1 /*
2  * Copyright (c) 2005-2011 Atheros Communications Inc.
3  * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17 
18 #include "core.h"
19 #include "htc.h"
20 #include "htt.h"
21 #include "txrx.h"
22 #include "debug.h"
23 #include "trace.h"
24 
25 #include <linux/log2.h>
26 
27 /* slightly larger than one large A-MPDU */
28 #define HTT_RX_RING_SIZE_MIN 128
29 
30 /* roughly 20 ms @ 1 Gbps of 1500B MSDUs */
31 #define HTT_RX_RING_SIZE_MAX 2048
32 
33 #define HTT_RX_AVG_FRM_BYTES 1000
34 
35 /* ms, very conservative */
36 #define HTT_RX_HOST_LATENCY_MAX_MS 20
37 
38 /* ms, conservative */
39 #define HTT_RX_HOST_LATENCY_WORST_LIKELY_MS 10
40 
41 /* when under memory pressure rx ring refill may fail and needs a retry */
42 #define HTT_RX_RING_REFILL_RETRY_MS 50
43 
44 
45 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb);
46 static void ath10k_htt_txrx_compl_task(unsigned long ptr);
47 
48 static int ath10k_htt_rx_ring_size(struct ath10k_htt *htt)
49 {
50 	int size;
51 
52 	/*
53 	 * It is expected that the host CPU will typically be able to
54 	 * service the rx indication from one A-MPDU before the rx
55 	 * indication from the subsequent A-MPDU happens, roughly 1-2 ms
56 	 * later. However, the rx ring should be sized very conservatively,
57 	 * to accomodate the worst reasonable delay before the host CPU
58 	 * services a rx indication interrupt.
59 	 *
60 	 * The rx ring need not be kept full of empty buffers. In theory,
61 	 * the htt host SW can dynamically track the low-water mark in the
62 	 * rx ring, and dynamically adjust the level to which the rx ring
63 	 * is filled with empty buffers, to dynamically meet the desired
64 	 * low-water mark.
65 	 *
66 	 * In contrast, it's difficult to resize the rx ring itself, once
67 	 * it's in use. Thus, the ring itself should be sized very
68 	 * conservatively, while the degree to which the ring is filled
69 	 * with empty buffers should be sized moderately conservatively.
70 	 */
71 
72 	/* 1e6 bps/mbps / 1e3 ms per sec = 1000 */
73 	size =
74 	    htt->max_throughput_mbps +
75 	    1000  /
76 	    (8 * HTT_RX_AVG_FRM_BYTES) * HTT_RX_HOST_LATENCY_MAX_MS;
77 
78 	if (size < HTT_RX_RING_SIZE_MIN)
79 		size = HTT_RX_RING_SIZE_MIN;
80 
81 	if (size > HTT_RX_RING_SIZE_MAX)
82 		size = HTT_RX_RING_SIZE_MAX;
83 
84 	size = roundup_pow_of_two(size);
85 
86 	return size;
87 }
88 
89 static int ath10k_htt_rx_ring_fill_level(struct ath10k_htt *htt)
90 {
91 	int size;
92 
93 	/* 1e6 bps/mbps / 1e3 ms per sec = 1000 */
94 	size =
95 	    htt->max_throughput_mbps *
96 	    1000  /
97 	    (8 * HTT_RX_AVG_FRM_BYTES) * HTT_RX_HOST_LATENCY_WORST_LIKELY_MS;
98 
99 	/*
100 	 * Make sure the fill level is at least 1 less than the ring size.
101 	 * Leaving 1 element empty allows the SW to easily distinguish
102 	 * between a full ring vs. an empty ring.
103 	 */
104 	if (size >= htt->rx_ring.size)
105 		size = htt->rx_ring.size - 1;
106 
107 	return size;
108 }
109 
110 static void ath10k_htt_rx_ring_free(struct ath10k_htt *htt)
111 {
112 	struct sk_buff *skb;
113 	struct ath10k_skb_cb *cb;
114 	int i;
115 
116 	for (i = 0; i < htt->rx_ring.fill_cnt; i++) {
117 		skb = htt->rx_ring.netbufs_ring[i];
118 		cb = ATH10K_SKB_CB(skb);
119 		dma_unmap_single(htt->ar->dev, cb->paddr,
120 				 skb->len + skb_tailroom(skb),
121 				 DMA_FROM_DEVICE);
122 		dev_kfree_skb_any(skb);
123 	}
124 
125 	htt->rx_ring.fill_cnt = 0;
126 }
127 
128 static int __ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
129 {
130 	struct htt_rx_desc *rx_desc;
131 	struct sk_buff *skb;
132 	dma_addr_t paddr;
133 	int ret = 0, idx;
134 
135 	idx = __le32_to_cpu(*(htt->rx_ring.alloc_idx.vaddr));
136 	while (num > 0) {
137 		skb = dev_alloc_skb(HTT_RX_BUF_SIZE + HTT_RX_DESC_ALIGN);
138 		if (!skb) {
139 			ret = -ENOMEM;
140 			goto fail;
141 		}
142 
143 		if (!IS_ALIGNED((unsigned long)skb->data, HTT_RX_DESC_ALIGN))
144 			skb_pull(skb,
145 				 PTR_ALIGN(skb->data, HTT_RX_DESC_ALIGN) -
146 				 skb->data);
147 
148 		/* Clear rx_desc attention word before posting to Rx ring */
149 		rx_desc = (struct htt_rx_desc *)skb->data;
150 		rx_desc->attention.flags = __cpu_to_le32(0);
151 
152 		paddr = dma_map_single(htt->ar->dev, skb->data,
153 				       skb->len + skb_tailroom(skb),
154 				       DMA_FROM_DEVICE);
155 
156 		if (unlikely(dma_mapping_error(htt->ar->dev, paddr))) {
157 			dev_kfree_skb_any(skb);
158 			ret = -ENOMEM;
159 			goto fail;
160 		}
161 
162 		ATH10K_SKB_CB(skb)->paddr = paddr;
163 		htt->rx_ring.netbufs_ring[idx] = skb;
164 		htt->rx_ring.paddrs_ring[idx] = __cpu_to_le32(paddr);
165 		htt->rx_ring.fill_cnt++;
166 
167 		num--;
168 		idx++;
169 		idx &= htt->rx_ring.size_mask;
170 	}
171 
172 fail:
173 	*(htt->rx_ring.alloc_idx.vaddr) = __cpu_to_le32(idx);
174 	return ret;
175 }
176 
177 static int ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
178 {
179 	lockdep_assert_held(&htt->rx_ring.lock);
180 	return __ath10k_htt_rx_ring_fill_n(htt, num);
181 }
182 
183 static void ath10k_htt_rx_msdu_buff_replenish(struct ath10k_htt *htt)
184 {
185 	int ret, num_deficit, num_to_fill;
186 
187 	/* Refilling the whole RX ring buffer proves to be a bad idea. The
188 	 * reason is RX may take up significant amount of CPU cycles and starve
189 	 * other tasks, e.g. TX on an ethernet device while acting as a bridge
190 	 * with ath10k wlan interface. This ended up with very poor performance
191 	 * once CPU the host system was overwhelmed with RX on ath10k.
192 	 *
193 	 * By limiting the number of refills the replenishing occurs
194 	 * progressively. This in turns makes use of the fact tasklets are
195 	 * processed in FIFO order. This means actual RX processing can starve
196 	 * out refilling. If there's not enough buffers on RX ring FW will not
197 	 * report RX until it is refilled with enough buffers. This
198 	 * automatically balances load wrt to CPU power.
199 	 *
200 	 * This probably comes at a cost of lower maximum throughput but
201 	 * improves the avarage and stability. */
202 	spin_lock_bh(&htt->rx_ring.lock);
203 	num_deficit = htt->rx_ring.fill_level - htt->rx_ring.fill_cnt;
204 	num_to_fill = min(ATH10K_HTT_MAX_NUM_REFILL, num_deficit);
205 	num_deficit -= num_to_fill;
206 	ret = ath10k_htt_rx_ring_fill_n(htt, num_to_fill);
207 	if (ret == -ENOMEM) {
208 		/*
209 		 * Failed to fill it to the desired level -
210 		 * we'll start a timer and try again next time.
211 		 * As long as enough buffers are left in the ring for
212 		 * another A-MPDU rx, no special recovery is needed.
