xref: /openbmc/linux/drivers/net/wireless/ath/ath10k/ce.c (revision be709d48)
1 // SPDX-License-Identifier: ISC
2 /*
3  * Copyright (c) 2005-2011 Atheros Communications Inc.
4  * Copyright (c) 2011-2017 Qualcomm Atheros, Inc.
5  * Copyright (c) 2018 The Linux Foundation. All rights reserved.
6  */
7 
8 #include "hif.h"
9 #include "ce.h"
10 #include "debug.h"
11 
12 /*
13  * Support for Copy Engine hardware, which is mainly used for
14  * communication between Host and Target over a PCIe interconnect.
15  */
16 
17 /*
18  * A single CopyEngine (CE) comprises two "rings":
19  *   a source ring
20  *   a destination ring
21  *
22  * Each ring consists of a number of descriptors which specify
23  * an address, length, and meta-data.
24  *
25  * Typically, one side of the PCIe/AHB/SNOC interconnect (Host or Target)
26  * controls one ring and the other side controls the other ring.
27  * The source side chooses when to initiate a transfer and it
28  * chooses what to send (buffer address, length). The destination
29  * side keeps a supply of "anonymous receive buffers" available and
30  * it handles incoming data as it arrives (when the destination
31  * receives an interrupt).
32  *
33  * The sender may send a simple buffer (address/length) or it may
34  * send a small list of buffers.  When a small list is sent, hardware
35  * "gathers" these and they end up in a single destination buffer
36  * with a single interrupt.
37  *
38  * There are several "contexts" managed by this layer -- more, it
39  * may seem -- than should be needed. These are provided mainly for
40  * maximum flexibility and especially to facilitate a simpler HIF
41  * implementation. There are per-CopyEngine recv, send, and watermark
42  * contexts. These are supplied by the caller when a recv, send,
43  * or watermark handler is established and they are echoed back to
44  * the caller when the respective callbacks are invoked. There is
45  * also a per-transfer context supplied by the caller when a buffer
46  * (or sendlist) is sent and when a buffer is enqueued for recv.
47  * These per-transfer contexts are echoed back to the caller when
48  * the buffer is sent/received.
49  */
50 
51 static inline u32 shadow_sr_wr_ind_addr(struct ath10k *ar,
52 					struct ath10k_ce_pipe *ce_state)
53 {
54 	u32 ce_id = ce_state->id;
55 	u32 addr = 0;
56 
57 	switch (ce_id) {
58 	case 0:
59 		addr = 0x00032000;
60 		break;
61 	case 3:
62 		addr = 0x0003200C;
63 		break;
64 	case 4:
65 		addr = 0x00032010;
66 		break;
67 	case 5:
68 		addr = 0x00032014;
69 		break;
70 	case 7:
71 		addr = 0x0003201C;
72 		break;
73 	default:
74 		ath10k_warn(ar, "invalid CE id: %d", ce_id);
75 		break;
76 	}
77 	return addr;
78 }
79 
80 static inline u32 shadow_dst_wr_ind_addr(struct ath10k *ar,
81 					 struct ath10k_ce_pipe *ce_state)
82 {
83 	u32 ce_id = ce_state->id;
84 	u32 addr = 0;
85 
86 	switch (ce_id) {
87 	case 1:
88 		addr = 0x00032034;
89 		break;
90 	case 2:
91 		addr = 0x00032038;
92 		break;
93 	case 5:
94 		addr = 0x00032044;
95 		break;
96 	case 7:
97 		addr = 0x0003204C;
98 		break;
99 	case 8:
100 		addr = 0x00032050;
101 		break;
102 	case 9:
103 		addr = 0x00032054;
104 		break;
105 	case 10:
106 		addr = 0x00032058;
107 		break;
108 	case 11:
109 		addr = 0x0003205C;
110 		break;
111 	default:
112 		ath10k_warn(ar, "invalid CE id: %d", ce_id);
113 		break;
114 	}
115 
116 	return addr;
117 }
118 
119 static inline unsigned int
120 ath10k_set_ring_byte(unsigned int offset,
121 		     struct ath10k_hw_ce_regs_addr_map *addr_map)
122 {
123 	return ((offset << addr_map->lsb) & addr_map->mask);
124 }
125 
126 static inline unsigned int
127 ath10k_get_ring_byte(unsigned int offset,
128 		     struct ath10k_hw_ce_regs_addr_map *addr_map)
129 {
130 	return ((offset & addr_map->mask) >> (addr_map->lsb));
131 }
132 
133 static inline u32 ath10k_ce_read32(struct ath10k *ar, u32 offset)
134 {
135 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
136 
137 	return ce->bus_ops->read32(ar, offset);
138 }
139 
140 static inline void ath10k_ce_write32(struct ath10k *ar, u32 offset, u32 value)
141 {
142 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
143 
144 	ce->bus_ops->write32(ar, offset, value);
145 }
146 
147 static inline void ath10k_ce_dest_ring_write_index_set(struct ath10k *ar,
148 						       u32 ce_ctrl_addr,
149 						       unsigned int n)
150 {
151 	ath10k_ce_write32(ar, ce_ctrl_addr +
152 			  ar->hw_ce_regs->dst_wr_index_addr, n);
153 }
154 
155 static inline u32 ath10k_ce_dest_ring_write_index_get(struct ath10k *ar,
156 						      u32 ce_ctrl_addr)
157 {
158 	return ath10k_ce_read32(ar, ce_ctrl_addr +
159 				ar->hw_ce_regs->dst_wr_index_addr);
160 }
161 
162 static inline void ath10k_ce_src_ring_write_index_set(struct ath10k *ar,
163 						      u32 ce_ctrl_addr,
164 						      unsigned int n)
165 {
166 	ath10k_ce_write32(ar, ce_ctrl_addr +
167 			  ar->hw_ce_regs->sr_wr_index_addr, n);
168 }
169 
170 static inline u32 ath10k_ce_src_ring_write_index_get(struct ath10k *ar,
171 						     u32 ce_ctrl_addr)
172 {
173 	return ath10k_ce_read32(ar, ce_ctrl_addr +
174 				ar->hw_ce_regs->sr_wr_index_addr);
175 }
176 
177 static inline u32 ath10k_ce_src_ring_read_index_from_ddr(struct ath10k *ar,
178 							 u32 ce_id)
179 {
180 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
181 
182 	return ce->vaddr_rri[ce_id] & CE_DDR_RRI_MASK;
183 }
184 
185 static inline u32 ath10k_ce_src_ring_read_index_get(struct ath10k *ar,
186 						    u32 ce_ctrl_addr)
187 {
188 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
189 	u32 ce_id = COPY_ENGINE_ID(ce_ctrl_addr);
190 	struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
191 	u32 index;
192 
193 	if (ar->hw_params.rri_on_ddr &&
194 	    (ce_state->attr_flags & CE_ATTR_DIS_INTR))
195 		index = ath10k_ce_src_ring_read_index_from_ddr(ar, ce_id);
196 	else
197 		index = ath10k_ce_read32(ar, ce_ctrl_addr +
198 					 ar->hw_ce_regs->current_srri_addr);
199 
200 	return index;
201 }
202 
203 static inline void
204 ath10k_ce_shadow_src_ring_write_index_set(struct ath10k *ar,
205 					  struct ath10k_ce_pipe *ce_state,
206 					  unsigned int value)
207 {
208 	ath10k_ce_write32(ar, shadow_sr_wr_ind_addr(ar, ce_state), value);
209 }
210 
211 static inline void
212 ath10k_ce_shadow_dest_ring_write_index_set(struct ath10k *ar,
213 					   struct ath10k_ce_pipe *ce_state,
214 					   unsigned int value)
215 {
216 	ath10k_ce_write32(ar, shadow_dst_wr_ind_addr(ar, ce_state), value);
217 }
218 
219 static inline void ath10k_ce_src_ring_base_addr_set(struct ath10k *ar,
220 						    u32 ce_id,
221 						    u64 addr)
222 {
223 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
224 	struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
225 	u32 ce_ctrl_addr = ath10k_ce_base_address(ar, ce_id);
226 	u32 addr_lo = lower_32_bits(addr);
227 
228 	ath10k_ce_write32(ar, ce_ctrl_addr +
229 			  ar->hw_ce_regs->sr_base_addr_lo, addr_lo);
230 
231 	if (ce_state->ops->ce_set_src_ring_base_addr_hi) {
232 		ce_state->ops->ce_set_src_ring_base_addr_hi(ar, ce_ctrl_addr,
233 							    addr);
234 	}
235 }
236 
237 static void ath10k_ce_set_src_ring_base_addr_hi(struct ath10k *ar,
238 						u32 ce_ctrl_addr,
239 						u64 addr)
240 {
241 	u32 addr_hi = upper_32_bits(addr) & CE_DESC_ADDR_HI_MASK;
242 
243 	ath10k_ce_write32(ar, ce_ctrl_addr +
244 			  ar->hw_ce_regs->sr_base_addr_hi, addr_hi);
245 }
246 
247 static inline void ath10k_ce_src_ring_size_set(struct ath10k *ar,
248 					       u32 ce_ctrl_addr,
249 					       unsigned int n)
250 {
251 	ath10k_ce_write32(ar, ce_ctrl_addr +
252 			  ar->hw_ce_regs->sr_size_addr, n);
253 }
254 
255 static inline void ath10k_ce_src_ring_dmax_set(struct ath10k *ar,
256 					       u32 ce_ctrl_addr,
257 					       unsigned int n)
258 {
259 	struct ath10k_hw_ce_ctrl1 *ctrl_regs = ar->hw_ce_regs->ctrl1_regs;
