xref: /openbmc/linux/drivers/net/wireless/ath/ath10k/ce.c (revision eb3fcf007fffe5830d815e713591f3e858f2a365)
1 /*
2  * Copyright (c) 2005-2011 Atheros Communications Inc.
3  * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17 
18 #include "hif.h"
19 #include "pci.h"
20 #include "ce.h"
21 #include "debug.h"
22 
23 /*
24  * Support for Copy Engine hardware, which is mainly used for
25  * communication between Host and Target over a PCIe interconnect.
26  */
27 
28 /*
29  * A single CopyEngine (CE) comprises two "rings":
30  *   a source ring
31  *   a destination ring
32  *
33  * Each ring consists of a number of descriptors which specify
34  * an address, length, and meta-data.
35  *
36  * Typically, one side of the PCIe interconnect (Host or Target)
37  * controls one ring and the other side controls the other ring.
38  * The source side chooses when to initiate a transfer and it
39  * chooses what to send (buffer address, length). The destination
40  * side keeps a supply of "anonymous receive buffers" available and
41  * it handles incoming data as it arrives (when the destination
42  * recieves an interrupt).
43  *
44  * The sender may send a simple buffer (address/length) or it may
45  * send a small list of buffers.  When a small list is sent, hardware
46  * "gathers" these and they end up in a single destination buffer
47  * with a single interrupt.
48  *
49  * There are several "contexts" managed by this layer -- more, it
50  * may seem -- than should be needed. These are provided mainly for
51  * maximum flexibility and especially to facilitate a simpler HIF
52  * implementation. There are per-CopyEngine recv, send, and watermark
53  * contexts. These are supplied by the caller when a recv, send,
54  * or watermark handler is established and they are echoed back to
55  * the caller when the respective callbacks are invoked. There is
56  * also a per-transfer context supplied by the caller when a buffer
57  * (or sendlist) is sent and when a buffer is enqueued for recv.
58  * These per-transfer contexts are echoed back to the caller when
59  * the buffer is sent/received.
60  */
61 
62 static inline void ath10k_ce_dest_ring_write_index_set(struct ath10k *ar,
63 						       u32 ce_ctrl_addr,
64 						       unsigned int n)
65 {
66 	ath10k_pci_write32(ar, ce_ctrl_addr + DST_WR_INDEX_ADDRESS, n);
67 }
68 
69 static inline u32 ath10k_ce_dest_ring_write_index_get(struct ath10k *ar,
70 						      u32 ce_ctrl_addr)
71 {
72 	return ath10k_pci_read32(ar, ce_ctrl_addr + DST_WR_INDEX_ADDRESS);
73 }
74 
75 static inline void ath10k_ce_src_ring_write_index_set(struct ath10k *ar,
76 						      u32 ce_ctrl_addr,
77 						      unsigned int n)
78 {
79 	ath10k_pci_write32(ar, ce_ctrl_addr + SR_WR_INDEX_ADDRESS, n);
80 }
81 
82 static inline u32 ath10k_ce_src_ring_write_index_get(struct ath10k *ar,
83 						     u32 ce_ctrl_addr)
84 {
85 	return ath10k_pci_read32(ar, ce_ctrl_addr + SR_WR_INDEX_ADDRESS);
86 }
87 
88 static inline u32 ath10k_ce_src_ring_read_index_get(struct ath10k *ar,
89 						    u32 ce_ctrl_addr)
90 {
91 	return ath10k_pci_read32(ar, ce_ctrl_addr + CURRENT_SRRI_ADDRESS);
92 }
93 
94 static inline void ath10k_ce_src_ring_base_addr_set(struct ath10k *ar,
95 						    u32 ce_ctrl_addr,
96 						    unsigned int addr)
97 {
98 	ath10k_pci_write32(ar, ce_ctrl_addr + SR_BA_ADDRESS, addr);
99 }
100 
101 static inline void ath10k_ce_src_ring_size_set(struct ath10k *ar,
102 					       u32 ce_ctrl_addr,
103 					       unsigned int n)
104 {
105 	ath10k_pci_write32(ar, ce_ctrl_addr + SR_SIZE_ADDRESS, n);
106 }
107 
108 static inline void ath10k_ce_src_ring_dmax_set(struct ath10k *ar,
109 					       u32 ce_ctrl_addr,
110 					       unsigned int n)
111 {
112 	u32 ctrl1_addr = ath10k_pci_read32((ar),
113 					   (ce_ctrl_addr) + CE_CTRL1_ADDRESS);
114 
115 	ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
116 			   (ctrl1_addr &  ~CE_CTRL1_DMAX_LENGTH_MASK) |
117 			   CE_CTRL1_DMAX_LENGTH_SET(n));
118 }
119 
120 static inline void ath10k_ce_src_ring_byte_swap_set(struct ath10k *ar,
121 						    u32 ce_ctrl_addr,
122 						    unsigned int n)
123 {
124 	u32 ctrl1_addr = ath10k_pci_read32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS);
125 
126 	ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
127 			   (ctrl1_addr & ~CE_CTRL1_SRC_RING_BYTE_SWAP_EN_MASK) |
128 			   CE_CTRL1_SRC_RING_BYTE_SWAP_EN_SET(n));
129 }
130 
131 static inline void ath10k_ce_dest_ring_byte_swap_set(struct ath10k *ar,
132 						     u32 ce_ctrl_addr,
