1 /*
2  * Copyright (c) 2005-2011 Atheros Communications Inc.
3  * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17 
18 #include "core.h"
19 #include "htc.h"
20 #include "htt.h"
21 #include "txrx.h"
22 #include "debug.h"
23 #include "trace.h"
24 #include "mac.h"
25 
26 #include <linux/log2.h>
27 
28 #define HTT_RX_RING_SIZE 1024
29 #define HTT_RX_RING_FILL_LEVEL 1000
30 
31 /* when under memory pressure rx ring refill may fail and needs a retry */
32 #define HTT_RX_RING_REFILL_RETRY_MS 50
33 
34 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb);
35 static void ath10k_htt_txrx_compl_task(unsigned long ptr);
36 
37 static void ath10k_htt_rx_ring_free(struct ath10k_htt *htt)
38 {
39 	struct sk_buff *skb;
40 	struct ath10k_skb_cb *cb;
41 	int i;
42 
43 	for (i = 0; i < htt->rx_ring.fill_cnt; i++) {
44 		skb = htt->rx_ring.netbufs_ring[i];
45 		cb = ATH10K_SKB_CB(skb);
46 		dma_unmap_single(htt->ar->dev, cb->paddr,
47 				 skb->len + skb_tailroom(skb),
48 				 DMA_FROM_DEVICE);
49 		dev_kfree_skb_any(skb);
50 	}
51 
52 	htt->rx_ring.fill_cnt = 0;
53 }
54 
55 static int __ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
56 {
57 	struct htt_rx_desc *rx_desc;
58 	struct sk_buff *skb;
59 	dma_addr_t paddr;
60 	int ret = 0, idx;
61 
62 	idx = __le32_to_cpu(*htt->rx_ring.alloc_idx.vaddr);
63 	while (num > 0) {
64 		skb = dev_alloc_skb(HTT_RX_BUF_SIZE + HTT_RX_DESC_ALIGN);
65 		if (!skb) {
66 			ret = -ENOMEM;
67 			goto fail;
68 		}
69 
70 		if (!IS_ALIGNED((unsigned long)skb->data, HTT_RX_DESC_ALIGN))
71 			skb_pull(skb,
72 				 PTR_ALIGN(skb->data, HTT_RX_DESC_ALIGN) -
73 				 skb->data);
74 
75 		/* Clear rx_desc attention word before posting to Rx ring */
76 		rx_desc = (struct htt_rx_desc *)skb->data;
77 		rx_desc->attention.flags = __cpu_to_le32(0);
78 
79 		paddr = dma_map_single(htt->ar->dev, skb->data,
80 				       skb->len + skb_tailroom(skb),
81 				       DMA_FROM_DEVICE);
82 
83 		if (unlikely(dma_mapping_error(htt->ar->dev, paddr))) {
84 			dev_kfree_skb_any(skb);
85 			ret = -ENOMEM;
86 			goto fail;
87 		}
88 
89 		ATH10K_SKB_CB(skb)->paddr = paddr;
90 		htt->rx_ring.netbufs_ring[idx] = skb;
91 		htt->rx_ring.paddrs_ring[idx] = __cpu_to_le32(paddr);
92 		htt->rx_ring.fill_cnt++;
93 
94 		num--;
95 		idx++;
96 		idx &= htt->rx_ring.size_mask;
97 	}
98 
99 fail:
100 	*htt->rx_ring.alloc_idx.vaddr = __cpu_to_le32(idx);
101 	return ret;
102 }
103 
104 static int ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
105 {
106 	lockdep_assert_held(&htt->rx_ring.lock);
107 	return __ath10k_htt_rx_ring_fill_n(htt, num);
108 }
109 
110 static void ath10k_htt_rx_msdu_buff_replenish(struct ath10k_htt *htt)
111 {
112 	int ret, num_deficit, num_to_fill;
113 
114 	/* Refilling the whole RX ring buffer proves to be a bad idea. The
115 	 * reason is RX may take up significant amount of CPU cycles and starve
116 	 * other tasks, e.g. TX on an ethernet device while acting as a bridge
117 	 * with ath10k wlan interface. This ended up with very poor performance
118 	 * once CPU the host system was overwhelmed with RX on ath10k.
119 	 *
120 	 * By limiting the number of refills the replenishing occurs
121 	 * progressively. This in turns makes use of the fact tasklets are
122 	 * processed in FIFO order. This means actual RX processing can starve
123 	 * out refilling. If there's not enough buffers on RX ring FW will not
124 	 * report RX until it is refilled with enough buffers. This
125 	 * automatically balances load wrt to CPU power.
126 	 *
127 	 * This probably comes at a cost of lower maximum throughput but
128 	 * improves the avarage and stability. */
129 	spin_lock_bh(&htt->rx_ring.lock);
130 	num_deficit = htt->rx_ring.fill_level - htt->rx_ring.fill_cnt;
131 	num_to_fill = min(ATH10K_HTT_MAX_NUM_REFILL, num_deficit);
132 	num_deficit -= num_to_fill;
133 	ret = ath10k_htt_rx_ring_fill_n(htt, num_to_fill);
134 	if (ret == -ENOMEM) {
135 		/*
136 		 * Failed to fill it to the desired level -
137 		 * we'll start a timer and try again next time.
138 		 * As long as enough buffers are left in the ring for
139 		 * another A-MPDU rx, no special recovery is needed.
140 		 */
141 		mod_timer(&htt->rx_ring.refill_retry_timer, jiffies +
142 			  msecs_to_jiffies(HTT_RX_RING_REFILL_RETRY_MS));
143 	} else if (num_deficit > 0) {
144 		tasklet_schedule(&htt->rx_replenish_task);
145 	}
146 	spin_unlock_bh(&htt->rx_ring.lock);
147 }
148 
149 static void ath10k_htt_rx_ring_refill_retry(unsigned long arg)
150 {
151 	struct ath10k_htt *htt = (struct ath10k_htt *)arg;
152 
153 	ath10k_htt_rx_msdu_buff_replenish(htt);
154 }
155 
156 static void ath10k_htt_rx_ring_clean_up(struct ath10k_htt *htt)
157 {
158 	struct sk_buff *skb;
159 	int i;
160 
161 	for (i = 0; i < htt->rx_ring.size; i++) {
162 		skb = htt->rx_ring.netbufs_ring[i];
163 		if (!skb)
164 			continue;
165 
166 		dma_unmap_single(htt->ar->dev, ATH10K_SKB_CB(skb)->paddr,
167 				 skb->len + skb_tailroom(skb),
168 				 DMA_FROM_DEVICE);
169 		dev_kfree_skb_any(skb);
170 		htt->rx_ring.netbufs_ring[i] = NULL;
171 	}
172 }
173 
174 void ath10k_htt_rx_free(struct ath10k_htt *htt)
175 {
176 	del_timer_sync(&htt->rx_ring.refill_retry_timer);
177 	tasklet_kill(&htt->rx_replenish_task);
178 	tasklet_kill(&htt->txrx_compl_task);
179 
180 	skb_queue_purge(&htt->tx_compl_q);
181 	skb_queue_purge(&htt->rx_compl_q);
182 
183 	ath10k_htt_rx_ring_clean_up(htt);
184 
185 	dma_free_coherent(htt->ar->dev,
186 			  (htt->rx_ring.size *
187 			   sizeof(htt->rx_ring.paddrs_ring)),
188 			  htt->rx_ring.paddrs_ring,
189 			  htt->rx_ring.base_paddr);
190 
191 	dma_free_coherent(htt->ar->dev,
192 			  sizeof(*htt->rx_ring.alloc_idx.vaddr),
193 			  htt->rx_ring.alloc_idx.vaddr,
194 			  htt->rx_ring.alloc_idx.paddr);
195 
196 	kfree(htt->rx_ring.netbufs_ring);
197 }
198 
199 static inline struct sk_buff *ath10k_htt_rx_netbuf_pop(struct ath10k_htt *htt)
200 {
201 	struct ath10k *ar = htt->ar;
202 	int idx;
203 	struct sk_buff *msdu;
204 
205 	lockdep_assert_held(&htt->rx_ring.lock);
206 
207 	if (htt->rx_ring.fill_cnt == 0) {
208 		ath10k_warn(ar, "tried to pop sk_buff from an empty rx ring\n");
209 		return NULL;
210 	}
211 
212 	idx = htt->rx_ring.sw_rd_idx.msdu_payld;
213 	msdu = htt->rx_ring.netbufs_ring[idx];
214 	htt->rx_ring.netbufs_ring[idx] = NULL;
215 
216 	idx++;
217 	idx &= htt->rx_ring.size_mask;
218 	htt->rx_ring.sw_rd_idx.msdu_payld = idx;
219 	htt->rx_ring.fill_cnt--;
220 
221 	dma_unmap_single(htt->ar->dev,
222 			 ATH10K_SKB_CB(msdu)->paddr,
223 			 msdu->len + skb_tailroom(msdu),
224 			 DMA_FROM_DEVICE);
225 	ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ",
226 			msdu->data, msdu->len + skb_tailroom(msdu));
227 
228 	return msdu;
229 }
230 
231 /* return: < 0 fatal error, 0 - non chained msdu, 1 chained msdu */
232 static int ath10k_htt_rx_amsdu_pop(struct ath10k_htt *htt,
233 				   u8 **fw_desc, int *fw_desc_len,
234 				   struct sk_buff_head *amsdu)
235 {
236 	struct ath10k *ar = htt->ar;
237 	int msdu_len, msdu_chaining = 0;
238 	struct sk_buff *msdu;
239 	struct htt_rx_desc *rx_desc;
240 
241 	lockdep_assert_held(&htt->rx_ring.lock);
242 
243 	for (;;) {
244 		int last_msdu, msdu_len_invalid, msdu_chained;
245 
246 		msdu = ath10k_htt_rx_netbuf_pop(htt);
247 		if (!msdu) {
248 			__skb_queue_purge(amsdu);
249 			return -ENOENT;
250 		}
251 
252 		__skb_queue_tail(amsdu, msdu);
253 
254 		rx_desc = (struct htt_rx_desc *)msdu->data;
255 
256 		/* FIXME: we must report msdu payload since this is what caller
257 		 *        expects now */
258 		skb_put(msdu, offsetof(struct htt_rx_desc, msdu_payload));
259 		skb_pull(msdu, offsetof(struct htt_rx_desc, msdu_payload));
260 
261 		/*
262 		 * Sanity check - confirm the HW is finished filling in the
263 		 * rx data.