260 
261 	u32 ctrl1_addr = ath10k_ce_read32(ar, ce_ctrl_addr +
262 					  ctrl_regs->addr);
263 
264 	ath10k_ce_write32(ar, ce_ctrl_addr + ctrl_regs->addr,
265 			  (ctrl1_addr &  ~(ctrl_regs->dmax->mask)) |
266 			  ath10k_set_ring_byte(n, ctrl_regs->dmax));
267 }
268 
269 static inline void ath10k_ce_src_ring_byte_swap_set(struct ath10k *ar,
270 						    u32 ce_ctrl_addr,
271 						    unsigned int n)
272 {
273 	struct ath10k_hw_ce_ctrl1 *ctrl_regs = ar->hw_ce_regs->ctrl1_regs;
274 
275 	u32 ctrl1_addr = ath10k_ce_read32(ar, ce_ctrl_addr +
276 					  ctrl_regs->addr);
277 
278 	ath10k_ce_write32(ar, ce_ctrl_addr + ctrl_regs->addr,
279 			  (ctrl1_addr & ~(ctrl_regs->src_ring->mask)) |
280 			  ath10k_set_ring_byte(n, ctrl_regs->src_ring));
281 }
282 
283 static inline void ath10k_ce_dest_ring_byte_swap_set(struct ath10k *ar,
284 						     u32 ce_ctrl_addr,
285 						     unsigned int n)
286 {
287 	struct ath10k_hw_ce_ctrl1 *ctrl_regs = ar->hw_ce_regs->ctrl1_regs;
288 
289 	u32 ctrl1_addr = ath10k_ce_read32(ar, ce_ctrl_addr +
290 					  ctrl_regs->addr);
291 
292 	ath10k_ce_write32(ar, ce_ctrl_addr + ctrl_regs->addr,
293 			  (ctrl1_addr & ~(ctrl_regs->dst_ring->mask)) |
294 			  ath10k_set_ring_byte(n, ctrl_regs->dst_ring));
295 }
296 
297 static inline
298 	u32 ath10k_ce_dest_ring_read_index_from_ddr(struct ath10k *ar, u32 ce_id)
299 {
300 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
301 
302 	return (ce->vaddr_rri[ce_id] >> CE_DDR_DRRI_SHIFT) &
303 		CE_DDR_RRI_MASK;
304 }
305 
306 static inline u32 ath10k_ce_dest_ring_read_index_get(struct ath10k *ar,
307 						     u32 ce_ctrl_addr)
308 {
309 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
310 	u32 ce_id = COPY_ENGINE_ID(ce_ctrl_addr);
311 	struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
312 	u32 index;
313 
314 	if (ar->hw_params.rri_on_ddr &&
315 	    (ce_state->attr_flags & CE_ATTR_DIS_INTR))
316 		index = ath10k_ce_dest_ring_read_index_from_ddr(ar, ce_id);
317 	else
318 		index = ath10k_ce_read32(ar, ce_ctrl_addr +
319 					 ar->hw_ce_regs->current_drri_addr);
320 
321 	return index;
322 }
323 
324 static inline void ath10k_ce_dest_ring_base_addr_set(struct ath10k *ar,
325 						     u32 ce_id,
326 						     u64 addr)
327 {
328 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
329 	struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
330 	u32 ce_ctrl_addr = ath10k_ce_base_address(ar, ce_id);
331 	u32 addr_lo = lower_32_bits(addr);
332 
333 	ath10k_ce_write32(ar, ce_ctrl_addr +
334 			  ar->hw_ce_regs->dr_base_addr_lo, addr_lo);
335 
336 	if (ce_state->ops->ce_set_dest_ring_base_addr_hi) {
337 		ce_state->ops->ce_set_dest_ring_base_addr_hi(ar, ce_ctrl_addr,
338 							     addr);
339 	}
340 }
341 
342 static void ath10k_ce_set_dest_ring_base_addr_hi(struct ath10k *ar,
343 						 u32 ce_ctrl_addr,
344 						 u64 addr)
345 {
346 	u32 addr_hi = upper_32_bits(addr) & CE_DESC_ADDR_HI_MASK;
347 	u32 reg_value;
348 
349 	reg_value = ath10k_ce_read32(ar, ce_ctrl_addr +
350 				     ar->hw_ce_regs->dr_base_addr_hi);
351 	reg_value &= ~CE_DESC_ADDR_HI_MASK;
352 	reg_value |= addr_hi;
353 	ath10k_ce_write32(ar, ce_ctrl_addr +
354 			  ar->hw_ce_regs->dr_base_addr_hi, reg_value);
355 }
356 
357 static inline void ath10k_ce_dest_ring_size_set(struct ath10k *ar,
358 						u32 ce_ctrl_addr,
359 						unsigned int n)
360 {
361 	ath10k_ce_write32(ar, ce_ctrl_addr +
362 			  ar->hw_ce_regs->dr_size_addr, n);
363 }
364 
365 static inline void ath10k_ce_src_ring_highmark_set(struct ath10k *ar,
366 						   u32 ce_ctrl_addr,
367 						   unsigned int n)
368 {
369 	struct ath10k_hw_ce_dst_src_wm_regs *srcr_wm = ar->hw_ce_regs->wm_srcr;
370 	u32 addr = ath10k_ce_read32(ar, ce_ctrl_addr + srcr_wm->addr);
371 
372 	ath10k_ce_write32(ar, ce_ctrl_addr + srcr_wm->addr,
373 			  (addr & ~(srcr_wm->wm_high->mask)) |
374 			  (ath10k_set_ring_byte(n, srcr_wm->wm_high)));
375 }
376 
377 static inline void ath10k_ce_src_ring_lowmark_set(struct ath10k *ar,
378 						  u32 ce_ctrl_addr,
379 						  unsigned int n)
380 {
381 	struct ath10k_hw_ce_dst_src_wm_regs *srcr_wm = ar->hw_ce_regs->wm_srcr;
382 	u32 addr = ath10k_ce_read32(ar, ce_ctrl_addr + srcr_wm->addr);
383 
384 	ath10k_ce_write32(ar, ce_ctrl_addr + srcr_wm->addr,
385 			  (addr & ~(srcr_wm->wm_low->mask)) |
386 			  (ath10k_set_ring_byte(n, srcr_wm->wm_low)));
387 }
388 
389 static inline void ath10k_ce_dest_ring_highmark_set(struct ath10k *ar,
390 						    u32 ce_ctrl_addr,
391 						    unsigned int n)
392 {
393 	struct ath10k_hw_ce_dst_src_wm_regs *dstr_wm = ar->hw_ce_regs->wm_dstr;
394 	u32 addr = ath10k_ce_read32(ar, ce_ctrl_addr + dstr_wm->addr);
395 
396 	ath10k_ce_write32(ar, ce_ctrl_addr + dstr_wm->addr,
397 			  (addr & ~(dstr_wm->wm_high->mask)) |
398 			  (ath10k_set_ring_byte(n, dstr_wm->wm_high)));
399 }
400 
401 static inline void ath10k_ce_dest_ring_lowmark_set(struct ath10k *ar,
402 						   u32 ce_ctrl_addr,
403 						   unsigned int n)
404 {
405 	struct ath10k_hw_ce_dst_src_wm_regs *dstr_wm = ar->hw_ce_regs->wm_dstr;
406 	u32 addr = ath10k_ce_read32(ar, ce_ctrl_addr + dstr_wm->addr);
407 
408 	ath10k_ce_write32(ar, ce_ctrl_addr + dstr_wm->addr,
409 			  (addr & ~(dstr_wm->wm_low->mask)) |
410 			  (ath10k_set_ring_byte(n, dstr_wm->wm_low)));
411 }
412 
413 static inline void ath10k_ce_copy_complete_inter_enable(struct ath10k *ar,
414 							u32 ce_ctrl_addr)
415 {
416 	struct ath10k_hw_ce_host_ie *host_ie = ar->hw_ce_regs->host_ie;
417 
418 	u32 host_ie_addr = ath10k_ce_read32(ar, ce_ctrl_addr +
419 					    ar->hw_ce_regs->host_ie_addr);
420 
421 	ath10k_ce_write32(ar, ce_ctrl_addr + ar->hw_ce_regs->host_ie_addr,
422 			  host_ie_addr | host_ie->copy_complete->mask);
423 }
424 
425 static inline void ath10k_ce_copy_complete_intr_disable(struct ath10k *ar,
426 							u32 ce_ctrl_addr)
427 {
428 	struct ath10k_hw_ce_host_ie *host_ie = ar->hw_ce_regs->host_ie;
429 
430 	u32 host_ie_addr = ath10k_ce_read32(ar, ce_ctrl_addr +
431 					    ar->hw_ce_regs->host_ie_addr);
432 
433 	ath10k_ce_write32(ar, ce_ctrl_addr + ar->hw_ce_regs->host_ie_addr,
434 			  host_ie_addr & ~(host_ie->copy_complete->mask));
435 }
436 
437 static inline void ath10k_ce_watermark_intr_disable(struct ath10k *ar,
438 						    u32 ce_ctrl_addr)
439 {
440 	struct ath10k_hw_ce_host_wm_regs *wm_regs = ar->hw_ce_regs->wm_regs;
441 
442 	u32 host_ie_addr = ath10k_ce_read32(ar, ce_ctrl_addr +
443 					    ar->hw_ce_regs->host_ie_addr);
444 
445 	ath10k_ce_write32(ar, ce_ctrl_addr + ar->hw_ce_regs->host_ie_addr,
446 			  host_ie_addr & ~(wm_regs->wm_mask));
447 }
448 
449 static inline void ath10k_ce_error_intr_enable(struct ath10k *ar,
450 					       u32 ce_ctrl_addr)
451 {
452 	struct ath10k_hw_ce_misc_regs *misc_regs = ar->hw_ce_regs->misc_regs;
453 
454 	u32 misc_ie_addr = ath10k_ce_read32(ar, ce_ctrl_addr +
455 					    ar->hw_ce_regs->misc_ie_addr);
456 
457 	ath10k_ce_write32(ar,
458 			  ce_ctrl_addr + ar->hw_ce_regs->misc_ie_addr,
459 			  misc_ie_addr | misc_regs->err_mask);
460 }
461 
462 static inline void ath10k_ce_error_intr_disable(struct ath10k *ar,
463 						u32 ce_ctrl_addr)
464 {
465 	struct ath10k_hw_ce_misc_regs *misc_regs = ar->hw_ce_regs->misc_regs;
466 
467 	u32 misc_ie_addr = ath10k_ce_read32(ar,
468 			ce_ctrl_addr + ar->hw_ce_regs->misc_ie_addr);
469 
470 	ath10k_ce_write32(ar,
471 			  ce_ctrl_addr + ar->hw_ce_regs->misc_ie_addr,
472 			  misc_ie_addr & ~(misc_regs->err_mask));
473 }
474 
475 static inline void ath10k_ce_engine_int_status_clear(struct ath10k *ar,
476 						     u32 ce_ctrl_addr,
477 						     unsigned int mask)
478 {
479 	struct ath10k_hw_ce_host_wm_regs *wm_regs = ar->hw_ce_regs->wm_regs;
480 
481 	ath10k_ce_write32(ar, ce_ctrl_addr + wm_regs->addr, mask);
482 }
483 
484 /*
485  * Guts of ath10k_ce_send.
486  * The caller takes responsibility for any needed locking.