213 		 */
214 		mod_timer(&htt->rx_ring.refill_retry_timer, jiffies +
215 			  msecs_to_jiffies(HTT_RX_RING_REFILL_RETRY_MS));
216 	} else if (num_deficit > 0) {
217 		tasklet_schedule(&htt->rx_replenish_task);
218 	}
219 	spin_unlock_bh(&htt->rx_ring.lock);
220 }
221 
222 static void ath10k_htt_rx_ring_refill_retry(unsigned long arg)
223 {
224 	struct ath10k_htt *htt = (struct ath10k_htt *)arg;
225 	ath10k_htt_rx_msdu_buff_replenish(htt);
226 }
227 
228 static void ath10k_htt_rx_ring_clean_up(struct ath10k_htt *htt)
229 {
230 	struct sk_buff *skb;
231 	int i;
232 
233 	for (i = 0; i < htt->rx_ring.size; i++) {
234 		skb = htt->rx_ring.netbufs_ring[i];
235 		if (!skb)
236 			continue;
237 
238 		dma_unmap_single(htt->ar->dev, ATH10K_SKB_CB(skb)->paddr,
239 				 skb->len + skb_tailroom(skb),
240 				 DMA_FROM_DEVICE);
241 		dev_kfree_skb_any(skb);
242 		htt->rx_ring.netbufs_ring[i] = NULL;
243 	}
244 }
245 
246 void ath10k_htt_rx_free(struct ath10k_htt *htt)
247 {
248 	del_timer_sync(&htt->rx_ring.refill_retry_timer);
249 	tasklet_kill(&htt->rx_replenish_task);
250 	tasklet_kill(&htt->txrx_compl_task);
251 
252 	skb_queue_purge(&htt->tx_compl_q);
253 	skb_queue_purge(&htt->rx_compl_q);
254 
255 	ath10k_htt_rx_ring_clean_up(htt);
256 
257 	dma_free_coherent(htt->ar->dev,
258 			  (htt->rx_ring.size *
259 			   sizeof(htt->rx_ring.paddrs_ring)),
260 			  htt->rx_ring.paddrs_ring,
261 			  htt->rx_ring.base_paddr);
262 
263 	dma_free_coherent(htt->ar->dev,
264 			  sizeof(*htt->rx_ring.alloc_idx.vaddr),
265 			  htt->rx_ring.alloc_idx.vaddr,
266 			  htt->rx_ring.alloc_idx.paddr);
267 
268 	kfree(htt->rx_ring.netbufs_ring);
269 }
270 
271 static inline struct sk_buff *ath10k_htt_rx_netbuf_pop(struct ath10k_htt *htt)
272 {
273 	int idx;
274 	struct sk_buff *msdu;
275 
276 	lockdep_assert_held(&htt->rx_ring.lock);
277 
278 	if (htt->rx_ring.fill_cnt == 0) {
279 		ath10k_warn("tried to pop sk_buff from an empty rx ring\n");
280 		return NULL;
281 	}
282 
283 	idx = htt->rx_ring.sw_rd_idx.msdu_payld;
284 	msdu = htt->rx_ring.netbufs_ring[idx];
285 	htt->rx_ring.netbufs_ring[idx] = NULL;
286 
287 	idx++;
288 	idx &= htt->rx_ring.size_mask;
289 	htt->rx_ring.sw_rd_idx.msdu_payld = idx;
290 	htt->rx_ring.fill_cnt--;
291 
292 	return msdu;
293 }
294 
295 static void ath10k_htt_rx_free_msdu_chain(struct sk_buff *skb)
296 {
297 	struct sk_buff *next;
298 
299 	while (skb) {
300 		next = skb->next;
301 		dev_kfree_skb_any(skb);
302 		skb = next;
303 	}
304 }
305 
306 /* return: < 0 fatal error, 0 - non chained msdu, 1 chained msdu */
307 static int ath10k_htt_rx_amsdu_pop(struct ath10k_htt *htt,
308 				   u8 **fw_desc, int *fw_desc_len,
309 				   struct sk_buff **head_msdu,
310 				   struct sk_buff **tail_msdu)
311 {
312 	int msdu_len, msdu_chaining = 0;
313 	struct sk_buff *msdu;
314 	struct htt_rx_desc *rx_desc;
315 	bool corrupted = false;
316 
317 	lockdep_assert_held(&htt->rx_ring.lock);
318 
319 	if (htt->rx_confused) {
320 		ath10k_warn("htt is confused. refusing rx\n");
321 		return -1;
322 	}
323 
324 	msdu = *head_msdu = ath10k_htt_rx_netbuf_pop(htt);
325 	while (msdu) {
326 		int last_msdu, msdu_len_invalid, msdu_chained;
327 
328 		dma_unmap_single(htt->ar->dev,
329 				 ATH10K_SKB_CB(msdu)->paddr,
330 				 msdu->len + skb_tailroom(msdu),
331 				 DMA_FROM_DEVICE);
332 
333 		ath10k_dbg_dump(ATH10K_DBG_HTT_DUMP, NULL, "htt rx pop: ",
334 				msdu->data, msdu->len + skb_tailroom(msdu));
335 
336 		rx_desc = (struct htt_rx_desc *)msdu->data;
337 
338 		/* FIXME: we must report msdu payload since this is what caller
339 		 *        expects now */
340 		skb_put(msdu, offsetof(struct htt_rx_desc, msdu_payload));
341 		skb_pull(msdu, offsetof(struct htt_rx_desc, msdu_payload));
342 
343 		/*
344 		 * Sanity check - confirm the HW is finished filling in the
345 		 * rx data.
346 		 * If the HW and SW are working correctly, then it's guaranteed
347 		 * that the HW's MAC DMA is done before this point in the SW.
348 		 * To prevent the case that we handle a stale Rx descriptor,
349 		 * just assert for now until we have a way to recover.
350 		 */
351 		if (!(__le32_to_cpu(rx_desc->attention.flags)
352 				& RX_ATTENTION_FLAGS_MSDU_DONE)) {
353 			ath10k_htt_rx_free_msdu_chain(*head_msdu);
354 			*head_msdu = NULL;
355 			msdu = NULL;
356 			ath10k_err("htt rx stopped. cannot recover\n");
357 			htt->rx_confused = true;
358 			break;
359 		}
360 
361 		/*
362 		 * Copy the FW rx descriptor for this MSDU from the rx
363 		 * indication message into the MSDU's netbuf. HL uses the
364 		 * same rx indication message definition as LL, and simply
365 		 * appends new info (fields from the HW rx desc, and the
366 		 * MSDU payload itself). So, the offset into the rx
367 		 * indication message only has to account for the standard
368 		 * offset of the per-MSDU FW rx desc info within the
369 		 * message, and how many bytes of the per-MSDU FW rx desc
370 		 * info have already been consumed. (And the endianness of
371 		 * the host, since for a big-endian host, the rx ind
372 		 * message contents, including the per-MSDU rx desc bytes,
373 		 * were byteswapped during upload.)
374 		 */
375 		if (*fw_desc_len > 0) {
376 			rx_desc->fw_desc.info0 = **fw_desc;
377 			/*
378 			 * The target is expected to only provide the basic
379 			 * per-MSDU rx descriptors. Just to be sure, verify
380 			 * that the target has not attached extension data
381 			 * (e.g. LRO flow ID).
382 			 */
383 
384 			/* or more, if there's extension data */
385 			(*fw_desc)++;
386 			(*fw_desc_len)--;
387 		} else {
388 			/*
389 			 * When an oversized AMSDU happened, FW will lost
390 			 * some of MSDU status - in this case, the FW
391 			 * descriptors provided will be less than the
392 			 * actual MSDUs inside this MPDU. Mark the FW
393 			 * descriptors so that it will still deliver to
394 			 * upper stack, if no CRC error for this MPDU.
395 			 *
396 			 * FIX THIS - the FW descriptors are actually for
397 			 * MSDUs in the end of this A-MSDU instead of the
398 			 * beginning.
