xref: /openbmc/linux/drivers/net/wireless/ath/ath10k/ce.c (revision 6774def6)
1 /*
2  * Copyright (c) 2005-2011 Atheros Communications Inc.
3  * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17 
18 #include "hif.h"
19 #include "pci.h"
20 #include "ce.h"
21 #include "debug.h"
22 
23 /*
24  * Support for Copy Engine hardware, which is mainly used for
25  * communication between Host and Target over a PCIe interconnect.
26  */
27 
28 /*
29  * A single CopyEngine (CE) comprises two "rings":
30  *   a source ring
31  *   a destination ring
32  *
33  * Each ring consists of a number of descriptors which specify
34  * an address, length, and meta-data.
35  *
36  * Typically, one side of the PCIe interconnect (Host or Target)
37  * controls one ring and the other side controls the other ring.
38  * The source side chooses when to initiate a transfer and it
39  * chooses what to send (buffer address, length). The destination
40  * side keeps a supply of "anonymous receive buffers" available and
41  * it handles incoming data as it arrives (when the destination
42  * recieves an interrupt).
43  *
44  * The sender may send a simple buffer (address/length) or it may
45  * send a small list of buffers.  When a small list is sent, hardware
46  * "gathers" these and they end up in a single destination buffer
47  * with a single interrupt.
48  *
49  * There are several "contexts" managed by this layer -- more, it
50  * may seem -- than should be needed. These are provided mainly for
51  * maximum flexibility and especially to facilitate a simpler HIF
52  * implementation. There are per-CopyEngine recv, send, and watermark
53  * contexts. These are supplied by the caller when a recv, send,
54  * or watermark handler is established and they are echoed back to
55  * the caller when the respective callbacks are invoked. There is
56  * also a per-transfer context supplied by the caller when a buffer
57  * (or sendlist) is sent and when a buffer is enqueued for recv.
58  * These per-transfer contexts are echoed back to the caller when
59  * the buffer is sent/received.
60  */
61 
62 static inline void ath10k_ce_dest_ring_write_index_set(struct ath10k *ar,
63 						       u32 ce_ctrl_addr,
64 						       unsigned int n)
65 {
66 	ath10k_pci_write32(ar, ce_ctrl_addr + DST_WR_INDEX_ADDRESS, n);
67 }
68 
69 static inline u32 ath10k_ce_dest_ring_write_index_get(struct ath10k *ar,
70 						      u32 ce_ctrl_addr)
71 {
72 	return ath10k_pci_read32(ar, ce_ctrl_addr + DST_WR_INDEX_ADDRESS);
73 }
74 
75 static inline void ath10k_ce_src_ring_write_index_set(struct ath10k *ar,
76 						      u32 ce_ctrl_addr,
77 						      unsigned int n)
78 {
79 	ath10k_pci_write32(ar, ce_ctrl_addr + SR_WR_INDEX_ADDRESS, n);
80 }
81 
82 static inline u32 ath10k_ce_src_ring_write_index_get(struct ath10k *ar,
83 						     u32 ce_ctrl_addr)
84 {
85 	return ath10k_pci_read32(ar, ce_ctrl_addr + SR_WR_INDEX_ADDRESS);
86 }
87 
88 static inline u32 ath10k_ce_src_ring_read_index_get(struct ath10k *ar,
89 						    u32 ce_ctrl_addr)
90 {
91 	return ath10k_pci_read32(ar, ce_ctrl_addr + CURRENT_SRRI_ADDRESS);
92 }
93 
94 static inline void ath10k_ce_src_ring_base_addr_set(struct ath10k *ar,
95 						    u32 ce_ctrl_addr,
96 						    unsigned int addr)
97 {
98 	ath10k_pci_write32(ar, ce_ctrl_addr + SR_BA_ADDRESS, addr);
99 }
100 
101 static inline void ath10k_ce_src_ring_size_set(struct ath10k *ar,
102 					       u32 ce_ctrl_addr,
103 					       unsigned int n)
104 {
105 	ath10k_pci_write32(ar, ce_ctrl_addr + SR_SIZE_ADDRESS, n);
106 }
107 
108 static inline void ath10k_ce_src_ring_dmax_set(struct ath10k *ar,
109 					       u32 ce_ctrl_addr,
110 					       unsigned int n)
111 {
112 	u32 ctrl1_addr = ath10k_pci_read32((ar),
113 					   (ce_ctrl_addr) + CE_CTRL1_ADDRESS);
114 
115 	ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
116 			   (ctrl1_addr &  ~CE_CTRL1_DMAX_LENGTH_MASK) |
117 			   CE_CTRL1_DMAX_LENGTH_SET(n));
118 }
119 
120 static inline void ath10k_ce_src_ring_byte_swap_set(struct ath10k *ar,
121 						    u32 ce_ctrl_addr,
122 						    unsigned int n)
123 {
124 	u32 ctrl1_addr = ath10k_pci_read32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS);
125 
126 	ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
127 			   (ctrl1_addr & ~CE_CTRL1_SRC_RING_BYTE_SWAP_EN_MASK) |
128 			   CE_CTRL1_SRC_RING_BYTE_SWAP_EN_SET(n));
129 }
130 
131 static inline void ath10k_ce_dest_ring_byte_swap_set(struct ath10k *ar,
132 						     u32 ce_ctrl_addr,