487  */
488 static int _ath10k_ce_send_nolock(struct ath10k_ce_pipe *ce_state,
489 				  void *per_transfer_context,
490 				  dma_addr_t buffer,
491 				  unsigned int nbytes,
492 				  unsigned int transfer_id,
493 				  unsigned int flags)
494 {
495 	struct ath10k *ar = ce_state->ar;
496 	struct ath10k_ce_ring *src_ring = ce_state->src_ring;
497 	struct ce_desc *desc, sdesc;
498 	unsigned int nentries_mask = src_ring->nentries_mask;
499 	unsigned int sw_index = src_ring->sw_index;
500 	unsigned int write_index = src_ring->write_index;
501 	u32 ctrl_addr = ce_state->ctrl_addr;
502 	u32 desc_flags = 0;
503 	int ret = 0;
504 
505 	if (nbytes > ce_state->src_sz_max)
506 		ath10k_warn(ar, "%s: send more we can (nbytes: %d, max: %d)\n",
507 			    __func__, nbytes, ce_state->src_sz_max);
508 
509 	if (unlikely(CE_RING_DELTA(nentries_mask,
510 				   write_index, sw_index - 1) <= 0)) {
511 		ret = -ENOSR;
512 		goto exit;
513 	}
514 
515 	desc = CE_SRC_RING_TO_DESC(src_ring->base_addr_owner_space,
516 				   write_index);
517 
518 	desc_flags |= SM(transfer_id, CE_DESC_FLAGS_META_DATA);
519 
520 	if (flags & CE_SEND_FLAG_GATHER)
521 		desc_flags |= CE_DESC_FLAGS_GATHER;
522 	if (flags & CE_SEND_FLAG_BYTE_SWAP)
523 		desc_flags |= CE_DESC_FLAGS_BYTE_SWAP;
524 
525 	sdesc.addr   = __cpu_to_le32(buffer);
526 	sdesc.nbytes = __cpu_to_le16(nbytes);
527 	sdesc.flags  = __cpu_to_le16(desc_flags);
528 
529 	*desc = sdesc;
530 
531 	src_ring->per_transfer_context[write_index] = per_transfer_context;
532 
533 	/* Update Source Ring Write Index */
534 	write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
535 
536 	/* WORKAROUND */
537 	if (!(flags & CE_SEND_FLAG_GATHER))
538 		ath10k_ce_src_ring_write_index_set(ar, ctrl_addr, write_index);
539 
540 	src_ring->write_index = write_index;
541 exit:
542 	return ret;
543 }
544 
545 static int _ath10k_ce_send_nolock_64(struct ath10k_ce_pipe *ce_state,
546 				     void *per_transfer_context,
547 				     dma_addr_t buffer,
548 				     unsigned int nbytes,
549 				     unsigned int transfer_id,
550 				     unsigned int flags)
551 {
552 	struct ath10k *ar = ce_state->ar;
553 	struct ath10k_ce_ring *src_ring = ce_state->src_ring;
554 	struct ce_desc_64 *desc, sdesc;
555 	unsigned int nentries_mask = src_ring->nentries_mask;
556 	unsigned int sw_index;
557 	unsigned int write_index = src_ring->write_index;
558 	u32 ctrl_addr = ce_state->ctrl_addr;
559 	__le32 *addr;
560 	u32 desc_flags = 0;
561 	int ret = 0;
562 
563 	if (test_bit(ATH10K_FLAG_CRASH_FLUSH, &ar->dev_flags))
564 		return -ESHUTDOWN;
565 
566 	if (nbytes > ce_state->src_sz_max)
567 		ath10k_warn(ar, "%s: send more we can (nbytes: %d, max: %d)\n",
568 			    __func__, nbytes, ce_state->src_sz_max);
569 
570 	if (ar->hw_params.rri_on_ddr)
571 		sw_index = ath10k_ce_src_ring_read_index_from_ddr(ar, ce_state->id);
572 	else
573 		sw_index = src_ring->sw_index;
574 
575 	if (unlikely(CE_RING_DELTA(nentries_mask,
576 				   write_index, sw_index - 1) <= 0)) {
577 		ret = -ENOSR;
578 		goto exit;
579 	}
580 
581 	desc = CE_SRC_RING_TO_DESC_64(src_ring->base_addr_owner_space,
582 				      write_index);
583 
584 	desc_flags |= SM(transfer_id, CE_DESC_FLAGS_META_DATA);
585 
586 	if (flags & CE_SEND_FLAG_GATHER)
587 		desc_flags |= CE_DESC_FLAGS_GATHER;
588 
589 	if (flags & CE_SEND_FLAG_BYTE_SWAP)
590 		desc_flags |= CE_DESC_FLAGS_BYTE_SWAP;
591 
592 	addr = (__le32 *)&sdesc.addr;
593 
594 	flags |= upper_32_bits(buffer) & CE_DESC_ADDR_HI_MASK;
595 	addr[0] = __cpu_to_le32(buffer);
596 	addr[1] = __cpu_to_le32(flags);
597 	if (flags & CE_SEND_FLAG_GATHER)
598 		addr[1] |= __cpu_to_le32(CE_WCN3990_DESC_FLAGS_GATHER);
599 	else
600 		addr[1] &= ~(__cpu_to_le32(CE_WCN3990_DESC_FLAGS_GATHER));
601 
602 	sdesc.nbytes = __cpu_to_le16(nbytes);
603 	sdesc.flags  = __cpu_to_le16(desc_flags);
604 
605 	*desc = sdesc;
606 
607 	src_ring->per_transfer_context[write_index] = per_transfer_context;
608 
609 	/* Update Source Ring Write Index */
610 	write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
611 
612 	if (!(flags & CE_SEND_FLAG_GATHER)) {
613 		if (ar->hw_params.shadow_reg_support)
614 			ath10k_ce_shadow_src_ring_write_index_set(ar, ce_state,
615 								  write_index);
616 		else
617 			ath10k_ce_src_ring_write_index_set(ar, ctrl_addr,
618 							   write_index);
619 	}
620 
621 	src_ring->write_index = write_index;
622 exit:
623 	return ret;
624 }
625 
626 int ath10k_ce_send_nolock(struct ath10k_ce_pipe *ce_state,
627 			  void *per_transfer_context,
628 			  dma_addr_t buffer,
629 			  unsigned int nbytes,
630 			  unsigned int transfer_id,
631 			  unsigned int flags)
632 {
633 	return ce_state->ops->ce_send_nolock(ce_state, per_transfer_context,
634 				    buffer, nbytes, transfer_id, flags);
635 }
636 EXPORT_SYMBOL(ath10k_ce_send_nolock);
637 
638 void __ath10k_ce_send_revert(struct ath10k_ce_pipe *pipe)
639 {
640 	struct ath10k *ar = pipe->ar;
641 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
642 	struct ath10k_ce_ring *src_ring = pipe->src_ring;
643 	u32 ctrl_addr = pipe->ctrl_addr;
644 
645 	lockdep_assert_held(&ce->ce_lock);
646 
647 	/*
648 	 * This function must be called only if there is an incomplete
649 	 * scatter-gather transfer (before index register is updated)
650 	 * that needs to be cleaned up.
651 	 */
652 	if (WARN_ON_ONCE(src_ring->write_index == src_ring->sw_index))
653 		return;
654 
655 	if (WARN_ON_ONCE(src_ring->write_index ==
656 			 ath10k_ce_src_ring_write_index_get(ar, ctrl_addr)))
657 		return;
658 
659 	src_ring->write_index--;
660 	src_ring->write_index &= src_ring->nentries_mask;
661 
662 	src_ring->per_transfer_context[src_ring->write_index] = NULL;
663 }
664 EXPORT_SYMBOL(__ath10k_ce_send_revert);
665 
666 int ath10k_ce_send(struct ath10k_ce_pipe *ce_state,
667 		   void *per_transfer_context,
668 		   dma_addr_t buffer,
669 		   unsigned int nbytes,
670 		   unsigned int transfer_id,
671 		   unsigned int flags)
672 {
673 	struct ath10k *ar = ce_state->ar;
674 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
675 	int ret;
676 
677 	spin_lock_bh(&ce->ce_lock);
678 	ret = ath10k_ce_send_nolock(ce_state, per_transfer_context,
679 				    buffer, nbytes, transfer_id, flags);
680 	spin_unlock_bh(&ce->ce_lock);
681 
682 	return ret;
683 }
684 EXPORT_SYMBOL(ath10k_ce_send);
685 
686 int ath10k_ce_num_free_src_entries(struct ath10k_ce_pipe *pipe)
687 {
688 	struct ath10k *ar = pipe->ar;
689 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
690 	int delta;
691 
692 	spin_lock_bh(&ce->ce_lock);
693 	delta = CE_RING_DELTA(pipe->src_ring->nentries_mask,
694 			      pipe->src_ring->write_index,
695 			      pipe->src_ring->sw_index - 1);
696 	spin_unlock_bh(&ce->ce_lock);
697 
698 	return delta;
699 }
700 EXPORT_SYMBOL(ath10k_ce_num_free_src_entries);
701 
702 int __ath10k_ce_rx_num_free_bufs(struct ath10k_ce_pipe *pipe)
703 {
704 	struct ath10k *ar = pipe->ar;
705 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
706 	struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
707 	unsigned int nentries_mask = dest_ring->nentries_mask;
708 	unsigned int write_index = dest_ring->write_index;
709 	unsigned int sw_index = dest_ring->sw_index;
710 
711 	lockdep_assert_held(&ce->ce_lock);
712 
713 	return CE_RING_DELTA(nentries_mask, write_index, sw_index - 1);
714 }
715 EXPORT_SYMBOL(__ath10k_ce_rx_num_free_bufs);
716 
717 static int __ath10k_ce_rx_post_buf(struct ath10k_ce_pipe *pipe, void *ctx,
718 				   dma_addr_t paddr)
719 {
720 	struct ath10k *ar = pipe->ar;
721 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
722 	struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
723 	unsigned int nentries_mask = dest_ring->nentries_mask;
724 	unsigned int write_index = dest_ring->write_index;
725 	unsigned int sw_index = dest_ring->sw_index;
726 	struct ce_desc *base = dest_ring->base_addr_owner_space;
727 	struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, write_index);
728 	u32 ctrl_addr = pipe->ctrl_addr;
729 
730 	lockdep_assert_held(&ce->ce_lock);
731 
732 	if ((pipe->id != 5) &&
733 	    CE_RING_DELTA(nentries_mask, write_index, sw_index - 1) == 0)
734 		return -ENOSPC;
735 
736 	desc->addr = __cpu_to_le32(paddr);
737 	desc->nbytes = 0;
738 
739 	dest_ring->per_transfer_context[write_index] = ctx;
740 	write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
741 	ath10k_ce_dest_ring_write_index_set(ar, ctrl_addr, write_index);
742 	dest_ring->write_index = write_index;
743 
744 	return 0;
745 }
746 
747 static int __ath10k_ce_rx_post_buf_64(struct ath10k_ce_pipe *pipe,
748 				      void *ctx,
749 				      dma_addr_t paddr)
750 {
751 	struct ath10k *ar = pipe->ar;
752 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
753 	struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
754 	unsigned int nentries_mask = dest_ring->nentries_mask;
755 	unsigned int write_index = dest_ring->write_index;
756 	unsigned int sw_index = dest_ring->sw_index;
757 	struct ce_desc_64 *base = dest_ring->base_addr_owner_space;
758 	struct ce_desc_64 *desc =
759 			CE_DEST_RING_TO_DESC_64(base, write_index);
760 	u32 ctrl_addr = pipe->ctrl_addr;
761 
762 	lockdep_assert_held(&ce->ce_lock);
763 
764 	if (CE_RING_DELTA(nentries_mask, write_index, sw_index - 1) == 0)
765 		return -ENOSPC;
766 
767 	desc->addr = __cpu_to_le64(paddr);
768 	desc->addr &= __cpu_to_le64(CE_DESC_ADDR_MASK);
769 
770 	desc->nbytes = 0;
771 
772 	dest_ring->per_transfer_context[write_index] = ctx;
773 	write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
774 	ath10k_ce_dest_ring_write_index_set(ar, ctrl_addr, write_index);
775 	dest_ring->write_index = write_index;
776 
777 	return 0;
778 }
779 
780 void ath10k_ce_rx_update_write_idx(struct ath10k_ce_pipe *pipe, u32 nentries)
781 {
782 	struct ath10k *ar = pipe->ar;
783 	struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
784 	unsigned int nentries_mask = dest_ring->nentries_mask;
785 	unsigned int write_index = dest_ring->write_index;
786 	u32 ctrl_addr = pipe->ctrl_addr;
787 	u32 cur_write_idx = ath10k_ce_dest_ring_write_index_get(ar, ctrl_addr);
788 
789 	/* Prevent CE ring stuck issue that will occur when ring is full.