399 			 */
400 			rx_desc->fw_desc.info0 = 0;
401 		}
402 
403 		msdu_len_invalid = !!(__le32_to_cpu(rx_desc->attention.flags)
404 					& (RX_ATTENTION_FLAGS_MPDU_LENGTH_ERR |
405 					   RX_ATTENTION_FLAGS_MSDU_LENGTH_ERR));
406 		msdu_len = MS(__le32_to_cpu(rx_desc->msdu_start.info0),
407 			      RX_MSDU_START_INFO0_MSDU_LENGTH);
408 		msdu_chained = rx_desc->frag_info.ring2_more_count;
409 
410 		if (msdu_len_invalid)
411 			msdu_len = 0;
412 
413 		skb_trim(msdu, 0);
414 		skb_put(msdu, min(msdu_len, HTT_RX_MSDU_SIZE));
415 		msdu_len -= msdu->len;
416 
417 		/* FIXME: Do chained buffers include htt_rx_desc or not? */
418 		while (msdu_chained--) {
419 			struct sk_buff *next = ath10k_htt_rx_netbuf_pop(htt);
420 
421 			dma_unmap_single(htt->ar->dev,
422 					 ATH10K_SKB_CB(next)->paddr,
423 					 next->len + skb_tailroom(next),
424 					 DMA_FROM_DEVICE);
425 
426 			ath10k_dbg_dump(ATH10K_DBG_HTT_DUMP, NULL,
427 					"htt rx chained: ", next->data,
428 					next->len + skb_tailroom(next));
429 
430 			skb_trim(next, 0);
431 			skb_put(next, min(msdu_len, HTT_RX_BUF_SIZE));
432 			msdu_len -= next->len;
433 
434 			msdu->next = next;
435 			msdu = next;
436 			msdu_chaining = 1;
437 		}
438 
439 		last_msdu = __le32_to_cpu(rx_desc->msdu_end.info0) &
440 				RX_MSDU_END_INFO0_LAST_MSDU;
441 
442 		if (msdu_chaining && !last_msdu)
443 			corrupted = true;
444 
445 		if (last_msdu) {
446 			msdu->next = NULL;
447 			break;
448 		} else {
449 			struct sk_buff *next = ath10k_htt_rx_netbuf_pop(htt);
450 			msdu->next = next;
451 			msdu = next;
452 		}
453 	}
454 	*tail_msdu = msdu;
455 
456 	if (*head_msdu == NULL)
457 		msdu_chaining = -1;
458 
459 	/*
460 	 * Apparently FW sometimes reports weird chained MSDU sequences with
461 	 * more than one rx descriptor. This seems like a bug but needs more
462 	 * analyzing. For the time being fix it by dropping such sequences to
463 	 * avoid blowing up the host system.
464 	 */
465 	if (corrupted) {
466 		ath10k_warn("failed to pop chained msdus, dropping\n");
467 		ath10k_htt_rx_free_msdu_chain(*head_msdu);
468 		*head_msdu = NULL;
469 		*tail_msdu = NULL;
470 		msdu_chaining = -EINVAL;
471 	}
472 
473 	/*
474 	 * Don't refill the ring yet.
475 	 *
476 	 * First, the elements popped here are still in use - it is not
477 	 * safe to overwrite them until the matching call to
478 	 * mpdu_desc_list_next. Second, for efficiency it is preferable to
479 	 * refill the rx ring with 1 PPDU's worth of rx buffers (something
480 	 * like 32 x 3 buffers), rather than one MPDU's worth of rx buffers
481 	 * (something like 3 buffers). Consequently, we'll rely on the txrx
482 	 * SW to tell us when it is done pulling all the PPDU's rx buffers
483 	 * out of the rx ring, and then refill it just once.
484 	 */
485 
486 	return msdu_chaining;
487 }
488 
489 static void ath10k_htt_rx_replenish_task(unsigned long ptr)
490 {
491 	struct ath10k_htt *htt = (struct ath10k_htt *)ptr;
492 	ath10k_htt_rx_msdu_buff_replenish(htt);
493 }
494 
495 int ath10k_htt_rx_alloc(struct ath10k_htt *htt)
496 {
497 	dma_addr_t paddr;
498 	void *vaddr;
499 	struct timer_list *timer = &htt->rx_ring.refill_retry_timer;
500 
501 	htt->rx_ring.size = ath10k_htt_rx_ring_size(htt);
502 	if (!is_power_of_2(htt->rx_ring.size)) {
503 		ath10k_warn("htt rx ring size is not power of 2\n");
504 		return -EINVAL;
505 	}
506 
507 	htt->rx_ring.size_mask = htt->rx_ring.size - 1;
508 
509 	/*
510 	 * Set the initial value for the level to which the rx ring
511 	 * should be filled, based on the max throughput and the
512 	 * worst likely latency for the host to fill the rx ring
513 	 * with new buffers. In theory, this fill level can be
514 	 * dynamically adjusted from the initial value set here, to
515 	 * reflect the actual host latency rather than a
516 	 * conservative assumption about the host latency.
517 	 */
518 	htt->rx_ring.fill_level = ath10k_htt_rx_ring_fill_level(htt);
519 
520 	htt->rx_ring.netbufs_ring =
521 		kzalloc(htt->rx_ring.size * sizeof(struct sk_buff *),
522 			GFP_KERNEL);
523 	if (!htt->rx_ring.netbufs_ring)
524 		goto err_netbuf;
525 
526 	vaddr = dma_alloc_coherent(htt->ar->dev,
527 		   (htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring)),
528 		   &paddr, GFP_DMA);
529 	if (!vaddr)
530 		goto err_dma_ring;
531 
532 	htt->rx_ring.paddrs_ring = vaddr;
533 	htt->rx_ring.base_paddr = paddr;
534 
535 	vaddr = dma_alloc_coherent(htt->ar->dev,
536 				   sizeof(*htt->rx_ring.alloc_idx.vaddr),
537 				   &paddr, GFP_DMA);
538 	if (!vaddr)
539 		goto err_dma_idx;
540 
541 	htt->rx_ring.alloc_idx.vaddr = vaddr;
542 	htt->rx_ring.alloc_idx.paddr = paddr;
543 	htt->rx_ring.sw_rd_idx.msdu_payld = 0;
544 	*htt->rx_ring.alloc_idx.vaddr = 0;
545 
546 	/* Initialize the Rx refill retry timer */
547 	setup_timer(timer, ath10k_htt_rx_ring_refill_retry, (unsigned long)htt);
548 
549 	spin_lock_init(&htt->rx_ring.lock);
550 
551 	htt->rx_ring.fill_cnt = 0;
552 	if (__ath10k_htt_rx_ring_fill_n(htt, htt->rx_ring.fill_level))
553 		goto err_fill_ring;
554 
555 	tasklet_init(&htt->rx_replenish_task, ath10k_htt_rx_replenish_task,
556 		     (unsigned long)htt);
557 
558 	skb_queue_head_init(&htt->tx_compl_q);
559 	skb_queue_head_init(&htt->rx_compl_q);
560 
561 	tasklet_init(&htt->txrx_compl_task, ath10k_htt_txrx_compl_task,
562 		     (unsigned long)htt);
563 
564 	ath10k_dbg(ATH10K_DBG_BOOT, "htt rx ring size %d fill_level %d\n",
565 		   htt->rx_ring.size, htt->rx_ring.fill_level);
566 	return 0;
567 
568 err_fill_ring:
569 	ath10k_htt_rx_ring_free(htt);
570 	dma_free_coherent(htt->ar->dev,
571 			  sizeof(*htt->rx_ring.alloc_idx.vaddr),
572 			  htt->rx_ring.alloc_idx.vaddr,
573 			  htt->rx_ring.alloc_idx.paddr);
574 err_dma_idx:
575 	dma_free_coherent(htt->ar->dev,
576 			  (htt->rx_ring.size *
577 			   sizeof(htt->rx_ring.paddrs_ring)),
578 			  htt->rx_ring.paddrs_ring,
579 			  htt->rx_ring.base_paddr);
580 err_dma_ring:
581 	kfree(htt->rx_ring.netbufs_ring);
582 err_netbuf:
583 	return -ENOMEM;
584 }
585 
586 static int ath10k_htt_rx_crypto_param_len(enum htt_rx_mpdu_encrypt_type type)
