1 /* 2 * Copyright (c) 2005-2011 Atheros Communications Inc. 3 * Copyright (c) 2011-2013 Qualcomm Atheros, Inc. 4 * 5 * Permission to use, copy, modify, and/or distribute this software for any 6 * purpose with or without fee is hereby granted, provided that the above 7 * copyright notice and this permission notice appear in all copies. 8 * 9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 16 */ 17 18 #include "hif.h" 19 #include "pci.h" 20 #include "ce.h" 21 #include "debug.h" 22 23 /* 24 * Support for Copy Engine hardware, which is mainly used for 25 * communication between Host and Target over a PCIe interconnect. 26 */ 27 28 /* 29 * A single CopyEngine (CE) comprises two "rings": 30 * a source ring 31 * a destination ring 32 * 33 * Each ring consists of a number of descriptors which specify 34 * an address, length, and meta-data. 35 * 36 * Typically, one side of the PCIe interconnect (Host or Target) 37 * controls one ring and the other side controls the other ring. 38 * The source side chooses when to initiate a transfer and it 39 * chooses what to send (buffer address, length). The destination 40 * side keeps a supply of "anonymous receive buffers" available and 41 * it handles incoming data as it arrives (when the destination 42 * recieves an interrupt). 43 * 44 * The sender may send a simple buffer (address/length) or it may 45 * send a small list of buffers. When a small list is sent, hardware 46 * "gathers" these and they end up in a single destination buffer 47 * with a single interrupt. 48 * 49 * There are several "contexts" managed by this layer -- more, it 50 * may seem -- than should be needed. These are provided mainly for 51 * maximum flexibility and especially to facilitate a simpler HIF 52 * implementation. There are per-CopyEngine recv, send, and watermark 53 * contexts. These are supplied by the caller when a recv, send, 54 * or watermark handler is established and they are echoed back to 55 * the caller when the respective callbacks are invoked. There is 56 * also a per-transfer context supplied by the caller when a buffer 57 * (or sendlist) is sent and when a buffer is enqueued for recv. 58 * These per-transfer contexts are echoed back to the caller when 59 * the buffer is sent/received. 60 */ 61 62 static inline void ath10k_ce_dest_ring_write_index_set(struct ath10k *ar, 63 u32 ce_ctrl_addr, 64 unsigned int n) 65 { 66 ath10k_pci_write32(ar, ce_ctrl_addr + DST_WR_INDEX_ADDRESS, n); 67 } 68 69 static inline u32 ath10k_ce_dest_ring_write_index_get(struct ath10k *ar, 70 u32 ce_ctrl_addr) 71 { 72 return ath10k_pci_read32(ar, ce_ctrl_addr + DST_WR_INDEX_ADDRESS); 73 } 74 75 static inline void ath10k_ce_src_ring_write_index_set(struct ath10k *ar, 76 u32 ce_ctrl_addr, 77 unsigned int n) 78 { 79 ath10k_pci_write32(ar, ce_ctrl_addr + SR_WR_INDEX_ADDRESS, n); 80 } 81 82 static inline u32 ath10k_ce_src_ring_write_index_get(struct ath10k *ar, 83 u32 ce_ctrl_addr) 84 { 85 return ath10k_pci_read32(ar, ce_ctrl_addr + SR_WR_INDEX_ADDRESS); 86 } 87 88 static inline u32 ath10k_ce_src_ring_read_index_get(struct ath10k *ar, 89 u32 ce_ctrl_addr) 90 { 91 return ath10k_pci_read32(ar, ce_ctrl_addr + CURRENT_SRRI_ADDRESS); 92 } 93 94 static inline void ath10k_ce_src_ring_base_addr_set(struct ath10k *ar, 95 u32 ce_ctrl_addr, 96 unsigned int addr) 97 { 98 ath10k_pci_write32(ar, ce_ctrl_addr + SR_BA_ADDRESS, addr); 99 } 100 101 static inline void ath10k_ce_src_ring_size_set(struct ath10k *ar, 102 u32 ce_ctrl_addr, 103 unsigned int n) 104 { 105 ath10k_pci_write32(ar, ce_ctrl_addr + SR_SIZE_ADDRESS, n); 106 } 107 108 static inline void ath10k_ce_src_ring_dmax_set(struct ath10k *ar, 109 u32 ce_ctrl_addr, 110 unsigned int n) 111 { 112 u32 ctrl1_addr = ath10k_pci_read32((ar), 113 (ce_ctrl_addr) + CE_CTRL1_ADDRESS); 114 115 ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS, 116 (ctrl1_addr & ~CE_CTRL1_DMAX_LENGTH_MASK) | 117 CE_CTRL1_DMAX_LENGTH_SET(n)); 118 } 119 120 static inline void ath10k_ce_src_ring_byte_swap_set(struct ath10k *ar, 121 u32 ce_ctrl_addr, 122 unsigned int n) 123 { 124 u32 ctrl1_addr = ath10k_pci_read32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS); 125 126 ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS, 127 (ctrl1_addr & ~CE_CTRL1_SRC_RING_BYTE_SWAP_EN_MASK) | 128 CE_CTRL1_SRC_RING_BYTE_SWAP_EN_SET(n)); 129 } 130 131 static inline void ath10k_ce_dest_ring_byte_swap_set(struct ath10k *ar, 132 u32 ce_ctrl_addr, 133 unsigned int n) 134 { 135 