790 	 * Make sure that write index is 1 less than read index.
791 	 */
792 	if (((cur_write_idx + nentries) & nentries_mask) == dest_ring->sw_index)
793 		nentries -= 1;
794 
795 	write_index = CE_RING_IDX_ADD(nentries_mask, write_index, nentries);
796 	ath10k_ce_dest_ring_write_index_set(ar, ctrl_addr, write_index);
797 	dest_ring->write_index = write_index;
798 }
799 EXPORT_SYMBOL(ath10k_ce_rx_update_write_idx);
800 
801 int ath10k_ce_rx_post_buf(struct ath10k_ce_pipe *pipe, void *ctx,
802 			  dma_addr_t paddr)
803 {
804 	struct ath10k *ar = pipe->ar;
805 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
806 	int ret;
807 
808 	spin_lock_bh(&ce->ce_lock);
809 	ret = pipe->ops->ce_rx_post_buf(pipe, ctx, paddr);
810 	spin_unlock_bh(&ce->ce_lock);
811 
812 	return ret;
813 }
814 EXPORT_SYMBOL(ath10k_ce_rx_post_buf);
815 
816 /*
817  * Guts of ath10k_ce_completed_recv_next.
818  * The caller takes responsibility for any necessary locking.
819  */
820 static int
821 	 _ath10k_ce_completed_recv_next_nolock(struct ath10k_ce_pipe *ce_state,
822 					       void **per_transfer_contextp,
823 					       unsigned int *nbytesp)
824 {
825 	struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
826 	unsigned int nentries_mask = dest_ring->nentries_mask;
827 	unsigned int sw_index = dest_ring->sw_index;
828 
829 	struct ce_desc *base = dest_ring->base_addr_owner_space;
830 	struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
831 	struct ce_desc sdesc;
832 	u16 nbytes;
833 
834 	/* Copy in one go for performance reasons */
835 	sdesc = *desc;
836 
837 	nbytes = __le16_to_cpu(sdesc.nbytes);
838 	if (nbytes == 0) {
839 		/*
840 		 * This closes a relatively unusual race where the Host
841 		 * sees the updated DRRI before the update to the
842 		 * corresponding descriptor has completed. We treat this
843 		 * as a descriptor that is not yet done.
844 		 */
845 		return -EIO;
846 	}
847 
848 	desc->nbytes = 0;
849 
850 	/* Return data from completed destination descriptor */
851 	*nbytesp = nbytes;
852 
853 	if (per_transfer_contextp)
854 		*per_transfer_contextp =
855 			dest_ring->per_transfer_context[sw_index];
856 
857 	/* Copy engine 5 (HTT Rx) will reuse the same transfer context.
858 	 * So update transfer context all CEs except CE5.
859 	 */
860 	if (ce_state->id != 5)
861 		dest_ring->per_transfer_context[sw_index] = NULL;
862 
863 	/* Update sw_index */
864 	sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
865 	dest_ring->sw_index = sw_index;
866 
867 	return 0;
868 }
869 
870 static int
871 _ath10k_ce_completed_recv_next_nolock_64(struct ath10k_ce_pipe *ce_state,
872 					 void **per_transfer_contextp,
873 					 unsigned int *nbytesp)
874 {
875 	struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
876 	unsigned int nentries_mask = dest_ring->nentries_mask;
877 	unsigned int sw_index = dest_ring->sw_index;
878 	struct ce_desc_64 *base = dest_ring->base_addr_owner_space;
879 	struct ce_desc_64 *desc =
880 		CE_DEST_RING_TO_DESC_64(base, sw_index);
881 	struct ce_desc_64 sdesc;
882 	u16 nbytes;
883 
884 	/* Copy in one go for performance reasons */
885 	sdesc = *desc;
886 
887 	nbytes = __le16_to_cpu(sdesc.nbytes);
888 	if (nbytes == 0) {
889 		/* This closes a relatively unusual race where the Host
890 		 * sees the updated DRRI before the update to the
891 		 * corresponding descriptor has completed. We treat this
892 		 * as a descriptor that is not yet done.
893 		 */
894 		return -EIO;
895 	}
896 
897 	desc->nbytes = 0;
898 
899 	/* Return data from completed destination descriptor */
900 	*nbytesp = nbytes;
901 
902 	if (per_transfer_contextp)
903 		*per_transfer_contextp =
904 			dest_ring->per_transfer_context[sw_index];
905 
906 	/* Copy engine 5 (HTT Rx) will reuse the same transfer context.
907 	 * So update transfer context all CEs except CE5.
908 	 */
909 	if (ce_state->id != 5)
910 		dest_ring->per_transfer_context[sw_index] = NULL;
911 
912 	/* Update sw_index */
913 	sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
914 	dest_ring->sw_index = sw_index;
915 
916 	return 0;
917 }
918 
919 int ath10k_ce_completed_recv_next_nolock(struct ath10k_ce_pipe *ce_state,
920 					 void **per_transfer_ctx,
921 					 unsigned int *nbytesp)
922 {
923 	return ce_state->ops->ce_completed_recv_next_nolock(ce_state,
924 							    per_transfer_ctx,
925 							    nbytesp);
926 }
927 EXPORT_SYMBOL(ath10k_ce_completed_recv_next_nolock);
928 
929 int ath10k_ce_completed_recv_next(struct ath10k_ce_pipe *ce_state,
930 				  void **per_transfer_contextp,
931 				  unsigned int *nbytesp)
932 {
933 	struct ath10k *ar = ce_state->ar;
934 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
935 	int ret;
936 
937 	spin_lock_bh(&ce->ce_lock);
938 	ret = ce_state->ops->ce_completed_recv_next_nolock(ce_state,
939 						   per_transfer_contextp,
940 						   nbytesp);
941 
942 	spin_unlock_bh(&ce->ce_lock);
943 
944 	return ret;
945 }
946 EXPORT_SYMBOL(ath10k_ce_completed_recv_next);
947 
948 static int _ath10k_ce_revoke_recv_next(struct ath10k_ce_pipe *ce_state,
949 				       void **per_transfer_contextp,
950 				       dma_addr_t *bufferp)
951 {
952 	struct ath10k_ce_ring *dest_ring;
953 	unsigned int nentries_mask;
954 	unsigned int sw_index;
955 	unsigned int write_index;
956 	int ret;
957 	struct ath10k *ar;
958 	struct ath10k_ce *ce;
959 
960 	dest_ring = ce_state->dest_ring;
961 
962 	if (!dest_ring)
963 		return -EIO;
964 
965 	ar = ce_state->ar;
966 	ce = ath10k_ce_priv(ar);
967 
968 	spin_lock_bh(&ce->ce_lock);
969 
970 	nentries_mask = dest_ring->nentries_mask;
971 	sw_index = dest_ring->sw_index;
972 	write_index = dest_ring->write_index;
973 	if (write_index != sw_index) {
974 		struct ce_desc *base = dest_ring->base_addr_owner_space;
975 		struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
976 
977 		/* Return data from completed destination descriptor */
978 		*bufferp = __le32_to_cpu(desc->addr);
979 
980 		if (per_transfer_contextp)
981 			*per_transfer_contextp =
982 				dest_ring->per_transfer_context[sw_index];
983 
984 		/* sanity */
985 		dest_ring->per_transfer_context[sw_index] = NULL;
986 		desc->nbytes = 0;
987 
988 		/* Update sw_index */
989 		sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
990 		dest_ring->sw_index = sw_index;
991 		ret = 0;
992 	} else {
993 		ret = -EIO;
994 	}
995 
996 	spin_unlock_bh(&ce->ce_lock);
997 
998 	return ret;
999 }
1000 
1001 static int _ath10k_ce_revoke_recv_next_64(struct ath10k_ce_pipe *ce_state,
1002 					  void **per_transfer_contextp,
1003 					  dma_addr_t *bufferp)
1004 {
1005 	struct ath10k_ce_ring *dest_ring;
1006 	unsigned int nentries_mask;
1007 	unsigned int sw_index;
1008 	unsigned int write_index;
1009 	int ret;
1010 	struct ath10k *ar;
1011 	struct ath10k_ce *ce;
1012 
1013 	dest_ring = ce_state->dest_ring;
1014 
1015 	if (!dest_ring)
1016 		return -EIO;
1017 
1018 	ar = ce_state->ar;
1019 	ce = ath10k_ce_priv(ar);
1020 
1021 	spin_lock_bh(&ce->ce_lock);
1022 
1023 	nentries_mask = dest_ring->nentries_mask;
1024 	sw_index = dest_ring->sw_index;
1025 	write_index = dest_ring->write_index;
1026 	if (write_index != sw_index) {
1027 		struct ce_desc_64 *base = dest_ring->base_addr_owner_space;
1028 		struct ce_desc_64 *desc =
1029 			CE_DEST_RING_TO_DESC_64(base, sw_index);
1030 
1031 		/* Return data from completed destination descriptor */
1032 		*bufferp = __le64_to_cpu(desc->addr);
1033 
1034 		if (per_transfer_contextp)
1035 			*per_transfer_contextp =
1036 				dest_ring->per_transfer_context[sw_index];
1037 
1038 		/* sanity */
1039 		dest_ring->per_transfer_context[sw_index] = NULL;
1040 		desc->nbytes = 0;
1041 
1042 		/* Update sw_index */
1043 		sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
1044 		dest_ring->sw_index = sw_index;
1045 		ret = 0;
1046 	} else {
1047 		ret = -EIO;
1048 	}
1049 
1050 	spin_unlock_bh(&ce->ce_lock);
1051 
1052 	return ret;
1053 }
1054 
1055 int ath10k_ce_revoke_recv_next(struct ath10k_ce_pipe *ce_state,
1056 			       void **per_transfer_contextp,
1057 			       dma_addr_t *bufferp)
1058 {
1059 	return ce_state->ops->ce_revoke_recv_next(ce_state,
1060 						  per_transfer_contextp,
1061 						  bufferp);
1062 }
1063 EXPORT_SYMBOL(ath10k_ce_revoke_recv_next);
1064 
1065 /*
1066  * Guts of ath10k_ce_completed_send_next.