587 {
588 	switch (type) {
589 	case HTT_RX_MPDU_ENCRYPT_WEP40:
590 	case HTT_RX_MPDU_ENCRYPT_WEP104:
591 		return 4;
592 	case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
593 	case HTT_RX_MPDU_ENCRYPT_WEP128: /* not tested */
594 	case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
595 	case HTT_RX_MPDU_ENCRYPT_WAPI: /* not tested */
596 	case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
597 		return 8;
598 	case HTT_RX_MPDU_ENCRYPT_NONE:
599 		return 0;
600 	}
601 
602 	ath10k_warn("unknown encryption type %d\n", type);
603 	return 0;
604 }
605 
606 static int ath10k_htt_rx_crypto_tail_len(enum htt_rx_mpdu_encrypt_type type)
607 {
608 	switch (type) {
609 	case HTT_RX_MPDU_ENCRYPT_NONE:
610 	case HTT_RX_MPDU_ENCRYPT_WEP40:
611 	case HTT_RX_MPDU_ENCRYPT_WEP104:
612 	case HTT_RX_MPDU_ENCRYPT_WEP128:
613 	case HTT_RX_MPDU_ENCRYPT_WAPI:
614 		return 0;
615 	case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
616 	case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
617 		return 4;
618 	case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
619 		return 8;
620 	}
621 
622 	ath10k_warn("unknown encryption type %d\n", type);
623 	return 0;
624 }
625 
626 /* Applies for first msdu in chain, before altering it. */
627 static struct ieee80211_hdr *ath10k_htt_rx_skb_get_hdr(struct sk_buff *skb)
628 {
629 	struct htt_rx_desc *rxd;
630 	enum rx_msdu_decap_format fmt;
631 
632 	rxd = (void *)skb->data - sizeof(*rxd);
633 	fmt = MS(__le32_to_cpu(rxd->msdu_start.info1),
634 			RX_MSDU_START_INFO1_DECAP_FORMAT);
635 
636 	if (fmt == RX_MSDU_DECAP_RAW)
637 		return (void *)skb->data;
638 	else
639 		return (void *)skb->data - RX_HTT_HDR_STATUS_LEN;
640 }
641 
642 /* This function only applies for first msdu in an msdu chain */
643 static bool ath10k_htt_rx_hdr_is_amsdu(struct ieee80211_hdr *hdr)
644 {
645 	if (ieee80211_is_data_qos(hdr->frame_control)) {
646 		u8 *qc = ieee80211_get_qos_ctl(hdr);
647 		if (qc[0] & 0x80)
648 			return true;
649 	}
650 	return false;
651 }
652 
653 struct rfc1042_hdr {
654 	u8 llc_dsap;
655 	u8 llc_ssap;
656 	u8 llc_ctrl;
657 	u8 snap_oui[3];
658 	__be16 snap_type;
659 } __packed;
660 
661 struct amsdu_subframe_hdr {
662 	u8 dst[ETH_ALEN];
663 	u8 src[ETH_ALEN];
664 	__be16 len;
665 } __packed;
666 
667 static const u8 rx_legacy_rate_idx[] = {
668 	3,	/* 0x00  - 11Mbps  */
669 	2,	/* 0x01  - 5.5Mbps */
670 	1,	/* 0x02  - 2Mbps   */
671 	0,	/* 0x03  - 1Mbps   */
672 	3,	/* 0x04  - 11Mbps  */
673 	2,	/* 0x05  - 5.5Mbps */
674 	1,	/* 0x06  - 2Mbps   */
675 	0,	/* 0x07  - 1Mbps   */
676 	10,	/* 0x08  - 48Mbps  */
677 	8,	/* 0x09  - 24Mbps  */
678 	6,	/* 0x0A  - 12Mbps  */
679 	4,	/* 0x0B  - 6Mbps   */
680 	11,	/* 0x0C  - 54Mbps  */
681 	9,	/* 0x0D  - 36Mbps  */
682 	7,	/* 0x0E  - 18Mbps  */
683 	5,	/* 0x0F  - 9Mbps   */
684 };
685 
686 static void ath10k_htt_rx_h_rates(struct ath10k *ar,
687 				  enum ieee80211_band band,
688 				  u8 info0, u32 info1, u32 info2,
689 				  struct ieee80211_rx_status *status)
690 {
691 	u8 cck, rate, rate_idx, bw, sgi, mcs, nss;
692 	u8 preamble = 0;
693 
694 	/* Check if valid fields */
695 	if (!(info0 & HTT_RX_INDICATION_INFO0_START_VALID))
696 		return;
697 
698 	preamble = MS(info1, HTT_RX_INDICATION_INFO1_PREAMBLE_TYPE);
699 
700 	switch (preamble) {
701 	case HTT_RX_LEGACY:
702 		cck = info0 & HTT_RX_INDICATION_INFO0_LEGACY_RATE_CCK;
703 		rate = MS(info0, HTT_RX_INDICATION_INFO0_LEGACY_RATE);
704 		rate_idx = 0;
705 
706 		if (rate < 0x08 || rate > 0x0F)
707 			break;
708 
709 		switch (band) {
710 		case IEEE80211_BAND_2GHZ:
711 			if (cck)
712 				rate &= ~BIT(3);
713 			rate_idx = rx_legacy_rate_idx[rate];
714 			break;
715 		case IEEE80211_BAND_5GHZ:
716 			rate_idx = rx_legacy_rate_idx[rate];
717 			/* We are using same rate table registering
718 			   HW - ath10k_rates[]. In case of 5GHz skip
719 			   CCK rates, so -4 here */
720 			rate_idx -= 4;
721 			break;
722 		default:
723 			break;
724 		}
725 
726 		status->rate_idx = rate_idx;
727 		break;
728 	case HTT_RX_HT:
729 	case HTT_RX_HT_WITH_TXBF:
730 		/* HT-SIG - Table 20-11 in info1 and info2 */
731 		mcs = info1 & 0x1F;
732 		nss = mcs >> 3;
733 		bw = (info1 >> 7) & 1;
734 		sgi = (info2 >> 7) & 1;
735 
736 		status->rate_idx = mcs;
737 		status->flag |= RX_FLAG_HT;
738 		if (sgi)
739 			status->flag |= RX_FLAG_SHORT_GI;
740 		if (bw)
741 			status->flag |= RX_FLAG_40MHZ;
742 		break;
743 	case HTT_RX_VHT:
744 	case HTT_RX_VHT_WITH_TXBF:
745 		/* VHT-SIG-A1 in info 1, VHT-SIG-A2 in info2
746 		   TODO check this */
747 		mcs = (info2 >> 4) & 0x0F;
748 		nss = ((info1 >> 10) & 0x07) + 1;
749 		bw = info1 & 3;
750 		sgi = info2 & 1;
751 
752 		status->rate_idx = mcs;
753 		status->vht_nss = nss;
754 
755 		if (sgi)
756 			status->flag |= RX_FLAG_SHORT_GI;
757 
758 		switch (bw) {
759 		/* 20MHZ */
760 		case 0:
761 			break;
762 		/* 40MHZ */
763 		case 1:
764 			status->flag |= RX_FLAG_40MHZ;
765 			break;
766 		/* 80MHZ */
767 		case 2:
768 			status->vht_flag |= RX_VHT_FLAG_80MHZ;
769 		}
770 
771 		status->flag |= RX_FLAG_VHT;
772 		break;
773 	default:
774 		break;
775 	}
776 }
777 
778 static void ath10k_htt_rx_h_protected(struct ath10k_htt *htt,
779 				      struct ieee80211_rx_status *rx_status,
780 				      struct sk_buff *skb,
781 				      enum htt_rx_mpdu_encrypt_type enctype,
782 				      enum rx_msdu_decap_format fmt,
783 				      bool dot11frag)
784 {
785 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
786 
787 	rx_status->flag &= ~(RX_FLAG_DECRYPTED |
788 			     RX_FLAG_IV_STRIPPED |
789 			     RX_FLAG_MMIC_STRIPPED);
790 
791 	if (enctype == HTT_RX_MPDU_ENCRYPT_NONE)
792 		return;
793 
794 	/*
795 	 * There's no explicit rx descriptor flag to indicate whether a given
796 	 * frame has been decrypted or not. We're forced to use the decap
797 	 * format as an implicit indication. However fragmentation rx is always
798 	 * raw and it probably never reports undecrypted raws.
799 	 *
800 	 * This makes sure sniffed frames are reported as-is without stripping
801 	 * the protected flag.
