1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Intel IXP4xx HSS (synchronous serial port) driver for Linux 4 * 5 * Copyright (C) 2007-2008 Krzysztof Hałasa <khc@pm.waw.pl> 6 */ 7 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10 #include <linux/module.h> 11 #include <linux/bitops.h> 12 #include <linux/cdev.h> 13 #include <linux/dma-mapping.h> 14 #include <linux/dmapool.h> 15 #include <linux/fs.h> 16 #include <linux/hdlc.h> 17 #include <linux/io.h> 18 #include <linux/kernel.h> 19 #include <linux/platform_device.h> 20 #include <linux/platform_data/wan_ixp4xx_hss.h> 21 #include <linux/poll.h> 22 #include <linux/slab.h> 23 #include <linux/soc/ixp4xx/npe.h> 24 #include <linux/soc/ixp4xx/qmgr.h> 25 #include <linux/soc/ixp4xx/cpu.h> 26 27 #define DEBUG_DESC 0 28 #define DEBUG_RX 0 29 #define DEBUG_TX 0 30 #define DEBUG_PKT_BYTES 0 31 #define DEBUG_CLOSE 0 32 33 #define DRV_NAME "ixp4xx_hss" 34 35 #define PKT_EXTRA_FLAGS 0 /* orig 1 */ 36 #define PKT_NUM_PIPES 1 /* 1, 2 or 4 */ 37 #define PKT_PIPE_FIFO_SIZEW 4 /* total 4 dwords per HSS */ 38 39 #define RX_DESCS 16 /* also length of all RX queues */ 40 #define TX_DESCS 16 /* also length of all TX queues */ 41 42 #define POOL_ALLOC_SIZE (sizeof(struct desc) * (RX_DESCS + TX_DESCS)) 43 #define RX_SIZE (HDLC_MAX_MRU + 4) /* NPE needs more space */ 44 #define MAX_CLOSE_WAIT 1000 /* microseconds */ 45 #define HSS_COUNT 2 46 #define FRAME_SIZE 256 /* doesn't matter at this point */ 47 #define FRAME_OFFSET 0 48 #define MAX_CHANNELS (FRAME_SIZE / 8) 49 50 #define NAPI_WEIGHT 16 51 52 /* Queue IDs */ 53 #define HSS0_CHL_RXTRIG_QUEUE 12 /* orig size = 32 dwords */ 54 #define HSS0_PKT_RX_QUEUE 13 /* orig size = 32 dwords */ 55 #define HSS0_PKT_TX0_QUEUE 14 /* orig size = 16 dwords */ 56 #define HSS0_PKT_TX1_QUEUE 15 57 #define HSS0_PKT_TX2_QUEUE 16 58 #define HSS0_PKT_TX3_QUEUE 17 59 #define HSS0_PKT_RXFREE0_QUEUE 18 /* orig size = 16 dwords */ 60 #define HSS0_PKT_RXFREE1_QUEUE 19 61 #define HSS0_PKT_RXFREE2_QUEUE 20 62 #define HSS0_PKT_RXFREE3_QUEUE 21 63 #define HSS0_PKT_TXDONE_QUEUE 22 /* orig size = 64 dwords */ 64 65 #define HSS1_CHL_RXTRIG_QUEUE 10 66 #define HSS1_PKT_RX_QUEUE 0 67 #define HSS1_PKT_TX0_QUEUE 5 68 #define HSS1_PKT_TX1_QUEUE 6 69 #define HSS1_PKT_TX2_QUEUE 7 70 #define HSS1_PKT_TX3_QUEUE 8 71 #define HSS1_PKT_RXFREE0_QUEUE 1 72 #define HSS1_PKT_RXFREE1_QUEUE 2 73 #define HSS1_PKT_RXFREE2_QUEUE 3 74 #define HSS1_PKT_RXFREE3_QUEUE 4 75 #define HSS1_PKT_TXDONE_QUEUE 9 76 77 #define NPE_PKT_MODE_HDLC 0 78 #define NPE_PKT_MODE_RAW 1 79 #define NPE_PKT_MODE_56KMODE 2 80 #define NPE_PKT_MODE_56KENDIAN_MSB 4 81 82 /* PKT_PIPE_HDLC_CFG_WRITE flags */ 83 #define PKT_HDLC_IDLE_ONES 0x1 /* default = flags */ 84 #define PKT_HDLC_CRC_32 0x2 /* default = CRC-16 */ 85 #define PKT_HDLC_MSB_ENDIAN 0x4 /* default = LE */ 86 87 /* hss_config, PCRs */ 88 /* Frame sync sampling, default = active low */ 89 #define PCR_FRM_SYNC_ACTIVE_HIGH 0x40000000 90 #define PCR_FRM_SYNC_FALLINGEDGE 0x80000000 91 #define PCR_FRM_SYNC_RISINGEDGE 0xC0000000 92 93 /* Frame sync pin: input (default) or output generated off a given clk edge */ 94 #define PCR_FRM_SYNC_OUTPUT_FALLING 0x20000000 95 #define PCR_FRM_SYNC_OUTPUT_RISING 0x30000000 96 97 /* Frame and data clock sampling on edge, default = falling */ 98 #define PCR_FCLK_EDGE_RISING 0x08000000 99 #define PCR_DCLK_EDGE_RISING 0x04000000 100 101 /* Clock direction, default = input */ 102 #define PCR_SYNC_CLK_DIR_OUTPUT 0x02000000 103 104 /* Generate/Receive frame pulses, default = enabled */ 105 #define PCR_FRM_PULSE_DISABLED 0x01000000 106 107 /* Data rate is full (default) or half the configured clk speed */ 108 #define PCR_HALF_CLK_RATE 0x00200000 109 110 /* Invert data between NPE and HSS FIFOs? (default = no) */ 111 #define PCR_DATA_POLARITY_INVERT 0x00100000 112 113 /* TX/RX endianness, default = LSB */ 114 #define PCR_MSB_ENDIAN 0x00080000 115 116 /* Normal (default) / open drain mode (TX only) */ 117 #define PCR_TX_PINS_OPEN_DRAIN 0x00040000 118 119 /* No framing bit transmitted and expected on RX? (default = framing bit) */ 120 #define PCR_SOF_NO_FBIT 0x00020000 121 122 /* Drive data pins? */ 123 #define PCR_TX_DATA_ENABLE 0x00010000 124 125 /* Voice 56k type: drive the data pins low (default), high, high Z */ 126 #define PCR_TX_V56K_HIGH 0x00002000 127 #define PCR_TX_V56K_HIGH_IMP 0x00004000 128 129 /* Unassigned type: drive the data pins low (default), high, high Z */ 130 #define PCR_TX_UNASS_HIGH 0x00000800 131 #define PCR_TX_UNASS_HIGH_IMP 0x00001000 132 133 /* T1 @ 1.544MHz only: Fbit dictated in FIFO (default) or high Z */ 134 #define PCR_TX_FB_HIGH_IMP 0x00000400 135 136 /* 56k data endiannes - which bit unused: high (default) or low */ 137 #define PCR_TX_56KE_BIT_0_UNUSED 0x00000200 138 139 /* 56k data transmission type: 32/8 bit data (default) or 56K data */ 140 #define PCR_TX_56KS_56K_DATA 0x00000100 141 142 /* hss_config, cCR */ 143 /* Number of packetized clients, default = 1 */ 144 #define CCR_NPE_HFIFO_2_HDLC 0x04000000 145 #define CCR_NPE_HFIFO_3_OR_4HDLC 0x08000000 146 147 /* default = no loopback */ 148 #define CCR_LOOPBACK 0x02000000 149 150 /* HSS number, default = 0 (first) */ 151 #define CCR_SECOND_HSS 0x01000000 152 153 /* hss_config, clkCR: main:10, num:10, denom:12 */ 154 #define CLK42X_SPEED_EXP ((0x3FF << 22) | (2 << 12) | 15) /*65 KHz*/ 155 156 #define CLK42X_SPEED_512KHZ ((130 << 22) | (2 << 12) | 15) 157 #define CLK42X_SPEED_1536KHZ ((43 << 22) | (18 << 12) | 47) 158 #define CLK42X_SPEED_1544KHZ ((43 << 22) | (33 << 12) | 192) 159 #define CLK42X_SPEED_2048KHZ ((32 << 22) | (34 << 12) | 63) 160 #define CLK42X_SPEED_4096KHZ ((16 << 22) | (34 << 12) | 127) 161 #define CLK42X_SPEED_8192KHZ ((8 << 22) | (34 << 12) | 255) 162 163 #define CLK46X_SPEED_512KHZ ((130 << 22) | (24 << 12) | 127) 164 #define CLK46X_SPEED_1536KHZ ((43 << 22) | (152 << 12) | 383) 165 #define CLK46X_SPEED_1544KHZ ((43 << 22) | (66 << 12) | 385) 166 #define CLK46X_SPEED_2048KHZ ((32 << 22) | (280 << 12) | 511) 167 #define CLK46X_SPEED_4096KHZ ((16 << 22) | (280 << 12) | 1023) 168 #define CLK46X_SPEED_8192KHZ ((8 << 22) | (280 << 12) | 2047) 169 170 /* HSS_CONFIG_CLOCK_CR register consists of 3 parts: 171 * A (10 bits), B (10 bits) and C (12 bits). 172 * IXP42x HSS clock generator operation (verified with an oscilloscope): 173 * Each clock bit takes 7.5 ns (1 / 133.xx MHz). 174 * The clock sequence consists of (C - B) states of 0s and 1s, each state is 175 * A bits wide. It's followed by (B + 1) states of 0s and 1s, each state is 176 * (A + 1) bits wide. 177 * 178 * The resulting average clock frequency (assuming 33.333 MHz oscillator) is: 179 * freq = 66.666 MHz / (A + (B + 1) / (C + 1)) 180 * minimum freq = 66.666 MHz / (A + 1) 181 * maximum freq = 66.666 MHz / A 182 * 183 * Example: A = 2, B = 2, C = 7, CLOCK_CR register = 2 << 22 | 2 << 12 | 7 184 * freq = 66.666 MHz / (2 + (2 + 1) / (7 + 1)) = 28.07 MHz (Mb/s). 185 * The clock sequence is: 1100110011 (5 doubles) 000111000 (3 triples). 186 * The sequence takes (C - B) * A + (B + 1) * (A + 1) = 5 * 2 + 3 * 3 bits 187 * = 19 bits (each 7.5 ns long) = 142.5 ns (then the sequence repeats). 188 * The sequence consists of 4 complete clock periods, thus the average 189 * frequency (= clock rate) is 4 / 142.5 ns = 28.07 MHz (Mb/s). 190 * (max specified clock rate for IXP42x HSS is 8.192 Mb/s). 191 */ 192 193 /* hss_config, LUT entries */ 194 #define TDMMAP_UNASSIGNED 0 195 #define TDMMAP_HDLC 1 /* HDLC - packetized */ 196 #define TDMMAP_VOICE56K 2 /* Voice56K - 7-bit channelized */ 197 #define TDMMAP_VOICE64K 3 /* Voice64K - 8-bit channelized */ 198 199 /* offsets into HSS config */ 200 #define HSS_CONFIG_TX_PCR 0x00 /* port configuration registers */ 201 #define HSS_CONFIG_RX_PCR 0x04 202 #define HSS_CONFIG_CORE_CR 0x08 /* loopback control, HSS# */ 203 #define HSS_CONFIG_CLOCK_CR 0x0C /* clock generator control */ 204 #define HSS_CONFIG_TX_FCR 0x10 /* frame configuration registers */ 205 #define HSS_CONFIG_RX_FCR 0x14 206 #define HSS_CONFIG_TX_LUT 0x18 /* channel look-up tables */ 207 #define HSS_CONFIG_RX_LUT 0x38 208 209 /* NPE command codes */ 210 /* writes the ConfigWord value to the location specified by offset */ 211 #define PORT_CONFIG_WRITE 0x40 212 213 /* triggers the NPE to load the contents of the configuration table */ 214 #define PORT_CONFIG_LOAD 0x41 215 216 /* triggers the NPE to return an HssErrorReadResponse message */ 217 #define PORT_ERROR_READ 0x42 218 219 /* triggers the NPE to reset internal status and enable the HssPacketized 220 * operation for the flow specified by pPipe 221 */ 222 #define PKT_PIPE_FLOW_ENABLE 0x50 223 #define PKT_PIPE_FLOW_DISABLE 0x51 224 #define PKT_NUM_PIPES_WRITE 0x52 225 #define PKT_PIPE_FIFO_SIZEW_WRITE 0x53 226 #define PKT_PIPE_HDLC_CFG_WRITE 0x54 227 #define PKT_PIPE_IDLE_PATTERN_WRITE 0x55 228 #define PKT_PIPE_RX_SIZE_WRITE 0x56 229 #define PKT_PIPE_MODE_WRITE 0x57 230 231 /* HDLC packet status values - desc->status */ 232 #define ERR_SHUTDOWN 1 /* stop or shutdown occurrence */ 233 #define ERR_HDLC_ALIGN 2 /* HDLC alignment error */ 234 #define ERR_HDLC_FCS 3 /* HDLC Frame Check Sum error */ 235 #define ERR_RXFREE_Q_EMPTY 4 /* RX-free queue became empty while receiving 236 * this packet (if buf_len < pkt_len) 237 */ 238 #define ERR_HDLC_TOO_LONG 5 /* HDLC frame size too long */ 239 #define ERR_HDLC_ABORT 6 /* abort sequence received */ 240 #define ERR_DISCONNECTING 7 /* disconnect is in progress */ 241 242 #ifdef __ARMEB__ 243 typedef struct sk_buff buffer_t; 244 #define free_buffer dev_kfree_skb 245 #define free_buffer_irq dev_consume_skb_irq 246 #else 247 typedef void buffer_t; 248 #define free_buffer kfree 249 #define free_buffer_irq kfree 250 #endif 251 252 struct port { 253 struct device *dev; 254 struct npe *npe; 255 struct net_device *netdev; 256 struct napi_struct napi; 257 struct hss_plat_info *plat; 258 buffer_t *rx_buff_tab[RX_DESCS], *tx_buff_tab[TX_DESCS]; 259 struct desc *desc_tab; /* coherent */ 260 dma_addr_t desc_tab_phys; 261 unsigned int id; 262 unsigned int clock_type, clock_rate, loopback; 263 unsigned int initialized, carrier; 264 u8 hdlc_cfg; 265 u32 clock_reg; 266 }; 267 268 /* NPE message structure */ 269 struct msg { 270 #ifdef __ARMEB__ 271 u8 cmd, unused, hss_port, index; 272 union { 273 struct { u8 data8a, data8b, data8c, data8d; }; 274 struct { u16 data16a, data16b; }; 275 struct { u32 data32; }; 276 }; 277 #else 278 u8 index, hss_port, unused, cmd; 