1067  * The caller takes responsibility for any necessary locking.
1068  */
1069 static int _ath10k_ce_completed_send_next_nolock(struct ath10k_ce_pipe *ce_state,
1070 						 void **per_transfer_contextp)
1071 {
1072 	struct ath10k_ce_ring *src_ring = ce_state->src_ring;
1073 	u32 ctrl_addr = ce_state->ctrl_addr;
1074 	struct ath10k *ar = ce_state->ar;
1075 	unsigned int nentries_mask = src_ring->nentries_mask;
1076 	unsigned int sw_index = src_ring->sw_index;
1077 	unsigned int read_index;
1078 	struct ce_desc *desc;
1079 
1080 	if (src_ring->hw_index == sw_index) {
1081 		/*
1082 		 * The SW completion index has caught up with the cached
1083 		 * version of the HW completion index.
1084 		 * Update the cached HW completion index to see whether
1085 		 * the SW has really caught up to the HW, or if the cached
1086 		 * value of the HW index has become stale.
1087 		 */
1088 
1089 		read_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
1090 		if (read_index == 0xffffffff)
1091 			return -ENODEV;
1092 
1093 		read_index &= nentries_mask;
1094 		src_ring->hw_index = read_index;
1095 	}
1096 
1097 	if (ar->hw_params.rri_on_ddr)
1098 		read_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
1099 	else
1100 		read_index = src_ring->hw_index;
1101 
1102 	if (read_index == sw_index)
1103 		return -EIO;
1104 
1105 	if (per_transfer_contextp)
1106 		*per_transfer_contextp =
1107 			src_ring->per_transfer_context[sw_index];
1108 
1109 	/* sanity */
1110 	src_ring->per_transfer_context[sw_index] = NULL;
1111 	desc = CE_SRC_RING_TO_DESC(src_ring->base_addr_owner_space,
1112 				   sw_index);
1113 	desc->nbytes = 0;
1114 
1115 	/* Update sw_index */
1116 	sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
1117 	src_ring->sw_index = sw_index;
1118 
1119 	return 0;
1120 }
1121 
1122 static int _ath10k_ce_completed_send_next_nolock_64(struct ath10k_ce_pipe *ce_state,
1123 						    void **per_transfer_contextp)
1124 {
1125 	struct ath10k_ce_ring *src_ring = ce_state->src_ring;
1126 	u32 ctrl_addr = ce_state->ctrl_addr;
1127 	struct ath10k *ar = ce_state->ar;
1128 	unsigned int nentries_mask = src_ring->nentries_mask;
1129 	unsigned int sw_index = src_ring->sw_index;
1130 	unsigned int read_index;
1131 	struct ce_desc_64 *desc;
1132 
1133 	if (src_ring->hw_index == sw_index) {
1134 		/*
1135 		 * The SW completion index has caught up with the cached
1136 		 * version of the HW completion index.
1137 		 * Update the cached HW completion index to see whether
1138 		 * the SW has really caught up to the HW, or if the cached
1139 		 * value of the HW index has become stale.
1140 		 */
1141 
1142 		read_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
1143 		if (read_index == 0xffffffff)
1144 			return -ENODEV;
1145 
1146 		read_index &= nentries_mask;
1147 		src_ring->hw_index = read_index;
1148 	}
1149 
1150 	if (ar->hw_params.rri_on_ddr)
1151 		read_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
1152 	else
1153 		read_index = src_ring->hw_index;
1154 
1155 	if (read_index == sw_index)
1156 		return -EIO;
1157 
1158 	if (per_transfer_contextp)
1159 		*per_transfer_contextp =
1160 			src_ring->per_transfer_context[sw_index];
1161 
1162 	/* sanity */
1163 	src_ring->per_transfer_context[sw_index] = NULL;
1164 	desc = CE_SRC_RING_TO_DESC_64(src_ring->base_addr_owner_space,
1165 				      sw_index);
1166 	desc->nbytes = 0;
1167 
1168 	/* Update sw_index */
1169 	sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
1170 	src_ring->sw_index = sw_index;
1171 
1172 	return 0;
1173 }
1174 
1175 int ath10k_ce_completed_send_next_nolock(struct ath10k_ce_pipe *ce_state,
1176 					 void **per_transfer_contextp)
1177 {
1178 	return ce_state->ops->ce_completed_send_next_nolock(ce_state,
1179 							    per_transfer_contextp);
1180 }
1181 EXPORT_SYMBOL(ath10k_ce_completed_send_next_nolock);
1182 
1183 static void ath10k_ce_extract_desc_data(struct ath10k *ar,
1184 					struct ath10k_ce_ring *src_ring,
1185 					u32 sw_index,
1186 					dma_addr_t *bufferp,
1187 					u32 *nbytesp,
1188 					u32 *transfer_idp)
1189 {
1190 		struct ce_desc *base = src_ring->base_addr_owner_space;
1191 		struct ce_desc *desc = CE_SRC_RING_TO_DESC(base, sw_index);
1192 
1193 		/* Return data from completed source descriptor */
1194 		*bufferp = __le32_to_cpu(desc->addr);
1195 		*nbytesp = __le16_to_cpu(desc->nbytes);
1196 		*transfer_idp = MS(__le16_to_cpu(desc->flags),
1197 				   CE_DESC_FLAGS_META_DATA);
1198 }
1199 
1200 static void ath10k_ce_extract_desc_data_64(struct ath10k *ar,
1201 					   struct ath10k_ce_ring *src_ring,
1202 					   u32 sw_index,
1203 					   dma_addr_t *bufferp,
1204 					   u32 *nbytesp,
1205 					   u32 *transfer_idp)
1206 {
1207 		struct ce_desc_64 *base = src_ring->base_addr_owner_space;
1208 		struct ce_desc_64 *desc =
1209 			CE_SRC_RING_TO_DESC_64(base, sw_index);
1210 
1211 		/* Return data from completed source descriptor */
1212 		*bufferp = __le64_to_cpu(desc->addr);
1213 		*nbytesp = __le16_to_cpu(desc->nbytes);
1214 		*transfer_idp = MS(__le16_to_cpu(desc->flags),
1215 				   CE_DESC_FLAGS_META_DATA);
1216 }
1217 
1218 /* NB: Modeled after ath10k_ce_completed_send_next */
1219 int ath10k_ce_cancel_send_next(struct ath10k_ce_pipe *ce_state,
1220 			       void **per_transfer_contextp,
1221 			       dma_addr_t *bufferp,
1222 			       unsigned int *nbytesp,
1223 			       unsigned int *transfer_idp)
1224 {
1225 	struct ath10k_ce_ring *src_ring;
1226 	unsigned int nentries_mask;
1227 	unsigned int sw_index;
1228 	unsigned int write_index;
1229 	int ret;
1230 	struct ath10k *ar;
1231 	struct ath10k_ce *ce;
1232 
1233 	src_ring = ce_state->src_ring;
1234 
1235 	if (!src_ring)
1236 		return -EIO;
1237 
1238 	ar = ce_state->ar;
1239 	ce = ath10k_ce_priv(ar);
1240 
1241 	spin_lock_bh(&ce->ce_lock);
1242 
1243 	nentries_mask = src_ring->nentries_mask;
1244 	sw_index = src_ring->sw_index;
1245 	write_index = src_ring->write_index;
1246 
1247 	if (write_index != sw_index) {
1248 		ce_state->ops->ce_extract_desc_data(ar, src_ring, sw_index,
1249 						    bufferp, nbytesp,
1250 						    transfer_idp);
1251 
1252 		if (per_transfer_contextp)
1253 			*per_transfer_contextp =
1254 				src_ring->per_transfer_context[sw_index];
1255 
1256 		/* sanity */
1257 		src_ring->per_transfer_context[sw_index] = NULL;
1258 
1259 		/* Update sw_index */
1260 		sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
1261 		src_ring->sw_index = sw_index;
1262 		ret = 0;
1263 	} else {
1264 		ret = -EIO;
1265 	}
1266 
1267 	spin_unlock_bh(&ce->ce_lock);
1268 
1269 	return ret;
1270 }
1271 EXPORT_SYMBOL(ath10k_ce_cancel_send_next);
1272 
1273 int ath10k_ce_completed_send_next(struct ath10k_ce_pipe *ce_state,
1274 				  void **per_transfer_contextp)
1275 {
1276 	struct ath10k *ar = ce_state->ar;
1277 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1278 	int ret;
1279 
1280 	spin_lock_bh(&ce->ce_lock);
1281 	ret = ath10k_ce_completed_send_next_nolock(ce_state,
1282 						   per_transfer_contextp);
1283 	spin_unlock_bh(&ce->ce_lock);
1284 
1285 	return ret;
1286 }
1287 EXPORT_SYMBOL(ath10k_ce_completed_send_next);
1288 
1289 /*
1290  * Guts of interrupt handler for per-engine interrupts on a particular CE.
1291  *
1292  * Invokes registered callbacks for recv_complete,
1293  * send_complete, and watermarks.
1294  */
1295 void ath10k_ce_per_engine_service(struct ath10k *ar, unsigned int ce_id)
1296 {
1297 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1298 	struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
1299 	struct ath10k_hw_ce_host_wm_regs *wm_regs = ar->hw_ce_regs->wm_regs;
1300 	u32 ctrl_addr = ce_state->ctrl_addr;
1301 
1302 	spin_lock_bh(&ce->ce_lock);
1303 
1304 	/* Clear the copy-complete interrupts that will be handled here. */
1305 	ath10k_ce_engine_int_status_clear(ar, ctrl_addr,
1306 					  wm_regs->cc_mask);
1307 
1308 	spin_unlock_bh(&ce->ce_lock);
1309 
1310 	if (ce_state->recv_cb)
1311 		ce_state->recv_cb(ce_state);
1312 
1313 	if (ce_state->send_cb)
1314 		ce_state->send_cb(ce_state);
1315 
1316 	spin_lock_bh(&ce->ce_lock);
1317 
1318 	/*
1319 	 * Misc CE interrupts are not being handled, but still need
1320 	 * to be cleared.