264 		 * If the HW and SW are working correctly, then it's guaranteed
265 		 * that the HW's MAC DMA is done before this point in the SW.
266 		 * To prevent the case that we handle a stale Rx descriptor,
267 		 * just assert for now until we have a way to recover.
268 		 */
269 		if (!(__le32_to_cpu(rx_desc->attention.flags)
270 				& RX_ATTENTION_FLAGS_MSDU_DONE)) {
271 			__skb_queue_purge(amsdu);
272 			return -EIO;
273 		}
274 
275 		/*
276 		 * Copy the FW rx descriptor for this MSDU from the rx
277 		 * indication message into the MSDU's netbuf. HL uses the
278 		 * same rx indication message definition as LL, and simply
279 		 * appends new info (fields from the HW rx desc, and the
280 		 * MSDU payload itself). So, the offset into the rx
281 		 * indication message only has to account for the standard
282 		 * offset of the per-MSDU FW rx desc info within the
283 		 * message, and how many bytes of the per-MSDU FW rx desc
284 		 * info have already been consumed. (And the endianness of
285 		 * the host, since for a big-endian host, the rx ind
286 		 * message contents, including the per-MSDU rx desc bytes,
287 		 * were byteswapped during upload.)
288 		 */
289 		if (*fw_desc_len > 0) {
290 			rx_desc->fw_desc.info0 = **fw_desc;
291 			/*
292 			 * The target is expected to only provide the basic
293 			 * per-MSDU rx descriptors. Just to be sure, verify
294 			 * that the target has not attached extension data
295 			 * (e.g. LRO flow ID).
296 			 */
297 
298 			/* or more, if there's extension data */
299 			(*fw_desc)++;
300 			(*fw_desc_len)--;
301 		} else {
302 			/*
303 			 * When an oversized AMSDU happened, FW will lost
304 			 * some of MSDU status - in this case, the FW
305 			 * descriptors provided will be less than the
306 			 * actual MSDUs inside this MPDU. Mark the FW
307 			 * descriptors so that it will still deliver to
308 			 * upper stack, if no CRC error for this MPDU.
309 			 *
310 			 * FIX THIS - the FW descriptors are actually for
311 			 * MSDUs in the end of this A-MSDU instead of the
312 			 * beginning.
313 			 */
314 			rx_desc->fw_desc.info0 = 0;
315 		}
316 
317 		msdu_len_invalid = !!(__le32_to_cpu(rx_desc->attention.flags)
318 					& (RX_ATTENTION_FLAGS_MPDU_LENGTH_ERR |
319 					   RX_ATTENTION_FLAGS_MSDU_LENGTH_ERR));
320 		msdu_len = MS(__le32_to_cpu(rx_desc->msdu_start.info0),
321 			      RX_MSDU_START_INFO0_MSDU_LENGTH);
322 		msdu_chained = rx_desc->frag_info.ring2_more_count;
323 
324 		if (msdu_len_invalid)
325 			msdu_len = 0;
326 
327 		skb_trim(msdu, 0);
328 		skb_put(msdu, min(msdu_len, HTT_RX_MSDU_SIZE));
329 		msdu_len -= msdu->len;
330 
331 		/* Note: Chained buffers do not contain rx descriptor */
332 		while (msdu_chained--) {
333 			msdu = ath10k_htt_rx_netbuf_pop(htt);
334 			if (!msdu) {
335 				__skb_queue_purge(amsdu);
336 				return -ENOENT;
337 			}
338 
339 			__skb_queue_tail(amsdu, msdu);
340 			skb_trim(msdu, 0);
341 			skb_put(msdu, min(msdu_len, HTT_RX_BUF_SIZE));
342 			msdu_len -= msdu->len;
343 			msdu_chaining = 1;
344 		}
345 
346 		last_msdu = __le32_to_cpu(rx_desc->msdu_end.info0) &
347 				RX_MSDU_END_INFO0_LAST_MSDU;
348 
349 		trace_ath10k_htt_rx_desc(ar, &rx_desc->attention,
350 					 sizeof(*rx_desc) - sizeof(u32));
351 
352 		if (last_msdu)
353 			break;
354 	}
355 
356 	if (skb_queue_empty(amsdu))
357 		msdu_chaining = -1;
358 
359 	/*
360 	 * Don't refill the ring yet.
361 	 *
362 	 * First, the elements popped here are still in use - it is not
363 	 * safe to overwrite them until the matching call to
364 	 * mpdu_desc_list_next. Second, for efficiency it is preferable to
365 	 * refill the rx ring with 1 PPDU's worth of rx buffers (something
366 	 * like 32 x 3 buffers), rather than one MPDU's worth of rx buffers
367 	 * (something like 3 buffers). Consequently, we'll rely on the txrx
368 	 * SW to tell us when it is done pulling all the PPDU's rx buffers
369 	 * out of the rx ring, and then refill it just once.
370 	 */
371 
372 	return msdu_chaining;
373 }
374 
375 static void ath10k_htt_rx_replenish_task(unsigned long ptr)
376 {
377 	struct ath10k_htt *htt = (struct ath10k_htt *)ptr;
378 
379 	ath10k_htt_rx_msdu_buff_replenish(htt);
380 }
381 
382 int ath10k_htt_rx_alloc(struct ath10k_htt *htt)
383 {
384 	struct ath10k *ar = htt->ar;
385 	dma_addr_t paddr;
386 	void *vaddr;
387 	size_t size;
388 	struct timer_list *timer = &htt->rx_ring.refill_retry_timer;
389 
390 	htt->rx_confused = false;
391 
392 	/* XXX: The fill level could be changed during runtime in response to
393 	 * the host processing latency. Is this really worth it?
