1 /*
2  * Copyright (c) 2005-2011 Atheros Communications Inc.
3  * Copyright (c) 2011-2017 Qualcomm Atheros, Inc.
4  * Copyright (c) 2018, The Linux Foundation. All rights reserved.
5  *
6  * Permission to use, copy, modify, and/or distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #include "core.h"
20 #include "htc.h"
21 #include "htt.h"
22 #include "txrx.h"
23 #include "debug.h"
24 #include "trace.h"
25 #include "mac.h"
26 
27 #include <linux/log2.h>
28 #include <linux/bitfield.h>
29 
30 /* when under memory pressure rx ring refill may fail and needs a retry */
31 #define HTT_RX_RING_REFILL_RETRY_MS 50
32 
33 #define HTT_RX_RING_REFILL_RESCHED_MS 5
34 
35 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb);
36 
37 static struct sk_buff *
38 ath10k_htt_rx_find_skb_paddr(struct ath10k *ar, u64 paddr)
39 {
40 	struct ath10k_skb_rxcb *rxcb;
41 
42 	hash_for_each_possible(ar->htt.rx_ring.skb_table, rxcb, hlist, paddr)
43 		if (rxcb->paddr == paddr)
44 			return ATH10K_RXCB_SKB(rxcb);
45 
46 	WARN_ON_ONCE(1);
47 	return NULL;
48 }
49 
50 static void ath10k_htt_rx_ring_free(struct ath10k_htt *htt)
51 {
52 	struct sk_buff *skb;
53 	struct ath10k_skb_rxcb *rxcb;
54 	struct hlist_node *n;
55 	int i;
56 
57 	if (htt->rx_ring.in_ord_rx) {
58 		hash_for_each_safe(htt->rx_ring.skb_table, i, n, rxcb, hlist) {
59 			skb = ATH10K_RXCB_SKB(rxcb);
60 			dma_unmap_single(htt->ar->dev, rxcb->paddr,
61 					 skb->len + skb_tailroom(skb),
62 					 DMA_FROM_DEVICE);
63 			hash_del(&rxcb->hlist);
64 			dev_kfree_skb_any(skb);
65 		}
66 	} else {
67 		for (i = 0; i < htt->rx_ring.size; i++) {
68 			skb = htt->rx_ring.netbufs_ring[i];
69 			if (!skb)
70 				continue;
71 
72 			rxcb = ATH10K_SKB_RXCB(skb);
73 			dma_unmap_single(htt->ar->dev, rxcb->paddr,
74 					 skb->len + skb_tailroom(skb),
75 					 DMA_FROM_DEVICE);
76 			dev_kfree_skb_any(skb);
77 		}
78 	}
79 
80 	htt->rx_ring.fill_cnt = 0;
81 	hash_init(htt->rx_ring.skb_table);
82 	memset(htt->rx_ring.netbufs_ring, 0,
83 	       htt->rx_ring.size * sizeof(htt->rx_ring.netbufs_ring[0]));
84 }
85 
86 static size_t ath10k_htt_get_rx_ring_size_32(struct ath10k_htt *htt)
87 {
88 	return htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring_32);
89 }
90 
91 static size_t ath10k_htt_get_rx_ring_size_64(struct ath10k_htt *htt)
92 {
93 	return htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring_64);
94 }
95 
96 static void ath10k_htt_config_paddrs_ring_32(struct ath10k_htt *htt,
97 					     void *vaddr)
98 {
99 	htt->rx_ring.paddrs_ring_32 = vaddr;
100 }
101 
102 static void ath10k_htt_config_paddrs_ring_64(struct ath10k_htt *htt,
103 					     void *vaddr)
104 {
105 	htt->rx_ring.paddrs_ring_64 = vaddr;
106 }
107 
108 static void ath10k_htt_set_paddrs_ring_32(struct ath10k_htt *htt,
109 					  dma_addr_t paddr, int idx)
110 {
111 	htt->rx_ring.paddrs_ring_32[idx] = __cpu_to_le32(paddr);
112 }
113 
114 static void ath10k_htt_set_paddrs_ring_64(struct ath10k_htt *htt,
115 					  dma_addr_t paddr, int idx)
116 {
117 	htt->rx_ring.paddrs_ring_64[idx] = __cpu_to_le64(paddr);
118 }
119 
120 static void ath10k_htt_reset_paddrs_ring_32(struct ath10k_htt *htt, int idx)
121 {
122 	htt->rx_ring.paddrs_ring_32[idx] = 0;
123 }
124 
125 static void ath10k_htt_reset_paddrs_ring_64(struct ath10k_htt *htt, int idx)
126 {
127 	htt->rx_ring.paddrs_ring_64[idx] = 0;
128 }
129 
130 static void *ath10k_htt_get_vaddr_ring_32(struct ath10k_htt *htt)
131 {
132 	return (void *)htt->rx_ring.paddrs_ring_32;
133 }
134 
135 static void *ath10k_htt_get_vaddr_ring_64(struct ath10k_htt *htt)
136 {
137 	return (void *)htt->rx_ring.paddrs_ring_64;
138 }
139 
140 static int __ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
141 {
142 	struct htt_rx_desc *rx_desc;
143 	struct ath10k_skb_rxcb *rxcb;
144 	struct sk_buff *skb;
145 	dma_addr_t paddr;
146 	int ret = 0, idx;
147 
148 	/* The Full Rx Reorder firmware has no way of telling the host
149 	 * implicitly when it copied HTT Rx Ring buffers to MAC Rx Ring.
150 	 * To keep things simple make sure ring is always half empty. This
151 	 * guarantees there'll be no replenishment overruns possible.
152 	 */
153 	BUILD_BUG_ON(HTT_RX_RING_FILL_LEVEL >= HTT_RX_RING_SIZE / 2);
154 
155 	idx = __le32_to_cpu(*htt->rx_ring.alloc_idx.vaddr);
156 	while (num > 0) {
157 		skb = dev_alloc_skb(HTT_RX_BUF_SIZE + HTT_RX_DESC_ALIGN);
158 		if (!skb) {
159 			ret = -ENOMEM;
160 			goto fail;
161 		}
162 
163 		if (!IS_ALIGNED((unsigned long)skb->data, HTT_RX_DESC_ALIGN))
164 			skb_pull(skb,
165 				 PTR_ALIGN(skb->data, HTT_RX_DESC_ALIGN) -
166 				 skb->data);
167 
168 		/* Clear rx_desc attention word before posting to Rx ring */
169 		rx_desc = (struct htt_rx_desc *)skb->data;
170 		rx_desc->attention.flags = __cpu_to_le32(0);
171 
172 		paddr = dma_map_single(htt->ar->dev, skb->data,
173 				       skb->len + skb_tailroom(skb),
174 				       DMA_FROM_DEVICE);
175 
176 		if (unlikely(dma_mapping_error(htt->ar->dev, paddr))) {
177 			dev_kfree_skb_any(skb);
178 			ret = -ENOMEM;
179 			goto fail;
180 		}
181 
182 		rxcb = ATH10K_SKB_RXCB(skb);
183 		rxcb->paddr = paddr;
184 		htt->rx_ring.netbufs_ring[idx] = skb;
185 		ath10k_htt_set_paddrs_ring(htt, paddr, idx);
186 		htt->rx_ring.fill_cnt++;
187 
188 		if (htt->rx_ring.in_ord_rx) {
189 			hash_add(htt->rx_ring.skb_table,
190 				 &ATH10K_SKB_RXCB(skb)->hlist,
191 				 paddr);
192 		}
193 
194 		num--;
195 		idx++;
196 		idx &= htt->rx_ring.size_mask;
197 	}
198 
199 fail:
200 	/*
201 	 * Make sure the rx buffer is updated before available buffer
202 	 * index to avoid any potential rx ring corruption.
203 	 */
204 	mb();
205 	*htt->rx_ring.alloc_idx.vaddr = __cpu_to_le32(idx);
206 	return ret;
207 }
208 
209 static int ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
210 {
211 	lockdep_assert_held(&htt->rx_ring.lock);
212 	return __ath10k_htt_rx_ring_fill_n(htt, num);
213 }
214 
215 static void ath10k_htt_rx_msdu_buff_replenish(struct ath10k_htt *htt)
216 {
217 	int ret, num_deficit, num_to_fill;
218 
219 	/* Refilling the whole RX ring buffer proves to be a bad idea. The
220 	 * reason is RX may take up significant amount of CPU cycles and starve
221 	 * other tasks, e.g. TX on an ethernet device while acting as a bridge
222 	 * with ath10k wlan interface. This ended up with very poor performance
223 	 * once CPU the host system was overwhelmed with RX on ath10k.
224 	 *
225 	 * By limiting the number of refills the replenishing occurs
226 	 * progressively. This in turns makes use of the fact tasklets are
227 	 * processed in FIFO order. This means actual RX processing can starve
228 	 * out refilling. If there's not enough buffers on RX ring FW will not
229 	 * report RX until it is refilled with enough buffers. This
230 	 * automatically balances load wrt to CPU power.
231 	 *
232 	 * This probably comes at a cost of lower maximum throughput but
233 	 * improves the average and stability.
234 	 */
235 	spin_lock_bh(&htt->rx_ring.lock);
236 	num_deficit = htt->rx_ring.fill_level - htt->rx_ring.fill_cnt;
237 	num_to_fill = min(ATH10K_HTT_MAX_NUM_REFILL, num_deficit);
238 	num_deficit -= num_to_fill;
239 	ret = ath10k_htt_rx_ring_fill_n(htt, num_to_fill);
240 	if (ret == -ENOMEM) {
241 		/*
242 		 * Failed to fill it to the desired level -
243 		 * we'll start a timer and try again next time.
244 		 * As long as enough buffers are left in the ring for
245 		 * another A-MPDU rx, no special recovery is needed.
246 		 */
247 		mod_timer(&htt->rx_ring.refill_retry_timer, jiffies +
248 			  msecs_to_jiffies(HTT_RX_RING_REFILL_RETRY_MS));
249 	} else if (num_deficit > 0) {
250 		mod_timer(&htt->rx_ring.refill_retry_timer, jiffies +
251 			  msecs_to_jiffies(HTT_RX_RING_REFILL_RESCHED_MS));
252 	}
253 	spin_unlock_bh(&htt->rx_ring.lock);
254 }
255 
256 static void ath10k_htt_rx_ring_refill_retry(struct timer_list *t)
257 {
258 	struct ath10k_htt *htt = from_timer(htt, t, rx_ring.refill_retry_timer);
259 
260 	ath10k_htt_rx_msdu_buff_replenish(htt);
261 }
262 
263 int ath10k_htt_rx_ring_refill(struct ath10k *ar)
264 {
265 	struct ath10k_htt *htt = &ar->htt;
266 	int ret;
267 
268 	if (ar->dev_type == ATH10K_DEV_TYPE_HL)
269 		return 0;
270 
271 	spin_lock_bh(&htt->rx_ring.lock);
272 	ret = ath10k_htt_rx_ring_fill_n(htt, (htt->rx_ring.fill_level -
273 					      htt->rx_ring.fill_cnt));
274 
275 	if (ret)
276 		ath10k_htt_rx_ring_free(htt);
277 
278 	spin_unlock_bh(&htt->rx_ring.lock);
279 
280 	return ret;
281 }
282 
283 void ath10k_htt_rx_free(struct ath10k_htt *htt)
284 {
285 	if (htt->ar->dev_type == ATH10K_DEV_TYPE_HL)
286 		return;
287 
288 	del_timer_sync(&htt->rx_ring.refill_retry_timer);
289 
290 	skb_queue_purge(&htt->rx_msdus_q);
291 	skb_queue_purge(&htt->rx_in_ord_compl_q);
292 	skb_queue_purge(&htt->tx_fetch_ind_q);
293 
294 	spin_lock_bh(&htt->rx_ring.lock);
295 	ath10k_htt_rx_ring_free(htt);
296 	spin_unlock_bh(&htt->rx_ring.lock);
297 
298 	dma_free_coherent(htt->ar->dev,
299 			  ath10k_htt_get_rx_ring_size(htt),
300 			  ath10k_htt_get_vaddr_ring(htt),
301 			  htt->rx_ring.base_paddr);
302 
303 	dma_free_coherent(htt->ar->dev,
304 			  sizeof(*htt->rx_ring.alloc_idx.vaddr),
305 			  htt->rx_ring.alloc_idx.vaddr,
306 			  htt->rx_ring.alloc_idx.paddr);
307 
308 	kfree(htt->rx_ring.netbufs_ring);
309 }
310 
311 static inline struct sk_buff *ath10k_htt_rx_netbuf_pop(struct ath10k_htt *htt)
312 {
313 	struct ath10k *ar = htt->ar;
314 	int idx;
315 	struct sk_buff *msdu;
316 
317 	lockdep_assert_held(&htt->rx_ring.lock);
318 
319 	if (htt->rx_ring.fill_cnt == 0) {
320 		ath10k_warn(ar, "tried to pop sk_buff from an empty rx ring\n");
321 		return NULL;
322 	}
323 
324 	idx = htt->rx_ring.sw_rd_idx.msdu_payld;
325 	msdu = htt->rx_ring.netbufs_ring[idx];
326 	htt->rx_ring.netbufs_ring[idx] = NULL;
327 	ath10k_htt_reset_paddrs_ring(htt, idx);
328 
329 	idx++;
330 	idx &= htt->rx_ring.size_mask;
331 	htt->rx_ring.sw_rd_idx.msdu_payld = idx;
332 	htt->rx_ring.fill_cnt--;
333 
334 	dma_unmap_single(htt->ar->dev,
335 			 ATH10K_SKB_RXCB(msdu)->paddr,
336 			 msdu->len + skb_tailroom(msdu),
337 			 DMA_FROM_DEVICE);
338 	ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ",
339 			msdu->data, msdu->len + skb_tailroom(msdu));
340 
341 	return msdu;
342 }
343 
344 /* return: < 0 fatal error, 0 - non chained msdu, 1 chained msdu */
345 static int ath10k_htt_rx_amsdu_pop(struct ath10k_htt *htt,
346 				   struct sk_buff_head *amsdu)
347 {
348 	struct ath10k *ar = htt->ar;
349 	int msdu_len, msdu_chaining = 0;
350 	struct sk_buff *msdu;
351 	struct htt_rx_desc *rx_desc;
352 
353 	lockdep_assert_held(&htt->rx_ring.lock);
354 
355 	for (;;) {
356 		int last_msdu, msdu_len_invalid, msdu_chained;
357 
358 		msdu = ath10k_htt_rx_netbuf_pop(htt);
359 		if (!msdu) {
360 			__skb_queue_purge(amsdu);
361 			return -ENOENT;
362 		}
363 
364 		__skb_queue_tail(amsdu, msdu);
365 
366 		rx_desc = (struct htt_rx_desc *)msdu->data;
367 
368 		/* FIXME: we must report msdu payload since this is what caller
369 		 * expects now
370 		 */
371 		skb_put(msdu, offsetof(struct htt_rx_desc, msdu_payload));
372 		skb_pull(msdu, offsetof(struct htt_rx_desc, msdu_payload));
373 
374 		/*
375 		 * Sanity check - confirm the HW is finished filling in the
376 		 * rx data.
377 		 * If the HW and SW are working correctly, then it's guaranteed
378 		 * that the HW's MAC DMA is done before this point in the SW.
379 		 * To prevent the case that we handle a stale Rx descriptor,
380 		 * just assert for now until we have a way to recover.
381 		 */
382 		if (!(__le32_to_cpu(rx_desc->attention.flags)
383 				& RX_ATTENTION_FLAGS_MSDU_DONE)) {
384 			__skb_queue_purge(amsdu);
385 			return -EIO;
386 		}
387 
388 		msdu_len_invalid = !!(__le32_to_cpu(rx_desc->attention.flags)
389 					& (RX_ATTENTION_FLAGS_MPDU_LENGTH_ERR |
390 					   RX_ATTENTION_FLAGS_MSDU_LENGTH_ERR));
391 		msdu_len = MS(__le32_to_cpu(rx_desc->msdu_start.common.info0),
392 			      RX_MSDU_START_INFO0_MSDU_LENGTH);
393 		msdu_chained = rx_desc->frag_info.ring2_more_count;
394 
395 		if (msdu_len_invalid)
396 			msdu_len = 0;
397 
398 		skb_trim(msdu, 0);
399 		skb_put(msdu, min(msdu_len, HTT_RX_MSDU_SIZE));
400 		msdu_len -= msdu->len;
401 
402 		/* Note: Chained buffers do not contain rx descriptor */
403 		while (msdu_chained--) {
404 			msdu = ath10k_htt_rx_netbuf_pop(htt);
405 			if (!msdu) {
406 				__skb_queue_purge(amsdu);
407 				return -ENOENT;
408 			}
409 
410 			__skb_queue_tail(amsdu, msdu);
411 			skb_trim(msdu, 0);
412 			skb_put(msdu, min(msdu_len, HTT_RX_BUF_SIZE));
413 			msdu_len -= msdu->len;
414 			msdu_chaining = 1;
415 		}
416 
417 		last_msdu = __le32_to_cpu(rx_desc->msdu_end.common.info0) &
418 				RX_MSDU_END_INFO0_LAST_MSDU;
419 
420 		trace_ath10k_htt_rx_desc(ar, &rx_desc->attention,
421 					 sizeof(*rx_desc) - sizeof(u32));
422 
423 		if (last_msdu)
424 			break;
425 	}
426 
427 	if (skb_queue_empty(amsdu))
428 		msdu_chaining = -1;
429 
430 	/*
431 	 * Don't refill the ring yet.
432 	 *
433 	 * First, the elements popped here are still in use - it is not
434 	 * safe to overwrite them until the matching call to
435 	 * mpdu_desc_list_next. Second, for efficiency it is preferable to
436 	 * refill the rx ring with 1 PPDU's worth of rx buffers (something
437 	 * like 32 x 3 buffers), rather than one MPDU's worth of rx buffers
438 	 * (something like 3 buffers). Consequently, we'll rely on the txrx
439 	 * SW to tell us when it is done pulling all the PPDU's rx buffers
440 	 * out of the rx ring, and then refill it just once.