133 						     unsigned int n)
134 {
135 	u32 ctrl1_addr = ath10k_pci_read32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS);
136 
137 	ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
138 			   (ctrl1_addr & ~CE_CTRL1_DST_RING_BYTE_SWAP_EN_MASK) |
139 			   CE_CTRL1_DST_RING_BYTE_SWAP_EN_SET(n));
140 }
141 
142 static inline u32 ath10k_ce_dest_ring_read_index_get(struct ath10k *ar,
143 						     u32 ce_ctrl_addr)
144 {
145 	return ath10k_pci_read32(ar, ce_ctrl_addr + CURRENT_DRRI_ADDRESS);
146 }
147 
148 static inline void ath10k_ce_dest_ring_base_addr_set(struct ath10k *ar,
149 						     u32 ce_ctrl_addr,
150 						     u32 addr)
151 {
152 	ath10k_pci_write32(ar, ce_ctrl_addr + DR_BA_ADDRESS, addr);
153 }
154 
155 static inline void ath10k_ce_dest_ring_size_set(struct ath10k *ar,
156 						u32 ce_ctrl_addr,
157 						unsigned int n)
158 {
159 	ath10k_pci_write32(ar, ce_ctrl_addr + DR_SIZE_ADDRESS, n);
160 }
161 
162 static inline void ath10k_ce_src_ring_highmark_set(struct ath10k *ar,
163 						   u32 ce_ctrl_addr,
164 						   unsigned int n)
165 {
166 	u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS);
167 
168 	ath10k_pci_write32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS,
169 			   (addr & ~SRC_WATERMARK_HIGH_MASK) |
170 			   SRC_WATERMARK_HIGH_SET(n));
171 }
172 
173 static inline void ath10k_ce_src_ring_lowmark_set(struct ath10k *ar,
174 						  u32 ce_ctrl_addr,
175 						  unsigned int n)
176 {
177 	u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS);
178 
179 	ath10k_pci_write32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS,
180 			   (addr & ~SRC_WATERMARK_LOW_MASK) |
181 			   SRC_WATERMARK_LOW_SET(n));
182 }
183 
184 static inline void ath10k_ce_dest_ring_highmark_set(struct ath10k *ar,
185 						    u32 ce_ctrl_addr,
186 						    unsigned int n)
187 {
188 	u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS);
189 
190 	ath10k_pci_write32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS,
191 			   (addr & ~DST_WATERMARK_HIGH_MASK) |
192 			   DST_WATERMARK_HIGH_SET(n));
193 }
194 
195 static inline void ath10k_ce_dest_ring_lowmark_set(struct ath10k *ar,
196 						   u32 ce_ctrl_addr,
197 						   unsigned int n)
198 {
199 	u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS);
200 
201 	ath10k_pci_write32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS,
202 			   (addr & ~DST_WATERMARK_LOW_MASK) |
203 			   DST_WATERMARK_LOW_SET(n));
204 }
205 
206 static inline void ath10k_ce_copy_complete_inter_enable(struct ath10k *ar,
207 							u32 ce_ctrl_addr)
208 {
209 	u32 host_ie_addr = ath10k_pci_read32(ar,
210 					     ce_ctrl_addr + HOST_IE_ADDRESS);
211 
212 	ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
213 			   host_ie_addr | HOST_IE_COPY_COMPLETE_MASK);
214 }
215 
216 static inline void ath10k_ce_copy_complete_intr_disable(struct ath10k *ar,
217 							u32 ce_ctrl_addr)
218 {
219 	u32 host_ie_addr = ath10k_pci_read32(ar,
220 					     ce_ctrl_addr + HOST_IE_ADDRESS);
221 
222 	ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
223 			   host_ie_addr & ~HOST_IE_COPY_COMPLETE_MASK);
224 }
225 
226 static inline void ath10k_ce_watermark_intr_disable(struct ath10k *ar,
227 						    u32 ce_ctrl_addr)
228 {
229 	u32 host_ie_addr = ath10k_pci_read32(ar,
230 					     ce_ctrl_addr + HOST_IE_ADDRESS);
231 
232 	ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
233 			   host_ie_addr & ~CE_WATERMARK_MASK);
234 }
235 
236 static inline void ath10k_ce_error_intr_enable(struct ath10k *ar,
237 					       u32 ce_ctrl_addr)
238 {
239 	u32 misc_ie_addr = ath10k_pci_read32(ar,
240 					     ce_ctrl_addr + MISC_IE_ADDRESS);
241 
242 	ath10k_pci_write32(ar, ce_ctrl_addr + MISC_IE_ADDRESS,
243 			   misc_ie_addr | CE_ERROR_MASK);
244 }
245 
246 static inline void ath10k_ce_error_intr_disable(struct ath10k *ar,
247 						u32 ce_ctrl_addr)
248 {
249 	u32 misc_ie_addr = ath10k_pci_read32(ar,
250 					     ce_ctrl_addr + MISC_IE_ADDRESS);
251 
252 	ath10k_pci_write32(ar, ce_ctrl_addr + MISC_IE_ADDRESS,
253 			   misc_ie_addr & ~CE_ERROR_MASK);
254 }
255 
256 static inline void ath10k_ce_engine_int_status_clear(struct ath10k *ar,
257 						     u32 ce_ctrl_addr,
258 						     unsigned int mask)
259 {
260 	ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IS_ADDRESS, mask);
261 }
262 
263 /*
264  * Guts of ath10k_ce_send, used by both ath10k_ce_send and
265  * ath10k_ce_sendlist_send.
266  * The caller takes responsibility for any needed locking.
