xref: /openbmc/linux/drivers/net/wireless/ath/ath10k/ce.c (revision ee8a99bd)
1 /*
2  * Copyright (c) 2005-2011 Atheros Communications Inc.
3  * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17 
18 #include "hif.h"
19 #include "pci.h"
20 #include "ce.h"
21 #include "debug.h"
22 
23 /*
24  * Support for Copy Engine hardware, which is mainly used for
25  * communication between Host and Target over a PCIe interconnect.
26  */
27 
28 /*
29  * A single CopyEngine (CE) comprises two "rings":
30  *   a source ring
31  *   a destination ring
32  *
33  * Each ring consists of a number of descriptors which specify
34  * an address, length, and meta-data.
35  *
36  * Typically, one side of the PCIe interconnect (Host or Target)
37  * controls one ring and the other side controls the other ring.
38  * The source side chooses when to initiate a transfer and it
39  * chooses what to send (buffer address, length). The destination
40  * side keeps a supply of "anonymous receive buffers" available and
41  * it handles incoming data as it arrives (when the destination
42  * recieves an interrupt).
43  *
44  * The sender may send a simple buffer (address/length) or it may
45  * send a small list of buffers.  When a small list is sent, hardware
46  * "gathers" these and they end up in a single destination buffer
47  * with a single interrupt.
48  *
49  * There are several "contexts" managed by this layer -- more, it
50  * may seem -- than should be needed. These are provided mainly for
51  * maximum flexibility and especially to facilitate a simpler HIF
52  * implementation. There are per-CopyEngine recv, send, and watermark
53  * contexts. These are supplied by the caller when a recv, send,
54  * or watermark handler is established and they are echoed back to
55  * the caller when the respective callbacks are invoked. There is
56  * also a per-transfer context supplied by the caller when a buffer
57  * (or sendlist) is sent and when a buffer is enqueued for recv.
58  * These per-transfer contexts are echoed back to the caller when
59  * the buffer is sent/received.
60  */
61 
62 static inline void ath10k_ce_dest_ring_write_index_set(struct ath10k *ar,
63 						       u32 ce_ctrl_addr,
64 						       unsigned int n)
65 {
66 	ath10k_pci_write32(ar, ce_ctrl_addr + DST_WR_INDEX_ADDRESS, n);
67 }
68 
69 static inline u32 ath10k_ce_dest_ring_write_index_get(struct ath10k *ar,
70 						      u32 ce_ctrl_addr)
71 {
72 	return ath10k_pci_read32(ar, ce_ctrl_addr + DST_WR_INDEX_ADDRESS);
73 }
74 
75 static inline void ath10k_ce_src_ring_write_index_set(struct ath10k *ar,
76 						      u32 ce_ctrl_addr,
77 						      unsigned int n)
78 {
79 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
80 	void __iomem *indicator_addr;
81 
82 	if (!test_bit(ATH10K_PCI_FEATURE_HW_1_0_WARKAROUND, ar_pci->features)) {
83 		ath10k_pci_write32(ar, ce_ctrl_addr + SR_WR_INDEX_ADDRESS, n);
84 		return;
85 	}
86 
87 	/* workaround for QCA988x_1.0 HW CE */
88 	indicator_addr = ar_pci->mem + ce_ctrl_addr + DST_WATERMARK_ADDRESS;
89 
90 	if (ce_ctrl_addr == ath10k_ce_base_address(CDC_WAR_DATA_CE)) {
91 		iowrite32((CDC_WAR_MAGIC_STR | n), indicator_addr);
92 	} else {
93 		unsigned long irq_flags;
94 		local_irq_save(irq_flags);
95 		iowrite32(1, indicator_addr);
96 
97 		/*
98 		 * PCIE write waits for ACK in IPQ8K, there is no
99 		 * need to read back value.
100 		 */
101 		(void)ioread32(indicator_addr);
102 		(void)ioread32(indicator_addr); /* conservative */
103 
104 		ath10k_pci_write32(ar, ce_ctrl_addr + SR_WR_INDEX_ADDRESS, n);
105 
106 		iowrite32(0, indicator_addr);
107 		local_irq_restore(irq_flags);
108 	}
109 }
110 
111 static inline u32 ath10k_ce_src_ring_write_index_get(struct ath10k *ar,
112 						     u32 ce_ctrl_addr)
113 {
114 	return ath10k_pci_read32(ar, ce_ctrl_addr + SR_WR_INDEX_ADDRESS);
115 }
116 
117 static inline u32 ath10k_ce_src_ring_read_index_get(struct ath10k *ar,
118 						    u32 ce_ctrl_addr)
119 {
120 	return ath10k_pci_read32(ar, ce_ctrl_addr + CURRENT_SRRI_ADDRESS);
121 }
122 
123 static inline void ath10k_ce_src_ring_base_addr_set(struct ath10k *ar,
124 						    u32 ce_ctrl_addr,
125 						    unsigned int addr)
126 {
127 	ath10k_pci_write32(ar, ce_ctrl_addr + SR_BA_ADDRESS, addr);
128 }
129 
130 static inline void ath10k_ce_src_ring_size_set(struct ath10k *ar,
131 					       u32 ce_ctrl_addr,
132 					       unsigned int n)
133 {
134 	ath10k_pci_write32(ar, ce_ctrl_addr + SR_SIZE_ADDRESS, n);
135 }
136 
137 static inline void ath10k_ce_src_ring_dmax_set(struct ath10k *ar,
138 					       u32 ce_ctrl_addr,
139 					       unsigned int n)
140 {
141 	u32 ctrl1_addr = ath10k_pci_read32((ar),
142 					   (ce_ctrl_addr) + CE_CTRL1_ADDRESS);
143 
144 	ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
