xref: /openbmc/linux/drivers/net/wireguard/send.c (revision 06ff634c0dae791c17ceeeb60c74e14470d76898)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2015-2019 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
4  */
5 
6 #include "queueing.h"
7 #include "timers.h"
8 #include "device.h"
9 #include "peer.h"
10 #include "socket.h"
11 #include "messages.h"
12 #include "cookie.h"
13 
14 #include <linux/uio.h>
15 #include <linux/inetdevice.h>
16 #include <linux/socket.h>
17 #include <net/ip_tunnels.h>
18 #include <net/udp.h>
19 #include <net/sock.h>
20 
21 static void wg_packet_send_handshake_initiation(struct wg_peer *peer)
22 {
23 	struct message_handshake_initiation packet;
24 
25 	if (!wg_birthdate_has_expired(atomic64_read(&peer->last_sent_handshake),
26 				      REKEY_TIMEOUT))
27 		return; /* This function is rate limited. */
28 
29 	atomic64_set(&peer->last_sent_handshake, ktime_get_coarse_boottime_ns());
30 	net_dbg_ratelimited("%s: Sending handshake initiation to peer %llu (%pISpfsc)\n",
31 			    peer->device->dev->name, peer->internal_id,
32 			    &peer->endpoint.addr);
33 
34 	if (wg_noise_handshake_create_initiation(&packet, &peer->handshake)) {
35 		wg_cookie_add_mac_to_packet(&packet, sizeof(packet), peer);
36 		wg_timers_any_authenticated_packet_traversal(peer);
37 		wg_timers_any_authenticated_packet_sent(peer);
38 		atomic64_set(&peer->last_sent_handshake,
39 			     ktime_get_coarse_boottime_ns());
40 		wg_socket_send_buffer_to_peer(peer, &packet, sizeof(packet),
41 					      HANDSHAKE_DSCP);
42 		wg_timers_handshake_initiated(peer);
43 	}
44 }
45 
46 void wg_packet_handshake_send_worker(struct work_struct *work)
47 {
48 	struct wg_peer *peer = container_of(work, struct wg_peer,
49 					    transmit_handshake_work);
50 
51 	wg_packet_send_handshake_initiation(peer);
52 	wg_peer_put(peer);
53 }
54 
55 void wg_packet_send_queued_handshake_initiation(struct wg_peer *peer,
56 						bool is_retry)
57 {
58 	if (!is_retry)
59 		peer->timer_handshake_attempts = 0;
60 
61 	rcu_read_lock_bh();
62 	/* We check last_sent_handshake here in addition to the actual function
63 	 * we're queueing up, so that we don't queue things if not strictly
64 	 * necessary:
65 	 */
66 	if (!wg_birthdate_has_expired(atomic64_read(&peer->last_sent_handshake),
67 				      REKEY_TIMEOUT) ||
68 			unlikely(READ_ONCE(peer->is_dead)))
69 		goto out;
70 
71 	wg_peer_get(peer);
72 	/* Queues up calling packet_send_queued_handshakes(peer), where we do a
73 	 * peer_put(peer) after:
74 	 */
75 	if (!queue_work(peer->device->handshake_send_wq,
76 			&peer->transmit_handshake_work))
77 		/* If the work was already queued, we want to drop the
78 		 * extra reference:
79 		 */
80 		wg_peer_put(peer);
81 out:
82 	rcu_read_unlock_bh();
83 }
84 
85 void wg_packet_send_handshake_response(struct wg_peer *peer)
86 {
87 	struct message_handshake_response packet;
88 
89 	atomic64_set(&peer->last_sent_handshake, ktime_get_coarse_boottime_ns());
90 	net_dbg_ratelimited("%s: Sending handshake response to peer %llu (%pISpfsc)\n",
91 			    peer->device->dev->name, peer->internal_id,
92 			    &peer->endpoint.addr);
93 
94 	if (wg_noise_handshake_create_response(&packet, &peer->handshake)) {
95 		wg_cookie_add_mac_to_packet(&packet, sizeof(packet), peer);
96 		if (wg_noise_handshake_begin_session(&peer->handshake,
97 						     &peer->keypairs)) {
98 			wg_timers_session_derived(peer);
99 			wg_timers_any_authenticated_packet_traversal(peer);
100 			wg_timers_any_authenticated_packet_sent(peer);
101 			atomic64_set(&peer->last_sent_handshake,