802 	 */
803 	if (fmt == RX_MSDU_DECAP_RAW && !dot11frag)
804 		return;
805 
806 	rx_status->flag |= RX_FLAG_DECRYPTED |
807 			   RX_FLAG_IV_STRIPPED |
808 			   RX_FLAG_MMIC_STRIPPED;
809 	hdr->frame_control = __cpu_to_le16(__le16_to_cpu(hdr->frame_control) &
810 					   ~IEEE80211_FCTL_PROTECTED);
811 }
812 
813 static bool ath10k_htt_rx_h_channel(struct ath10k *ar,
814 				    struct ieee80211_rx_status *status)
815 {
816 	struct ieee80211_channel *ch;
817 
818 	spin_lock_bh(&ar->data_lock);
819 	ch = ar->scan_channel;
820 	if (!ch)
821 		ch = ar->rx_channel;
822 	spin_unlock_bh(&ar->data_lock);
823 
824 	if (!ch)
825 		return false;
826 
827 	status->band = ch->band;
828 	status->freq = ch->center_freq;
829 
830 	return true;
831 }
832 
833 static void ath10k_process_rx(struct ath10k *ar,
834 			      struct ieee80211_rx_status *rx_status,
835 			      struct sk_buff *skb)
836 {
837 	struct ieee80211_rx_status *status;
838 
839 	status = IEEE80211_SKB_RXCB(skb);
840 	*status = *rx_status;
841 
842 	ath10k_dbg(ATH10K_DBG_DATA,
843 		   "rx skb %p len %u %s%s%s%s%s %srate_idx %u vht_nss %u freq %u band %u flag 0x%x fcs-err %imic-err %i\n",
844 		   skb,
845 		   skb->len,
846 		   status->flag == 0 ? "legacy" : "",
847 		   status->flag & RX_FLAG_HT ? "ht" : "",
848 		   status->flag & RX_FLAG_VHT ? "vht" : "",
849 		   status->flag & RX_FLAG_40MHZ ? "40" : "",
850 		   status->vht_flag & RX_VHT_FLAG_80MHZ ? "80" : "",
851 		   status->flag & RX_FLAG_SHORT_GI ? "sgi " : "",
852 		   status->rate_idx,
853 		   status->vht_nss,
854 		   status->freq,
855 		   status->band, status->flag,
856 		   !!(status->flag & RX_FLAG_FAILED_FCS_CRC),
857 		   !!(status->flag & RX_FLAG_MMIC_ERROR));
858 	ath10k_dbg_dump(ATH10K_DBG_HTT_DUMP, NULL, "rx skb: ",
859 			skb->data, skb->len);
860 
861 	ieee80211_rx(ar->hw, skb);
862 }
863 
864 static int ath10k_htt_rx_nwifi_hdrlen(struct ieee80211_hdr *hdr)
865 {
866 	/* nwifi header is padded to 4 bytes. this fixes 4addr rx */
867 	return round_up(ieee80211_hdrlen(hdr->frame_control), 4);
868 }
869 
870 static void ath10k_htt_rx_amsdu(struct ath10k_htt *htt,
871 				struct ieee80211_rx_status *rx_status,
872 				struct sk_buff *skb_in)
873 {
874 	struct htt_rx_desc *rxd;
875 	struct sk_buff *skb = skb_in;
876 	struct sk_buff *first;
877 	enum rx_msdu_decap_format fmt;
878 	enum htt_rx_mpdu_encrypt_type enctype;
879 	struct ieee80211_hdr *hdr;
880 	u8 hdr_buf[64], addr[ETH_ALEN], *qos;
881 	unsigned int hdr_len;
882 
883 	rxd = (void *)skb->data - sizeof(*rxd);
884 	enctype = MS(__le32_to_cpu(rxd->mpdu_start.info0),
885 			RX_MPDU_START_INFO0_ENCRYPT_TYPE);
886 
887 	hdr = (struct ieee80211_hdr *)rxd->rx_hdr_status;
888 	hdr_len = ieee80211_hdrlen(hdr->frame_control);
889 	memcpy(hdr_buf, hdr, hdr_len);
890 	hdr = (struct ieee80211_hdr *)hdr_buf;
891 
892 	first = skb;
893 	while (skb) {
894 		void *decap_hdr;
895 		int len;
896 
897 		rxd = (void *)skb->data - sizeof(*rxd);
898 		fmt = MS(__le32_to_cpu(rxd->msdu_start.info1),
899 			 RX_MSDU_START_INFO1_DECAP_FORMAT);
900 		decap_hdr = (void *)rxd->rx_hdr_status;
901 
902 		skb->ip_summed = ath10k_htt_rx_get_csum_state(skb);
903 
904 		/* First frame in an A-MSDU chain has more decapped data. */
905 		if (skb == first) {
906 			len = round_up(ieee80211_hdrlen(hdr->frame_control), 4);
907 			len += round_up(ath10k_htt_rx_crypto_param_len(enctype),
908 					4);
909 			decap_hdr += len;
910 		}
911 
912 		switch (fmt) {
913 		case RX_MSDU_DECAP_RAW:
914 			/* remove trailing FCS */
915 			skb_trim(skb, skb->len - FCS_LEN);
916 			break;
917 		case RX_MSDU_DECAP_NATIVE_WIFI:
918 			/* pull decapped header and copy DA */
919 			hdr = (struct ieee80211_hdr *)skb->data;
920 			hdr_len = ath10k_htt_rx_nwifi_hdrlen(hdr);
921 			memcpy(addr, ieee80211_get_DA(hdr), ETH_ALEN);
922 			skb_pull(skb, hdr_len);
923 
924 			/* push original 802.11 header */
925 			hdr = (struct ieee80211_hdr *)hdr_buf;
926 			hdr_len = ieee80211_hdrlen(hdr->frame_control);
927 			memcpy(skb_push(skb, hdr_len), hdr, hdr_len);
928 
929 			/* original A-MSDU header has the bit set but we're
930 			 * not including A-MSDU subframe header */
931 			hdr = (struct ieee80211_hdr *)skb->data;
932 			qos = ieee80211_get_qos_ctl(hdr);
933 			qos[0] &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
934 
935 			/* original 802.11 header has a different DA */
936 			memcpy(ieee80211_get_DA(hdr), addr, ETH_ALEN);
937 			break;
938 		case RX_MSDU_DECAP_ETHERNET2_DIX:
939 			/* strip ethernet header and insert decapped 802.11
940 			 * header, amsdu subframe header and rfc1042 header */
941 
942 			len = 0;
943 			len += sizeof(struct rfc1042_hdr);
944 			len += sizeof(struct amsdu_subframe_hdr);
945 
946 			skb_pull(skb, sizeof(struct ethhdr));
947 			memcpy(skb_push(skb, len), decap_hdr, len);
948 			memcpy(skb_push(skb, hdr_len), hdr, hdr_len);
949 			break;
950 		case RX_MSDU_DECAP_8023_SNAP_LLC:
951 			/* insert decapped 802.11 header making a singly
952 			 * A-MSDU */
953 			memcpy(skb_push(skb, hdr_len), hdr, hdr_len);
954 			break;
955 		}
956 
957 		skb_in = skb;
958 		ath10k_htt_rx_h_protected(htt, rx_status, skb_in, enctype, fmt,
959 					  false);
960 		skb = skb->next;
961 		skb_in->next = NULL;
962 
963 		if (skb)
964 			rx_status->flag |= RX_FLAG_AMSDU_MORE;
965 		else
966 			rx_status->flag &= ~RX_FLAG_AMSDU_MORE;
967 
968 		ath10k_process_rx(htt->ar, rx_status, skb_in);
969 	}
970 
971 	/* FIXME: It might be nice to re-assemble the A-MSDU when there's a
972 	 * monitor interface active for sniffing purposes. */
973 }
974 
975 static void ath10k_htt_rx_msdu(struct ath10k_htt *htt,
976 			       struct ieee80211_rx_status *rx_status,
977 			       struct sk_buff *skb)
978 {
979 	struct htt_rx_desc *rxd;
980 	struct ieee80211_hdr *hdr;
981 	enum rx_msdu_decap_format fmt;
982 	enum htt_rx_mpdu_encrypt_type enctype;
983 	int hdr_len;
984 	void *rfc1042;
985 
986 	/* This shouldn't happen. If it does than it may be a FW bug. */
987 	if (skb->next) {
988 		ath10k_warn("htt rx received chained non A-MSDU frame\n");
989 		ath10k_htt_rx_free_msdu_chain(skb->next);
990 		skb->next = NULL;
991 	}
992 
993 	rxd = (void *)skb->data - sizeof(*rxd);
994 	fmt = MS(__le32_to_cpu(rxd->msdu_start.info1),