145 			   (ctrl1_addr &  ~CE_CTRL1_DMAX_LENGTH_MASK) |
146 			   CE_CTRL1_DMAX_LENGTH_SET(n));
147 }
148 
149 static inline void ath10k_ce_src_ring_byte_swap_set(struct ath10k *ar,
150 						    u32 ce_ctrl_addr,
151 						    unsigned int n)
152 {
153 	u32 ctrl1_addr = ath10k_pci_read32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS);
154 
155 	ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
156 			   (ctrl1_addr & ~CE_CTRL1_SRC_RING_BYTE_SWAP_EN_MASK) |
157 			   CE_CTRL1_SRC_RING_BYTE_SWAP_EN_SET(n));
158 }
159 
160 static inline void ath10k_ce_dest_ring_byte_swap_set(struct ath10k *ar,
161 						     u32 ce_ctrl_addr,
162 						     unsigned int n)
163 {
164 	u32 ctrl1_addr = ath10k_pci_read32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS);
165 
166 	ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
167 			   (ctrl1_addr & ~CE_CTRL1_DST_RING_BYTE_SWAP_EN_MASK) |
168 			   CE_CTRL1_DST_RING_BYTE_SWAP_EN_SET(n));
169 }
170 
171 static inline u32 ath10k_ce_dest_ring_read_index_get(struct ath10k *ar,
172 						     u32 ce_ctrl_addr)
173 {
174 	return ath10k_pci_read32(ar, ce_ctrl_addr + CURRENT_DRRI_ADDRESS);
175 }
176 
177 static inline void ath10k_ce_dest_ring_base_addr_set(struct ath10k *ar,
178 						     u32 ce_ctrl_addr,
179 						     u32 addr)
180 {
181 	ath10k_pci_write32(ar, ce_ctrl_addr + DR_BA_ADDRESS, addr);
182 }
183 
184 static inline void ath10k_ce_dest_ring_size_set(struct ath10k *ar,
185 						u32 ce_ctrl_addr,
186 						unsigned int n)
187 {
188 	ath10k_pci_write32(ar, ce_ctrl_addr + DR_SIZE_ADDRESS, n);
189 }
190 
191 static inline void ath10k_ce_src_ring_highmark_set(struct ath10k *ar,
192 						   u32 ce_ctrl_addr,
193 						   unsigned int n)
194 {
195 	u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS);
196 
197 	ath10k_pci_write32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS,
198 			   (addr & ~SRC_WATERMARK_HIGH_MASK) |
199 			   SRC_WATERMARK_HIGH_SET(n));
200 }
201 
202 static inline void ath10k_ce_src_ring_lowmark_set(struct ath10k *ar,
203 						  u32 ce_ctrl_addr,
204 						  unsigned int n)
205 {
206 	u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS);
207 
208 	ath10k_pci_write32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS,
209 			   (addr & ~SRC_WATERMARK_LOW_MASK) |
210 			   SRC_WATERMARK_LOW_SET(n));
211 }
212 
213 static inline void ath10k_ce_dest_ring_highmark_set(struct ath10k *ar,
214 						    u32 ce_ctrl_addr,
215 						    unsigned int n)
216 {
217 	u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS);
218 
219 	ath10k_pci_write32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS,
220 			   (addr & ~DST_WATERMARK_HIGH_MASK) |
221 			   DST_WATERMARK_HIGH_SET(n));
222 }
223 
224 static inline void ath10k_ce_dest_ring_lowmark_set(struct ath10k *ar,
225 						   u32 ce_ctrl_addr,
226 						   unsigned int n)
227 {
228 	u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS);
229 
230 	ath10k_pci_write32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS,
231 			   (addr & ~DST_WATERMARK_LOW_MASK) |
232 			   DST_WATERMARK_LOW_SET(n));
233 }
234 
235 static inline void ath10k_ce_copy_complete_inter_enable(struct ath10k *ar,
236 							u32 ce_ctrl_addr)
237 {
238 	u32 host_ie_addr = ath10k_pci_read32(ar,
239 					     ce_ctrl_addr + HOST_IE_ADDRESS);
240 
241 	ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
242 			   host_ie_addr | HOST_IE_COPY_COMPLETE_MASK);
243 }
244 
245 static inline void ath10k_ce_copy_complete_intr_disable(struct ath10k *ar,
246 							u32 ce_ctrl_addr)
247 {
248 	u32 host_ie_addr = ath10k_pci_read32(ar,
249 					     ce_ctrl_addr + HOST_IE_ADDRESS);
250 
251 	ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
252 			   host_ie_addr & ~HOST_IE_COPY_COMPLETE_MASK);
253 }
254 
255 static inline void ath10k_ce_watermark_intr_disable(struct ath10k *ar,
256 						    u32 ce_ctrl_addr)
257 {
258 	u32 host_ie_addr = ath10k_pci_read32(ar,
259 					     ce_ctrl_addr + HOST_IE_ADDRESS);
260 
261 	ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
262 			   host_ie_addr & ~CE_WATERMARK_MASK);
263 }
264 
265 static inline void ath10k_ce_error_intr_enable(struct ath10k *ar,
266 					       u32 ce_ctrl_addr)
267 {
268 	u32 misc_ie_addr = ath10k_pci_read32(ar,
269 					     ce_ctrl_addr + MISC_IE_ADDRESS);
270 
271 	ath10k_pci_write32(ar, ce_ctrl_addr + MISC_IE_ADDRESS,
272 			   misc_ie_addr | CE_ERROR_MASK);
273 }
274 
275 static inline void ath10k_ce_engine_int_status_clear(struct ath10k *ar,
276 						     u32 ce_ctrl_addr,
277 						     unsigned int mask)
278 {
279 	ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IS_ADDRESS, mask);
280 }
281 
282 
283 /*
284  * Guts of ath10k_ce_send, used by both ath10k_ce_send and
285  * ath10k_ce_sendlist_send.
286  * The caller takes responsibility for any needed locking.