u32 ctrl1_addr = ath10k_pci_read32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS); 136 137 ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS, 138 (ctrl1_addr & ~CE_CTRL1_DST_RING_BYTE_SWAP_EN_MASK) | 139 CE_CTRL1_DST_RING_BYTE_SWAP_EN_SET(n)); 140 } 141 142 static inline u32 ath10k_ce_dest_ring_read_index_get(struct ath10k *ar, 143 u32 ce_ctrl_addr) 144 { 145 return ath10k_pci_read32(ar, ce_ctrl_addr + CURRENT_DRRI_ADDRESS); 146 } 147 148 static inline void ath10k_ce_dest_ring_base_addr_set(struct ath10k *ar, 149 u32 ce_ctrl_addr, 150 u32 addr) 151 { 152 ath10k_pci_write32(ar, ce_ctrl_addr + DR_BA_ADDRESS, addr); 153 } 154 155 static inline void ath10k_ce_dest_ring_size_set(struct ath10k *ar, 156 u32 ce_ctrl_addr, 157 unsigned int n) 158 { 159 ath10k_pci_write32(ar, ce_ctrl_addr + DR_SIZE_ADDRESS, n); 160 } 161 162 static inline void ath10k_ce_src_ring_highmark_set(struct ath10k *ar, 163 u32 ce_ctrl_addr, 164 unsigned int n) 165 { 166 u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS); 167 168 ath10k_pci_write32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS, 169 (addr & ~SRC_WATERMARK_HIGH_MASK) | 170 SRC_WATERMARK_HIGH_SET(n)); 171 } 172 173 static inline void ath10k_ce_src_ring_lowmark_set(struct ath10k *ar, 174 u32 ce_ctrl_addr, 175 unsigned int n) 176 { 177 u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS); 178 179 ath10k_pci_write32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS, 180 (addr & ~SRC_WATERMARK_LOW_MASK) | 181 SRC_WATERMARK_LOW_SET(n)); 182 } 183 184 static inline void ath10k_ce_dest_ring_highmark_set(struct ath10k *ar, 185 u32 ce_ctrl_addr, 186 unsigned int n) 187 { 188 u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS); 189 190 ath10k_pci_write32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS, 191 (addr & ~DST_WATERMARK_HIGH_MASK) | 192 DST_WATERMARK_HIGH_SET(n)); 193 } 194 195 static inline void ath10k_ce_dest_ring_lowmark_set(struct ath10k *ar, 196 u32 ce_ctrl_addr, 197 unsigned int n) 198 { 199 u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS); 200 201 ath10k_pci_write32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS, 202 (addr & ~DST_WATERMARK_LOW_MASK) | 203 DST_WATERMARK_LOW_SET(n)); 204 } 205 206 static inline void ath10k_ce_copy_complete_inter_enable(struct ath10k *ar, 207 u32 ce_ctrl_addr) 208 { 209 u32 host_ie_addr = ath10k_pci_read32(ar, 210 ce_ctrl_addr + HOST_IE_ADDRESS); 211 212 ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS, 213 host_ie_addr | HOST_IE_COPY_COMPLETE_MASK); 214 } 215 216 static inline void ath10k_ce_copy_complete_intr_disable(struct ath10k *ar, 217 u32 ce_ctrl_addr) 218 { 219 u32 host_ie_addr = ath10k_pci_read32(ar, 220 ce_ctrl_addr + HOST_IE_ADDRESS); 221 222 ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS, 223 host_ie_addr & ~HOST_IE_COPY_COMPLETE_MASK); 224 } 225 226 static inline void ath10k_ce_watermark_intr_disable(struct ath10k *ar, 227 u32 ce_ctrl_addr) 228 { 229 u32 host_ie_addr = ath10k_pci_read32(ar, 230 ce_ctrl_addr + HOST_IE_ADDRESS); 231 232 ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS, 233 host_ie_addr & ~CE_WATERMARK_MASK); 234 } 235 236 static inline void ath10k_ce_error_intr_enable(struct ath10k *ar, 237 u32 ce_ctrl_addr) 238 { 239 u32 misc_ie_addr = ath10k_pci_read32(ar, 240 ce_ctrl_addr + MISC_IE_ADDRESS); 241 242 ath10k_pci_write32(ar, ce_ctrl_addr + MISC_IE_ADDRESS, 243 misc_ie_addr | CE_ERROR_MASK); 244 } 245 246 static inline void ath10k_ce_error_intr_disable(struct ath10k *ar, 247 u32 ce_ctrl_addr) 248 { 249 u32 misc_ie_addr = ath10k_pci_read32(ar, 250 ce_ctrl_addr + MISC_IE_ADDRESS); 251 252 ath10k_pci_write32(ar, ce_ctrl_addr + MISC_IE_ADDRESS, 253 misc_ie_addr & ~CE_ERROR_MASK); 254 } 255 256 static inline void ath10k_ce_engine_int_status_clear(struct ath10k *ar, 257 u32 ce_ctrl_addr, 258 unsigned int mask) 259 { 260 ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IS_ADDRESS, mask); 261 } 262 263 /* 264 * Guts of ath10k_ce_send, used by both ath10k_ce_send and 265 * ath10k_ce_sendlist_send. 266 * The caller takes responsibility for any needed locking. 