279 union { 280 struct { u8 data8d, data8c, data8b, data8a; }; 281 struct { u16 data16b, data16a; }; 282 struct { u32 data32; }; 283 }; 284 #endif 285 }; 286 287 /* HDLC packet descriptor */ 288 struct desc { 289 u32 next; /* pointer to next buffer, unused */ 290 291 #ifdef __ARMEB__ 292 u16 buf_len; /* buffer length */ 293 u16 pkt_len; /* packet length */ 294 u32 data; /* pointer to data buffer in RAM */ 295 u8 status; 296 u8 error_count; 297 u16 __reserved; 298 #else 299 u16 pkt_len; /* packet length */ 300 u16 buf_len; /* buffer length */ 301 u32 data; /* pointer to data buffer in RAM */ 302 u16 __reserved; 303 u8 error_count; 304 u8 status; 305 #endif 306 u32 __reserved1[4]; 307 }; 308 309 #define rx_desc_phys(port, n) ((port)->desc_tab_phys + \ 310 (n) * sizeof(struct desc)) 311 #define rx_desc_ptr(port, n) (&(port)->desc_tab[n]) 312 313 #define tx_desc_phys(port, n) ((port)->desc_tab_phys + \ 314 ((n) + RX_DESCS) * sizeof(struct desc)) 315 #define tx_desc_ptr(port, n) (&(port)->desc_tab[(n) + RX_DESCS]) 316 317 /***************************************************************************** 318 * global variables 319 ****************************************************************************/ 320 321 static int ports_open; 322 static struct dma_pool *dma_pool; 323 static DEFINE_SPINLOCK(npe_lock); 324 325 static const struct { 326 int tx, txdone, rx, rxfree; 327 } queue_ids[2] = {{HSS0_PKT_TX0_QUEUE, HSS0_PKT_TXDONE_QUEUE, HSS0_PKT_RX_QUEUE, 328 HSS0_PKT_RXFREE0_QUEUE}, 329 {HSS1_PKT_TX0_QUEUE, HSS1_PKT_TXDONE_QUEUE, HSS1_PKT_RX_QUEUE, 330 HSS1_PKT_RXFREE0_QUEUE}, 331 }; 332 333 /***************************************************************************** 334 * utility functions 335 ****************************************************************************/ 336 337 static inline struct port *dev_to_port(struct net_device *dev) 338 { 339 return dev_to_hdlc(dev)->priv; 340 } 341 342 #ifndef __ARMEB__ 343 static inline void memcpy_swab32(u32 *dest, u32 *src, int cnt) 344 { 345 int i; 346 347 for (i = 0; i < cnt; i++) 348 dest[i] = swab32(src[i]); 349 } 350 #endif 351 352 /***************************************************************************** 353 * HSS access 354 ****************************************************************************/ 355 356 static void hss_npe_send(struct port *port, struct msg *msg, const char *what) 357 { 358 u32 *val = (u32 *)msg; 359 360 if (npe_send_message(port->npe, msg, what)) { 361 pr_crit("HSS-%i: unable to send command [%08X:%08X] to %s\n", 362 port->id, val[0], val[1], npe_name(port->npe)); 363 BUG(); 364 } 365 } 366 367 static void hss_config_set_lut(struct port *port) 368 { 369 struct msg msg; 370 int ch; 371 372 memset(&msg, 0, sizeof(msg)); 373 msg.cmd = PORT_CONFIG_WRITE; 374 msg.hss_port = port->id; 375 376 for (ch = 0; ch < MAX_CHANNELS; ch++) { 377 msg.data32 >>= 2; 378 msg.data32 |= TDMMAP_HDLC << 30; 379 380 if (ch % 16 == 15) { 381 msg.index = HSS_CONFIG_TX_LUT + ((ch / 4) & ~3); 382 hss_npe_send(port, &msg, "HSS_SET_TX_LUT"); 383 384 msg.index += HSS_CONFIG_RX_LUT - HSS_CONFIG_TX_LUT; 385 hss_npe_send(port, &msg, "HSS_SET_RX_LUT"); 386 } 387 } 388 } 389 390 static void hss_config(struct port *port) 391 { 392 struct msg msg; 393 394 memset(&msg, 0, sizeof(msg)); 395 msg.cmd = PORT_CONFIG_WRITE; 396 msg.hss_port = port->id; 397 msg.index = HSS_CONFIG_TX_PCR; 398 msg.data32 = PCR_FRM_PULSE_DISABLED | PCR_MSB_ENDIAN | 399 PCR_TX_DATA_ENABLE | PCR_SOF_NO_FBIT; 400 if (port->clock_type == CLOCK_INT) 401 msg.data32 |= PCR_SYNC_CLK_DIR_OUTPUT; 402 hss_npe_send(port, &msg, "HSS_SET_TX_PCR"); 403 404 msg.index = HSS_CONFIG_RX_PCR; 405 msg.data32 ^= PCR_TX_DATA_ENABLE | PCR_DCLK_EDGE_RISING; 406 hss_npe_send(port, &msg, "HSS_SET_RX_PCR"); 407 408 memset(&msg, 0, sizeof(msg)); 409 msg.cmd = PORT_CONFIG_WRITE; 410 msg.hss_port = port->id; 411 msg.index = HSS_CONFIG_CORE_CR; 412 msg.data32 = (port->loopback ? CCR_LOOPBACK : 0) | 413 (port->id ? CCR_SECOND_HSS : 0); 414 hss_npe_send(port, &msg, "HSS_SET_CORE_CR"); 415 416 memset(&msg, 0, sizeof(msg)); 417 msg.cmd = PORT_CONFIG_WRITE; 418 msg.hss_port = port->id; 419 msg.index = HSS_CONFIG_CLOCK_CR; 420 msg.data32 = port->clock_reg; 421 hss_npe_send(port, &msg, "HSS_SET_CLOCK_CR"); 422 423 memset(&msg, 0, sizeof(msg)); 424 msg.cmd = PORT_CONFIG_WRITE; 425 msg.hss_port = port->id; 426 msg.index = HSS_CONFIG_TX_FCR; 427 msg.data16a = FRAME_OFFSET; 428 msg.data16b = FRAME_SIZE - 1; 429 hss_npe_send(port, &msg, "HSS_SET_TX_FCR"); 430 431 memset(&msg, 0, sizeof(msg)); 432 msg.cmd = PORT_CONFIG_WRITE; 433 msg.hss_port = port->id; 434 msg.index = HSS_CONFIG_RX_FCR; 435 msg.data16a = FRAME_OFFSET; 436 msg.data16b = FRAME_SIZE - 1; 437 hss_npe_send(port, &msg, "HSS_SET_RX_FCR"); 438 439 hss_config_set_lut(port); 440 441 memset(&msg, 0, sizeof(msg)); 442 msg.cmd = PORT_CONFIG_LOAD; 443 msg.hss_port = port->id; 444 hss_npe_send(port, &msg, "HSS_LOAD_CONFIG"); 445 446 if (npe_recv_message(port->npe, &msg, "HSS_LOAD_CONFIG") || 447 /* HSS_LOAD_CONFIG for port #1 returns port_id = #4 */ 448 msg.cmd != PORT_CONFIG_LOAD || msg.data32) { 449 pr_crit("HSS-%i: HSS_LOAD_CONFIG failed\n", port->id); 450 BUG(); 451 } 452 453 /* HDLC may stop working without