441 	 */
442 
443 	return msdu_chaining;
444 }
445 
446 static struct sk_buff *ath10k_htt_rx_pop_paddr(struct ath10k_htt *htt,
447 					       u64 paddr)
448 {
449 	struct ath10k *ar = htt->ar;
450 	struct ath10k_skb_rxcb *rxcb;
451 	struct sk_buff *msdu;
452 
453 	lockdep_assert_held(&htt->rx_ring.lock);
454 
455 	msdu = ath10k_htt_rx_find_skb_paddr(ar, paddr);
456 	if (!msdu)
457 		return NULL;
458 
459 	rxcb = ATH10K_SKB_RXCB(msdu);
460 	hash_del(&rxcb->hlist);
461 	htt->rx_ring.fill_cnt--;
462 
463 	dma_unmap_single(htt->ar->dev, rxcb->paddr,
464 			 msdu->len + skb_tailroom(msdu),
465 			 DMA_FROM_DEVICE);
466 	ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ",
467 			msdu->data, msdu->len + skb_tailroom(msdu));
468 
469 	return msdu;
470 }
471 
472 static int ath10k_htt_rx_pop_paddr32_list(struct ath10k_htt *htt,
473 					  struct htt_rx_in_ord_ind *ev,
474 					  struct sk_buff_head *list)
475 {
476 	struct ath10k *ar = htt->ar;
477 	struct htt_rx_in_ord_msdu_desc *msdu_desc = ev->msdu_descs32;
478 	struct htt_rx_desc *rxd;
479 	struct sk_buff *msdu;
480 	int msdu_count;
481 	bool is_offload;
482 	u32 paddr;
483 
484 	lockdep_assert_held(&htt->rx_ring.lock);
485 
486 	msdu_count = __le16_to_cpu(ev->msdu_count);
487 	is_offload = !!(ev->info & HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK);
488 
489 	while (msdu_count--) {
490 		paddr = __le32_to_cpu(msdu_desc->msdu_paddr);
491 
492 		msdu = ath10k_htt_rx_pop_paddr(htt, paddr);
493 		if (!msdu) {
494 			__skb_queue_purge(list);
495 			return -ENOENT;
496 		}
497 
498 		__skb_queue_tail(list, msdu);
499 
500 		if (!is_offload) {
501 			rxd = (void *)msdu->data;
502 
503 			trace_ath10k_htt_rx_desc(ar, rxd, sizeof(*rxd));
504 
505 			skb_put(msdu, sizeof(*rxd));
506 			skb_pull(msdu, sizeof(*rxd));
507 			skb_put(msdu, __le16_to_cpu(msdu_desc->msdu_len));
508 
509 			if (!(__le32_to_cpu(rxd->attention.flags) &
510 			      RX_ATTENTION_FLAGS_MSDU_DONE)) {
511 				ath10k_warn(htt->ar, "tried to pop an incomplete frame, oops!\n");
512 				return -EIO;
513 			}
514 		}
515 
516 		msdu_desc++;
517 	}
518 
519 	return 0;
520 }
521 
522 static int ath10k_htt_rx_pop_paddr64_list(struct ath10k_htt *htt,
523 					  struct htt_rx_in_ord_ind *ev,
524 					  struct sk_buff_head *list)
525 {
526 	struct ath10k *ar = htt->ar;
527 	struct htt_rx_in_ord_msdu_desc_ext *msdu_desc = ev->msdu_descs64;
528 	struct htt_rx_desc *rxd;
529 	struct sk_buff *msdu;
530 	int msdu_count;
531 	bool is_offload;
532 	u64 paddr;
533 
534 	lockdep_assert_held(&htt->rx_ring.lock);
535 
536 	msdu_count = __le16_to_cpu(ev->msdu_count);
537 	is_offload = !!(ev->info & HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK);
538 
539 	while (msdu_count--) {
540 		paddr = __le64_to_cpu(msdu_desc->msdu_paddr);
541 		msdu = ath10k_htt_rx_pop_paddr(htt, paddr);
542 		if (!msdu) {
543 			__skb_queue_purge(list);
544 			return -ENOENT;
545 		}
546 
547 		__skb_queue_tail(list, msdu);
548 
549 		if (!is_offload) {
550 			rxd = (void *)msdu->data;
551 
552 			trace_ath10k_htt_rx_desc(ar, rxd, sizeof(*rxd));
553 
554 			skb_put(msdu, sizeof(*rxd));
555 			skb_pull(msdu, sizeof(*rxd));
556 			skb_put(msdu, __le16_to_cpu(msdu_desc->msdu_len));
557 
558 			if (!(__le32_to_cpu(rxd->attention.flags) &
559 			      RX_ATTENTION_FLAGS_MSDU_DONE)) {
560 				ath10k_warn(htt->ar, "tried to pop an incomplete frame, oops!\n");
561 				return -EIO;
562 			}
563 		}
564 
565 		msdu_desc++;
566 	}
567 
568 	return 0;
569 }
570 
571 int ath10k_htt_rx_alloc(struct ath10k_htt *htt)
572 {
573 	struct ath10k *ar = htt->ar;
574 	dma_addr_t paddr;
575 	void *vaddr, *vaddr_ring;
576 	size_t size;
577 	struct timer_list *timer = &htt->rx_ring.refill_retry_timer;
578 
579 	if (ar->dev_type == ATH10K_DEV_TYPE_HL)
580 		return 0;
581 
582 	htt->rx_confused = false;
583 
584 	/* XXX: The fill level could be changed during runtime in response to
585 	 * the host processing latency. Is this really worth it?
586 	 */
587 	htt->rx_ring.size = HTT_RX_RING_SIZE;
588 	htt->rx_ring.size_mask = htt->rx_ring.size - 1;
589 	htt->rx_ring.fill_level = ar->hw_params.rx_ring_fill_level;
590 
591 	if (!is_power_of_2(htt->rx_ring.size)) {
592 		ath10k_warn(ar, "htt rx ring size is not power of 2\n");
593 		return -EINVAL;
594 	}
595 
596 	htt->rx_ring.netbufs_ring =
597 		kcalloc(htt->rx_ring.size, sizeof(struct sk_buff *),
598 			GFP_KERNEL);
599 	if (!htt->rx_ring.netbufs_ring)
600 		goto err_netbuf;
601 
602 	size = ath10k_htt_get_rx_ring_size(htt);
603 
604 	vaddr_ring = dma_alloc_coherent(htt->ar->dev, size, &paddr, GFP_KERNEL);
605 	if (!vaddr_ring)
606 		goto err_dma_ring;
607 
608 	ath10k_htt_config_paddrs_ring(htt, vaddr_ring);
609 	htt->rx_ring.base_paddr = paddr;
610 
611 	vaddr = dma_alloc_coherent(htt->ar->dev,
612 				   sizeof(*htt->rx_ring.alloc_idx.vaddr),
613 				   &paddr, GFP_KERNEL);
614 	if (!vaddr)
615 		goto err_dma_idx;
616 
617 	htt->rx_ring.alloc_idx.vaddr = vaddr;
618 	htt->rx_ring.alloc_idx.paddr = paddr;
619 	htt->rx_ring.sw_rd_idx.msdu_payld = htt->rx_ring.size_mask;
620 	*htt->rx_ring.alloc_idx.vaddr = 0;
621 
622 	/* Initialize the Rx refill retry timer */
623 	timer_setup(timer, ath10k_htt_rx_ring_refill_retry, 0);
624 
625 	spin_lock_init(&htt->rx_ring.lock);
626 
627 	htt->rx_ring.fill_cnt = 0;
628 	htt->rx_ring.sw_rd_idx.msdu_payld = 0;
629 	hash_init(htt->rx_ring.skb_table);
630 
631 	skb_queue_head_init(&htt->rx_msdus_q);
632 	skb_queue_head_init(&htt->rx_in_ord_compl_q);
633 	skb_queue_head_init(&htt->tx_fetch_ind_q);
634 	atomic_set(&htt->num_mpdus_ready, 0);
635 
636 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "htt rx ring size %d fill_level %d\n",
637 		   htt->rx_ring.size, htt->rx_ring.fill_level);
638 	return 0;
639 
640 err_dma_idx:
641 	dma_free_coherent(htt->ar->dev,
642 			  ath10k_htt_get_rx_ring_size(htt),
643 			  vaddr_ring,
644 			  htt->rx_ring.base_paddr);
645 err_dma_ring:
646 	kfree(htt->rx_ring.netbufs_ring);
647 err_netbuf:
648 	return -ENOMEM;
649 }
650 
651 static int ath10k_htt_rx_crypto_param_len(struct ath10k *ar,
652 					  enum htt_rx_mpdu_encrypt_type type)
653 {
654 	switch (type) {
655 	case HTT_RX_MPDU_ENCRYPT_NONE:
656 		return 0;
657 	case HTT_RX_MPDU_ENCRYPT_WEP40:
658 	case HTT_RX_MPDU_ENCRYPT_WEP104:
659 		return IEEE80211_WEP_IV_LEN;
660 	case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
661 	case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
662 		return IEEE80211_TKIP_IV_LEN;
663 	case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
664 		return IEEE80211_CCMP_HDR_LEN;
665 	case HTT_RX_MPDU_ENCRYPT_AES_CCM256_WPA2:
666 		return IEEE80211_CCMP_256_HDR_LEN;
667 	case HTT_RX_MPDU_ENCRYPT_AES_GCMP_WPA2:
668 	case HTT_RX_MPDU_ENCRYPT_AES_GCMP256_WPA2:
669 		return IEEE80211_GCMP_HDR_LEN;
670 	case HTT_RX_MPDU_ENCRYPT_WEP128:
671 	case HTT_RX_MPDU_ENCRYPT_WAPI:
672 		break;
673 	}
674 
675 	ath10k_warn(ar, "unsupported encryption type %d\n", type);
676 	return 0;
677 }
678 
679 #define MICHAEL_MIC_LEN 8
680 
681 static int ath10k_htt_rx_crypto_mic_len(struct ath10k *ar,
682 					enum htt_rx_mpdu_encrypt_type type)
683 {
684 	switch (type) {
685 	case HTT_RX_MPDU_ENCRYPT_NONE:
686 	case HTT_RX_MPDU_ENCRYPT_WEP40:
687 	case HTT_RX_MPDU_ENCRYPT_WEP104:
688 	case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
689 	case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
690 		return 0;
691 	case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
692 		return IEEE80211_CCMP_MIC_LEN;
693 	case HTT_RX_MPDU_ENCRYPT_AES_CCM256_WPA2:
694 		return IEEE80211_CCMP_256_MIC_LEN;
695 	case HTT_RX_MPDU_ENCRYPT_AES_GCMP_WPA2:
696 	case HTT_RX_MPDU_ENCRYPT_AES_GCMP256_WPA2:
697 		return IEEE80211_GCMP_MIC_LEN;
698 	case HTT_RX_MPDU_ENCRYPT_WEP128:
699 	case HTT_RX_MPDU_ENCRYPT_WAPI:
700 		break;
701 	}
702 
703 	ath10k_warn(ar, "unsupported encryption type %d\n", type);
704 	return 0;
705 }
706 
707 static int ath10k_htt_rx_crypto_icv_len(struct ath10k *ar,
708 					enum htt_rx_mpdu_encrypt_type type)
709 {
710 	switch (type) {
711 	case HTT_RX_MPDU_ENCRYPT_NONE:
712 	case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
713 	case HTT_RX_MPDU_ENCRYPT_AES_CCM256_WPA2:
714 	case HTT_RX_MPDU_ENCRYPT_AES_GCMP_WPA2:
715 	case HTT_RX_MPDU_ENCRYPT_AES_GCMP256_WPA2:
716 		return 0;
717 	case HTT_RX_MPDU_ENCRYPT_WEP40:
718 	case HTT_RX_MPDU_ENCRYPT_WEP104:
719 		return IEEE80211_WEP_ICV_LEN;
720 	case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
721 	case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
722 		return IEEE80211_TKIP_ICV_LEN;
723 	case HTT_RX_MPDU_ENCRYPT_WEP128:
724 	case HTT_RX_MPDU_ENCRYPT_WAPI:
725 		break;
726 	}
727 
728 	ath10k_warn(ar, "unsupported encryption type %d\n", type);
729 	return 0;
730 }
731 
732 struct amsdu_subframe_hdr {
733 	u8 dst[ETH_ALEN];
734 	u8 src[ETH_ALEN];
735 	__be16 len;
736 } __packed;
737 
738 #define GROUP_ID_IS_SU_MIMO(x) ((x) == 0 || (x) == 63)
739 
740 static inline u8 ath10k_bw_to_mac80211_bw(u8 bw)
741 {
742 	u8 ret = 0;
743 
744 	switch (bw) {
745 	case 0:
746 		ret = RATE_INFO_BW_20;
747 		break;
748 	case 1:
749 		ret = RATE_INFO_BW_40;
750 		break;
751 	case 2:
752 		ret = RATE_INFO_BW_80;
753 		break;
754 	case 3:
755 		ret = RATE_INFO_BW_160;
756 		break;
757 	}
758 
759 	return ret;
760 }
761 
762 static void ath10k_htt_rx_h_rates(struct ath10k *ar,
763 				  struct ieee80211_rx_status *status,
764 				  struct htt_rx_desc *rxd)
765 {
766 	struct ieee80211_supported_band *sband;
767 	u8 cck, rate, bw, sgi, mcs, nss;
768 	u8 preamble = 0;
769 	u8 group_id;
770 	u32 info1, info2, info3;
771 
772 	info1 = __le32_to_cpu(rxd->ppdu_start.info1);
773 	info2 = __le32_to_cpu(rxd->ppdu_start.info2);
774 	info3 = __le32_to_cpu(rxd->ppdu_start.info3);
775 
776 	preamble = MS(info1, RX_PPDU_START_INFO1_PREAMBLE_TYPE);
777 
778 	switch (preamble) {
779 	case HTT_RX_LEGACY:
780 		/* To get legacy rate index band is required. Since band can't
781 		 * be undefined check if freq is non-zero.
782 		 */
783 		if (!status->freq)
784 			return;
785 
786 		cck = info1 & RX_PPDU_START_INFO1_L_SIG_RATE_SELECT;
787 		rate = MS(info1, RX_PPDU_START_INFO1_L_SIG_RATE);
788 		rate &= ~RX_PPDU_START_RATE_FLAG;
789 
790 		sband = &ar->mac.sbands[status->band];
791 		status->rate_idx = ath10k_mac_hw_rate_to_idx(sband, rate, cck);
792 		break;
793 	case HTT_RX_HT:
794 	case HTT_RX_HT_WITH_TXBF:
795 		/* HT-SIG - Table 20-11 in info2 and info3 */
796 		mcs = info2 & 0x1F;
797 		nss = mcs >> 3;
798 		bw = (info2 >> 7) & 1;
799 		sgi = (info3 >> 7) & 1;
800 
801 		status->rate_idx = mcs;
802 		status->encoding = RX_ENC_HT;
803 		if (sgi)
804 			status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
805 		if (bw)
806 			status->bw = RATE_INFO_BW_40;
807 		break;
808 	case HTT_RX_VHT:
809 	case HTT_RX_VHT_WITH_TXBF:
810 		/* VHT-SIG-A1 in info2, VHT-SIG-A2 in info3
811 		 * TODO check this
812 		 */
813 		bw = info2 & 3;
814 		sgi = info3 & 1;
815 		group_id = (info2 >> 4) & 0x3F;
816 
817 		if (GROUP_ID_IS_SU_MIMO(group_id)) {
818 			mcs = (info3 >> 4) & 0x0F;
819 			nss = ((info2 >> 10) & 0x07) + 1;
820 		} else {
821 			/* Hardware doesn't decode VHT-SIG-B into Rx descriptor
822 			 * so it's impossible to decode MCS. Also since
823 			 * firmware consumes Group Id Management frames host
824 			 * has no knowledge regarding group/user position
825 			 * mapping so it's impossible to pick the correct Nsts
826 			 * from VHT-SIG-A1.
827 			 *
828 			 * Bandwidth and SGI are valid so report the rateinfo
829 			 * on best-effort basis.