287  */
288 static int ath10k_ce_send_nolock(struct ce_state *ce_state,
289 				 void *per_transfer_context,
290 				 u32 buffer,
291 				 unsigned int nbytes,
292 				 unsigned int transfer_id,
293 				 unsigned int flags)
294 {
295 	struct ath10k *ar = ce_state->ar;
296 	struct ce_ring_state *src_ring = ce_state->src_ring;
297 	struct ce_desc *desc, *sdesc;
298 	unsigned int nentries_mask = src_ring->nentries_mask;
299 	unsigned int sw_index = src_ring->sw_index;
300 	unsigned int write_index = src_ring->write_index;
301 	u32 ctrl_addr = ce_state->ctrl_addr;
302 	u32 desc_flags = 0;
303 	int ret = 0;
304 
305 	if (nbytes > ce_state->src_sz_max)
306 		ath10k_warn("%s: send more we can (nbytes: %d, max: %d)\n",
307 			    __func__, nbytes, ce_state->src_sz_max);
308 
309 	ath10k_pci_wake(ar);
310 
311 	if (unlikely(CE_RING_DELTA(nentries_mask,
312 				   write_index, sw_index - 1) <= 0)) {
313 		ret = -EIO;
314 		goto exit;
315 	}
316 
317 	desc = CE_SRC_RING_TO_DESC(src_ring->base_addr_owner_space,
318 				   write_index);
319 	sdesc = CE_SRC_RING_TO_DESC(src_ring->shadow_base, write_index);
320 
321 	desc_flags |= SM(transfer_id, CE_DESC_FLAGS_META_DATA);
322 
323 	if (flags & CE_SEND_FLAG_GATHER)
324 		desc_flags |= CE_DESC_FLAGS_GATHER;
325 	if (flags & CE_SEND_FLAG_BYTE_SWAP)
326 		desc_flags |= CE_DESC_FLAGS_BYTE_SWAP;
327 
328 	sdesc->addr   = __cpu_to_le32(buffer);
329 	sdesc->nbytes = __cpu_to_le16(nbytes);
330 	sdesc->flags  = __cpu_to_le16(desc_flags);
331 
332 	*desc = *sdesc;
333 
334 	src_ring->per_transfer_context[write_index] = per_transfer_context;
335 
336 	/* Update Source Ring Write Index */
337 	write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
338 
339 	/* WORKAROUND */
340 	if (!(flags & CE_SEND_FLAG_GATHER))
341 		ath10k_ce_src_ring_write_index_set(ar, ctrl_addr, write_index);
342 
343 	src_ring->write_index = write_index;
344 exit:
345 	ath10k_pci_sleep(ar);
346 	return ret;
347 }
348 
349 int ath10k_ce_send(struct ce_state *ce_state,
350 		   void *per_transfer_context,
351 		   u32 buffer,
352 		   unsigned int nbytes,
353 		   unsigned int transfer_id,
354 		   unsigned int flags)
355 {
356 	struct ath10k *ar = ce_state->ar;
357 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
358 	int ret;
359 
360 	spin_lock_bh(&ar_pci->ce_lock);
361 	ret = ath10k_ce_send_nolock(ce_state, per_transfer_context,
362 				    buffer, nbytes, transfer_id, flags);
363 	spin_unlock_bh(&ar_pci->ce_lock);
364 
365 	return ret;
366 }
367 
368 void ath10k_ce_sendlist_buf_add(struct ce_sendlist *sendlist, u32 buffer,
369 				unsigned int nbytes, u32 flags)
370 {
371 	unsigned int num_items = sendlist->num_items;
372 	struct ce_sendlist_item *item;
373 
374 	item = &sendlist->item[num_items];
375 	item->data = buffer;
376 	item->u.nbytes = nbytes;
377 	item->flags = flags;
378 	sendlist->num_items++;
379 }
380 
381 int ath10k_ce_sendlist_send(struct ce_state *ce_state,
382 			    void *per_transfer_context,
383 			    struct ce_sendlist *sendlist,
384 			    unsigned int transfer_id)
385 {
386 	struct ce_ring_state *src_ring = ce_state->src_ring;
387 	struct ce_sendlist_item *item;
388 	struct ath10k *ar = ce_state->ar;
389 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
390 	unsigned int nentries_mask = src_ring->nentries_mask;
391 	unsigned int num_items = sendlist->num_items;
392 	unsigned int sw_index;
393 	unsigned int write_index;
394 	int i, delta, ret = -ENOMEM;
395 
396 	spin_lock_bh(&ar_pci->ce_lock);
397 
398 	sw_index = src_ring->sw_index;
399 	write_index = src_ring->write_index;
400 
401 	delta = CE_RING_DELTA(nentries_mask, write_index, sw_index - 1);
402 
403 	if (delta >= num_items) {
404 		/*
405 		 * Handle all but the last item uniformly.
406 		 */
407 		for (i = 0; i < num_items - 1; i++) {
408 			item = &sendlist->item[i];
409 			ret = ath10k_ce_send_nolock(ce_state,
410 						    CE_SENDLIST_ITEM_CTXT,
411 						    (u32) item->data,
412 						    item->u.nbytes, transfer_id,
413 						    item->flags |
414 						    CE_SEND_FLAG_GATHER);
415 			if (ret)
416 				ath10k_warn("CE send failed for item: %d\n", i);
417 		}
418 		/*
419 		 * Provide valid context pointer for final item.