267  */
268 int ath10k_ce_send_nolock(struct ath10k_ce_pipe *ce_state,
269 			  void *per_transfer_context,
270 			  u32 buffer,
271 			  unsigned int nbytes,
272 			  unsigned int transfer_id,
273 			  unsigned int flags)
274 {
275 	struct ath10k *ar = ce_state->ar;
276 	struct ath10k_ce_ring *src_ring = ce_state->src_ring;
277 	struct ce_desc *desc, *sdesc;
278 	unsigned int nentries_mask = src_ring->nentries_mask;
279 	unsigned int sw_index = src_ring->sw_index;
280 	unsigned int write_index = src_ring->write_index;
281 	u32 ctrl_addr = ce_state->ctrl_addr;
282 	u32 desc_flags = 0;
283 	int ret = 0;
284 
285 	if (nbytes > ce_state->src_sz_max)
286 		ath10k_warn(ar, "%s: send more we can (nbytes: %d, max: %d)\n",
287 			    __func__, nbytes, ce_state->src_sz_max);
288 
289 	if (unlikely(CE_RING_DELTA(nentries_mask,
290 				   write_index, sw_index - 1) <= 0)) {
291 		ret = -ENOSR;
292 		goto exit;
293 	}
294 
295 	desc = CE_SRC_RING_TO_DESC(src_ring->base_addr_owner_space,
296 				   write_index);
297 	sdesc = CE_SRC_RING_TO_DESC(src_ring->shadow_base, write_index);
298 
299 	desc_flags |= SM(transfer_id, CE_DESC_FLAGS_META_DATA);
300 
301 	if (flags & CE_SEND_FLAG_GATHER)
302 		desc_flags |= CE_DESC_FLAGS_GATHER;
303 	if (flags & CE_SEND_FLAG_BYTE_SWAP)
304 		desc_flags |= CE_DESC_FLAGS_BYTE_SWAP;
305 
306 	sdesc->addr   = __cpu_to_le32(buffer);
307 	sdesc->nbytes = __cpu_to_le16(nbytes);
308 	sdesc->flags  = __cpu_to_le16(desc_flags);
309 
310 	*desc = *sdesc;
311 
312 	src_ring->per_transfer_context[write_index] = per_transfer_context;
313 
314 	/* Update Source Ring Write Index */
315 	write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
316 
317 	/* WORKAROUND */
318 	if (!(flags & CE_SEND_FLAG_GATHER))
319 		ath10k_ce_src_ring_write_index_set(ar, ctrl_addr, write_index);
320 
321 	src_ring->write_index = write_index;
322 exit:
323 	return ret;
324 }
325 
326 void __ath10k_ce_send_revert(struct ath10k_ce_pipe *pipe)
327 {
328 	struct ath10k *ar = pipe->ar;
329 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
330 	struct ath10k_ce_ring *src_ring = pipe->src_ring;
331 	u32 ctrl_addr = pipe->ctrl_addr;
332 
333 	lockdep_assert_held(&ar_pci->ce_lock);
334 
335 	/*
336 	 * This function must be called only if there is an incomplete
337 	 * scatter-gather transfer (before index register is updated)
338 	 * that needs to be cleaned up.
339 	 */
340 	if (WARN_ON_ONCE(src_ring->write_index == src_ring->sw_index))
341 		return;
342 
343 	if (WARN_ON_ONCE(src_ring->write_index ==
344 			 ath10k_ce_src_ring_write_index_get(ar, ctrl_addr)))
345 		return;
346 
347 	src_ring->write_index--;
348 	src_ring->write_index &= src_ring->nentries_mask;
349 
350 	src_ring->per_transfer_context[src_ring->write_index] = NULL;
351 }
352 
353 int ath10k_ce_send(struct ath10k_ce_pipe *ce_state,
354 		   void *per_transfer_context,
355 		   u32 buffer,
356 		   unsigned int nbytes,
357 		   unsigned int transfer_id,
358 		   unsigned int flags)
359 {
360 	struct ath10k *ar = ce_state->ar;
361 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
362 	int ret;
363 
364 	spin_lock_bh(&ar_pci->ce_lock);
365 	ret = ath10k_ce_send_nolock(ce_state, per_transfer_context,
366 				    buffer, nbytes, transfer_id, flags);
367 	spin_unlock_bh(&ar_pci->ce_lock);
368 
369 	return ret;
370 }
371 
372 int ath10k_ce_num_free_src_entries(struct ath10k_ce_pipe *pipe)
373 {
374 	struct ath10k *ar = pipe->ar;
375 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
376 	int delta;
377 
378 	spin_lock_bh(&ar_pci->ce_lock);
379 	delta = CE_RING_DELTA(pipe->src_ring->nentries_mask,
380 			      pipe->src_ring->write_index,
381 			      pipe->src_ring->sw_index - 1);
382 	spin_unlock_bh(&ar_pci->ce_lock);
383 
384 	return delta;
385 }
386 
387 int __ath10k_ce_rx_num_free_bufs(struct ath10k_ce_pipe *pipe)
388 {
389 	struct ath10k *ar = pipe->ar;
390 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
391 	struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
392 	unsigned int nentries_mask = dest_ring->nentries_mask;
393 	unsigned int write_index = dest_ring->write_index;
394 	unsigned int sw_index = dest_ring->sw_index;
395 
396 	lockdep_assert_held(&ar_pci->ce_lock);
397 
398 	return CE_RING_DELTA(nentries_mask, write_index, sw_index - 1);
399 }
400 
401 int __ath10k_ce_rx_post_buf(struct ath10k_ce_pipe *pipe, void *ctx, u32 paddr)
402 {
403 	struct ath10k *ar = pipe->ar;
404 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
405 	struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
406 	unsigned int nentries_mask = dest_ring->nentries_mask;
407 	unsigned int write_index = dest_ring->write_index;
408 	unsigned int sw_index = dest_ring->sw_index;
409 	struct ce_desc *base = dest_ring->base_addr_owner_space;
410 	struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, write_index);
411 	u32 ctrl_addr = pipe->ctrl_addr;
412 
413 	lockdep_assert_held(&ar_pci->ce_lock);
414 
415 	if (CE_RING_DELTA(nentries_mask, write_index, sw_index - 1) == 0)
416 		return -EIO;
417 
418 	desc->addr = __cpu_to_le32(paddr);
419 	desc->nbytes = 0;
420 
421 	dest_ring->per_transfer_context[write_index] = ctx;
422 	write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
423 	ath10k_ce_dest_ring_write_index_set(ar, ctrl_addr, write_index);
424 	dest_ring->write_index = write_index;
425 
426 	return 0;
427 }
428 
429 int ath10k_ce_rx_post_buf(struct ath10k_ce_pipe *pipe, void *ctx, u32 paddr)
430 {
431 	struct ath10k *ar = pipe->ar;
432 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
433 	int ret;
434 
435 	spin_lock_bh(&ar_pci->ce_lock);
436 	ret = __ath10k_ce_rx_post_buf(pipe, ctx, paddr);
437 	spin_unlock_bh(&ar_pci->ce_lock);
438 
439 	return ret;
440 }
441 
442 /*
443  * Guts of ath10k_ce_completed_recv_next.