830 			 */
831 			mcs = 0;
832 			nss = 1;
833 		}
834 
835 		if (mcs > 0x09) {
836 			ath10k_warn(ar, "invalid MCS received %u\n", mcs);
837 			ath10k_warn(ar, "rxd %08x mpdu start %08x %08x msdu start %08x %08x ppdu start %08x %08x %08x %08x %08x\n",
838 				    __le32_to_cpu(rxd->attention.flags),
839 				    __le32_to_cpu(rxd->mpdu_start.info0),
840 				    __le32_to_cpu(rxd->mpdu_start.info1),
841 				    __le32_to_cpu(rxd->msdu_start.common.info0),
842 				    __le32_to_cpu(rxd->msdu_start.common.info1),
843 				    rxd->ppdu_start.info0,
844 				    __le32_to_cpu(rxd->ppdu_start.info1),
845 				    __le32_to_cpu(rxd->ppdu_start.info2),
846 				    __le32_to_cpu(rxd->ppdu_start.info3),
847 				    __le32_to_cpu(rxd->ppdu_start.info4));
848 
849 			ath10k_warn(ar, "msdu end %08x mpdu end %08x\n",
850 				    __le32_to_cpu(rxd->msdu_end.common.info0),
851 				    __le32_to_cpu(rxd->mpdu_end.info0));
852 
853 			ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL,
854 					"rx desc msdu payload: ",
855 					rxd->msdu_payload, 50);
856 		}
857 
858 		status->rate_idx = mcs;
859 		status->nss = nss;
860 
861 		if (sgi)
862 			status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
863 
864 		status->bw = ath10k_bw_to_mac80211_bw(bw);
865 		status->encoding = RX_ENC_VHT;
866 		break;
867 	default:
868 		break;
869 	}
870 }
871 
872 static struct ieee80211_channel *
873 ath10k_htt_rx_h_peer_channel(struct ath10k *ar, struct htt_rx_desc *rxd)
874 {
875 	struct ath10k_peer *peer;
876 	struct ath10k_vif *arvif;
877 	struct cfg80211_chan_def def;
878 	u16 peer_id;
879 
880 	lockdep_assert_held(&ar->data_lock);
881 
882 	if (!rxd)
883 		return NULL;
884 
885 	if (rxd->attention.flags &
886 	    __cpu_to_le32(RX_ATTENTION_FLAGS_PEER_IDX_INVALID))
887 		return NULL;
888 
889 	if (!(rxd->msdu_end.common.info0 &
890 	      __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU)))
891 		return NULL;
892 
893 	peer_id = MS(__le32_to_cpu(rxd->mpdu_start.info0),
894 		     RX_MPDU_START_INFO0_PEER_IDX);
895 
896 	peer = ath10k_peer_find_by_id(ar, peer_id);
897 	if (!peer)
898 		return NULL;
899 
900 	arvif = ath10k_get_arvif(ar, peer->vdev_id);
901 	if (WARN_ON_ONCE(!arvif))
902 		return NULL;
903 
904 	if (ath10k_mac_vif_chan(arvif->vif, &def))
905 		return NULL;
906 
907 	return def.chan;
908 }
909 
910 static struct ieee80211_channel *
911 ath10k_htt_rx_h_vdev_channel(struct ath10k *ar, u32 vdev_id)
912 {
913 	struct ath10k_vif *arvif;
914 	struct cfg80211_chan_def def;
915 
916 	lockdep_assert_held(&ar->data_lock);
917 
918 	list_for_each_entry(arvif, &ar->arvifs, list) {
919 		if (arvif->vdev_id == vdev_id &&
920 		    ath10k_mac_vif_chan(arvif->vif, &def) == 0)
921 			return def.chan;
922 	}
923 
924 	return NULL;
925 }
926 
927 static void
928 ath10k_htt_rx_h_any_chan_iter(struct ieee80211_hw *hw,
929 			      struct ieee80211_chanctx_conf *conf,
930 			      void *data)
931 {
932 	struct cfg80211_chan_def *def = data;
933 
934 	*def = conf->def;
935 }
936 
937 static struct ieee80211_channel *
938 ath10k_htt_rx_h_any_channel(struct ath10k *ar)
939 {
940 	struct cfg80211_chan_def def = {};
941 
942 	ieee80211_iter_chan_contexts_atomic(ar->hw,
943 					    ath10k_htt_rx_h_any_chan_iter,
944 					    &def);
945 
946 	return def.chan;
947 }
948 
949 static bool ath10k_htt_rx_h_channel(struct ath10k *ar,
950 				    struct ieee80211_rx_status *status,
951 				    struct htt_rx_desc *rxd,
952 				    u32 vdev_id)
953 {
954 	struct ieee80211_channel *ch;
955 
956 	spin_lock_bh(&ar->data_lock);
957 	ch = ar->scan_channel;
958 	if (!ch)
959 		ch = ar->rx_channel;
960 	if (!ch)
961 		ch = ath10k_htt_rx_h_peer_channel(ar, rxd);
962 	if (!ch)
963 		ch = ath10k_htt_rx_h_vdev_channel(ar, vdev_id);
964 	if (!ch)
965 		ch = ath10k_htt_rx_h_any_channel(ar);
966 	if (!ch)
967 		ch = ar->tgt_oper_chan;
968 	spin_unlock_bh(&ar->data_lock);
969 
970 	if (!ch)
971 		return false;
972 
973 	status->band = ch->band;
974 	status->freq = ch->center_freq;
975 
976 	return true;
977 }
978 
979 static void ath10k_htt_rx_h_signal(struct ath10k *ar,
980 				   struct ieee80211_rx_status *status,
981 				   struct htt_rx_desc *rxd)
982 {
983 	int i;
984 
985 	for (i = 0; i < IEEE80211_MAX_CHAINS ; i++) {
986 		status->chains &= ~BIT(i);
987 
988 		if (rxd->ppdu_start.rssi_chains[i].pri20_mhz != 0x80) {
989 			status->chain_signal[i] = ATH10K_DEFAULT_NOISE_FLOOR +
990 				rxd->ppdu_start.rssi_chains[i].pri20_mhz;
991 
992 			status->chains |= BIT(i);
993 		}
994 	}
995 
996 	/* FIXME: Get real NF */
997 	status->signal = ATH10K_DEFAULT_NOISE_FLOOR +
998 			 rxd->ppdu_start.rssi_comb;
999 	status->flag &= ~RX_FLAG_NO_SIGNAL_VAL;
1000 }
1001 
1002 static void ath10k_htt_rx_h_mactime(struct ath10k *ar,
1003 				    struct ieee80211_rx_status *status,
1004 				    struct htt_rx_desc *rxd)
1005 {
1006 	/* FIXME: TSF is known only at the end of PPDU, in the last MPDU. This
1007 	 * means all prior MSDUs in a PPDU are reported to mac80211 without the
1008 	 * TSF. Is it worth holding frames until end of PPDU is known?
1009 	 *
1010 	 * FIXME: Can we get/compute 64bit TSF?
1011 	 */
1012 	status->mactime = __le32_to_cpu(rxd->ppdu_end.common.tsf_timestamp);
1013 	status->flag |= RX_FLAG_MACTIME_END;
1014 }
1015 
1016 static void ath10k_htt_rx_h_ppdu(struct ath10k *ar,
1017 				 struct sk_buff_head *amsdu,
1018 				 struct ieee80211_rx_status *status,
1019 				 u32 vdev_id)
1020 {
1021 	struct sk_buff *first;
1022 	struct htt_rx_desc *rxd;
1023 	bool is_first_ppdu;
1024 	bool is_last_ppdu;
1025 
1026 	if (skb_queue_empty(amsdu))
1027 		return;
1028 
1029 	first = skb_peek(amsdu);
1030 	rxd = (void *)first->data - sizeof(*rxd);
1031 
1032 	is_first_ppdu = !!(rxd->attention.flags &
1033 			   __cpu_to_le32(RX_ATTENTION_FLAGS_FIRST_MPDU));
1034 	is_last_ppdu = !!(rxd->attention.flags &
1035 			  __cpu_to_le32(RX_ATTENTION_FLAGS_LAST_MPDU));
1036 
1037 	if (is_first_ppdu) {
1038 		/* New PPDU starts so clear out the old per-PPDU status. */
1039 		status->freq = 0;
1040 		status->rate_idx = 0;
1041 		status->nss = 0;
1042 		status->encoding = RX_ENC_LEGACY;
1043 		status->bw = RATE_INFO_BW_20;
1044 
1045 		status->flag &= ~RX_FLAG_MACTIME_END;
1046 		status->flag |= RX_FLAG_NO_SIGNAL_VAL;
1047 
1048 		status->flag &= ~(RX_FLAG_AMPDU_IS_LAST);
1049 		status->flag |= RX_FLAG_AMPDU_DETAILS | RX_FLAG_AMPDU_LAST_KNOWN;
1050 		status->ampdu_reference = ar->ampdu_reference;
1051 
1052 		ath10k_htt_rx_h_signal(ar, status, rxd);
1053 		ath10k_htt_rx_h_channel(ar, status, rxd, vdev_id);
1054 		ath10k_htt_rx_h_rates(ar, status, rxd);
1055 	}
1056 
1057 	if (is_last_ppdu) {
1058 		ath10k_htt_rx_h_mactime(ar, status, rxd);
1059 
1060 		/* set ampdu last segment flag */
1061 		status->flag |= RX_FLAG_AMPDU_IS_LAST;
1062 		ar->ampdu_reference++;
1063 	}
1064 }
1065 
1066 static const char * const tid_to_ac[] = {
1067 	"BE",
1068 	"BK",
1069 	"BK",
1070 	"BE",
1071 	"VI",
1072 	"VI",
1073 	"VO",
1074 	"VO",
1075 };
1076 
1077 static char *ath10k_get_tid(struct ieee80211_hdr *hdr, char *out, size_t size)
1078 {
1079 	u8 *qc;
1080 	int tid;
1081 
1082 	if (!ieee80211_is_data_qos(hdr->frame_control))
1083 		return "";
1084 
1085 	qc = ieee80211_get_qos_ctl(hdr);
1086 	tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
1087 	if (tid < 8)
1088 		snprintf(out, size, "tid %d (%s)", tid, tid_to_ac[tid]);
1089 	else
1090 		snprintf(out, size, "tid %d", tid);
1091 
1092 	return out;
1093 }
1094 
1095 static void ath10k_htt_rx_h_queue_msdu(struct ath10k *ar,
1096 				       struct ieee80211_rx_status *rx_status,
1097 				       struct sk_buff *skb)
1098 {
1099 	struct ieee80211_rx_status *status;
1100 
1101 	status = IEEE80211_SKB_RXCB(skb);
1102 	*status = *rx_status;
1103 
1104 	skb_queue_tail(&ar->htt.rx_msdus_q, skb);
1105 }
1106 
1107 static void ath10k_process_rx(struct ath10k *ar, struct sk_buff *skb)
1108 {
1109 	struct ieee80211_rx_status *status;
1110 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1111 	char tid[32];
1112 
1113 	status = IEEE80211_SKB_RXCB(skb);
1114 
1115 	ath10k_dbg(ar, ATH10K_DBG_DATA,
1116 		   "rx skb %pK len %u peer %pM %s %s sn %u %s%s%s%s%s%s %srate_idx %u vht_nss %u freq %u band %u flag 0x%x fcs-err %i mic-err %i amsdu-more %i\n",
1117 		   skb,
1118 		   skb->len,
1119 		   ieee80211_get_SA(hdr),
1120 		   ath10k_get_tid(hdr, tid, sizeof(tid)),
1121 		   is_multicast_ether_addr(ieee80211_get_DA(hdr)) ?
1122 							"mcast" : "ucast",
1123 		   (__le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_SEQ) >> 4,
1124 		   (status->encoding == RX_ENC_LEGACY) ? "legacy" : "",
1125 		   (status->encoding == RX_ENC_HT) ? "ht" : "",
1126 		   (status->encoding == RX_ENC_VHT) ? "vht" : "",
1127 		   (status->bw == RATE_INFO_BW_40) ? "40" : "",
1128 		   (status->bw == RATE_INFO_BW_80) ? "80" : "",
1129 		   (status->bw == RATE_INFO_BW_160) ? "160" : "",
1130 		   status->enc_flags & RX_ENC_FLAG_SHORT_GI ? "sgi " : "",
1131 		   status->rate_idx,
1132 		   status->nss,
1133 		   status->freq,
1134 		   status->band, status->flag,
1135 		   !!(status->flag & RX_FLAG_FAILED_FCS_CRC),
1136 		   !!(status->flag & RX_FLAG_MMIC_ERROR),
1137 		   !!(status->flag & RX_FLAG_AMSDU_MORE));
1138 	ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "rx skb: ",
1139 			skb->data, skb->len);
1140 	trace_ath10k_rx_hdr(ar, skb->data, skb->len);
1141 	trace_ath10k_rx_payload(ar, skb->data, skb->len);
1142 
1143 	ieee80211_rx_napi(ar->hw, NULL, skb, &ar->napi);
1144 }
1145 
1146 static int ath10k_htt_rx_nwifi_hdrlen(struct ath10k *ar,
1147 				      struct ieee80211_hdr *hdr)
1148 {
1149 	int len = ieee80211_hdrlen(hdr->frame_control);
1150 
1151 	if (!test_bit(ATH10K_FW_FEATURE_NO_NWIFI_DECAP_4ADDR_PADDING,
1152 		      ar->running_fw->fw_file.fw_features))
1153 		len = round_up(len, 4);
1154 
1155 	return len;
1156 }
1157 
1158 static void ath10k_htt_rx_h_undecap_raw(struct ath10k *ar,
1159 					struct sk_buff *msdu,
1160 					struct ieee80211_rx_status *status,
1161 					enum htt_rx_mpdu_encrypt_type enctype,
1162 					bool is_decrypted)
1163 {
1164 	struct ieee80211_hdr *hdr;
1165 	struct htt_rx_desc *rxd;
1166 	size_t hdr_len;
1167 	size_t crypto_len;
1168 	bool is_first;
1169 	bool is_last;
1170 
1171 	rxd = (void *)msdu->data - sizeof(*rxd);
1172 	is_first = !!(rxd->msdu_end.common.info0 &
1173 		      __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU));
1174 	is_last = !!(rxd->msdu_end.common.info0 &
1175 		     __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU));
1176 
1177 	/* Delivered decapped frame:
1178 	 * [802.11 header]
1179 	 * [crypto param] <-- can be trimmed if !fcs_err &&
1180 	 *                    !decrypt_err && !peer_idx_invalid
1181 	 * [amsdu header] <-- only if A-MSDU
1182 	 * [rfc1042/llc]
1183 	 * [payload]
1184 	 * [FCS] <-- at end, needs to be trimmed
1185 	 */
1186 
1187 	/* This probably shouldn't happen but warn just in case */
1188 	if (WARN_ON_ONCE(!is_first))
1189 		return;
1190 
1191 	/* This probably shouldn't happen but warn just in case */
1192 	if (WARN_ON_ONCE(!(is_first && is_last)))
1193 		return;
1194 
1195 	skb_trim(msdu, msdu->len - FCS_LEN);
1196 
1197 	/* In most cases this will be true for sniffed frames. It makes sense
1198 	 * to deliver them as-is without stripping the crypto param. This is
1199 	 * necessary for software based decryption.
1200 	 *
1201 	 * If there's no error then the frame is decrypted. At least that is
1202 	 * the case for frames that come in via fragmented rx indication.
1203 	 */
1204 	if (!is_decrypted)
1205 		return;
1206 
1207 	/* The payload is decrypted so strip crypto params. Start from tail
1208 	 * since hdr is used to compute some stuff.
1209 	 */
1210 
1211 	hdr = (void *)msdu->data;
1212 
1213 	/* Tail */
1214 	if (status->flag & RX_FLAG_IV_STRIPPED) {
1215 		skb_trim(msdu, msdu->len -
1216 			 ath10k_htt_rx_crypto_mic_len(ar, enctype));
1217 
1218 		skb_trim(msdu, msdu->len -
1219 			 ath10k_htt_rx_crypto_icv_len(ar, enctype));
1220 	} else {
1221 		/* MIC */
1222 		if (status->flag & RX_FLAG_MIC_STRIPPED)
1223 			skb_trim(msdu, msdu->len -
1224 				 ath10k_htt_rx_crypto_mic_len(ar, enctype));
1225 
1226 		/* ICV */
1227 		if (status->flag & RX_FLAG_ICV_STRIPPED)
1228 			skb_trim(msdu, msdu->len -
1229 				 ath10k_htt_rx_crypto_icv_len(ar, enctype));
1230 	}
1231 
1232 	/* MMIC */
1233 	if ((status->flag & RX_FLAG_MMIC_STRIPPED) &&
1234 	    !ieee80211_has_morefrags(hdr->frame_control) &&
1235 	    enctype == HTT_RX_MPDU_ENCRYPT_TKIP_WPA)
1236 		skb_trim(msdu, msdu->len - MICHAEL_MIC_LEN);
1237 
1238 	/* Head */
1239 	if (status->flag & RX_FLAG_IV_STRIPPED) {
1240 		hdr_len = ieee80211_hdrlen(hdr->frame_control);
1241 		crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype);
1242 
1243 		memmove((void *)msdu->data + crypto_len,
1244 			(void *)msdu->data, hdr_len);
1245 		skb_pull(msdu, crypto_len);
1246 	}
1247 }
1248 
1249 static void ath10k_htt_rx_h_undecap_nwifi(struct ath10k *ar,
1250 					  struct sk_buff *msdu,
1251 					  struct ieee80211_rx_status *status,
1252 					  const u8 first_hdr[64],
1253 					  enum htt_rx_mpdu_encrypt_type enctype)
1254 {
1255 	struct ieee80211_hdr *hdr;
1256 	struct htt_rx_desc *rxd;
1257 	size_t hdr_len;
1258 	u8 da[ETH_ALEN];
1259 	u8 sa[ETH_ALEN];
1260 	int l3_pad_bytes;
1261 	int bytes_aligned = ar->hw_params.decap_align_bytes;
1262 
1263 	/* Delivered decapped frame:
1264 	 * [nwifi 802.11 header] <-- replaced with 802.11 hdr
1265 	 * [rfc1042/llc]
1266 	 *
1267 	 * Note: The nwifi header doesn't have QoS Control and is
1268 	 * (always?) a 3addr frame.
1269 	 *
1270 	 * Note2: There's no A-MSDU subframe header. Even if it's part
1271 	 * of an A-MSDU.