420 		 */
421 		item = &sendlist->item[i];
422 		ret = ath10k_ce_send_nolock(ce_state, per_transfer_context,
423 					    (u32) item->data, item->u.nbytes,
424 					    transfer_id, item->flags);
425 		if (ret)
426 			ath10k_warn("CE send failed for last item: %d\n", i);
427 	}
428 
429 	spin_unlock_bh(&ar_pci->ce_lock);
430 
431 	return ret;
432 }
433 
434 int ath10k_ce_recv_buf_enqueue(struct ce_state *ce_state,
435 			       void *per_recv_context,
436 			       u32 buffer)
437 {
438 	struct ce_ring_state *dest_ring = ce_state->dest_ring;
439 	u32 ctrl_addr = ce_state->ctrl_addr;
440 	struct ath10k *ar = ce_state->ar;
441 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
442 	unsigned int nentries_mask = dest_ring->nentries_mask;
443 	unsigned int write_index;
444 	unsigned int sw_index;
445 	int ret;
446 
447 	spin_lock_bh(&ar_pci->ce_lock);
448 	write_index = dest_ring->write_index;
449 	sw_index = dest_ring->sw_index;
450 
451 	ath10k_pci_wake(ar);
452 
453 	if (CE_RING_DELTA(nentries_mask, write_index, sw_index - 1) > 0) {
454 		struct ce_desc *base = dest_ring->base_addr_owner_space;
455 		struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, write_index);
456 
457 		/* Update destination descriptor */
458 		desc->addr    = __cpu_to_le32(buffer);
459 		desc->nbytes = 0;
460 
461 		dest_ring->per_transfer_context[write_index] =
462 							per_recv_context;
463 
464 		/* Update Destination Ring Write Index */
465 		write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
466 		ath10k_ce_dest_ring_write_index_set(ar, ctrl_addr, write_index);
467 		dest_ring->write_index = write_index;
468 		ret = 0;
469 	} else {
470 		ret = -EIO;
471 	}
472 	ath10k_pci_sleep(ar);
473 	spin_unlock_bh(&ar_pci->ce_lock);
474 
475 	return ret;
476 }
477 
478 /*
479  * Guts of ath10k_ce_completed_recv_next.
480  * The caller takes responsibility for any necessary locking.
481  */
482 static int ath10k_ce_completed_recv_next_nolock(struct ce_state *ce_state,
483 						void **per_transfer_contextp,
484 						u32 *bufferp,
485 						unsigned int *nbytesp,
486 						unsigned int *transfer_idp,
487 						unsigned int *flagsp)
488 {
489 	struct ce_ring_state *dest_ring = ce_state->dest_ring;
490 	unsigned int nentries_mask = dest_ring->nentries_mask;
491 	unsigned int sw_index = dest_ring->sw_index;
492 
493 	struct ce_desc *base = dest_ring->base_addr_owner_space;
494 	struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
495 	struct ce_desc sdesc;
496 	u16 nbytes;
497 
498 	/* Copy in one go for performance reasons */
499 	sdesc = *desc;
500 
501 	nbytes = __le16_to_cpu(sdesc.nbytes);
502 	if (nbytes == 0) {
503 		/*
504 		 * This closes a relatively unusual race where the Host
505 		 * sees the updated DRRI before the update to the
506 		 * corresponding descriptor has completed. We treat this
507 		 * as a descriptor that is not yet done.
508 		 */
509 		return -EIO;
510 	}
511 
512 	desc->nbytes = 0;
513 
514 	/* Return data from completed destination descriptor */
515 	*bufferp = __le32_to_cpu(sdesc.addr);
516 	*nbytesp = nbytes;
517 	*transfer_idp = MS(__le16_to_cpu(sdesc.flags), CE_DESC_FLAGS_META_DATA);
518 
519 	if (__le16_to_cpu(sdesc.flags) & CE_DESC_FLAGS_BYTE_SWAP)
520 		*flagsp = CE_RECV_FLAG_SWAPPED;
521 	else
522 		*flagsp = 0;
523 
524 	if (per_transfer_contextp)
525 		*per_transfer_contextp =
526 			dest_ring->per_transfer_context[sw_index];
527 
528 	/* sanity */
529 	dest_ring->per_transfer_context[sw_index] = NULL;
530 
531 	/* Update sw_index */
532 	sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
533 	dest_ring->sw_index = sw_index;
534 
535 	return 0;
536 }
537 
538 int ath10k_ce_completed_recv_next(struct ce_state *ce_state,
539 				  void **per_transfer_contextp,
540 				  u32 *bufferp,
541 				  unsigned int *nbytesp,
542 				  unsigned int *transfer_idp,
543 				  unsigned int *flagsp)
544 {
545 	struct ath10k *ar = ce_state->ar;
546 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
547 	int ret;
548 
549 	spin_lock_bh(&ar_pci->ce_lock);
550 	ret = ath10k_ce_completed_recv_next_nolock(ce_state,
551 						   per_transfer_contextp,
552 						   bufferp, nbytesp,
553 						   transfer_idp, flagsp);
554 	spin_unlock_bh(&ar_pci->ce_lock);
555 
556 	return ret;
557 }
558 
559 int ath10k_ce_revoke_recv_next(struct ce_state *ce_state,
560 			       void **per_transfer_contextp,
561 			       u32 *bufferp)
562 {
563 	struct ce_ring_state *dest_ring;
564 	unsigned int nentries_mask;
565 	unsigned int sw_index;
566 	unsigned int write_index;
567 	int ret;
568 	struct ath10k *ar;
569 	struct ath10k_pci *ar_pci;
570 
571 	dest_ring = ce_state->dest_ring;
572 
573 	if (!dest_ring)
574 		return -EIO;
575 
576 	ar = ce_state->ar;
577 	ar_pci = ath10k_pci_priv(ar);
578 
579 	spin_lock_bh(&ar_pci->ce_lock);
580 
581 	nentries_mask = dest_ring->nentries_mask;
582 	sw_index = dest_ring->sw_index;
583 	write_index = dest_ring->write_index;
584 	if (write_index != sw_index) {
585 		struct ce_desc *base = dest_ring->base_addr_owner_space;
586 		struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
587 
588 		/* Return data from completed destination descriptor */
589 		*bufferp = __le32_to_cpu(desc->addr);
590 
591 		if (per_transfer_contextp)
592 			*per_transfer_contextp =
593 				dest_ring->per_transfer_context[sw_index];
594 
595 		/* sanity */
596 		dest_ring->per_transfer_context[sw_index] = NULL;
597 
598 		/* Update sw_index */
599 		sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
600 		dest_ring->sw_index = sw_index;
601 		ret = 0;
602 	} else {
603 		ret = -EIO;
604 	}
605 
606 	spin_unlock_bh(&ar_pci->ce_lock);
607 
608 	return ret;
609 }
610 
611 /*
612  * Guts of ath10k_ce_completed_send_next.
