10k_warn(ar, "msdu end %08x mpdu end %08x\n",
680 				    __le32_to_cpu(rxd->msdu_end.common.info0),
681 				    __le32_to_cpu(rxd->mpdu_end.info0));
682 
683 			ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL,
684 					"rx desc msdu payload: ",
685 					rxd->msdu_payload, 50);
686 		}
687 
688 		status->rate_idx = mcs;
689 		status->vht_nss = nss;
690 
691 		if (sgi)
692 			status->flag |= RX_FLAG_SHORT_GI;
693 
694 		switch (bw) {
695 		/* 20MHZ */
696 		case 0:
697 			break;
698 		/* 40MHZ */
699 		case 1:
700 			status->flag |= RX_FLAG_40MHZ;
701 			break;
702 		/* 80MHZ */
703 		case 2:
704 			status->vht_flag |= RX_VHT_FLAG_80MHZ;
705 			break;
706 		case 3:
707 			status->vht_flag |= RX_VHT_FLAG_160MHZ;
708 			break;
709 		}
710 
711 		status->flag |= RX_FLAG_VHT;
712 		break;
713 	default:
714 		break;
715 	}
716 }
717 
718 static struct ieee80211_channel *
719 ath10k_htt_rx_h_peer_channel(struct ath10k *ar, struct htt_rx_desc *rxd)
720 {
721 	struct ath10k_peer *peer;
722 	struct ath10k_vif *arvif;
723 	struct cfg80211_chan_def def;
724 	u16 peer_id;
725 
726 	lockdep_assert_held(&ar->data_lock);
727 
728 	if (!rxd)
729 		return NULL;
730 
731 	if (rxd->attention.flags &
732 	    __cpu_to_le32(RX_ATTENTION_FLAGS_PEER_IDX_INVALID))
733 		return NULL;
734 
735 	if (!(rxd->msdu_end.common.info0 &
736 	      __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU)))
737 		return NULL;
738 
739 	peer_id = MS(__le32_to_cpu(rxd->mpdu_start.info0),
740 		     RX_MPDU_START_INFO0_PEER_IDX);
741 
742 	peer = ath10k_peer_find_by_id(ar, peer_id);
743 	if (!peer)
744 		return NULL;
745 
746 	arvif = ath10k_get_arvif(ar, peer->vdev_id);
747 	if (WARN_ON_ONCE(!arvif))
748 		return NULL;
749 
750 	if (ath10k_mac_vif_chan(arvif->vif, &def))
751 		return NULL;
752 
753 	return def.chan;
754 }
755 
756 static struct ieee80211_channel *
757 ath10k_htt_rx_h_vdev_channel(struct ath10k *ar, u32 vdev_id)
758 {
759 	struct ath10k_vif *arvif;
760 	struct cfg80211_chan_def def;
761 
762 	lockdep_assert_held(&ar->data_lock);
763 
764 	list_for_each_entry(arvif, &ar->arvifs, list) {
765 		if (arvif->vdev_id == vdev_id &&
766 		    ath10k_mac_vif_chan(arvif->vif, &def) == 0)
767 			return def.chan;
768 	}
769 
770 	return NULL;
771 }
772 
773 static void
774 ath10k_htt_rx_h_any_chan_iter(struct ieee80211_hw *hw,
775 			      struct ieee80211_chanctx_conf *conf,
776 			      void *data)
777 {
778 	struct cfg80211_chan_def *def = data;
779 
780 	*def = conf->def;
781 }
782 
783 static struct ieee80211_channel *
784 ath10k_htt_rx_h_any_channel(struct ath10k *ar)
785 {
786 	struct cfg80211_chan_def def = {};
787 
788 	ieee80211_iter_chan_contexts_atomic(ar->hw,
789 					    ath10k_htt_rx_h_any_chan_iter,
790 					    &def);
791 
792 	return def.chan;
793 }
794 
795 static bool ath10k_htt_rx_h_channel(struct ath10k *ar,
796 				    struct ieee80211_rx_status *status,
797 				    struct htt_rx_desc *rxd,
798 				    u32 vdev_id)
799 {
800 	struct ieee80211_channel *ch;
801 
802 	spin_lock_bh(&ar->data_lock);
803 	ch = ar->scan_channel;
804 	if (!ch)
805 		ch = ar->rx_channel;
806 	if (!ch)
807 		ch = ath10k_htt_rx_h_peer_channel(ar, rxd);
808 	if (!ch)
809 		ch = ath10k_htt_rx_h_vdev_channel(ar, vdev_id);
810 	if (!ch)
811 		ch = ath10k_htt_rx_h_any_channel(ar);
812 	if (!ch)
813 		ch = ar->tgt_oper_chan;
814 	spin_unlock_bh(&ar->data_lock);
815 
816 	if (!ch)
817 		return false;
818 
819 	status->band = ch->band;
820 	status->freq = ch->center_freq;
821 
822 	return true;
823 }
824 
825 static void ath10k_htt_rx_h_signal(struct ath10k *ar,
826 				   struct ieee80211_rx_status *status,
827 				   struct htt_rx_desc *rxd)
828 {
829 	/* FIXME: Get real NF */
830 	status->signal = ATH10K_DEFAULT_NOISE_FLOOR +
831 			 rxd->ppdu_start.rssi_comb;
832 	status->flag &= ~RX_FLAG_NO_SIGNAL_VAL;
833 }
834 
835 static void ath10k_htt_rx_h_mactime(struct ath10k *ar,
836 				    struct ieee80211_rx_status *status,
837 				    struct htt_rx_desc *rxd)
838 {
839 	/* FIXME: TSF is known only at the end of PPDU, in the last MPDU. This
840 	 * means all prior MSDUs in a PPDU are reported to mac80211 without the
841 	 * TSF. Is it worth holding frames until end of PPDU is known?
842 	 *
843 	 * FIXME: Can we get/compute 64bit TSF?
844 	 */
845 	status->mactime = __le32_to_cpu(rxd->ppdu_end.common.tsf_timestamp);
846 	status->flag |= RX_FLAG_MACTIME_END;
847 }
848 
849 static void ath10k_htt_rx_h_ppdu(struct ath10k *ar,
850 				 struct sk_buff_head *amsdu,
851 				 struct ieee80211_rx_status *status,
852 				 u32 vdev_id)
853 {
854 	struct sk_buff *first;
855 	struct htt_rx_desc *rxd;
856 	bool is_first_ppdu;
857 	bool is_last_ppdu;
858 
859 	if (skb_queue_empty(amsdu))
860 		return;
861 
862 	first = skb_peek(amsdu);
863 	rxd = (void *)first->data - sizeof(*rxd);
864 
865 	is_first_ppdu = !!(rxd->attention.flags &
866 			   __cpu_to_le32(RX_ATTENTION_FLAGS_FIRST_MPDU));
867 	is_last_ppdu = !!(rxd->attention.flags &
868 			  __cpu_to_le32(RX_ATTENTION_FLAGS_LAST_MPDU));
869 
870 	if (is_first_ppdu) {
871 		/* New PPDU starts so clear out the old per-PPDU status. */
872 		status->freq = 0;
873 		status->rate_idx = 0;
874 		status->vht_nss = 0;
875 		status->vht_flag &= ~RX_VHT_FLAG_80MHZ;
876 		status->flag &= ~(RX_FLAG_HT |
877 				  RX_FLAG_VHT |
878 				  RX_FLAG_SHORT_GI |
879 				  RX_FLAG_40MHZ |
880 				  RX_FLAG_MACTIME_END);
881 		status->flag |= RX_FLAG_NO_SIGNAL_VAL;
882 
883 		ath10k_htt_rx_h_signal(ar, status, rxd);
884 		ath10k_htt_rx_h_channel(ar, status, rxd, vdev_id);
885 		ath10k_htt_rx_h_rates(ar, status, rxd);
886 	}
887 
888 	if (is_last_ppdu)
889 		ath10k_htt_rx_h_mactime(ar, status, rxd);
890 }
891 
892 static const char * const tid_to_ac[] = {
893 	"BE",
894 	"BK",
895 	"BK",
896 	"BE",
897 	"VI",
898 	"VI",
899 	"VO",
900 	"VO",
901 };
902 
903 static char *ath10k_get_tid(struct ieee80211_hdr *hdr, char *out, size_t size)
904 {
905 	u8 *qc;
906 	int tid;
907 
908 	if (!ieee80211_is_data_qos(hdr->frame_control))
909 		return "";
910 
911 	qc = ieee80211_get_qos_ctl(hdr);
912 	tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
913 	if (tid < 8)
914 		snprintf(out, size, "tid %d (%s)", tid, tid_to_ac[tid]);
915 	else
916 		snprintf(out, size, "tid %d", tid);
917 
918 	return out;
919 }
920 
921 static void ath10k_process_rx(struct ath10k *ar,
922 			      struct ieee80211_rx_status *rx_status,
923 			      struct sk_buff *skb)
924 {
925 	struct ieee80211_rx_status *status;
926 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
927 	char tid[32];
928 
929 	status = IEEE80211_SKB_RXCB(skb);
930 	*status = *rx_status;
931 
932 	ath10k_dbg(ar, ATH10K_DBG_DATA,
933 		   "rx skb %pK len %u peer %pM %s %s sn %u %s%s%s%s%s%s %srate_idx %u vht_nss %u freq %u band %u flag 0x%llx fcs-err %i mic-err %i amsdu-more %i\n",
934 		   skb,
935 		   skb->len,
936 		   ieee80211_get_SA(hdr),
937 		   ath10k_get_tid(hdr, tid, sizeof(tid)),
938 		   is_multicast_ether_addr(ieee80211_get_DA(hdr)) ?
939 							"mcast" : "ucast",
940 		   (__le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_SEQ) >> 4,
941 		   (status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) == 0 ?