1272 	 */
1273 
1274 	/* pull decapped header and copy SA & DA */
1275 	rxd = (void *)msdu->data - sizeof(*rxd);
1276 
1277 	l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd);
1278 	skb_put(msdu, l3_pad_bytes);
1279 
1280 	hdr = (struct ieee80211_hdr *)(msdu->data + l3_pad_bytes);
1281 
1282 	hdr_len = ath10k_htt_rx_nwifi_hdrlen(ar, hdr);
1283 	ether_addr_copy(da, ieee80211_get_DA(hdr));
1284 	ether_addr_copy(sa, ieee80211_get_SA(hdr));
1285 	skb_pull(msdu, hdr_len);
1286 
1287 	/* push original 802.11 header */
1288 	hdr = (struct ieee80211_hdr *)first_hdr;
1289 	hdr_len = ieee80211_hdrlen(hdr->frame_control);
1290 
1291 	if (!(status->flag & RX_FLAG_IV_STRIPPED)) {
1292 		memcpy(skb_push(msdu,
1293 				ath10k_htt_rx_crypto_param_len(ar, enctype)),
1294 		       (void *)hdr + round_up(hdr_len, bytes_aligned),
1295 			ath10k_htt_rx_crypto_param_len(ar, enctype));
1296 	}
1297 
1298 	memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1299 
1300 	/* original 802.11 header has a different DA and in
1301 	 * case of 4addr it may also have different SA
1302 	 */
1303 	hdr = (struct ieee80211_hdr *)msdu->data;
1304 	ether_addr_copy(ieee80211_get_DA(hdr), da);
1305 	ether_addr_copy(ieee80211_get_SA(hdr), sa);
1306 }
1307 
1308 static void *ath10k_htt_rx_h_find_rfc1042(struct ath10k *ar,
1309 					  struct sk_buff *msdu,
1310 					  enum htt_rx_mpdu_encrypt_type enctype)
1311 {
1312 	struct ieee80211_hdr *hdr;
1313 	struct htt_rx_desc *rxd;
1314 	size_t hdr_len, crypto_len;
1315 	void *rfc1042;
1316 	bool is_first, is_last, is_amsdu;
1317 	int bytes_aligned = ar->hw_params.decap_align_bytes;
1318 
1319 	rxd = (void *)msdu->data - sizeof(*rxd);
1320 	hdr = (void *)rxd->rx_hdr_status;
1321 
1322 	is_first = !!(rxd->msdu_end.common.info0 &
1323 		      __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU));
1324 	is_last = !!(rxd->msdu_end.common.info0 &
1325 		     __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU));
1326 	is_amsdu = !(is_first && is_last);
1327 
1328 	rfc1042 = hdr;
1329 
1330 	if (is_first) {
1331 		hdr_len = ieee80211_hdrlen(hdr->frame_control);
1332 		crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype);
1333 
1334 		rfc1042 += round_up(hdr_len, bytes_aligned) +
1335 			   round_up(crypto_len, bytes_aligned);
1336 	}
1337 
1338 	if (is_amsdu)
1339 		rfc1042 += sizeof(struct amsdu_subframe_hdr);
1340 
1341 	return rfc1042;
1342 }
1343 
1344 static void ath10k_htt_rx_h_undecap_eth(struct ath10k *ar,
1345 					struct sk_buff *msdu,
1346 					struct ieee80211_rx_status *status,
1347 					const u8 first_hdr[64],
1348 					enum htt_rx_mpdu_encrypt_type enctype)
1349 {
1350 	struct ieee80211_hdr *hdr;
1351 	struct ethhdr *eth;
1352 	size_t hdr_len;
1353 	void *rfc1042;
1354 	u8 da[ETH_ALEN];
1355 	u8 sa[ETH_ALEN];
1356 	int l3_pad_bytes;
1357 	struct htt_rx_desc *rxd;
1358 	int bytes_aligned = ar->hw_params.decap_align_bytes;
1359 
1360 	/* Delivered decapped frame:
1361 	 * [eth header] <-- replaced with 802.11 hdr & rfc1042/llc
1362 	 * [payload]
1363 	 */
1364 
1365 	rfc1042 = ath10k_htt_rx_h_find_rfc1042(ar, msdu, enctype);
1366 	if (WARN_ON_ONCE(!rfc1042))
1367 		return;
1368 
1369 	rxd = (void *)msdu->data - sizeof(*rxd);
1370 	l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd);
1371 	skb_put(msdu, l3_pad_bytes);
1372 	skb_pull(msdu, l3_pad_bytes);
1373 
1374 	/* pull decapped header and copy SA & DA */
1375 	eth = (struct ethhdr *)msdu->data;
1376 	ether_addr_copy(da, eth->h_dest);
1377 	ether_addr_copy(sa, eth->h_source);
1378 	skb_pull(msdu, sizeof(struct ethhdr));
1379 
1380 	/* push rfc1042/llc/snap */
1381 	memcpy(skb_push(msdu, sizeof(struct rfc1042_hdr)), rfc1042,
1382 	       sizeof(struct rfc1042_hdr));
1383 
1384 	/* push original 802.11 header */
1385 	hdr = (struct ieee80211_hdr *)first_hdr;
1386 	hdr_len = ieee80211_hdrlen(hdr->frame_control);
1387 
1388 	if (!(status->flag & RX_FLAG_IV_STRIPPED)) {
1389 		memcpy(skb_push(msdu,
1390 				ath10k_htt_rx_crypto_param_len(ar, enctype)),
1391 		       (void *)hdr + round_up(hdr_len, bytes_aligned),
1392 			ath10k_htt_rx_crypto_param_len(ar, enctype));
1393 	}
1394 
1395 	memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1396 
1397 	/* original 802.11 header has a different DA and in
1398 	 * case of 4addr it may also have different SA
1399 	 */
1400 	hdr = (struct ieee80211_hdr *)msdu->data;
1401 	ether_addr_copy(ieee80211_get_DA(hdr), da);
1402 	ether_addr_copy(ieee80211_get_SA(hdr), sa);
1403 }
1404 
1405 static void ath10k_htt_rx_h_undecap_snap(struct ath10k *ar,
1406 					 struct sk_buff *msdu,
1407 					 struct ieee80211_rx_status *status,
1408 					 const u8 first_hdr[64],
1409 					 enum htt_rx_mpdu_encrypt_type enctype)
1410 {
1411 	struct ieee80211_hdr *hdr;
1412 	size_t hdr_len;
1413 	int l3_pad_bytes;
1414 	struct htt_rx_desc *rxd;
1415 	int bytes_aligned = ar->hw_params.decap_align_bytes;
1416 
1417 	/* Delivered decapped frame:
1418 	 * [amsdu header] <-- replaced with 802.11 hdr
1419 	 * [rfc1042/llc]
1420 	 * [payload]
1421 	 */
1422 
1423 	rxd = (void *)msdu->data - sizeof(*rxd);
1424 	l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd);
1425 
1426 	skb_put(msdu, l3_pad_bytes);
1427 	skb_pull(msdu, sizeof(struct amsdu_subframe_hdr) + l3_pad_bytes);
1428 
1429 	hdr = (struct ieee80211_hdr *)first_hdr;
1430 	hdr_len = ieee80211_hdrlen(hdr->frame_control);
1431 
1432 	if (!(status->flag & RX_FLAG_IV_STRIPPED)) {
1433 		memcpy(skb_push(msdu,
1434 				ath10k_htt_rx_crypto_param_len(ar, enctype)),
1435 		       (void *)hdr + round_up(hdr_len, bytes_aligned),
1436 			ath10k_htt_rx_crypto_param_len(ar, enctype));
1437 	}
1438 
1439 	memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1440 }
1441 
1442 static void ath10k_htt_rx_h_undecap(struct ath10k *ar,
1443 				    struct sk_buff *msdu,
1444 				    struct ieee80211_rx_status *status,
1445 				    u8 first_hdr[64],
1446 				    enum htt_rx_mpdu_encrypt_type enctype,
1447 				    bool is_decrypted)
1448 {
1449 	struct htt_rx_desc *rxd;
1450 	enum rx_msdu_decap_format decap;
1451 
1452 	/* First msdu's decapped header:
1453 	 * [802.11 header] <-- padded to 4 bytes long
1454 	 * [crypto param] <-- padded to 4 bytes long
1455 	 * [amsdu header] <-- only if A-MSDU
1456 	 * [rfc1042/llc]
1457 	 *
1458 	 * Other (2nd, 3rd, ..) msdu's decapped header:
1459 	 * [amsdu header] <-- only if A-MSDU
1460 	 * [rfc1042/llc]
1461 	 */
1462 
1463 	rxd = (void *)msdu->data - sizeof(*rxd);
1464 	decap = MS(__le32_to_cpu(rxd->msdu_start.common.info1),
1465 		   RX_MSDU_START_INFO1_DECAP_FORMAT);
1466 
1467 	switch (decap) {
1468 	case RX_MSDU_DECAP_RAW:
1469 		ath10k_htt_rx_h_undecap_raw(ar, msdu, status, enctype,
1470 					    is_decrypted);
1471 		break;
1472 	case RX_MSDU_DECAP_NATIVE_WIFI:
1473 		ath10k_htt_rx_h_undecap_nwifi(ar, msdu, status, first_hdr,
1474 					      enctype);
1475 		break;
1476 	case RX_MSDU_DECAP_ETHERNET2_DIX:
1477 		ath10k_htt_rx_h_undecap_eth(ar, msdu, status, first_hdr, enctype);
1478 		break;
1479 	case RX_MSDU_DECAP_8023_SNAP_LLC:
1480 		ath10k_htt_rx_h_undecap_snap(ar, msdu, status, first_hdr,
1481 					     enctype);
1482 		break;
1483 	}
1484 }
1485 
1486 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb)
1487 {
1488 	struct htt_rx_desc *rxd;
1489 	u32 flags, info;
1490 	bool is_ip4, is_ip6;
1491 	bool is_tcp, is_udp;
1492 	bool ip_csum_ok, tcpudp_csum_ok;
1493 
1494 	rxd = (void *)skb->data - sizeof(*rxd);
1495 	flags = __le32_to_cpu(rxd->attention.flags);
1496 	info = __le32_to_cpu(rxd->msdu_start.common.info1);
1497 
1498 	is_ip4 = !!(info & RX_MSDU_START_INFO1_IPV4_PROTO);
1499 	is_ip6 = !!(info & RX_MSDU_START_INFO1_IPV6_PROTO);
1500 	is_tcp = !!(info & RX_MSDU_START_INFO1_TCP_PROTO);
1501 	is_udp = !!(info & RX_MSDU_START_INFO1_UDP_PROTO);
1502 	ip_csum_ok = !(flags & RX_ATTENTION_FLAGS_IP_CHKSUM_FAIL);
1503 	tcpudp_csum_ok = !(flags & RX_ATTENTION_FLAGS_TCP_UDP_CHKSUM_FAIL);
1504 
1505 	if (!is_ip4 && !is_ip6)
1506 		return CHECKSUM_NONE;
1507 	if (!is_tcp && !is_udp)
1508 		return CHECKSUM_NONE;
1509 	if (!ip_csum_ok)
1510 		return CHECKSUM_NONE;
1511 	if (!tcpudp_csum_ok)
1512 		return CHECKSUM_NONE;
1513 
1514 	return CHECKSUM_UNNECESSARY;
1515 }
1516 
1517 static void ath10k_htt_rx_h_csum_offload(struct sk_buff *msdu)
1518 {
1519 	msdu->ip_summed = ath10k_htt_rx_get_csum_state(msdu);
1520 }
1521 
1522 static void ath10k_htt_rx_h_mpdu(struct ath10k *ar,
1523 				 struct sk_buff_head *amsdu,
1524 				 struct ieee80211_rx_status *status,
1525 				 bool fill_crypt_header,
1526 				 u8 *rx_hdr,
1527 				 enum ath10k_pkt_rx_err *err)
1528 {
1529 	struct sk_buff *first;
1530 	struct sk_buff *last;
1531 	struct sk_buff *msdu;
1532 	struct htt_rx_desc *rxd;
1533 	struct ieee80211_hdr *hdr;
1534 	enum htt_rx_mpdu_encrypt_type enctype;
1535 	u8 first_hdr[64];
1536 	u8 *qos;
1537 	bool has_fcs_err;
1538 	bool has_crypto_err;
1539 	bool has_tkip_err;
1540 	bool has_peer_idx_invalid;
1541 	bool is_decrypted;
1542 	bool is_mgmt;
1543 	u32 attention;
1544 
1545 	if (skb_queue_empty(amsdu))
1546 		return;
1547 
1548 	first = skb_peek(amsdu);
1549 	rxd = (void *)first->data - sizeof(*rxd);
1550 
1551 	is_mgmt = !!(rxd->attention.flags &
1552 		     __cpu_to_le32(RX_ATTENTION_FLAGS_MGMT_TYPE));
1553 
1554 	enctype = MS(__le32_to_cpu(rxd->mpdu_start.info0),
1555 		     RX_MPDU_START_INFO0_ENCRYPT_TYPE);
1556 
1557 	/* First MSDU's Rx descriptor in an A-MSDU contains full 802.11
1558 	 * decapped header. It'll be used for undecapping of each MSDU.
1559 	 */
1560 	hdr = (void *)rxd->rx_hdr_status;
1561 	memcpy(first_hdr, hdr, RX_HTT_HDR_STATUS_LEN);
1562 
1563 	if (rx_hdr)
1564 		memcpy(rx_hdr, hdr, RX_HTT_HDR_STATUS_LEN);
1565 
1566 	/* Each A-MSDU subframe will use the original header as the base and be
1567 	 * reported as a separate MSDU so strip the A-MSDU bit from QoS Ctl.
1568 	 */
1569 	hdr = (void *)first_hdr;
1570 
1571 	if (ieee80211_is_data_qos(hdr->frame_control)) {
1572 		qos = ieee80211_get_qos_ctl(hdr);
1573 		qos[0] &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
1574 	}
1575 
1576 	/* Some attention flags are valid only in the last MSDU. */
1577 	last = skb_peek_tail(amsdu);
1578 	rxd = (void *)last->data - sizeof(*rxd);
1579 	attention = __le32_to_cpu(rxd->attention.flags);
1580 
1581 	has_fcs_err = !!(attention & RX_ATTENTION_FLAGS_FCS_ERR);
1582 	has_crypto_err = !!(attention & RX_ATTENTION_FLAGS_DECRYPT_ERR);
1583 	has_tkip_err = !!(attention & RX_ATTENTION_FLAGS_TKIP_MIC_ERR);
1584 	has_peer_idx_invalid = !!(attention & RX_ATTENTION_FLAGS_PEER_IDX_INVALID);
1585 
1586 	/* Note: If hardware captures an encrypted frame that it can't decrypt,
1587 	 * e.g. due to fcs error, missing peer or invalid key data it will
1588 	 * report the frame as raw.
1589 	 */
1590 	is_decrypted = (enctype != HTT_RX_MPDU_ENCRYPT_NONE &&
1591 			!has_fcs_err &&
1592 			!has_crypto_err &&
1593 			!has_peer_idx_invalid);
1594 
1595 	/* Clear per-MPDU flags while leaving per-PPDU flags intact. */
1596 	status->flag &= ~(RX_FLAG_FAILED_FCS_CRC |
1597 			  RX_FLAG_MMIC_ERROR |
1598 			  RX_FLAG_DECRYPTED |
1599 			  RX_FLAG_IV_STRIPPED |
1600 			  RX_FLAG_ONLY_MONITOR |
1601 			  RX_FLAG_MMIC_STRIPPED);
1602 
1603 	if (has_fcs_err)
1604 		status->flag |= RX_FLAG_FAILED_FCS_CRC;
1605 
1606 	if (has_tkip_err)
1607 		status->flag |= RX_FLAG_MMIC_ERROR;
1608 
1609 	if (err) {
1610 		if (has_fcs_err)
1611 			*err = ATH10K_PKT_RX_ERR_FCS;
1612 		else if (has_tkip_err)
1613 			*err = ATH10K_PKT_RX_ERR_TKIP;
1614 		else if (has_crypto_err)
1615 			*err = ATH10K_PKT_RX_ERR_CRYPT;
1616 		else if (has_peer_idx_invalid)
1617 			*err = ATH10K_PKT_RX_ERR_PEER_IDX_INVAL;
1618 	}
1619 
1620 	/* Firmware reports all necessary management frames via WMI already.
1621 	 * They are not reported to monitor interfaces at all so pass the ones
1622 	 * coming via HTT to monitor interfaces instead. This simplifies
1623 	 * matters a lot.
1624 	 */
1625 	if (is_mgmt)
1626 		status->flag |= RX_FLAG_ONLY_MONITOR;
1627 
1628 	if (is_decrypted) {
1629 		status->flag |= RX_FLAG_DECRYPTED;
1630 
1631 		if (likely(!is_mgmt))
1632 			status->flag |= RX_FLAG_MMIC_STRIPPED;
1633 
1634 		if (fill_crypt_header)
1635 			status->flag |= RX_FLAG_MIC_STRIPPED |
1636 					RX_FLAG_ICV_STRIPPED;
1637 		else
1638 			status->flag |= RX_FLAG_IV_STRIPPED;
1639 	}
1640 
1641 	skb_queue_walk(amsdu, msdu) {
1642 		ath10k_htt_rx_h_csum_offload(msdu);
1643 		ath10k_htt_rx_h_undecap(ar, msdu, status, first_hdr, enctype,
1644 					is_decrypted);
1645 
1646 		/* Undecapping involves copying the original 802.11 header back
1647 		 * to sk_buff. If frame is protected and hardware has decrypted
1648 		 * it then remove the protected bit.
1649 		 */
1650 		if (!is_decrypted)
1651 			continue;
1652 		if (is_mgmt)
1653 			continue;
1654 
1655 		if (fill_crypt_header)
1656 			continue;
1657 
1658 		hdr = (void *)msdu->data;
1659 		hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED);
1660 	}
1661 }
1662 
1663 static void ath10k_htt_rx_h_enqueue(struct ath10k *ar,
1664 				    struct sk_buff_head *amsdu,
1665 				    struct ieee80211_rx_status *status)
1666 {
1667 	struct sk_buff *msdu;
1668 	struct sk_buff *first_subframe;
1669 
1670 	first_subframe = skb_peek(amsdu);
1671 
1672 	while ((msdu = __skb_dequeue(amsdu))) {
1673 		/* Setup per-MSDU flags */
1674 		if (skb_queue_empty(amsdu))
1675 			status->flag &= ~RX_FLAG_AMSDU_MORE;
1676 		else
1677 			status->flag |= RX_FLAG_AMSDU_MORE;
1678 
1679 		if (msdu == first_subframe) {
1680 			first_subframe = NULL;
1681 			status->flag &= ~RX_FLAG_ALLOW_SAME_PN;
1682 		} else {
1683 			status->flag |= RX_FLAG_ALLOW_SAME_PN;
1684 		}
1685 
1686 		ath10k_htt_rx_h_queue_msdu(ar, status, msdu);
1687 	}
1688 }
1689 
1690 static int ath10k_unchain_msdu(struct sk_buff_head *amsdu,
1691 			       unsigned long int *unchain_cnt)
1692 {
1693 	struct sk_buff *skb, *first;
1694 	int space;
1695 	int total_len = 0;
1696 	int amsdu_len = skb_queue_len(amsdu);
1697 
1698 	/* TODO:  Might could optimize this by using
1699 	 * skb_try_coalesce or similar method to
1700 	 * decrease copying, or maybe get mac80211 to
1701 	 * provide a way to just receive a list of
1702 	 * skb?