394 	 */
395 	htt->rx_ring.size = HTT_RX_RING_SIZE;
396 	htt->rx_ring.size_mask = htt->rx_ring.size - 1;
397 	htt->rx_ring.fill_level = HTT_RX_RING_FILL_LEVEL;
398 
399 	if (!is_power_of_2(htt->rx_ring.size)) {
400 		ath10k_warn(ar, "htt rx ring size is not power of 2\n");
401 		return -EINVAL;
402 	}
403 
404 	htt->rx_ring.netbufs_ring =
405 		kzalloc(htt->rx_ring.size * sizeof(struct sk_buff *),
406 			GFP_KERNEL);
407 	if (!htt->rx_ring.netbufs_ring)
408 		goto err_netbuf;
409 
410 	size = htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring);
411 
412 	vaddr = dma_alloc_coherent(htt->ar->dev, size, &paddr, GFP_DMA);
413 	if (!vaddr)
414 		goto err_dma_ring;
415 
416 	htt->rx_ring.paddrs_ring = vaddr;
417 	htt->rx_ring.base_paddr = paddr;
418 
419 	vaddr = dma_alloc_coherent(htt->ar->dev,
420 				   sizeof(*htt->rx_ring.alloc_idx.vaddr),
421 				   &paddr, GFP_DMA);
422 	if (!vaddr)
423 		goto err_dma_idx;
424 
425 	htt->rx_ring.alloc_idx.vaddr = vaddr;
426 	htt->rx_ring.alloc_idx.paddr = paddr;
427 	htt->rx_ring.sw_rd_idx.msdu_payld = 0;
428 	*htt->rx_ring.alloc_idx.vaddr = 0;
429 
430 	/* Initialize the Rx refill retry timer */
431 	setup_timer(timer, ath10k_htt_rx_ring_refill_retry, (unsigned long)htt);
432 
433 	spin_lock_init(&htt->rx_ring.lock);
434 
435 	htt->rx_ring.fill_cnt = 0;
436 	if (__ath10k_htt_rx_ring_fill_n(htt, htt->rx_ring.fill_level))
437 		goto err_fill_ring;
438 
439 	tasklet_init(&htt->rx_replenish_task, ath10k_htt_rx_replenish_task,
440 		     (unsigned long)htt);
441 
442 	skb_queue_head_init(&htt->tx_compl_q);
443 	skb_queue_head_init(&htt->rx_compl_q);
444 
445 	tasklet_init(&htt->txrx_compl_task, ath10k_htt_txrx_compl_task,
446 		     (unsigned long)htt);
447 
448 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "htt rx ring size %d fill_level %d\n",
449 		   htt->rx_ring.size, htt->rx_ring.fill_level);
450 	return 0;
451 
452 err_fill_ring:
453 	ath10k_htt_rx_ring_free(htt);
454 	dma_free_coherent(htt->ar->dev,
455 			  sizeof(*htt->rx_ring.alloc_idx.vaddr),
456 			  htt->rx_ring.alloc_idx.vaddr,
457 			  htt->rx_ring.alloc_idx.paddr);
458 err_dma_idx:
459 	dma_free_coherent(htt->ar->dev,
460 			  (htt->rx_ring.size *
461 			   sizeof(htt->rx_ring.paddrs_ring)),
462 			  htt->rx_ring.paddrs_ring,
463 			  htt->rx_ring.base_paddr);
464 err_dma_ring:
465 	kfree(htt->rx_ring.netbufs_ring);
466 err_netbuf:
467 	return -ENOMEM;
468 }
469 
470 static int ath10k_htt_rx_crypto_param_len(struct ath10k *ar,
471 					  enum htt_rx_mpdu_encrypt_type type)
472 {
473 	switch (type) {
474 	case HTT_RX_MPDU_ENCRYPT_NONE:
475 		return 0;
476 	case HTT_RX_MPDU_ENCRYPT_WEP40:
477 	case HTT_RX_MPDU_ENCRYPT_WEP104:
478 		return IEEE80211_WEP_IV_LEN;
479 	case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
480 	case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
481 		return IEEE80211_TKIP_IV_LEN;
482 	case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
483 		return IEEE80211_CCMP_HDR_LEN;
484 	case HTT_RX_MPDU_ENCRYPT_WEP128:
485 	case HTT_RX_MPDU_ENCRYPT_WAPI:
486 		break;
487 	}
488 
489 	ath10k_warn(ar, "unsupported encryption type %d\n", type);
490 	return 0;
491 }
492 
493 #define MICHAEL_MIC_LEN 8
494 
495 static int ath10k_htt_rx_crypto_tail_len(struct ath10k *ar,
496 					 enum htt_rx_mpdu_encrypt_type type)
497 {
498 	switch (type) {
499 	case HTT_RX_MPDU_ENCRYPT_NONE:
500 		return 0;
501 	case HTT_RX_MPDU_ENCRYPT_WEP40:
502 	case HTT_RX_MPDU_ENCRYPT_WEP104:
503 		return IEEE80211_WEP_ICV_LEN;
504 	case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
505 	case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
506 		return IEEE80211_TKIP_ICV_LEN;
507 	case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
508 		return IEEE80211_CCMP_MIC_LEN;
509 	case HTT_RX_MPDU_ENCRYPT_WEP128:
510 	case HTT_RX_MPDU_ENCRYPT_WAPI:
511 		break;
512 	}
513 
514 	ath10k_warn(ar, "unsupported encryption type %d\n", type);
515 	return 0;
516 }
517 
518 struct rfc1042_hdr {
519 	u8 llc_dsap;
520 	u8 llc_ssap;
521 	u8 llc_ctrl;
522 	u8 snap_oui[3];
523 	__be16 snap_type;
524 } __packed;
525 
526 struct amsdu_subframe_hdr {
527 	u8 dst[ETH_ALEN];
528 	u8 src[ETH_ALEN];
529 	__be16 len;
530 } __packed;
531 
532 static const u8 rx_legacy_rate_idx[] = {
533 	3,	/* 0x00  - 11Mbps  */
534 	2,	/* 0x01  - 5.5Mbps */
535 	1,	/* 0x02  - 2Mbps   */
536 	0,	/* 0x03  - 1Mbps   */
537 	3,	/* 0x04  - 11Mbps  */
538 	2,	/* 0x05  - 5.5Mbps */
539 	1,	/* 0x06  - 2Mbps   */
540 	0,	/* 0x07  - 1Mbps   */
541 	10,	/* 0x08  - 48Mbps  */
542 	8,	/* 0x09  - 24Mbps  */
543 	6,	/* 0x0A  - 12Mbps  */
544 	4,	/* 0x0B  - 6Mbps   */
545 	11,	/* 0x0C  - 54Mbps  */
546 	9,	/* 0x0D  - 36Mbps  */
547 	7,	/* 0x0E  - 18Mbps  */
548 	5,	/* 0x0F  - 9Mbps   */
549 };
550 
551 static void ath10k_htt_rx_h_rates(struct ath10k *ar,
552 				  struct ieee80211_rx_status *status,
553 				  struct htt_rx_desc *rxd)
554 {
555 	enum ieee80211_band band;
556 	u8 cck, rate, rate_idx, bw, sgi, mcs, nss;
557 	u8 preamble = 0;
558 	u32 info1, info2, info3;
559 
560 	/* Band value can't be set as undefined but freq can be 0 - use that to
561 	 * determine whether band is provided.
562 	 *
563 	 * FIXME: Perhaps this can go away if CCK rate reporting is a little
564 	 * reworked?
565 	 */
566 	if (!status->freq)
567 		return;
568 
569 	band = status->band;
570 	info1 = __le32_to_cpu(rxd->ppdu_start.info1);
571 	info2 = __le32_to_cpu(rxd->ppdu_start.info2);
572 	info3 = __le32_to_cpu(rxd->ppdu_start.info3);
573 
574 	preamble = MS(info1, RX_PPDU_START_INFO1_PREAMBLE_TYPE);
575 
576 	switch (preamble) {
577 	case HTT_RX_LEGACY:
578 		cck = info1 & RX_PPDU_START_INFO1_L_SIG_RATE_SELECT;
579 		rate = MS(info1, RX_PPDU_START_INFO1_L_SIG_RATE);
580 		rate_idx = 0;
581 
582 		if (rate < 0x08 || rate > 0x0F)
583 			break;
584 
585 		switch (band) {
586 		case IEEE80211_BAND_2GHZ:
587 			if (cck)
588 				rate &= ~BIT(3);
589 			rate_idx = rx_legacy_rate_idx[rate];
590 			break;
591 		case IEEE80211_BAND_5GHZ:
592 			rate_idx = rx_legacy_rate_idx[rate];
593 			/* We are using same rate table registering
594 			   HW - ath10k_rates[]. In case of 5GHz skip
595 			   CCK rates, so -4 here */
596 			rate_idx -= 4;
597 			break;
598 		default:
599 			break;
600 		}
601 
602 		status->rate_idx = rate_idx;
603 		break;
604 	case HTT_RX_HT:
605 	case HTT_RX_HT_WITH_TXBF:
606 		/* HT-SIG - Table 20-11 in info2 and info3 */
607 		mcs = info2 & 0x1F;
608 		nss = mcs >> 3;
609 		bw = (info2 >> 7) & 1;
610 		sgi = (info3 >> 7) & 1;
611 
612 		status->rate_idx = mcs;
613 		status->flag |= RX_FLAG_HT;
614 		if (sgi)
615 			status->flag |= RX_FLAG_SHORT_GI;
616 		if (bw)
617 			status->flag |= RX_FLAG_40MHZ;
618 		break;
619 	case HTT_RX_VHT:
620 	case HTT_RX_VHT_WITH_TXBF:
621 		/* VHT-SIG-A1 in info2, VHT-SIG-A2 in info3
622 		   TODO check this */
623 		mcs = (info3 >> 4) & 0x0F;
624 		nss = ((info2 >> 10) & 0x07) + 1;
625 		bw = info2 & 3;
626 		sgi = info3 & 1;
627 
628 		status->rate_idx = mcs;
629 		status->vht_nss = nss;
630 
631 		if (sgi)
632 			status->flag |= RX_FLAG_SHORT_GI;
633 
634 		switch (bw) {
635 		/* 20MHZ */
636 		case 0:
637 			break;
638 		/* 40MHZ */
639 		case 1:
640 			status->flag |= RX_FLAG_40MHZ;
641 			break;
642 		/* 80MHZ */
643 		case 2:
644 			status->vht_flag |= RX_VHT_FLAG_80MHZ;
645 		}
646 
647 		status->flag |= RX_FLAG_VHT;
648 		break;
649 	default:
650 		break;
651 	}
652 }
653 
654 static bool ath10k_htt_rx_h_channel(struct ath10k *ar,
655 				    struct ieee80211_rx_status *status)
656 {
657 	struct ieee80211_channel *ch;
658 
659 	spin_lock_bh(&ar->data_lock);
660 	ch = ar->scan_channel;
661 	if (!ch)
662 		ch = ar->rx_channel;
663 	spin_unlock_bh(&ar->data_lock);
664 
665 	if (!ch)
666 		return false;
667 
668 	status->band = ch->band;
669 	status->freq = ch->center_freq;
670 
671 	return true;
672 }
673 
674 static void ath10k_htt_rx_h_signal(struct ath10k *ar,
675 				   struct ieee80211_rx_status *status,
676 				   struct htt_rx_desc *rxd)
677 {
678 	/* FIXME: Get real NF */
679 	status->signal = ATH10K_DEFAULT_NOISE_FLOOR +
680 			 rxd->ppdu_start.rssi_comb;
681 	status->flag &= ~RX_FLAG_NO_SIGNAL_VAL;
682 }
683 
684 static void ath10k_htt_rx_h_mactime(struct ath10k *ar,
685 				    struct ieee80211_rx_status *status,
686 				    struct htt_rx_desc *rxd)
687 {
688 	/* FIXME: TSF is known only at the end of PPDU, in the last MPDU. This
689 	 * means all prior MSDUs in a PPDU are reported to mac80211 without the
690 	 * TSF. Is it worth holding frames until end of PPDU is known?