this - check FIXME */ 454 npe_recv_message(port->npe, &msg, "FLUSH_IT"); 455 } 456 457 static void hss_set_hdlc_cfg(struct port *port) 458 { 459 struct msg msg; 460 461 memset(&msg, 0, sizeof(msg)); 462 msg.cmd = PKT_PIPE_HDLC_CFG_WRITE; 463 msg.hss_port = port->id; 464 msg.data8a = port->hdlc_cfg; /* rx_cfg */ 465 msg.data8b = port->hdlc_cfg | (PKT_EXTRA_FLAGS << 3); /* tx_cfg */ 466 hss_npe_send(port, &msg, "HSS_SET_HDLC_CFG"); 467 } 468 469 static u32 hss_get_status(struct port *port) 470 { 471 struct msg msg; 472 473 memset(&msg, 0, sizeof(msg)); 474 msg.cmd = PORT_ERROR_READ; 475 msg.hss_port = port->id; 476 hss_npe_send(port, &msg, "PORT_ERROR_READ"); 477 if (npe_recv_message(port->npe, &msg, "PORT_ERROR_READ")) { 478 pr_crit("HSS-%i: unable to read HSS status\n", port->id); 479 BUG(); 480 } 481 482 return msg.data32; 483 } 484 485 static void hss_start_hdlc(struct port *port) 486 { 487 struct msg msg; 488 489 memset(&msg, 0, sizeof(msg)); 490 msg.cmd = PKT_PIPE_FLOW_ENABLE; 491 msg.hss_port = port->id; 492 msg.data32 = 0; 493 hss_npe_send(port, &msg, "HSS_ENABLE_PKT_PIPE"); 494 } 495 496 static void hss_stop_hdlc(struct port *port) 497 { 498 struct msg msg; 499 500 memset(&msg, 0, sizeof(msg)); 501 msg.cmd = PKT_PIPE_FLOW_DISABLE; 502 msg.hss_port = port->id; 503 hss_npe_send(port, &msg, "HSS_DISABLE_PKT_PIPE"); 504 hss_get_status(port); /* make sure it's halted */ 505 } 506 507 static int hss_load_firmware(struct port *port) 508 { 509 struct msg msg; 510 int err; 511 512 if (port->initialized) 513 return 0; 514 515 if (!npe_running(port->npe)) { 516 err = npe_load_firmware(port->npe, npe_name(port->npe), 517 port->dev); 518 if (err) 519 return err; 520 } 521 522 /* HDLC mode configuration */ 523 memset(&msg, 0, sizeof(msg)); 524 msg.cmd = PKT_NUM_PIPES_WRITE; 525 msg.hss_port = port->id; 526 msg.data8a = PKT_NUM_PIPES; 527 hss_npe_send(port, &msg, "HSS_SET_PKT_PIPES"); 528 529 msg.cmd = PKT_PIPE_FIFO_SIZEW_WRITE; 530 msg.data8a = PKT_PIPE_FIFO_SIZEW; 531 hss_npe_send(port, &msg, "HSS_SET_PKT_FIFO"); 532 533 msg.cmd = PKT_PIPE_MODE_WRITE; 534 msg.data8a = NPE_PKT_MODE_HDLC; 535 /* msg.data8b = inv_mask */ 536 /* msg.data8c = or_mask */ 537 hss_npe_send(port, &msg, "HSS_SET_PKT_MODE"); 538 539 msg.cmd = PKT_PIPE_RX_SIZE_WRITE; 540 msg.data16a = HDLC_MAX_MRU; /* including CRC */ 541 hss_npe_send(port, &msg, "HSS_SET_PKT_RX_SIZE"); 542 543 msg.cmd = PKT_PIPE_IDLE_PATTERN_WRITE; 544 msg.data32 = 0x7F7F7F7F; /* ??? FIXME */ 545 hss_npe_send(port, &msg, "HSS_SET_PKT_IDLE"); 546 547 port->initialized = 1; 548 return 0; 549 } 550 551 /***************************************************************************** 552 * packetized (HDLC) operation 553 ****************************************************************************/ 554 555 static inline void debug_pkt(struct net_device *dev, const char *func, 556 u8 *data, int len) 557 { 558 #if DEBUG_PKT_BYTES 559 int i; 560 561 printk(KERN_DEBUG "%s: %s(%i)", dev->name, func, len); 562 for (i = 0; i < len; i++) { 563 if (i >= DEBUG_PKT_BYTES) 564 break; 565 printk("%s%02X", !(i % 4) ? " " : "", data[i]); 566 } 567 printk("\n"); 568 #endif 569 } 570 571 static inline void debug_desc(u32 phys, struct desc *desc) 572 { 573 #if DEBUG_DESC 574 printk(KERN_DEBUG "%X: %X %3X %3X %08X %X %X\n", 575 phys, desc->next, desc->buf_len, desc->pkt_len, 576 desc->data, desc->status, desc->error_count); 577 #endif 578 } 579 580 static inline int queue_get_desc(unsigned int queue, struct port *port, 581 int is_tx) 582 { 583 u32 phys, tab_phys, n_desc; 584 struct desc *tab; 585 586 phys = qmgr_get_entry(queue); 587 if (!phys) 588 return -1; 589 590 BUG_ON(phys & 0x1F); 591 tab_phys = is_tx ? tx_desc_phys(port, 0) : rx_desc_phys(port, 0); 592 tab = is_tx ? tx_desc_ptr(port, 0) : rx_desc_ptr(port, 0); 593 n_desc = (phys - tab_phys) / sizeof(struct desc); 594 BUG_ON(n_desc >= (is_tx ? TX_DESCS : RX_DESCS)); 595 debug_desc(phys, &tab[n_desc]); 596 BUG_ON(tab[n_desc].next); 597 return n_desc; 598 } 599 600 static inline void queue_put_desc(unsigned int queue, u32 phys, 601 struct desc *desc) 602 { 603 debug_desc(phys, desc); 604 BUG_ON(phys & 0x1F); 605 qmgr_put_entry(queue, phys); 606 /* Don't check for queue overflow here, we've allocated sufficient 607 * length and queues >= 32 don't support this check anyway. 608 */ 609 } 610 611 static inline void dma_unmap_tx(struct port *port, struct desc *desc) 612 { 613 #ifdef __ARMEB__ 614 dma_unmap_single(&port->netdev->dev, desc->data, 615 desc->buf_len, DMA_TO_DEVICE); 616 #else 617 dma_unmap_single(&port->netdev->dev, desc->data & ~3, 618 ALIGN((desc->data & 3) + desc->buf_len, 4), 619 DMA_TO_DEVICE); 620 #endif 621 } 622 623 static void hss_hdlc_set_carrier(void *pdev, int carrier) 624 { 625 struct net_device *netdev = pdev; 626 struct port *port = dev_to_port(netdev); 627 unsigned long flags; 628 629 spin_lock_irqsave(&npe_lock, flags); 630 port->carrier = carrier; 631 if (!port->loopback) { 632 if (carrier) 633 netif_carrier_on(netdev); 634 else 635 netif_carrier_off(netdev); 636 } 637 spin_unlock_irqrestore(&npe_lock, flags); 638 } 639 640 static void hss_hdlc_rx_irq(void *pdev) 641 { 642 struct net_device *dev = pdev; 643 struct port *port = dev_to_port(dev); 