1703 	 */
1704 
1705 	first = __skb_dequeue(amsdu);
1706 
1707 	/* Allocate total length all at once. */
1708 	skb_queue_walk(amsdu, skb)
1709 		total_len += skb->len;
1710 
1711 	space = total_len - skb_tailroom(first);
1712 	if ((space > 0) &&
1713 	    (pskb_expand_head(first, 0, space, GFP_ATOMIC) < 0)) {
1714 		/* TODO:  bump some rx-oom error stat */
1715 		/* put it back together so we can free the
1716 		 * whole list at once.
1717 		 */
1718 		__skb_queue_head(amsdu, first);
1719 		return -1;
1720 	}
1721 
1722 	/* Walk list again, copying contents into
1723 	 * msdu_head
1724 	 */
1725 	while ((skb = __skb_dequeue(amsdu))) {
1726 		skb_copy_from_linear_data(skb, skb_put(first, skb->len),
1727 					  skb->len);
1728 		dev_kfree_skb_any(skb);
1729 	}
1730 
1731 	__skb_queue_head(amsdu, first);
1732 
1733 	*unchain_cnt += amsdu_len - 1;
1734 
1735 	return 0;
1736 }
1737 
1738 static void ath10k_htt_rx_h_unchain(struct ath10k *ar,
1739 				    struct sk_buff_head *amsdu,
1740 				    unsigned long int *drop_cnt,
1741 				    unsigned long int *unchain_cnt)
1742 {
1743 	struct sk_buff *first;
1744 	struct htt_rx_desc *rxd;
1745 	enum rx_msdu_decap_format decap;
1746 
1747 	first = skb_peek(amsdu);
1748 	rxd = (void *)first->data - sizeof(*rxd);
1749 	decap = MS(__le32_to_cpu(rxd->msdu_start.common.info1),
1750 		   RX_MSDU_START_INFO1_DECAP_FORMAT);
1751 
1752 	/* FIXME: Current unchaining logic can only handle simple case of raw
1753 	 * msdu chaining. If decapping is other than raw the chaining may be
1754 	 * more complex and this isn't handled by the current code. Don't even
1755 	 * try re-constructing such frames - it'll be pretty much garbage.
1756 	 */
1757 	if (decap != RX_MSDU_DECAP_RAW ||
1758 	    skb_queue_len(amsdu) != 1 + rxd->frag_info.ring2_more_count) {
1759 		*drop_cnt += skb_queue_len(amsdu);
1760 		__skb_queue_purge(amsdu);
1761 		return;
1762 	}
1763 
1764 	ath10k_unchain_msdu(amsdu, unchain_cnt);
1765 }
1766 
1767 static bool ath10k_htt_rx_amsdu_allowed(struct ath10k *ar,
1768 					struct sk_buff_head *amsdu,
1769 					struct ieee80211_rx_status *rx_status)
1770 {
1771 	/* FIXME: It might be a good idea to do some fuzzy-testing to drop
1772 	 * invalid/dangerous frames.
1773 	 */
1774 
1775 	if (!rx_status->freq) {
1776 		ath10k_dbg(ar, ATH10K_DBG_HTT, "no channel configured; ignoring frame(s)!\n");
1777 		return false;
1778 	}
1779 
1780 	if (test_bit(ATH10K_CAC_RUNNING, &ar->dev_flags)) {
1781 		ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx cac running\n");
1782 		return false;
1783 	}
1784 
1785 	return true;
1786 }
1787 
1788 static void ath10k_htt_rx_h_filter(struct ath10k *ar,
1789 				   struct sk_buff_head *amsdu,
1790 				   struct ieee80211_rx_status *rx_status,
1791 				   unsigned long int *drop_cnt)
1792 {
1793 	if (skb_queue_empty(amsdu))
1794 		return;
1795 
1796 	if (ath10k_htt_rx_amsdu_allowed(ar, amsdu, rx_status))
1797 		return;
1798 
1799 	if (drop_cnt)
1800 		*drop_cnt += skb_queue_len(amsdu);
1801 
1802 	__skb_queue_purge(amsdu);
1803 }
1804 
1805 static int ath10k_htt_rx_handle_amsdu(struct ath10k_htt *htt)
1806 {
1807 	struct ath10k *ar = htt->ar;
1808 	struct ieee80211_rx_status *rx_status = &htt->rx_status;
1809 	struct sk_buff_head amsdu;
1810 	int ret;
1811 	unsigned long int drop_cnt = 0;
1812 	unsigned long int unchain_cnt = 0;
1813 	unsigned long int drop_cnt_filter = 0;
1814 	unsigned long int msdus_to_queue, num_msdus;
1815 	enum ath10k_pkt_rx_err err = ATH10K_PKT_RX_ERR_MAX;
1816 	u8 first_hdr[RX_HTT_HDR_STATUS_LEN];
1817 
1818 	__skb_queue_head_init(&amsdu);
1819 
1820 	spin_lock_bh(&htt->rx_ring.lock);
1821 	if (htt->rx_confused) {
1822 		spin_unlock_bh(&htt->rx_ring.lock);
1823 		return -EIO;
1824 	}
1825 	ret = ath10k_htt_rx_amsdu_pop(htt, &amsdu);
1826 	spin_unlock_bh(&htt->rx_ring.lock);
1827 
1828 	if (ret < 0) {
1829 		ath10k_warn(ar, "rx ring became corrupted: %d\n", ret);
1830 		__skb_queue_purge(&amsdu);
1831 		/* FIXME: It's probably a good idea to reboot the
1832 		 * device instead of leaving it inoperable.
1833 		 */
1834 		htt->rx_confused = true;
1835 		return ret;
1836 	}
1837 
1838 	num_msdus = skb_queue_len(&amsdu);
1839 
1840 	ath10k_htt_rx_h_ppdu(ar, &amsdu, rx_status, 0xffff);
1841 
1842 	/* only for ret = 1 indicates chained msdus */
1843 	if (ret > 0)
1844 		ath10k_htt_rx_h_unchain(ar, &amsdu, &drop_cnt, &unchain_cnt);
1845 
1846 	ath10k_htt_rx_h_filter(ar, &amsdu, rx_status, &drop_cnt_filter);
1847 	ath10k_htt_rx_h_mpdu(ar, &amsdu, rx_status, true, first_hdr, &err);
1848 	msdus_to_queue = skb_queue_len(&amsdu);
1849 	ath10k_htt_rx_h_enqueue(ar, &amsdu, rx_status);
1850 
1851 	ath10k_sta_update_rx_tid_stats(ar, first_hdr, num_msdus, err,
1852 				       unchain_cnt, drop_cnt, drop_cnt_filter,
1853 				       msdus_to_queue);
1854 
1855 	return 0;
1856 }
1857 
1858 static bool ath10k_htt_rx_proc_rx_ind_hl(struct ath10k_htt *htt,
1859 					 struct htt_rx_indication_hl *rx,
1860 					 struct sk_buff *skb)
1861 {
1862 	struct ath10k *ar = htt->ar;
1863 	struct ath10k_peer *peer;
1864 	struct htt_rx_indication_mpdu_range *mpdu_ranges;
1865 	struct fw_rx_desc_hl *fw_desc;
1866 	struct ieee80211_hdr *hdr;
1867 	struct ieee80211_rx_status *rx_status;
1868 	u16 peer_id;
1869 	u8 rx_desc_len;
1870 	int num_mpdu_ranges;
1871 	size_t tot_hdr_len;
1872 	struct ieee80211_channel *ch;
1873 
1874 	peer_id = __le16_to_cpu(rx->hdr.peer_id);
1875 
1876 	spin_lock_bh(&ar->data_lock);
1877 	peer = ath10k_peer_find_by_id(ar, peer_id);
1878 	spin_unlock_bh(&ar->data_lock);
1879 	if (!peer)
1880 		ath10k_warn(ar, "Got RX ind from invalid peer: %u\n", peer_id);
1881 
1882 	num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1),
1883 			     HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES);
1884 	mpdu_ranges = htt_rx_ind_get_mpdu_ranges_hl(rx);
1885 	fw_desc = &rx->fw_desc;
1886 	rx_desc_len = fw_desc->len;
1887 
1888 	/* I have not yet seen any case where num_mpdu_ranges > 1.
1889 	 * qcacld does not seem handle that case either, so we introduce the
1890 	 * same limitiation here as well.
1891 	 */
1892 	if (num_mpdu_ranges > 1)
1893 		ath10k_warn(ar,
1894 			    "Unsupported number of MPDU ranges: %d, ignoring all but the first\n",
1895 			    num_mpdu_ranges);
1896 
1897 	if (mpdu_ranges->mpdu_range_status !=
1898 	    HTT_RX_IND_MPDU_STATUS_OK) {
1899 		ath10k_warn(ar, "MPDU range status: %d\n",
1900 			    mpdu_ranges->mpdu_range_status);
1901 		goto err;
1902 	}
1903 
1904 	/* Strip off all headers before the MAC header before delivery to
1905 	 * mac80211
1906 	 */
1907 	tot_hdr_len = sizeof(struct htt_resp_hdr) + sizeof(rx->hdr) +
1908 		      sizeof(rx->ppdu) + sizeof(rx->prefix) +
1909 		      sizeof(rx->fw_desc) +
1910 		      sizeof(*mpdu_ranges) * num_mpdu_ranges + rx_desc_len;
1911 	skb_pull(skb, tot_hdr_len);
1912 
1913 	hdr = (struct ieee80211_hdr *)skb->data;
1914 	rx_status = IEEE80211_SKB_RXCB(skb);
1915 	rx_status->chains |= BIT(0);
1916 	rx_status->signal = ATH10K_DEFAULT_NOISE_FLOOR +
1917 			    rx->ppdu.combined_rssi;
1918 	rx_status->flag &= ~RX_FLAG_NO_SIGNAL_VAL;
1919 
1920 	spin_lock_bh(&ar->data_lock);
1921 	ch = ar->scan_channel;
1922 	if (!ch)
1923 		ch = ar->rx_channel;
1924 	if (!ch)
1925 		ch = ath10k_htt_rx_h_any_channel(ar);
1926 	if (!ch)
1927 		ch = ar->tgt_oper_chan;
1928 	spin_unlock_bh(&ar->data_lock);
1929 
1930 	if (ch) {
1931 		rx_status->band = ch->band;
1932 		rx_status->freq = ch->center_freq;
1933 	}
1934 	if (rx->fw_desc.flags & FW_RX_DESC_FLAGS_LAST_MSDU)
1935 		rx_status->flag &= ~RX_FLAG_AMSDU_MORE;
1936 	else
1937 		rx_status->flag |= RX_FLAG_AMSDU_MORE;
1938 
1939 	/* Not entirely sure about this, but all frames from the chipset has
1940 	 * the protected flag set even though they have already been decrypted.
1941 	 * Unmasking this flag is necessary in order for mac80211 not to drop
1942 	 * the frame.
1943 	 * TODO: Verify this is always the case or find out a way to check
1944 	 * if there has been hw decryption.
1945 	 */
1946 	if (ieee80211_has_protected(hdr->frame_control)) {
1947 		hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED);
1948 		rx_status->flag |= RX_FLAG_DECRYPTED |
1949 				   RX_FLAG_IV_STRIPPED |
1950 				   RX_FLAG_MMIC_STRIPPED;
1951 	}
1952 
1953 	ieee80211_rx_ni(ar->hw, skb);
1954 
1955 	/* We have delivered the skb to the upper layers (mac80211) so we
1956 	 * must not free it.
1957 	 */
1958 	return false;
1959 err:
1960 	/* Tell the caller that it must free the skb since we have not
1961 	 * consumed it
1962 	 */
1963 	return true;
1964 }
1965 
1966 static void ath10k_htt_rx_proc_rx_ind_ll(struct ath10k_htt *htt,
1967 					 struct htt_rx_indication *rx)
1968 {
1969 	struct ath10k *ar = htt->ar;
1970 	struct htt_rx_indication_mpdu_range *mpdu_ranges;
1971 	int num_mpdu_ranges;
1972 	int i, mpdu_count = 0;
1973 	u16 peer_id;
1974 	u8 tid;
1975 
1976 	num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1),
1977 			     HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES);
1978 	peer_id = __le16_to_cpu(rx->hdr.peer_id);
1979 	tid =  MS(rx->hdr.info0, HTT_RX_INDICATION_INFO0_EXT_TID);
1980 
1981 	mpdu_ranges = htt_rx_ind_get_mpdu_ranges(rx);
1982 
1983 	ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx ind: ",
1984 			rx, sizeof(*rx) +
1985 			(sizeof(struct htt_rx_indication_mpdu_range) *
1986 				num_mpdu_ranges));
1987 
1988 	for (i = 0; i < num_mpdu_ranges; i++)
1989 		mpdu_count += mpdu_ranges[i].mpdu_count;
1990 
1991 	atomic_add(mpdu_count, &htt->num_mpdus_ready);
1992 
1993 	ath10k_sta_update_rx_tid_stats_ampdu(ar, peer_id, tid, mpdu_ranges,
1994 					     num_mpdu_ranges);
1995 }
1996 
1997 static void ath10k_htt_rx_tx_compl_ind(struct ath10k *ar,
1998 				       struct sk_buff *skb)
1999 {
2000 	struct ath10k_htt *htt = &ar->htt;
2001 	struct htt_resp *resp = (struct htt_resp *)skb->data;
2002 	struct htt_tx_done tx_done = {};
2003 	int status = MS(resp->data_tx_completion.flags, HTT_DATA_TX_STATUS);
2004 	__le16 msdu_id, *msdus;
2005 	bool rssi_enabled = false;
2006 	u8 msdu_count = 0;
2007 	int i;
2008 
2009 	switch (status) {
2010 	case HTT_DATA_TX_STATUS_NO_ACK:
2011 		tx_done.status = HTT_TX_COMPL_STATE_NOACK;
2012 		break;
2013 	case HTT_DATA_TX_STATUS_OK:
2014 		tx_done.status = HTT_TX_COMPL_STATE_ACK;
2015 		break;
2016 	case HTT_DATA_TX_STATUS_DISCARD:
2017 	case HTT_DATA_TX_STATUS_POSTPONE:
2018 	case HTT_DATA_TX_STATUS_DOWNLOAD_FAIL:
2019 		tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
2020 		break;
2021 	default:
2022 		ath10k_warn(ar, "unhandled tx completion status %d\n", status);
2023 		tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
2024 		break;
2025 	}
2026 
2027 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx completion num_msdus %d\n",
2028 		   resp->data_tx_completion.num_msdus);
2029 
2030 	msdu_count = resp->data_tx_completion.num_msdus;
2031 
2032 	if (resp->data_tx_completion.flags2 & HTT_TX_CMPL_FLAG_DATA_RSSI)
2033 		rssi_enabled = true;
2034 
2035 	for (i = 0; i < msdu_count; i++) {
2036 		msdus = resp->data_tx_completion.msdus;
2037 		msdu_id = msdus[i];
2038 		tx_done.msdu_id = __le16_to_cpu(msdu_id);
2039 
2040 		if (rssi_enabled) {
2041 			/* Total no of MSDUs should be even,
2042 			 * if odd MSDUs are sent firmware fills
2043 			 * last msdu id with 0xffff
2044 			 */
2045 			if (msdu_count & 0x01) {
2046 				msdu_id = msdus[msdu_count +  i + 1];
2047 				tx_done.ack_rssi = __le16_to_cpu(msdu_id);
2048 			} else {
2049 				msdu_id = msdus[msdu_count +  i];
2050 				tx_done.ack_rssi = __le16_to_cpu(msdu_id);
2051 			}
2052 		}
2053 
2054 		/* kfifo_put: In practice firmware shouldn't fire off per-CE
2055 		 * interrupt and main interrupt (MSI/-X range case) for the same
2056 		 * HTC service so it should be safe to use kfifo_put w/o lock.
2057 		 *
2058 		 * From kfifo_put() documentation:
2059 		 *  Note that with only one concurrent reader and one concurrent
2060 		 *  writer, you don't need extra locking to use these macro.