133 						     unsigned int n)
134 {
135 	u32 ctrl1_addr = ath10k_pci_read32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS);
136 
137 	ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
138 			   (ctrl1_addr & ~CE_CTRL1_DST_RING_BYTE_SWAP_EN_MASK) |
139 			   CE_CTRL1_DST_RING_BYTE_SWAP_EN_SET(n));
140 }
141 
142 static inline u32 ath10k_ce_dest_ring_read_index_get(struct ath10k *ar,
143 						     u32 ce_ctrl_addr)
144 {
145 	return ath10k_pci_read32(ar, ce_ctrl_addr + CURRENT_DRRI_ADDRESS);
146 }
147 
148 static inline void ath10k_ce_dest_ring_base_addr_set(struct ath10k *ar,
149 						     u32 ce_ctrl_addr,
150 						     u32 addr)
151 {
152 	ath10k_pci_write32(ar, ce_ctrl_addr + DR_BA_ADDRESS, addr);
153 }
154 
155 static inline void ath10k_ce_dest_ring_size_set(struct ath10k *ar,
156 						u32 ce_ctrl_addr,
157 						unsigned int n)
158 {
159 	ath10k_pci_write32(ar, ce_ctrl_addr + DR_SIZE_ADDRESS, n);
160 }
161 
162 static inline void ath10k_ce_src_ring_highmark_set(struct ath10k *ar,
163 						   u32 ce_ctrl_addr,
164 						   unsigned int n)
165 {
166 	u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS);
167 
168 	ath10k_pci_write32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS,
169 			   (addr & ~SRC_WATERMARK_HIGH_MASK) |
170 			   SRC_WATERMARK_HIGH_SET(n));
171 }
172 
173 static inline void ath10k_ce_src_ring_lowmark_set(struct ath10k *ar,
174 						  u32 ce_ctrl_addr,
175 						  unsigned int n)
176 {
177 	u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS);
178 
179 	ath10k_pci_write32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS,
180 			   (addr & ~SRC_WATERMARK_LOW_MASK) |
181 			   SRC_WATERMARK_LOW_SET(n));
182 }
183 
184 static inline void ath10k_ce_dest_ring_highmark_set(struct ath10k *ar,
185 						    u32 ce_ctrl_addr,
186 						    unsigned int n)
187 {
188 	u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS);
189 
190 	ath10k_pci_write32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS,
191 			   (addr & ~DST_WATERMARK_HIGH_MASK) |
192 			   DST_WATERMARK_HIGH_SET(n));
193 }
194 
195 static inline void ath10k_ce_dest_ring_lowmark_set(struct ath10k *ar,
196 						   u32 ce_ctrl_addr,
197 						   unsigned int n)
198 {
199 	u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS);
200 
201 	ath10k_pci_write32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS,
202 			   (addr & ~DST_WATERMARK_LOW_MASK) |
203 			   DST_WATERMARK_LOW_SET(n));
204 }
205 
206 static inline void ath10k_ce_copy_complete_inter_enable(struct ath10k *ar,
207 							u32 ce_ctrl_addr)
208 {
209 	u32 host_ie_addr = ath10k_pci_read32(ar,
210 					     ce_ctrl_addr + HOST_IE_ADDRESS);
211 
212 	ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
213 			   host_ie_addr | HOST_IE_COPY_COMPLETE_MASK);
214 }
215 
216 static inline void ath10k_ce_copy_complete_intr_disable(struct ath10k *ar,
217 							u32 ce_ctrl_addr)
218 {
219 	u32 host_ie_addr = ath10k_pci_read32(ar,
220 					     ce_ctrl_addr + HOST_IE_ADDRESS);
221 
222 	ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
223 			   host_ie_addr & ~HOST_IE_COPY_COMPLETE_MASK);
224 }
225 
226 static inline void ath10k_ce_watermark_intr_disable(struct ath10k *ar,
227 						    u32 ce_ctrl_addr)
228 {
229 	u32 host_ie_addr = ath10k_pci_read32(ar,
230 					     ce_ctrl_addr + HOST_IE_ADDRESS);
231 
232 	ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
233 			   host_ie_addr & ~CE_WATERMARK_MASK);
234 }
235 
236 static inline void ath10k_ce_error_intr_enable(struct ath10k *ar,
237 					       u32 ce_ctrl_addr)
238 {
239 	u32 misc_ie_addr = ath10k_pci_read32(ar,
240 					     ce_ctrl_addr + MISC_IE_ADDRESS);
241 
242 	ath10k_pci_write32(ar, ce_ctrl_addr + MISC_IE_ADDRESS,
243 			   misc_ie_addr | CE_ERROR_MASK);
244 }
245 
246 static inline void ath10k_ce_error_intr_disable(struct ath10k *ar,
247 						u32 ce_ctrl_addr)
248 {
249 	u32 misc_ie_addr = ath10k_pci_read32(ar,
250 					     ce_ctrl_addr + MISC_IE_ADDRESS);
251 
252 	ath10k_pci_write32(ar, ce_ctrl_addr + MISC_IE_ADDRESS,
253 			   misc_ie_addr & ~CE_ERROR_MASK);
254 }
255 
256 static inline void ath10k_ce_engine_int_status_clear(struct ath10k *ar,
257 						     u32 ce_ctrl_addr,
258 						     unsigned int mask)
259 {
260 	ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IS_ADDRESS, mask);
261 }
262 
263 /*
264  * Guts of ath10k_ce_send, used by both ath10k_ce_send and
265  * ath10k_ce_sendlist_send.
266  * The caller takes responsibility for any needed locking.