613  * The caller takes responsibility for any necessary locking.
614  */
615 static int ath10k_ce_completed_send_next_nolock(struct ce_state *ce_state,
616 						void **per_transfer_contextp,
617 						u32 *bufferp,
618 						unsigned int *nbytesp,
619 						unsigned int *transfer_idp)
620 {
621 	struct ce_ring_state *src_ring = ce_state->src_ring;
622 	u32 ctrl_addr = ce_state->ctrl_addr;
623 	struct ath10k *ar = ce_state->ar;
624 	unsigned int nentries_mask = src_ring->nentries_mask;
625 	unsigned int sw_index = src_ring->sw_index;
626 	unsigned int read_index;
627 	int ret = -EIO;
628 
629 	if (src_ring->hw_index == sw_index) {
630 		/*
631 		 * The SW completion index has caught up with the cached
632 		 * version of the HW completion index.
633 		 * Update the cached HW completion index to see whether
634 		 * the SW has really caught up to the HW, or if the cached
635 		 * value of the HW index has become stale.
636 		 */
637 		ath10k_pci_wake(ar);
638 		src_ring->hw_index =
639 			ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
640 		ath10k_pci_sleep(ar);
641 	}
642 	read_index = src_ring->hw_index;
643 
644 	if ((read_index != sw_index) && (read_index != 0xffffffff)) {
645 		struct ce_desc *sbase = src_ring->shadow_base;
646 		struct ce_desc *sdesc = CE_SRC_RING_TO_DESC(sbase, sw_index);
647 
648 		/* Return data from completed source descriptor */
649 		*bufferp = __le32_to_cpu(sdesc->addr);
650 		*nbytesp = __le16_to_cpu(sdesc->nbytes);
651 		*transfer_idp = MS(__le16_to_cpu(sdesc->flags),
652 						CE_DESC_FLAGS_META_DATA);
653 
654 		if (per_transfer_contextp)
655 			*per_transfer_contextp =
656 				src_ring->per_transfer_context[sw_index];
657 
658 		/* sanity */
659 		src_ring->per_transfer_context[sw_index] = NULL;
660 
661 		/* Update sw_index */
662 		sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
663 		src_ring->sw_index = sw_index;
664 		ret = 0;
665 	}
666 
667 	return ret;
668 }
669 
670 /* NB: Modeled after ath10k_ce_completed_send_next */
671 int ath10k_ce_cancel_send_next(struct ce_state *ce_state,
672 			       void **per_transfer_contextp,
673 			       u32 *bufferp,
674 			       unsigned int *nbytesp,
675 			       unsigned int *transfer_idp)
676 {
677 	struct ce_ring_state *src_ring;
678 	unsigned int nentries_mask;
679 	unsigned int sw_index;
680 	unsigned int write_index;
681 	int ret;
682 	struct ath10k *ar;
683 	struct ath10k_pci *ar_pci;
684 
685 	src_ring = ce_state->src_ring;
686 
687 	if (!src_ring)
688 		return -EIO;
689 
690 	ar = ce_state->ar;
691 	ar_pci = ath10k_pci_priv(ar);
692 
693 	spin_lock_bh(&ar_pci->ce_lock);
694 
695 	nentries_mask = src_ring->nentries_mask;
696 	sw_index = src_ring->sw_index;
697 	write_index = src_ring->write_index;
698 
699 	if (write_index != sw_index) {
700 		struct ce_desc *base = src_ring->base_addr_owner_space;
701 		struct ce_desc *desc = CE_SRC_RING_TO_DESC(base, sw_index);
702 
703 		/* Return data from completed source descriptor */
704 		*bufferp = __le32_to_cpu(desc->addr);
705 		*nbytesp = __le16_to_cpu(desc->nbytes);
706 		*transfer_idp = MS(__le16_to_cpu(desc->flags),
707 						CE_DESC_FLAGS_META_DATA);
708 
709 		if (per_transfer_contextp)
710 			*per_transfer_contextp =
711 				src_ring->per_transfer_context[sw_index];
712 
713 		/* sanity */
714 		src_ring->per_transfer_context[sw_index] = NULL;
715 
716 		/* Update sw_index */
717 		sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
718 		src_ring->sw_index = sw_index;
719 		ret = 0;
720 	} else {
721 		ret = -EIO;
722 	}
723 
724 	spin_unlock_bh(&ar_pci->ce_lock);
725 
726 	return ret;
727 }
728 
729 int ath10k_ce_completed_send_next(struct ce_state *ce_state,
730 				  void **per_transfer_contextp,
731 				  u32 *bufferp,
732 				  unsigned int *nbytesp,
733 				  unsigned int *transfer_idp)
734 {
735 	struct ath10k *ar = ce_state->ar;
736 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
737 	int ret;
738 
739 	spin_lock_bh(&ar_pci->ce_lock);
740 	ret = ath10k_ce_completed_send_next_nolock(ce_state,
741 						   per_transfer_contextp,
742 						   bufferp, nbytesp,
743 						   transfer_idp);
744 	spin_unlock_bh(&ar_pci->ce_lock);
745 
746 	return ret;
747 }
748 
749 /*
750  * Guts of interrupt handler for per-engine interrupts on a particular CE.
751  *
752  * Invokes registered callbacks for recv_complete,
753  * send_complete, and watermarks.