2061 		 */
2062 		if (!kfifo_put(&htt->txdone_fifo, tx_done)) {
2063 			ath10k_warn(ar, "txdone fifo overrun, msdu_id %d status %d\n",
2064 				    tx_done.msdu_id, tx_done.status);
2065 			ath10k_txrx_tx_unref(htt, &tx_done);
2066 		}
2067 	}
2068 }
2069 
2070 static void ath10k_htt_rx_addba(struct ath10k *ar, struct htt_resp *resp)
2071 {
2072 	struct htt_rx_addba *ev = &resp->rx_addba;
2073 	struct ath10k_peer *peer;
2074 	struct ath10k_vif *arvif;
2075 	u16 info0, tid, peer_id;
2076 
2077 	info0 = __le16_to_cpu(ev->info0);
2078 	tid = MS(info0, HTT_RX_BA_INFO0_TID);
2079 	peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID);
2080 
2081 	ath10k_dbg(ar, ATH10K_DBG_HTT,
2082 		   "htt rx addba tid %hu peer_id %hu size %hhu\n",
2083 		   tid, peer_id, ev->window_size);
2084 
2085 	spin_lock_bh(&ar->data_lock);
2086 	peer = ath10k_peer_find_by_id(ar, peer_id);
2087 	if (!peer) {
2088 		ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n",
2089 			    peer_id);
2090 		spin_unlock_bh(&ar->data_lock);
2091 		return;
2092 	}
2093 
2094 	arvif = ath10k_get_arvif(ar, peer->vdev_id);
2095 	if (!arvif) {
2096 		ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n",
2097 			    peer->vdev_id);
2098 		spin_unlock_bh(&ar->data_lock);
2099 		return;
2100 	}
2101 
2102 	ath10k_dbg(ar, ATH10K_DBG_HTT,
2103 		   "htt rx start rx ba session sta %pM tid %hu size %hhu\n",
2104 		   peer->addr, tid, ev->window_size);
2105 
2106 	ieee80211_start_rx_ba_session_offl(arvif->vif, peer->addr, tid);
2107 	spin_unlock_bh(&ar->data_lock);
2108 }
2109 
2110 static void ath10k_htt_rx_delba(struct ath10k *ar, struct htt_resp *resp)
2111 {
2112 	struct htt_rx_delba *ev = &resp->rx_delba;
2113 	struct ath10k_peer *peer;
2114 	struct ath10k_vif *arvif;
2115 	u16 info0, tid, peer_id;
2116 
2117 	info0 = __le16_to_cpu(ev->info0);
2118 	tid = MS(info0, HTT_RX_BA_INFO0_TID);
2119 	peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID);
2120 
2121 	ath10k_dbg(ar, ATH10K_DBG_HTT,
2122 		   "htt rx delba tid %hu peer_id %hu\n",
2123 		   tid, peer_id);
2124 
2125 	spin_lock_bh(&ar->data_lock);
2126 	peer = ath10k_peer_find_by_id(ar, peer_id);
2127 	if (!peer) {
2128 		ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n",
2129 			    peer_id);
2130 		spin_unlock_bh(&ar->data_lock);
2131 		return;
2132 	}
2133 
2134 	arvif = ath10k_get_arvif(ar, peer->vdev_id);
2135 	if (!arvif) {
2136 		ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n",
2137 			    peer->vdev_id);
2138 		spin_unlock_bh(&ar->data_lock);
2139 		return;
2140 	}
2141 
2142 	ath10k_dbg(ar, ATH10K_DBG_HTT,
2143 		   "htt rx stop rx ba session sta %pM tid %hu\n",
2144 		   peer->addr, tid);
2145 
2146 	ieee80211_stop_rx_ba_session_offl(arvif->vif, peer->addr, tid);
2147 	spin_unlock_bh(&ar->data_lock);
2148 }
2149 
2150 static int ath10k_htt_rx_extract_amsdu(struct sk_buff_head *list,
2151 				       struct sk_buff_head *amsdu)
2152 {
2153 	struct sk_buff *msdu;
2154 	struct htt_rx_desc *rxd;
2155 
2156 	if (skb_queue_empty(list))
2157 		return -ENOBUFS;
2158 
2159 	if (WARN_ON(!skb_queue_empty(amsdu)))
2160 		return -EINVAL;
2161 
2162 	while ((msdu = __skb_dequeue(list))) {
2163 		__skb_queue_tail(amsdu, msdu);
2164 
2165 		rxd = (void *)msdu->data - sizeof(*rxd);
2166 		if (rxd->msdu_end.common.info0 &
2167 		    __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU))
2168 			break;
2169 	}
2170 
2171 	msdu = skb_peek_tail(amsdu);
2172 	rxd = (void *)msdu->data - sizeof(*rxd);
2173 	if (!(rxd->msdu_end.common.info0 &
2174 	      __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU))) {
2175 		skb_queue_splice_init(amsdu, list);
2176 		return -EAGAIN;
2177 	}
2178 
2179 	return 0;
2180 }
2181 
2182 static void ath10k_htt_rx_h_rx_offload_prot(struct ieee80211_rx_status *status,
2183 					    struct sk_buff *skb)
2184 {
2185 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2186 
2187 	if (!ieee80211_has_protected(hdr->frame_control))
2188 		return;
2189 
2190 	/* Offloaded frames are already decrypted but firmware insists they are
2191 	 * protected in the 802.11 header. Strip the flag.  Otherwise mac80211
2192 	 * will drop the frame.
2193 	 */
2194 
2195 	hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED);
2196 	status->flag |= RX_FLAG_DECRYPTED |
2197 			RX_FLAG_IV_STRIPPED |
2198 			RX_FLAG_MMIC_STRIPPED;
2199 }
2200 
2201 static void ath10k_htt_rx_h_rx_offload(struct ath10k *ar,
2202 				       struct sk_buff_head *list)
2203 {
2204 	struct ath10k_htt *htt = &ar->htt;
2205 	struct ieee80211_rx_status *status = &htt->rx_status;
2206 	struct htt_rx_offload_msdu *rx;
2207 	struct sk_buff *msdu;
2208 	size_t offset;
2209 
2210 	while ((msdu = __skb_dequeue(list))) {
2211 		/* Offloaded frames don't have Rx descriptor. Instead they have
2212 		 * a short meta information header.
2213 		 */
2214 
2215 		rx = (void *)msdu->data;
2216 
2217 		skb_put(msdu, sizeof(*rx));
2218 		skb_pull(msdu, sizeof(*rx));
2219 
2220 		if (skb_tailroom(msdu) < __le16_to_cpu(rx->msdu_len)) {
2221 			ath10k_warn(ar, "dropping frame: offloaded rx msdu is too long!\n");
2222 			dev_kfree_skb_any(msdu);
2223 			continue;
2224 		}
2225 
2226 		skb_put(msdu, __le16_to_cpu(rx->msdu_len));
2227 
2228 		/* Offloaded rx header length isn't multiple of 2 nor 4 so the
2229 		 * actual payload is unaligned. Align the frame.  Otherwise
2230 		 * mac80211 complains.  This shouldn't reduce performance much
2231 		 * because these offloaded frames are rare.
2232 		 */
2233 		offset = 4 - ((unsigned long)msdu->data & 3);
2234 		skb_put(msdu, offset);
2235 		memmove(msdu->data + offset, msdu->data, msdu->len);
2236 		skb_pull(msdu, offset);
2237 
2238 		/* FIXME: The frame is NWifi. Re-construct QoS Control
2239 		 * if possible later.
2240 		 */
2241 
2242 		memset(status, 0, sizeof(*status));
2243 		status->flag |= RX_FLAG_NO_SIGNAL_VAL;
2244 
2245 		ath10k_htt_rx_h_rx_offload_prot(status, msdu);
2246 		ath10k_htt_rx_h_channel(ar, status, NULL, rx->vdev_id);
2247 		ath10k_htt_rx_h_queue_msdu(ar, status, msdu);
2248 	}
2249 }
2250 
2251 static int ath10k_htt_rx_in_ord_ind(struct ath10k *ar, struct sk_buff *skb)
2252 {
2253 	struct ath10k_htt *htt = &ar->htt;
2254 	struct htt_resp *resp = (void *)skb->data;
2255 	struct ieee80211_rx_status *status = &htt->rx_status;
2256 	struct sk_buff_head list;
2257 	struct sk_buff_head amsdu;
2258 	u16 peer_id;
2259 	u16 msdu_count;
2260 	u8 vdev_id;
2261 	u8 tid;
2262 	bool offload;
2263 	bool frag;
2264 	int ret;
2265 
2266 	lockdep_assert_held(&htt->rx_ring.lock);
2267 
2268 	if (htt->rx_confused)
2269 		return -EIO;
2270 
2271 	skb_pull(skb, sizeof(resp->hdr));
2272 	skb_pull(skb, sizeof(resp->rx_in_ord_ind));
2273 
2274 	peer_id = __le16_to_cpu(resp->rx_in_ord_ind.peer_id);
2275 	msdu_count = __le16_to_cpu(resp->rx_in_ord_ind.msdu_count);
2276 	vdev_id = resp->rx_in_ord_ind.vdev_id;
2277 	tid = SM(resp->rx_in_ord_ind.info, HTT_RX_IN_ORD_IND_INFO_TID);
2278 	offload = !!(resp->rx_in_ord_ind.info &
2279 			HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK);
2280 	frag = !!(resp->rx_in_ord_ind.info & HTT_RX_IN_ORD_IND_INFO_FRAG_MASK);
2281 
2282 	ath10k_dbg(ar, ATH10K_DBG_HTT,
2283 		   "htt rx in ord vdev %i peer %i tid %i offload %i frag %i msdu count %i\n",
2284 		   vdev_id, peer_id, tid, offload, frag, msdu_count);
2285 
2286 	if (skb->len < msdu_count * sizeof(*resp->rx_in_ord_ind.msdu_descs32)) {
2287 		ath10k_warn(ar, "dropping invalid in order rx indication\n");
2288 		return -EINVAL;
2289 	}
2290 
2291 	/* The event can deliver more than 1 A-MSDU. Each A-MSDU is later
2292 	 * extracted and processed.
2293 	 */
2294 	__skb_queue_head_init(&list);
2295 	if (ar->hw_params.target_64bit)
2296 		ret = ath10k_htt_rx_pop_paddr64_list(htt, &resp->rx_in_ord_ind,
2297 						     &list);
2298 	else
2299 		ret = ath10k_htt_rx_pop_paddr32_list(htt, &resp->rx_in_ord_ind,
2300 						     &list);
2301 
2302 	if (ret < 0) {
2303 		ath10k_warn(ar, "failed to pop paddr list: %d\n", ret);
2304 		htt->rx_confused = true;
2305 		return -EIO;
2306 	}
2307 
2308 	/* Offloaded frames are very different and need to be handled
2309 	 * separately.
2310 	 */
2311 	if (offload)
2312 		ath10k_htt_rx_h_rx_offload(ar, &list);
2313 
2314 	while (!skb_queue_empty(&list)) {
2315 		__skb_queue_head_init(&amsdu);
2316 		ret = ath10k_htt_rx_extract_amsdu(&list, &amsdu);
2317 		switch (ret) {
2318 		case 0:
2319 			/* Note: The in-order indication may report interleaved
2320 			 * frames from different PPDUs meaning reported rx rate
2321 			 * to mac80211 isn't accurate/reliable. It's still
2322 			 * better to report something than nothing though. This
2323 			 * should still give an idea about rx rate to the user.
2324 			 */
2325 			ath10k_htt_rx_h_ppdu(ar, &amsdu, status, vdev_id);
2326 			ath10k_htt_rx_h_filter(ar, &amsdu, status, NULL);
2327 			ath10k_htt_rx_h_mpdu(ar, &amsdu, status, false, NULL,
2328 					     NULL);
2329 			ath10k_htt_rx_h_enqueue(ar, &amsdu, status);
2330 			break;
2331 		case -EAGAIN:
2332 			/* fall through */
2333 		default:
2334 			/* Should not happen. */
2335 			ath10k_warn(ar, "failed to extract amsdu: %d\n", ret);
2336 			htt->rx_confused = true;
2337 			__skb_queue_purge(&list);
2338 			return -EIO;
2339 		}
2340 	}
2341 	return ret;
2342 }
2343 
2344 static void ath10k_htt_rx_tx_fetch_resp_id_confirm(struct ath10k *ar,
2345 						   const __le32 *resp_ids,
2346 						   int num_resp_ids)
2347 {
2348 	int i;
2349 	u32 resp_id;
2350 
2351 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm num_resp_ids %d\n",
2352 		   num_resp_ids);
2353 
2354 	for (i = 0; i < num_resp_ids; i++) {
2355 		resp_id = le32_to_cpu(resp_ids[i]);
2356 
2357 		ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm resp_id %u\n",
2358 			   resp_id);
2359 
2360 		/* TODO: free resp_id */
2361 	}
2362 }
2363 
2364 static void ath10k_htt_rx_tx_fetch_ind(struct ath10k *ar, struct sk_buff *skb)
2365 {
2366 	struct ieee80211_hw *hw = ar->hw;
2367 	struct ieee80211_txq *txq;
2368 	struct htt_resp *resp = (struct htt_resp *)skb->data;
2369 	struct htt_tx_fetch_record *record;
2370 	size_t len;
2371 	size_t max_num_bytes;
2372 	size_t max_num_msdus;
2373 	size_t num_bytes;
2374 	size_t num_msdus;
2375 	const __le32 *resp_ids;
2376 	u16 num_records;
2377 	u16 num_resp_ids;
2378 	u16 peer_id;
2379 	u8 tid;
2380 	int ret;
2381 	int i;
2382 
2383 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch ind\n");
2384 
2385 	len = sizeof(resp->hdr) + sizeof(resp->tx_fetch_ind);
2386 	if (unlikely(skb->len < len)) {
2387 		ath10k_warn(ar, "received corrupted tx_fetch_ind event: buffer too short\n");
2388 		return;
2389 	}
2390 
2391 	num_records = le16_to_cpu(resp->tx_fetch_ind.num_records);
2392 	num_resp_ids = le16_to_cpu(resp->tx_fetch_ind.num_resp_ids);
2393 
2394 	len += sizeof(resp->tx_fetch_ind.records[0]) * num_records;
2395 	len += sizeof(resp->tx_fetch_ind.resp_ids[0]) * num_resp_ids;
2396 
2397 	if (unlikely(skb->len < len)) {
2398 		ath10k_warn(ar, "received corrupted tx_fetch_ind event: too many records/resp_ids\n");
2399 		return;
2400 	}
2401 
2402 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch ind num records %hu num resps %hu seq %hu\n",
2403 		   num_records, num_resp_ids,
2404 		   le16_to_cpu(resp->tx_fetch_ind.fetch_seq_num));
2405 
2406 	if (!ar->htt.tx_q_state.enabled) {
2407 		ath10k_warn(ar, "received unexpected tx_fetch_ind event: not enabled\n");
2408 		return;
2409 	}
2410 
2411 	if (ar->htt.tx_q_state.mode == HTT_TX_MODE_SWITCH_PUSH) {
2412 		ath10k_warn(ar, "received unexpected tx_fetch_ind event: in push mode\n");
2413 		return;
2414 	}
2415 
2416 	rcu_read_lock();
2417 
2418 	for (i = 0; i < num_records; i++) {
2419 		record = &resp->tx_fetch_ind.records[i];
2420 		peer_id = MS(le16_to_cpu(record->info),
2421 			     HTT_TX_FETCH_RECORD_INFO_PEER_ID);
2422 		tid = MS(le16_to_cpu(record->info),
2423 			 HTT_TX_FETCH_RECORD_INFO_TID);
2424 		max_num_msdus = le16_to_cpu(record->num_msdus);
2425 		max_num_bytes = le32_to_cpu(record->num_bytes);
2426 
2427 		ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch record %i peer_id %hu tid %hhu msdus %zu bytes %zu\n",
2428 			   i, peer_id, tid, max_num_msdus, max_num_bytes);
2429 
2430 		if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) ||
2431 		    unlikely(tid >= ar->htt.tx_q_state.num_tids)) {
2432 			ath10k_warn(ar, "received out of range peer_id %hu tid %hhu\n",
2433 				    peer_id, tid);
2434 			continue;
2435 		}
2436 
2437 		spin_lock_bh(&ar->data_lock);
2438 		txq = ath10k_mac_txq_lookup(ar, peer_id, tid);
2439 		spin_unlock_bh(&ar->data_lock);
2440 
2441 		/* It is okay to release the lock and use txq because RCU read
2442 		 * lock is held.
2443 		 */
2444 
2445 		if (unlikely(!txq)) {
2446 			ath10k_warn(ar, "failed to lookup txq for peer_id %hu tid %hhu\n",
2447 				    peer_id, tid);
2448 			continue;
2449 		}
2450 
2451 		num_msdus = 0;
2452 		num_bytes = 0;
2453 
2454 		while (num_msdus < max_num_msdus &&
2455 		       num_bytes < max_num_bytes) {
2456 			ret = ath10k_mac_tx_push_txq(hw, txq);
2457 			if (ret < 0)
2458 				break;
2459 
2460 			num_msdus++;
2461 			num_bytes += ret;
2462 		}
2463 
2464 		record->num_msdus = cpu_to_le16(num_msdus);
2465 		record->num_bytes = cpu_to_le32(num_bytes);
2466 
2467 		ath10k_htt_tx_txq_recalc(hw, txq);
2468 	}
2469 
2470 	rcu_read_unlock();
2471 
2472 	resp_ids = ath10k_htt_get_tx_fetch_ind_resp_ids(&resp->tx_fetch_ind);
2473 	ath10k_htt_rx_tx_fetch_resp_id_confirm(ar, resp_ids, num_resp_ids);
2474 
2475 	ret = ath10k_htt_tx_fetch_resp(ar,
2476 				       resp->tx_fetch_ind.token,
2477 				       resp->tx_fetch_ind.fetch_seq_num,
2478 				       resp->tx_fetch_ind.records,
2479 				       num_records);
2480 	if (unlikely(ret)) {
2481 		ath10k_warn(ar, "failed to submit tx fetch resp for token 0x%08x: %d\n",
2482 			    le32_to_cpu(resp->tx_fetch_ind.token), ret);
2483 		/* FIXME: request fw restart */
2484 	}
2485 
2486 	ath10k_htt_tx_txq_sync(ar);
2487 }
2488 
2489 static void ath10k_htt_rx_tx_fetch_confirm(struct ath10k *ar,
2490 					   struct sk_buff *skb)
2491 {
2492 	const struct htt_resp *resp = (void *)skb->data;
2493 	size_t len;
2494 	int num_resp_ids;
2495 
2496 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm\n");
2497 
2498 	len = sizeof(resp->hdr) + sizeof(resp->tx_fetch_confirm);
2499 	if (unlikely(skb->len < len)) {
2500 		ath10k_warn(ar, "received corrupted tx_fetch_confirm event: buffer too short\n");
2501 		return;
2502 	}
2503 
2504 	num_resp_ids = le16_to_cpu(resp->tx_fetch_confirm.num_resp_ids);
2505 	len += sizeof(resp->tx_fetch_confirm.resp_ids[0]) * num_resp_ids;
2506 
2507 	if (unlikely(skb->len < len)) {
2508 		ath10k_warn(ar, "received corrupted tx_fetch_confirm event: resp_ids buffer overflow\n");
2509 		return;
2510 	}
2511 
2512 	ath10k_htt_rx_tx_fetch_resp_id_confirm(ar,
2513 					       resp->tx_fetch_confirm.resp_ids,
2514 					       num_resp_ids);
2515 }
2516 
2517 static void ath10k_htt_rx_tx_mode_switch_ind(struct ath10k *ar,
2518 					     struct sk_buff *skb)
2519 {
2520 	const struct htt_resp *resp = (void *)skb->data;
2521 	const struct htt_tx_mode_switch_record *record;
2522 	struct ieee80211_txq *txq;
2523 	struct ath10k_txq *artxq;
2524 	size_t len;
2525 	size_t num_records;
2526 	enum htt_tx_mode_switch_mode mode;
2527 	bool enable;
2528 	u16 info0;
2529 	u16 info1;
2530 	u16 threshold;
2531 	u16 peer_id;
2532 	u8 tid;
2533 	int i;
2534 
2535 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx mode switch ind\n");
2536 
2537 	len = sizeof(resp->hdr) + sizeof(resp->tx_mode_switch_ind);
2538 	if (unlikely(skb->len < len)) {
2539 		ath10k_warn(ar, "received corrupted tx_mode_switch_ind event: buffer too short\n");
2540 		return;
2541 	}
2542 
2543 	info0 = le16_to_cpu(resp->tx_mode_switch_ind.info0);
2544 	info1 = le16_to_cpu(resp->tx_mode_switch_ind.info1);
2545 
2546 	enable = !!(info0 & HTT_TX_MODE_SWITCH_IND_INFO0_ENABLE);
2547 	num_records = MS(info0, HTT_TX_MODE_SWITCH_IND_INFO1_THRESHOLD);
2548 	mode = MS(info1, HTT_TX_MODE_SWITCH_IND_INFO1_MODE);
2549 	threshold = MS(info1, HTT_TX_MODE_SWITCH_IND_INFO1_THRESHOLD);
2550 
2551 	ath10k_dbg(ar, ATH10K_DBG_HTT,
2552 		   "htt rx tx mode switch ind info0 0x%04hx info1 0x%04hx enable %d num records %zd mode %d threshold %hu\n",
2553 		   info0, info1, enable, num_records, mode, threshold);
2554 
2555 	len += sizeof(resp->tx_mode_switch_ind.records[0]) * num_records;
2556 
2557 	if (unlikely(skb->len < len)) {
2558 		ath10k_warn(ar, "received corrupted tx_mode_switch_mode_ind event: too many records\n");
2559 		return;
2560 	}
2561 
2562 	switch (mode) {
2563 	case HTT_TX_MODE_SWITCH_PUSH:
2564 	case HTT_TX_MODE_SWITCH_PUSH_PULL:
2565 		break;
2566 	default:
2567 		ath10k_warn(ar, "received invalid tx_mode_switch_mode_ind mode %d, ignoring\n",
2568 			    mode);
2569 		return;
2570 	}
2571 
2572 	if (!enable)
2573 		return;
2574 
2575 	ar->htt.tx_q_state.enabled = enable;
2576 	ar->htt.tx_q_state.mode = mode;
2577 	ar->htt.tx_q_state.num_push_allowed = threshold;
2578 
2579 	rcu_read_lock();
2580 
2581 	for (i = 0; i < num_records; i++) {
2582 		record = &resp->tx_mode_switch_ind.records[i];
2583 		info0 = le16_to_cpu(record->info0);
2584 		peer_id = MS(info0, HTT_TX_MODE_SWITCH_RECORD_INFO0_PEER_ID);
2585 		tid = MS(info0, HTT_TX_MODE_SWITCH_RECORD_INFO0_TID);
2586 
2587 		if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) ||
2588 		    unlikely(tid >= ar->htt.tx_q_state.num_tids)) {
2589 			ath10k_warn(ar, "received out of range peer_id %hu tid %hhu\n",
2590 				    peer_id, tid);
2591 			continue;
2592 		}
2593 
2594 		spin_lock_bh(&ar->data_lock);
2595 		txq = ath10k_mac_txq_lookup(ar, peer_id, tid);
2596 		spin_unlock_bh(&ar->data_lock);
2597 
2598 		/* It is okay to release the lock and use txq because RCU read
2599 		 * lock is held.