267  */
268 int ath10k_ce_send_nolock(struct ath10k_ce_pipe *ce_state,
269 			  void *per_transfer_context,
270 			  u32 buffer,
271 			  unsigned int nbytes,
272 			  unsigned int transfer_id,
273 			  unsigned int flags)
274 {
275 	struct ath10k *ar = ce_state->ar;
276 	struct ath10k_ce_ring *src_ring = ce_state->src_ring;
277 	struct ce_desc *desc, *sdesc;
278 	unsigned int nentries_mask = src_ring->nentries_mask;
279 	unsigned int sw_index = src_ring->sw_index;
280 	unsigned int write_index = src_ring->write_index;
281 	u32 ctrl_addr = ce_state->ctrl_addr;
282 	u32 desc_flags = 0;
283 	int ret = 0;
284 
285 	if (nbytes > ce_state->src_sz_max)
286 		ath10k_warn(ar, "%s: send more we can (nbytes: %d, max: %d)\n",
287 			    __func__, nbytes, ce_state->src_sz_max);
288 
289 	if (unlikely(CE_RING_DELTA(nentries_mask,
290 				   write_index, sw_index - 1) <= 0)) {
291 		ret = -ENOSR;
292 		goto exit;
293 	}
294 
295 	desc = CE_SRC_RING_TO_DESC(src_ring->base_addr_owner_space,
296 				   write_index);
297 	sdesc = CE_SRC_RING_TO_DESC(src_ring->shadow_base, write_index);
298 
299 	desc_flags |= SM(transfer_id, CE_DESC_FLAGS_META_DATA);
300 
301 	if (flags & CE_SEND_FLAG_GATHER)
302 		desc_flags |= CE_DESC_FLAGS_GATHER;
303 	if (flags & CE_SEND_FLAG_BYTE_SWAP)
304 		desc_flags |= CE_DESC_FLAGS_BYTE_SWAP;
305 
306 	sdesc->addr   = __cpu_to_le32(buffer);
307 	sdesc->nbytes = __cpu_to_le16(nbytes);
308 	sdesc->flags  = __cpu_to_le16(desc_flags);
309 
310 	*desc = *sdesc;
311 
312 	src_ring->per_transfer_context[write_index] = per_transfer_context;
313 
314 	/* Update Source Ring Write Index */
315 	write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
316 
317 	/* WORKAROUND */
318 	if (!(flags & CE_SEND_FLAG_GATHER))
319 		ath10k_ce_src_ring_write_index_set(ar, ctrl_addr, write_index);
320 
321 	src_ring->write_index = write_index;
322 exit:
323 	return ret;
324 }
325 
326 void __ath10k_ce_send_revert(struct ath10k_ce_pipe *pipe)
327 {
328 	struct ath10k *ar = pipe->ar;
329 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
330 	struct ath10k_ce_ring *src_ring = pipe->src_ring;
331 	u32 ctrl_addr = pipe->ctrl_addr;
332 
333 	lockdep_assert_held(&ar_pci->ce_lock);
334 
335 	/*
336 	 * This function must be called only if there is an incomplete
337 	 * scatter-gather transfer (before index register is updated)
338 	 * that needs to be cleaned up.
339 	 */
340 	if (WARN_ON_ONCE(src_ring->write_index == src_ring->sw_index))
341 		return;
342 
343 	if (WARN_ON_ONCE(src_ring->write_index ==
344 			 ath10k_ce_src_ring_write_index_get(ar, ctrl_addr)))
345 		return;
346 
347 	src_ring->write_index--;
348 	src_ring->write_index &= src_ring->nentries_mask;
349 
350 	src_ring->per_transfer_context[src_ring->write_index] = NULL;
351 }
352 
353 int ath10k_ce_send(struct ath10k_ce_pipe *ce_state,
354 		   void *per_transfer_context,
355 		   u32 buffer,
356 		   unsigned int nbytes,
357 		   unsigned int transfer_id,
358 		   unsigned int flags)
359 {
360 	struct ath10k *ar = ce_state->ar;
361 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
362 	int ret;
363 
364 	spin_lock_bh(&ar_pci->ce_lock);
365 	ret = ath10k_ce_send_nolock(ce_state, per_transfer_context,
366 				    buffer, nbytes, transfer_id, flags);
367 	spin_unlock_bh(&ar_pci->ce_lock);
368 
369 	return ret;
370 }
371 
372 int ath10k_ce_num_free_src_entries(struct ath10k_ce_pipe *pipe)
373 {
374 	struct ath10k *ar = pipe->ar;
375 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
376 	int delta;
377 
378 	spin_lock_bh(&ar_pci->ce_lock);
379 	delta = CE_RING_DELTA(pipe->src_ring->nentries_mask,
380 			      pipe->src_ring->write_index,
381 			      pipe->src_ring->sw_index - 1);
382 	spin_unlock_bh(&ar_pci->ce_lock);
383 
384 	return delta;
385 }
386 
387 int __ath10k_ce_rx_num_free_bufs(struct ath10k_ce_pipe *pipe)
388 {
389 	struct ath10k *ar = pipe->ar;
390 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
391 	struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
392 	unsigned int nentries_mask = dest_ring->nentries_mask;
393 	unsigned int write_index = dest_ring->write_index;
394 	unsigned int sw_index = dest_ring->sw_index;
395 
396 	lockdep_assert_held(&ar_pci->ce_lock);
397 
398 	return CE_RING_DELTA(nentries_mask, write_index, sw_index - 1);
399 }
400 
401 int __ath10k_ce_rx_post_buf(struct ath10k_ce_pipe *pipe, void *ctx, u32 paddr)
402 {
403 	struct ath10k *ar = pipe->ar;
404 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
405 	struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
406 	unsigned int nentries_mask = dest_ring->nentries_mask;
407 	unsigned int write_index = dest_ring->write_index;
408 	unsigned int sw_index = dest_ring->sw_index;
409 	struct ce_desc *base = dest_ring->base_addr_owner_space;
410 	struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, write_index);
411 	u32 ctrl_addr = pipe->ctrl_addr;
412 
413 	lockdep_assert_held(&ar_pci->ce_lock);
414 
415 	if (CE_RING_DELTA(nentries_mask, write_index, sw_index - 1) == 0)
416 		return -EIO;
417 
418 	desc->addr = __cpu_to_le32(paddr);
419 	desc->nbytes = 0;
420 
421 	dest_ring->per_transfer_context[write_index] = ctx;
422 	write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
423 	ath10k_ce_dest_ring_write_index_set(ar, ctrl_addr, write_index);
424 	dest_ring->write_index = write_index;
425 
426 	return 0;
427 }
428 
429 int ath10k_ce_rx_post_buf(struct ath10k_ce_pipe *pipe, void *ctx, u32 paddr)
430 {
431 	struct ath10k *ar = pipe->ar;
432 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
433 	int ret;
434 
435 	spin_lock_bh(&ar_pci->ce_lock);
436 	ret = __ath10k_ce_rx_post_buf(pipe, ctx, paddr);
437 	spin_unlock_bh(&ar_pci->ce_lock);
438 
439 	return ret;
440 }
441 
442 /*
443  * Guts of ath10k_ce_completed_recv_next.