267 */ 268 int ath10k_ce_send_nolock(struct ath10k_ce_pipe *ce_state, 269 void *per_transfer_context, 270 u32 buffer, 271 unsigned int nbytes, 272 unsigned int transfer_id, 273 unsigned int flags) 274 { 275 struct ath10k *ar = ce_state->ar; 276 struct ath10k_ce_ring *src_ring = ce_state->src_ring; 277 struct ce_desc *desc, *sdesc; 278 unsigned int nentries_mask = src_ring->nentries_mask; 279 unsigned int sw_index = src_ring->sw_index; 280 unsigned int write_index = src_ring->write_index; 281 u32 ctrl_addr = ce_state->ctrl_addr; 282 u32 desc_flags = 0; 283 int ret = 0; 284 285 if (nbytes > ce_state->src_sz_max) 286 ath10k_warn(ar, "%s: send more we can (nbytes: %d, max: %d)\n", 287 __func__, nbytes, ce_state->src_sz_max); 288 289 if (unlikely(CE_RING_DELTA(nentries_mask, 290 write_index, sw_index - 1) <= 0)) { 291 ret = -ENOSR; 292 goto exit; 293 } 294 295 desc = CE_SRC_RING_TO_DESC(src_ring->base_addr_owner_space, 296 write_index); 297 sdesc = CE_SRC_RING_TO_DESC(src_ring->shadow_base, write_index); 298 299 desc_flags |= SM(transfer_id, CE_DESC_FLAGS_META_DATA); 300 301 if (flags & CE_SEND_FLAG_GATHER) 302 desc_flags |= CE_DESC_FLAGS_GATHER; 303 if (flags & CE_SEND_FLAG_BYTE_SWAP) 304 desc_flags |= CE_DESC_FLAGS_BYTE_SWAP; 305 306 sdesc->addr = __cpu_to_le32(buffer); 307 sdesc->nbytes = __cpu_to_le16(nbytes); 308 sdesc->flags = __cpu_to_le16(desc_flags); 309 310 *desc = *sdesc; 311 312 src_ring->per_transfer_context[write_index] = per_transfer_context; 313 314 /* Update Source Ring Write Index */ 315 write_index = CE_RING_IDX_INCR(nentries_mask, write_index); 316 317 /* WORKAROUND */ 318 if (!(flags & CE_SEND_FLAG_GATHER)) 319 ath10k_ce_src_ring_write_index_set(ar, ctrl_addr, write_index); 320 321 src_ring->write_index = write_index; 322 exit: 323 return ret; 324 } 325 326 void __ath10k_ce_send_revert(struct ath10k_ce_pipe *pipe) 327 { 328 struct ath10k *ar = pipe->ar; 329 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 330 struct ath10k_ce_ring *src_ring = pipe->src_ring; 331 u32 ctrl_addr = pipe->ctrl_addr; 332 333 lockdep_assert_held(&ar_pci->ce_lock); 334 335 /* 336 * This function must be called only if there is an incomplete 337 * scatter-gather transfer (before index register is updated) 338 * that needs to be cleaned up. 339 */ 340 if (WARN_ON_ONCE(src_ring->write_index == src_ring->sw_index)) 341 return; 342 343 if (WARN_ON_ONCE(src_ring->write_index == 344 ath10k_ce_src_ring_write_index_get(ar, ctrl_addr))) 345 return; 346 347 src_ring->write_index--; 348 src_ring->write_index &= src_ring->nentries_mask; 349 350 src_ring->per_transfer_context[src_ring->write_index] = NULL; 351 } 352 353 int ath10k_ce_send(struct ath10k_ce_pipe *ce_state, 354 void *per_transfer_context, 355 u32 buffer, 356 unsigned int nbytes, 357 unsigned int transfer_id, 358 unsigned int flags) 359 { 360 struct ath10k *ar = ce_state->ar; 361 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 362 int ret; 363 364 spin_lock_bh(&ar_pci->ce_lock); 365 ret = ath10k_ce_send_nolock(ce_state, per_transfer_context, 366 buffer, nbytes, transfer_id, flags); 367 spin_unlock_bh(&ar_pci->ce_lock); 368 369 return ret; 370 } 371 372 int ath10k_ce_num_free_src_entries(struct ath10k_ce_pipe *pipe) 373 { 374 struct ath10k *ar = pipe->ar; 375 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 376 int delta; 377 378 spin_lock_bh(&ar_pci->ce_lock); 379 delta = CE_RING_DELTA(pipe->src_ring->nentries_mask, 380 pipe->src_ring->write_index, 381 pipe->src_ring->sw_index - 1); 382 spin_unlock_bh(&ar_pci->ce_lock); 383 384 return delta; 385 } 386 387 int __ath10k_ce_rx_num_free_bufs(struct ath10k_ce_pipe *pipe) 388 { 389 struct ath10k *ar = pipe->ar; 390 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 391 struct ath10k_ce_ring *dest_ring = pipe->dest_ring; 392 unsigned int nentries_mask = dest_ring->nentries_mask; 393 unsigned int write_index = dest_ring->write_index; 394 unsigned int sw_index = dest_ring->sw_index; 395 396 lockdep_assert_held(&ar_pci->ce_lock); 397 398 return CE_RING_DELTA(nentries_mask, write_index, sw_index - 1); 399 } 400 401 int __ath10k_ce_rx_post_buf(struct ath10k_ce_pipe *pipe, void *ctx, u32 paddr) 402 { 403 struct ath10k *ar = pipe->ar; 404 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 405 struct ath10k_ce_ring *dest_ring = pipe->dest_ring; 406 unsigned int nentries_mask = dest_ring->nentries_mask; 407 unsigned int write_index = dest_ring->write_index; 408 unsigned int sw_index = dest_ring->sw_index; 409 struct ce_desc *base = dest_ring->base_addr_owner_space; 410 struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, write_index); 411 u32 ctrl_addr = pipe->ctrl_addr; 412 413 lockdep_assert_held(&ar_pci->ce_lock); 414 415 if (CE_RING_DELTA(nentries_mask, write_index, sw_index - 1) == 0) 416 return -EIO; 417 418 