102 				     ktime_get_coarse_boottime_ns());
103 			wg_socket_send_buffer_to_peer(peer, &packet,
104 						      sizeof(packet),
105 						      HANDSHAKE_DSCP);
106 		}
107 	}
108 }
109 
110 void wg_packet_send_handshake_cookie(struct wg_device *wg,
111 				     struct sk_buff *initiating_skb,
112 				     __le32 sender_index)
113 {
114 	struct message_handshake_cookie packet;
115 
116 	net_dbg_skb_ratelimited("%s: Sending cookie response for denied handshake message for %pISpfsc\n",
117 				wg->dev->name, initiating_skb);
118 	wg_cookie_message_create(&packet, initiating_skb, sender_index,
119 				 &wg->cookie_checker);
120 	wg_socket_send_buffer_as_reply_to_skb(wg, initiating_skb, &packet,
121 					      sizeof(packet));
122 }
123 
124 static void keep_key_fresh(struct wg_peer *peer)
125 {
126 	struct noise_keypair *keypair;
127 	bool send = false;
128 
129 	rcu_read_lock_bh();
130 	keypair = rcu_dereference_bh(peer->keypairs.current_keypair);
131 	if (likely(keypair && READ_ONCE(keypair->sending.is_valid)) &&
132 	    (unlikely(atomic64_read(&keypair->sending.counter.counter) >
133 		      REKEY_AFTER_MESSAGES) ||
134 	     (keypair->i_am_the_initiator &&
135 	      unlikely(wg_birthdate_has_expired(keypair->sending.birthdate,
136 						REKEY_AFTER_TIME)))))
137 		send = true;
138 	rcu_read_unlock_bh();
139 
140 	if (send)
141 		wg_packet_send_queued_handshake_initiation(peer, false);
142 }
143 
144 static unsigned int calculate_skb_padding(struct sk_buff *skb)
145 {
146 	unsigned int padded_size, last_unit = skb->len;
147 
148 	if (unlikely(!PACKET_CB(skb)->mtu))
149 		return ALIGN(last_unit, MESSAGE_PADDING_MULTIPLE) - last_unit;
150 
151 	/* We do this modulo business with the MTU, just in case the networking
152 	 * layer gives us a packet that's bigger than the MTU. In that case, we
153 	 * wouldn't want the final subtraction to overflow in the case of the
154 	 * padded_size being clamped. Fortunately, that's very rarely the case,
155 	 * so we optimize for that not happening.
156 	 */
157 	if (unlikely(last_unit > PACKET_CB(skb)->mtu))
158 		last_unit %= PACKET_CB(skb)->mtu;
159 
160 	padded_size = min(PACKET_CB(skb)->mtu,
161 			  ALIGN(last_unit, MESSAGE_PADDING_MULTIPLE));
162 	return padded_size - last_unit;
163 }
164 
165 static bool encrypt_packet(struct sk_buff *skb, struct noise_keypair *keypair)
166 {
167 	unsigned int padding_len, plaintext_len, trailer_len;
168 	struct scatterlist sg[MAX_SKB_FRAGS + 8];
169 	struct message_data *header;
170 	struct sk_buff *trailer;
171 	int num_frags;
172 
173 	/* Calculate lengths. */
174 	padding_len = calculate_skb_padding(skb);
175 	trailer_len = padding_len + noise_encrypted_len(0);
176 	plaintext_len = skb->len + padding_len;
177 
178 	/* Expand data section to have room for padding and auth tag. */
179 	num_frags = skb_cow_data(skb, trailer_len, &trailer);
180 	if (unlikely(num_frags < 0 || num_frags > ARRAY_SIZE(sg)))
181 		return false;
182 
183 	/* Set the padding to zeros, and make sure it and the auth tag are part
184 	 * of the skb.
185 	 */
186 	memset(skb_tail_pointer(trailer), 0, padding_len);
187 
188 	/* Expand head section to have room for our header and the network
189 	 * stack's headers.
190 	 */
191 	if (unlikely(skb_cow_head(skb, DATA_PACKET_HEAD_ROOM) < 0))
192 		return false;
193 
194 	/* Finalize checksum calculation for the inner packet, if required. */
195 	if (unlikely(skb->ip_summed == CHECKSUM_PARTIAL &&
196 		     skb_checksum_help(skb)))
197 		return false;
198 
199 	/* Only after checksumming can we safely add on the padding at the end
200 	 * and the header.