444  * The caller takes responsibility for any necessary locking.
445  */
446 static int ath10k_ce_completed_recv_next_nolock(struct ath10k_ce_pipe *ce_state,
447 						void **per_transfer_contextp,
448 						u32 *bufferp,
449 						unsigned int *nbytesp,
450 						unsigned int *transfer_idp,
451 						unsigned int *flagsp)
452 {
453 	struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
454 	unsigned int nentries_mask = dest_ring->nentries_mask;
455 	unsigned int sw_index = dest_ring->sw_index;
456 
457 	struct ce_desc *base = dest_ring->base_addr_owner_space;
458 	struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
459 	struct ce_desc sdesc;
460 	u16 nbytes;
461 
462 	/* Copy in one go for performance reasons */
463 	sdesc = *desc;
464 
465 	nbytes = __le16_to_cpu(sdesc.nbytes);
466 	if (nbytes == 0) {
467 		/*
468 		 * This closes a relatively unusual race where the Host
469 		 * sees the updated DRRI before the update to the
470 		 * corresponding descriptor has completed. We treat this
471 		 * as a descriptor that is not yet done.
472 		 */
473 		return -EIO;
474 	}
475 
476 	desc->nbytes = 0;
477 
478 	/* Return data from completed destination descriptor */
479 	*bufferp = __le32_to_cpu(sdesc.addr);
480 	*nbytesp = nbytes;
481 	*transfer_idp = MS(__le16_to_cpu(sdesc.flags), CE_DESC_FLAGS_META_DATA);
482 
483 	if (__le16_to_cpu(sdesc.flags) & CE_DESC_FLAGS_BYTE_SWAP)
484 		*flagsp = CE_RECV_FLAG_SWAPPED;
485 	else
486 		*flagsp = 0;
487 
488 	if (per_transfer_contextp)
489 		*per_transfer_contextp =
490 			dest_ring->per_transfer_context[sw_index];
491 
492 	/* sanity */
493 	dest_ring->per_transfer_context[sw_index] = NULL;
494 
495 	/* Update sw_index */
496 	sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
497 	dest_ring->sw_index = sw_index;
498 
499 	return 0;
500 }
501 
502 int ath10k_ce_completed_recv_next(struct ath10k_ce_pipe *ce_state,
503 				  void **per_transfer_contextp,
504 				  u32 *bufferp,
505 				  unsigned int *nbytesp,
506 				  unsigned int *transfer_idp,
507 				  unsigned int *flagsp)
508 {
509 	struct ath10k *ar = ce_state->ar;
510 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
511 	int ret;
512 
513 	spin_lock_bh(&ar_pci->ce_lock);
514 	ret = ath10k_ce_completed_recv_next_nolock(ce_state,
515 						   per_transfer_contextp,
516 						   bufferp, nbytesp,
517 						   transfer_idp, flagsp);
518 	spin_unlock_bh(&ar_pci->ce_lock);
519 
520 	return ret;
521 }
522 
523 int ath10k_ce_revoke_recv_next(struct ath10k_ce_pipe *ce_state,
524 			       void **per_transfer_contextp,
525 			       u32 *bufferp)
526 {
527 	struct ath10k_ce_ring *dest_ring;
528 	unsigned int nentries_mask;
529 	unsigned int sw_index;
530 	unsigned int write_index;
531 	int ret;
532 	struct ath10k *ar;
533 	struct ath10k_pci *ar_pci;
534 
535 	dest_ring = ce_state->dest_ring;
536 
537 	if (!dest_ring)
538 		return -EIO;
539 
540 	ar = ce_state->ar;
541 	ar_pci = ath10k_pci_priv(ar);
542 
543 	spin_lock_bh(&ar_pci->ce_lock);
544 
545 	nentries_mask = dest_ring->nentries_mask;
546 	sw_index = dest_ring->sw_index;
547 	write_index = dest_ring->write_index;
548 	if (write_index != sw_index) {
549 		struct ce_desc *base = dest_ring->base_addr_owner_space;
550 		struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
551 
552 		/* Return data from completed destination descriptor */
553 		*bufferp = __le32_to_cpu(desc->addr);
554 
555 		if (per_transfer_contextp)
556 			*per_transfer_contextp =
557 				dest_ring->per_transfer_context[sw_index];
558 
559 		/* sanity */
560 		dest_ring->per_transfer_context[sw_index] = NULL;
561 
562 		/* Update sw_index */
563 		sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
564 		dest_ring->sw_index = sw_index;
565 		ret = 0;
566 	} else {
567 		ret = -EIO;
568 	}
569 
570 	spin_unlock_bh(&ar_pci->ce_lock);
571 
572 	return ret;
573 }
574 
575 /*
576  * Guts of ath10k_ce_completed_send_next.
577  * The caller takes responsibility for any necessary locking.
578  */
579 static int ath10k_ce_completed_send_next_nolock(struct ath10k_ce_pipe *ce_state,
580 						void **per_transfer_contextp,
581 						u32 *bufferp,
582 						unsigned int *nbytesp,
583 						unsigned int *transfer_idp)
584 {
585 	struct ath10k_ce_ring *src_ring = ce_state->src_ring;
586 	u32 ctrl_addr = ce_state->ctrl_addr;
587 	struct ath10k *ar = ce_state->ar;
588 	unsigned int nentries_mask = src_ring->nentries_mask;
589 	unsigned int sw_index = src_ring->sw_index;
590 	struct ce_desc *sdesc, *sbase;
591 	unsigned int read_index;
592 
593 	if (src_ring->hw_index == sw_index) {
594 		/*
595 		 * The SW completion index has caught up with the cached
596 		 * version of the HW completion index.