691 	 *
692 	 * FIXME: Can we get/compute 64bit TSF?
693 	 */
694 	status->mactime = __le32_to_cpu(rxd->ppdu_end.tsf_timestamp);
695 	status->flag |= RX_FLAG_MACTIME_END;
696 }
697 
698 static void ath10k_htt_rx_h_ppdu(struct ath10k *ar,
699 				 struct sk_buff_head *amsdu,
700 				 struct ieee80211_rx_status *status)
701 {
702 	struct sk_buff *first;
703 	struct htt_rx_desc *rxd;
704 	bool is_first_ppdu;
705 	bool is_last_ppdu;
706 
707 	if (skb_queue_empty(amsdu))
708 		return;
709 
710 	first = skb_peek(amsdu);
711 	rxd = (void *)first->data - sizeof(*rxd);
712 
713 	is_first_ppdu = !!(rxd->attention.flags &
714 			   __cpu_to_le32(RX_ATTENTION_FLAGS_FIRST_MPDU));
715 	is_last_ppdu = !!(rxd->attention.flags &
716 			  __cpu_to_le32(RX_ATTENTION_FLAGS_LAST_MPDU));
717 
718 	if (is_first_ppdu) {
719 		/* New PPDU starts so clear out the old per-PPDU status. */
720 		status->freq = 0;
721 		status->rate_idx = 0;
722 		status->vht_nss = 0;
723 		status->vht_flag &= ~RX_VHT_FLAG_80MHZ;
724 		status->flag &= ~(RX_FLAG_HT |
725 				  RX_FLAG_VHT |
726 				  RX_FLAG_SHORT_GI |
727 				  RX_FLAG_40MHZ |
728 				  RX_FLAG_MACTIME_END);
729 		status->flag |= RX_FLAG_NO_SIGNAL_VAL;
730 
731 		ath10k_htt_rx_h_signal(ar, status, rxd);
732 		ath10k_htt_rx_h_channel(ar, status);
733 		ath10k_htt_rx_h_rates(ar, status, rxd);
734 	}
735 
736 	if (is_last_ppdu)
737 		ath10k_htt_rx_h_mactime(ar, status, rxd);
738 }
739 
740 static const char * const tid_to_ac[] = {
741 	"BE",
742 	"BK",
743 	"BK",
744 	"BE",
745 	"VI",
746 	"VI",
747 	"VO",
748 	"VO",
749 };
750 
751 static char *ath10k_get_tid(struct ieee80211_hdr *hdr, char *out, size_t size)
752 {
753 	u8 *qc;
754 	int tid;
755 
756 	if (!ieee80211_is_data_qos(hdr->frame_control))
757 		return "";
758 
759 	qc = ieee80211_get_qos_ctl(hdr);
760 	tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
761 	if (tid < 8)
762 		snprintf(out, size, "tid %d (%s)", tid, tid_to_ac[tid]);
763 	else
764 		snprintf(out, size, "tid %d", tid);
765 
766 	return out;
767 }
768 
769 static void ath10k_process_rx(struct ath10k *ar,
770 			      struct ieee80211_rx_status *rx_status,
771 			      struct sk_buff *skb)
772 {
773 	struct ieee80211_rx_status *status;
774 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
775 	char tid[32];
776 
777 	status = IEEE80211_SKB_RXCB(skb);
778 	*status = *rx_status;
779 
780 	ath10k_dbg(ar, ATH10K_DBG_DATA,
781 		   "rx skb %p len %u peer %pM %s %s sn %u %s%s%s%s%s %srate_idx %u vht_nss %u freq %u band %u flag 0x%x fcs-err %i mic-err %i amsdu-more %i\n",
782 		   skb,
783 		   skb->len,
784 		   ieee80211_get_SA(hdr),
785 		   ath10k_get_tid(hdr, tid, sizeof(tid)),
786 		   is_multicast_ether_addr(ieee80211_get_DA(hdr)) ?
787 							"mcast" : "ucast",
788 		   (__le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_SEQ) >> 4,
789 		   status->flag == 0 ? "legacy" : "",
790 		   status->flag & RX_FLAG_HT ? "ht" : "",
791 		   status->flag & RX_FLAG_VHT ? "vht" : "",
792 		   status->flag & RX_FLAG_40MHZ ? "40" : "",
793 		   status->vht_flag & RX_VHT_FLAG_80MHZ ? "80" : "",
794 		   status->flag & RX_FLAG_SHORT_GI ? "sgi " : "",
795 		   status->rate_idx,
796 		   status->vht_nss,
797 		   status->freq,
798 		   status->band, status->flag,
799 		   !!(status->flag & RX_FLAG_FAILED_FCS_CRC),
800 		   !!(status->flag & RX_FLAG_MMIC_ERROR),
801 		   !!(status->flag & RX_FLAG_AMSDU_MORE));
802 	ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "rx skb: ",
803 			skb->data, skb->len);
804 	trace_ath10k_rx_hdr(ar, skb->data, skb->len);
805 	trace_ath10k_rx_payload(ar, skb->data, skb->len);
806 
807 	ieee80211_rx(ar->hw, skb);
808 }
809 
810 static int ath10k_htt_rx_nwifi_hdrlen(struct ieee80211_hdr *hdr)
811 {
812 	/* nwifi header is padded to 4 bytes. this fixes 4addr rx */
813 	return round_up(ieee80211_hdrlen(hdr->frame_control), 4);
814 }
815 
816 static void ath10k_htt_rx_h_undecap_raw(struct ath10k *ar,
817 					struct sk_buff *msdu,
818 					struct ieee80211_rx_status *status,
819 					enum htt_rx_mpdu_encrypt_type enctype,
820 					bool is_decrypted)
821 {
822 	struct ieee80211_hdr *hdr;
823 	struct htt_rx_desc *rxd;
824 	size_t hdr_len;
825 	size_t crypto_len;
826 	bool is_first;
827 	bool is_last;
828 
829 	rxd = (void *)msdu->data - sizeof(*rxd);
830 	is_first = !!(rxd->msdu_end.info0 &
831 		      __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU));
832 	is_last = !!(rxd->msdu_end.info0 &
833 		     __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU));
834 
835 	/* Delivered decapped frame:
836 	 * [802.11 header]
837 	 * [crypto param] <-- can be trimmed if !fcs_err &&
838 	 *                    !decrypt_err && !peer_idx_invalid
839 	 * [amsdu header] <-- only if A-MSDU
840 	 * [rfc1042/llc]
841 	 * [payload]
842 	 * [FCS] <-- at end, needs to be trimmed
843 	 */
844 
845 	/* This probably shouldn't happen but warn just in case */
846 	if (unlikely(WARN_ON_ONCE(!is_first)))
847 		return;
848 
849 	/* This probably shouldn't happen but warn just in case */
850 	if (unlikely(WARN_ON_ONCE(!(is_first && is_last))))
851 		return;
852 
853 	skb_trim(msdu, msdu->len - FCS_LEN);
854 
855 	/* In most cases this will be true for sniffed frames. It makes sense
856 	 * to deliver them as-is without stripping the crypto param. This would
857 	 * also make sense for software based decryption (which is not
858 	 * implemented in ath10k).
859 	 *
860 	 * If there's no error then the frame is decrypted. At least that is
861 	 * the case for frames that come in via fragmented rx indication.
862 	 */
863 	if (!is_decrypted)
864 		return;
865 
866 	/* The payload is decrypted so strip crypto params. Start from tail
867 	 * since hdr is used to compute some stuff.
868 	 */
869 
870 	hdr = (void *)msdu->data;
871 
872 	/* Tail */
873 	skb_trim(msdu, msdu->len - ath10k_htt_rx_crypto_tail_len(ar, enctype));
874 
875 	/* MMIC */
876 	if (!ieee80211_has_morefrags(hdr->frame_control) &&
877 	    enctype == HTT_RX_MPDU_ENCRYPT_TKIP_WPA)
878 		skb_trim(msdu, msdu->len - 8);
879 
880 	/* Head */
881 	hdr_len = ieee80211_hdrlen(hdr->frame_control);
882 	crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype);
883 
884 	memmove((void *)msdu->data + crypto_len,
885 		(void *)msdu->data, hdr_len);
886 	skb_pull(msdu, crypto_len);
887 }
888 
889 static void ath10k_htt_rx_h_undecap_nwifi(struct ath10k *ar,
890 					  struct sk_buff *msdu,
891 					  struct ieee80211_rx_status *status,
892 					  const u8 first_hdr[64])
893 {
894 	struct ieee80211_hdr *hdr;
895 	size_t hdr_len;
896 	u8 da[ETH_ALEN];
897 	u8 sa[ETH_ALEN];
898 
899 	/* Delivered decapped frame:
900 	 * [nwifi 802.11 header] <-- replaced with 802.11 hdr
901 	 * [rfc1042/llc]
902 	 *
903 	 * Note: The nwifi header doesn't have QoS Control and is
904 	 * (always?) a 3addr frame.