1321 	 */
1322 	ath10k_ce_engine_int_status_clear(ar, ctrl_addr, wm_regs->wm_mask);
1323 
1324 	spin_unlock_bh(&ce->ce_lock);
1325 }
1326 EXPORT_SYMBOL(ath10k_ce_per_engine_service);
1327 
1328 /*
1329  * Handler for per-engine interrupts on ALL active CEs.
1330  * This is used in cases where the system is sharing a
1331  * single interrput for all CEs
1332  */
1333 
1334 void ath10k_ce_per_engine_service_any(struct ath10k *ar)
1335 {
1336 	int ce_id;
1337 	u32 intr_summary;
1338 
1339 	intr_summary = ath10k_ce_interrupt_summary(ar);
1340 
1341 	for (ce_id = 0; intr_summary && (ce_id < CE_COUNT); ce_id++) {
1342 		if (intr_summary & (1 << ce_id))
1343 			intr_summary &= ~(1 << ce_id);
1344 		else
1345 			/* no intr pending on this CE */
1346 			continue;
1347 
1348 		ath10k_ce_per_engine_service(ar, ce_id);
1349 	}
1350 }
1351 EXPORT_SYMBOL(ath10k_ce_per_engine_service_any);
1352 
1353 /*
1354  * Adjust interrupts for the copy complete handler.
1355  * If it's needed for either send or recv, then unmask
1356  * this interrupt; otherwise, mask it.
1357  *
1358  * Called with ce_lock held.
1359  */
1360 static void ath10k_ce_per_engine_handler_adjust(struct ath10k_ce_pipe *ce_state)
1361 {
1362 	u32 ctrl_addr = ce_state->ctrl_addr;
1363 	struct ath10k *ar = ce_state->ar;
1364 	bool disable_copy_compl_intr = ce_state->attr_flags & CE_ATTR_DIS_INTR;
1365 
1366 	if ((!disable_copy_compl_intr) &&
1367 	    (ce_state->send_cb || ce_state->recv_cb))
1368 		ath10k_ce_copy_complete_inter_enable(ar, ctrl_addr);
1369 	else
1370 		ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
1371 
1372 	ath10k_ce_watermark_intr_disable(ar, ctrl_addr);
1373 }
1374 
1375 int ath10k_ce_disable_interrupts(struct ath10k *ar)
1376 {
1377 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1378 	struct ath10k_ce_pipe *ce_state;
1379 	u32 ctrl_addr;
1380 	int ce_id;
1381 
1382 	for (ce_id = 0; ce_id < CE_COUNT; ce_id++) {
1383 		ce_state  = &ce->ce_states[ce_id];
1384 		if (ce_state->attr_flags & CE_ATTR_POLL)
1385 			continue;
1386 
1387 		ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1388 
1389 		ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
1390 		ath10k_ce_error_intr_disable(ar, ctrl_addr);
1391 		ath10k_ce_watermark_intr_disable(ar, ctrl_addr);
1392 	}
1393 
1394 	return 0;
1395 }
1396 EXPORT_SYMBOL(ath10k_ce_disable_interrupts);
1397 
1398 void ath10k_ce_enable_interrupts(struct ath10k *ar)
1399 {
1400 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1401 	int ce_id;
1402 	struct ath10k_ce_pipe *ce_state;
1403 
1404 	/* Enable interrupts for copy engine that
1405 	 * are not using polling mode.
1406 	 */
1407 	for (ce_id = 0; ce_id < CE_COUNT; ce_id++) {
1408 		ce_state  = &ce->ce_states[ce_id];
1409 		if (ce_state->attr_flags & CE_ATTR_POLL)
1410 			continue;
1411 
1412 		ath10k_ce_per_engine_handler_adjust(ce_state);
1413 	}
1414 }
1415 EXPORT_SYMBOL(ath10k_ce_enable_interrupts);
1416 
1417 static int ath10k_ce_init_src_ring(struct ath10k *ar,
1418 				   unsigned int ce_id,
1419 				   const struct ce_attr *attr)
1420 {
1421 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1422 	struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
1423 	struct ath10k_ce_ring *src_ring = ce_state->src_ring;
1424 	u32 nentries, ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1425 
1426 	nentries = roundup_pow_of_two(attr->src_nentries);
1427 
1428 	if (ar->hw_params.target_64bit)
1429 		memset(src_ring->base_addr_owner_space, 0,
1430 		       nentries * sizeof(struct ce_desc_64));
1431 	else
1432 		memset(src_ring->base_addr_owner_space, 0,
1433 		       nentries * sizeof(struct ce_desc));
1434 
1435 	src_ring->sw_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
1436 	src_ring->sw_index &= src_ring->nentries_mask;
1437 	src_ring->hw_index = src_ring->sw_index;
1438 
1439 	src_ring->write_index =
1440 		ath10k_ce_src_ring_write_index_get(ar, ctrl_addr);
1441 	src_ring->write_index &= src_ring->nentries_mask;
1442 
1443 	ath10k_ce_src_ring_base_addr_set(ar, ce_id,
1444 					 src_ring->base_addr_ce_space);
1445 	ath10k_ce_src_ring_size_set(ar, ctrl_addr, nentries);
1446 	ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, attr->src_sz_max);
1447 	ath10k_ce_src_ring_byte_swap_set(ar, ctrl_addr, 0);
1448 	ath10k_ce_src_ring_lowmark_set(ar, ctrl_addr, 0);
1449 	ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, nentries);
1450 
1451 	ath10k_dbg(ar, ATH10K_DBG_BOOT,
1452 		   "boot init ce src ring id %d entries %d base_addr %pK\n",
1453 		   ce_id, nentries, src_ring->base_addr_owner_space);
1454 
1455 	return 0;
1456 }
1457 
1458 static int ath10k_ce_init_dest_ring(struct ath10k *ar,
1459 				    unsigned int ce_id,
1460 				    const struct ce_attr *attr)
1461 {
1462 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1463 	struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
1464 	struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
1465 	u32 nentries, ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1466 
1467 	nentries = roundup_pow_of_two(attr->dest_nentries);
1468 
1469 	if (ar->hw_params.target_64bit)
1470 		memset(dest_ring->base_addr_owner_space, 0,
1471 		       nentries * sizeof(struct ce_desc_64));
1472 	else
1473 		memset(dest_ring->base_addr_owner_space, 0,
1474 		       nentries * sizeof(struct ce_desc));
1475 
1476 	dest_ring->sw_index = ath10k_ce_dest_ring_read_index_get(ar, ctrl_addr);
1477 	dest_ring->sw_index &= dest_ring->nentries_mask;
1478 	dest_ring->write_index =
1479 		ath10k_ce_dest_ring_write_index_get(ar, ctrl_addr);
1480 	dest_ring->write_index &= dest_ring->nentries_mask;
1481 
1482 	ath10k_ce_dest_ring_base_addr_set(ar, ce_id,
1483 					  dest_ring->base_addr_ce_space);
1484 	ath10k_ce_dest_ring_size_set(ar, ctrl_addr, nentries);
1485 	ath10k_ce_dest_ring_byte_swap_set(ar, ctrl_addr, 0);
1486 	ath10k_ce_dest_ring_lowmark_set(ar, ctrl_addr, 0);
1487 	ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, nentries);
1488 
1489 	ath10k_dbg(ar, ATH10K_DBG_BOOT,
1490 		   "boot ce dest ring id %d entries %d base_addr %pK\n",
1491 		   ce_id, nentries, dest_ring->base_addr_owner_space);
1492 
1493 	return 0;
1494 }
1495 
1496 static int ath10k_ce_alloc_shadow_base(struct ath10k *ar,
1497 				       struct ath10k_ce_ring *src_ring,
1498 				       u32 nentries)
1499 {
1500 	src_ring->shadow_base_unaligned = kcalloc(nentries,
1501 						  sizeof(struct ce_desc_64),
1502 						  GFP_KERNEL);
1503 	if (!src_ring->shadow_base_unaligned)
1504 		return -ENOMEM;
1505 
1506 	src_ring->shadow_base = (struct ce_desc_64 *)
1507 			PTR_ALIGN(src_ring->shadow_base_unaligned,
1508 				  CE_DESC_RING_ALIGN);
1509 	return 0;
1510 }
1511 
1512 static struct ath10k_ce_ring *
1513 ath10k_ce_alloc_src_ring(struct ath10k *ar, unsigned int ce_id,
1514 			 const struct ce_attr *attr)
1515 {
1516 	struct ath10k_ce_ring *src_ring;
1517 	u32 nentries = attr->src_nentries;
1518 	dma_addr_t base_addr;
1519 	int ret;
1520 
1521 	nentries = roundup_pow_of_two(nentries);
1522 
1523 	src_ring = kzalloc(struct_size(src_ring, per_transfer_context,
1524 				       nentries), GFP_KERNEL);
1525 	if (src_ring == NULL)
1526 		return ERR_PTR(-ENOMEM);
1527 
1528 	src_ring->nentries = nentries;
1529 	src_ring->nentries_mask = nentries - 1;
1530 
1531 	/*
1532 	 * Legacy platforms that do not support cache
1533 	 * coherent DMA are unsupported
1534 	 */
1535 	src_ring->base_addr_owner_space_unaligned =
1536 		dma_alloc_coherent(ar->dev,
1537 				   (nentries * sizeof(struct ce_desc) +
1538 				    CE_DESC_RING_ALIGN),
1539 				   &base_addr, GFP_KERNEL);
1540 	if (!src_ring->base_addr_owner_space_unaligned) {
1541 		kfree(src_ring);
1542 		return ERR_PTR(-ENOMEM);
1543 	}
1544 
1545 	src_ring->base_addr_ce_space_unaligned = base_addr;
1546 
1547 	src_ring->base_addr_owner_space =
1548 			PTR_ALIGN(src_ring->base_addr_owner_space_unaligned,
1549 				  CE_DESC_RING_ALIGN);
1550 	src_ring->base_addr_ce_space =
1551 			ALIGN(src_ring->base_addr_ce_space_unaligned,
1552 			      CE_DESC_RING_ALIGN);
1553 
1554 	if (ar->hw_params.shadow_reg_support) {