942 							"legacy" : "",
943 		   status->flag & RX_FLAG_HT ? "ht" : "",
944 		   status->flag & RX_FLAG_VHT ? "vht" : "",
945 		   status->flag & RX_FLAG_40MHZ ? "40" : "",
946 		   status->vht_flag & RX_VHT_FLAG_80MHZ ? "80" : "",
947 		   status->vht_flag & RX_VHT_FLAG_160MHZ ? "160" : "",
948 		   status->flag & RX_FLAG_SHORT_GI ? "sgi " : "",
949 		   status->rate_idx,
950 		   status->vht_nss,
951 		   status->freq,
952 		   status->band, status->flag,
953 		   !!(status->flag & RX_FLAG_FAILED_FCS_CRC),
954 		   !!(status->flag & RX_FLAG_MMIC_ERROR),
955 		   !!(status->flag & RX_FLAG_AMSDU_MORE));
956 	ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "rx skb: ",
957 			skb->data, skb->len);
958 	trace_ath10k_rx_hdr(ar, skb->data, skb->len);
959 	trace_ath10k_rx_payload(ar, skb->data, skb->len);
960 
961 	ieee80211_rx_napi(ar->hw, NULL, skb, &ar->napi);
962 }
963 
964 static int ath10k_htt_rx_nwifi_hdrlen(struct ath10k *ar,
965 				      struct ieee80211_hdr *hdr)
966 {
967 	int len = ieee80211_hdrlen(hdr->frame_control);
968 
969 	if (!test_bit(ATH10K_FW_FEATURE_NO_NWIFI_DECAP_4ADDR_PADDING,
970 		      ar->running_fw->fw_file.fw_features))
971 		len = round_up(len, 4);
972 
973 	return len;
974 }
975 
976 static void ath10k_htt_rx_h_undecap_raw(struct ath10k *ar,
977 					struct sk_buff *msdu,
978 					struct ieee80211_rx_status *status,
979 					enum htt_rx_mpdu_encrypt_type enctype,
980 					bool is_decrypted)
981 {
982 	struct ieee80211_hdr *hdr;
983 	struct htt_rx_desc *rxd;
984 	size_t hdr_len;
985 	size_t crypto_len;
986 	bool is_first;
987 	bool is_last;
988 
989 	rxd = (void *)msdu->data - sizeof(*rxd);
990 	is_first = !!(rxd->msdu_end.common.info0 &
991 		      __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU));
992 	is_last = !!(rxd->msdu_end.common.info0 &
993 		     __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU));
994 
995 	/* Delivered decapped frame:
996 	 * [802.11 header]
997 	 * [crypto param] <-- can be trimmed if !fcs_err &&
998 	 *                    !decrypt_err && !peer_idx_invalid
999 	 * [amsdu header] <-- only if A-MSDU
1000 	 * [rfc1042/llc]
1001 	 * [payload]
1002 	 * [FCS] <-- at end, needs to be trimmed
1003 	 */
1004 
1005 	/* This probably shouldn't happen but warn just in case */
1006 	if (unlikely(WARN_ON_ONCE(!is_first)))
1007 		return;
1008 
1009 	/* This probably shouldn't happen but warn just in case */
1010 	if (unlikely(WARN_ON_ONCE(!(is_first && is_last))))
1011 		return;
1012 
1013 	skb_trim(msdu, msdu->len - FCS_LEN);
1014 
1015 	/* In most cases this will be true for sniffed frames. It makes sense
1016 	 * to deliver them as-is without stripping the crypto param. This is
1017 	 * necessary for software based decryption.
1018 	 *
1019 	 * If there's no error then the frame is decrypted. At least that is
1020 	 * the case for frames that come in via fragmented rx indication.
1021 	 */
1022 	if (!is_decrypted)
1023 		return;
1024 
1025 	/* The payload is decrypted so strip crypto params. Start from tail
1026 	 * since hdr is used to compute some stuff.
1027 	 */
1028 
1029 	hdr = (void *)msdu->data;
1030 
1031 	/* Tail */
1032 	if (status->flag & RX_FLAG_IV_STRIPPED)
1033 		skb_trim(msdu, msdu->len -
1034 			 ath10k_htt_rx_crypto_tail_len(ar, enctype));
1035 
1036 	/* MMIC */
1037 	if ((status->flag & RX_FLAG_MMIC_STRIPPED) &&
1038 	    !ieee80211_has_morefrags(hdr->frame_control) &&
1039 	    enctype == HTT_RX_MPDU_ENCRYPT_TKIP_WPA)
1040 		skb_trim(msdu, msdu->len - 8);
1041 
1042 	/* Head */
1043 	if (status->flag & RX_FLAG_IV_STRIPPED) {
1044 		hdr_len = ieee80211_hdrlen(hdr->frame_control);
1045 		crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype);
1046 
1047 		memmove((void *)msdu->data + crypto_len,
1048 			(void *)msdu->data, hdr_len);
1049 		skb_pull(msdu, crypto_len);
1050 	}
1051 }
1052 
1053 static void ath10k_htt_rx_h_undecap_nwifi(struct ath10k *ar,
1054 					  struct sk_buff *msdu,
1055 					  struct ieee80211_rx_status *status,
1056 					  const u8 first_hdr[64])
1057 {
1058 	struct ieee80211_hdr *hdr;
1059 	struct htt_rx_desc *rxd;
1060 	size_t hdr_len;
1061 	u8 da[ETH_ALEN];
1062 	u8 sa[ETH_ALEN];
1063 	int l3_pad_bytes;
1064 
1065 	/* Delivered decapped frame:
1066 	 * [nwifi 802.11 header] <-- replaced with 802.11 hdr
1067 	 * [rfc1042/llc]
1068 	 *
1069 	 * Note: The nwifi header doesn't have QoS Control and is
1070 	 * (always?) a 3addr frame.
1071 	 *
1072 	 * Note2: There's no A-MSDU subframe header. Even if it's part
1073 	 * of an A-MSDU.
1074 	 */
1075 
1076 	/* pull decapped header and copy SA & DA */
1077 	rxd = (void *)msdu->data - sizeof(*rxd);
1078 
1079 	l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd);
1080 	skb_put(msdu, l3_pad_bytes);
1081 
1082 	hdr = (struct ieee80211_hdr *)(msdu->data + l3_pad_bytes);
1083 
1084 	hdr_len = ath10k_htt_rx_nwifi_hdrlen(ar, hdr);
1085 	ether_addr_copy(da, ieee80211_get_DA(hdr));
1086 	ether_addr_copy(sa, ieee80211_get_SA(hdr));
1087 	skb_pull(msdu, hdr_len);
1088 
1089 	/* push original 802.11 header */
1090 	hdr = (struct ieee80211_hdr *)first_hdr;
1091 	hdr_len = ieee80211_hdrlen(hdr->frame_control);
1092 	memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1093 
1094 	/* original 802.11 header has a different DA and in
1095 	 * case of 4addr it may also have different SA
1096 	 */
1097 	hdr = (struct ieee80211_hdr *)msdu->data;
1098 	ether_addr_copy(ieee80211_get_DA(hdr), da);
1099 	ether_addr_copy(ieee80211_get_SA(hdr), sa);
1100 }
1101 
1102 static void *ath10k_htt_rx_h_find_rfc1042(struct ath10k *ar,
1103 					  struct sk_buff *msdu,
1104 					  enum htt_rx_mpdu_encrypt_type enctype)
1105 {
1106 	struct ieee80211_hdr *hdr;
1107 	struct htt_rx_desc *rxd;
1108 	size_t hdr_len, crypto_len;
1109 	void *rfc1042;
1110 	bool is_first, is_last, is_amsdu;
1111 	int bytes_aligned = ar->hw_params.decap_align_bytes;
1112 
1113 	rxd = (void *)msdu->data - sizeof(*rxd);
1114 	hdr = (void *)rxd->rx_hdr_status;
1115 
1116 	is_first = !!(rxd->msdu_end.common.info0 &
1117 		      __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU));
1118 	is_last = !!(rxd->msdu_end.common.info0 &
1119 		     __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU));
1120 	is_amsdu = !(is_first && is_last);
1121 
1122 	rfc1042 = hdr;
1123 
1124 	if (is_first) {
1125 		hdr_len = ieee80211_hdrlen(hdr->frame_control);
1126 		crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype);
1127 
1128 		rfc1042 += round_up(hdr_len, bytes_aligned) +
1129 			   round_up(crypto_len, bytes_aligned);
1130 	}
1131 
1132 	if (is_amsdu)
1133 		rfc1042 += sizeof(struct amsdu_subframe_hdr);
1134 
1135 	return rfc1042;
1136 }
1137 
1138 static void ath10k_htt_rx_h_undecap_eth(struct ath10k *ar,
1139 					struct sk_buff *msdu,
1140 					struct ieee80211_rx_status *status,
1141 					const u8 first_hdr[64],
1142 					enum htt_rx_mpdu_encrypt_type enctype)
1143 {
1144 	struct ieee80211_hdr *hdr;
1145 	struct ethhdr *eth;
1146 	size_t hdr_len;
1147 	void *rfc1042;
1148 	u8 da[ETH_ALEN];
1149 	u8 sa[ETH_ALEN];
1150 	int l3_pad_bytes;
1151 	struct htt_rx_desc *rxd;
1152 
1153 	/* Delivered decapped frame:
1154 	 * [eth header] <-- replaced with 802.11 hdr & rfc1042/llc
1155 	 * [payload]
1156 	 */
1157 
1158 	rfc1042 = ath10k_htt_rx_h_find_rfc1042(ar, msdu, enctype);
1159 	if (WARN_ON_ONCE(!rfc1042))
1160 		return;
1161 
1162 	rxd = (void *)msdu->data - sizeof(*rxd);
1163 	l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd);
1164 	skb_put(msdu, l3_pad_bytes);
1165 	skb_pull(msdu, l3_pad_bytes);
1166 
1167 	/* pull decapped header and copy SA & DA */
1168 	eth = (struct ethhdr *)msdu->data;
1169 	ether_addr_copy(da, eth->h_dest);
1170 	ether_addr_copy(sa, eth->h_source);
1171 	skb_pull(msdu, sizeof(struct ethhdr));
1172 
1173 	/* push rfc1042/llc/snap */
1174 	memcpy(skb_push(msdu, sizeof(struct rfc1042_hdr)), rfc1042,
1175 	       sizeof(struct rfc1042_hdr));
1176 
1177 	/* push original 802.11 header */
1178 	hdr = (struct ieee80211_hdr *)first_hdr;
1179 	hdr_len = ieee80211_hdrlen(hdr->frame_control);
1180 	memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1181 
1182 	/* original 802.11 header has a different DA and in
1183 	 * case of 4addr it may also have different SA
1184 	 */
1185 	hdr = (struct ieee80211_hdr *)msdu->data;