995 			RX_MSDU_START_INFO1_DECAP_FORMAT);
996 	enctype = MS(__le32_to_cpu(rxd->mpdu_start.info0),
997 			RX_MPDU_START_INFO0_ENCRYPT_TYPE);
998 	hdr = (struct ieee80211_hdr *)rxd->rx_hdr_status;
999 	hdr_len = ieee80211_hdrlen(hdr->frame_control);
1000 
1001 	skb->ip_summed = ath10k_htt_rx_get_csum_state(skb);
1002 
1003 	switch (fmt) {
1004 	case RX_MSDU_DECAP_RAW:
1005 		/* remove trailing FCS */
1006 		skb_trim(skb, skb->len - FCS_LEN);
1007 		break;
1008 	case RX_MSDU_DECAP_NATIVE_WIFI:
1009 		/* Pull decapped header */
1010 		hdr = (struct ieee80211_hdr *)skb->data;
1011 		hdr_len = ath10k_htt_rx_nwifi_hdrlen(hdr);
1012 		skb_pull(skb, hdr_len);
1013 
1014 		/* Push original header */
1015 		hdr = (struct ieee80211_hdr *)rxd->rx_hdr_status;
1016 		hdr_len = ieee80211_hdrlen(hdr->frame_control);
1017 		memcpy(skb_push(skb, hdr_len), hdr, hdr_len);
1018 		break;
1019 	case RX_MSDU_DECAP_ETHERNET2_DIX:
1020 		/* strip ethernet header and insert decapped 802.11 header and
1021 		 * rfc1042 header */
1022 
1023 		rfc1042 = hdr;
1024 		rfc1042 += roundup(hdr_len, 4);
1025 		rfc1042 += roundup(ath10k_htt_rx_crypto_param_len(enctype), 4);
1026 
1027 		skb_pull(skb, sizeof(struct ethhdr));
1028 		memcpy(skb_push(skb, sizeof(struct rfc1042_hdr)),
1029 		       rfc1042, sizeof(struct rfc1042_hdr));
1030 		memcpy(skb_push(skb, hdr_len), hdr, hdr_len);
1031 		break;
1032 	case RX_MSDU_DECAP_8023_SNAP_LLC:
1033 		/* remove A-MSDU subframe header and insert
1034 		 * decapped 802.11 header. rfc1042 header is already there */
1035 
1036 		skb_pull(skb, sizeof(struct amsdu_subframe_hdr));
1037 		memcpy(skb_push(skb, hdr_len), hdr, hdr_len);
1038 		break;
1039 	}
1040 
1041 	ath10k_htt_rx_h_protected(htt, rx_status, skb, enctype, fmt, false);
1042 
1043 	ath10k_process_rx(htt->ar, rx_status, skb);
1044 }
1045 
1046 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb)
1047 {
1048 	struct htt_rx_desc *rxd;
1049 	u32 flags, info;
1050 	bool is_ip4, is_ip6;
1051 	bool is_tcp, is_udp;
1052 	bool ip_csum_ok, tcpudp_csum_ok;
1053 
1054 	rxd = (void *)skb->data - sizeof(*rxd);
1055 	flags = __le32_to_cpu(rxd->attention.flags);
1056 	info = __le32_to_cpu(rxd->msdu_start.info1);
1057 
1058 	is_ip4 = !!(info & RX_MSDU_START_INFO1_IPV4_PROTO);
1059 	is_ip6 = !!(info & RX_MSDU_START_INFO1_IPV6_PROTO);
1060 	is_tcp = !!(info & RX_MSDU_START_INFO1_TCP_PROTO);
1061 	is_udp = !!(info & RX_MSDU_START_INFO1_UDP_PROTO);
1062 	ip_csum_ok = !(flags & RX_ATTENTION_FLAGS_IP_CHKSUM_FAIL);
1063 	tcpudp_csum_ok = !(flags & RX_ATTENTION_FLAGS_TCP_UDP_CHKSUM_FAIL);
1064 
1065 	if (!is_ip4 && !is_ip6)
1066 		return CHECKSUM_NONE;
1067 	if (!is_tcp && !is_udp)
1068 		return CHECKSUM_NONE;
1069 	if (!ip_csum_ok)
1070 		return CHECKSUM_NONE;
1071 	if (!tcpudp_csum_ok)
1072 		return CHECKSUM_NONE;
1073 
1074 	return CHECKSUM_UNNECESSARY;
1075 }
1076 
1077 static int ath10k_unchain_msdu(struct sk_buff *msdu_head)
1078 {
1079 	struct sk_buff *next = msdu_head->next;
1080 	struct sk_buff *to_free = next;
1081 	int space;
1082 	int total_len = 0;
1083 
1084 	/* TODO:  Might could optimize this by using
1085 	 * skb_try_coalesce or similar method to
1086 	 * decrease copying, or maybe get mac80211 to
1087 	 * provide a way to just receive a list of
1088 	 * skb?
1089 	 */
1090 
1091 	msdu_head->next = NULL;
1092 
1093 	/* Allocate total length all at once. */
1094 	while (next) {
1095 		total_len += next->len;
1096 		next = next->next;
1097 	}
1098 
1099 	space = total_len - skb_tailroom(msdu_head);
1100 	if ((space > 0) &&
1101 	    (pskb_expand_head(msdu_head, 0, space, GFP_ATOMIC) < 0)) {
1102 		/* TODO:  bump some rx-oom error stat */
1103 		/* put it back together so we can free the
1104 		 * whole list at once.
1105 		 */
1106 		msdu_head->next = to_free;
1107 		return -1;
1108 	}
1109 
1110 	/* Walk list again, copying contents into
1111 	 * msdu_head
1112 	 */
1113 	next = to_free;
1114 	while (next) {
1115 		skb_copy_from_linear_data(next, skb_put(msdu_head, next->len),
1116 					  next->len);
1117 		next = next->next;
1118 	}
1119 
1120 	/* If here, we have consolidated skb.  Free the
1121 	 * fragments and pass the main skb on up the
1122 	 * stack.
1123 	 */
1124 	ath10k_htt_rx_free_msdu_chain(to_free);
1125 	return 0;
1126 }
1127 
1128 static bool ath10k_htt_rx_amsdu_allowed(struct ath10k_htt *htt,
1129 					struct sk_buff *head,
1130 					enum htt_rx_mpdu_status status,
1131 					bool channel_set,
1132 					u32 attention)
1133 {
1134 	if (head->len == 0) {
1135 		ath10k_dbg(ATH10K_DBG_HTT,
1136 			   "htt rx dropping due to zero-len\n");
1137 		return false;
1138 	}
1139 
1140 	if (attention & RX_ATTENTION_FLAGS_DECRYPT_ERR) {
1141 		ath10k_dbg(ATH10K_DBG_HTT,
1142 			   "htt rx dropping due to decrypt-err\n");
1143 		return false;
1144 	}
1145 
1146 	if (!channel_set) {
1147 		ath10k_warn("no channel configured; ignoring frame!\n");
1148 		return false;
1149 	}
1150 
1151 	/* Skip mgmt frames while we handle this in WMI */
1152 	if (status == HTT_RX_IND_MPDU_STATUS_MGMT_CTRL ||
1153 	    attention & RX_ATTENTION_FLAGS_MGMT_TYPE) {
1154 		ath10k_dbg(ATH10K_DBG_HTT, "htt rx mgmt ctrl\n");
1155 		return false;
1156 	}
1157 
1158 	if (status != HTT_RX_IND_MPDU_STATUS_OK &&
1159 	    status != HTT_RX_IND_MPDU_STATUS_TKIP_MIC_ERR &&
1160 	    status != HTT_RX_IND_MPDU_STATUS_ERR_INV_PEER &&
1161 	    !htt->ar->monitor_started) {
1162 		ath10k_dbg(ATH10K_DBG_HTT,
1163 			   "htt rx ignoring frame w/ status %d\n",
1164 			   status);
1165 		return false;
1166 	}
1167 
1168 	if (test_bit(ATH10K_CAC_RUNNING, &htt->ar->dev_flags)) {
1169 		ath10k_dbg(ATH10K_DBG_HTT,
1170 			   "htt rx CAC running\n");
1171 		return false;
1172 	}
1173 
1174 	return true;
1175 }
1176 
1177 static void ath10k_htt_rx_handler(struct ath10k_htt *htt,
1178 				  struct htt_rx_indication *rx)
1179 {
1180 	struct ieee80211_rx_status *rx_status = &htt->rx_status;
1181 	struct htt_rx_indication_mpdu_range *mpdu_ranges;
1182 	struct htt_rx_desc *rxd;
1183 	enum htt_rx_mpdu_status status;
1184 	struct ieee80211_hdr *hdr;
1185 	int num_mpdu_ranges;
1186 	u32 attention;
1187 	int fw_desc_len;
1188 	u8 *fw_desc;
1189 	bool channel_set;
1190 	int i, j;
1191 	int ret;
1192 