1555 		ret = ath10k_ce_alloc_shadow_base(ar, src_ring, nentries);
1556 		if (ret) {
1557 			dma_free_coherent(ar->dev,
1558 					  (nentries * sizeof(struct ce_desc_64) +
1559 					   CE_DESC_RING_ALIGN),
1560 					  src_ring->base_addr_owner_space_unaligned,
1561 					  base_addr);
1562 			kfree(src_ring);
1563 			return ERR_PTR(ret);
1564 		}
1565 	}
1566 
1567 	return src_ring;
1568 }
1569 
1570 static struct ath10k_ce_ring *
1571 ath10k_ce_alloc_src_ring_64(struct ath10k *ar, unsigned int ce_id,
1572 			    const struct ce_attr *attr)
1573 {
1574 	struct ath10k_ce_ring *src_ring;
1575 	u32 nentries = attr->src_nentries;
1576 	dma_addr_t base_addr;
1577 	int ret;
1578 
1579 	nentries = roundup_pow_of_two(nentries);
1580 
1581 	src_ring = kzalloc(struct_size(src_ring, per_transfer_context,
1582 				       nentries), GFP_KERNEL);
1583 	if (!src_ring)
1584 		return ERR_PTR(-ENOMEM);
1585 
1586 	src_ring->nentries = nentries;
1587 	src_ring->nentries_mask = nentries - 1;
1588 
1589 	/* Legacy platforms that do not support cache
1590 	 * coherent DMA are unsupported
1591 	 */
1592 	src_ring->base_addr_owner_space_unaligned =
1593 		dma_alloc_coherent(ar->dev,
1594 				   (nentries * sizeof(struct ce_desc_64) +
1595 				    CE_DESC_RING_ALIGN),
1596 				   &base_addr, GFP_KERNEL);
1597 	if (!src_ring->base_addr_owner_space_unaligned) {
1598 		kfree(src_ring);
1599 		return ERR_PTR(-ENOMEM);
1600 	}
1601 
1602 	src_ring->base_addr_ce_space_unaligned = base_addr;
1603 
1604 	src_ring->base_addr_owner_space =
1605 			PTR_ALIGN(src_ring->base_addr_owner_space_unaligned,
1606 				  CE_DESC_RING_ALIGN);
1607 	src_ring->base_addr_ce_space =
1608 			ALIGN(src_ring->base_addr_ce_space_unaligned,
1609 			      CE_DESC_RING_ALIGN);
1610 
1611 	if (ar->hw_params.shadow_reg_support) {
1612 		ret = ath10k_ce_alloc_shadow_base(ar, src_ring, nentries);
1613 		if (ret) {
1614 			dma_free_coherent(ar->dev,
1615 					  (nentries * sizeof(struct ce_desc_64) +
1616 					   CE_DESC_RING_ALIGN),
1617 					  src_ring->base_addr_owner_space_unaligned,
1618 					  base_addr);
1619 			kfree(src_ring);
1620 			return ERR_PTR(ret);
1621 		}
1622 	}
1623 
1624 	return src_ring;
1625 }
1626 
1627 static struct ath10k_ce_ring *
1628 ath10k_ce_alloc_dest_ring(struct ath10k *ar, unsigned int ce_id,
1629 			  const struct ce_attr *attr)
1630 {
1631 	struct ath10k_ce_ring *dest_ring;
1632 	u32 nentries;
1633 	dma_addr_t base_addr;
1634 
1635 	nentries = roundup_pow_of_two(attr->dest_nentries);
1636 
1637 	dest_ring = kzalloc(struct_size(dest_ring, per_transfer_context,
1638 					nentries), GFP_KERNEL);
1639 	if (dest_ring == NULL)
1640 		return ERR_PTR(-ENOMEM);
1641 
1642 	dest_ring->nentries = nentries;
1643 	dest_ring->nentries_mask = nentries - 1;
1644 
1645 	/*
1646 	 * Legacy platforms that do not support cache
1647 	 * coherent DMA are unsupported
1648 	 */
1649 	dest_ring->base_addr_owner_space_unaligned =
1650 		dma_alloc_coherent(ar->dev,
1651 				   (nentries * sizeof(struct ce_desc) +
1652 				    CE_DESC_RING_ALIGN),
1653 				   &base_addr, GFP_KERNEL);
1654 	if (!dest_ring->base_addr_owner_space_unaligned) {
1655 		kfree(dest_ring);
1656 		return ERR_PTR(-ENOMEM);
1657 	}
1658 
1659 	dest_ring->base_addr_ce_space_unaligned = base_addr;
1660 
1661 	dest_ring->base_addr_owner_space =
1662 			PTR_ALIGN(dest_ring->base_addr_owner_space_unaligned,
1663 				  CE_DESC_RING_ALIGN);
1664 	dest_ring->base_addr_ce_space =
1665 				ALIGN(dest_ring->base_addr_ce_space_unaligned,
1666 				      CE_DESC_RING_ALIGN);
1667 
1668 	return dest_ring;
1669 }
1670 
1671 static struct ath10k_ce_ring *
1672 ath10k_ce_alloc_dest_ring_64(struct ath10k *ar, unsigned int ce_id,
1673 			     const struct ce_attr *attr)
1674 {
1675 	struct ath10k_ce_ring *dest_ring;
1676 	u32 nentries;
1677 	dma_addr_t base_addr;
1678 
1679 	nentries = roundup_pow_of_two(attr->dest_nentries);
1680 
1681 	dest_ring = kzalloc(struct_size(dest_ring, per_transfer_context,
1682 					nentries), GFP_KERNEL);
1683 	if (!dest_ring)
1684 		return ERR_PTR(-ENOMEM);
1685 
1686 	dest_ring->nentries = nentries;
1687 	dest_ring->nentries_mask = nentries - 1;
1688 
1689 	/* Legacy platforms that do not support cache
1690 	 * coherent DMA are unsupported
1691 	 */
1692 	dest_ring->base_addr_owner_space_unaligned =
1693 		dma_alloc_coherent(ar->dev,
1694 				   (nentries * sizeof(struct ce_desc_64) +
1695 				    CE_DESC_RING_ALIGN),
1696 				   &base_addr, GFP_KERNEL);
1697 	if (!dest_ring->base_addr_owner_space_unaligned) {
1698 		kfree(dest_ring);
1699 		return ERR_PTR(-ENOMEM);
1700 	}
1701 
1702 	dest_ring->base_addr_ce_space_unaligned = base_addr;
1703 
1704 	/* Correctly initialize memory to 0 to prevent garbage
1705 	 * data crashing system when download firmware
1706 	 */
1707 	memset(dest_ring->base_addr_owner_space_unaligned, 0,
1708 	       nentries * sizeof(struct ce_desc_64) + CE_DESC_RING_ALIGN);
1709 
1710 	dest_ring->base_addr_owner_space =
1711 			PTR_ALIGN(dest_ring->base_addr_owner_space_unaligned,
1712 				  CE_DESC_RING_ALIGN);
1713 	dest_ring->base_addr_ce_space =
1714 			ALIGN(dest_ring->base_addr_ce_space_unaligned,
1715 			      CE_DESC_RING_ALIGN);
1716 
1717 	return dest_ring;
1718 }
1719 
1720 /*
1721  * Initialize a Copy Engine based on caller-supplied attributes.
1722  * This may be called once to initialize both source and destination
1723  * rings or it may be called twice for separate source and destination
1724  * initialization. It may be that only one side or the other is
1725  * initialized by software/firmware.
1726  */
1727 int ath10k_ce_init_pipe(struct ath10k *ar, unsigned int ce_id,
1728 			const struct ce_attr *attr)
1729 {
1730 	int ret;
1731 
1732 	if (attr->src_nentries) {
1733 		ret = ath10k_ce_init_src_ring(ar, ce_id, attr);
1734 		if (ret) {
1735 			ath10k_err(ar, "Failed to initialize CE src ring for ID: %d (%d)\n",
1736 				   ce_id, ret);
1737 			return ret;
1738 		}
1739 	}
1740 
1741 	if (attr->dest_nentries) {
1742 		ret = ath10k_ce_init_dest_ring(ar, ce_id, attr);
1743 		if (ret) {
1744 			ath10k_err(ar, "Failed to initialize CE dest ring for ID: %d (%d)\n",
1745 				   ce_id, ret);
1746 			return ret;
1747 		}
1748 	}
1749 
1750 	return 0;
1751 }
1752 EXPORT_SYMBOL(ath10k_ce_init_pipe);
1753 
1754 static void ath10k_ce_deinit_src_ring(struct ath10k *ar, unsigned int ce_id)
1755 {
1756 	u32 ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1757 
1758 	ath10k_ce_src_ring_base_addr_set(ar, ce_id, 0);
1759 	ath10k_ce_src_ring_size_set(ar, ctrl_addr, 0);
1760 	ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, 0);
1761 	ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, 0);
1762 }
1763 
1764 static void ath10k_ce_deinit_dest_ring(struct ath10k *ar, unsigned int ce_id)
1765 {
1766 	u32 ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1767 
1768 	ath10k_ce_dest_ring_base_addr_set(ar, ce_id, 0);
1769 	ath10k_ce_dest_ring_size_set(ar, ctrl_addr, 0);
1770 	ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, 0);
1771 }
1772 
1773 void ath10k_ce_deinit_pipe(struct ath10k *ar, unsigned int ce_id)
1774 {
1775 	ath10k_ce_deinit_src_ring(ar, ce_id);
1776 	ath10k_ce_deinit_dest_ring(ar, ce_id);
1777 }
1778 EXPORT_SYMBOL(ath10k_ce_deinit_pipe);
1779 
1780 static void _ath10k_ce_free_pipe(struct ath10k *ar, int ce_id)
1781 {
1782 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1783 	struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
1784 
1785 	if (ce_state->src_ring) {
1786 		if (ar->hw_params.shadow_reg_support)
1787 			kfree(ce_state->src_ring->shadow_base_unaligned);
1788 		dma_free_coherent(ar->dev,
1789 				  (ce_state->src_ring->nentries *
1790 				   sizeof(struct ce_desc) +
1791 				   CE_DESC_RING_ALIGN),
1792 				  ce_state->src_ring->base_addr_owner_space,
1793 				  ce_state->src_ring->base_addr_ce_space);
1794 		kfree(ce_state->src_ring);
1795 	}
1796 
1797 	if (ce_state->dest_ring) {
1798 		dma_free_coherent(ar->dev,
1799 				  (ce_state->dest_ring->nentries *
1800 				   sizeof(struct ce_desc) +
1801 				   CE_DESC_RING_ALIGN),