1186 	ether_addr_copy(ieee80211_get_DA(hdr), da);
1187 	ether_addr_copy(ieee80211_get_SA(hdr), sa);
1188 }
1189 
1190 static void ath10k_htt_rx_h_undecap_snap(struct ath10k *ar,
1191 					 struct sk_buff *msdu,
1192 					 struct ieee80211_rx_status *status,
1193 					 const u8 first_hdr[64])
1194 {
1195 	struct ieee80211_hdr *hdr;
1196 	size_t hdr_len;
1197 	int l3_pad_bytes;
1198 	struct htt_rx_desc *rxd;
1199 
1200 	/* Delivered decapped frame:
1201 	 * [amsdu header] <-- replaced with 802.11 hdr
1202 	 * [rfc1042/llc]
1203 	 * [payload]
1204 	 */
1205 
1206 	rxd = (void *)msdu->data - sizeof(*rxd);
1207 	l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd);
1208 
1209 	skb_put(msdu, l3_pad_bytes);
1210 	skb_pull(msdu, sizeof(struct amsdu_subframe_hdr) + l3_pad_bytes);
1211 
1212 	hdr = (struct ieee80211_hdr *)first_hdr;
1213 	hdr_len = ieee80211_hdrlen(hdr->frame_control);
1214 	memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1215 }
1216 
1217 static void ath10k_htt_rx_h_undecap(struct ath10k *ar,
1218 				    struct sk_buff *msdu,
1219 				    struct ieee80211_rx_status *status,
1220 				    u8 first_hdr[64],
1221 				    enum htt_rx_mpdu_encrypt_type enctype,
1222 				    bool is_decrypted)
1223 {
1224 	struct htt_rx_desc *rxd;
1225 	enum rx_msdu_decap_format decap;
1226 
1227 	/* First msdu's decapped header:
1228 	 * [802.11 header] <-- padded to 4 bytes long
1229 	 * [crypto param] <-- padded to 4 bytes long
1230 	 * [amsdu header] <-- only if A-MSDU
1231 	 * [rfc1042/llc]
1232 	 *
1233 	 * Other (2nd, 3rd, ..) msdu's decapped header:
1234 	 * [amsdu header] <-- only if A-MSDU
1235 	 * [rfc1042/llc]
1236 	 */
1237 
1238 	rxd = (void *)msdu->data - sizeof(*rxd);
1239 	decap = MS(__le32_to_cpu(rxd->msdu_start.common.info1),
1240 		   RX_MSDU_START_INFO1_DECAP_FORMAT);
1241 
1242 	switch (decap) {
1243 	case RX_MSDU_DECAP_RAW:
1244 		ath10k_htt_rx_h_undecap_raw(ar, msdu, status, enctype,
1245 					    is_decrypted);
1246 		break;
1247 	case RX_MSDU_DECAP_NATIVE_WIFI:
1248 		ath10k_htt_rx_h_undecap_nwifi(ar, msdu, status, first_hdr);
1249 		break;
1250 	case RX_MSDU_DECAP_ETHERNET2_DIX:
1251 		ath10k_htt_rx_h_undecap_eth(ar, msdu, status, first_hdr, enctype);
1252 		break;
1253 	case RX_MSDU_DECAP_8023_SNAP_LLC:
1254 		ath10k_htt_rx_h_undecap_snap(ar, msdu, status, first_hdr);
1255 		break;
1256 	}
1257 }
1258 
1259 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb)
1260 {
1261 	struct htt_rx_desc *rxd;
1262 	u32 flags, info;
1263 	bool is_ip4, is_ip6;
1264 	bool is_tcp, is_udp;
1265 	bool ip_csum_ok, tcpudp_csum_ok;
1266 
1267 	rxd = (void *)skb->data - sizeof(*rxd);
1268 	flags = __le32_to_cpu(rxd->attention.flags);
1269 	info = __le32_to_cpu(rxd->msdu_start.common.info1);
1270 
1271 	is_ip4 = !!(info & RX_MSDU_START_INFO1_IPV4_PROTO);
1272 	is_ip6 = !!(info & RX_MSDU_START_INFO1_IPV6_PROTO);
1273 	is_tcp = !!(info & RX_MSDU_START_INFO1_TCP_PROTO);
1274 	is_udp = !!(info & RX_MSDU_START_INFO1_UDP_PROTO);
1275 	ip_csum_ok = !(flags & RX_ATTENTION_FLAGS_IP_CHKSUM_FAIL);
1276 	tcpudp_csum_ok = !(flags & RX_ATTENTION_FLAGS_TCP_UDP_CHKSUM_FAIL);
1277 
1278 	if (!is_ip4 && !is_ip6)
1279 		return CHECKSUM_NONE;
1280 	if (!is_tcp && !is_udp)
1281 		return CHECKSUM_NONE;
1282 	if (!ip_csum_ok)
1283 		return CHECKSUM_NONE;
1284 	if (!tcpudp_csum_ok)
1285 		return CHECKSUM_NONE;
1286 
1287 	return CHECKSUM_UNNECESSARY;
1288 }
1289 
1290 static void ath10k_htt_rx_h_csum_offload(struct sk_buff *msdu)
1291 {
1292 	msdu->ip_summed = ath10k_htt_rx_get_csum_state(msdu);
1293 }
1294 
1295 static void ath10k_htt_rx_h_mpdu(struct ath10k *ar,
1296 				 struct sk_buff_head *amsdu,
1297 				 struct ieee80211_rx_status *status)
1298 {
1299 	struct sk_buff *first;
1300 	struct sk_buff *last;
1301 	struct sk_buff *msdu;
1302 	struct htt_rx_desc *rxd;
1303 	struct ieee80211_hdr *hdr;
1304 	enum htt_rx_mpdu_encrypt_type enctype;
1305 	u8 first_hdr[64];
1306 	u8 *qos;
1307 	size_t hdr_len;
1308 	bool has_fcs_err;
1309 	bool has_crypto_err;
1310 	bool has_tkip_err;
1311 	bool has_peer_idx_invalid;
1312 	bool is_decrypted;
1313 	bool is_mgmt;
1314 	u32 attention;
1315 
1316 	if (skb_queue_empty(amsdu))
1317 		return;
1318 
1319 	first = skb_peek(amsdu);
1320 	rxd = (void *)first->data - sizeof(*rxd);
1321 
1322 	is_mgmt = !!(rxd->attention.flags &
1323 		     __cpu_to_le32(RX_ATTENTION_FLAGS_MGMT_TYPE));
1324 
1325 	enctype = MS(__le32_to_cpu(rxd->mpdu_start.info0),
1326 		     RX_MPDU_START_INFO0_ENCRYPT_TYPE);
1327 
1328 	/* First MSDU's Rx descriptor in an A-MSDU contains full 802.11
1329 	 * decapped header. It'll be used for undecapping of each MSDU.
1330 	 */
1331 	hdr = (void *)rxd->rx_hdr_status;
1332 	hdr_len = ieee80211_hdrlen(hdr->frame_control);
1333 	memcpy(first_hdr, hdr, hdr_len);
1334 
1335 	/* Each A-MSDU subframe will use the original header as the base and be
1336 	 * reported as a separate MSDU so strip the A-MSDU bit from QoS Ctl.
1337 	 */
1338 	hdr = (void *)first_hdr;
1339 	qos = ieee80211_get_qos_ctl(hdr);
1340 	qos[0] &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
1341 
1342 	/* Some attention flags are valid only in the last MSDU. */
1343 	last = skb_peek_tail(amsdu);
1344 	rxd = (void *)last->data - sizeof(*rxd);
1345 	attention = __le32_to_cpu(rxd->attention.flags);
1346 
1347 	has_fcs_err = !!(attention & RX_ATTENTION_FLAGS_FCS_ERR);
1348 	has_crypto_err = !!(attention & RX_ATTENTION_FLAGS_DECRYPT_ERR);
1349 	has_tkip_err = !!(attention & RX_ATTENTION_FLAGS_TKIP_MIC_ERR);
1350 	has_peer_idx_invalid = !!(attention & RX_ATTENTION_FLAGS_PEER_IDX_INVALID);
1351 
1352 	/* Note: If hardware captures an encrypted frame that it can't decrypt,
1353 	 * e.g. due to fcs error, missing peer or invalid key data it will
1354 	 * report the frame as raw.
1355 	 */
1356 	is_decrypted = (enctype != HTT_RX_MPDU_ENCRYPT_NONE &&
1357 			!has_fcs_err &&
1358 			!has_crypto_err &&
1359 			!has_peer_idx_invalid);
1360 
1361 	/* Clear per-MPDU flags while leaving per-PPDU flags intact. */
1362 	status->flag &= ~(RX_FLAG_FAILED_FCS_CRC |
1363 			  RX_FLAG_MMIC_ERROR |
1364 			  RX_FLAG_DECRYPTED |
1365 			  RX_FLAG_IV_STRIPPED |
1366 			  RX_FLAG_ONLY_MONITOR |
1367 			  RX_FLAG_MMIC_STRIPPED);
1368 
1369 	if (has_fcs_err)
1370 		status->flag |= RX_FLAG_FAILED_FCS_CRC;
1371 
1372 	if (has_tkip_err)
1373 		status->flag |= RX_FLAG_MMIC_ERROR;
1374 
1375 	/* Firmware reports all necessary management frames via WMI already.
1376 	 * They are not reported to monitor interfaces at all so pass the ones
1377 	 * coming via HTT to monitor interfaces instead. This simplifies
1378 	 * matters a lot.
1379 	 */
1380 	if (is_mgmt)
1381 		status->flag |= RX_FLAG_ONLY_MONITOR;
1382 
1383 	if (is_decrypted) {
1384 		status->flag |= RX_FLAG_DECRYPTED;
1385 
1386 		if (likely(!is_mgmt))
1387 			status->flag |= RX_FLAG_IV_STRIPPED |
1388 					RX_FLAG_MMIC_STRIPPED;
1389 }
1390 
1391 	skb_queue_walk(amsdu, msdu) {
1392 		ath10k_htt_rx_h_csum_offload(msdu);
1393 		ath10k_htt_rx_h_undecap(ar, msdu, status, first_hdr, enctype,
1394 					is_decrypted);
1395 
1396 		/* Undecapping involves copying the original 802.11 header back
1397 		 * to sk_buff. If frame is protected and hardware has decrypted
1398 		 * it then remove the protected bit.
1399 		 */
1400 		if (!is_decrypted)
1401 			continue;
1402 		if (is_mgmt)
1403 			continue;
1404 
1405 		hdr = (void *)msdu->data;
1406 		hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED);
1407 	}
1408 }
1409 
1410 static void ath10k_htt_rx_h_deliver(struct ath10k *ar,
1411 				    struct sk_buff_head *amsdu,
1412 				    struct ieee80211_rx_status *status)
1413 {
1414 	struct sk_buff *msdu;
1415 
1416 	while ((msdu = __skb_dequeue(amsdu))) {
1417 		/* Setup per-MSDU flags */
1418 		if (skb_queue_empty(amsdu))
1419 			status->flag &= ~RX_FLAG_AMSDU_MORE;
1420 		else
1421 			status->flag |= RX_FLAG_AMSDU_MORE;
1422 
1423 		ath10k_process_rx(ar, status, msdu);
1424 	}
1425 }
1426 
1427 static int ath10k_unchain_msdu(struct sk_buff_head *amsdu)
1428 {
1429 	struct sk_buff *skb, *first;
1430 	int space;
1431 	int total_len = 0;
1432 
1433 	/* TODO:  Might could optimize this by using
1434 	 * skb_try_coalesce or similar method to
1435 	 * decrease copying, or maybe get mac80211 to
1436 	 * provide a way to just receive a list of
1437 	 * skb?