597 		 * Update the cached HW completion index to see whether
598 		 * the SW has really caught up to the HW, or if the cached
599 		 * value of the HW index has become stale.
600 		 */
601 
602 		read_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
603 		if (read_index == 0xffffffff)
604 			return -ENODEV;
605 
606 		read_index &= nentries_mask;
607 		src_ring->hw_index = read_index;
608 	}
609 
610 	read_index = src_ring->hw_index;
611 
612 	if (read_index == sw_index)
613 		return -EIO;
614 
615 	sbase = src_ring->shadow_base;
616 	sdesc = CE_SRC_RING_TO_DESC(sbase, sw_index);
617 
618 	/* Return data from completed source descriptor */
619 	*bufferp = __le32_to_cpu(sdesc->addr);
620 	*nbytesp = __le16_to_cpu(sdesc->nbytes);
621 	*transfer_idp = MS(__le16_to_cpu(sdesc->flags),
622 			   CE_DESC_FLAGS_META_DATA);
623 
624 	if (per_transfer_contextp)
625 		*per_transfer_contextp =
626 			src_ring->per_transfer_context[sw_index];
627 
628 	/* sanity */
629 	src_ring->per_transfer_context[sw_index] = NULL;
630 
631 	/* Update sw_index */
632 	sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
633 	src_ring->sw_index = sw_index;
634 
635 	return 0;
636 }
637 
638 /* NB: Modeled after ath10k_ce_completed_send_next */
639 int ath10k_ce_cancel_send_next(struct ath10k_ce_pipe *ce_state,
640 			       void **per_transfer_contextp,
641 			       u32 *bufferp,
642 			       unsigned int *nbytesp,
643 			       unsigned int *transfer_idp)
644 {
645 	struct ath10k_ce_ring *src_ring;
646 	unsigned int nentries_mask;
647 	unsigned int sw_index;
648 	unsigned int write_index;
649 	int ret;
650 	struct ath10k *ar;
651 	struct ath10k_pci *ar_pci;
652 
653 	src_ring = ce_state->src_ring;
654 
655 	if (!src_ring)
656 		return -EIO;
657 
658 	ar = ce_state->ar;
659 	ar_pci = ath10k_pci_priv(ar);
660 
661 	spin_lock_bh(&ar_pci->ce_lock);
662 
663 	nentries_mask = src_ring->nentries_mask;
664 	sw_index = src_ring->sw_index;
665 	write_index = src_ring->write_index;
666 
667 	if (write_index != sw_index) {
668 		struct ce_desc *base = src_ring->base_addr_owner_space;
669 		struct ce_desc *desc = CE_SRC_RING_TO_DESC(base, sw_index);
670 
671 		/* Return data from completed source descriptor */
672 		*bufferp = __le32_to_cpu(desc->addr);
673 		*nbytesp = __le16_to_cpu(desc->nbytes);
674 		*transfer_idp = MS(__le16_to_cpu(desc->flags),
675 						CE_DESC_FLAGS_META_DATA);
676 
677 		if (per_transfer_contextp)
678 			*per_transfer_contextp =
679 				src_ring->per_transfer_context[sw_index];
680 
681 		/* sanity */
682 		src_ring->per_transfer_context[sw_index] = NULL;
683 
684 		/* Update sw_index */
685 		sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
686 		src_ring->sw_index = sw_index;
687 		ret = 0;
688 	} else {
689 		ret = -EIO;
690 	}
691 
692 	spin_unlock_bh(&ar_pci->ce_lock);
693 
694 	return ret;
695 }
696 
697 int ath10k_ce_completed_send_next(struct ath10k_ce_pipe *ce_state,
698 				  void **per_transfer_contextp,
699 				  u32 *bufferp,
700 				  unsigned int *nbytesp,
701 				  unsigned int *transfer_idp)
702 {
703 	struct ath10k *ar = ce_state->ar;
704 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
705 	int ret;
706 
707 	spin_lock_bh(&ar_pci->ce_lock);
708 	ret = ath10k_ce_completed_send_next_nolock(ce_state,
709 						   per_transfer_contextp,
710 						   bufferp, nbytesp,
711 						   transfer_idp);
712 	spin_unlock_bh(&ar_pci->ce_lock);
713 
714 	return ret;
715 }
716 
717 /*
718  * Guts of interrupt handler for per-engine interrupts on a particular CE.
719  *
720  * Invokes registered callbacks for recv_complete,
721  * send_complete, and watermarks.
722  */
723 void ath10k_ce_per_engine_service(struct ath10k *ar, unsigned int ce_id)
724 {
725 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
726 	struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
727 	u32 ctrl_addr = ce_state->ctrl_addr;
728 
729 	spin_lock_bh(&ar_pci->ce_lock);
730 
731 	/* Clear the copy-complete interrupts that will be handled here. */
732 	ath10k_ce_engine_int_status_clear(ar, ctrl_addr,
733 					  HOST_IS_COPY_COMPLETE_MASK);
734 
735 	spin_unlock_bh(&ar_pci->ce_lock);
736 
737 	if (ce_state->recv_cb)
738 		ce_state->recv_cb(ce_state);
739 
740 	if (ce_state->send_cb)
741 		ce_state->send_cb(ce_state);
742 
743 	spin_lock_bh(&ar_pci->ce_lock);
744 
745 	/*
746 	 * Misc CE interrupts are not being handled, but still need
747 	 * to be cleared.