201 	 */
202 	skb_set_inner_network_header(skb, 0);
203 	header = (struct message_data *)skb_push(skb, sizeof(*header));
204 	header->header.type = cpu_to_le32(MESSAGE_DATA);
205 	header->key_idx = keypair->remote_index;
206 	header->counter = cpu_to_le64(PACKET_CB(skb)->nonce);
207 	pskb_put(skb, trailer, trailer_len);
208 
209 	/* Now we can encrypt the scattergather segments */
210 	sg_init_table(sg, num_frags);
211 	if (skb_to_sgvec(skb, sg, sizeof(struct message_data),
212 			 noise_encrypted_len(plaintext_len)) <= 0)
213 		return false;
214 	return chacha20poly1305_encrypt_sg_inplace(sg, plaintext_len, NULL, 0,
215 						   PACKET_CB(skb)->nonce,
216 						   keypair->sending.key);
217 }
218 
219 void wg_packet_send_keepalive(struct wg_peer *peer)
220 {
221 	struct sk_buff *skb;
222 
223 	if (skb_queue_empty(&peer->staged_packet_queue)) {
224 		skb = alloc_skb(DATA_PACKET_HEAD_ROOM + MESSAGE_MINIMUM_LENGTH,
225 				GFP_ATOMIC);
226 		if (unlikely(!skb))
227 			return;
228 		skb_reserve(skb, DATA_PACKET_HEAD_ROOM);
229 		skb->dev = peer->device->dev;
230 		PACKET_CB(skb)->mtu = skb->dev->mtu;
231 		skb_queue_tail(&peer->staged_packet_queue, skb);
232 		net_dbg_ratelimited("%s: Sending keepalive packet to peer %llu (%pISpfsc)\n",
233 				    peer->device->dev->name, peer->internal_id,
234 				    &peer->endpoint.addr);
235 	}
236 
237 	wg_packet_send_staged_packets(peer);
238 }
239 
240 static void wg_packet_create_data_done(struct sk_buff *first,
241 				       struct wg_peer *peer)
242 {
243 	struct sk_buff *skb, *next;
244 	bool is_keepalive, data_sent = false;
245 
246 	wg_timers_any_authenticated_packet_traversal(peer);
247 	wg_timers_any_authenticated_packet_sent(peer);
248 	skb_list_walk_safe(first, skb, next) {
249 		is_keepalive = skb->len == message_data_len(0);
250 		if (likely(!wg_socket_send_skb_to_peer(peer, skb,
251 				PACKET_CB(skb)->ds) && !is_keepalive))
252 			data_sent = true;
253 	}
254 
255 	if (likely(data_sent))
256 		wg_timers_data_sent(peer);
257 
258 	keep_key_fresh(peer);
259 }
260 
261 void wg_packet_tx_worker(struct work_struct *work)
262 {
263 	struct crypt_queue *queue = container_of(work, struct crypt_queue,
264 						 work);
265 	struct noise_keypair *keypair;
266 	enum packet_state state;
267 	struct sk_buff *first;
268 	struct wg_peer *peer;
269 
270 	while ((first = __ptr_ring_peek(&queue->ring)) != NULL &&
271 	       (state = atomic_read_acquire(&PACKET_CB(first)->state)) !=
272 		       PACKET_STATE_UNCRYPTED) {
273 		__ptr_ring_discard_one(&queue->ring);
274 		peer = PACKET_PEER(first);
275 		keypair = PACKET_CB(first)->keypair;
276 
277 		if (likely(state == PACKET_STATE_CRYPTED))
278 			wg_packet_create_data_done(first, peer);
279 		else
280 			kfree_skb_list(first);
281 
282 		wg_noise_keypair_put(keypair, false);
283 		wg_peer_put(peer);
284 	}
285 }
286 
287 void wg_packet_encrypt_worker(struct work_struct *work)
288 {
289 	struct crypt_queue *queue = container_of(work, struct multicore_worker,
290 						 work)->ptr;
291 	struct sk_buff *first, *skb, *next;
292 
293 	while ((first = ptr_ring_consume_bh(&queue->ring)) != NULL) {
294 		enum packet_state state = PACKET_STATE_CRYPTED;
295 
296 		skb_list_walk_safe(first, skb, next) {
297 			if (likely(encrypt_packet(skb,
298 					PACKET_CB(first)->keypair))) {
299 				wg_reset_packet(skb);
300 			} else {
301 				state = PACKET_STATE_DEAD;
302 				break;
303 			}
304 		}
305 		wg_queue_enqueue_per_peer(&PACKET_PEER(first)->tx_queue, first,
306 					  state);
307 
308 	}
309 }
310 
311 static void wg_packet_create_data(struct sk_buff *first)
312 {
313 	struct wg_peer *peer = PACKET_PEER(first);
314 	struct wg_device *wg = peer->device;
315 	int ret = -EINVAL;
316 
317 	rcu_read_lock_bh();