1438 	 */
1439 
1440 	first = __skb_dequeue(amsdu);
1441 
1442 	/* Allocate total length all at once. */
1443 	skb_queue_walk(amsdu, skb)
1444 		total_len += skb->len;
1445 
1446 	space = total_len - skb_tailroom(first);
1447 	if ((space > 0) &&
1448 	    (pskb_expand_head(first, 0, space, GFP_ATOMIC) < 0)) {
1449 		/* TODO:  bump some rx-oom error stat */
1450 		/* put it back together so we can free the
1451 		 * whole list at once.
1452 		 */
1453 		__skb_queue_head(amsdu, first);
1454 		return -1;
1455 	}
1456 
1457 	/* Walk list again, copying contents into
1458 	 * msdu_head
1459 	 */
1460 	while ((skb = __skb_dequeue(amsdu))) {
1461 		skb_copy_from_linear_data(skb, skb_put(first, skb->len),
1462 					  skb->len);
1463 		dev_kfree_skb_any(skb);
1464 	}
1465 
1466 	__skb_queue_head(amsdu, first);
1467 	return 0;
1468 }
1469 
1470 static void ath10k_htt_rx_h_unchain(struct ath10k *ar,
1471 				    struct sk_buff_head *amsdu)
1472 {
1473 	struct sk_buff *first;
1474 	struct htt_rx_desc *rxd;
1475 	enum rx_msdu_decap_format decap;
1476 
1477 	first = skb_peek(amsdu);
1478 	rxd = (void *)first->data - sizeof(*rxd);
1479 	decap = MS(__le32_to_cpu(rxd->msdu_start.common.info1),
1480 		   RX_MSDU_START_INFO1_DECAP_FORMAT);
1481 
1482 	/* FIXME: Current unchaining logic can only handle simple case of raw
1483 	 * msdu chaining. If decapping is other than raw the chaining may be
1484 	 * more complex and this isn't handled by the current code. Don't even
1485 	 * try re-constructing such frames - it'll be pretty much garbage.
1486 	 */
1487 	if (decap != RX_MSDU_DECAP_RAW ||
1488 	    skb_queue_len(amsdu) != 1 + rxd->frag_info.ring2_more_count) {
1489 		__skb_queue_purge(amsdu);
1490 		return;
1491 	}
1492 
1493 	ath10k_unchain_msdu(amsdu);
1494 }
1495 
1496 static bool ath10k_htt_rx_amsdu_allowed(struct ath10k *ar,
1497 					struct sk_buff_head *amsdu,
1498 					struct ieee80211_rx_status *rx_status)
1499 {
1500 	/* FIXME: It might be a good idea to do some fuzzy-testing to drop
1501 	 * invalid/dangerous frames.
1502 	 */
1503 
1504 	if (!rx_status->freq) {
1505 		ath10k_warn(ar, "no channel configured; ignoring frame(s)!\n");
1506 		return false;
1507 	}
1508 
1509 	if (test_bit(ATH10K_CAC_RUNNING, &ar->dev_flags)) {
1510 		ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx cac running\n");
1511 		return false;
1512 	}
1513 
1514 	return true;
1515 }
1516 
1517 static void ath10k_htt_rx_h_filter(struct ath10k *ar,
1518 				   struct sk_buff_head *amsdu,
1519 				   struct ieee80211_rx_status *rx_status)
1520 {
1521 	if (skb_queue_empty(amsdu))
1522 		return;
1523 
1524 	if (ath10k_htt_rx_amsdu_allowed(ar, amsdu, rx_status))
1525 		return;
1526 
1527 	__skb_queue_purge(amsdu);
1528 }
1529 
1530 static int ath10k_htt_rx_handle_amsdu(struct ath10k_htt *htt)
1531 {
1532 	struct ath10k *ar = htt->ar;
1533 	struct ieee80211_rx_status *rx_status = &htt->rx_status;
1534 	struct sk_buff_head amsdu;
1535 	int ret, num_msdus;
1536 
1537 	__skb_queue_head_init(&amsdu);
1538 
1539 	spin_lock_bh(&htt->rx_ring.lock);
1540 	if (htt->rx_confused) {
1541 		spin_unlock_bh(&htt->rx_ring.lock);
1542 		return -EIO;
1543 	}
1544 	ret = ath10k_htt_rx_amsdu_pop(htt, &amsdu);
1545 	spin_unlock_bh(&htt->rx_ring.lock);
1546 
1547 	if (ret < 0) {
1548 		ath10k_warn(ar, "rx ring became corrupted: %d\n", ret);
1549 		__skb_queue_purge(&amsdu);
1550 		/* FIXME: It's probably a good idea to reboot the
1551 		 * device instead of leaving it inoperable.
1552 		 */
1553 		htt->rx_confused = true;
1554 		return ret;
1555 	}
1556 
1557 	num_msdus = skb_queue_len(&amsdu);
1558 	ath10k_htt_rx_h_ppdu(ar, &amsdu, rx_status, 0xffff);
1559 
1560 	/* only for ret = 1 indicates chained msdus */
1561 	if (ret > 0)
1562 		ath10k_htt_rx_h_unchain(ar, &amsdu);
1563 
1564 	ath10k_htt_rx_h_filter(ar, &amsdu, rx_status);
1565 	ath10k_htt_rx_h_mpdu(ar, &amsdu, rx_status);
1566 	ath10k_htt_rx_h_deliver(ar, &amsdu, rx_status);
1567 
1568 	return num_msdus;
1569 }
1570 
1571 static void ath10k_htt_rx_proc_rx_ind(struct ath10k_htt *htt,
1572 				      struct htt_rx_indication *rx)
1573 {
1574 	struct ath10k *ar = htt->ar;
1575 	struct htt_rx_indication_mpdu_range *mpdu_ranges;
1576 	int num_mpdu_ranges;
1577 	int i, mpdu_count = 0;
1578 
1579 	num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1),
1580 			     HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES);
1581 	mpdu_ranges = htt_rx_ind_get_mpdu_ranges(rx);
1582 
1583 	ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx ind: ",
1584 			rx, sizeof(*rx) +
1585 			(sizeof(struct htt_rx_indication_mpdu_range) *
1586 				num_mpdu_ranges));
1587 
1588 	for (i = 0; i < num_mpdu_ranges; i++)
1589 		mpdu_count += mpdu_ranges[i].mpdu_count;
1590 
1591 	atomic_add(mpdu_count, &htt->num_mpdus_ready);
1592 }
1593 
1594 static void ath10k_htt_rx_tx_compl_ind(struct ath10k *ar,
1595 				       struct sk_buff *skb)
1596 {
1597 	struct ath10k_htt *htt = &ar->htt;
1598 	struct htt_resp *resp = (struct htt_resp *)skb->data;
1599 	struct htt_tx_done tx_done = {};
1600 	int status = MS(resp->data_tx_completion.flags, HTT_DATA_TX_STATUS);
1601 	__le16 msdu_id;
1602 	int i;
1603 
1604 	switch (status) {
1605 	case HTT_DATA_TX_STATUS_NO_ACK:
1606 		tx_done.status = HTT_TX_COMPL_STATE_NOACK;
1607 		break;
1608 	case HTT_DATA_TX_STATUS_OK:
1609 		tx_done.status = HTT_TX_COMPL_STATE_ACK;
1610 		break;
1611 	case HTT_DATA_TX_STATUS_DISCARD:
1612 	case HTT_DATA_TX_STATUS_POSTPONE:
1613 	case HTT_DATA_TX_STATUS_DOWNLOAD_FAIL:
1614 		tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
1615 		break;
1616 	default:
1617 		ath10k_warn(ar, "unhandled tx completion status %d\n", status);
1618 		tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
1619 		break;
1620 	}
1621 
1622 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx completion num_msdus %d\n",
1623 		   resp->data_tx_completion.num_msdus);
1624 
1625 	for (i = 0; i < resp->data_tx_completion.num_msdus; i++) {
1626 		msdu_id = resp->data_tx_completion.msdus[i];
1627 		tx_done.msdu_id = __le16_to_cpu(msdu_id);
1628 
1629 		/* kfifo_put: In practice firmware shouldn't fire off per-CE
1630 		 * interrupt and main interrupt (MSI/-X range case) for the same
1631 		 * HTC service so it should be safe to use kfifo_put w/o lock.
1632 		 *
1633 		 * From kfifo_put() documentation:
1634 		 *  Note that with only one concurrent reader and one concurrent
1635 		 *  writer, you don't need extra locking to use these macro.