1193 	lockdep_assert_held(&htt->rx_ring.lock);
1194 
1195 	fw_desc_len = __le16_to_cpu(rx->prefix.fw_rx_desc_bytes);
1196 	fw_desc = (u8 *)&rx->fw_desc;
1197 
1198 	num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1),
1199 			     HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES);
1200 	mpdu_ranges = htt_rx_ind_get_mpdu_ranges(rx);
1201 
1202 	/* Fill this once, while this is per-ppdu */
1203 	if (rx->ppdu.info0 & HTT_RX_INDICATION_INFO0_START_VALID) {
1204 		memset(rx_status, 0, sizeof(*rx_status));
1205 		rx_status->signal  = ATH10K_DEFAULT_NOISE_FLOOR +
1206 				     rx->ppdu.combined_rssi;
1207 	}
1208 
1209 	if (rx->ppdu.info0 & HTT_RX_INDICATION_INFO0_END_VALID) {
1210 		/* TSF available only in 32-bit */
1211 		rx_status->mactime = __le32_to_cpu(rx->ppdu.tsf) & 0xffffffff;
1212 		rx_status->flag |= RX_FLAG_MACTIME_END;
1213 	}
1214 
1215 	channel_set = ath10k_htt_rx_h_channel(htt->ar, rx_status);
1216 
1217 	if (channel_set) {
1218 		ath10k_htt_rx_h_rates(htt->ar, rx_status->band,
1219 				      rx->ppdu.info0,
1220 				      __le32_to_cpu(rx->ppdu.info1),
1221 				      __le32_to_cpu(rx->ppdu.info2),
1222 				      rx_status);
1223 	}
1224 
1225 	ath10k_dbg_dump(ATH10K_DBG_HTT_DUMP, NULL, "htt rx ind: ",
1226 			rx, sizeof(*rx) +
1227 			(sizeof(struct htt_rx_indication_mpdu_range) *
1228 				num_mpdu_ranges));
1229 
1230 	for (i = 0; i < num_mpdu_ranges; i++) {
1231 		status = mpdu_ranges[i].mpdu_range_status;
1232 
1233 		for (j = 0; j < mpdu_ranges[i].mpdu_count; j++) {
1234 			struct sk_buff *msdu_head, *msdu_tail;
1235 
1236 			msdu_head = NULL;
1237 			msdu_tail = NULL;
1238 			ret = ath10k_htt_rx_amsdu_pop(htt,
1239 						      &fw_desc,
1240 						      &fw_desc_len,
1241 						      &msdu_head,
1242 						      &msdu_tail);
1243 
1244 			if (ret < 0) {
1245 				ath10k_warn("failed to pop amsdu from htt rx ring %d\n",
1246 					    ret);
1247 				ath10k_htt_rx_free_msdu_chain(msdu_head);
1248 				continue;
1249 			}
1250 
1251 			rxd = container_of((void *)msdu_head->data,
1252 					   struct htt_rx_desc,
1253 					   msdu_payload);
1254 			attention = __le32_to_cpu(rxd->attention.flags);
1255 
1256 			if (!ath10k_htt_rx_amsdu_allowed(htt, msdu_head,
1257 							 status,
1258 							 channel_set,
1259 							 attention)) {
1260 				ath10k_htt_rx_free_msdu_chain(msdu_head);
1261 				continue;
1262 			}
1263 
1264 			if (ret > 0 &&
1265 			    ath10k_unchain_msdu(msdu_head) < 0) {
1266 				ath10k_htt_rx_free_msdu_chain(msdu_head);
1267 				continue;
1268 			}
1269 
1270 			if (attention & RX_ATTENTION_FLAGS_FCS_ERR)
1271 				rx_status->flag |= RX_FLAG_FAILED_FCS_CRC;
1272 			else
1273 				rx_status->flag &= ~RX_FLAG_FAILED_FCS_CRC;
1274 
1275 			if (attention & RX_ATTENTION_FLAGS_TKIP_MIC_ERR)
1276 				rx_status->flag |= RX_FLAG_MMIC_ERROR;
1277 			else
1278 				rx_status->flag &= ~RX_FLAG_MMIC_ERROR;
1279 
1280 			hdr = ath10k_htt_rx_skb_get_hdr(msdu_head);
1281 
1282 			if (ath10k_htt_rx_hdr_is_amsdu(hdr))
1283 				ath10k_htt_rx_amsdu(htt, rx_status, msdu_head);
1284 			else
1285 				ath10k_htt_rx_msdu(htt, rx_status, msdu_head);
1286 		}
1287 	}
1288 
1289 	tasklet_schedule(&htt->rx_replenish_task);
1290 }
1291 
1292 static void ath10k_htt_rx_frag_handler(struct ath10k_htt *htt,
1293 				struct htt_rx_fragment_indication *frag)
1294 {
1295 	struct sk_buff *msdu_head, *msdu_tail;
1296 	enum htt_rx_mpdu_encrypt_type enctype;
1297 	struct htt_rx_desc *rxd;
1298 	enum rx_msdu_decap_format fmt;
1299 	struct ieee80211_rx_status *rx_status = &htt->rx_status;
1300 	struct ieee80211_hdr *hdr;
1301 	int ret;
1302 	bool tkip_mic_err;
1303 	bool decrypt_err;
1304 	u8 *fw_desc;
1305 	int fw_desc_len, hdrlen, paramlen;
1306 	int trim;
1307 
1308 	fw_desc_len = __le16_to_cpu(frag->fw_rx_desc_bytes);
1309 	fw_desc = (u8 *)frag->fw_msdu_rx_desc;
1310 
1311 	msdu_head = NULL;
1312 	msdu_tail = NULL;
1313 
1314 	spin_lock_bh(&htt->rx_ring.lock);
1315 	ret = ath10k_htt_rx_amsdu_pop(htt, &fw_desc, &fw_desc_len,
1316 				      &msdu_head, &msdu_tail);
1317 	spin_unlock_bh(&htt->rx_ring.lock);
1318 
1319 	ath10k_dbg(ATH10K_DBG_HTT_DUMP, "htt rx frag ahead\n");
1320 
1321 	if (ret) {
1322 		ath10k_warn("failed to pop amsdu from httr rx ring for fragmented rx %d\n",
1323 			    ret);
1324 		ath10k_htt_rx_free_msdu_chain(msdu_head);
1325 		return;
1326 	}
1327 
1328 	/* FIXME: implement signal strength */
1329 	rx_status->flag |= RX_FLAG_NO_SIGNAL_VAL;
1330 
1331 	hdr = (struct ieee80211_hdr *)msdu_head->data;
1332 	rxd = (void *)msdu_head->data - sizeof(*rxd);
1333 	tkip_mic_err = !!(__le32_to_cpu(rxd->attention.flags) &
1334 				RX_ATTENTION_FLAGS_TKIP_MIC_ERR);
1335 	decrypt_err = !!(__le32_to_cpu(rxd->attention.flags) &
1336 				RX_ATTENTION_FLAGS_DECRYPT_ERR);
1337 	fmt = MS(__le32_to_cpu(rxd->msdu_start.info1),
1338 			RX_MSDU_START_INFO1_DECAP_FORMAT);
1339 
1340 	if (fmt != RX_MSDU_DECAP_RAW) {
1341 		ath10k_warn("we dont support non-raw fragmented rx yet\n");
1342 		dev_kfree_skb_any(msdu_head);
1343 		goto end;
1344 	}
1345 
1346 	enctype = MS(__le32_to_cpu(rxd->mpdu_start.info0),
1347 		     RX_MPDU_START_INFO0_ENCRYPT_TYPE);
1348 	ath10k_htt_rx_h_protected(htt, rx_status, msdu_head, enctype, fmt,
1349 				  true);
1350 	msdu_head->ip_summed = ath10k_htt_rx_get_csum_state(msdu_head);
1351 
1352 	if (tkip_mic_err)
1353 		ath10k_warn("tkip mic error\n");
1354 
1355 	if (decrypt_err) {
1356 		ath10k_warn("decryption err in fragmented rx\n");
1357 		dev_kfree_skb_any(msdu_head);
1358 		goto end;
1359 	}
1360 
1361 	if (enctype != HTT_RX_MPDU_ENCRYPT_NONE) {
1362 		hdrlen = ieee80211_hdrlen(hdr->frame_control);
1363 		paramlen = ath10k_htt_rx_crypto_param_len(enctype);
1364 
1365 		/* It is more efficient to move the header than the payload */
1366 		memmove((void *)msdu_head->data + paramlen,
1367 			(void *)msdu_head->data,
1368 			hdrlen);
1369 		skb_pull(msdu_head, paramlen);
1370 		hdr = (struct ieee80211_hdr *)msdu_head->data;
1371 	}
1372 
1373 	/* remove trailing FCS */
1374 	trim  = 4;
1375 
1376 	/* remove crypto trailer */
1377 	trim += ath10k_htt_rx_crypto_tail_len(enctype);
1378 
1379 	/* last fragment of TKIP frags has MIC */
1380 	if (!ieee80211_has_morefrags(hdr->frame_control) &&
1381 	    enctype == HTT_RX_MPDU_ENCRYPT_TKIP_WPA)