644 645 #if DEBUG_RX 646 printk(KERN_DEBUG "%s: hss_hdlc_rx_irq\n", dev->name); 647 #endif 648 qmgr_disable_irq(queue_ids[port->id].rx); 649 napi_schedule(&port->napi); 650 } 651 652 static int hss_hdlc_poll(struct napi_struct *napi, int budget) 653 { 654 struct port *port = container_of(napi, struct port, napi); 655 struct net_device *dev = port->netdev; 656 unsigned int rxq = queue_ids[port->id].rx; 657 unsigned int rxfreeq = queue_ids[port->id].rxfree; 658 int received = 0; 659 660 #if DEBUG_RX 661 printk(KERN_DEBUG "%s: hss_hdlc_poll\n", dev->name); 662 #endif 663 664 while (received < budget) { 665 struct sk_buff *skb; 666 struct desc *desc; 667 int n; 668 #ifdef __ARMEB__ 669 struct sk_buff *temp; 670 u32 phys; 671 #endif 672 673 n = queue_get_desc(rxq, port, 0); 674 if (n < 0) { 675 #if DEBUG_RX 676 printk(KERN_DEBUG "%s: hss_hdlc_poll" 677 " napi_complete\n", dev->name); 678 #endif 679 napi_complete(napi); 680 qmgr_enable_irq(rxq); 681 if (!qmgr_stat_empty(rxq) && 682 napi_reschedule(napi)) { 683 #if DEBUG_RX 684 printk(KERN_DEBUG "%s: hss_hdlc_poll" 685 " napi_reschedule succeeded\n", 686 dev->name); 687 #endif 688 qmgr_disable_irq(rxq); 689 continue; 690 } 691 #if DEBUG_RX 692 printk(KERN_DEBUG "%s: hss_hdlc_poll all done\n", 693 dev->name); 694 #endif 695 return received; /* all work done */ 696 } 697 698 desc = rx_desc_ptr(port, n); 699 #if 0 /* FIXME - error_count counts modulo 256, perhaps we should use it */ 700 if (desc->error_count) 701 printk(KERN_DEBUG "%s: hss_hdlc_poll status 0x%02X" 702 " errors %u\n", dev->name, desc->status, 703 desc->error_count); 704 #endif 705 skb = NULL; 706 switch (desc->status) { 707 case 0: 708 #ifdef __ARMEB__ 709 skb = netdev_alloc_skb(dev, RX_SIZE); 710 if (skb) { 711 phys = dma_map_single(&dev->dev, skb->data, 712 RX_SIZE, 713 DMA_FROM_DEVICE); 714 if (dma_mapping_error(&dev->dev, phys)) { 715 dev_kfree_skb(skb); 716 skb = NULL; 717 } 718 } 719 #else 720 skb = netdev_alloc_skb(dev, desc->pkt_len); 721 #endif 722 if (!skb) 723 dev->stats.rx_dropped++; 724 break; 725 case ERR_HDLC_ALIGN: 726 case ERR_HDLC_ABORT: 727 dev->stats.rx_frame_errors++; 728 dev->stats.rx_errors++; 729 break; 730 case ERR_HDLC_FCS: 731 dev->stats.rx_crc_errors++; 732 dev->stats.rx_errors++; 733 break; 734 case ERR_HDLC_TOO_LONG: 735 dev->stats.rx_length_errors++; 736 dev->stats.rx_errors++; 737 break; 738 default: /* FIXME - remove printk */ 739 netdev_err(dev, "hss_hdlc_poll: status 0x%02X errors %u\n", 740 desc->status, desc->error_count); 741 dev->stats.rx_errors++; 742 } 743 744 if (!skb) { 745 /* put the desc back on RX-ready queue */ 746 desc->buf_len = RX_SIZE; 747 desc->pkt_len = desc->status = 0; 748 queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc); 749 continue; 750 } 751 752 /* process received frame */ 753 #ifdef __ARMEB__ 754 temp = skb; 755 skb = port->rx_buff_tab[n]; 756 dma_unmap_single(&dev->dev, desc->data, 757 RX_SIZE, DMA_FROM_DEVICE); 758 #else 759 dma_sync_single_for_cpu(&dev->dev, desc->data, 760 RX_SIZE, DMA_FROM_DEVICE); 761 memcpy_swab32((u32 *)skb->data, (u32 *)port->rx_buff_tab[n], 762 ALIGN(desc->pkt_len, 4) / 4); 763 #endif 764 skb_put(skb, desc->pkt_len); 765 766 debug_pkt(dev, "hss_hdlc_poll", skb->data, skb->len); 767 768 skb->protocol = hdlc_type_trans(skb, dev); 769 dev->stats.rx_packets++; 770 dev->stats.rx_bytes += skb->len; 771 netif_receive_skb(skb); 772 773 /* put the new buffer on RX-free queue */ 774 #ifdef __ARMEB__ 775 port->rx_buff_tab[n] = temp; 776 desc->data = phys; 777 #endif 778 desc->buf_len = RX_SIZE; 779 desc->pkt_len = 0; 780 queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc); 781 received++; 782 } 783 #if DEBUG_RX 784 printk(KERN_DEBUG "hss_hdlc_poll: end, not all work done\n"); 785 #endif 786 return received; /* not all work done */ 787 } 788 789 static void hss_hdlc_txdone_irq(void *pdev) 790 { 791 struct net_device *dev = pdev; 792 struct port *port = dev_to_port(dev); 793 int n_desc; 794 795 #if DEBUG_TX 796 printk(KERN_DEBUG DRV_NAME ": hss_hdlc_txdone_irq\n"); 797 #endif 798 while ((n_desc = queue_get_desc(queue_ids[port->id].txdone, 799 port, 1)) >= 0) { 800 struct desc *desc; 801 int start; 802 803 desc = tx_desc_ptr(port, n_desc); 804 805 dev->stats.tx_packets++; 806 dev->stats.tx_bytes += desc->pkt_len; 807 808 dma_unmap_tx(port, desc); 809 #if DEBUG_TX 810 printk(KERN_DEBUG "%s: hss_hdlc_txdone_irq free %p\n", 811 dev->name, port->tx_buff_tab[n_desc]); 812 #endif 813 free_buffer_irq(port->tx_buff_tab[n_desc]); 814 port->tx_buff_tab[n_desc] = NULL; 815 816 start = qmgr_stat_below_low_watermark(port->plat->txreadyq); 817 queue_put_desc(port->plat->txreadyq, 818 tx_desc_phys(port, n_desc), desc); 819 if (start) { /* TX-ready queue was empty */ 820 #if DEBUG_TX 821 printk(KERN_DEBUG "%s: hss_hdlc_txdone_irq xmit" 822 " ready\n", dev->name); 823 #endif 824 netif_wake_queue(dev); 825 } 826 } 827 } 828 829 static int hss_hdlc_xmit(struct sk_buff *skb, struct net_device *dev) 830 { 831 struct port *port = dev_to_port(dev); 832 unsigned int txreadyq = port->plat->txreadyq; 833 int len, offset, bytes, n; 834 void *mem; 835 u32 phys; 836 struct desc *desc; 837 838 #if DEBUG_TX 839 printk(KERN_DEBUG "%s: hss_hdlc_xmit\n", dev->name); 