2600 		 */
2601 
2602 		if (unlikely(!txq)) {
2603 			ath10k_warn(ar, "failed to lookup txq for peer_id %hu tid %hhu\n",
2604 				    peer_id, tid);
2605 			continue;
2606 		}
2607 
2608 		spin_lock_bh(&ar->htt.tx_lock);
2609 		artxq = (void *)txq->drv_priv;
2610 		artxq->num_push_allowed = le16_to_cpu(record->num_max_msdus);
2611 		spin_unlock_bh(&ar->htt.tx_lock);
2612 	}
2613 
2614 	rcu_read_unlock();
2615 
2616 	ath10k_mac_tx_push_pending(ar);
2617 }
2618 
2619 void ath10k_htt_htc_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb)
2620 {
2621 	bool release;
2622 
2623 	release = ath10k_htt_t2h_msg_handler(ar, skb);
2624 
2625 	/* Free the indication buffer */
2626 	if (release)
2627 		dev_kfree_skb_any(skb);
2628 }
2629 
2630 static inline int ath10k_get_legacy_rate_idx(struct ath10k *ar, u8 rate)
2631 {
2632 	static const u8 legacy_rates[] = {1, 2, 5, 11, 6, 9, 12,
2633 					  18, 24, 36, 48, 54};
2634 	int i;
2635 
2636 	for (i = 0; i < ARRAY_SIZE(legacy_rates); i++) {
2637 		if (rate == legacy_rates[i])
2638 			return i;
2639 	}
2640 
2641 	ath10k_warn(ar, "Invalid legacy rate %hhd peer stats", rate);
2642 	return -EINVAL;
2643 }
2644 
2645 static void
2646 ath10k_accumulate_per_peer_tx_stats(struct ath10k *ar,
2647 				    struct ath10k_sta *arsta,
2648 				    struct ath10k_per_peer_tx_stats *pstats,
2649 				    u8 legacy_rate_idx)
2650 {
2651 	struct rate_info *txrate = &arsta->txrate;
2652 	struct ath10k_htt_tx_stats *tx_stats;
2653 	int ht_idx, gi, mcs, bw, nss;
2654 
2655 	if (!arsta->tx_stats)
2656 		return;
2657 
2658 	tx_stats = arsta->tx_stats;
2659 	gi = (arsta->txrate.flags & RATE_INFO_FLAGS_SHORT_GI);
2660 	ht_idx = txrate->mcs + txrate->nss * 8;
2661 	mcs = txrate->mcs;
2662 	bw = txrate->bw;
2663 	nss = txrate->nss;
2664 
2665 #define STATS_OP_FMT(name) tx_stats->stats[ATH10K_STATS_TYPE_##name]
2666 
2667 	if (txrate->flags == RATE_INFO_FLAGS_VHT_MCS) {
2668 		STATS_OP_FMT(SUCC).vht[0][mcs] += pstats->succ_bytes;
2669 		STATS_OP_FMT(SUCC).vht[1][mcs] += pstats->succ_pkts;
2670 		STATS_OP_FMT(FAIL).vht[0][mcs] += pstats->failed_bytes;
2671 		STATS_OP_FMT(FAIL).vht[1][mcs] += pstats->failed_pkts;
2672 		STATS_OP_FMT(RETRY).vht[0][mcs] += pstats->retry_bytes;
2673 		STATS_OP_FMT(RETRY).vht[1][mcs] += pstats->retry_pkts;
2674 	} else if (txrate->flags == RATE_INFO_FLAGS_MCS) {
2675 		STATS_OP_FMT(SUCC).ht[0][ht_idx] += pstats->succ_bytes;
2676 		STATS_OP_FMT(SUCC).ht[1][ht_idx] += pstats->succ_pkts;
2677 		STATS_OP_FMT(FAIL).ht[0][ht_idx] += pstats->failed_bytes;
2678 		STATS_OP_FMT(FAIL).ht[1][ht_idx] += pstats->failed_pkts;
2679 		STATS_OP_FMT(RETRY).ht[0][ht_idx] += pstats->retry_bytes;
2680 		STATS_OP_FMT(RETRY).ht[1][ht_idx] += pstats->retry_pkts;
2681 	} else {
2682 		mcs = legacy_rate_idx;
2683 
2684 		STATS_OP_FMT(SUCC).legacy[0][mcs] += pstats->succ_bytes;
2685 		STATS_OP_FMT(SUCC).legacy[1][mcs] += pstats->succ_pkts;
2686 		STATS_OP_FMT(FAIL).legacy[0][mcs] += pstats->failed_bytes;
2687 		STATS_OP_FMT(FAIL).legacy[1][mcs] += pstats->failed_pkts;
2688 		STATS_OP_FMT(RETRY).legacy[0][mcs] += pstats->retry_bytes;
2689 		STATS_OP_FMT(RETRY).legacy[1][mcs] += pstats->retry_pkts;
2690 	}
2691 
2692 	if (ATH10K_HW_AMPDU(pstats->flags)) {
2693 		tx_stats->ba_fails += ATH10K_HW_BA_FAIL(pstats->flags);
2694 
2695 		if (txrate->flags == RATE_INFO_FLAGS_MCS) {
2696 			STATS_OP_FMT(AMPDU).ht[0][ht_idx] +=
2697 				pstats->succ_bytes + pstats->retry_bytes;
2698 			STATS_OP_FMT(AMPDU).ht[1][ht_idx] +=
2699 				pstats->succ_pkts + pstats->retry_pkts;
2700 		} else {
2701 			STATS_OP_FMT(AMPDU).vht[0][mcs] +=
2702 				pstats->succ_bytes + pstats->retry_bytes;
2703 			STATS_OP_FMT(AMPDU).vht[1][mcs] +=
2704 				pstats->succ_pkts + pstats->retry_pkts;
2705 		}
2706 		STATS_OP_FMT(AMPDU).bw[0][bw] +=
2707 			pstats->succ_bytes + pstats->retry_bytes;
2708 		STATS_OP_FMT(AMPDU).nss[0][nss] +=
2709 			pstats->succ_bytes + pstats->retry_bytes;
2710 		STATS_OP_FMT(AMPDU).gi[0][gi] +=
2711 			pstats->succ_bytes + pstats->retry_bytes;
2712 		STATS_OP_FMT(AMPDU).bw[1][bw] +=
2713 			pstats->succ_pkts + pstats->retry_pkts;
2714 		STATS_OP_FMT(AMPDU).nss[1][nss] +=
2715 			pstats->succ_pkts + pstats->retry_pkts;
2716 		STATS_OP_FMT(AMPDU).gi[1][gi] +=
2717 			pstats->succ_pkts + pstats->retry_pkts;
2718 	} else {
2719 		tx_stats->ack_fails +=
2720 				ATH10K_HW_BA_FAIL(pstats->flags);
2721 	}
2722 
2723 	STATS_OP_FMT(SUCC).bw[0][bw] += pstats->succ_bytes;
2724 	STATS_OP_FMT(SUCC).nss[0][nss] += pstats->succ_bytes;
2725 	STATS_OP_FMT(SUCC).gi[0][gi] += pstats->succ_bytes;
2726 
2727 	STATS_OP_FMT(SUCC).bw[1][bw] += pstats->succ_pkts;
2728 	STATS_OP_FMT(SUCC).nss[1][nss] += pstats->succ_pkts;
2729 	STATS_OP_FMT(SUCC).gi[1][gi] += pstats->succ_pkts;
2730 
2731 	STATS_OP_FMT(FAIL).bw[0][bw] += pstats->failed_bytes;
2732 	STATS_OP_FMT(FAIL).nss[0][nss] += pstats->failed_bytes;
2733 	STATS_OP_FMT(FAIL).gi[0][gi] += pstats->failed_bytes;
2734 
2735 	STATS_OP_FMT(FAIL).bw[1][bw] += pstats->failed_pkts;
2736 	STATS_OP_FMT(FAIL).nss[1][nss] += pstats->failed_pkts;
2737 	STATS_OP_FMT(FAIL).gi[1][gi] += pstats->failed_pkts;
2738 
2739 	STATS_OP_FMT(RETRY).bw[0][bw] += pstats->retry_bytes;
2740 	STATS_OP_FMT(RETRY).nss[0][nss] += pstats->retry_bytes;
2741 	STATS_OP_FMT(RETRY).gi[0][gi] += pstats->retry_bytes;
2742 
2743 	STATS_OP_FMT(RETRY).bw[1][bw] += pstats->retry_pkts;
2744 	STATS_OP_FMT(RETRY).nss[1][nss] += pstats->retry_pkts;
2745 	STATS_OP_FMT(RETRY).gi[1][gi] += pstats->retry_pkts;
2746 }
2747 
2748 static void
2749 ath10k_update_per_peer_tx_stats(struct ath10k *ar,
2750 				struct ieee80211_sta *sta,
2751 				struct ath10k_per_peer_tx_stats *peer_stats)
2752 {
2753 	struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv;
2754 	u8 rate = 0, sgi;
2755 	s8 rate_idx = 0;
2756 	struct rate_info txrate;
2757 
2758 	lockdep_assert_held(&ar->data_lock);
2759 
2760 	txrate.flags = ATH10K_HW_PREAMBLE(peer_stats->ratecode);
2761 	txrate.bw = ATH10K_HW_BW(peer_stats->flags);
2762 	txrate.nss = ATH10K_HW_NSS(peer_stats->ratecode);
2763 	txrate.mcs = ATH10K_HW_MCS_RATE(peer_stats->ratecode);
2764 	sgi = ATH10K_HW_GI(peer_stats->flags);
2765 
2766 	if (txrate.flags == WMI_RATE_PREAMBLE_VHT && txrate.mcs > 9) {
2767 		ath10k_warn(ar, "Invalid VHT mcs %hhd peer stats",  txrate.mcs);
2768 		return;
2769 	}
2770 
2771 	if (txrate.flags == WMI_RATE_PREAMBLE_HT &&
2772 	    (txrate.mcs > 7 || txrate.nss < 1)) {
2773 		ath10k_warn(ar, "Invalid HT mcs %hhd nss %hhd peer stats",
2774 			    txrate.mcs, txrate.nss);
2775 		return;
2776 	}
2777 
2778 	memset(&arsta->txrate, 0, sizeof(arsta->txrate));
2779 
2780 	if (txrate.flags == WMI_RATE_PREAMBLE_CCK ||
2781 	    txrate.flags == WMI_RATE_PREAMBLE_OFDM) {
2782 		rate = ATH10K_HW_LEGACY_RATE(peer_stats->ratecode);
2783 		/* This is hacky, FW sends CCK rate 5.5Mbps as 6 */
2784 		if (rate == 6 && txrate.flags == WMI_RATE_PREAMBLE_CCK)
2785 			rate = 5;
2786 		rate_idx = ath10k_get_legacy_rate_idx(ar, rate);
2787 		if (rate_idx < 0)
2788 			return;
2789 		arsta->txrate.legacy = rate;
2790 	} else if (txrate.flags == WMI_RATE_PREAMBLE_HT) {
2791 		arsta->txrate.flags = RATE_INFO_FLAGS_MCS;
2792 		arsta->txrate.mcs = txrate.mcs + 8 * (txrate.nss - 1);
2793 	} else {
2794 		arsta->txrate.flags = RATE_INFO_FLAGS_VHT_MCS;
2795 		arsta->txrate.mcs = txrate.mcs;
2796 	}
2797 
2798 	if (sgi)
2799 		arsta->txrate.flags |= RATE_INFO_FLAGS_SHORT_GI;
2800 
2801 	arsta->txrate.nss = txrate.nss;
2802 	arsta->txrate.bw = ath10k_bw_to_mac80211_bw(txrate.bw);
2803 
2804 	if (ath10k_debug_is_extd_tx_stats_enabled(ar))
2805 		ath10k_accumulate_per_peer_tx_stats(ar, arsta, peer_stats,
2806 						    rate_idx);
2807 }
2808 
2809 static void ath10k_htt_fetch_peer_stats(struct ath10k *ar,
2810 					struct sk_buff *skb)
2811 {
2812 	struct htt_resp *resp = (struct htt_resp *)skb->data;
2813 	struct ath10k_per_peer_tx_stats *p_tx_stats = &ar->peer_tx_stats;
2814 	struct htt_per_peer_tx_stats_ind *tx_stats;
2815 	struct ieee80211_sta *sta;
2816 	struct ath10k_peer *peer;
2817 	int peer_id, i;
2818 	u8 ppdu_len, num_ppdu;
2819 
2820 	num_ppdu = resp->peer_tx_stats.num_ppdu;
2821 	ppdu_len = resp->peer_tx_stats.ppdu_len * sizeof(__le32);
2822 
2823 	if (skb->len < sizeof(struct htt_resp_hdr) + num_ppdu * ppdu_len) {
2824 		ath10k_warn(ar, "Invalid peer stats buf length %d\n", skb->len);
2825 		return;
2826 	}
2827 
2828 	tx_stats = (struct htt_per_peer_tx_stats_ind *)
2829 			(resp->peer_tx_stats.payload);
2830 	peer_id = __le16_to_cpu(tx_stats->peer_id);
2831 
2832 	rcu_read_lock();
2833 	spin_lock_bh(&ar->data_lock);
2834 	peer = ath10k_peer_find_by_id(ar, peer_id);
2835 	if (!peer) {
2836 		ath10k_warn(ar, "Invalid peer id %d peer stats buffer\n",
2837 			    peer_id);
2838 		goto out;
2839 	}
2840 
2841 	sta = peer->sta;
2842 	for (i = 0; i < num_ppdu; i++) {
2843 		tx_stats = (struct htt_per_peer_tx_stats_ind *)
2844 			   (resp->peer_tx_stats.payload + i * ppdu_len);
2845 
2846 		p_tx_stats->succ_bytes = __le32_to_cpu(tx_stats->succ_bytes);
2847 		p_tx_stats->retry_bytes = __le32_to_cpu(tx_stats->retry_bytes);
2848 		p_tx_stats->failed_bytes =
2849 				__le32_to_cpu(tx_stats->failed_bytes);
2850 		p_tx_stats->ratecode = tx_stats->ratecode;
2851 		p_tx_stats->flags = tx_stats->flags;
2852 		p_tx_stats->succ_pkts = __le16_to_cpu(tx_stats->succ_pkts);
2853 		p_tx_stats->retry_pkts = __le16_to_cpu(tx_stats->retry_pkts);
2854 		p_tx_stats->failed_pkts = __le16_to_cpu(tx_stats->failed_pkts);
2855 
2856 		ath10k_update_per_peer_tx_stats(ar, sta, p_tx_stats);
2857 	}
2858 
2859 out:
2860 	spin_unlock_bh(&ar->data_lock);
2861 	rcu_read_unlock();
2862 }
2863 
2864 static void ath10k_fetch_10_2_tx_stats(struct ath10k *ar, u8 *data)
2865 {
2866 	struct ath10k_pktlog_hdr *hdr = (struct ath10k_pktlog_hdr *)data;
2867 	struct ath10k_per_peer_tx_stats *p_tx_stats = &ar->peer_tx_stats;
2868 	struct ath10k_10_2_peer_tx_stats *tx_stats;
2869 	struct ieee80211_sta *sta;
2870 	struct ath10k_peer *peer;
2871 	u16 log_type = __le16_to_cpu(hdr->log_type);
2872 	u32 peer_id = 0, i;
2873 
2874 	if (log_type != ATH_PKTLOG_TYPE_TX_STAT)
2875 		return;
2876 
2877 	tx_stats = (struct ath10k_10_2_peer_tx_stats *)((hdr->payload) +
2878 		    ATH10K_10_2_TX_STATS_OFFSET);
2879 
2880 	if (!tx_stats->tx_ppdu_cnt)
2881 		return;
2882 
2883 	peer_id = tx_stats->peer_id;
2884 
2885 	rcu_read_lock();
2886 	spin_lock_bh(&ar->data_lock);
2887 	peer = ath10k_peer_find_by_id(ar, peer_id);
2888 	if (!peer) {
2889 		ath10k_warn(ar, "Invalid peer id %d in peer stats buffer\n",
2890 			    peer_id);
2891 		goto out;
2892 	}
2893 
2894 	sta = peer->sta;
2895 	for (i = 0; i < tx_stats->tx_ppdu_cnt; i++) {
2896 		p_tx_stats->succ_bytes =
2897 			__le16_to_cpu(tx_stats->success_bytes[i]);
2898 		p_tx_stats->retry_bytes =
2899 			__le16_to_cpu(tx_stats->retry_bytes[i]);
2900 		p_tx_stats->failed_bytes =
2901 			__le16_to_cpu(tx_stats->failed_bytes[i]);
2902 		p_tx_stats->ratecode = tx_stats->ratecode[i];
2903 		p_tx_stats->flags = tx_stats->flags[i];
2904 		p_tx_stats->succ_pkts = tx_stats->success_pkts[i];
2905 		p_tx_stats->retry_pkts = tx_stats->retry_pkts[i];
2906 		p_tx_stats->failed_pkts = tx_stats->failed_pkts[i];
2907 
2908 		ath10k_update_per_peer_tx_stats(ar, sta, p_tx_stats);
2909 	}
2910 	spin_unlock_bh(&ar->data_lock);