748 	 */
749 	ath10k_ce_engine_int_status_clear(ar, ctrl_addr, CE_WATERMARK_MASK);
750 
751 	spin_unlock_bh(&ar_pci->ce_lock);
752 }
753 
754 /*
755  * Handler for per-engine interrupts on ALL active CEs.
756  * This is used in cases where the system is sharing a
757  * single interrput for all CEs
758  */
759 
760 void ath10k_ce_per_engine_service_any(struct ath10k *ar)
761 {
762 	int ce_id;
763 	u32 intr_summary;
764 
765 	intr_summary = CE_INTERRUPT_SUMMARY(ar);
766 
767 	for (ce_id = 0; intr_summary && (ce_id < CE_COUNT); ce_id++) {
768 		if (intr_summary & (1 << ce_id))
769 			intr_summary &= ~(1 << ce_id);
770 		else
771 			/* no intr pending on this CE */
772 			continue;
773 
774 		ath10k_ce_per_engine_service(ar, ce_id);
775 	}
776 }
777 
778 /*
779  * Adjust interrupts for the copy complete handler.
780  * If it's needed for either send or recv, then unmask
781  * this interrupt; otherwise, mask it.
782  *
783  * Called with ce_lock held.
784  */
785 static void ath10k_ce_per_engine_handler_adjust(struct ath10k_ce_pipe *ce_state)
786 {
787 	u32 ctrl_addr = ce_state->ctrl_addr;
788 	struct ath10k *ar = ce_state->ar;
789 	bool disable_copy_compl_intr = ce_state->attr_flags & CE_ATTR_DIS_INTR;
790 
791 	if ((!disable_copy_compl_intr) &&
792 	    (ce_state->send_cb || ce_state->recv_cb))
793 		ath10k_ce_copy_complete_inter_enable(ar, ctrl_addr);
794 	else
795 		ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
796 
797 	ath10k_ce_watermark_intr_disable(ar, ctrl_addr);
798 }
799 
800 int ath10k_ce_disable_interrupts(struct ath10k *ar)
801 {
802 	int ce_id;
803 
804 	for (ce_id = 0; ce_id < CE_COUNT; ce_id++) {
805 		u32 ctrl_addr = ath10k_ce_base_address(ce_id);
806 
807 		ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
808 		ath10k_ce_error_intr_disable(ar, ctrl_addr);
809 		ath10k_ce_watermark_intr_disable(ar, ctrl_addr);
810 	}
811 
812 	return 0;
813 }
814 
815 void ath10k_ce_enable_interrupts(struct ath10k *ar)
816 {
817 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
818 	int ce_id;
819 
820 	for (ce_id = 0; ce_id < CE_COUNT; ce_id++)
821 		ath10k_ce_per_engine_handler_adjust(&ar_pci->ce_states[ce_id]);
822 }
823 
824 static int ath10k_ce_init_src_ring(struct ath10k *ar,
825 				   unsigned int ce_id,
826 				   const struct ce_attr *attr)
827 {
828 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
829 	struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
830 	struct ath10k_ce_ring *src_ring = ce_state->src_ring;
831 	u32 nentries, ctrl_addr = ath10k_ce_base_address(ce_id);
832 
833 	nentries = roundup_pow_of_two(attr->src_nentries);
834 
835 	memset(src_ring->per_transfer_context, 0,
836 	       nentries * sizeof(*src_ring->per_transfer_context));
837 
838 	src_ring->sw_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
839 	src_ring->sw_index &= src_ring->nentries_mask;
840 	src_ring->hw_index = src_ring->sw_index;
841 
842 	src_ring->write_index =
843 		ath10k_ce_src_ring_write_index_get(ar, ctrl_addr);
844 	src_ring->write_index &= src_ring->nentries_mask;
845 
846 	ath10k_ce_src_ring_base_addr_set(ar, ctrl_addr,
847 					 src_ring->base_addr_ce_space);
848 	ath10k_ce_src_ring_size_set(ar, ctrl_addr, nentries);
849 	ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, attr->src_sz_max);
850 	ath10k_ce_src_ring_byte_swap_set(ar, ctrl_addr, 0);
851 	ath10k_ce_src_ring_lowmark_set(ar, ctrl_addr, 0);
852 	ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, nentries);
853 
854 	ath10k_dbg(ar, ATH10K_DBG_BOOT,
855 		   "boot init ce src ring id %d entries %d base_addr %p\n",
856 		   ce_id, nentries, src_ring->base_addr_owner_space);
857 
858 	return 0;
859 }
860 
861 static int ath10k_ce_init_dest_ring(struct ath10k *ar,
862 				    unsigned int ce_id,
863 				    const struct ce_attr *attr)
864 {
865 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
866 	struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
867 	struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
868 	u32 nentries, ctrl_addr = ath10k_ce_base_address(ce_id);
869 
870 	nentries = roundup_pow_of_two(attr->dest_nentries);
871 
872 	memset(dest_ring->per_transfer_context, 0,
873 	       nentries * sizeof(*dest_ring->per_transfer_context));
874 
875 	dest_ring->sw_index = ath10k_ce_dest_ring_read_index_get(ar, ctrl_addr);
876 	dest_ring->sw_index &= dest_ring->nentries_mask;
877 	dest_ring->write_index =
878 		ath10k_ce_dest_ring_write_index_get(ar, ctrl_addr);
879 	dest_ring->write_index &= dest_ring->nentries_mask;
880 