840 #endif 841 842 if (unlikely(skb->len > HDLC_MAX_MRU)) { 843 dev_kfree_skb(skb); 844 dev->stats.tx_errors++; 845 return NETDEV_TX_OK; 846 } 847 848 debug_pkt(dev, "hss_hdlc_xmit", skb->data, skb->len); 849 850 len = skb->len; 851 #ifdef __ARMEB__ 852 offset = 0; /* no need to keep alignment */ 853 bytes = len; 854 mem = skb->data; 855 #else 856 offset = (int)skb->data & 3; /* keep 32-bit alignment */ 857 bytes = ALIGN(offset + len, 4); 858 mem = kmalloc(bytes, GFP_ATOMIC); 859 if (!mem) { 860 dev_kfree_skb(skb); 861 dev->stats.tx_dropped++; 862 return NETDEV_TX_OK; 863 } 864 memcpy_swab32(mem, (u32 *)((uintptr_t)skb->data & ~3), bytes / 4); 865 dev_kfree_skb(skb); 866 #endif 867 868 phys = dma_map_single(&dev->dev, mem, bytes, DMA_TO_DEVICE); 869 if (dma_mapping_error(&dev->dev, phys)) { 870 #ifdef __ARMEB__ 871 dev_kfree_skb(skb); 872 #else 873 kfree(mem); 874 #endif 875 dev->stats.tx_dropped++; 876 return NETDEV_TX_OK; 877 } 878 879 n = queue_get_desc(txreadyq, port, 1); 880 BUG_ON(n < 0); 881 desc = tx_desc_ptr(port, n); 882 883 #ifdef __ARMEB__ 884 port->tx_buff_tab[n] = skb; 885 #else 886 port->tx_buff_tab[n] = mem; 887 #endif 888 desc->data = phys + offset; 889 desc->buf_len = desc->pkt_len = len; 890 891 wmb(); 892 queue_put_desc(queue_ids[port->id].tx, tx_desc_phys(port, n), desc); 893 894 if (qmgr_stat_below_low_watermark(txreadyq)) { /* empty */ 895 #if DEBUG_TX 896 printk(KERN_DEBUG "%s: hss_hdlc_xmit queue full\n", dev->name); 897 #endif 898 netif_stop_queue(dev); 899 /* we could miss TX ready interrupt */ 900 if (!qmgr_stat_below_low_watermark(txreadyq)) { 901 #if DEBUG_TX 902 printk(KERN_DEBUG "%s: hss_hdlc_xmit ready again\n", 903 dev->name); 904 #endif 905 netif_wake_queue(dev); 906 } 907 } 908 909 #if DEBUG_TX 910 printk(KERN_DEBUG "%s: hss_hdlc_xmit end\n", dev->name); 911 #endif 912 return NETDEV_TX_OK; 913 } 914 915 static int request_hdlc_queues(struct port *port) 916 { 917 int err; 918 919 err = qmgr_request_queue(queue_ids[port->id].rxfree, RX_DESCS, 0, 0, 920 "%s:RX-free", port->netdev->name); 921 if (err) 922 return err; 923 924 err = qmgr_request_queue(queue_ids[port->id].rx, RX_DESCS, 0, 0, 925 "%s:RX", port->netdev->name); 926 if (err) 927 goto rel_rxfree; 928 929 err = qmgr_request_queue(queue_ids[port->id].tx, TX_DESCS, 0, 0, 930 "%s:TX", port->netdev->name); 931 if (err) 932 goto rel_rx; 933 934 err = qmgr_request_queue(port->plat->txreadyq, TX_DESCS, 0, 0, 935 "%s:TX-ready", port->netdev->name); 936 if (err) 937 goto rel_tx; 938 939 err = qmgr_request_queue(queue_ids[port->id].txdone, TX_DESCS, 0, 0, 940 "%s:TX-done", port->netdev->name); 941 if (err) 942 goto rel_txready; 943 return 0; 944 945 rel_txready: 946 qmgr_release_queue(port->plat->txreadyq); 947 rel_tx: 948 qmgr_release_queue(queue_ids[port->id].tx); 949 rel_rx: 950 qmgr_release_queue(queue_ids[port->id].rx); 951 rel_rxfree: 952 qmgr_release_queue(queue_ids[port->id].rxfree); 953 printk(KERN_DEBUG "%s: unable to request hardware queues\n", 954 port->netdev->name); 955 return err; 956 } 957 958 static void release_hdlc_queues(struct port *port) 959 { 960 qmgr_release_queue(queue_ids[port->id].rxfree); 961 qmgr_release_queue(queue_ids[port->id].rx); 962 qmgr_release_queue(queue_ids[port->id].txdone); 963 qmgr_release_queue(queue_ids[port->id].tx); 964 qmgr_release_queue(port->plat->txreadyq); 965 } 966 967 static int init_hdlc_queues(struct port *port) 968 { 969 int i; 970 971 if (!ports_open) { 972 dma_pool = dma_pool_create(DRV_NAME, &port->netdev->dev, 973 POOL_ALLOC_SIZE, 32, 0); 974 if (!dma_pool) 975 return -ENOMEM; 976 } 977 978 port->desc_tab = dma_pool_zalloc(dma_pool, GFP_KERNEL, 979 &port->desc_tab_phys); 980 if (!port->desc_tab) 981 return -ENOMEM; 982 memset(port->rx_buff_tab, 0, sizeof(port->rx_buff_tab)); /* tables */ 983 memset(port->tx_buff_tab, 0, sizeof(port->tx_buff_tab)); 984 985 /* Setup RX buffers */ 986 for (i = 0; i < RX_DESCS; i++) { 987 struct desc *desc = rx_desc_ptr(port, i); 988 buffer_t *buff; 989 void *data; 990 #ifdef __ARMEB__ 991 buff = netdev_alloc_skb(port->netdev, RX_SIZE); 992 if (!buff) 993 return -ENOMEM; 994 data = buff->data; 995 #else 996 buff = kmalloc(RX_SIZE, GFP_KERNEL); 997 if (!buff) 998 return -ENOMEM; 999 data = buff; 1000 #endif 1001 desc->buf_len = RX_SIZE; 1002 desc->data = dma_map_single(&port->netdev->dev, data, 1003 RX_SIZE, DMA_FROM_DEVICE); 1004 if (dma_mapping_error(&port->netdev->dev, desc->data)) { 1005 free_buffer(buff); 1006 return -EIO; 1007 } 1008 port->rx_buff_tab[i] = buff; 1009 } 1010 1011 return 0; 1012 } 1013 1014 static void destroy_hdlc_queues(struct port *port) 1015 { 1016 int i; 1017 1018 if (port->desc_tab) { 1019 for (i = 0; i < RX_DESCS; i++) { 1020 struct desc *desc = rx_desc_ptr(port, i); 1021 buffer_t *buff = port->rx_buff_tab[i]; 1022 1023 if (buff) { 1024 dma_unmap_single(&port->netdev->dev, 1025 desc->data, RX_SIZE, 1026 DMA_FROM_DEVICE); 1027 free_buffer(buff); 1028 } 1029 } 1030 for (i = 0; i < TX_DESCS; i++) { 1031 struct desc *desc = tx_desc_ptr(port, i); 1032 buffer_t *buff = port->tx_buff_tab[i]; 1033 1034 if (buff) { 1035 dma_unmap_tx(port, desc); 1036 free_buffer(buff); 1037 } 1038 } 1039 dma_pool_free(dma_pool, port->desc_tab, port->desc_tab_phys); 