1636 		 */
1637 		if (!kfifo_put(&htt->txdone_fifo, tx_done)) {
1638 			ath10k_warn(ar, "txdone fifo overrun, msdu_id %d status %d\n",
1639 				    tx_done.msdu_id, tx_done.status);
1640 			ath10k_txrx_tx_unref(htt, &tx_done);
1641 		}
1642 	}
1643 }
1644 
1645 static void ath10k_htt_rx_addba(struct ath10k *ar, struct htt_resp *resp)
1646 {
1647 	struct htt_rx_addba *ev = &resp->rx_addba;
1648 	struct ath10k_peer *peer;
1649 	struct ath10k_vif *arvif;
1650 	u16 info0, tid, peer_id;
1651 
1652 	info0 = __le16_to_cpu(ev->info0);
1653 	tid = MS(info0, HTT_RX_BA_INFO0_TID);
1654 	peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID);
1655 
1656 	ath10k_dbg(ar, ATH10K_DBG_HTT,
1657 		   "htt rx addba tid %hu peer_id %hu size %hhu\n",
1658 		   tid, peer_id, ev->window_size);
1659 
1660 	spin_lock_bh(&ar->data_lock);
1661 	peer = ath10k_peer_find_by_id(ar, peer_id);
1662 	if (!peer) {
1663 		ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n",
1664 			    peer_id);
1665 		spin_unlock_bh(&ar->data_lock);
1666 		return;
1667 	}
1668 
1669 	arvif = ath10k_get_arvif(ar, peer->vdev_id);
1670 	if (!arvif) {
1671 		ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n",
1672 			    peer->vdev_id);
1673 		spin_unlock_bh(&ar->data_lock);
1674 		return;
1675 	}
1676 
1677 	ath10k_dbg(ar, ATH10K_DBG_HTT,
1678 		   "htt rx start rx ba session sta %pM tid %hu size %hhu\n",
1679 		   peer->addr, tid, ev->window_size);
1680 
1681 	ieee80211_start_rx_ba_session_offl(arvif->vif, peer->addr, tid);
1682 	spin_unlock_bh(&ar->data_lock);
1683 }
1684 
1685 static void ath10k_htt_rx_delba(struct ath10k *ar, struct htt_resp *resp)
1686 {
1687 	struct htt_rx_delba *ev = &resp->rx_delba;
1688 	struct ath10k_peer *peer;
1689 	struct ath10k_vif *arvif;
1690 	u16 info0, tid, peer_id;
1691 
1692 	info0 = __le16_to_cpu(ev->info0);
1693 	tid = MS(info0, HTT_RX_BA_INFO0_TID);
1694 	peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID);
1695 
1696 	ath10k_dbg(ar, ATH10K_DBG_HTT,
1697 		   "htt rx delba tid %hu peer_id %hu\n",
1698 		   tid, peer_id);
1699 
1700 	spin_lock_bh(&ar->data_lock);
1701 	peer = ath10k_peer_find_by_id(ar, peer_id);
1702 	if (!peer) {
1703 		ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n",
1704 			    peer_id);
1705 		spin_unlock_bh(&ar->data_lock);
1706 		return;
1707 	}
1708 
1709 	arvif = ath10k_get_arvif(ar, peer->vdev_id);
1710 	if (!arvif) {
1711 		ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n",
1712 			    peer->vdev_id);
1713 		spin_unlock_bh(&ar->data_lock);
1714 		return;
1715 	}
1716 
1717 	ath10k_dbg(ar, ATH10K_DBG_HTT,
1718 		   "htt rx stop rx ba session sta %pM tid %hu\n",
1719 		   peer->addr, tid);
1720 
1721 	ieee80211_stop_rx_ba_session_offl(arvif->vif, peer->addr, tid);
1722 	spin_unlock_bh(&ar->data_lock);
1723 }
1724 
1725 static int ath10k_htt_rx_extract_amsdu(struct sk_buff_head *list,
1726 				       struct sk_buff_head *amsdu)
1727 {
1728 	struct sk_buff *msdu;
1729 	struct htt_rx_desc *rxd;
1730 
1731 	if (skb_queue_empty(list))
1732 		return -ENOBUFS;
1733 
1734 	if (WARN_ON(!skb_queue_empty(amsdu)))
1735 		return -EINVAL;
1736 
1737 	while ((msdu = __skb_dequeue(list))) {
1738 		__skb_queue_tail(amsdu, msdu);
1739 
1740 		rxd = (void *)msdu->data - sizeof(*rxd);
1741 		if (rxd->msdu_end.common.info0 &
1742 		    __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU))
1743 			break;
1744 	}
1745 
1746 	msdu = skb_peek_tail(amsdu);
1747 	rxd = (void *)msdu->data - sizeof(*rxd);
1748 	if (!(rxd->msdu_end.common.info0 &
1749 	      __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU))) {
1750 		skb_queue_splice_init(amsdu, list);
1751 		return -EAGAIN;
1752 	}
1753 
1754 	return 0;
1755 }
1756 
1757 static void ath10k_htt_rx_h_rx_offload_prot(struct ieee80211_rx_status *status,
1758 					    struct sk_buff *skb)
1759 {
1760 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1761 
1762 	if (!ieee80211_has_protected(hdr->frame_control))
1763 		return;
1764 
1765 	/* Offloaded frames are already decrypted but firmware insists they are
1766 	 * protected in the 802.11 header. Strip the flag.  Otherwise mac80211
1767 	 * will drop the frame.
1768 	 */
1769 
1770 	hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED);
1771 	status->flag |= RX_FLAG_DECRYPTED |
1772 			RX_FLAG_IV_STRIPPED |
1773 			RX_FLAG_MMIC_STRIPPED;
1774 }
1775 
1776 static int ath10k_htt_rx_h_rx_offload(struct ath10k *ar,
1777 				      struct sk_buff_head *list)
1778 {
1779 	struct ath10k_htt *htt = &ar->htt;
1780 	struct ieee80211_rx_status *status = &htt->rx_status;
1781 	struct htt_rx_offload_msdu *rx;
1782 	struct sk_buff *msdu;
1783 	size_t offset;
1784 	int num_msdu = 0;
1785 
1786 	while ((msdu = __skb_dequeue(list))) {
1787 		/* Offloaded frames don't have Rx descriptor. Instead they have
1788 		 * a short meta information header.
1789 		 */
1790 
1791 		rx = (void *)msdu->data;
1792 
1793 		skb_put(msdu, sizeof(*rx));
1794 		skb_pull(msdu, sizeof(*rx));
1795 
1796 		if (skb_tailroom(msdu) < __le16_to_cpu(rx->msdu_len)) {
1797 			ath10k_warn(ar, "dropping frame: offloaded rx msdu is too long!\n");
1798 			dev_kfree_skb_any(msdu);
1799 			continue;
1800 		}
1801 
1802 		skb_put(msdu, __le16_to_cpu(rx->msdu_len));
1803 
1804 		/* Offloaded rx header length isn't multiple of 2 nor 4 so the
1805 		 * actual payload is unaligned. Align the frame.  Otherwise
1806 		 * mac80211 complains.  This shouldn't reduce performance much
1807 		 * because these offloaded frames are rare.
1808 		 */
1809 		offset = 4 - ((unsigned long)msdu->data & 3);
1810 		skb_put(msdu, offset);
1811 		memmove(msdu->data + offset, msdu->data, msdu->len);
1812 		skb_pull(msdu, offset);
1813 
1814 		/* FIXME: The frame is NWifi. Re-construct QoS Control
1815 		 * if possible later.
1816 		 */
1817 
1818 		memset(status, 0, sizeof(*status));
1819 		status->flag |= RX_FLAG_NO_SIGNAL_VAL;
1820 
1821 		ath10k_htt_rx_h_rx_offload_prot(status, msdu);
1822 		ath10k_htt_rx_h_channel(ar, status, NULL, rx->vdev_id);
1823 		ath10k_process_rx(ar, status, msdu);
1824 		num_msdu++;
1825 	}
1826 	return num_msdu;
1827 }
1828 
1829 static int ath10k_htt_rx_in_ord_ind(struct ath10k *ar, struct sk_buff *skb)
1830 {
1831 	struct ath10k_htt *htt = &ar->htt;
1832 	struct htt_resp *resp = (void *)skb->data;
1833 	struct ieee80211_rx_status *status = &htt->rx_status;
1834 	struct sk_buff_head list;
1835 	struct sk_buff_head amsdu;
1836 	u16 peer_id;
1837 	u16 msdu_count;
1838 	u8 vdev_id;
1839 	u8 tid;
1840 	bool offload;
1841 	bool frag;
1842 	int ret, num_msdus = 0;
1843 
1844 	lockdep_assert_held(&htt->rx_ring.lock);
1845 
1846 	if (htt->rx_confused)
1847 		return -EIO;
1848 
1849 	skb_pull(skb, sizeof(resp->hdr));
1850 	skb_pull(skb, sizeof(resp->rx_in_ord_ind));
1851 
1852 	peer_id = __le16_to_cpu(resp->rx_in_ord_ind.peer_id);
1853 	msdu_count = __le16_to_cpu(resp->rx_in_ord_ind.msdu_count);
1854 	vdev_id = resp->rx_in_ord_ind.vdev_id;
1855 	tid = SM(resp->rx_in_ord_ind.info, HTT_RX_IN_ORD_IND_INFO_TID);
1856 	offload = !!(resp->rx_in_ord_ind.info &
1857 			HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK);
1858 	frag = !!(resp->rx_in_ord_ind.info & HTT_RX_IN_ORD_IND_INFO_FRAG_MASK);
1859 
1860 	ath10k_dbg(ar, ATH10K_DBG_HTT,
1861 		   "htt rx in ord vdev %i peer %i tid %i offload %i frag %i msdu count %i\n",
1862 		   vdev_id, peer_id, tid, offload, frag, msdu_count);
1863 
1864 	if (skb->len < msdu_count * sizeof(*resp->rx_in_ord_ind.msdu_descs)) {
1865 		ath10k_warn(ar, "dropping invalid in order rx indication\n");
1866 		return -EINVAL;
1867 	}
1868 
1869 	/* The event can deliver more than 1 A-MSDU. Each A-MSDU is later
1870 	 * extracted and processed.
1871 	 */
1872 	__skb_queue_head_init(&list);
1873 	ret = ath10k_htt_rx_pop_paddr_list(htt, &resp->rx_in_ord_ind, &list);
1874 	if (ret < 0) {
1875 		ath10k_warn(ar, "failed to pop paddr list: %d\n", ret);
1876 		htt->rx_confused = true;
1877 		return -EIO;
1878 	}
1879 
1880 	/* Offloaded frames are very different and need to be handled
1881 	 * separately.
1882 	 */
1883 	if (offload)
1884 		num_msdus = ath10k_htt_rx_h_rx_offload(ar, &list);
1885 
1886 	while (!skb_queue_empty(&list)) {
1887 		__skb_queue_head_init(&amsdu);
1888 		ret = ath10k_htt_rx_extract_amsdu(&list, &amsdu);
1889 		switch (ret) {
1890 		case 0:
1891 			/* Note: The in-order indication may report interleaved
1892 			 * frames from different PPDUs meaning reported rx rate
1893 			 * to mac80211 isn't accurate/reliable. It's still
1894 			 * better to report something than nothing though. This
1895 			 * should still give an idea about rx rate to the user.