318 	if (unlikely(READ_ONCE(peer->is_dead)))
319 		goto err;
320 
321 	ret = wg_queue_enqueue_per_device_and_peer(&wg->encrypt_queue,
322 						   &peer->tx_queue, first,
323 						   wg->packet_crypt_wq,
324 						   &wg->encrypt_queue.last_cpu);
325 	if (unlikely(ret == -EPIPE))
326 		wg_queue_enqueue_per_peer(&peer->tx_queue, first,
327 					  PACKET_STATE_DEAD);
328 err:
329 	rcu_read_unlock_bh();
330 	if (likely(!ret || ret == -EPIPE))
331 		return;
332 	wg_noise_keypair_put(PACKET_CB(first)->keypair, false);
333 	wg_peer_put(peer);
334 	kfree_skb_list(first);
335 }
336 
337 void wg_packet_purge_staged_packets(struct wg_peer *peer)
338 {
339 	spin_lock_bh(&peer->staged_packet_queue.lock);
340 	peer->device->dev->stats.tx_dropped += peer->staged_packet_queue.qlen;
341 	__skb_queue_purge(&peer->staged_packet_queue);
342 	spin_unlock_bh(&peer->staged_packet_queue.lock);
343 }
344 
345 void wg_packet_send_staged_packets(struct wg_peer *peer)
346 {
347 	struct noise_symmetric_key *key;
348 	struct noise_keypair *keypair;
349 	struct sk_buff_head packets;
350 	struct sk_buff *skb;
351 
352 	/* Steal the current queue into our local one. */
353 	__skb_queue_head_init(&packets);
354 	spin_lock_bh(&peer->staged_packet_queue.lock);
355 	skb_queue_splice_init(&peer->staged_packet_queue, &packets);
356 	spin_unlock_bh(&peer->staged_packet_queue.lock);
357 	if (unlikely(skb_queue_empty(&packets)))
358 		return;
359 
360 	/* First we make sure we have a valid reference to a valid key. */
361 	rcu_read_lock_bh();
362 	keypair = wg_noise_keypair_get(
363 		rcu_dereference_bh(peer->keypairs.current_keypair));
364 	rcu_read_unlock_bh();
365 	if (unlikely(!keypair))
366 		goto out_nokey;
367 	key = &keypair->sending;
368 	if (unlikely(!READ_ONCE(key->is_valid)))
369 		goto out_nokey;
370 	if (unlikely(wg_birthdate_has_expired(key->birthdate,
371 					      REJECT_AFTER_TIME)))
372 		goto out_invalid;
373 
374 	/* After we know we have a somewhat valid key, we now try to assign
375 	 * nonces to all of the packets in the queue. If we can't assign nonces
376 	 * for all of them, we just consider it a failure and wait for the next
377 	 * handshake.
378 	 */
379 	skb_queue_walk(&packets, skb) {
380 		/* 0 for no outer TOS: no leak. TODO: at some later point, we
381 		 * might consider using flowi->tos as outer instead.
382 		 */
383 		PACKET_CB(skb)->ds = ip_tunnel_ecn_encap(0, ip_hdr(skb), skb);
384 		PACKET_CB(skb)->nonce =
385 				atomic64_inc_return(&key->counter.counter) - 1;
386 		if (unlikely(PACKET_CB(skb)->nonce >= REJECT_AFTER_MESSAGES))
387 			goto out_invalid;
388 	}
389 
390 	packets.prev->next = NULL;
391 	wg_peer_get(keypair->entry.peer);
392 	PACKET_CB(packets.next)->keypair = keypair;
393 	wg_packet_create_data(packets.next);
394 	return;
395 
396 out_invalid:
397 	WRITE_ONCE(key->is_valid, false);
398 out_nokey:
399 	wg_noise_keypair_put(keypair, false);
400 
401 	/* We orphan the packets if we're waiting on a handshake, so that they
402 	 * don't block a socket's pool.
403 	 */
404 	skb_queue_walk(&packets, skb)
405 		skb_orphan(skb);
406 	/* Then we put them back on the top of the queue. We're not too
407 	 * concerned about accidentally getting things a little out of order if
408 	 * packets are being added really fast, because this queue is for before
409 	 * packets can even be sent and it's small anyway.
410 	 */
411 	spin_lock_bh(&peer->staged_packet_queue.lock);
412 	skb_queue_splice(&packets, &peer->staged_packet_queue);
413 	spin_unlock_bh(&peer->staged_packet_queue.lock);
414 
415 	/* If we're exiting because there's something wrong with the key, it
416 	 * means we should initiate a new handshake.
417 	 */
418 	wg_packet_send_queued_handshake_initiation(peer, false);
419 }
420