1040 port->desc_tab = NULL; 1041 } 1042 1043 if (!ports_open && dma_pool) { 1044 dma_pool_destroy(dma_pool); 1045 dma_pool = NULL; 1046 } 1047 } 1048 1049 static int hss_hdlc_open(struct net_device *dev) 1050 { 1051 struct port *port = dev_to_port(dev); 1052 unsigned long flags; 1053 int i, err = 0; 1054 1055 err = hdlc_open(dev); 1056 if (err) 1057 return err; 1058 1059 err = hss_load_firmware(port); 1060 if (err) 1061 goto err_hdlc_close; 1062 1063 err = request_hdlc_queues(port); 1064 if (err) 1065 goto err_hdlc_close; 1066 1067 err = init_hdlc_queues(port); 1068 if (err) 1069 goto err_destroy_queues; 1070 1071 spin_lock_irqsave(&npe_lock, flags); 1072 if (port->plat->open) { 1073 err = port->plat->open(port->id, dev, hss_hdlc_set_carrier); 1074 if (err) 1075 goto err_unlock; 1076 } 1077 1078 spin_unlock_irqrestore(&npe_lock, flags); 1079 1080 /* Populate queues with buffers, no failure after this point */ 1081 for (i = 0; i < TX_DESCS; i++) 1082 queue_put_desc(port->plat->txreadyq, 1083 tx_desc_phys(port, i), tx_desc_ptr(port, i)); 1084 1085 for (i = 0; i < RX_DESCS; i++) 1086 queue_put_desc(queue_ids[port->id].rxfree, 1087 rx_desc_phys(port, i), rx_desc_ptr(port, i)); 1088 1089 napi_enable(&port->napi); 1090 netif_start_queue(dev); 1091 1092 qmgr_set_irq(queue_ids[port->id].rx, QUEUE_IRQ_SRC_NOT_EMPTY, 1093 hss_hdlc_rx_irq, dev); 1094 1095 qmgr_set_irq(queue_ids[port->id].txdone, QUEUE_IRQ_SRC_NOT_EMPTY, 1096 hss_hdlc_txdone_irq, dev); 1097 qmgr_enable_irq(queue_ids[port->id].txdone); 1098 1099 ports_open++; 1100 1101 hss_set_hdlc_cfg(port); 1102 hss_config(port); 1103 1104 hss_start_hdlc(port); 1105 1106 /* we may already have RX data, enables IRQ */ 1107 napi_schedule(&port->napi); 1108 return 0; 1109 1110 err_unlock: 1111 spin_unlock_irqrestore(&npe_lock, flags); 1112 err_destroy_queues: 1113 destroy_hdlc_queues(port); 1114 release_hdlc_queues(port); 1115 err_hdlc_close: 1116 hdlc_close(dev); 1117 return err; 1118 } 1119 1120 static int hss_hdlc_close(struct net_device *dev) 1121 { 1122 struct port *port = dev_to_port(dev); 1123 unsigned long flags; 1124 int i, buffs = RX_DESCS; /* allocated RX buffers */ 1125 1126 spin_lock_irqsave(&npe_lock, flags); 1127 ports_open--; 1128 qmgr_disable_irq(queue_ids[port->id].rx); 1129 netif_stop_queue(dev); 1130 napi_disable(&port->napi); 1131 1132 hss_stop_hdlc(port); 1133 1134 while (queue_get_desc(queue_ids[port->id].rxfree, port, 0) >= 0) 1135 buffs--; 1136 while (queue_get_desc(queue_ids[port->id].rx, port, 0) >= 0) 1137 buffs--; 1138 1139 if (buffs) 1140 netdev_crit(dev, "unable to drain RX queue, %i buffer(s) left in NPE\n", 1141 buffs); 1142 1143 buffs = TX_DESCS; 1144 while (queue_get_desc(queue_ids[port->id].tx, port, 1) >= 0) 1145 buffs--; /* cancel TX */ 1146 1147 i = 0; 1148 do { 1149 while (queue_get_desc(port->plat->txreadyq, port, 1) >= 0) 1150 buffs--; 1151 if (!buffs) 1152 break; 1153 } while (++i < MAX_CLOSE_WAIT); 1154 1155 if (buffs) 1156 netdev_crit(dev, "unable to drain TX queue, %i buffer(s) left in NPE\n", 1157 buffs); 1158 #if DEBUG_CLOSE 1159 if (!buffs) 1160 printk(KERN_DEBUG "Draining TX queues took %i cycles\n", i); 1161 #endif 1162 qmgr_disable_irq(queue_ids[port->id].txdone); 1163 1164 if (port->plat->close) 1165 port->plat->close(port->id, dev); 1166 spin_unlock_irqrestore(&npe_lock, flags); 1167 1168 destroy_hdlc_queues(port); 1169 release_hdlc_queues(port); 1170 hdlc_close(dev); 1171 return 0; 1172 } 1173 1174 static int hss_hdlc_attach(struct net_device *dev, unsigned short encoding, 1175 unsigned short parity) 1176 { 1177 struct port *port = dev_to_port(dev); 1178 1179 if (encoding != ENCODING_NRZ) 1180 return -EINVAL; 1181 1182 switch (parity) { 1183 case PARITY_CRC16_PR1_CCITT: 1184 port->hdlc_cfg = 0; 1185 return 0; 1186 1187 case PARITY_CRC32_PR1_CCITT: 1188 port->hdlc_cfg = PKT_HDLC_CRC_32; 1189 return 0; 1190 1191 default: 1192 return -EINVAL; 1193 } 1194 } 1195 1196 static u32 check_clock(u32 timer_freq, u32 rate, u32 a, u32 b, u32 c, 1197 u32 *best, u32 *best_diff, u32 *reg) 1198 { 1199 /* a is 10-bit, b is 10-bit, c is 12-bit */ 1200 u64 new_rate; 1201 u32 new_diff; 1202 1203 new_rate = timer_freq * (u64)(c + 1); 1204 do_div(new_rate, a * (c + 1) + b + 1); 1205 new_diff = abs((u32)new_rate - rate); 1206 1207 if (new_diff < *best_diff) { 1208 *best = new_rate; 1209 *best_diff = new_diff; 1210 *reg = (a << 22) | (b << 12) | c; 1211 } 1212 return new_diff; 1213 } 1214 1215 static void find_best_clock(u32 timer_freq, u32 rate, u32 *best, u32 *reg) 1216 { 1217 u32 a, b, diff = 0xFFFFFFFF; 1218 1219 a = timer_freq / rate; 1220 1221 if (a > 0x3FF) { /* 10-bit value - we can go as slow as ca. 65 kb/s */ 1222 check_clock(timer_freq, rate, 0x3FF, 1, 1, best, &diff, reg); 1223 return; 1224 } 1225 if (a == 0) { /* > 66.666 MHz */ 1226 a = 1; /* minimum divider is 1 (a = 0, b = 1, c = 1) */ 1227 rate = timer_freq; 1228 } 1229 1230 if (rate * a == timer_freq) { /* don't divide by 0 later */ 1231 check_clock(timer_freq, rate, a - 1, 1, 1, best, &diff, reg); 1232 return; 1233 } 1234 1235 for (b = 0; b < 0x400; b++) { 1236 u64 c = (b + 1) * (u64)rate; 1237 1238 do_div(c, timer_freq - rate * a); 1239 c--; 1240 if (c >= 0xFFF) { /* 12-bit - no need to check