desc->addr = __cpu_to_le32(paddr); 419 desc->nbytes = 0; 420 421 dest_ring->per_transfer_context[write_index] = ctx; 422 write_index = CE_RING_IDX_INCR(nentries_mask, write_index); 423 ath10k_ce_dest_ring_write_index_set(ar, ctrl_addr, write_index); 424 dest_ring->write_index = write_index; 425 426 return 0; 427 } 428 429 int ath10k_ce_rx_post_buf(struct ath10k_ce_pipe *pipe, void *ctx, u32 paddr) 430 { 431 struct ath10k *ar = pipe->ar; 432 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 433 int ret; 434 435 spin_lock_bh(&ar_pci->ce_lock); 436 ret = __ath10k_ce_rx_post_buf(pipe, ctx, paddr); 437 spin_unlock_bh(&ar_pci->ce_lock); 438 439 return ret; 440 } 441 442 /* 443 * Guts of ath10k_ce_completed_recv_next. 444 * The caller takes responsibility for any necessary locking. 445 */ 446 int ath10k_ce_completed_recv_next_nolock(struct ath10k_ce_pipe *ce_state, 447 void **per_transfer_contextp, 448 u32 *bufferp, 449 unsigned int *nbytesp, 450 unsigned int *transfer_idp, 451 unsigned int *flagsp) 452 { 453 struct ath10k_ce_ring *dest_ring = ce_state->dest_ring; 454 unsigned int nentries_mask = dest_ring->nentries_mask; 455 unsigned int sw_index = dest_ring->sw_index; 456 457 struct ce_desc *base = dest_ring->base_addr_owner_space; 458 struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index); 459 struct ce_desc sdesc; 460 u16 nbytes; 461 462 /* Copy in one go for performance reasons */ 463 sdesc = *desc; 464 465 nbytes = __le16_to_cpu(sdesc.nbytes); 466 if (nbytes == 0) { 467 /* 468 * This closes a relatively unusual race where the Host 469 * sees the updated DRRI before the update to the 470 * corresponding descriptor has completed. We treat this 471 * as a descriptor that is not yet done. 472 */ 473 return -EIO; 474 } 475 476 desc->nbytes = 0; 477 478 /* Return data from completed destination descriptor */ 479 *bufferp = __le32_to_cpu(sdesc.addr); 480 *nbytesp = nbytes; 481 *transfer_idp = MS(__le16_to_cpu(sdesc.flags), CE_DESC_FLAGS_META_DATA); 482 483 if (__le16_to_cpu(sdesc.flags) & CE_DESC_FLAGS_BYTE_SWAP) 484 *flagsp = CE_RECV_FLAG_SWAPPED; 485 else 486 *flagsp = 0; 487 488 if (per_transfer_contextp) 489 *per_transfer_contextp = 490 dest_ring->per_transfer_context[sw_index]; 491 492 /* sanity */ 493 dest_ring->per_transfer_context[sw_index] = NULL; 494 495 /* Update sw_index */ 496 sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index); 497 dest_ring->sw_index = sw_index; 498 499 return 0; 500 } 501 502 int ath10k_ce_completed_recv_next(struct ath10k_ce_pipe *ce_state, 503 void **per_transfer_contextp, 504 u32 *bufferp, 505 unsigned int *nbytesp, 506 unsigned int *transfer_idp, 507 unsigned int *flagsp) 508 { 509 struct ath10k *ar = ce_state->ar; 510 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 511 int ret; 512 513 spin_lock_bh(&ar_pci->ce_lock); 514 ret = ath10k_ce_completed_recv_next_nolock(ce_state, 515 per_transfer_contextp, 516 bufferp, nbytesp, 517 transfer_idp, flagsp); 518 spin_unlock_bh(&ar_pci->ce_lock); 519 520 return ret; 521 } 522 523 int ath10k_ce_revoke_recv_next(struct ath10k_ce_pipe *ce_state, 524 void **per_transfer_contextp, 525 u32 *bufferp) 526 { 527 struct ath10k_ce_ring *dest_ring; 528 unsigned int nentries_mask; 529 unsigned int sw_index; 530 unsigned int write_index; 531 int ret; 532 struct ath10k *ar; 533 struct ath10k_pci *ar_pci; 534 535 dest_ring = ce_state->dest_ring; 536 537 if (!dest_ring) 538 return -EIO; 539 540 ar = ce_state->ar; 541 ar_pci = ath10k_pci_priv(ar); 542 543 spin_lock_bh(&ar_pci->ce_lock); 544 545 nentries_mask = dest_ring->nentries_mask; 546 sw_index = dest_ring->sw_index; 547 write_index = dest_ring->write_index; 548 if (write_index != sw_index) { 549 struct ce_desc *base = dest_ring->base_addr_owner_space; 550 struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index); 551 552 /* Return data from completed destination descriptor */ 553 *bufferp = __le32_to_cpu(desc->addr); 554 555 if (per_transfer_contextp) 556 *per_transfer_contextp = 557 dest_ring->per_transfer_context[sw_index]; 558 559 /* sanity */ 560 dest_ring->per_transfer_context[sw_index] = NULL; 561 desc->nbytes = 0; 562 563 /* Update sw_index */ 564 sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index); 565 dest_ring->sw_index = sw_index; 566 ret = 0; 567 } else { 568 ret = -EIO; 569 } 570 571 spin_unlock_bh(&ar_pci->ce_lock); 572 573 return ret; 574 } 575 576 /* 577 * Guts of ath10k_ce_completed_send_next. 578 * The caller takes responsibility for any necessary locking. 