881 	ath10k_ce_dest_ring_base_addr_set(ar, ctrl_addr,
882 					  dest_ring->base_addr_ce_space);
883 	ath10k_ce_dest_ring_size_set(ar, ctrl_addr, nentries);
884 	ath10k_ce_dest_ring_byte_swap_set(ar, ctrl_addr, 0);
885 	ath10k_ce_dest_ring_lowmark_set(ar, ctrl_addr, 0);
886 	ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, nentries);
887 
888 	ath10k_dbg(ar, ATH10K_DBG_BOOT,
889 		   "boot ce dest ring id %d entries %d base_addr %p\n",
890 		   ce_id, nentries, dest_ring->base_addr_owner_space);
891 
892 	return 0;
893 }
894 
895 static struct ath10k_ce_ring *
896 ath10k_ce_alloc_src_ring(struct ath10k *ar, unsigned int ce_id,
897 			 const struct ce_attr *attr)
898 {
899 	struct ath10k_ce_ring *src_ring;
900 	u32 nentries = attr->src_nentries;
901 	dma_addr_t base_addr;
902 
903 	nentries = roundup_pow_of_two(nentries);
904 
905 	src_ring = kzalloc(sizeof(*src_ring) +
906 			   (nentries *
907 			    sizeof(*src_ring->per_transfer_context)),
908 			   GFP_KERNEL);
909 	if (src_ring == NULL)
910 		return ERR_PTR(-ENOMEM);
911 
912 	src_ring->nentries = nentries;
913 	src_ring->nentries_mask = nentries - 1;
914 
915 	/*
916 	 * Legacy platforms that do not support cache
917 	 * coherent DMA are unsupported
918 	 */
919 	src_ring->base_addr_owner_space_unaligned =
920 		dma_alloc_coherent(ar->dev,
921 				   (nentries * sizeof(struct ce_desc) +
922 				    CE_DESC_RING_ALIGN),
923 				   &base_addr, GFP_KERNEL);
924 	if (!src_ring->base_addr_owner_space_unaligned) {
925 		kfree(src_ring);
926 		return ERR_PTR(-ENOMEM);
927 	}
928 
929 	src_ring->base_addr_ce_space_unaligned = base_addr;
930 
931 	src_ring->base_addr_owner_space = PTR_ALIGN(
932 			src_ring->base_addr_owner_space_unaligned,
933 			CE_DESC_RING_ALIGN);
934 	src_ring->base_addr_ce_space = ALIGN(
935 			src_ring->base_addr_ce_space_unaligned,
936 			CE_DESC_RING_ALIGN);
937 
938 	/*
939 	 * Also allocate a shadow src ring in regular
940 	 * mem to use for faster access.
941 	 */
942 	src_ring->shadow_base_unaligned =
943 		kmalloc((nentries * sizeof(struct ce_desc) +
944 			 CE_DESC_RING_ALIGN), GFP_KERNEL);
945 	if (!src_ring->shadow_base_unaligned) {
946 		dma_free_coherent(ar->dev,
947 				  (nentries * sizeof(struct ce_desc) +
948 				   CE_DESC_RING_ALIGN),
949 				  src_ring->base_addr_owner_space,
950 				  src_ring->base_addr_ce_space);
951 		kfree(src_ring);
952 		return ERR_PTR(-ENOMEM);
953 	}
954 
955 	src_ring->shadow_base = PTR_ALIGN(
956 			src_ring->shadow_base_unaligned,
957 			CE_DESC_RING_ALIGN);
958 
959 	return src_ring;
960 }
961 
962 static struct ath10k_ce_ring *
963 ath10k_ce_alloc_dest_ring(struct ath10k *ar, unsigned int ce_id,
964 			  const struct ce_attr *attr)
965 {
966 	struct ath10k_ce_ring *dest_ring;
967 	u32 nentries;
968 	dma_addr_t base_addr;
969 
970 	nentries = roundup_pow_of_two(attr->dest_nentries);
971 
972 	dest_ring = kzalloc(sizeof(*dest_ring) +
973 			    (nentries *
974 			     sizeof(*dest_ring->per_transfer_context)),
975 			    GFP_KERNEL);
976 	if (dest_ring == NULL)
977 		return ERR_PTR(-ENOMEM);
978 
979 	dest_ring->nentries = nentries;
980 	dest_ring->nentries_mask = nentries - 1;
981 
982 	/*
983 	 * Legacy platforms that do not support cache
984 	 * coherent DMA are unsupported
985 	 */
986 	dest_ring->base_addr_owner_space_unaligned =
987 		dma_alloc_coherent(ar->dev,
988 				   (nentries * sizeof(struct ce_desc) +
989 				    CE_DESC_RING_ALIGN),
990 				   &base_addr, GFP_KERNEL);
991 	if (!dest_ring->base_addr_owner_space_unaligned) {
992 		kfree(dest_ring);
993 		return ERR_PTR(-ENOMEM);
994 	}
995 
996 	dest_ring->base_addr_ce_space_unaligned = base_addr;
997 
998 	/*
999 	 * Correctly initialize memory to 0 to prevent garbage
1000 	 * data crashing system when download firmware
1001 	 */
1002 	memset(dest_ring->base_addr_owner_space_unaligned, 0,
1003 	       nentries * sizeof(struct ce_desc) + CE_DESC_RING_ALIGN);
1004 
1005 	dest_ring->base_addr_owner_space = PTR_ALIGN(
1006 			dest_ring->base_addr_owner_space_unaligned,
1007 			CE_DESC_RING_ALIGN);
1008 	dest_ring->base_addr_ce_space = ALIGN(
1009 			dest_ring->base_addr_ce_space_unaligned,
1010 			CE_DESC_RING_ALIGN);
1011 
1012 	return dest_ring;
1013 }
1014 
1015 /*
1016  * Initialize a Copy Engine based on caller-supplied attributes.
1017  * This may be called once to initialize both source and destination
1018  * rings or it may be called twice for separate source and destination
1019  * initialization. It may be that only one side or the other is
1020  * initialized by software/firmware.