1896 			 */
1897 			num_msdus += skb_queue_len(&amsdu);
1898 			ath10k_htt_rx_h_ppdu(ar, &amsdu, status, vdev_id);
1899 			ath10k_htt_rx_h_filter(ar, &amsdu, status);
1900 			ath10k_htt_rx_h_mpdu(ar, &amsdu, status);
1901 			ath10k_htt_rx_h_deliver(ar, &amsdu, status);
1902 			break;
1903 		case -EAGAIN:
1904 			/* fall through */
1905 		default:
1906 			/* Should not happen. */
1907 			ath10k_warn(ar, "failed to extract amsdu: %d\n", ret);
1908 			htt->rx_confused = true;
1909 			__skb_queue_purge(&list);
1910 			return -EIO;
1911 		}
1912 	}
1913 	return num_msdus;
1914 }
1915 
1916 static void ath10k_htt_rx_tx_fetch_resp_id_confirm(struct ath10k *ar,
1917 						   const __le32 *resp_ids,
1918 						   int num_resp_ids)
1919 {
1920 	int i;
1921 	u32 resp_id;
1922 
1923 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm num_resp_ids %d\n",
1924 		   num_resp_ids);
1925 
1926 	for (i = 0; i < num_resp_ids; i++) {
1927 		resp_id = le32_to_cpu(resp_ids[i]);
1928 
1929 		ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm resp_id %u\n",
1930 			   resp_id);
1931 
1932 		/* TODO: free resp_id */
1933 	}
1934 }
1935 
1936 static void ath10k_htt_rx_tx_fetch_ind(struct ath10k *ar, struct sk_buff *skb)
1937 {
1938 	struct ieee80211_hw *hw = ar->hw;
1939 	struct ieee80211_txq *txq;
1940 	struct htt_resp *resp = (struct htt_resp *)skb->data;
1941 	struct htt_tx_fetch_record *record;
1942 	size_t len;
1943 	size_t max_num_bytes;
1944 	size_t max_num_msdus;
1945 	size_t num_bytes;
1946 	size_t num_msdus;
1947 	const __le32 *resp_ids;
1948 	u16 num_records;
1949 	u16 num_resp_ids;
1950 	u16 peer_id;
1951 	u8 tid;
1952 	int ret;
1953 	int i;
1954 
1955 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch ind\n");
1956 
1957 	len = sizeof(resp->hdr) + sizeof(resp->tx_fetch_ind);
1958 	if (unlikely(skb->len < len)) {
1959 		ath10k_warn(ar, "received corrupted tx_fetch_ind event: buffer too short\n");
1960 		return;
1961 	}
1962 
1963 	num_records = le16_to_cpu(resp->tx_fetch_ind.num_records);
1964 	num_resp_ids = le16_to_cpu(resp->tx_fetch_ind.num_resp_ids);
1965 
1966 	len += sizeof(resp->tx_fetch_ind.records[0]) * num_records;
1967 	len += sizeof(resp->tx_fetch_ind.resp_ids[0]) * num_resp_ids;
1968 
1969 	if (unlikely(skb->len < len)) {
1970 		ath10k_warn(ar, "received corrupted tx_fetch_ind event: too many records/resp_ids\n");
1971 		return;
1972 	}
1973 
1974 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch ind num records %hu num resps %hu seq %hu\n",
1975 		   num_records, num_resp_ids,
1976 		   le16_to_cpu(resp->tx_fetch_ind.fetch_seq_num));
1977 
1978 	if (!ar->htt.tx_q_state.enabled) {
1979 		ath10k_warn(ar, "received unexpected tx_fetch_ind event: not enabled\n");
1980 		return;
1981 	}
1982 
1983 	if (ar->htt.tx_q_state.mode == HTT_TX_MODE_SWITCH_PUSH) {
1984 		ath10k_warn(ar, "received unexpected tx_fetch_ind event: in push mode\n");
1985 		return;
1986 	}
1987 
1988 	rcu_read_lock();
1989 
1990 	for (i = 0; i < num_records; i++) {
1991 		record = &resp->tx_fetch_ind.records[i];
1992 		peer_id = MS(le16_to_cpu(record->info),
1993 			     HTT_TX_FETCH_RECORD_INFO_PEER_ID);
1994 		tid = MS(le16_to_cpu(record->info),
1995 			 HTT_TX_FETCH_RECORD_INFO_TID);
1996 		max_num_msdus = le16_to_cpu(record->num_msdus);
1997 		max_num_bytes = le32_to_cpu(record->num_bytes);
1998 
1999 		ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch record %i peer_id %hu tid %hhu msdus %zu bytes %zu\n",
2000 			   i, peer_id, tid, max_num_msdus, max_num_bytes);
2001 
2002 		if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) ||
2003 		    unlikely(tid >= ar->htt.tx_q_state.num_tids)) {
2004 			ath10k_warn(ar, "received out of range peer_id %hu tid %hhu\n",
2005 				    peer_id, tid);
2006 			continue;
2007 		}
2008 
2009 		spin_lock_bh(&ar->data_lock);
2010 		txq = ath10k_mac_txq_lookup(ar, peer_id, tid);
2011 		spin_unlock_bh(&ar->data_lock);
2012 
2013 		/* It is okay to release the lock and use txq because RCU read
2014 		 * lock is held.
2015 		 */
2016 
2017 		if (unlikely(!txq)) {
2018 			ath10k_warn(ar, "failed to lookup txq for peer_id %hu tid %hhu\n",
2019 				    peer_id, tid);
2020 			continue;
2021 		}
2022 
2023 		num_msdus = 0;
2024 		num_bytes = 0;
2025 
2026 		while (num_msdus < max_num_msdus &&
2027 		       num_bytes < max_num_bytes) {
2028 			ret = ath10k_mac_tx_push_txq(hw, txq);
2029 			if (ret < 0)
2030 				break;
2031 
2032 			num_msdus++;
2033 			num_bytes += ret;
2034 		}
2035 
2036 		record->num_msdus = cpu_to_le16(num_msdus);
2037 		record->num_bytes = cpu_to_le32(num_bytes);
2038 
2039 		ath10k_htt_tx_txq_recalc(hw, txq);
2040 	}
2041 
2042 	rcu_read_unlock();
2043 
2044 	resp_ids = ath10k_htt_get_tx_fetch_ind_resp_ids(&resp->tx_fetch_ind);
2045 	ath10k_htt_rx_tx_fetch_resp_id_confirm(ar, resp_ids, num_resp_ids);
2046 
2047 	ret = ath10k_htt_tx_fetch_resp(ar,
2048 				       resp->tx_fetch_ind.token,
2049 				       resp->tx_fetch_ind.fetch_seq_num,
2050 				       resp->tx_fetch_ind.records,
2051 				       num_records);
2052 	if (unlikely(ret)) {
2053 		ath10k_warn(ar, "failed to submit tx fetch resp for token 0x%08x: %d\n",
2054 			    le32_to_cpu(resp->tx_fetch_ind.token), ret);
2055 		/* FIXME: request fw restart */
2056 	}
2057 
2058 	ath10k_htt_tx_txq_sync(ar);
2059 }
2060 
2061 static void ath10k_htt_rx_tx_fetch_confirm(struct ath10k *ar,
2062 					   struct sk_buff *skb)
2063 {
2064 	const struct htt_resp *resp = (void *)skb->data;
2065 	size_t len;
2066 	int num_resp_ids;
2067 
2068 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm\n");
2069 
2070 	len = sizeof(resp->hdr) + sizeof(resp->tx_fetch_confirm);
2071 	if (unlikely(skb->len < len)) {
2072 		ath10k_warn(ar, "received corrupted tx_fetch_confirm event: buffer too short\n");
2073 		return;
2074 	}
2075 
2076 	num_resp_ids = le16_to_cpu(resp->tx_fetch_confirm.num_resp_ids);
2077 	len += sizeof(resp->tx_fetch_confirm.resp_ids[0]) * num_resp_ids;
2078 
2079 	if (unlikely(skb->len < len)) {
2080 		ath10k_warn(ar, "received corrupted tx_fetch_confirm event: resp_ids buffer overflow\n");
2081 		return;
2082 	}
2083 
2084 	ath10k_htt_rx_tx_fetch_resp_id_confirm(ar,
2085 					       resp->tx_fetch_confirm.resp_ids,
2086 					       num_resp_ids);
2087 }
2088 
2089 static void ath10k_htt_rx_tx_mode_switch_ind(struct ath10k *ar,
2090 					     struct sk_buff *skb)
2091 {
2092 	const struct htt_resp *resp = (void *)skb->data;
2093 	const struct htt_tx_mode_switch_record *record;
2094 	struct ieee80211_txq *txq;
2095 	struct ath10k_txq *artxq;
2096 	size_t len;
2097 	size_t num_records;
2098 	enum htt_tx_mode_switch_mode mode;
2099 	bool enable;
2100 	u16 info0;
2101 	u16 info1;
2102 	u16 threshold;
2103 	u16 peer_id;
2104 	u8 tid;
2105 	int i;
2106 
2107 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx mode switch ind\n");
2108 
2109 	len = sizeof(resp->hdr) + sizeof(resp->tx_mode_switch_ind);
2110 	if (unlikely(skb->len < len)) {
2111 		ath10k_warn(ar, "received corrupted tx_mode_switch_ind event: buffer too short\n");
2112 		return;
2113 	}
2114 
2115 	info0 = le16_to_cpu(resp->tx_mode_switch_ind.info0);
2116 	info1 = le16_to_cpu(resp->tx_mode_switch_ind.info1);
2117 
2118 	enable = !!(info0 & HTT_TX_MODE_SWITCH_IND_INFO0_ENABLE);
2119 	num_records = MS(info0, HTT_TX_MODE_SWITCH_IND_INFO1_THRESHOLD);
2120 	mode = MS(info1, HTT_TX_MODE_SWITCH_IND_INFO1_MODE);
2121 	threshold = MS(info1, HTT_TX_MODE_SWITCH_IND_INFO1_THRESHOLD);
2122 
2123 	ath10k_dbg(ar, ATH10K_DBG_HTT,
2124 		   "htt rx tx mode switch ind info0 0x%04hx info1 0x%04hx enable %d num records %zd mode %d threshold %hu\n",
2125 		   info0, info1, enable, num_records, mode, threshold);
2126 
2127 	len += sizeof(resp->tx_mode_switch_ind.records[0]) * num_records;
2128 
2129 	if (unlikely(skb->len < len)) {
2130 		ath10k_warn(ar, "received corrupted tx_mode_switch_mode_ind event: too many records\n");
2131 		return;
2132 	}
2133 
2134 	switch (mode) {
2135 	case HTT_TX_MODE_SWITCH_PUSH:
2136 	case HTT_TX_MODE_SWITCH_PUSH_PULL:
2137 		break;
2138 	default:
2139 		ath10k_warn(ar, "received invalid tx_mode_switch_mode_ind mode %d, ignoring\n",
2140 			    mode);
2141 		return;
2142 	}
2143 
2144 	if (!enable)
2145 		return;
2146 
2147 	ar->htt.tx_q_state.enabled = enable;
2148 	ar->htt.tx_q_state.mode = mode;
2149 	ar->htt.tx_q_state.num_push_allowed = threshold;
2150 
2151 	rcu_read_lock();
2152 
2153 	for (i = 0; i < num_records; i++) {
2154 		record = &resp->tx_mode_switch_ind.records[i];
2155 		info0 = le16_to_cpu(record->info0);
2156 		peer_id = MS(info0, HTT_TX_MODE_SWITCH_RECORD_INFO0_PEER_ID);
2157 		tid = MS(info0, HTT_TX_MODE_SWITCH_RECORD_INFO0_TID);
2158 
2159 		if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) ||
2160 		    unlikely(tid >= ar->htt.tx_q_state.num_tids)) {
2161 			ath10k_warn(ar, "received out of range peer_id %hu tid %hhu\n",
2162 				    peer_id, tid);
2163 			continue;
2164 		}
2165 
2166 		spin_lock_bh(&ar->data_lock);
2167 		txq = ath10k_mac_txq_lookup(ar, peer_id, tid);
2168 		spin_unlock_bh(&ar->data_lock);
2169 
2170 		/* It is okay to release the lock and use txq because RCU read
2171 		 * lock is held.