1382 		trim += 8;
1383 
1384 	if (trim > msdu_head->len) {
1385 		ath10k_warn("htt rx fragment: trailer longer than the frame itself? drop\n");
1386 		dev_kfree_skb_any(msdu_head);
1387 		goto end;
1388 	}
1389 
1390 	skb_trim(msdu_head, msdu_head->len - trim);
1391 
1392 	ath10k_dbg_dump(ATH10K_DBG_HTT_DUMP, NULL, "htt rx frag mpdu: ",
1393 			msdu_head->data, msdu_head->len);
1394 	ath10k_process_rx(htt->ar, rx_status, msdu_head);
1395 
1396 end:
1397 	if (fw_desc_len > 0) {
1398 		ath10k_dbg(ATH10K_DBG_HTT,
1399 			   "expecting more fragmented rx in one indication %d\n",
1400 			   fw_desc_len);
1401 	}
1402 }
1403 
1404 static void ath10k_htt_rx_frm_tx_compl(struct ath10k *ar,
1405 				       struct sk_buff *skb)
1406 {
1407 	struct ath10k_htt *htt = &ar->htt;
1408 	struct htt_resp *resp = (struct htt_resp *)skb->data;
1409 	struct htt_tx_done tx_done = {};
1410 	int status = MS(resp->data_tx_completion.flags, HTT_DATA_TX_STATUS);
1411 	__le16 msdu_id;
1412 	int i;
1413 
1414 	lockdep_assert_held(&htt->tx_lock);
1415 
1416 	switch (status) {
1417 	case HTT_DATA_TX_STATUS_NO_ACK:
1418 		tx_done.no_ack = true;
1419 		break;
1420 	case HTT_DATA_TX_STATUS_OK:
1421 		break;
1422 	case HTT_DATA_TX_STATUS_DISCARD:
1423 	case HTT_DATA_TX_STATUS_POSTPONE:
1424 	case HTT_DATA_TX_STATUS_DOWNLOAD_FAIL:
1425 		tx_done.discard = true;
1426 		break;
1427 	default:
1428 		ath10k_warn("unhandled tx completion status %d\n", status);
1429 		tx_done.discard = true;
1430 		break;
1431 	}
1432 
1433 	ath10k_dbg(ATH10K_DBG_HTT, "htt tx completion num_msdus %d\n",
1434 		   resp->data_tx_completion.num_msdus);
1435 
1436 	for (i = 0; i < resp->data_tx_completion.num_msdus; i++) {
1437 		msdu_id = resp->data_tx_completion.msdus[i];
1438 		tx_done.msdu_id = __le16_to_cpu(msdu_id);
1439 		ath10k_txrx_tx_unref(htt, &tx_done);
1440 	}
1441 }
1442 
1443 void ath10k_htt_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb)
1444 {
1445 	struct ath10k_htt *htt = &ar->htt;
1446 	struct htt_resp *resp = (struct htt_resp *)skb->data;
1447 
1448 	/* confirm alignment */
1449 	if (!IS_ALIGNED((unsigned long)skb->data, 4))
1450 		ath10k_warn("unaligned htt message, expect trouble\n");
1451 
1452 	ath10k_dbg(ATH10K_DBG_HTT, "htt rx, msg_type: 0x%0X\n",
1453 		   resp->hdr.msg_type);
1454 	switch (resp->hdr.msg_type) {
1455 	case HTT_T2H_MSG_TYPE_VERSION_CONF: {
1456 		htt->target_version_major = resp->ver_resp.major;
1457 		htt->target_version_minor = resp->ver_resp.minor;
1458 		complete(&htt->target_version_received);
1459 		break;
1460 	}
1461 	case HTT_T2H_MSG_TYPE_RX_IND:
1462 		spin_lock_bh(&htt->rx_ring.lock);
1463 		__skb_queue_tail(&htt->rx_compl_q, skb);
1464 		spin_unlock_bh(&htt->rx_ring.lock);
1465 		tasklet_schedule(&htt->txrx_compl_task);
1466 		return;
1467 	case HTT_T2H_MSG_TYPE_PEER_MAP: {
1468 		struct htt_peer_map_event ev = {
1469 			.vdev_id = resp->peer_map.vdev_id,
1470 			.peer_id = __le16_to_cpu(resp->peer_map.peer_id),
1471 		};
1472 		memcpy(ev.addr, resp->peer_map.addr, sizeof(ev.addr));
1473 		ath10k_peer_map_event(htt, &ev);
1474 		break;
1475 	}
1476 	case HTT_T2H_MSG_TYPE_PEER_UNMAP: {
1477 		struct htt_peer_unmap_event ev = {
1478 			.peer_id = __le16_to_cpu(resp->peer_unmap.peer_id),
1479 		};
1480 		ath10k_peer_unmap_event(htt, &ev);
1481 		break;
1482 	}
1483 	case HTT_T2H_MSG_TYPE_MGMT_TX_COMPLETION: {
1484 		struct htt_tx_done tx_done = {};
1485 		int status = __le32_to_cpu(resp->mgmt_tx_completion.status);
1486 
1487 		tx_done.msdu_id =
1488 			__le32_to_cpu(resp->mgmt_tx_completion.desc_id);
1489 
1490 		switch (status) {
1491 		case HTT_MGMT_TX_STATUS_OK:
1492 			break;
1493 		case HTT_MGMT_TX_STATUS_RETRY:
1494 			tx_done.no_ack = true;
1495 			break;
1496 		case HTT_MGMT_TX_STATUS_DROP:
1497 			tx_done.discard = true;
1498 			break;
1499 		}
1500 
1501 		spin_lock_bh(&htt->tx_lock);
1502 		ath10k_txrx_tx_unref(htt, &tx_done);
1503 		spin_unlock_bh(&htt->tx_lock);
1504 		break;
1505 	}
1506 	case HTT_T2H_MSG_TYPE_TX_COMPL_IND:
1507 		spin_lock_bh(&htt->tx_lock);
1508 		__skb_queue_tail(&htt->tx_compl_q, skb);
1509 		spin_unlock_bh(&htt->tx_lock);
1510 		tasklet_schedule(&htt->txrx_compl_task);
1511 		return;
1512 	case HTT_T2H_MSG_TYPE_SEC_IND: {
1513 		struct ath10k *ar = htt->ar;
1514 		struct htt_security_indication *ev = &resp->security_indication;
1515 
1516 		ath10k_dbg(ATH10K_DBG_HTT,
1517 			   "sec ind peer_id %d unicast %d type %d\n",
1518 			  __le16_to_cpu(ev->peer_id),
1519 			  !!(ev->flags & HTT_SECURITY_IS_UNICAST),
1520 			  MS(ev->flags, HTT_SECURITY_TYPE));
1521 		complete(&ar->install_key_done);
1522 		break;
1523 	}
1524 	case HTT_T2H_MSG_TYPE_RX_FRAG_IND: {
1525 		ath10k_dbg_dump(ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
1526 				skb->data, skb->len);
1527 		ath10k_htt_rx_frag_handler(htt, &resp->rx_frag_ind);
1528 		break;
1529 	}
1530 	case HTT_T2H_MSG_TYPE_TEST:
1531 		/* FIX THIS */
1532 		break;
1533 	case HTT_T2H_MSG_TYPE_STATS_CONF:
1534 		trace_ath10k_htt_stats(skb->data, skb->len);
1535 		break;
1536 	case HTT_T2H_MSG_TYPE_TX_INSPECT_IND:
1537 	case HTT_T2H_MSG_TYPE_RX_ADDBA:
1538 	case HTT_T2H_MSG_TYPE_RX_DELBA:
1539 	case HTT_T2H_MSG_TYPE_RX_FLUSH:
1540 	default:
1541 		ath10k_dbg(ATH10K_DBG_HTT, "htt event (%d) not handled\n",
1542 			   resp->hdr.msg_type);
1543 		ath10k_dbg_dump(ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
1544 				skb->data, skb->len);
1545 		break;
1546 	};
1547 
1548 	/* Free the indication buffer */
1549 	dev_kfree_skb_any(skb);
1550 }
1551 
1552 static void ath10k_htt_txrx_compl_task(unsigned long ptr)
1553 {
1554 	struct ath10k_htt *htt = (struct ath10k_htt *)ptr;
1555 	struct htt_resp *resp;
1556 	struct sk_buff *skb;
1557 
1558 	spin_lock_bh(&htt->tx_lock);
1559 	while ((skb = __skb_dequeue(&htt->tx_compl_q))) {
1560 		ath10k_htt_rx_frm_tx_compl(htt->ar, skb);
1561 		dev_kfree_skb_any(skb);
1562 	}
1563 	spin_unlock_bh(&htt->tx_lock);
1564 
1565 	spin_lock_bh(&htt->rx_ring.lock);
1566 	while ((skb = __skb_dequeue(&htt->rx_compl_q))) {
1567 		resp = (struct htt_resp *)skb->data;
1568 		ath10k_htt_rx_handler(htt, &resp->rx_ind);
1569 		dev_kfree_skb_any(skb);
1570 	}
1571 	spin_unlock_bh(&htt->rx_ring.lock);
1572 }
1573