905 	 *
906 	 * Note2: There's no A-MSDU subframe header. Even if it's part
907 	 * of an A-MSDU.
908 	 */
909 
910 	/* pull decapped header and copy SA & DA */
911 	hdr = (struct ieee80211_hdr *)msdu->data;
912 	hdr_len = ath10k_htt_rx_nwifi_hdrlen(hdr);
913 	ether_addr_copy(da, ieee80211_get_DA(hdr));
914 	ether_addr_copy(sa, ieee80211_get_SA(hdr));
915 	skb_pull(msdu, hdr_len);
916 
917 	/* push original 802.11 header */
918 	hdr = (struct ieee80211_hdr *)first_hdr;
919 	hdr_len = ieee80211_hdrlen(hdr->frame_control);
920 	memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
921 
922 	/* original 802.11 header has a different DA and in
923 	 * case of 4addr it may also have different SA
924 	 */
925 	hdr = (struct ieee80211_hdr *)msdu->data;
926 	ether_addr_copy(ieee80211_get_DA(hdr), da);
927 	ether_addr_copy(ieee80211_get_SA(hdr), sa);
928 }
929 
930 static void *ath10k_htt_rx_h_find_rfc1042(struct ath10k *ar,
931 					  struct sk_buff *msdu,
932 					  enum htt_rx_mpdu_encrypt_type enctype)
933 {
934 	struct ieee80211_hdr *hdr;
935 	struct htt_rx_desc *rxd;
936 	size_t hdr_len, crypto_len;
937 	void *rfc1042;
938 	bool is_first, is_last, is_amsdu;
939 
940 	rxd = (void *)msdu->data - sizeof(*rxd);
941 	hdr = (void *)rxd->rx_hdr_status;
942 
943 	is_first = !!(rxd->msdu_end.info0 &
944 		      __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU));
945 	is_last = !!(rxd->msdu_end.info0 &
946 		     __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU));
947 	is_amsdu = !(is_first && is_last);
948 
949 	rfc1042 = hdr;
950 
951 	if (is_first) {
952 		hdr_len = ieee80211_hdrlen(hdr->frame_control);
953 		crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype);
954 
955 		rfc1042 += round_up(hdr_len, 4) +
956 			   round_up(crypto_len, 4);
957 	}
958 
959 	if (is_amsdu)
960 		rfc1042 += sizeof(struct amsdu_subframe_hdr);
961 
962 	return rfc1042;
963 }
964 
965 static void ath10k_htt_rx_h_undecap_eth(struct ath10k *ar,
966 					struct sk_buff *msdu,
967 					struct ieee80211_rx_status *status,
968 					const u8 first_hdr[64],
969 					enum htt_rx_mpdu_encrypt_type enctype)
970 {
971 	struct ieee80211_hdr *hdr;
972 	struct ethhdr *eth;
973 	size_t hdr_len;
974 	void *rfc1042;
975 	u8 da[ETH_ALEN];
976 	u8 sa[ETH_ALEN];
977 
978 	/* Delivered decapped frame:
979 	 * [eth header] <-- replaced with 802.11 hdr & rfc1042/llc
980 	 * [payload]
981 	 */
982 
983 	rfc1042 = ath10k_htt_rx_h_find_rfc1042(ar, msdu, enctype);
984 	if (WARN_ON_ONCE(!rfc1042))
985 		return;
986 
987 	/* pull decapped header and copy SA & DA */
988 	eth = (struct ethhdr *)msdu->data;
989 	ether_addr_copy(da, eth->h_dest);
990 	ether_addr_copy(sa, eth->h_source);
991 	skb_pull(msdu, sizeof(struct ethhdr));
992 
993 	/* push rfc1042/llc/snap */
994 	memcpy(skb_push(msdu, sizeof(struct rfc1042_hdr)), rfc1042,
995 	       sizeof(struct rfc1042_hdr));
996 
997 	/* push original 802.11 header */
998 	hdr = (struct ieee80211_hdr *)first_hdr;
999 	hdr_len = ieee80211_hdrlen(hdr->frame_control);
1000 	memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1001 
1002 	/* original 802.11 header has a different DA and in
1003 	 * case of 4addr it may also have different SA
1004 	 */
1005 	hdr = (struct ieee80211_hdr *)msdu->data;
1006 	ether_addr_copy(ieee80211_get_DA(hdr), da);
1007 	ether_addr_copy(ieee80211_get_SA(hdr), sa);
1008 }
1009 
1010 static void ath10k_htt_rx_h_undecap_snap(struct ath10k *ar,
1011 					 struct sk_buff *msdu,
1012 					 struct ieee80211_rx_status *status,
1013 					 const u8 first_hdr[64])
1014 {
1015 	struct ieee80211_hdr *hdr;
1016 	size_t hdr_len;
1017 
1018 	/* Delivered decapped frame:
1019 	 * [amsdu header] <-- replaced with 802.11 hdr
1020 	 * [rfc1042/llc]
1021 	 * [payload]
1022 	 */
1023 
1024 	skb_pull(msdu, sizeof(struct amsdu_subframe_hdr));
1025 
1026 	hdr = (struct ieee80211_hdr *)first_hdr;
1027 	hdr_len = ieee80211_hdrlen(hdr->frame_control);
1028 	memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1029 }
1030 
1031 static void ath10k_htt_rx_h_undecap(struct ath10k *ar,
1032 				    struct sk_buff *msdu,
1033 				    struct ieee80211_rx_status *status,
1034 				    u8 first_hdr[64],
1035 				    enum htt_rx_mpdu_encrypt_type enctype,
1036 				    bool is_decrypted)
1037 {
1038 	struct htt_rx_desc *rxd;
1039 	enum rx_msdu_decap_format decap;
1040 	struct ieee80211_hdr *hdr;
1041 
1042 	/* First msdu's decapped header:
1043 	 * [802.11 header] <-- padded to 4 bytes long
1044 	 * [crypto param] <-- padded to 4 bytes long
1045 	 * [amsdu header] <-- only if A-MSDU
1046 	 * [rfc1042/llc]
1047 	 *
1048 	 * Other (2nd, 3rd, ..) msdu's decapped header:
1049 	 * [amsdu header] <-- only if A-MSDU
1050 	 * [rfc1042/llc]
1051 	 */
1052 
1053 	rxd = (void *)msdu->data - sizeof(*rxd);
1054 	hdr = (void *)rxd->rx_hdr_status;
1055 	decap = MS(__le32_to_cpu(rxd->msdu_start.info1),
1056 		   RX_MSDU_START_INFO1_DECAP_FORMAT);
1057 
1058 	switch (decap) {
1059 	case RX_MSDU_DECAP_RAW:
1060 		ath10k_htt_rx_h_undecap_raw(ar, msdu, status, enctype,
1061 					    is_decrypted);
1062 		break;
1063 	case RX_MSDU_DECAP_NATIVE_WIFI:
1064 		ath10k_htt_rx_h_undecap_nwifi(ar, msdu, status, first_hdr);
1065 		break;
1066 	case RX_MSDU_DECAP_ETHERNET2_DIX:
1067 		ath10k_htt_rx_h_undecap_eth(ar, msdu, status, first_hdr, enctype);
1068 		break;
1069 	case RX_MSDU_DECAP_8023_SNAP_LLC:
1070 		ath10k_htt_rx_h_undecap_snap(ar, msdu, status, first_hdr);
1071 		break;
1072 	}
1073 }
1074 
1075 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb)
1076 {
1077 	struct htt_rx_desc *rxd;
1078 	u32 flags, info;
1079 	bool is_ip4, is_ip6;
1080 	bool is_tcp, is_udp;
1081 	bool ip_csum_ok, tcpudp_csum_ok;
1082 
1083 	rxd = (void *)skb->data - sizeof(*rxd);
1084 	flags = __le32_to_cpu(rxd->attention.flags);
1085 	info = __le32_to_cpu(rxd->msdu_start.info1);
1086 
1087 	is_ip4 = !!(info & RX_MSDU_START_INFO1_IPV4_PROTO);
1088 	is_ip6 = !!(info & RX_MSDU_START_INFO1_IPV6_PROTO);
1089 	is_tcp = !!(info & RX_MSDU_START_INFO1_TCP_PROTO);
1090 	is_udp = !!(info & RX_MSDU_START_INFO1_UDP_PROTO);
1091 	ip_csum_ok = !(flags & RX_ATTENTION_FLAGS_IP_CHKSUM_FAIL);
1092 	tcpudp_csum_ok = !(flags & RX_ATTENTION_FLAGS_TCP_UDP_CHKSUM_FAIL);
1093 
1094 	if (!is_ip4 && !is_ip6)
1095 		return CHECKSUM_NONE;
1096 	if (!is_tcp && !is_udp)
1097 		return CHECKSUM_NONE;
1098 	if (!ip_csum_ok)
1099 		return CHECKSUM_NONE;
1100 	if (!tcpudp_csum_ok)
1101 		return CHECKSUM_NONE;
1102 
1103 	return CHECKSUM_UNNECESSARY;
1104 }
1105 
1106 static void ath10k_htt_rx_h_csum_offload(struct sk_buff *msdu)
1107 {
1108 	msdu->ip_summed = ath10k_htt_rx_get_csum_state(msdu);
1109 }
1110 
1111 static void ath10k_htt_rx_h_mpdu(struct ath10k *ar,
1112 				 struct sk_buff_head *amsdu,
1113 				 struct ieee80211_rx_status *status)
1114 {
1115 	struct sk_buff *first;
1116 	struct sk_buff *last;
1117 	struct sk_buff *msdu;
1118 	struct htt_rx_desc *rxd;
1119 	struct ieee80211_hdr *hdr;
1120 	enum htt_rx_mpdu_encrypt_type enctype;
1121 	u8 first_hdr[64];
1122 	u8 *qos;
1123 	size_t hdr_len;
1124 	bool has_fcs_err;
1125 	bool has_crypto_err;
1126 	bool has_tkip_err;
1127 	bool has_peer_idx_invalid;
1128 	bool is_decrypted;
1129 	u32 attention;
1130 
1131 	if (skb_queue_empty(amsdu))
1132 		return;
1133 
1134 	first = skb_peek(amsdu);
1135 	rxd = (void *)first->data - sizeof(*rxd);
1136 
1137 	enctype = MS(__le32_to_cpu(rxd->mpdu_start.info0),
1138 		     RX_MPDU_START_INFO0_ENCRYPT_TYPE);
1139 
1140 	/* First MSDU's Rx descriptor in an A-MSDU contains full 802.11
1141 	 * decapped header. It'll be used for undecapping of each MSDU.