444  * The caller takes responsibility for any necessary locking.
445  */
446 int ath10k_ce_completed_recv_next_nolock(struct ath10k_ce_pipe *ce_state,
447 					 void **per_transfer_contextp,
448 					 u32 *bufferp,
449 					 unsigned int *nbytesp,
450 					 unsigned int *transfer_idp,
451 					 unsigned int *flagsp)
452 {
453 	struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
454 	unsigned int nentries_mask = dest_ring->nentries_mask;
455 	struct ath10k *ar = ce_state->ar;
456 	unsigned int sw_index = dest_ring->sw_index;
457 
458 	struct ce_desc *base = dest_ring->base_addr_owner_space;
459 	struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
460 	struct ce_desc sdesc;
461 	u16 nbytes;
462 
463 	/* Copy in one go for performance reasons */
464 	sdesc = *desc;
465 
466 	nbytes = __le16_to_cpu(sdesc.nbytes);
467 	if (nbytes == 0) {
468 		/*
469 		 * This closes a relatively unusual race where the Host
470 		 * sees the updated DRRI before the update to the
471 		 * corresponding descriptor has completed. We treat this
472 		 * as a descriptor that is not yet done.
473 		 */
474 		return -EIO;
475 	}
476 
477 	desc->nbytes = 0;
478 
479 	/* Return data from completed destination descriptor */
480 	*bufferp = __le32_to_cpu(sdesc.addr);
481 	*nbytesp = nbytes;
482 	*transfer_idp = MS(__le16_to_cpu(sdesc.flags), CE_DESC_FLAGS_META_DATA);
483 
484 	if (__le16_to_cpu(sdesc.flags) & CE_DESC_FLAGS_BYTE_SWAP)
485 		*flagsp = CE_RECV_FLAG_SWAPPED;
486 	else
487 		*flagsp = 0;
488 
489 	if (per_transfer_contextp)
490 		*per_transfer_contextp =
491 			dest_ring->per_transfer_context[sw_index];
492 
493 	/* sanity */
494 	dest_ring->per_transfer_context[sw_index] = NULL;
495 
496 	/* Update sw_index */
497 	sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
498 	dest_ring->sw_index = sw_index;
499 
500 	return 0;
501 }
502 
503 int ath10k_ce_completed_recv_next(struct ath10k_ce_pipe *ce_state,
504 				  void **per_transfer_contextp,
505 				  u32 *bufferp,
506 				  unsigned int *nbytesp,
507 				  unsigned int *transfer_idp,
508 				  unsigned int *flagsp)
509 {
510 	struct ath10k *ar = ce_state->ar;
511 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
512 	int ret;
513 
514 	spin_lock_bh(&ar_pci->ce_lock);
515 	ret = ath10k_ce_completed_recv_next_nolock(ce_state,
516 						   per_transfer_contextp,
517 						   bufferp, nbytesp,
518 						   transfer_idp, flagsp);
519 	spin_unlock_bh(&ar_pci->ce_lock);
520 
521 	return ret;
522 }
523 
524 int ath10k_ce_revoke_recv_next(struct ath10k_ce_pipe *ce_state,
525 			       void **per_transfer_contextp,
526 			       u32 *bufferp)
527 {
528 	struct ath10k_ce_ring *dest_ring;
529 	unsigned int nentries_mask;
530 	unsigned int sw_index;
531 	unsigned int write_index;
532 	int ret;
533 	struct ath10k *ar;
534 	struct ath10k_pci *ar_pci;
535 
536 	dest_ring = ce_state->dest_ring;
537 
538 	if (!dest_ring)
539 		return -EIO;
540 
541 	ar = ce_state->ar;
542 	ar_pci = ath10k_pci_priv(ar);
543 
544 	spin_lock_bh(&ar_pci->ce_lock);
545 
546 	nentries_mask = dest_ring->nentries_mask;
547 	sw_index = dest_ring->sw_index;
548 	write_index = dest_ring->write_index;
549 	if (write_index != sw_index) {
550 		struct ce_desc *base = dest_ring->base_addr_owner_space;
551 		struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
552 
553 		/* Return data from completed destination descriptor */
554 		*bufferp = __le32_to_cpu(desc->addr);
555 
556 		if (per_transfer_contextp)
557 			*per_transfer_contextp =
558 				dest_ring->per_transfer_context[sw_index];
559 
560 		/* sanity */
561 		dest_ring->per_transfer_context[sw_index] = NULL;
562 		desc->nbytes = 0;
563 
564 		/* Update sw_index */
565 		sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
566 		dest_ring->sw_index = sw_index;
567 		ret = 0;
568 	} else {
569 		ret = -EIO;
570 	}
571 
572 	spin_unlock_bh(&ar_pci->ce_lock);
573 
574 	return ret;
575 }
576 
577 /*
578  * Guts of ath10k_ce_completed_send_next.
579  * The caller takes responsibility for any necessary locking.