1021  */
1022 int ath10k_ce_init_pipe(struct ath10k *ar, unsigned int ce_id,
1023 			const struct ce_attr *attr,
1024 			void (*send_cb)(struct ath10k_ce_pipe *),
1025 			void (*recv_cb)(struct ath10k_ce_pipe *))
1026 {
1027 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1028 	struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
1029 	int ret;
1030 
1031 	/*
1032 	 * Make sure there's enough CE ringbuffer entries for HTT TX to avoid
1033 	 * additional TX locking checks.
1034 	 *
1035 	 * For the lack of a better place do the check here.
1036 	 */
1037 	BUILD_BUG_ON(2*TARGET_NUM_MSDU_DESC >
1038 		     (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
1039 	BUILD_BUG_ON(2*TARGET_10X_NUM_MSDU_DESC >
1040 		     (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
1041 
1042 	spin_lock_bh(&ar_pci->ce_lock);
1043 	ce_state->ar = ar;
1044 	ce_state->id = ce_id;
1045 	ce_state->ctrl_addr = ath10k_ce_base_address(ce_id);
1046 	ce_state->attr_flags = attr->flags;
1047 	ce_state->src_sz_max = attr->src_sz_max;
1048 	if (attr->src_nentries)
1049 		ce_state->send_cb = send_cb;
1050 	if (attr->dest_nentries)
1051 		ce_state->recv_cb = recv_cb;
1052 	spin_unlock_bh(&ar_pci->ce_lock);
1053 
1054 	if (attr->src_nentries) {
1055 		ret = ath10k_ce_init_src_ring(ar, ce_id, attr);
1056 		if (ret) {
1057 			ath10k_err(ar, "Failed to initialize CE src ring for ID: %d (%d)\n",
1058 				   ce_id, ret);
1059 			return ret;
1060 		}
1061 	}
1062 
1063 	if (attr->dest_nentries) {
1064 		ret = ath10k_ce_init_dest_ring(ar, ce_id, attr);
1065 		if (ret) {
1066 			ath10k_err(ar, "Failed to initialize CE dest ring for ID: %d (%d)\n",
1067 				   ce_id, ret);
1068 			return ret;
1069 		}
1070 	}
1071 
1072 	return 0;
1073 }
1074 
1075 static void ath10k_ce_deinit_src_ring(struct ath10k *ar, unsigned int ce_id)
1076 {
1077 	u32 ctrl_addr = ath10k_ce_base_address(ce_id);
1078 
1079 	ath10k_ce_src_ring_base_addr_set(ar, ctrl_addr, 0);
1080 	ath10k_ce_src_ring_size_set(ar, ctrl_addr, 0);
1081 	ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, 0);
1082 	ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, 0);
1083 }
1084 
1085 static void ath10k_ce_deinit_dest_ring(struct ath10k *ar, unsigned int ce_id)
1086 {
1087 	u32 ctrl_addr = ath10k_ce_base_address(ce_id);
1088 
1089 	ath10k_ce_dest_ring_base_addr_set(ar, ctrl_addr, 0);
1090 	ath10k_ce_dest_ring_size_set(ar, ctrl_addr, 0);
1091 	ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, 0);
1092 }
1093 
1094 void ath10k_ce_deinit_pipe(struct ath10k *ar, unsigned int ce_id)
1095 {
1096 	ath10k_ce_deinit_src_ring(ar, ce_id);
1097 	ath10k_ce_deinit_dest_ring(ar, ce_id);
1098 }
1099 
1100 int ath10k_ce_alloc_pipe(struct ath10k *ar, int ce_id,
1101 			 const struct ce_attr *attr)
1102 {
1103 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1104 	struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
1105 	int ret;
1106 
1107 	if (attr->src_nentries) {
1108 		ce_state->src_ring = ath10k_ce_alloc_src_ring(ar, ce_id, attr);
1109 		if (IS_ERR(ce_state->src_ring)) {
1110 			ret = PTR_ERR(ce_state->src_ring);
1111 			ath10k_err(ar, "failed to allocate copy engine source ring %d: %d\n",
1112 				   ce_id, ret);
1113 			ce_state->src_ring = NULL;
1114 			return ret;
1115 		}
1116 	}
1117 
1118 	if (attr->dest_nentries) {
1119 		ce_state->dest_ring = ath10k_ce_alloc_dest_ring(ar, ce_id,
1120 								attr);
1121 		if (IS_ERR(ce_state->dest_ring)) {
1122 			ret = PTR_ERR(ce_state->dest_ring);
1123 			ath10k_err(ar, "failed to allocate copy engine destination ring %d: %d\n",
1124 				   ce_id, ret);
1125 			ce_state->dest_ring = NULL;
1126 			return ret;
1127 		}
1128 	}
1129 
1130 	return 0;
1131 }
1132 
1133 void ath10k_ce_free_pipe(struct ath10k *ar, int ce_id)
1134 {
1135 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1136 	struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
1137 
1138 	if (ce_state->src_ring) {
1139 		kfree(ce_state->src_ring->shadow_base_unaligned);
1140 		dma_free_coherent(ar->dev,
1141 				  (ce_state->src_ring->nentries *
1142 				   sizeof(struct ce_desc) +
1143 				   CE_DESC_RING_ALIGN),
1144 				  ce_state->src_ring->base_addr_owner_space,
1145 				  ce_state->src_ring->base_addr_ce_space);
1146 		kfree(ce_state->src_ring);
1147 	}
1148 
1149 	if (ce_state->dest_ring) {
1150 		dma_free_coherent(ar->dev,
1151 				  (ce_state->dest_ring->nentries *
1152 				   sizeof(struct ce_desc) +
1153 				   CE_DESC_RING_ALIGN),
1154 				  ce_state->dest_ring->base_addr_owner_space,
1155 				  ce_state->dest_ring->base_addr_ce_space);
1156 		kfree(ce_state->dest_ring);
1157 	}
1158 
1159 	ce_state->src_ring = NULL;
1160 	ce_state->dest_ring = NULL;
1161 }
1162