1142 	 */
1143 	hdr = (void *)rxd->rx_hdr_status;
1144 	hdr_len = ieee80211_hdrlen(hdr->frame_control);
1145 	memcpy(first_hdr, hdr, hdr_len);
1146 
1147 	/* Each A-MSDU subframe will use the original header as the base and be
1148 	 * reported as a separate MSDU so strip the A-MSDU bit from QoS Ctl.
1149 	 */
1150 	hdr = (void *)first_hdr;
1151 	qos = ieee80211_get_qos_ctl(hdr);
1152 	qos[0] &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
1153 
1154 	/* Some attention flags are valid only in the last MSDU. */
1155 	last = skb_peek_tail(amsdu);
1156 	rxd = (void *)last->data - sizeof(*rxd);
1157 	attention = __le32_to_cpu(rxd->attention.flags);
1158 
1159 	has_fcs_err = !!(attention & RX_ATTENTION_FLAGS_FCS_ERR);
1160 	has_crypto_err = !!(attention & RX_ATTENTION_FLAGS_DECRYPT_ERR);
1161 	has_tkip_err = !!(attention & RX_ATTENTION_FLAGS_TKIP_MIC_ERR);
1162 	has_peer_idx_invalid = !!(attention & RX_ATTENTION_FLAGS_PEER_IDX_INVALID);
1163 
1164 	/* Note: If hardware captures an encrypted frame that it can't decrypt,
1165 	 * e.g. due to fcs error, missing peer or invalid key data it will
1166 	 * report the frame as raw.
1167 	 */
1168 	is_decrypted = (enctype != HTT_RX_MPDU_ENCRYPT_NONE &&
1169 			!has_fcs_err &&
1170 			!has_crypto_err &&
1171 			!has_peer_idx_invalid);
1172 
1173 	/* Clear per-MPDU flags while leaving per-PPDU flags intact. */
1174 	status->flag &= ~(RX_FLAG_FAILED_FCS_CRC |
1175 			  RX_FLAG_MMIC_ERROR |
1176 			  RX_FLAG_DECRYPTED |
1177 			  RX_FLAG_IV_STRIPPED |
1178 			  RX_FLAG_MMIC_STRIPPED);
1179 
1180 	if (has_fcs_err)
1181 		status->flag |= RX_FLAG_FAILED_FCS_CRC;
1182 
1183 	if (has_tkip_err)
1184 		status->flag |= RX_FLAG_MMIC_ERROR;
1185 
1186 	if (is_decrypted)
1187 		status->flag |= RX_FLAG_DECRYPTED |
1188 				RX_FLAG_IV_STRIPPED |
1189 				RX_FLAG_MMIC_STRIPPED;
1190 
1191 	skb_queue_walk(amsdu, msdu) {
1192 		ath10k_htt_rx_h_csum_offload(msdu);
1193 		ath10k_htt_rx_h_undecap(ar, msdu, status, first_hdr, enctype,
1194 					is_decrypted);
1195 
1196 		/* Undecapping involves copying the original 802.11 header back
1197 		 * to sk_buff. If frame is protected and hardware has decrypted
1198 		 * it then remove the protected bit.
1199 		 */
1200 		if (!is_decrypted)
1201 			continue;
1202 
1203 		hdr = (void *)msdu->data;
1204 		hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED);
1205 	}
1206 }
1207 
1208 static void ath10k_htt_rx_h_deliver(struct ath10k *ar,
1209 				    struct sk_buff_head *amsdu,
1210 				    struct ieee80211_rx_status *status)
1211 {
1212 	struct sk_buff *msdu;
1213 
1214 	while ((msdu = __skb_dequeue(amsdu))) {
1215 		/* Setup per-MSDU flags */
1216 		if (skb_queue_empty(amsdu))
1217 			status->flag &= ~RX_FLAG_AMSDU_MORE;
1218 		else
1219 			status->flag |= RX_FLAG_AMSDU_MORE;
1220 
1221 		ath10k_process_rx(ar, status, msdu);
1222 	}
1223 }
1224 
1225 static int ath10k_unchain_msdu(struct sk_buff_head *amsdu)
1226 {
1227 	struct sk_buff *skb, *first;
1228 	int space;
1229 	int total_len = 0;
1230 
1231 	/* TODO:  Might could optimize this by using
1232 	 * skb_try_coalesce or similar method to
1233 	 * decrease copying, or maybe get mac80211 to
1234 	 * provide a way to just receive a list of
1235 	 * skb?
1236 	 */
1237 
1238 	first = __skb_dequeue(amsdu);
1239 
1240 	/* Allocate total length all at once. */
1241 	skb_queue_walk(amsdu, skb)
1242 		total_len += skb->len;
1243 
1244 	space = total_len - skb_tailroom(first);
1245 	if ((space > 0) &&
1246 	    (pskb_expand_head(first, 0, space, GFP_ATOMIC) < 0)) {
1247 		/* TODO:  bump some rx-oom error stat */
1248 		/* put it back together so we can free the
1249 		 * whole list at once.
1250 		 */
1251 		__skb_queue_head(amsdu, first);
1252 		return -1;
1253 	}
1254 
1255 	/* Walk list again, copying contents into
1256 	 * msdu_head
1257 	 */
1258 	while ((skb = __skb_dequeue(amsdu))) {
1259 		skb_copy_from_linear_data(skb, skb_put(first, skb->len),
1260 					  skb->len);
1261 		dev_kfree_skb_any(skb);
1262 	}
1263 
1264 	__skb_queue_head(amsdu, first);
1265 	return 0;
1266 }
1267 
1268 static void ath10k_htt_rx_h_unchain(struct ath10k *ar,
1269 				    struct sk_buff_head *amsdu,
1270 				    bool chained)
1271 {
1272 	struct sk_buff *first;
1273 	struct htt_rx_desc *rxd;
1274 	enum rx_msdu_decap_format decap;
1275 
1276 	first = skb_peek(amsdu);
1277 	rxd = (void *)first->data - sizeof(*rxd);
1278 	decap = MS(__le32_to_cpu(rxd->msdu_start.info1),
1279 		   RX_MSDU_START_INFO1_DECAP_FORMAT);
1280 
1281 	if (!chained)
1282 		return;
1283 
1284 	/* FIXME: Current unchaining logic can only handle simple case of raw
1285 	 * msdu chaining. If decapping is other than raw the chaining may be
1286 	 * more complex and this isn't handled by the current code. Don't even
1287 	 * try re-constructing such frames - it'll be pretty much garbage.
1288 	 */
1289 	if (decap != RX_MSDU_DECAP_RAW ||
1290 	    skb_queue_len(amsdu) != 1 + rxd->frag_info.ring2_more_count) {
1291 		__skb_queue_purge(amsdu);
1292 		return;
1293 	}
1294 
1295 	ath10k_unchain_msdu(amsdu);
1296 }
1297 
1298 static bool ath10k_htt_rx_amsdu_allowed(struct ath10k *ar,
1299 					struct sk_buff_head *amsdu,
1300 					struct ieee80211_rx_status *rx_status)
1301 {
1302 	struct sk_buff *msdu;
1303 	struct htt_rx_desc *rxd;
1304 	bool is_mgmt;
1305 	bool has_fcs_err;
1306 
1307 	msdu = skb_peek(amsdu);
1308 	rxd = (void *)msdu->data - sizeof(*rxd);
1309 
1310 	/* FIXME: It might be a good idea to do some fuzzy-testing to drop
1311 	 * invalid/dangerous frames.
1312 	 */
1313 
1314 	if (!rx_status->freq) {
1315 		ath10k_warn(ar, "no channel configured; ignoring frame(s)!\n");
1316 		return false;
1317 	}
1318 
1319 	is_mgmt = !!(rxd->attention.flags &
1320 		     __cpu_to_le32(RX_ATTENTION_FLAGS_MGMT_TYPE));
1321 	has_fcs_err = !!(rxd->attention.flags &
1322 			 __cpu_to_le32(RX_ATTENTION_FLAGS_FCS_ERR));
1323 
1324 	/* Management frames are handled via WMI events. The pros of such
1325 	 * approach is that channel is explicitly provided in WMI events
1326 	 * whereas HTT doesn't provide channel information for Rxed frames.