579 */ 580 int ath10k_ce_completed_send_next_nolock(struct ath10k_ce_pipe *ce_state, 581 void **per_transfer_contextp, 582 u32 *bufferp, 583 unsigned int *nbytesp, 584 unsigned int *transfer_idp) 585 { 586 struct ath10k_ce_ring *src_ring = ce_state->src_ring; 587 u32 ctrl_addr = ce_state->ctrl_addr; 588 struct ath10k *ar = ce_state->ar; 589 unsigned int nentries_mask = src_ring->nentries_mask; 590 unsigned int sw_index = src_ring->sw_index; 591 struct ce_desc *sdesc, *sbase; 592 unsigned int read_index; 593 594 if (src_ring->hw_index == sw_index) { 595 /* 596 * The SW completion index has caught up with the cached 597 * version of the HW completion index. 598 * Update the cached HW completion index to see whether 599 * the SW has really caught up to the HW, or if the cached 600 * value of the HW index has become stale. 601 */ 602 603 read_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr); 604 if (read_index == 0xffffffff) 605 return -ENODEV; 606 607 read_index &= nentries_mask; 608 src_ring->hw_index = read_index; 609 } 610 611 read_index = src_ring->hw_index; 612 613 if (read_index == sw_index) 614 return -EIO; 615 616 sbase = src_ring->shadow_base; 617 sdesc = CE_SRC_RING_TO_DESC(sbase, sw_index); 618 619 /* Return data from completed source descriptor */ 620 *bufferp = __le32_to_cpu(sdesc->addr); 621 *nbytesp = __le16_to_cpu(sdesc->nbytes); 622 *transfer_idp = MS(__le16_to_cpu(sdesc->flags), 623 CE_DESC_FLAGS_META_DATA); 624 625 if (per_transfer_contextp) 626 *per_transfer_contextp = 627 src_ring->per_transfer_context[sw_index]; 628 629 /* sanity */ 630 src_ring->per_transfer_context[sw_index] = NULL; 631 632 /* Update sw_index */ 633 sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index); 634 src_ring->sw_index = sw_index; 635 636 return 0; 637 } 638 639 /* NB: Modeled after ath10k_ce_completed_send_next */ 640 int ath10k_ce_cancel_send_next(struct ath10k_ce_pipe *ce_state, 641 void **per_transfer_contextp, 642 u32 *bufferp, 643 unsigned int *nbytesp, 644 unsigned int *transfer_idp) 645 { 646 struct ath10k_ce_ring *src_ring; 647 unsigned int nentries_mask; 648 unsigned int sw_index; 649 unsigned int write_index; 650 int ret; 651 struct ath10k *ar; 652 struct ath10k_pci *ar_pci; 653 654 src_ring = ce_state->src_ring; 655 656 if (!src_ring) 657 return -EIO; 658 659 ar = ce_state->ar; 660 ar_pci = ath10k_pci_priv(ar); 661 662 spin_lock_bh(&ar_pci->ce_lock); 663 664 nentries_mask = src_ring->nentries_mask; 665 sw_index = src_ring->sw_index; 666 write_index = src_ring->write_index; 667 668 if (write_index != sw_index) { 669 struct ce_desc *base = src_ring->base_addr_owner_space; 670 struct ce_desc *desc = CE_SRC_RING_TO_DESC(base, sw_index); 671 672 /* Return data from completed source descriptor */ 673 *bufferp = __le32_to_cpu(desc->addr); 674 *nbytesp = __le16_to_cpu(desc->nbytes); 675 *transfer_idp = MS(__le16_to_cpu(desc->flags), 676 CE_DESC_FLAGS_META_DATA); 677 678 if (per_transfer_contextp) 679 *per_transfer_contextp = 680 src_ring->per_transfer_context[sw_index]; 681 682 /* sanity */ 683 src_ring->per_transfer_context[sw_index] = NULL; 684 685 /* Update sw_index */ 686 sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index); 687 src_ring->sw_index = sw_index; 688 ret = 0; 689 } else { 690 ret = -EIO; 691 } 692 693 spin_unlock_bh(&ar_pci->ce_lock); 694 695 return ret; 696 } 697 698 int ath10k_ce_completed_send_next(struct ath10k_ce_pipe *ce_state, 699 void **per_transfer_contextp, 700 u32 *bufferp, 701 unsigned int *nbytesp, 702 unsigned int *transfer_idp) 703 { 704 struct ath10k *ar = ce_state->ar; 705 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 706 int ret; 707 708 spin_lock_bh(&ar_pci->ce_lock); 709 ret = ath10k_ce_completed_send_next_nolock(ce_state, 710 per_transfer_contextp, 711 bufferp, nbytesp, 712 transfer_idp); 713 spin_unlock_bh(&ar_pci->ce_lock); 714 715 return ret; 716 } 717 718 /* 719 * Guts of interrupt handler for per-engine interrupts on a particular CE. 720 * 721 * Invokes registered callbacks for recv_complete, 722 * send_complete, and watermarks. 