2911 	rcu_read_unlock();
2912 
2913 	return;
2914 
2915 out:
2916 	spin_unlock_bh(&ar->data_lock);
2917 	rcu_read_unlock();
2918 }
2919 
2920 bool ath10k_htt_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb)
2921 {
2922 	struct ath10k_htt *htt = &ar->htt;
2923 	struct htt_resp *resp = (struct htt_resp *)skb->data;
2924 	enum htt_t2h_msg_type type;
2925 
2926 	/* confirm alignment */
2927 	if (!IS_ALIGNED((unsigned long)skb->data, 4))
2928 		ath10k_warn(ar, "unaligned htt message, expect trouble\n");
2929 
2930 	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, msg_type: 0x%0X\n",
2931 		   resp->hdr.msg_type);
2932 
2933 	if (resp->hdr.msg_type >= ar->htt.t2h_msg_types_max) {
2934 		ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, unsupported msg_type: 0x%0X\n max: 0x%0X",
2935 			   resp->hdr.msg_type, ar->htt.t2h_msg_types_max);
2936 		return true;
2937 	}
2938 	type = ar->htt.t2h_msg_types[resp->hdr.msg_type];
2939 
2940 	switch (type) {
2941 	case HTT_T2H_MSG_TYPE_VERSION_CONF: {
2942 		htt->target_version_major = resp->ver_resp.major;
2943 		htt->target_version_minor = resp->ver_resp.minor;
2944 		complete(&htt->target_version_received);
2945 		break;
2946 	}
2947 	case HTT_T2H_MSG_TYPE_RX_IND:
2948 		if (ar->dev_type == ATH10K_DEV_TYPE_HL)
2949 			return ath10k_htt_rx_proc_rx_ind_hl(htt,
2950 							    &resp->rx_ind_hl,
2951 							    skb);
2952 		else
2953 			ath10k_htt_rx_proc_rx_ind_ll(htt, &resp->rx_ind);
2954 		break;
2955 	case HTT_T2H_MSG_TYPE_PEER_MAP: {
2956 		struct htt_peer_map_event ev = {
2957 			.vdev_id = resp->peer_map.vdev_id,
2958 			.peer_id = __le16_to_cpu(resp->peer_map.peer_id),
2959 		};
2960 		memcpy(ev.addr, resp->peer_map.addr, sizeof(ev.addr));
2961 		ath10k_peer_map_event(htt, &ev);
2962 		break;
2963 	}
2964 	case HTT_T2H_MSG_TYPE_PEER_UNMAP: {
2965 		struct htt_peer_unmap_event ev = {
2966 			.peer_id = __le16_to_cpu(resp->peer_unmap.peer_id),
2967 		};
2968 		ath10k_peer_unmap_event(htt, &ev);
2969 		break;
2970 	}
2971 	case HTT_T2H_MSG_TYPE_MGMT_TX_COMPLETION: {
2972 		struct htt_tx_done tx_done = {};
2973 		int status = __le32_to_cpu(resp->mgmt_tx_completion.status);
2974 		int info = __le32_to_cpu(resp->mgmt_tx_completion.info);
2975 
2976 		tx_done.msdu_id = __le32_to_cpu(resp->mgmt_tx_completion.desc_id);
2977 
2978 		switch (status) {
2979 		case HTT_MGMT_TX_STATUS_OK:
2980 			tx_done.status = HTT_TX_COMPL_STATE_ACK;
2981 			if (test_bit(WMI_SERVICE_HTT_MGMT_TX_COMP_VALID_FLAGS,
2982 				     ar->wmi.svc_map) &&
2983 			    (resp->mgmt_tx_completion.flags &
2984 			     HTT_MGMT_TX_CMPL_FLAG_ACK_RSSI)) {
2985 				tx_done.ack_rssi =
2986 				FIELD_GET(HTT_MGMT_TX_CMPL_INFO_ACK_RSSI_MASK,
2987 					  info);
2988 			}
2989 			break;
2990 		case HTT_MGMT_TX_STATUS_RETRY:
2991 			tx_done.status = HTT_TX_COMPL_STATE_NOACK;
2992 			break;
2993 		case HTT_MGMT_TX_STATUS_DROP:
2994 			tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
2995 			break;
2996 		}
2997 
2998 		status = ath10k_txrx_tx_unref(htt, &tx_done);
2999 		if (!status) {
3000 			spin_lock_bh(&htt->tx_lock);
3001 			ath10k_htt_tx_mgmt_dec_pending(htt);
3002 			spin_unlock_bh(&htt->tx_lock);
3003 		}
3004 		break;
3005 	}
3006 	case HTT_T2H_MSG_TYPE_TX_COMPL_IND:
3007 		ath10k_htt_rx_tx_compl_ind(htt->ar, skb);
3008 		break;
3009 	case HTT_T2H_MSG_TYPE_SEC_IND: {
3010 		struct ath10k *ar = htt->ar;
3011 		struct htt_security_indication *ev = &resp->security_indication;
3012 
3013 		ath10k_dbg(ar, ATH10K_DBG_HTT,
3014 			   "sec ind peer_id %d unicast %d type %d\n",
3015 			  __le16_to_cpu(ev->peer_id),
3016 			  !!(ev->flags & HTT_SECURITY_IS_UNICAST),
3017 			  MS(ev->flags, HTT_SECURITY_TYPE));
3018 		complete(&ar->install_key_done);
3019 		break;
3020 	}
3021 	case HTT_T2H_MSG_TYPE_RX_FRAG_IND: {
3022 		ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
3023 				skb->data, skb->len);
3024 		atomic_inc(&htt->num_mpdus_ready);
3025 		break;
3026 	}
3027 	case HTT_T2H_MSG_TYPE_TEST:
3028 		break;
3029 	case HTT_T2H_MSG_TYPE_STATS_CONF:
3030 		trace_ath10k_htt_stats(ar, skb->data, skb->len);
3031 		break;
3032 	case HTT_T2H_MSG_TYPE_TX_INSPECT_IND:
3033 		/* Firmware can return tx frames if it's unable to fully
3034 		 * process them and suspects host may be able to fix it. ath10k
3035 		 * sends all tx frames as already inspected so this shouldn't
3036 		 * happen unless fw has a bug.
3037 		 */
3038 		ath10k_warn(ar, "received an unexpected htt tx inspect event\n");
3039 		break;
3040 	case HTT_T2H_MSG_TYPE_RX_ADDBA:
3041 		ath10k_htt_rx_addba(ar, resp);
3042 		break;
3043 	case HTT_T2H_MSG_TYPE_RX_DELBA:
3044 		ath10k_htt_rx_delba(ar, resp);
3045 		break;
3046 	case HTT_T2H_MSG_TYPE_PKTLOG: {
3047 		trace_ath10k_htt_pktlog(ar, resp->pktlog_msg.payload,
3048 					skb->len -
3049 					offsetof(struct htt_resp,
3050 						 pktlog_msg.payload));
3051 
3052 		if (ath10k_peer_stats_enabled(ar))
3053 			ath10k_fetch_10_2_tx_stats(ar,
3054 						   resp->pktlog_msg.payload);
3055 		break;
3056 	}
3057 	case HTT_T2H_MSG_TYPE_RX_FLUSH: {
3058 		/* Ignore this event because mac80211 takes care of Rx
3059 		 * aggregation reordering.
3060 		 */
3061 		break;
3062 	}
3063 	case HTT_T2H_MSG_TYPE_RX_IN_ORD_PADDR_IND: {
3064 		skb_queue_tail(&htt->rx_in_ord_compl_q, skb);
3065 		return false;
3066 	}
3067 	case HTT_T2H_MSG_TYPE_TX_CREDIT_UPDATE_IND:
3068 		break;
3069 	case HTT_T2H_MSG_TYPE_CHAN_CHANGE: {
3070 		u32 phymode = __le32_to_cpu(resp->chan_change.phymode);
3071 		u32 freq = __le32_to_cpu(resp->chan_change.freq);
3072 
3073 		ar->tgt_oper_chan = ieee80211_get_channel(ar->hw->wiphy, freq);
3074 		ath10k_dbg(ar, ATH10K_DBG_HTT,
3075 			   "htt chan change freq %u phymode %s\n",
3076 			   freq, ath10k_wmi_phymode_str(phymode));
3077 		break;
3078 	}
3079 	case HTT_T2H_MSG_TYPE_AGGR_CONF:
3080 		break;
3081 	case HTT_T2H_MSG_TYPE_TX_FETCH_IND: {
3082 		struct sk_buff *tx_fetch_ind = skb_copy(skb, GFP_ATOMIC);
3083 
3084 		if (!tx_fetch_ind) {
3085 			ath10k_warn(ar, "failed to copy htt tx fetch ind\n");
3086 			break;
3087 		}
3088 		skb_queue_tail(&htt->tx_fetch_ind_q, tx_fetch_ind);
3089 		break;
3090 	}
3091 	case HTT_T2H_MSG_TYPE_TX_FETCH_CONFIRM:
3092 		ath10k_htt_rx_tx_fetch_confirm(ar, skb);
3093 		break;
3094 	case HTT_T2H_MSG_TYPE_TX_MODE_SWITCH_IND:
3095 		ath10k_htt_rx_tx_mode_switch_ind(ar, skb);
3096 		break;
3097 	case HTT_T2H_MSG_TYPE_PEER_STATS:
3098 		ath10k_htt_fetch_peer_stats(ar, skb);
3099 		break;
3100 	case HTT_T2H_MSG_TYPE_EN_STATS:
3101 	default:
3102 		ath10k_warn(ar, "htt event (%d) not handled\n",
3103 			    resp->hdr.msg_type);
3104 		ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
3105 				skb->data, skb->len);
3106 		break;
3107 	}
3108 	return true;
3109 }
3110 EXPORT_SYMBOL(ath10k_htt_t2h_msg_handler);
3111 
3112 void ath10k_htt_rx_pktlog_completion_handler(struct ath10k *ar,
3113 					     struct sk_buff *skb)
3114 {
3115 	trace_ath10k_htt_pktlog(ar, skb->data, skb->len);
3116 	dev_kfree_skb_any(skb);
3117 }
3118 EXPORT_SYMBOL(ath10k_htt_rx_pktlog_completion_handler);
3119 
3120 static int ath10k_htt_rx_deliver_msdu(struct ath10k *ar, int quota, int budget)
3121 {
3122 	struct sk_buff *skb;
3123 
3124 	while (quota < budget) {
3125 		if (skb_queue_empty(&ar->htt.rx_msdus_q))
3126 			break;
3127 
3128 		skb = skb_dequeue(&ar->htt.rx_msdus_q);
3129 		if (!skb)
3130 			break;
3131 		ath10k_process_rx(ar, skb);
3132 		quota++;
3133 	}
3134 
3135 	return quota;
3136 }
3137 
3138 int ath10k_htt_txrx_compl_task(struct ath10k *ar, int budget)
3139 {
3140 	struct ath10k_htt *htt = &ar->htt;
3141 	struct htt_tx_done tx_done = {};
3142 	struct sk_buff_head tx_ind_q;
3143 	struct sk_buff *skb;
3144 	unsigned long flags;
3145 	int quota = 0, done, ret;
3146 	bool resched_napi = false;
3147 
3148 	__skb_queue_head_init(&tx_ind_q);
3149 
3150 	/* Process pending frames before dequeuing more data
3151 	 * from hardware.
3152 	 */
3153 	quota = ath10k_htt_rx_deliver_msdu(ar, quota, budget);
3154 	if (quota == budget) {
3155 		resched_napi = true;
3156 		goto exit;
3157 	}
3158 
3159 	while ((skb = skb_dequeue(&htt->rx_in_ord_compl_q))) {
3160 		spin_lock_bh(&htt->rx_ring.lock);
3161 		ret = ath10k_htt_rx_in_ord_ind(ar, skb);
3162 		spin_unlock_bh(&htt->rx_ring.lock);
3163 
3164 		dev_kfree_skb_any(skb);
3165 		if (ret == -EIO) {
3166 			resched_napi = true;
3167 			goto exit;
3168 		}
3169 	}
3170 
3171 	while (atomic_read(&htt->num_mpdus_ready)) {
3172 		ret = ath10k_htt_rx_handle_amsdu(htt);
3173 		if (ret == -EIO) {
3174 			resched_napi = true;
3175 			goto exit;
3176 		}
3177 		atomic_dec(&htt->num_mpdus_ready);
3178 	}
3179 
3180 	/* Deliver received data after processing data from hardware */
3181 	quota = ath10k_htt_rx_deliver_msdu(ar, quota, budget);
3182 
3183 	/* From NAPI documentation:
3184 	 *  The napi poll() function may also process TX completions, in which
3185 	 *  case if it processes the entire TX ring then it should count that
3186 	 *  work as the rest of the budget.
3187 	 */
3188 	if ((quota < budget) && !kfifo_is_empty(&htt->txdone_fifo))
3189 		quota = budget;
3190 
3191 	/* kfifo_get: called only within txrx_tasklet so it's neatly serialized.
3192 	 * From kfifo_get() documentation:
3193 	 *  Note that with only one concurrent reader and one concurrent writer,
3194 	 *  you don't need extra locking to use these macro.
3195 	 */
3196 	while (kfifo_get(&htt->txdone_fifo, &tx_done))
3197 		ath10k_txrx_tx_unref(htt, &tx_done);
3198 
3199 	ath10k_mac_tx_push_pending(ar);
3200 
3201 	spin_lock_irqsave(&htt->tx_fetch_ind_q.lock, flags);
3202 	skb_queue_splice_init(&htt->tx_fetch_ind_q, &tx_ind_q);
3203 	spin_unlock_irqrestore(&htt->tx_fetch_ind_q.lock, flags);
3204 
3205 	while ((skb = __skb_dequeue(&tx_ind_q))) {
3206 		ath10k_htt_rx_tx_fetch_ind(ar, skb);
3207 		dev_kfree_skb_any(skb);
3208 	}
3209 
3210 exit:
3211 	ath10k_htt_rx_msdu_buff_replenish(htt);
3212 	/* In case of rx failure or more data to read, report budget
3213 	 * to reschedule NAPI poll
3214 	 */
3215 	done = resched_napi ? budget : quota;
3216 
3217 	return done;
3218 }
3219 EXPORT_SYMBOL(ath10k_htt_txrx_compl_task);
3220 
3221 static const struct ath10k_htt_rx_ops htt_rx_ops_32 = {
3222 	.htt_get_rx_ring_size = ath10k_htt_get_rx_ring_size_32,
3223 	.htt_config_paddrs_ring = ath10k_htt_config_paddrs_ring_32,
3224 	.htt_set_paddrs_ring = ath10k_htt_set_paddrs_ring_32,
3225 	.htt_get_vaddr_ring = ath10k_htt_get_vaddr_ring_32,
3226 	.htt_reset_paddrs_ring = ath10k_htt_reset_paddrs_ring_32,
3227 };
3228 
3229 static const struct ath10k_htt_rx_ops htt_rx_ops_64 = {
3230 	.htt_get_rx_ring_size = ath10k_htt_get_rx_ring_size_64,
3231 	.htt_config_paddrs_ring = ath10k_htt_config_paddrs_ring_64,
3232 	.htt_set_paddrs_ring = ath10k_htt_set_paddrs_ring_64,
3233 	.htt_get_vaddr_ring = ath10k_htt_get_vaddr_ring_64,
3234 	.htt_reset_paddrs_ring = ath10k_htt_reset_paddrs_ring_64,
3235 };
3236 
3237 static const struct ath10k_htt_rx_ops htt_rx_ops_hl = {
3238 };
3239 
3240 void ath10k_htt_set_rx_ops(struct ath10k_htt *htt)
3241 {
3242 	struct ath10k *ar = htt->ar;
3243 
3244 	if (ar->dev_type == ATH10K_DEV_TYPE_HL)
3245 		htt->rx_ops = &htt_rx_ops_hl;
3246 	else if (ar->hw_params.target_64bit)
3247 		htt->rx_ops = &htt_rx_ops_64;
3248 	else
3249 		htt->rx_ops = &htt_rx_ops_32;
3250 }
3251