580  */
581 int ath10k_ce_completed_send_next_nolock(struct ath10k_ce_pipe *ce_state,
582 					 void **per_transfer_contextp,
583 					 u32 *bufferp,
584 					 unsigned int *nbytesp,
585 					 unsigned int *transfer_idp)
586 {
587 	struct ath10k_ce_ring *src_ring = ce_state->src_ring;
588 	u32 ctrl_addr = ce_state->ctrl_addr;
589 	struct ath10k *ar = ce_state->ar;
590 	unsigned int nentries_mask = src_ring->nentries_mask;
591 	unsigned int sw_index = src_ring->sw_index;
592 	struct ce_desc *sdesc, *sbase;
593 	unsigned int read_index;
594 
595 	if (src_ring->hw_index == sw_index) {
596 		/*
597 		 * The SW completion index has caught up with the cached
598 		 * version of the HW completion index.
599 		 * Update the cached HW completion index to see whether
600 		 * the SW has really caught up to the HW, or if the cached
601 		 * value of the HW index has become stale.
602 		 */
603 
604 		read_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
605 		if (read_index == 0xffffffff)
606 			return -ENODEV;
607 
608 		read_index &= nentries_mask;
609 		src_ring->hw_index = read_index;
610 	}
611 
612 	read_index = src_ring->hw_index;
613 
614 	if (read_index == sw_index)
615 		return -EIO;
616 
617 	sbase = src_ring->shadow_base;
618 	sdesc = CE_SRC_RING_TO_DESC(sbase, sw_index);
619 
620 	/* Return data from completed source descriptor */
621 	*bufferp = __le32_to_cpu(sdesc->addr);
622 	*nbytesp = __le16_to_cpu(sdesc->nbytes);
623 	*transfer_idp = MS(__le16_to_cpu(sdesc->flags),
624 			   CE_DESC_FLAGS_META_DATA);
625 
626 	if (per_transfer_contextp)
627 		*per_transfer_contextp =
628 			src_ring->per_transfer_context[sw_index];
629 
630 	/* sanity */
631 	src_ring->per_transfer_context[sw_index] = NULL;
632 
633 	/* Update sw_index */
634 	sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
635 	src_ring->sw_index = sw_index;
636 
637 	return 0;
638 }
639 
640 /* NB: Modeled after ath10k_ce_completed_send_next */
641 int ath10k_ce_cancel_send_next(struct ath10k_ce_pipe *ce_state,
642 			       void **per_transfer_contextp,
643 			       u32 *bufferp,
644 			       unsigned int *nbytesp,
645 			       unsigned int *transfer_idp)
646 {
647 	struct ath10k_ce_ring *src_ring;
648 	unsigned int nentries_mask;
649 	unsigned int sw_index;
650 	unsigned int write_index;
651 	int ret;
652 	struct ath10k *ar;
653 	struct ath10k_pci *ar_pci;
654 
655 	src_ring = ce_state->src_ring;
656 
657 	if (!src_ring)
658 		return -EIO;
659 
660 	ar = ce_state->ar;
661 	ar_pci = ath10k_pci_priv(ar);
662 
663 	spin_lock_bh(&ar_pci->ce_lock);
664 
665 	nentries_mask = src_ring->nentries_mask;
666 	sw_index = src_ring->sw_index;
667 	write_index = src_ring->write_index;
668 
669 	if (write_index != sw_index) {
670 		struct ce_desc *base = src_ring->base_addr_owner_space;
671 		struct ce_desc *desc = CE_SRC_RING_TO_DESC(base, sw_index);
672 
673 		/* Return data from completed source descriptor */
674 		*bufferp = __le32_to_cpu(desc->addr);
675 		*nbytesp = __le16_to_cpu(desc->nbytes);
676 		*transfer_idp = MS(__le16_to_cpu(desc->flags),
677 						CE_DESC_FLAGS_META_DATA);
678 
679 		if (per_transfer_contextp)
680 			*per_transfer_contextp =
681 				src_ring->per_transfer_context[sw_index];
682 
683 		/* sanity */
684 		src_ring->per_transfer_context[sw_index] = NULL;
685 
686 		/* Update sw_index */
687 		sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
688 		src_ring->sw_index = sw_index;
689 		ret = 0;
690 	} else {
691 		ret = -EIO;
692 	}
693 
694 	spin_unlock_bh(&ar_pci->ce_lock);
695 
696 	return ret;
697 }
698 
699 int ath10k_ce_completed_send_next(struct ath10k_ce_pipe *ce_state,
700 				  void **per_transfer_contextp,
701 				  u32 *bufferp,
702 				  unsigned int *nbytesp,
703 				  unsigned int *transfer_idp)
704 {
705 	struct ath10k *ar = ce_state->ar;
706 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
707 	int ret;
708 
709 	spin_lock_bh(&ar_pci->ce_lock);
710 	ret = ath10k_ce_completed_send_next_nolock(ce_state,
711 						   per_transfer_contextp,
712 						   bufferp, nbytesp,
713 						   transfer_idp);
714 	spin_unlock_bh(&ar_pci->ce_lock);
715 
716 	return ret;
717 }
718 
719 /*
720  * Guts of interrupt handler for per-engine interrupts on a particular CE.
721  *
722  * Invokes registered callbacks for recv_complete,
723  * send_complete, and watermarks.
724  */
725 void ath10k_ce_per_engine_service(struct ath10k *ar, unsigned int ce_id)
726 {
727 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
728 	struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
729 	u32 ctrl_addr = ce_state->ctrl_addr;
730 
731 	spin_lock_bh(&ar_pci->ce_lock);
732 
733 	/* Clear the copy-complete interrupts that will be handled here. */
734 	ath10k_ce_engine_int_status_clear(ar, ctrl_addr,
735 					  HOST_IS_COPY_COMPLETE_MASK);
736 
737 	spin_unlock_bh(&ar_pci->ce_lock);
738 
739 	if (ce_state->recv_cb)
740 		ce_state->recv_cb(ce_state);
741 
742 	if (ce_state->send_cb)
743 		ce_state->send_cb(ce_state);
744 
745 	spin_lock_bh(&ar_pci->ce_lock);
746 
747 	/*
748 	 * Misc CE interrupts are not being handled, but still need
749 	 * to be cleared.