723 */ 724 void ath10k_ce_per_engine_service(struct ath10k *ar, unsigned int ce_id) 725 { 726 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 727 struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id]; 728 u32 ctrl_addr = ce_state->ctrl_addr; 729 730 spin_lock_bh(&ar_pci->ce_lock); 731 732 /* Clear the copy-complete interrupts that will be handled here. */ 733 ath10k_ce_engine_int_status_clear(ar, ctrl_addr, 734 HOST_IS_COPY_COMPLETE_MASK); 735 736 spin_unlock_bh(&ar_pci->ce_lock); 737 738 if (ce_state->recv_cb) 739 ce_state->recv_cb(ce_state); 740 741 if (ce_state->send_cb) 742 ce_state->send_cb(ce_state); 743 744 spin_lock_bh(&ar_pci->ce_lock); 745 746 /* 747 * Misc CE interrupts are not being handled, but still need 748 * to be cleared. 749 */ 750 ath10k_ce_engine_int_status_clear(ar, ctrl_addr, CE_WATERMARK_MASK); 751 752 spin_unlock_bh(&ar_pci->ce_lock); 753 } 754 755 /* 756 * Handler for per-engine interrupts on ALL active CEs. 757 * This is used in cases where the system is sharing a 758 * single interrput for all CEs 759 */ 760 761 void ath10k_ce_per_engine_service_any(struct ath10k *ar) 762 { 763 int ce_id; 764 u32 intr_summary; 765 766 intr_summary = CE_INTERRUPT_SUMMARY(ar); 767 768 for (ce_id = 0; intr_summary && (ce_id < CE_COUNT); ce_id++) { 769 if (intr_summary & (1 << ce_id)) 770 intr_summary &= ~(1 << ce_id); 771 else 772 /* no intr pending on this CE */ 773 continue; 774 775 ath10k_ce_per_engine_service(ar, ce_id); 776 } 777 } 778 779 /* 780 * Adjust interrupts for the copy complete handler. 781 * If it's needed for either send or recv, then unmask 782 * this interrupt; otherwise, mask it. 783 * 784 * Called with ce_lock held. 785 */ 786 static void ath10k_ce_per_engine_handler_adjust(struct ath10k_ce_pipe *ce_state) 787 { 788 u32 ctrl_addr = ce_state->ctrl_addr; 789 struct ath10k *ar = ce_state->ar; 790 bool disable_copy_compl_intr = ce_state->attr_flags & CE_ATTR_DIS_INTR; 791 792 if ((!disable_copy_compl_intr) && 793 (ce_state->send_cb || ce_state->recv_cb)) 794 ath10k_ce_copy_complete_inter_enable(ar, ctrl_addr); 795 else 796 ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr); 797 798 ath10k_ce_watermark_intr_disable(ar, ctrl_addr); 799 } 800 801 int ath10k_ce_disable_interrupts(struct ath10k *ar) 802 { 803 int ce_id; 804 805 for (ce_id = 0; ce_id < CE_COUNT; ce_id++) { 806 u32 ctrl_addr = ath10k_ce_base_address(ce_id); 807 808 ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr); 809 ath10k_ce_error_intr_disable(ar, ctrl_addr); 810 ath10k_ce_watermark_intr_disable(ar, ctrl_addr); 811 } 812 813 return 0; 814 } 815 816 void ath10k_ce_enable_interrupts(struct ath10k *ar) 817 { 818 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 819 int ce_id; 820 821 /* Skip the last copy engine, CE7 the diagnostic window, as that 822 * uses polling and isn't initialized for interrupts. 823 */ 824 for (ce_id = 0; ce_id < CE_COUNT - 1; ce_id++) 825 ath10k_ce_per_engine_handler_adjust(&ar_pci->ce_states[ce_id]); 826 } 827 828 static int ath10k_ce_init_src_ring(struct ath10k *ar, 829 unsigned int ce_id, 830 const struct ce_attr *attr) 831 { 832 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 833 struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id]; 834 struct ath10k_ce_ring *src_ring = ce_state->src_ring; 835 u32 nentries, ctrl_addr = ath10k_ce_base_address(ce_id); 836 837 nentries = roundup_pow_of_two(attr->src_nentries); 838 839 memset(src_ring->base_addr_owner_space, 0, 840 nentries * sizeof(struct ce_desc)); 841 842 src_ring->sw_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr); 843 src_ring->sw_index &= src_ring->nentries_mask; 844 src_ring->hw_index = src_ring->sw_index; 845 846 src_ring->write_index = 847 ath10k_ce_src_ring_write_index_get(ar, ctrl_addr); 848 src_ring->write_index &= src_ring->nentries_mask; 849 850 ath10k_ce_src_ring_base_addr_set(ar, ctrl_addr, 851 src_ring->base_addr_ce_space); 852 ath10k_ce_src_ring_size_set(ar, ctrl_addr, nentries); 853 ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, attr->src_sz_max); 854 ath10k_ce_src_ring_byte_swap_set(ar, ctrl_addr, 0); 855 ath10k_ce_src_ring_lowmark_set(ar, ctrl_addr, 0); 856 ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, nentries); 857 858 ath10k_dbg(ar, ATH10K_DBG_BOOT, 859 "boot init ce src ring id %d entries %d base_addr %p\n", 860 ce_id, nentries, src_ring->base_addr_owner_space); 861 862 return 0; 863 } 864 865 static int ath10k_ce_init_dest_ring(struct ath10k *ar, 866 unsigned int ce_id, 867 const struct ce_attr *attr) 868 { 869 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 870 struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id]; 871 struct ath10k_ce_ring *dest_ring = ce_state->dest_ring; 872 u32 nentries, ctrl_addr = ath10k_ce_base_address(ce_id); 873 