2172 		 */
2173 
2174 		if (unlikely(!txq)) {
2175 			ath10k_warn(ar, "failed to lookup txq for peer_id %hu tid %hhu\n",
2176 				    peer_id, tid);
2177 			continue;
2178 		}
2179 
2180 		spin_lock_bh(&ar->htt.tx_lock);
2181 		artxq = (void *)txq->drv_priv;
2182 		artxq->num_push_allowed = le16_to_cpu(record->num_max_msdus);
2183 		spin_unlock_bh(&ar->htt.tx_lock);
2184 	}
2185 
2186 	rcu_read_unlock();
2187 
2188 	ath10k_mac_tx_push_pending(ar);
2189 }
2190 
2191 void ath10k_htt_htc_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb)
2192 {
2193 	bool release;
2194 
2195 	release = ath10k_htt_t2h_msg_handler(ar, skb);
2196 
2197 	/* Free the indication buffer */
2198 	if (release)
2199 		dev_kfree_skb_any(skb);
2200 }
2201 
2202 static inline bool is_valid_legacy_rate(u8 rate)
2203 {
2204 	static const u8 legacy_rates[] = {1, 2, 5, 11, 6, 9, 12,
2205 					  18, 24, 36, 48, 54};
2206 	int i;
2207 
2208 	for (i = 0; i < ARRAY_SIZE(legacy_rates); i++) {
2209 		if (rate == legacy_rates[i])
2210 			return true;
2211 	}
2212 
2213 	return false;
2214 }
2215 
2216 static void
2217 ath10k_update_per_peer_tx_stats(struct ath10k *ar,
2218 				struct ieee80211_sta *sta,
2219 				struct ath10k_per_peer_tx_stats *peer_stats)
2220 {
2221 	struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv;
2222 	u8 rate = 0, sgi;
2223 	struct rate_info txrate;
2224 
2225 	lockdep_assert_held(&ar->data_lock);
2226 
2227 	txrate.flags = ATH10K_HW_PREAMBLE(peer_stats->ratecode);
2228 	txrate.bw = ATH10K_HW_BW(peer_stats->flags);
2229 	txrate.nss = ATH10K_HW_NSS(peer_stats->ratecode);
2230 	txrate.mcs = ATH10K_HW_MCS_RATE(peer_stats->ratecode);
2231 	sgi = ATH10K_HW_GI(peer_stats->flags);
2232 
2233 	if (((txrate.flags == WMI_RATE_PREAMBLE_HT) ||
2234 	     (txrate.flags == WMI_RATE_PREAMBLE_VHT)) && txrate.mcs > 9) {
2235 		ath10k_warn(ar, "Invalid mcs %hhd peer stats", txrate.mcs);
2236 		return;
2237 	}
2238 
2239 	memset(&arsta->txrate, 0, sizeof(arsta->txrate));
2240 
2241 	if (txrate.flags == WMI_RATE_PREAMBLE_CCK ||
2242 	    txrate.flags == WMI_RATE_PREAMBLE_OFDM) {
2243 		rate = ATH10K_HW_LEGACY_RATE(peer_stats->ratecode);
2244 
2245 		if (!is_valid_legacy_rate(rate)) {
2246 			ath10k_warn(ar, "Invalid legacy rate %hhd peer stats",
2247 				    rate);
2248 			return;
2249 		}
2250 
2251 		/* This is hacky, FW sends CCK rate 5.5Mbps as 6 */
2252 		rate *= 10;
2253 		if (rate == 60 && txrate.flags == WMI_RATE_PREAMBLE_CCK)
2254 			rate = rate - 5;
2255 		arsta->txrate.legacy = rate;
2256 	} else if (txrate.flags == WMI_RATE_PREAMBLE_HT) {
2257 		arsta->txrate.flags = RATE_INFO_FLAGS_MCS;
2258 		arsta->txrate.mcs = txrate.mcs;
2259 	} else {
2260 		arsta->txrate.flags = RATE_INFO_FLAGS_VHT_MCS;
2261 		arsta->txrate.mcs = txrate.mcs;
2262 	}
2263 
2264 	if (sgi)
2265 		arsta->txrate.flags |= RATE_INFO_FLAGS_SHORT_GI;
2266 
2267 	arsta->txrate.nss = txrate.nss;
2268 	arsta->txrate.bw = txrate.bw + RATE_INFO_BW_20;
2269 }
2270 
2271 static void ath10k_htt_fetch_peer_stats(struct ath10k *ar,
2272 					struct sk_buff *skb)
2273 {
2274 	struct htt_resp *resp = (struct htt_resp *)skb->data;
2275 	struct ath10k_per_peer_tx_stats *p_tx_stats = &ar->peer_tx_stats;
2276 	struct htt_per_peer_tx_stats_ind *tx_stats;
2277 	struct ieee80211_sta *sta;
2278 	struct ath10k_peer *peer;
2279 	int peer_id, i;
2280 	u8 ppdu_len, num_ppdu;
2281 
2282 	num_ppdu = resp->peer_tx_stats.num_ppdu;
2283 	ppdu_len = resp->peer_tx_stats.ppdu_len * sizeof(__le32);
2284 
2285 	if (skb->len < sizeof(struct htt_resp_hdr) + num_ppdu * ppdu_len) {
2286 		ath10k_warn(ar, "Invalid peer stats buf length %d\n", skb->len);
2287 		return;
2288 	}
2289 
2290 	tx_stats = (struct htt_per_peer_tx_stats_ind *)
2291 			(resp->peer_tx_stats.payload);
2292 	peer_id = __le16_to_cpu(tx_stats->peer_id);
2293 
2294 	rcu_read_lock();
2295 	spin_lock_bh(&ar->data_lock);
2296 	peer = ath10k_peer_find_by_id(ar, peer_id);
2297 	if (!peer) {
2298 		ath10k_warn(ar, "Invalid peer id %d peer stats buffer\n",
2299 			    peer_id);
2300 		goto out;
2301 	}
2302 
2303 	sta = peer->sta;
2304 	for (i = 0; i < num_ppdu; i++) {
2305 		tx_stats = (struct htt_per_peer_tx_stats_ind *)
2306 			   (resp->peer_tx_stats.payload + i * ppdu_len);
2307 
2308 		p_tx_stats->succ_bytes = __le32_to_cpu(tx_stats->succ_bytes);
2309 		p_tx_stats->retry_bytes = __le32_to_cpu(tx_stats->retry_bytes);
2310 		p_tx_stats->failed_bytes =
2311 				__le32_to_cpu(tx_stats->failed_bytes);
2312 		p_tx_stats->ratecode = tx_stats->ratecode;
2313 		p_tx_stats->flags = tx_stats->flags;
2314 		p_tx_stats->succ_pkts = __le16_to_cpu(tx_stats->succ_pkts);
2315 		p_tx_stats->retry_pkts = __le16_to_cpu(tx_stats->retry_pkts);
2316 		p_tx_stats->failed_pkts = __le16_to_cpu(tx_stats->failed_pkts);
2317 
2318 		ath10k_update_per_peer_tx_stats(ar, sta, p_tx_stats);
2319 	}
2320 
2321 out:
2322 	spin_unlock_bh(&ar->data_lock);
2323 	rcu_read_unlock();
2324 }
2325 
2326 bool ath10k_htt_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb)
2327 {
2328 	struct ath10k_htt *htt = &ar->htt;
2329 	struct htt_resp *resp = (struct htt_resp *)skb->data;
2330 	enum htt_t2h_msg_type type;
2331 
2332 	/* confirm alignment */
2333 	if (!IS_ALIGNED((unsigned long)skb->data, 4))
2334 		ath10k_warn(ar, "unaligned htt message, expect trouble\n");
2335 
2336 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, msg_type: 0x%0X\n",
2337 		   resp->hdr.msg_type);
2338 
2339 	if (resp->hdr.msg_type >= ar->htt.t2h_msg_types_max) {
2340 		ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, unsupported msg_type: 0x%0X\n max: 0x%0X",
2341 			   resp->hdr.msg_type, ar->htt.t2h_msg_types_max);
2342 		return true;
2343 	}
2344 	type = ar->htt.t2h_msg_types[resp->hdr.msg_type];
2345 
2346 	switch (type) {
2347 	case HTT_T2H_MSG_TYPE_VERSION_CONF: {
2348 		htt->target_version_major = resp->ver_resp.major;
2349 		htt->target_version_minor = resp->ver_resp.minor;
2350 		complete(&htt->target_version_received);
2351 		break;
2352 	}
2353 	case HTT_T2H_MSG_TYPE_RX_IND:
2354 		ath10k_htt_rx_proc_rx_ind(htt, &resp->rx_ind);
2355 		break;
2356 	case HTT_T2H_MSG_TYPE_PEER_MAP: {
2357 		struct htt_peer_map_event ev = {
2358 			.vdev_id = resp->peer_map.vdev_id,
2359 			.peer_id = __le16_to_cpu(resp->peer_map.peer_id),
2360 		};
2361 		memcpy(ev.addr, resp->peer_map.addr, sizeof(ev.addr));
2362 		ath10k_peer_map_event(htt, &ev);
2363 		break;
2364 	}
2365 	case HTT_T2H_MSG_TYPE_PEER_UNMAP: {
2366 		struct htt_peer_unmap_event ev = {
2367 			.peer_id = __le16_to_cpu(resp->peer_unmap.peer_id),
2368 		};
2369 		ath10k_peer_unmap_event(htt, &ev);
2370 		break;
2371 	}
2372 	case HTT_T2H_MSG_TYPE_MGMT_TX_COMPLETION: {
2373 		struct htt_tx_done tx_done = {};
2374 		int status = __le32_to_cpu(resp->mgmt_tx_completion.status);
2375 
2376 		tx_done.msdu_id = __le32_to_cpu(resp->mgmt_tx_completion.desc_id);
2377 
2378 		switch (status) {
2379 		case HTT_MGMT_TX_STATUS_OK:
2380 			tx_done.status = HTT_TX_COMPL_STATE_ACK;
2381 			break;
2382 		case HTT_MGMT_TX_STATUS_RETRY:
2383 			tx_done.status = HTT_TX_COMPL_STATE_NOACK;
2384 			break;
2385 		case HTT_MGMT_TX_STATUS_DROP:
2386 			tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
2387 			break;
2388 		}
2389 
2390 		status = ath10k_txrx_tx_unref(htt, &tx_done);
2391 		if (!status) {
2392 			spin_lock_bh(&htt->tx_lock);
2393 			ath10k_htt_tx_mgmt_dec_pending(htt);
2394 			spin_unlock_bh(&htt->tx_lock);
2395 		}
2396 		break;
2397 	}
2398 	case HTT_T2H_MSG_TYPE_TX_COMPL_IND:
2399 		ath10k_htt_rx_tx_compl_ind(htt->ar, skb);
2400 		break;
2401 	case HTT_T2H_MSG_TYPE_SEC_IND: {
2402 		struct ath10k *ar = htt->ar;
2403 		struct htt_security_indication *ev = &resp->security_indication;
2404 
2405 		ath10k_dbg(ar, ATH10K_DBG_HTT,
2406 			   "sec ind peer_id %d unicast %d type %d\n",
2407 			  __le16_to_cpu(ev->peer_id),
2408 			  !!(ev->flags & HTT_SECURITY_IS_UNICAST),
2409 			  MS(ev->flags, HTT_SECURITY_TYPE));
2410 		complete(&ar->install_key_done);
2411 		break;
2412 	}
2413 	case HTT_T2H_MSG_TYPE_RX_FRAG_IND: {
2414 		ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
2415 				skb->data, skb->len);
2416 		atomic_inc(&htt->num_mpdus_ready);
2417 		break;
2418 	}
2419 	case HTT_T2H_MSG_TYPE_TEST:
2420 		break;
2421 	case HTT_T2H_MSG_TYPE_STATS_CONF:
2422 		trace_ath10k_htt_stats(ar, skb->data, skb->len);
2423 		break;
2424 	case HTT_T2H_MSG_TYPE_TX_INSPECT_IND:
2425 		/* Firmware can return tx frames if it's unable to fully
2426 		 * process them and suspects host may be able to fix it. ath10k
2427 		 * sends all tx frames as already inspected so this shouldn't
2428 		 * happen unless fw has a bug.