754  */
755 void ath10k_ce_per_engine_service(struct ath10k *ar, unsigned int ce_id)
756 {
757 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
758 	struct ce_state *ce_state = ar_pci->ce_id_to_state[ce_id];
759 	u32 ctrl_addr = ce_state->ctrl_addr;
760 	void *transfer_context;
761 	u32 buf;
762 	unsigned int nbytes;
763 	unsigned int id;
764 	unsigned int flags;
765 
766 	ath10k_pci_wake(ar);
767 	spin_lock_bh(&ar_pci->ce_lock);
768 
769 	/* Clear the copy-complete interrupts that will be handled here. */
770 	ath10k_ce_engine_int_status_clear(ar, ctrl_addr,
771 					  HOST_IS_COPY_COMPLETE_MASK);
772 
773 	if (ce_state->recv_cb) {
774 		/*
775 		 * Pop completed recv buffers and call the registered
776 		 * recv callback for each
777 		 */
778 		while (ath10k_ce_completed_recv_next_nolock(ce_state,
779 							    &transfer_context,
780 							    &buf, &nbytes,
781 							    &id, &flags) == 0) {
782 			spin_unlock_bh(&ar_pci->ce_lock);
783 			ce_state->recv_cb(ce_state, transfer_context, buf,
784 					  nbytes, id, flags);
785 			spin_lock_bh(&ar_pci->ce_lock);
786 		}
787 	}
788 
789 	if (ce_state->send_cb) {
790 		/*
791 		 * Pop completed send buffers and call the registered
792 		 * send callback for each
793 		 */
794 		while (ath10k_ce_completed_send_next_nolock(ce_state,
795 							    &transfer_context,
796 							    &buf,
797 							    &nbytes,
798 							    &id) == 0) {
799 			spin_unlock_bh(&ar_pci->ce_lock);
800 			ce_state->send_cb(ce_state, transfer_context,
801 					  buf, nbytes, id);
802 			spin_lock_bh(&ar_pci->ce_lock);
803 		}
804 	}
805 
806 	/*
807 	 * Misc CE interrupts are not being handled, but still need
808 	 * to be cleared.
809 	 */
810 	ath10k_ce_engine_int_status_clear(ar, ctrl_addr, CE_WATERMARK_MASK);
811 
812 	spin_unlock_bh(&ar_pci->ce_lock);
813 	ath10k_pci_sleep(ar);
814 }
815 
816 /*
817  * Handler for per-engine interrupts on ALL active CEs.
818  * This is used in cases where the system is sharing a
819  * single interrput for all CEs
820  */
821 
822 void ath10k_ce_per_engine_service_any(struct ath10k *ar)
823 {
824 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
825 	int ce_id;
826 	u32 intr_summary;
827 
828 	ath10k_pci_wake(ar);
829 	intr_summary = CE_INTERRUPT_SUMMARY(ar);
830 
831 	for (ce_id = 0; intr_summary && (ce_id < ar_pci->ce_count); ce_id++) {
832 		if (intr_summary & (1 << ce_id))
833 			intr_summary &= ~(1 << ce_id);
834 		else
835 			/* no intr pending on this CE */
836 			continue;
837 
838 		ath10k_ce_per_engine_service(ar, ce_id);
839 	}
840 
841 	ath10k_pci_sleep(ar);
842 }
843 
844 /*
845  * Adjust interrupts for the copy complete handler.
846  * If it's needed for either send or recv, then unmask
847  * this interrupt; otherwise, mask it.
848  *
849  * Called with ce_lock held.
850  */
851 static void ath10k_ce_per_engine_handler_adjust(struct ce_state *ce_state,
852 						int disable_copy_compl_intr)
853 {
854 	u32 ctrl_addr = ce_state->ctrl_addr;
855 	struct ath10k *ar = ce_state->ar;
856 
857 	ath10k_pci_wake(ar);
858 
859 	if ((!disable_copy_compl_intr) &&
860 	    (ce_state->send_cb || ce_state->recv_cb))
861 		ath10k_ce_copy_complete_inter_enable(ar, ctrl_addr);
862 	else
863 		ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
864 
865 	ath10k_ce_watermark_intr_disable(ar, ctrl_addr);
866 
867 	ath10k_pci_sleep(ar);
868 }
869 
870 void ath10k_ce_disable_interrupts(struct ath10k *ar)
871 {
872 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
873 	int ce_id;
874 
875 	ath10k_pci_wake(ar);
876 	for (ce_id = 0; ce_id < ar_pci->ce_count; ce_id++) {
877 		struct ce_state *ce_state = ar_pci->ce_id_to_state[ce_id];
878 		u32 ctrl_addr = ce_state->ctrl_addr;
879 
880 		ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
881 	}
882 	ath10k_pci_sleep(ar);
883 }
884 
885 void ath10k_ce_send_cb_register(struct ce_state *ce_state,
886 				void (*send_cb) (struct ce_state *ce_state,
887 						 void *transfer_context,
888 						 u32 buffer,
889 						 unsigned int nbytes,
890 						 unsigned int transfer_id),
891 				int disable_interrupts)
892 {
893 	struct ath10k *ar = ce_state->ar;
894 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
895 
896 	spin_lock_bh(&ar_pci->ce_lock);
897 	ce_state->send_cb = send_cb;
898 	ath10k_ce_per_engine_handler_adjust(ce_state, disable_interrupts);
899 	spin_unlock_bh(&ar_pci->ce_lock);
900 }
901 
902 void ath10k_ce_recv_cb_register(struct ce_state *ce_state,
903 				void (*recv_cb) (struct ce_state *ce_state,
904 						 void *transfer_context,
905 						 u32 buffer,
906 						 unsigned int nbytes,
907 						 unsigned int transfer_id,
908 						 unsigned int flags))