874 nentries = roundup_pow_of_two(attr->dest_nentries); 875 876 memset(dest_ring->base_addr_owner_space, 0, 877 nentries * sizeof(struct ce_desc)); 878 879 dest_ring->sw_index = ath10k_ce_dest_ring_read_index_get(ar, ctrl_addr); 880 dest_ring->sw_index &= dest_ring->nentries_mask; 881 dest_ring->write_index = 882 ath10k_ce_dest_ring_write_index_get(ar, ctrl_addr); 883 dest_ring->write_index &= dest_ring->nentries_mask; 884 885 ath10k_ce_dest_ring_base_addr_set(ar, ctrl_addr, 886 dest_ring->base_addr_ce_space); 887 ath10k_ce_dest_ring_size_set(ar, ctrl_addr, nentries); 888 ath10k_ce_dest_ring_byte_swap_set(ar, ctrl_addr, 0); 889 ath10k_ce_dest_ring_lowmark_set(ar, ctrl_addr, 0); 890 ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, nentries); 891 892 ath10k_dbg(ar, ATH10K_DBG_BOOT, 893 "boot ce dest ring id %d entries %d base_addr %p\n", 894 ce_id, nentries, dest_ring->base_addr_owner_space); 895 896 return 0; 897 } 898 899 static struct ath10k_ce_ring * 900 ath10k_ce_alloc_src_ring(struct ath10k *ar, unsigned int ce_id, 901 const struct ce_attr *attr) 902 { 903 struct ath10k_ce_ring *src_ring; 904 u32 nentries = attr->src_nentries; 905 dma_addr_t base_addr; 906 907 nentries = roundup_pow_of_two(nentries); 908 909 src_ring = kzalloc(sizeof(*src_ring) + 910 (nentries * 911 sizeof(*src_ring->per_transfer_context)), 912 GFP_KERNEL); 913 if (src_ring == NULL) 914 return ERR_PTR(-ENOMEM); 915 916 src_ring->nentries = nentries; 917 src_ring->nentries_mask = nentries - 1; 918 919 /* 920 * Legacy platforms that do not support cache 921 * coherent DMA are unsupported 922 */ 923 src_ring->base_addr_owner_space_unaligned = 924 dma_alloc_coherent(ar->dev, 925 (nentries * sizeof(struct ce_desc) + 926 CE_DESC_RING_ALIGN), 927 &base_addr, GFP_KERNEL); 928 if (!src_ring->base_addr_owner_space_unaligned) { 929 kfree(src_ring); 930 return ERR_PTR(-ENOMEM); 931 } 932 933 src_ring->base_addr_ce_space_unaligned = base_addr; 934 935 src_ring->base_addr_owner_space = PTR_ALIGN( 936 src_ring->base_addr_owner_space_unaligned, 937 CE_DESC_RING_ALIGN); 938 src_ring->base_addr_ce_space = ALIGN( 939 src_ring->base_addr_ce_space_unaligned, 940 CE_DESC_RING_ALIGN); 941 942 /* 943 * Also allocate a shadow src ring in regular 944 * mem to use for faster access. 945 */ 946 src_ring->shadow_base_unaligned = 947 kmalloc((nentries * sizeof(struct ce_desc) + 948 CE_DESC_RING_ALIGN), GFP_KERNEL); 949 if (!src_ring->shadow_base_unaligned) { 950 dma_free_coherent(ar->dev, 951 (nentries * sizeof(struct ce_desc) + 952 CE_DESC_RING_ALIGN), 953 src_ring->base_addr_owner_space, 954 src_ring->base_addr_ce_space); 955 kfree(src_ring); 956 return ERR_PTR(-ENOMEM); 957 } 958 959 src_ring->shadow_base = PTR_ALIGN( 960 src_ring->shadow_base_unaligned, 961 CE_DESC_RING_ALIGN); 962 963 return src_ring; 964 } 965 966 static struct ath10k_ce_ring * 967 ath10k_ce_alloc_dest_ring(struct ath10k *ar, unsigned int ce_id, 968 const struct ce_attr *attr) 969 { 970 struct ath10k_ce_ring *dest_ring; 971 u32 nentries; 972 dma_addr_t base_addr; 973 974 nentries = roundup_pow_of_two(attr->dest_nentries); 975 976 dest_ring = kzalloc(sizeof(*dest_ring) + 977 (nentries * 978 sizeof(*dest_ring->per_transfer_context)), 979 GFP_KERNEL); 980 if (dest_ring == NULL) 981 return ERR_PTR(-ENOMEM); 982 983 dest_ring->nentries = nentries; 984 dest_ring->nentries_mask = nentries - 1; 985 986 /* 987 * Legacy platforms that do not support cache 988 * coherent DMA are unsupported 989 */ 990 dest_ring->base_addr_owner_space_unaligned = 991 dma_alloc_coherent(ar->dev, 992 (nentries * sizeof(struct ce_desc) + 993 CE_DESC_RING_ALIGN), 994 &base_addr, GFP_KERNEL); 995 if (!dest_ring->base_addr_owner_space_unaligned) { 996 kfree(dest_ring); 997 return ERR_PTR(-ENOMEM); 998 } 999 1000 dest_ring->base_addr_ce_space_unaligned = base_addr; 1001 1002 /* 1003 * Correctly initialize memory to 0 to prevent garbage 1004 * data crashing system when download firmware 1005 */ 1006 memset(dest_ring->base_addr_owner_space_unaligned, 0, 1007 nentries * sizeof(struct ce_desc) + CE_DESC_RING_ALIGN); 1008 1009 dest_ring->base_addr_owner_space = PTR_ALIGN( 1010 dest_ring->base_addr_owner_space_unaligned, 1011 CE_DESC_RING_ALIGN); 1012 dest_ring->base_addr_ce_space = ALIGN( 1013 dest_ring->base_addr_ce_space_unaligned, 1014 CE_DESC_RING_ALIGN); 1015 1016 return dest_ring; 1017 } 1018 1019 /* 1020 * Initialize a Copy Engine based on caller-supplied attributes. 