1327 	 *
1328 	 * However some firmware revisions don't report corrupted frames via
1329 	 * WMI so don't drop them.
1330 	 */
1331 	if (is_mgmt && !has_fcs_err) {
1332 		ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx mgmt ctrl\n");
1333 		return false;
1334 	}
1335 
1336 	if (test_bit(ATH10K_CAC_RUNNING, &ar->dev_flags)) {
1337 		ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx cac running\n");
1338 		return false;
1339 	}
1340 
1341 	return true;
1342 }
1343 
1344 static void ath10k_htt_rx_h_filter(struct ath10k *ar,
1345 				   struct sk_buff_head *amsdu,
1346 				   struct ieee80211_rx_status *rx_status)
1347 {
1348 	if (skb_queue_empty(amsdu))
1349 		return;
1350 
1351 	if (ath10k_htt_rx_amsdu_allowed(ar, amsdu, rx_status))
1352 		return;
1353 
1354 	__skb_queue_purge(amsdu);
1355 }
1356 
1357 static void ath10k_htt_rx_handler(struct ath10k_htt *htt,
1358 				  struct htt_rx_indication *rx)
1359 {
1360 	struct ath10k *ar = htt->ar;
1361 	struct ieee80211_rx_status *rx_status = &htt->rx_status;
1362 	struct htt_rx_indication_mpdu_range *mpdu_ranges;
1363 	struct sk_buff_head amsdu;
1364 	int num_mpdu_ranges;
1365 	int fw_desc_len;
1366 	u8 *fw_desc;
1367 	int i, ret, mpdu_count = 0;
1368 
1369 	lockdep_assert_held(&htt->rx_ring.lock);
1370 
1371 	if (htt->rx_confused)
1372 		return;
1373 
1374 	fw_desc_len = __le16_to_cpu(rx->prefix.fw_rx_desc_bytes);
1375 	fw_desc = (u8 *)&rx->fw_desc;
1376 
1377 	num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1),
1378 			     HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES);
1379 	mpdu_ranges = htt_rx_ind_get_mpdu_ranges(rx);
1380 
1381 	ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx ind: ",
1382 			rx, sizeof(*rx) +
1383 			(sizeof(struct htt_rx_indication_mpdu_range) *
1384 				num_mpdu_ranges));
1385 
1386 	for (i = 0; i < num_mpdu_ranges; i++)
1387 		mpdu_count += mpdu_ranges[i].mpdu_count;
1388 
1389 	while (mpdu_count--) {
1390 		__skb_queue_head_init(&amsdu);
1391 		ret = ath10k_htt_rx_amsdu_pop(htt, &fw_desc,
1392 					      &fw_desc_len, &amsdu);
1393 		if (ret < 0) {
1394 			ath10k_warn(ar, "rx ring became corrupted: %d\n", ret);
1395 			__skb_queue_purge(&amsdu);
1396 			/* FIXME: It's probably a good idea to reboot the
1397 			 * device instead of leaving it inoperable.
1398 			 */
1399 			htt->rx_confused = true;
1400 			break;
1401 		}
1402 
1403 		ath10k_htt_rx_h_ppdu(ar, &amsdu, rx_status);
1404 		ath10k_htt_rx_h_unchain(ar, &amsdu, ret > 0);
1405 		ath10k_htt_rx_h_filter(ar, &amsdu, rx_status);
1406 		ath10k_htt_rx_h_mpdu(ar, &amsdu, rx_status);
1407 		ath10k_htt_rx_h_deliver(ar, &amsdu, rx_status);
1408 	}
1409 
1410 	tasklet_schedule(&htt->rx_replenish_task);
1411 }
1412 
1413 static void ath10k_htt_rx_frag_handler(struct ath10k_htt *htt,
1414 				       struct htt_rx_fragment_indication *frag)
1415 {
1416 	struct ath10k *ar = htt->ar;
1417 	struct ieee80211_rx_status *rx_status = &htt->rx_status;
1418 	struct sk_buff_head amsdu;
1419 	int ret;
1420 	u8 *fw_desc;
1421 	int fw_desc_len;
1422 
1423 	fw_desc_len = __le16_to_cpu(frag->fw_rx_desc_bytes);
1424 	fw_desc = (u8 *)frag->fw_msdu_rx_desc;
1425 
1426 	__skb_queue_head_init(&amsdu);
1427 
1428 	spin_lock_bh(&htt->rx_ring.lock);
1429 	ret = ath10k_htt_rx_amsdu_pop(htt, &fw_desc, &fw_desc_len,
1430 				      &amsdu);
1431 	spin_unlock_bh(&htt->rx_ring.lock);
1432 
1433 	tasklet_schedule(&htt->rx_replenish_task);
1434 
1435 	ath10k_dbg(ar, ATH10K_DBG_HTT_DUMP, "htt rx frag ahead\n");
1436 
1437 	if (ret) {
1438 		ath10k_warn(ar, "failed to pop amsdu from httr rx ring for fragmented rx %d\n",
1439 			    ret);
1440 		__skb_queue_purge(&amsdu);
1441 		return;
1442 	}
1443 
1444 	if (skb_queue_len(&amsdu) != 1) {
1445 		ath10k_warn(ar, "failed to pop frag amsdu: too many msdus\n");
1446 		__skb_queue_purge(&amsdu);
1447 		return;
1448 	}
1449 
1450 	ath10k_htt_rx_h_ppdu(ar, &amsdu, rx_status);
1451 	ath10k_htt_rx_h_filter(ar, &amsdu, rx_status);
1452 	ath10k_htt_rx_h_mpdu(ar, &amsdu, rx_status);
1453 	ath10k_htt_rx_h_deliver(ar, &amsdu, rx_status);
1454 
1455 	if (fw_desc_len > 0) {
1456 		ath10k_dbg(ar, ATH10K_DBG_HTT,
1457 			   "expecting more fragmented rx in one indication %d\n",
1458 			   fw_desc_len);
1459 	}
1460 }
1461 
1462 static void ath10k_htt_rx_frm_tx_compl(struct ath10k *ar,
1463 				       struct sk_buff *skb)
1464 {
1465 	struct ath10k_htt *htt = &ar->htt;
1466 	struct htt_resp *resp = (struct htt_resp *)skb->data;
1467 	struct htt_tx_done tx_done = {};
1468 	int status = MS(resp->data_tx_completion.flags, HTT_DATA_TX_STATUS);
1469 	__le16 msdu_id;
1470 	int i;
1471 
1472 	lockdep_assert_held(&htt->tx_lock);
1473 
1474 	switch (status) {
1475 	case HTT_DATA_TX_STATUS_NO_ACK:
1476 		tx_done.no_ack = true;
1477 		break;
1478 	case HTT_DATA_TX_STATUS_OK:
1479 		break;
1480 	case HTT_DATA_TX_STATUS_DISCARD:
1481 	case HTT_DATA_TX_STATUS_POSTPONE:
1482 	case HTT_DATA_TX_STATUS_DOWNLOAD_FAIL:
1483 		tx_done.discard = true;
1484 		break;
1485 	default:
1486 		ath10k_warn(ar, "unhandled tx completion status %d\n", status);
1487 		tx_done.discard = true;
1488 		break;
1489 	}
1490 
1491 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx completion num_msdus %d\n",
1492 		   resp->data_tx_completion.num_msdus);
1493 
1494 	for (i = 0; i < resp->data_tx_completion.num_msdus; i++) {
1495 		msdu_id = resp->data_tx_completion.msdus[i];
1496 		tx_done.msdu_id = __le16_to_cpu(msdu_id);
1497 		ath10k_txrx_tx_unref(htt, &tx_done);
1498 	}
1499 }
1500 
1501 static void ath10k_htt_rx_addba(struct ath10k *ar, struct htt_resp *resp)
1502 {
1503 	struct htt_rx_addba *ev = &resp->rx_addba;
1504 	struct ath10k_peer *peer;
1505 	struct ath10k_vif *arvif;
1506 	u16 info0, tid, peer_id;
1507 
1508 	info0 = __le16_to_cpu(ev->info0);
1509 	tid = MS(info0, HTT_RX_BA_INFO0_TID);
1510 	peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID);
1511 
1512 	ath10k_dbg(ar, ATH10K_DBG_HTT,
1513 		   "htt rx addba tid %hu peer_id %hu size %hhu\n",
1514 		   tid, peer_id, ev->window_size);
1515 
1516 	spin_lock_bh(&ar->data_lock);
1517 	peer = ath10k_peer_find_by_id(ar, peer_id);
1518 	if (!peer) {
1519 		ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n",
1520 			    peer_id);
1521 		spin_unlock_bh(&ar->data_lock);
1522 		return;
1523 	}
1524 
1525 	arvif = ath10k_get_arvif(ar, peer->vdev_id);
1526 	if (!arvif) {
1527 		ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n",
1528 			    peer->vdev_id);
1529 		spin_unlock_bh(&ar->data_lock);
1530 		return;
1531 	}
1532 
1533 	ath10k_dbg(ar, ATH10K_DBG_HTT,
1534 		   "htt rx start rx ba session sta %pM tid %hu size %hhu\n",