909 {
910 	struct ath10k *ar = ce_state->ar;
911 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
912 
913 	spin_lock_bh(&ar_pci->ce_lock);
914 	ce_state->recv_cb = recv_cb;
915 	ath10k_ce_per_engine_handler_adjust(ce_state, 0);
916 	spin_unlock_bh(&ar_pci->ce_lock);
917 }
918 
919 static int ath10k_ce_init_src_ring(struct ath10k *ar,
920 				   unsigned int ce_id,
921 				   struct ce_state *ce_state,
922 				   const struct ce_attr *attr)
923 {
924 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
925 	struct ce_ring_state *src_ring;
926 	unsigned int nentries = attr->src_nentries;
927 	unsigned int ce_nbytes;
928 	u32 ctrl_addr = ath10k_ce_base_address(ce_id);
929 	dma_addr_t base_addr;
930 	char *ptr;
931 
932 	nentries = roundup_pow_of_two(nentries);
933 
934 	if (ce_state->src_ring) {
935 		WARN_ON(ce_state->src_ring->nentries != nentries);
936 		return 0;
937 	}
938 
939 	ce_nbytes = sizeof(struct ce_ring_state) + (nentries * sizeof(void *));
940 	ptr = kzalloc(ce_nbytes, GFP_KERNEL);
941 	if (ptr == NULL)
942 		return -ENOMEM;
943 
944 	ce_state->src_ring = (struct ce_ring_state *)ptr;
945 	src_ring = ce_state->src_ring;
946 
947 	ptr += sizeof(struct ce_ring_state);
948 	src_ring->nentries = nentries;
949 	src_ring->nentries_mask = nentries - 1;
950 
951 	ath10k_pci_wake(ar);
952 	src_ring->sw_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
953 	src_ring->hw_index = src_ring->sw_index;
954 
955 	src_ring->write_index =
956 		ath10k_ce_src_ring_write_index_get(ar, ctrl_addr);
957 	ath10k_pci_sleep(ar);
958 
959 	src_ring->per_transfer_context = (void **)ptr;
960 
961 	/*
962 	 * Legacy platforms that do not support cache
963 	 * coherent DMA are unsupported
964 	 */
965 	src_ring->base_addr_owner_space_unaligned =
966 		pci_alloc_consistent(ar_pci->pdev,
967 				     (nentries * sizeof(struct ce_desc) +
968 				      CE_DESC_RING_ALIGN),
969 				     &base_addr);
970 	src_ring->base_addr_ce_space_unaligned = base_addr;
971 
972 	src_ring->base_addr_owner_space = PTR_ALIGN(
973 			src_ring->base_addr_owner_space_unaligned,
974 			CE_DESC_RING_ALIGN);
975 	src_ring->base_addr_ce_space = ALIGN(
976 			src_ring->base_addr_ce_space_unaligned,
977 			CE_DESC_RING_ALIGN);
978 
979 	/*
980 	 * Also allocate a shadow src ring in regular
981 	 * mem to use for faster access.
982 	 */
983 	src_ring->shadow_base_unaligned =
984 		kmalloc((nentries * sizeof(struct ce_desc) +
985 			 CE_DESC_RING_ALIGN), GFP_KERNEL);
986 
987 	src_ring->shadow_base = PTR_ALIGN(
988 			src_ring->shadow_base_unaligned,
989 			CE_DESC_RING_ALIGN);
990 
991 	ath10k_pci_wake(ar);
992 	ath10k_ce_src_ring_base_addr_set(ar, ctrl_addr,
993 					 src_ring->base_addr_ce_space);
994 	ath10k_ce_src_ring_size_set(ar, ctrl_addr, nentries);
995 	ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, attr->src_sz_max);
996 	ath10k_ce_src_ring_byte_swap_set(ar, ctrl_addr, 0);
997 	ath10k_ce_src_ring_lowmark_set(ar, ctrl_addr, 0);
998 	ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, nentries);
999 	ath10k_pci_sleep(ar);
1000 
1001 	return 0;
1002 }
1003 
1004 static int ath10k_ce_init_dest_ring(struct ath10k *ar,
1005 				    unsigned int ce_id,
1006 				    struct ce_state *ce_state,
1007 				    const struct ce_attr *attr)
1008 {
1009 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1010 	struct ce_ring_state *dest_ring;
1011 	unsigned int nentries = attr->dest_nentries;
1012 	unsigned int ce_nbytes;
1013 	u32 ctrl_addr = ath10k_ce_base_address(ce_id);
1014 	dma_addr_t base_addr;
1015 	char *ptr;
1016 
1017 	nentries = roundup_pow_of_two(nentries);
1018 
1019 	if (ce_state->dest_ring) {
1020 		WARN_ON(ce_state->dest_ring->nentries != nentries);
1021 		return 0;
1022 	}
1023 
1024 	ce_nbytes = sizeof(struct ce_ring_state) + (nentries * sizeof(void *));
1025 	ptr = kzalloc(ce_nbytes, GFP_KERNEL);
1026 	if (ptr == NULL)
1027 		return -ENOMEM;
1028 
1029 	ce_state->dest_ring = (struct ce_ring_state *)ptr;
1030 	dest_ring = ce_state->dest_ring;
1031 
1032 	ptr += sizeof(struct ce_ring_state);
1033 	dest_ring->nentries = nentries;
1034 	dest_ring->nentries_mask = nentries - 1;
1035 
1036 	ath10k_pci_wake(ar);
1037 	dest_ring->sw_index = ath10k_ce_dest_ring_read_index_get(ar, ctrl_addr);
1038 	dest_ring->write_index =
1039 		ath10k_ce_dest_ring_write_index_get(ar, ctrl_addr);
1040 	ath10k_pci_sleep(ar);
1041 
1042 	dest_ring->per_transfer_context = (void **)ptr;
1043 
1044 	/*
1045 	 * Legacy platforms that do not support cache
1046 	 * coherent DMA are unsupported
1047 	 */
1048 	dest_ring->base_addr_owner_space_unaligned =
1049 		pci_alloc_consistent(ar_pci->pdev,