750 	 */
751 	ath10k_ce_engine_int_status_clear(ar, ctrl_addr, CE_WATERMARK_MASK);
752 
753 	spin_unlock_bh(&ar_pci->ce_lock);
754 }
755 
756 /*
757  * Handler for per-engine interrupts on ALL active CEs.
758  * This is used in cases where the system is sharing a
759  * single interrput for all CEs
760  */
761 
762 void ath10k_ce_per_engine_service_any(struct ath10k *ar)
763 {
764 	int ce_id;
765 	u32 intr_summary;
766 
767 	intr_summary = CE_INTERRUPT_SUMMARY(ar);
768 
769 	for (ce_id = 0; intr_summary && (ce_id < CE_COUNT); ce_id++) {
770 		if (intr_summary & (1 << ce_id))
771 			intr_summary &= ~(1 << ce_id);
772 		else
773 			/* no intr pending on this CE */
774 			continue;
775 
776 		ath10k_ce_per_engine_service(ar, ce_id);
777 	}
778 }
779 
780 /*
781  * Adjust interrupts for the copy complete handler.
782  * If it's needed for either send or recv, then unmask
783  * this interrupt; otherwise, mask it.
784  *
785  * Called with ce_lock held.
786  */
787 static void ath10k_ce_per_engine_handler_adjust(struct ath10k_ce_pipe *ce_state)
788 {
789 	u32 ctrl_addr = ce_state->ctrl_addr;
790 	struct ath10k *ar = ce_state->ar;
791 	bool disable_copy_compl_intr = ce_state->attr_flags & CE_ATTR_DIS_INTR;
792 
793 	if ((!disable_copy_compl_intr) &&
794 	    (ce_state->send_cb || ce_state->recv_cb))
795 		ath10k_ce_copy_complete_inter_enable(ar, ctrl_addr);
796 	else
797 		ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
798 
799 	ath10k_ce_watermark_intr_disable(ar, ctrl_addr);
800 }
801 
802 int ath10k_ce_disable_interrupts(struct ath10k *ar)
803 {
804 	int ce_id;
805 
806 	for (ce_id = 0; ce_id < CE_COUNT; ce_id++) {
807 		u32 ctrl_addr = ath10k_ce_base_address(ar, ce_id);
808 
809 		ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
810 		ath10k_ce_error_intr_disable(ar, ctrl_addr);
811 		ath10k_ce_watermark_intr_disable(ar, ctrl_addr);
812 	}
813 
814 	return 0;
815 }
816 
817 void ath10k_ce_enable_interrupts(struct ath10k *ar)
818 {
819 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
820 	int ce_id;
821 
822 	/* Skip the last copy engine, CE7 the diagnostic window, as that
823 	 * uses polling and isn't initialized for interrupts.
824 	 */
825 	for (ce_id = 0; ce_id < CE_COUNT - 1; ce_id++)
826 		ath10k_ce_per_engine_handler_adjust(&ar_pci->ce_states[ce_id]);
827 }
828 
829 static int ath10k_ce_init_src_ring(struct ath10k *ar,
830 				   unsigned int ce_id,
831 				   const struct ce_attr *attr)
832 {
833 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
834 	struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
835 	struct ath10k_ce_ring *src_ring = ce_state->src_ring;
836 	u32 nentries, ctrl_addr = ath10k_ce_base_address(ar, ce_id);
837 
838 	nentries = roundup_pow_of_two(attr->src_nentries);
839 
840 	memset(src_ring->base_addr_owner_space, 0,
841 	       nentries * sizeof(struct ce_desc));
842 
843 	src_ring->sw_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
844 	src_ring->sw_index &= src_ring->nentries_mask;
845 	src_ring->hw_index = src_ring->sw_index;
846 
847 	src_ring->write_index =
848 		ath10k_ce_src_ring_write_index_get(ar, ctrl_addr);
849 	src_ring->write_index &= src_ring->nentries_mask;
850 
851 	ath10k_ce_src_ring_base_addr_set(ar, ctrl_addr,
852 					 src_ring->base_addr_ce_space);
853 	ath10k_ce_src_ring_size_set(ar, ctrl_addr, nentries);
854 	ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, attr->src_sz_max);
855 	ath10k_ce_src_ring_byte_swap_set(ar, ctrl_addr, 0);
856 	ath10k_ce_src_ring_lowmark_set(ar, ctrl_addr, 0);
857 	ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, nentries);
858 
859 	ath10k_dbg(ar, ATH10K_DBG_BOOT,
860 		   "boot init ce src ring id %d entries %d base_addr %p\n",
861 		   ce_id, nentries, src_ring->base_addr_owner_space);
862 
863 	return 0;
864 }
865 
866 static int ath10k_ce_init_dest_ring(struct ath10k *ar,
867 				    unsigned int ce_id,
868 				    const struct ce_attr *attr)
869 {
870 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
871 	struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
872 	struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
873 	u32 nentries, ctrl_addr = ath10k_ce_base_address(ar, ce_id);
874 
875 	nentries = roundup_pow_of_two(attr->dest_nentries);
876 
877 	memset(dest_ring->base_addr_owner_space, 0,
878 	       nentries * sizeof(struct ce_desc));
879 
880 	dest_ring->sw_index = ath10k_ce_dest_ring_read_index_get(ar, ctrl_addr);
881 	dest_ring->sw_index &= dest_ring->nentries_mask;
882 	dest_ring->write_index =
883 		ath10k_ce_dest_ring_write_index_get(ar, ctrl_addr);