1021 * This may be called once to initialize both source and destination 1022 * rings or it may be called twice for separate source and destination 1023 * initialization. It may be that only one side or the other is 1024 * initialized by software/firmware. 1025 */ 1026 int ath10k_ce_init_pipe(struct ath10k *ar, unsigned int ce_id, 1027 const struct ce_attr *attr) 1028 { 1029 int ret; 1030 1031 if (attr->src_nentries) { 1032 ret = ath10k_ce_init_src_ring(ar, ce_id, attr); 1033 if (ret) { 1034 ath10k_err(ar, "Failed to initialize CE src ring for ID: %d (%d)\n", 1035 ce_id, ret); 1036 return ret; 1037 } 1038 } 1039 1040 if (attr->dest_nentries) { 1041 ret = ath10k_ce_init_dest_ring(ar, ce_id, attr); 1042 if (ret) { 1043 ath10k_err(ar, "Failed to initialize CE dest ring for ID: %d (%d)\n", 1044 ce_id, ret); 1045 return ret; 1046 } 1047 } 1048 1049 return 0; 1050 } 1051 1052 static void ath10k_ce_deinit_src_ring(struct ath10k *ar, unsigned int ce_id) 1053 { 1054 u32 ctrl_addr = ath10k_ce_base_address(ce_id); 1055 1056 ath10k_ce_src_ring_base_addr_set(ar, ctrl_addr, 0); 1057 ath10k_ce_src_ring_size_set(ar, ctrl_addr, 0); 1058 ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, 0); 1059 ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, 0); 1060 } 1061 1062 static void ath10k_ce_deinit_dest_ring(struct ath10k *ar, unsigned int ce_id) 1063 { 1064 u32 ctrl_addr = ath10k_ce_base_address(ce_id); 1065 1066 ath10k_ce_dest_ring_base_addr_set(ar, ctrl_addr, 0); 1067 ath10k_ce_dest_ring_size_set(ar, ctrl_addr, 0); 1068 ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, 0); 1069 } 1070 1071 void ath10k_ce_deinit_pipe(struct ath10k *ar, unsigned int ce_id) 1072 { 1073 ath10k_ce_deinit_src_ring(ar, ce_id); 1074 ath10k_ce_deinit_dest_ring(ar, ce_id); 1075 } 1076 1077 int ath10k_ce_alloc_pipe(struct ath10k *ar, int ce_id, 1078 const struct ce_attr *attr, 1079 void (*send_cb)(struct ath10k_ce_pipe *), 1080 void (*recv_cb)(struct ath10k_ce_pipe *)) 1081 { 1082 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 1083 struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id]; 1084 int ret; 1085 1086 /* 1087 * Make sure there's enough CE ringbuffer entries for HTT TX to avoid 1088 * additional TX locking checks. 1089 * 1090 * For the lack of a better place do the check here. 1091 */ 1092 BUILD_BUG_ON(2*TARGET_NUM_MSDU_DESC > 1093 (CE_HTT_H2T_MSG_SRC_NENTRIES - 1)); 1094 BUILD_BUG_ON(2*TARGET_10X_NUM_MSDU_DESC > 1095 (CE_HTT_H2T_MSG_SRC_NENTRIES - 1)); 1096 1097 ce_state->ar = ar; 1098 ce_state->id = ce_id; 1099 ce_state->ctrl_addr = ath10k_ce_base_address(ce_id); 1100 ce_state->attr_flags = attr->flags; 1101 ce_state->src_sz_max = attr->src_sz_max; 1102 1103 if (attr->src_nentries) 1104 ce_state->send_cb = send_cb; 1105 1106 if (attr->dest_nentries) 1107 ce_state->recv_cb = recv_cb; 1108 1109 if (attr->src_nentries) { 1110 ce_state->src_ring = ath10k_ce_alloc_src_ring(ar, ce_id, attr); 1111 if (IS_ERR(ce_state->src_ring)) { 1112 ret = PTR_ERR(ce_state->src_ring); 1113 ath10k_err(ar, "failed to allocate copy engine source ring %d: %d\n", 1114 ce_id, ret); 1115 ce_state->src_ring = NULL; 1116 return ret; 1117 } 1118 } 1119 1120 if (attr->dest_nentries) { 1121 ce_state->dest_ring = ath10k_ce_alloc_dest_ring(ar, ce_id, 1122 attr); 1123 if (IS_ERR(ce_state->dest_ring)) { 1124 ret = PTR_ERR(ce_state->dest_ring); 1125 ath10k_err(ar, "failed to allocate copy engine destination ring %d: %d\n", 1126 ce_id, ret); 1127 ce_state->dest_ring = NULL; 1128 return ret; 1129 } 1130 } 1131 1132 return 0; 1133 } 1134 1135 void ath10k_ce_free_pipe(struct ath10k *ar, int ce_id) 1136 { 1137 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 1138 struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id]; 1139 1140 if (ce_state->src_ring) { 1141 kfree(ce_state->src_ring->shadow_base_unaligned); 1142 dma_free_coherent(ar->dev, 1143 (ce_state->src_ring->nentries * 1144 sizeof(struct ce_desc) + 1145 CE_DESC_RING_ALIGN), 1146 ce_state->src_ring->base_addr_owner_space, 1147 ce_state->src_ring->base_addr_ce_space); 1148 kfree(ce_state->src_ring); 1149 } 1150 1151 if (ce_state->dest_ring) { 1152 dma_free_coherent(ar->dev, 1153 (ce_state->dest_ring->nentries * 1154 sizeof(struct ce_desc) + 1155 CE_DESC_RING_ALIGN), 1156 ce_state->dest_ring->base_addr_owner_space, 1157 ce_state->dest_ring->base_addr_ce_space); 1158 kfree(ce_state->dest_ring); 1159 } 1160 1161 ce_state->src_ring = NULL; 1162 ce_state->dest_ring = NULL; 1163 } 1164