2429 		 */
2430 		ath10k_warn(ar, "received an unexpected htt tx inspect event\n");
2431 		break;
2432 	case HTT_T2H_MSG_TYPE_RX_ADDBA:
2433 		ath10k_htt_rx_addba(ar, resp);
2434 		break;
2435 	case HTT_T2H_MSG_TYPE_RX_DELBA:
2436 		ath10k_htt_rx_delba(ar, resp);
2437 		break;
2438 	case HTT_T2H_MSG_TYPE_PKTLOG: {
2439 		trace_ath10k_htt_pktlog(ar, resp->pktlog_msg.payload,
2440 					skb->len -
2441 					offsetof(struct htt_resp,
2442 						 pktlog_msg.payload));
2443 		break;
2444 	}
2445 	case HTT_T2H_MSG_TYPE_RX_FLUSH: {
2446 		/* Ignore this event because mac80211 takes care of Rx
2447 		 * aggregation reordering.
2448 		 */
2449 		break;
2450 	}
2451 	case HTT_T2H_MSG_TYPE_RX_IN_ORD_PADDR_IND: {
2452 		__skb_queue_tail(&htt->rx_in_ord_compl_q, skb);
2453 		return false;
2454 	}
2455 	case HTT_T2H_MSG_TYPE_TX_CREDIT_UPDATE_IND:
2456 		break;
2457 	case HTT_T2H_MSG_TYPE_CHAN_CHANGE: {
2458 		u32 phymode = __le32_to_cpu(resp->chan_change.phymode);
2459 		u32 freq = __le32_to_cpu(resp->chan_change.freq);
2460 
2461 		ar->tgt_oper_chan = ieee80211_get_channel(ar->hw->wiphy, freq);
2462 		ath10k_dbg(ar, ATH10K_DBG_HTT,
2463 			   "htt chan change freq %u phymode %s\n",
2464 			   freq, ath10k_wmi_phymode_str(phymode));
2465 		break;
2466 	}
2467 	case HTT_T2H_MSG_TYPE_AGGR_CONF:
2468 		break;
2469 	case HTT_T2H_MSG_TYPE_TX_FETCH_IND: {
2470 		struct sk_buff *tx_fetch_ind = skb_copy(skb, GFP_ATOMIC);
2471 
2472 		if (!tx_fetch_ind) {
2473 			ath10k_warn(ar, "failed to copy htt tx fetch ind\n");
2474 			break;
2475 		}
2476 		skb_queue_tail(&htt->tx_fetch_ind_q, tx_fetch_ind);
2477 		break;
2478 	}
2479 	case HTT_T2H_MSG_TYPE_TX_FETCH_CONFIRM:
2480 		ath10k_htt_rx_tx_fetch_confirm(ar, skb);
2481 		break;
2482 	case HTT_T2H_MSG_TYPE_TX_MODE_SWITCH_IND:
2483 		ath10k_htt_rx_tx_mode_switch_ind(ar, skb);
2484 		break;
2485 	case HTT_T2H_MSG_TYPE_PEER_STATS:
2486 		ath10k_htt_fetch_peer_stats(ar, skb);
2487 		break;
2488 	case HTT_T2H_MSG_TYPE_EN_STATS:
2489 	default:
2490 		ath10k_warn(ar, "htt event (%d) not handled\n",
2491 			    resp->hdr.msg_type);
2492 		ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
2493 				skb->data, skb->len);
2494 		break;
2495 	}
2496 	return true;
2497 }
2498 EXPORT_SYMBOL(ath10k_htt_t2h_msg_handler);
2499 
2500 void ath10k_htt_rx_pktlog_completion_handler(struct ath10k *ar,
2501 					     struct sk_buff *skb)
2502 {
2503 	trace_ath10k_htt_pktlog(ar, skb->data, skb->len);
2504 	dev_kfree_skb_any(skb);
2505 }
2506 EXPORT_SYMBOL(ath10k_htt_rx_pktlog_completion_handler);
2507 
2508 int ath10k_htt_txrx_compl_task(struct ath10k *ar, int budget)
2509 {
2510 	struct ath10k_htt *htt = &ar->htt;
2511 	struct htt_tx_done tx_done = {};
2512 	struct sk_buff_head tx_ind_q;
2513 	struct sk_buff *skb;
2514 	unsigned long flags;
2515 	int quota = 0, done, num_rx_msdus;
2516 	bool resched_napi = false;
2517 
2518 	__skb_queue_head_init(&tx_ind_q);
2519 
2520 	/* Since in-ord-ind can deliver more than 1 A-MSDU in single event,
2521 	 * process it first to utilize full available quota.
2522 	 */
2523 	while (quota < budget) {
2524 		if (skb_queue_empty(&htt->rx_in_ord_compl_q))
2525 			break;
2526 
2527 		skb = __skb_dequeue(&htt->rx_in_ord_compl_q);
2528 		if (!skb) {
2529 			resched_napi = true;
2530 			goto exit;
2531 		}
2532 
2533 		spin_lock_bh(&htt->rx_ring.lock);
2534 		num_rx_msdus = ath10k_htt_rx_in_ord_ind(ar, skb);
2535 		spin_unlock_bh(&htt->rx_ring.lock);
2536 		if (num_rx_msdus < 0) {
2537 			resched_napi = true;
2538 			goto exit;
2539 		}
2540 
2541 		dev_kfree_skb_any(skb);
2542 		if (num_rx_msdus > 0)
2543 			quota += num_rx_msdus;
2544 
2545 		if ((quota > ATH10K_NAPI_QUOTA_LIMIT) &&
2546 		    !skb_queue_empty(&htt->rx_in_ord_compl_q)) {
2547 			resched_napi = true;
2548 			goto exit;
2549 		}
2550 	}
2551 
2552 	while (quota < budget) {
2553 		/* no more data to receive */
2554 		if (!atomic_read(&htt->num_mpdus_ready))
2555 			break;
2556 
2557 		num_rx_msdus = ath10k_htt_rx_handle_amsdu(htt);
2558 		if (num_rx_msdus < 0) {
2559 			resched_napi = true;
2560 			goto exit;
2561 		}
2562 
2563 		quota += num_rx_msdus;
2564 		atomic_dec(&htt->num_mpdus_ready);
2565 		if ((quota > ATH10K_NAPI_QUOTA_LIMIT) &&
2566 		    atomic_read(&htt->num_mpdus_ready)) {
2567 			resched_napi = true;
2568 			goto exit;
2569 		}
2570 	}
2571 
2572 	/* From NAPI documentation:
2573 	 *  The napi poll() function may also process TX completions, in which
2574 	 *  case if it processes the entire TX ring then it should count that
2575 	 *  work as the rest of the budget.
2576 	 */
2577 	if ((quota < budget) && !kfifo_is_empty(&htt->txdone_fifo))
2578 		quota = budget;
2579 
2580 	/* kfifo_get: called only within txrx_tasklet so it's neatly serialized.
2581 	 * From kfifo_get() documentation:
2582 	 *  Note that with only one concurrent reader and one concurrent writer,
2583 	 *  you don't need extra locking to use these macro.
2584 	 */
2585 	while (kfifo_get(&htt->txdone_fifo, &tx_done))
2586 		ath10k_txrx_tx_unref(htt, &tx_done);
2587 
2588 	ath10k_mac_tx_push_pending(ar);
2589 
2590 	spin_lock_irqsave(&htt->tx_fetch_ind_q.lock, flags);
2591 	skb_queue_splice_init(&htt->tx_fetch_ind_q, &tx_ind_q);
2592 	spin_unlock_irqrestore(&htt->tx_fetch_ind_q.lock, flags);
2593 
2594 	while ((skb = __skb_dequeue(&tx_ind_q))) {
2595 		ath10k_htt_rx_tx_fetch_ind(ar, skb);
2596 		dev_kfree_skb_any(skb);
2597 	}
2598 
2599 exit:
2600 	ath10k_htt_rx_msdu_buff_replenish(htt);
2601 	/* In case of rx failure or more data to read, report budget
2602 	 * to reschedule NAPI poll
2603 	 */
2604 	done = resched_napi ? budget : quota;
2605 
2606 	return done;
2607 }
2608 EXPORT_SYMBOL(ath10k_htt_txrx_compl_task);
2609