884 	dest_ring->write_index &= dest_ring->nentries_mask;
885 
886 	ath10k_ce_dest_ring_base_addr_set(ar, ctrl_addr,
887 					  dest_ring->base_addr_ce_space);
888 	ath10k_ce_dest_ring_size_set(ar, ctrl_addr, nentries);
889 	ath10k_ce_dest_ring_byte_swap_set(ar, ctrl_addr, 0);
890 	ath10k_ce_dest_ring_lowmark_set(ar, ctrl_addr, 0);
891 	ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, nentries);
892 
893 	ath10k_dbg(ar, ATH10K_DBG_BOOT,
894 		   "boot ce dest ring id %d entries %d base_addr %p\n",
895 		   ce_id, nentries, dest_ring->base_addr_owner_space);
896 
897 	return 0;
898 }
899 
900 static struct ath10k_ce_ring *
901 ath10k_ce_alloc_src_ring(struct ath10k *ar, unsigned int ce_id,
902 			 const struct ce_attr *attr)
903 {
904 	struct ath10k_ce_ring *src_ring;
905 	u32 nentries = attr->src_nentries;
906 	dma_addr_t base_addr;
907 
908 	nentries = roundup_pow_of_two(nentries);
909 
910 	src_ring = kzalloc(sizeof(*src_ring) +
911 			   (nentries *
912 			    sizeof(*src_ring->per_transfer_context)),
913 			   GFP_KERNEL);
914 	if (src_ring == NULL)
915 		return ERR_PTR(-ENOMEM);
916 
917 	src_ring->nentries = nentries;
918 	src_ring->nentries_mask = nentries - 1;
919 
920 	/*
921 	 * Legacy platforms that do not support cache
922 	 * coherent DMA are unsupported
923 	 */
924 	src_ring->base_addr_owner_space_unaligned =
925 		dma_alloc_coherent(ar->dev,
926 				   (nentries * sizeof(struct ce_desc) +
927 				    CE_DESC_RING_ALIGN),
928 				   &base_addr, GFP_KERNEL);
929 	if (!src_ring->base_addr_owner_space_unaligned) {
930 		kfree(src_ring);
931 		return ERR_PTR(-ENOMEM);
932 	}
933 
934 	src_ring->base_addr_ce_space_unaligned = base_addr;
935 
936 	src_ring->base_addr_owner_space = PTR_ALIGN(
937 			src_ring->base_addr_owner_space_unaligned,
938 			CE_DESC_RING_ALIGN);
939 	src_ring->base_addr_ce_space = ALIGN(
940 			src_ring->base_addr_ce_space_unaligned,
941 			CE_DESC_RING_ALIGN);
942 
943 	/*
944 	 * Also allocate a shadow src ring in regular
945 	 * mem to use for faster access.
946 	 */
947 	src_ring->shadow_base_unaligned =
948 		kmalloc((nentries * sizeof(struct ce_desc) +
949 			 CE_DESC_RING_ALIGN), GFP_KERNEL);
950 	if (!src_ring->shadow_base_unaligned) {
951 		dma_free_coherent(ar->dev,
952 				  (nentries * sizeof(struct ce_desc) +
953 				   CE_DESC_RING_ALIGN),
954 				  src_ring->base_addr_owner_space,
955 				  src_ring->base_addr_ce_space);
956 		kfree(src_ring);
957 		return ERR_PTR(-ENOMEM);
958 	}
959 
960 	src_ring->shadow_base = PTR_ALIGN(
961 			src_ring->shadow_base_unaligned,
962 			CE_DESC_RING_ALIGN);
963 
964 	return src_ring;
965 }
966 
967 static struct ath10k_ce_ring *
968 ath10k_ce_alloc_dest_ring(struct ath10k *ar, unsigned int ce_id,
969 			  const struct ce_attr *attr)
970 {
971 	struct ath10k_ce_ring *dest_ring;
972 	u32 nentries;
973 	dma_addr_t base_addr;
974 
975 	nentries = roundup_pow_of_two(attr->dest_nentries);
976 
977 	dest_ring = kzalloc(sizeof(*dest_ring) +
978 			    (nentries *
979 			     sizeof(*dest_ring->per_transfer_context)),
980 			    GFP_KERNEL);
981 	if (dest_ring == NULL)
982 		return ERR_PTR(-ENOMEM);
983 
984 	dest_ring->nentries = nentries;
985 	dest_ring->nentries_mask = nentries - 1;
986 
987 	/*
988 	 * Legacy platforms that do not support cache
989 	 * coherent DMA are unsupported
990 	 */
991 	dest_ring->base_addr_owner_space_unaligned =
992 		dma_alloc_coherent(ar->dev,
993 				   (nentries * sizeof(struct ce_desc) +
994 				    CE_DESC_RING_ALIGN),
995 				   &base_addr, GFP_KERNEL);
996 	if (!dest_ring->base_addr_owner_space_unaligned) {
997 		kfree(dest_ring);
998 		return ERR_PTR(-ENOMEM);
999 	}
1000 
1001 	dest_ring->base_addr_ce_space_unaligned = base_addr;
1002 
1003 	/*
1004 	 * Correctly initialize memory to 0 to prevent garbage
1005 	 * data crashing system when download firmware
1006 	 */
1007 	memset(dest_ring->base_addr_owner_space_unaligned, 0,
1008 	       nentries * sizeof(struct ce_desc) + CE_DESC_RING_ALIGN);
1009 
1010 	dest_ring->base_addr_owner_space = PTR_ALIGN(
1011 			dest_ring->base_addr_owner_space_unaligned,
1012 			CE_DESC_RING_ALIGN);
1013 	dest_ring->base_addr_ce_space = ALIGN(
1014 			dest_ring->base_addr_ce_space_unaligned,
1015 			CE_DESC_RING_ALIGN);
1016 
1017 	return dest_ring;
1018 }
1019 
1020 /*
1021  * Initialize a Copy Engine based on caller-supplied attributes.
1022  * This may be called once to initialize both source and destination
1023  * rings or it may be called twice for separate source and destination
1024  * initialization. It may be that only one side or the other is
1025  * initialized by software/firmware.