1802 				  ce_state->dest_ring->base_addr_owner_space,
1803 				  ce_state->dest_ring->base_addr_ce_space);
1804 		kfree(ce_state->dest_ring);
1805 	}
1806 
1807 	ce_state->src_ring = NULL;
1808 	ce_state->dest_ring = NULL;
1809 }
1810 
1811 static void _ath10k_ce_free_pipe_64(struct ath10k *ar, int ce_id)
1812 {
1813 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1814 	struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
1815 
1816 	if (ce_state->src_ring) {
1817 		if (ar->hw_params.shadow_reg_support)
1818 			kfree(ce_state->src_ring->shadow_base_unaligned);
1819 		dma_free_coherent(ar->dev,
1820 				  (ce_state->src_ring->nentries *
1821 				   sizeof(struct ce_desc_64) +
1822 				   CE_DESC_RING_ALIGN),
1823 				  ce_state->src_ring->base_addr_owner_space,
1824 				  ce_state->src_ring->base_addr_ce_space);
1825 		kfree(ce_state->src_ring);
1826 	}
1827 
1828 	if (ce_state->dest_ring) {
1829 		dma_free_coherent(ar->dev,
1830 				  (ce_state->dest_ring->nentries *
1831 				   sizeof(struct ce_desc_64) +
1832 				   CE_DESC_RING_ALIGN),
1833 				  ce_state->dest_ring->base_addr_owner_space,
1834 				  ce_state->dest_ring->base_addr_ce_space);
1835 		kfree(ce_state->dest_ring);
1836 	}
1837 
1838 	ce_state->src_ring = NULL;
1839 	ce_state->dest_ring = NULL;
1840 }
1841 
1842 void ath10k_ce_free_pipe(struct ath10k *ar, int ce_id)
1843 {
1844 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1845 	struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
1846 
1847 	ce_state->ops->ce_free_pipe(ar, ce_id);
1848 }
1849 EXPORT_SYMBOL(ath10k_ce_free_pipe);
1850 
1851 void ath10k_ce_dump_registers(struct ath10k *ar,
1852 			      struct ath10k_fw_crash_data *crash_data)
1853 {
1854 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1855 	struct ath10k_ce_crash_data ce_data;
1856 	u32 addr, id;
1857 
1858 	lockdep_assert_held(&ar->data_lock);
1859 
1860 	ath10k_err(ar, "Copy Engine register dump:\n");
1861 
1862 	spin_lock_bh(&ce->ce_lock);
1863 	for (id = 0; id < CE_COUNT; id++) {
1864 		addr = ath10k_ce_base_address(ar, id);
1865 		ce_data.base_addr = cpu_to_le32(addr);
1866 
1867 		ce_data.src_wr_idx =
1868 			cpu_to_le32(ath10k_ce_src_ring_write_index_get(ar, addr));
1869 		ce_data.src_r_idx =
1870 			cpu_to_le32(ath10k_ce_src_ring_read_index_get(ar, addr));
1871 		ce_data.dst_wr_idx =
1872 			cpu_to_le32(ath10k_ce_dest_ring_write_index_get(ar, addr));
1873 		ce_data.dst_r_idx =
1874 			cpu_to_le32(ath10k_ce_dest_ring_read_index_get(ar, addr));
1875 
1876 		if (crash_data)
1877 			crash_data->ce_crash_data[id] = ce_data;
1878 
1879 		ath10k_err(ar, "[%02d]: 0x%08x %3u %3u %3u %3u", id,
1880 			   le32_to_cpu(ce_data.base_addr),
1881 			   le32_to_cpu(ce_data.src_wr_idx),
1882 			   le32_to_cpu(ce_data.src_r_idx),
1883 			   le32_to_cpu(ce_data.dst_wr_idx),
1884 			   le32_to_cpu(ce_data.dst_r_idx));
1885 	}
1886 
1887 	spin_unlock_bh(&ce->ce_lock);
1888 }
1889 EXPORT_SYMBOL(ath10k_ce_dump_registers);
1890 
1891 static const struct ath10k_ce_ops ce_ops = {
1892 	.ce_alloc_src_ring = ath10k_ce_alloc_src_ring,
1893 	.ce_alloc_dst_ring = ath10k_ce_alloc_dest_ring,
1894 	.ce_rx_post_buf = __ath10k_ce_rx_post_buf,
1895 	.ce_completed_recv_next_nolock = _ath10k_ce_completed_recv_next_nolock,
1896 	.ce_revoke_recv_next = _ath10k_ce_revoke_recv_next,
1897 	.ce_extract_desc_data = ath10k_ce_extract_desc_data,
1898 	.ce_free_pipe = _ath10k_ce_free_pipe,
1899 	.ce_send_nolock = _ath10k_ce_send_nolock,
1900 	.ce_set_src_ring_base_addr_hi = NULL,
1901 	.ce_set_dest_ring_base_addr_hi = NULL,
1902 	.ce_completed_send_next_nolock = _ath10k_ce_completed_send_next_nolock,
1903 };
1904 
1905 static const struct ath10k_ce_ops ce_64_ops = {
1906 	.ce_alloc_src_ring = ath10k_ce_alloc_src_ring_64,
1907 	.ce_alloc_dst_ring = ath10k_ce_alloc_dest_ring_64,
1908 	.ce_rx_post_buf = __ath10k_ce_rx_post_buf_64,
1909 	.ce_completed_recv_next_nolock =
1910 				_ath10k_ce_completed_recv_next_nolock_64,
1911 	.ce_revoke_recv_next = _ath10k_ce_revoke_recv_next_64,
1912 	.ce_extract_desc_data = ath10k_ce_extract_desc_data_64,
1913 	.ce_free_pipe = _ath10k_ce_free_pipe_64,
1914 	.ce_send_nolock = _ath10k_ce_send_nolock_64,
1915 	.ce_set_src_ring_base_addr_hi = ath10k_ce_set_src_ring_base_addr_hi,
1916 	.ce_set_dest_ring_base_addr_hi = ath10k_ce_set_dest_ring_base_addr_hi,
1917 	.ce_completed_send_next_nolock = _ath10k_ce_completed_send_next_nolock_64,
1918 };
1919 
1920 static void ath10k_ce_set_ops(struct ath10k *ar,
1921 			      struct ath10k_ce_pipe *ce_state)
1922 {
1923 	switch (ar->hw_rev) {
1924 	case ATH10K_HW_WCN3990:
1925 		ce_state->ops = &ce_64_ops;
1926 		break;
1927 	default:
1928 		ce_state->ops = &ce_ops;
1929 		break;
1930 	}
1931 }
1932 
1933 int ath10k_ce_alloc_pipe(struct ath10k *ar, int ce_id,
1934 			 const struct ce_attr *attr)
1935 {
1936 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1937 	struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
1938 	int ret;
1939 
1940 	ath10k_ce_set_ops(ar, ce_state);
1941 	/* Make sure there's enough CE ringbuffer entries for HTT TX to avoid
1942 	 * additional TX locking checks.
1943 	 *
1944 	 * For the lack of a better place do the check here.
1945 	 */
1946 	BUILD_BUG_ON(2 * TARGET_NUM_MSDU_DESC >
1947 		     (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
1948 	BUILD_BUG_ON(2 * TARGET_10_4_NUM_MSDU_DESC_PFC >
1949 		     (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
1950 	BUILD_BUG_ON(2 * TARGET_TLV_NUM_MSDU_DESC >
1951 		     (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
1952 
1953 	ce_state->ar = ar;
1954 	ce_state->id = ce_id;
1955 	ce_state->ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1956 	ce_state->attr_flags = attr->flags;
1957 	ce_state->src_sz_max = attr->src_sz_max;
1958 
1959 	if (attr->src_nentries)
1960 		ce_state->send_cb = attr->send_cb;
1961 
1962 	if (attr->dest_nentries)
1963 		ce_state->recv_cb = attr->recv_cb;
1964 
1965 	if (attr->src_nentries) {
1966 		ce_state->src_ring =
1967 			ce_state->ops->ce_alloc_src_ring(ar, ce_id, attr);
1968 		if (IS_ERR(ce_state->src_ring)) {
1969 			ret = PTR_ERR(ce_state->src_ring);
1970 			ath10k_err(ar, "failed to alloc CE src ring %d: %d\n",
1971 				   ce_id, ret);
1972 			ce_state->src_ring = NULL;
1973 			return ret;
1974 		}
1975 	}
1976 
1977 	if (attr->dest_nentries) {
1978 		ce_state->dest_ring = ce_state->ops->ce_alloc_dst_ring(ar,
1979 									ce_id,
1980 									attr);
1981 		if (IS_ERR(ce_state->dest_ring)) {
1982 			ret = PTR_ERR(ce_state->dest_ring);
1983 			ath10k_err(ar, "failed to alloc CE dest ring %d: %d\n",
1984 				   ce_id, ret);
1985 			ce_state->dest_ring = NULL;
1986 			return ret;
1987 		}
1988 	}
1989 
1990 	return 0;
1991 }
1992 EXPORT_SYMBOL(ath10k_ce_alloc_pipe);
1993 
1994 void ath10k_ce_alloc_rri(struct ath10k *ar)
1995 {
1996 	int i;
1997 	u32 value;
1998 	u32 ctrl1_regs;
1999 	u32 ce_base_addr;
2000 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
2001 
2002 	ce->vaddr_rri = dma_alloc_coherent(ar->dev,
2003 					   (CE_COUNT * sizeof(u32)),
2004 					   &ce->paddr_rri, GFP_KERNEL);
2005 
2006 	if (!ce->vaddr_rri)
2007 		return;
2008 
2009 	ath10k_ce_write32(ar, ar->hw_ce_regs->ce_rri_low,
2010 			  lower_32_bits(ce->paddr_rri));
2011 	ath10k_ce_write32(ar, ar->hw_ce_regs->ce_rri_high,
2012 			  (upper_32_bits(ce->paddr_rri) &
2013 			  CE_DESC_ADDR_HI_MASK));
2014 
2015 	for (i = 0; i < CE_COUNT; i++) {
2016 		ctrl1_regs = ar->hw_ce_regs->ctrl1_regs->addr;
2017 		ce_base_addr = ath10k_ce_base_address(ar, i);
2018 		value = ath10k_ce_read32(ar, ce_base_addr + ctrl1_regs);
2019 		value |= ar->hw_ce_regs->upd->mask;
2020 		ath10k_ce_write32(ar, ce_base_addr + ctrl1_regs, value);
2021 	}
2022 
2023 	memset(ce->vaddr_rri, 0, CE_COUNT * sizeof(u32));
2024 }
2025 EXPORT_SYMBOL(ath10k_ce_alloc_rri);
2026 
2027 void ath10k_ce_free_rri(struct ath10k *ar)
2028 {
2029 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
2030 
2031 	dma_free_coherent(ar->dev, (CE_COUNT * sizeof(u32)),
2032 			  ce->vaddr_rri,
2033 			  ce->paddr_rri);
2034 }
2035 EXPORT_SYMBOL(ath10k_ce_free_rri);
2036