more 'b's */ 1241 if (b == 0 && /* also try a bit higher rate */ 1242 !check_clock(timer_freq, rate, a - 1, 1, 1, best, 1243 &diff, reg)) 1244 return; 1245 check_clock(timer_freq, rate, a, b, 0xFFF, best, 1246 &diff, reg); 1247 return; 1248 } 1249 if (!check_clock(timer_freq, rate, a, b, c, best, &diff, reg)) 1250 return; 1251 if (!check_clock(timer_freq, rate, a, b, c + 1, best, &diff, 1252 reg)) 1253 return; 1254 } 1255 } 1256 1257 static int hss_hdlc_ioctl(struct net_device *dev, struct if_settings *ifs) 1258 { 1259 const size_t size = sizeof(sync_serial_settings); 1260 sync_serial_settings new_line; 1261 sync_serial_settings __user *line = ifs->ifs_ifsu.sync; 1262 struct port *port = dev_to_port(dev); 1263 unsigned long flags; 1264 int clk; 1265 1266 switch (ifs->type) { 1267 case IF_GET_IFACE: 1268 ifs->type = IF_IFACE_V35; 1269 if (ifs->size < size) { 1270 ifs->size = size; /* data size wanted */ 1271 return -ENOBUFS; 1272 } 1273 memset(&new_line, 0, sizeof(new_line)); 1274 new_line.clock_type = port->clock_type; 1275 new_line.clock_rate = port->clock_rate; 1276 new_line.loopback = port->loopback; 1277 if (copy_to_user(line, &new_line, size)) 1278 return -EFAULT; 1279 return 0; 1280 1281 case IF_IFACE_SYNC_SERIAL: 1282 case IF_IFACE_V35: 1283 if (!capable(CAP_NET_ADMIN)) 1284 return -EPERM; 1285 if (copy_from_user(&new_line, line, size)) 1286 return -EFAULT; 1287 1288 clk = new_line.clock_type; 1289 if (port->plat->set_clock) 1290 clk = port->plat->set_clock(port->id, clk); 1291 1292 if (clk != CLOCK_EXT && clk != CLOCK_INT) 1293 return -EINVAL; /* No such clock setting */ 1294 1295 if (new_line.loopback != 0 && new_line.loopback != 1) 1296 return -EINVAL; 1297 1298 port->clock_type = clk; /* Update settings */ 1299 if (clk == CLOCK_INT) { 1300 find_best_clock(port->plat->timer_freq, 1301 new_line.clock_rate, 1302 &port->clock_rate, &port->clock_reg); 1303 } else { 1304 port->clock_rate = 0; 1305 port->clock_reg = CLK42X_SPEED_2048KHZ; 1306 } 1307 port->loopback = new_line.loopback; 1308 1309 spin_lock_irqsave(&npe_lock, flags); 1310 1311 if (dev->flags & IFF_UP) 1312 hss_config(port); 1313 1314 if (port->loopback || port->carrier) 1315 netif_carrier_on(port->netdev); 1316 else 1317 netif_carrier_off(port->netdev); 1318 spin_unlock_irqrestore(&npe_lock, flags); 1319 1320 return 0; 1321 1322 default: 1323 return hdlc_ioctl(dev, ifs); 1324 } 1325 } 1326 1327 /***************************************************************************** 1328 * initialization 1329 ****************************************************************************/ 1330 1331 static const struct net_device_ops hss_hdlc_ops = { 1332 .ndo_open = hss_hdlc_open, 1333 .ndo_stop = hss_hdlc_close, 1334 .ndo_start_xmit = hdlc_start_xmit, 1335 .ndo_siocwandev = hss_hdlc_ioctl, 1336 }; 1337 1338 static int hss_init_one(struct platform_device *pdev) 1339 { 1340 struct port *port; 1341 struct net_device *dev; 1342 hdlc_device *hdlc; 1343 int err; 1344 1345 port = kzalloc(sizeof(*port), GFP_KERNEL); 1346 if (!port) 1347 return -ENOMEM; 1348 1349 port->npe = npe_request(0); 1350 if (!port->npe) { 1351 err = -ENODEV; 1352 goto err_free; 1353 } 1354 1355 dev = alloc_hdlcdev(port); 1356 port->netdev = alloc_hdlcdev(port); 1357 if (!port->netdev) { 1358 err = -ENOMEM; 1359 goto err_plat; 1360 } 1361 1362 SET_NETDEV_DEV(dev, &pdev->dev); 1363 hdlc = dev_to_hdlc(dev); 1364 hdlc->attach = hss_hdlc_attach; 1365 hdlc->xmit = hss_hdlc_xmit; 1366 dev->netdev_ops = &hss_hdlc_ops; 1367 dev->tx_queue_len = 100; 1368 port->clock_type = CLOCK_EXT; 1369 port->clock_rate = 0; 1370 port->clock_reg = CLK42X_SPEED_2048KHZ; 1371 port->id = pdev->id; 1372 port->dev = &pdev->dev; 1373 port->plat = pdev->dev.platform_data; 1374 netif_napi_add(dev, &port->napi, hss_hdlc_poll, NAPI_WEIGHT); 1375 1376 err = register_hdlc_device(dev); 1377 if (err) 1378 goto err_free_netdev; 1379 1380 platform_set_drvdata(pdev, port); 1381 1382 netdev_info(dev, "initialized\n"); 1383 return 0; 1384 1385 err_free_netdev: 1386 free_netdev(dev); 1387 err_plat: 1388 npe_release(port->npe); 1389 err_free: 1390 kfree(port); 1391 return err; 1392 } 1393 1394 static int hss_remove_one(struct platform_device *pdev) 1395 { 1396 struct port *port = platform_get_drvdata(pdev); 1397 1398 unregister_hdlc_device(port->netdev); 1399 free_netdev(port->netdev); 1400 npe_release(port->npe); 1401 kfree(port); 1402 return 0; 1403 } 1404 1405 static struct platform_driver ixp4xx_hss_driver = { 1406 .driver.name = DRV_NAME, 1407 .probe = hss_init_one, 1408 .remove = hss_remove_one, 1409 }; 1410 1411 static int __init hss_init_module(void) 1412 { 1413 if ((ixp4xx_read_feature_bits() & 1414 (IXP4XX_FEATURE_HDLC | IXP4XX_FEATURE_HSS)) != 1415 (IXP4XX_FEATURE_HDLC | IXP4XX_FEATURE_HSS)) 1416 return -ENODEV; 1417 1418 return platform_driver_register(&ixp4xx_hss_driver); 1419 } 1420 1421 static void __exit hss_cleanup_module(void) 1422 { 1423 platform_driver_unregister(&ixp4xx_hss_driver); 1424 } 1425 1426 MODULE_AUTHOR("Krzysztof Halasa"); 1427 MODULE_DESCRIPTION("Intel IXP4xx HSS driver"); 1428 MODULE_LICENSE("GPL v2"); 1429 MODULE_ALIAS("platform:ixp4xx_hss"); 1430 module_init(hss_init_module); 1431 module_exit(hss_cleanup_module); 1432