1026  */
1027 int ath10k_ce_init_pipe(struct ath10k *ar, unsigned int ce_id,
1028 			const struct ce_attr *attr)
1029 {
1030 	int ret;
1031 
1032 	if (attr->src_nentries) {
1033 		ret = ath10k_ce_init_src_ring(ar, ce_id, attr);
1034 		if (ret) {
1035 			ath10k_err(ar, "Failed to initialize CE src ring for ID: %d (%d)\n",
1036 				   ce_id, ret);
1037 			return ret;
1038 		}
1039 	}
1040 
1041 	if (attr->dest_nentries) {
1042 		ret = ath10k_ce_init_dest_ring(ar, ce_id, attr);
1043 		if (ret) {
1044 			ath10k_err(ar, "Failed to initialize CE dest ring for ID: %d (%d)\n",
1045 				   ce_id, ret);
1046 			return ret;
1047 		}
1048 	}
1049 
1050 	return 0;
1051 }
1052 
1053 static void ath10k_ce_deinit_src_ring(struct ath10k *ar, unsigned int ce_id)
1054 {
1055 	u32 ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1056 
1057 	ath10k_ce_src_ring_base_addr_set(ar, ctrl_addr, 0);
1058 	ath10k_ce_src_ring_size_set(ar, ctrl_addr, 0);
1059 	ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, 0);
1060 	ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, 0);
1061 }
1062 
1063 static void ath10k_ce_deinit_dest_ring(struct ath10k *ar, unsigned int ce_id)
1064 {
1065 	u32 ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1066 
1067 	ath10k_ce_dest_ring_base_addr_set(ar, ctrl_addr, 0);
1068 	ath10k_ce_dest_ring_size_set(ar, ctrl_addr, 0);
1069 	ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, 0);
1070 }
1071 
1072 void ath10k_ce_deinit_pipe(struct ath10k *ar, unsigned int ce_id)
1073 {
1074 	ath10k_ce_deinit_src_ring(ar, ce_id);
1075 	ath10k_ce_deinit_dest_ring(ar, ce_id);
1076 }
1077 
1078 int ath10k_ce_alloc_pipe(struct ath10k *ar, int ce_id,
1079 			 const struct ce_attr *attr,
1080 			 void (*send_cb)(struct ath10k_ce_pipe *),
1081 			 void (*recv_cb)(struct ath10k_ce_pipe *))
1082 {
1083 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1084 	struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
1085 	int ret;
1086 
1087 	/*
1088 	 * Make sure there's enough CE ringbuffer entries for HTT TX to avoid
1089 	 * additional TX locking checks.
1090 	 *
1091 	 * For the lack of a better place do the check here.
1092 	 */
1093 	BUILD_BUG_ON(2*TARGET_NUM_MSDU_DESC >
1094 		     (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
1095 	BUILD_BUG_ON(2*TARGET_10X_NUM_MSDU_DESC >
1096 		     (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
1097 	BUILD_BUG_ON(2*TARGET_TLV_NUM_MSDU_DESC >
1098 		     (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
1099 
1100 	ce_state->ar = ar;
1101 	ce_state->id = ce_id;
1102 	ce_state->ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1103 	ce_state->attr_flags = attr->flags;
1104 	ce_state->src_sz_max = attr->src_sz_max;
1105 
1106 	if (attr->src_nentries)
1107 		ce_state->send_cb = send_cb;
1108 
1109 	if (attr->dest_nentries)
1110 		ce_state->recv_cb = recv_cb;
1111 
1112 	if (attr->src_nentries) {
1113 		ce_state->src_ring = ath10k_ce_alloc_src_ring(ar, ce_id, attr);
1114 		if (IS_ERR(ce_state->src_ring)) {
1115 			ret = PTR_ERR(ce_state->src_ring);
1116 			ath10k_err(ar, "failed to allocate copy engine source ring %d: %d\n",
1117 				   ce_id, ret);
1118 			ce_state->src_ring = NULL;
1119 			return ret;
1120 		}
1121 	}
1122 
1123 	if (attr->dest_nentries) {
1124 		ce_state->dest_ring = ath10k_ce_alloc_dest_ring(ar, ce_id,
1125 								attr);
1126 		if (IS_ERR(ce_state->dest_ring)) {
1127 			ret = PTR_ERR(ce_state->dest_ring);
1128 			ath10k_err(ar, "failed to allocate copy engine destination ring %d: %d\n",
1129 				   ce_id, ret);
1130 			ce_state->dest_ring = NULL;
1131 			return ret;
1132 		}
1133 	}
1134 
1135 	return 0;
1136 }
1137 
1138 void ath10k_ce_free_pipe(struct ath10k *ar, int ce_id)
1139 {
1140 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1141 	struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
1142 
1143 	if (ce_state->src_ring) {
1144 		kfree(ce_state->src_ring->shadow_base_unaligned);
1145 		dma_free_coherent(ar->dev,
1146 				  (ce_state->src_ring->nentries *
1147 				   sizeof(struct ce_desc) +
1148 				   CE_DESC_RING_ALIGN),
1149 				  ce_state->src_ring->base_addr_owner_space,
1150 				  ce_state->src_ring->base_addr_ce_space);
1151 		kfree(ce_state->src_ring);
1152 	}
1153 
1154 	if (ce_state->dest_ring) {
1155 		dma_free_coherent(ar->dev,
1156 				  (ce_state->dest_ring->nentries *
1157 				   sizeof(struct ce_desc) +
1158 				   CE_DESC_RING_ALIGN),
1159 				  ce_state->dest_ring->base_addr_owner_space,
1160 				  ce_state->dest_ring->base_addr_ce_space);
1161 		kfree(ce_state->dest_ring);
1162 	}
1163 
1164 	ce_state->src_ring = NULL;
1165 	ce_state->dest_ring = NULL;
1166 }
1167