1050 				     (nentries * sizeof(struct ce_desc) +
1051 				      CE_DESC_RING_ALIGN),
1052 				     &base_addr);
1053 	dest_ring->base_addr_ce_space_unaligned = base_addr;
1054 
1055 	/*
1056 	 * Correctly initialize memory to 0 to prevent garbage
1057 	 * data crashing system when download firmware
1058 	 */
1059 	memset(dest_ring->base_addr_owner_space_unaligned, 0,
1060 	       nentries * sizeof(struct ce_desc) + CE_DESC_RING_ALIGN);
1061 
1062 	dest_ring->base_addr_owner_space = PTR_ALIGN(
1063 			dest_ring->base_addr_owner_space_unaligned,
1064 			CE_DESC_RING_ALIGN);
1065 	dest_ring->base_addr_ce_space = ALIGN(
1066 			dest_ring->base_addr_ce_space_unaligned,
1067 			CE_DESC_RING_ALIGN);
1068 
1069 	ath10k_pci_wake(ar);
1070 	ath10k_ce_dest_ring_base_addr_set(ar, ctrl_addr,
1071 					  dest_ring->base_addr_ce_space);
1072 	ath10k_ce_dest_ring_size_set(ar, ctrl_addr, nentries);
1073 	ath10k_ce_dest_ring_byte_swap_set(ar, ctrl_addr, 0);
1074 	ath10k_ce_dest_ring_lowmark_set(ar, ctrl_addr, 0);
1075 	ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, nentries);
1076 	ath10k_pci_sleep(ar);
1077 
1078 	return 0;
1079 }
1080 
1081 static struct ce_state *ath10k_ce_init_state(struct ath10k *ar,
1082 					     unsigned int ce_id,
1083 					     const struct ce_attr *attr)
1084 {
1085 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1086 	struct ce_state *ce_state = NULL;
1087 	u32 ctrl_addr = ath10k_ce_base_address(ce_id);
1088 
1089 	spin_lock_bh(&ar_pci->ce_lock);
1090 
1091 	if (!ar_pci->ce_id_to_state[ce_id]) {
1092 		ce_state = kzalloc(sizeof(*ce_state), GFP_ATOMIC);
1093 		if (ce_state == NULL) {
1094 			spin_unlock_bh(&ar_pci->ce_lock);
1095 			return NULL;
1096 		}
1097 
1098 		ar_pci->ce_id_to_state[ce_id] = ce_state;
1099 		ce_state->ar = ar;
1100 		ce_state->id = ce_id;
1101 		ce_state->ctrl_addr = ctrl_addr;
1102 		ce_state->state = CE_RUNNING;
1103 		/* Save attribute flags */
1104 		ce_state->attr_flags = attr->flags;
1105 		ce_state->src_sz_max = attr->src_sz_max;
1106 	}
1107 
1108 	spin_unlock_bh(&ar_pci->ce_lock);
1109 
1110 	return ce_state;
1111 }
1112 
1113 /*
1114  * Initialize a Copy Engine based on caller-supplied attributes.
1115  * This may be called once to initialize both source and destination
1116  * rings or it may be called twice for separate source and destination
1117  * initialization. It may be that only one side or the other is
1118  * initialized by software/firmware.
1119  */
1120 struct ce_state *ath10k_ce_init(struct ath10k *ar,
1121 				unsigned int ce_id,
1122 				const struct ce_attr *attr)
1123 {
1124 	struct ce_state *ce_state;
1125 	u32 ctrl_addr = ath10k_ce_base_address(ce_id);
1126 
1127 	ce_state = ath10k_ce_init_state(ar, ce_id, attr);
1128 	if (!ce_state) {
1129 		ath10k_err("Failed to initialize CE state for ID: %d\n", ce_id);
1130 		return NULL;
1131 	}
1132 
1133 	if (attr->src_nentries) {
1134 		if (ath10k_ce_init_src_ring(ar, ce_id, ce_state, attr)) {
1135 			ath10k_err("Failed to initialize CE src ring for ID: %d\n",
1136 				   ce_id);
1137 			ath10k_ce_deinit(ce_state);
1138 			return NULL;
1139 		}
1140 	}
1141 
1142 	if (attr->dest_nentries) {
1143 		if (ath10k_ce_init_dest_ring(ar, ce_id, ce_state, attr)) {
1144 			ath10k_err("Failed to initialize CE dest ring for ID: %d\n",
1145 				   ce_id);
1146 			ath10k_ce_deinit(ce_state);
1147 			return NULL;
1148 		}
1149 	}
1150 
1151 	/* Enable CE error interrupts */
1152 	ath10k_pci_wake(ar);
1153 	ath10k_ce_error_intr_enable(ar, ctrl_addr);
1154 	ath10k_pci_sleep(ar);
1155 
1156 	return ce_state;
1157 }
1158 
1159 void ath10k_ce_deinit(struct ce_state *ce_state)
1160 {
1161 	unsigned int ce_id = ce_state->id;
1162 	struct ath10k *ar = ce_state->ar;
1163 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1164 
1165 	ce_state->state = CE_UNUSED;
1166 	ar_pci->ce_id_to_state[ce_id] = NULL;
1167 
1168 	if (ce_state->src_ring) {
1169 		kfree(ce_state->src_ring->shadow_base_unaligned);
1170 		pci_free_consistent(ar_pci->pdev,
1171 				    (ce_state->src_ring->nentries *
1172 				     sizeof(struct ce_desc) +
1173 				     CE_DESC_RING_ALIGN),
1174 				    ce_state->src_ring->base_addr_owner_space,
1175 				    ce_state->src_ring->base_addr_ce_space);
1176 		kfree(ce_state->src_ring);
1177 	}
1178 
1179 	if (ce_state->dest_ring) {
1180 		pci_free_consistent(ar_pci->pdev,
1181 				    (ce_state->dest_ring->nentries *
1182 				     sizeof(struct ce_desc) +
1183 				     CE_DESC_RING_ALIGN),
1184 				    ce_state->dest_ring->base_addr_owner_space,
1185 				    ce_state->dest_ring->base_addr_ce_space);
1186 		kfree(ce_state->dest_ring);
1187 	}
1188 	kfree(ce_state);
1189 }
1190