1535 		   peer->addr, tid, ev->window_size);
1536 
1537 	ieee80211_start_rx_ba_session_offl(arvif->vif, peer->addr, tid);
1538 	spin_unlock_bh(&ar->data_lock);
1539 }
1540 
1541 static void ath10k_htt_rx_delba(struct ath10k *ar, struct htt_resp *resp)
1542 {
1543 	struct htt_rx_delba *ev = &resp->rx_delba;
1544 	struct ath10k_peer *peer;
1545 	struct ath10k_vif *arvif;
1546 	u16 info0, tid, peer_id;
1547 
1548 	info0 = __le16_to_cpu(ev->info0);
1549 	tid = MS(info0, HTT_RX_BA_INFO0_TID);
1550 	peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID);
1551 
1552 	ath10k_dbg(ar, ATH10K_DBG_HTT,
1553 		   "htt rx delba tid %hu peer_id %hu\n",
1554 		   tid, peer_id);
1555 
1556 	spin_lock_bh(&ar->data_lock);
1557 	peer = ath10k_peer_find_by_id(ar, peer_id);
1558 	if (!peer) {
1559 		ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n",
1560 			    peer_id);
1561 		spin_unlock_bh(&ar->data_lock);
1562 		return;
1563 	}
1564 
1565 	arvif = ath10k_get_arvif(ar, peer->vdev_id);
1566 	if (!arvif) {
1567 		ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n",
1568 			    peer->vdev_id);
1569 		spin_unlock_bh(&ar->data_lock);
1570 		return;
1571 	}
1572 
1573 	ath10k_dbg(ar, ATH10K_DBG_HTT,
1574 		   "htt rx stop rx ba session sta %pM tid %hu\n",
1575 		   peer->addr, tid);
1576 
1577 	ieee80211_stop_rx_ba_session_offl(arvif->vif, peer->addr, tid);
1578 	spin_unlock_bh(&ar->data_lock);
1579 }
1580 
1581 void ath10k_htt_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb)
1582 {
1583 	struct ath10k_htt *htt = &ar->htt;
1584 	struct htt_resp *resp = (struct htt_resp *)skb->data;
1585 
1586 	/* confirm alignment */
1587 	if (!IS_ALIGNED((unsigned long)skb->data, 4))
1588 		ath10k_warn(ar, "unaligned htt message, expect trouble\n");
1589 
1590 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, msg_type: 0x%0X\n",
1591 		   resp->hdr.msg_type);
1592 	switch (resp->hdr.msg_type) {
1593 	case HTT_T2H_MSG_TYPE_VERSION_CONF: {
1594 		htt->target_version_major = resp->ver_resp.major;
1595 		htt->target_version_minor = resp->ver_resp.minor;
1596 		complete(&htt->target_version_received);
1597 		break;
1598 	}
1599 	case HTT_T2H_MSG_TYPE_RX_IND:
1600 		spin_lock_bh(&htt->rx_ring.lock);
1601 		__skb_queue_tail(&htt->rx_compl_q, skb);
1602 		spin_unlock_bh(&htt->rx_ring.lock);
1603 		tasklet_schedule(&htt->txrx_compl_task);
1604 		return;
1605 	case HTT_T2H_MSG_TYPE_PEER_MAP: {
1606 		struct htt_peer_map_event ev = {
1607 			.vdev_id = resp->peer_map.vdev_id,
1608 			.peer_id = __le16_to_cpu(resp->peer_map.peer_id),
1609 		};
1610 		memcpy(ev.addr, resp->peer_map.addr, sizeof(ev.addr));
1611 		ath10k_peer_map_event(htt, &ev);
1612 		break;
1613 	}
1614 	case HTT_T2H_MSG_TYPE_PEER_UNMAP: {
1615 		struct htt_peer_unmap_event ev = {
1616 			.peer_id = __le16_to_cpu(resp->peer_unmap.peer_id),
1617 		};
1618 		ath10k_peer_unmap_event(htt, &ev);
1619 		break;
1620 	}
1621 	case HTT_T2H_MSG_TYPE_MGMT_TX_COMPLETION: {
1622 		struct htt_tx_done tx_done = {};
1623 		int status = __le32_to_cpu(resp->mgmt_tx_completion.status);
1624 
1625 		tx_done.msdu_id =
1626 			__le32_to_cpu(resp->mgmt_tx_completion.desc_id);
1627 
1628 		switch (status) {
1629 		case HTT_MGMT_TX_STATUS_OK:
1630 			break;
1631 		case HTT_MGMT_TX_STATUS_RETRY:
1632 			tx_done.no_ack = true;
1633 			break;
1634 		case HTT_MGMT_TX_STATUS_DROP:
1635 			tx_done.discard = true;
1636 			break;
1637 		}
1638 
1639 		spin_lock_bh(&htt->tx_lock);
1640 		ath10k_txrx_tx_unref(htt, &tx_done);
1641 		spin_unlock_bh(&htt->tx_lock);
1642 		break;
1643 	}
1644 	case HTT_T2H_MSG_TYPE_TX_COMPL_IND:
1645 		spin_lock_bh(&htt->tx_lock);
1646 		__skb_queue_tail(&htt->tx_compl_q, skb);
1647 		spin_unlock_bh(&htt->tx_lock);
1648 		tasklet_schedule(&htt->txrx_compl_task);
1649 		return;
1650 	case HTT_T2H_MSG_TYPE_SEC_IND: {
1651 		struct ath10k *ar = htt->ar;
1652 		struct htt_security_indication *ev = &resp->security_indication;
1653 
1654 		ath10k_dbg(ar, ATH10K_DBG_HTT,
1655 			   "sec ind peer_id %d unicast %d type %d\n",
1656 			  __le16_to_cpu(ev->peer_id),
1657 			  !!(ev->flags & HTT_SECURITY_IS_UNICAST),
1658 			  MS(ev->flags, HTT_SECURITY_TYPE));
1659 		complete(&ar->install_key_done);
1660 		break;
1661 	}
1662 	case HTT_T2H_MSG_TYPE_RX_FRAG_IND: {
1663 		ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
1664 				skb->data, skb->len);
1665 		ath10k_htt_rx_frag_handler(htt, &resp->rx_frag_ind);
1666 		break;
1667 	}
1668 	case HTT_T2H_MSG_TYPE_TEST:
1669 		/* FIX THIS */
1670 		break;
1671 	case HTT_T2H_MSG_TYPE_STATS_CONF:
1672 		trace_ath10k_htt_stats(ar, skb->data, skb->len);
1673 		break;
1674 	case HTT_T2H_MSG_TYPE_TX_INSPECT_IND:
1675 		/* Firmware can return tx frames if it's unable to fully
1676 		 * process them and suspects host may be able to fix it. ath10k
1677 		 * sends all tx frames as already inspected so this shouldn't
1678 		 * happen unless fw has a bug.
1679 		 */
1680 		ath10k_warn(ar, "received an unexpected htt tx inspect event\n");
1681 		break;
1682 	case HTT_T2H_MSG_TYPE_RX_ADDBA:
1683 		ath10k_htt_rx_addba(ar, resp);
1684 		break;
1685 	case HTT_T2H_MSG_TYPE_RX_DELBA:
1686 		ath10k_htt_rx_delba(ar, resp);
1687 		break;
1688 	case HTT_T2H_MSG_TYPE_PKTLOG: {
1689 		struct ath10k_pktlog_hdr *hdr =
1690 			(struct ath10k_pktlog_hdr *)resp->pktlog_msg.payload;
1691 
1692 		trace_ath10k_htt_pktlog(ar, resp->pktlog_msg.payload,
1693 					sizeof(*hdr) +
1694 					__le16_to_cpu(hdr->size));
1695 		break;
1696 	}
1697 	case HTT_T2H_MSG_TYPE_RX_FLUSH: {
1698 		/* Ignore this event because mac80211 takes care of Rx
1699 		 * aggregation reordering.
1700 		 */
1701 		break;
1702 	}
1703 	default:
1704 		ath10k_warn(ar, "htt event (%d) not handled\n",
1705 			    resp->hdr.msg_type);
1706 		ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
1707 				skb->data, skb->len);
1708 		break;
1709 	};
1710 
1711 	/* Free the indication buffer */
1712 	dev_kfree_skb_any(skb);
1713 }
1714 
1715 static void ath10k_htt_txrx_compl_task(unsigned long ptr)
1716 {
1717 	struct ath10k_htt *htt = (struct ath10k_htt *)ptr;
1718 	struct htt_resp *resp;
1719 	struct sk_buff *skb;
1720 
1721 	spin_lock_bh(&htt->tx_lock);
1722 	while ((skb = __skb_dequeue(&htt->tx_compl_q))) {
1723 		ath10k_htt_rx_frm_tx_compl(htt->ar, skb);
1724 		dev_kfree_skb_any(skb);
1725 	}
1726 	spin_unlock_bh(&htt->tx_lock);
1727 
1728 	spin_lock_bh(&htt->rx_ring.lock);
1729 	while ((skb = __skb_dequeue(&htt->rx_compl_q))) {
1730 		resp = (struct htt_resp *)skb->data;
1731 		ath10k_htt_rx_handler(htt, &resp->rx_ind);
1732 		dev_kfree_skb_any(skb);
1733 	}
1734 	spin_unlock_bh(&htt->rx_ring.lock);
1735 }
1736