1 /* 2 * Intel IXP4xx HSS (synchronous serial port) driver for Linux 3 * 4 * Copyright (C) 2007-2008 Krzysztof Hałasa <khc@pm.waw.pl> 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of version 2 of the GNU General Public License 8 * as published by the Free Software Foundation. 9 */ 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/module.h> 14 #include <linux/bitops.h> 15 #include <linux/cdev.h> 16 #include <linux/dma-mapping.h> 17 #include <linux/dmapool.h> 18 #include <linux/fs.h> 19 #include <linux/hdlc.h> 20 #include <linux/io.h> 21 #include <linux/kernel.h> 22 #include <linux/platform_device.h> 23 #include <linux/poll.h> 24 #include <linux/slab.h> 25 #include <linux/soc/ixp4xx/npe.h> 26 #include <linux/soc/ixp4xx/qmgr.h> 27 28 #define DEBUG_DESC 0 29 #define DEBUG_RX 0 30 #define DEBUG_TX 0 31 #define DEBUG_PKT_BYTES 0 32 #define DEBUG_CLOSE 0 33 34 #define DRV_NAME "ixp4xx_hss" 35 36 #define PKT_EXTRA_FLAGS 0 /* orig 1 */ 37 #define PKT_NUM_PIPES 1 /* 1, 2 or 4 */ 38 #define PKT_PIPE_FIFO_SIZEW 4 /* total 4 dwords per HSS */ 39 40 #define RX_DESCS 16 /* also length of all RX queues */ 41 #define TX_DESCS 16 /* also length of all TX queues */ 42 43 #define POOL_ALLOC_SIZE (sizeof(struct desc) * (RX_DESCS + TX_DESCS)) 44 #define RX_SIZE (HDLC_MAX_MRU + 4) /* NPE needs more space */ 45 #define MAX_CLOSE_WAIT 1000 /* microseconds */ 46 #define HSS_COUNT 2 47 #define FRAME_SIZE 256 /* doesn't matter at this point */ 48 #define FRAME_OFFSET 0 49 #define MAX_CHANNELS (FRAME_SIZE / 8) 50 51 #define NAPI_WEIGHT 16 52 53 /* Queue IDs */ 54 #define HSS0_CHL_RXTRIG_QUEUE 12 /* orig size = 32 dwords */ 55 #define HSS0_PKT_RX_QUEUE 13 /* orig size = 32 dwords */ 56 #define HSS0_PKT_TX0_QUEUE 14 /* orig size = 16 dwords */ 57 #define HSS0_PKT_TX1_QUEUE 15 58 #define HSS0_PKT_TX2_QUEUE 16 59 #define HSS0_PKT_TX3_QUEUE 17 60 #define HSS0_PKT_RXFREE0_QUEUE 18 /* orig size = 16 dwords */ 61 #define HSS0_PKT_RXFREE1_QUEUE 19 62 #define HSS0_PKT_RXFREE2_QUEUE 20 63 #define HSS0_PKT_RXFREE3_QUEUE 21 64 #define HSS0_PKT_TXDONE_QUEUE 22 /* orig size = 64 dwords */ 65 66 #define HSS1_CHL_RXTRIG_QUEUE 10 67 #define HSS1_PKT_RX_QUEUE 0 68 #define HSS1_PKT_TX0_QUEUE 5 69 #define HSS1_PKT_TX1_QUEUE 6 70 #define HSS1_PKT_TX2_QUEUE 7 71 #define HSS1_PKT_TX3_QUEUE 8 72 #define HSS1_PKT_RXFREE0_QUEUE 1 73 #define HSS1_PKT_RXFREE1_QUEUE 2 74 #define HSS1_PKT_RXFREE2_QUEUE 3 75 #define HSS1_PKT_RXFREE3_QUEUE 4 76 #define HSS1_PKT_TXDONE_QUEUE 9 77 78 #define NPE_PKT_MODE_HDLC 0 79 #define NPE_PKT_MODE_RAW 1 80 #define NPE_PKT_MODE_56KMODE 2 81 #define NPE_PKT_MODE_56KENDIAN_MSB 4 82 83 /* PKT_PIPE_HDLC_CFG_WRITE flags */ 84 #define PKT_HDLC_IDLE_ONES 0x1 /* default = flags */ 85 #define PKT_HDLC_CRC_32 0x2 /* default = CRC-16 */ 86 #define PKT_HDLC_MSB_ENDIAN 0x4 /* default = LE */ 87 88 89 /* hss_config, PCRs */ 90 /* Frame sync sampling, default = active low */ 91 #define PCR_FRM_SYNC_ACTIVE_HIGH 0x40000000 92 #define PCR_FRM_SYNC_FALLINGEDGE 0x80000000 93 #define PCR_FRM_SYNC_RISINGEDGE 0xC0000000 94 95 /* Frame sync pin: input (default) or output generated off a given clk edge */ 96 #define PCR_FRM_SYNC_OUTPUT_FALLING 0x20000000 97 #define PCR_FRM_SYNC_OUTPUT_RISING 0x30000000 98 99 /* Frame and data clock sampling on edge, default = falling */ 100 #define PCR_FCLK_EDGE_RISING 0x08000000 101 #define PCR_DCLK_EDGE_RISING 0x04000000 102 103 /* Clock direction, default = input */ 104 #define PCR_SYNC_CLK_DIR_OUTPUT 0x02000000 105 106 /* Generate/Receive frame pulses, default = enabled */ 107 #define PCR_FRM_PULSE_DISABLED 0x01000000 108 109 /* Data rate is full (default) or half the configured clk speed */ 110 #define PCR_HALF_CLK_RATE 0x00200000 111 112 /* Invert data between NPE and HSS FIFOs? (default = no) */ 113 #define PCR_DATA_POLARITY_INVERT 0x00100000 114 115 /* TX/RX endianness, default = LSB */ 116 #define PCR_MSB_ENDIAN 0x00080000 117 118 /* Normal (default) / open drain mode (TX only) */ 119 #define PCR_TX_PINS_OPEN_DRAIN 0x00040000 120 121 /* No framing bit transmitted and expected on RX? (default = framing bit) */ 122 #define PCR_SOF_NO_FBIT 0x00020000 123 124 /* Drive data pins? */ 125 #define PCR_TX_DATA_ENABLE 0x00010000 126 127 /* Voice 56k type: drive the data pins low (default), high, high Z */ 128 #define PCR_TX_V56K_HIGH 0x00002000 129 #define PCR_TX_V56K_HIGH_IMP 0x00004000 130 131 /* Unassigned type: drive the data pins low (default), high, high Z */ 132 #define PCR_TX_UNASS_HIGH 0x00000800 133 #define PCR_TX_UNASS_HIGH_IMP 0x00001000 134 135 /* T1 @ 1.544MHz only: Fbit dictated in FIFO (default) or high Z */ 136 #define PCR_TX_FB_HIGH_IMP 0x00000400 137 138 /* 56k data endiannes - which bit unused: high (default) or low */ 139 #define PCR_TX_56KE_BIT_0_UNUSED 0x00000200 140 141 /* 56k data transmission type: 32/8 bit data (default) or 56K data */ 142 #define PCR_TX_56KS_56K_DATA 0x00000100 143 144 /* hss_config, cCR */ 145 /* Number of packetized clients, default = 1 */ 146 #define CCR_NPE_HFIFO_2_HDLC 0x04000000 147 #define CCR_NPE_HFIFO_3_OR_4HDLC 0x08000000 148 149 /* default = no loopback */ 150 #define CCR_LOOPBACK 0x02000000 151 152 /* HSS number, default = 0 (first) */ 153 #define CCR_SECOND_HSS 0x01000000 154 155 156 /* hss_config, clkCR: main:10, num:10, denom:12 */ 157 #define CLK42X_SPEED_EXP ((0x3FF << 22) | ( 2 << 12) | 15) /*65 KHz*/ 158 159 #define CLK42X_SPEED_512KHZ (( 130 << 22) | ( 2 << 12) | 15) 160 #define CLK42X_SPEED_1536KHZ (( 43 << 22) | ( 18 << 12) | 47) 161 #define CLK42X_SPEED_1544KHZ (( 43 << 22) | ( 33 << 12) | 192) 162 #define CLK42X_SPEED_2048KHZ (( 32 << 22) | ( 34 << 12) | 63) 163 #define CLK42X_SPEED_4096KHZ (( 16 << 22) | ( 34 << 12) | 127) 164 #define CLK42X_SPEED_8192KHZ (( 8 << 22) | ( 34 << 12) | 255) 165 166 #define CLK46X_SPEED_512KHZ (( 130 << 22) | ( 24 << 12) | 127) 167 #define CLK46X_SPEED_1536KHZ (( 43 << 22) | (152 << 12) | 383) 168 #define CLK46X_SPEED_1544KHZ (( 43 << 22) | ( 66 << 12) | 385) 169 #define CLK46X_SPEED_2048KHZ (( 32 << 22) | (280 << 12) | 511) 170 #define CLK46X_SPEED_4096KHZ (( 16 << 22) | (280 << 12) | 1023) 171 #define CLK46X_SPEED_8192KHZ (( 8 << 22) | (280 << 12) | 2047) 172 173 /* 174 * HSS_CONFIG_CLOCK_CR register consists of 3 parts: 175 * A (10 bits), B (10 bits) and C (12 bits). 176 * IXP42x HSS clock generator operation (verified with an oscilloscope): 177 * Each clock bit takes 7.5 ns (1 / 133.xx MHz). 178 * The clock sequence consists of (C - B) states of 0s and 1s, each state is 179 * A bits wide. It's followed by (B + 1) states of 0s and 1s, each state is 180 * (A + 1) bits wide. 181 * 182 * The resulting average clock frequency (assuming 33.333 MHz oscillator) is: 183 * freq = 66.666 MHz / (A + (B + 1) / (C + 1)) 184 * minimum freq = 66.666 MHz / (A + 1) 185 * maximum freq = 66.666 MHz / A 186 * 187 * Example: A = 2, B = 2, C = 7, CLOCK_CR register = 2 << 22 | 2 << 12 | 7 188 * freq = 66.666 MHz / (2 + (2 + 1) / (7 + 1)) = 28.07 MHz (Mb/s). 189 * The clock sequence is: 1100110011 (5 doubles) 000111000 (3 triples). 190 * The sequence takes (C - B) * A + (B + 1) * (A + 1) = 5 * 2 + 3 * 3 bits 191 * = 19 bits (each 7.5 ns long) = 142.5 ns (then the sequence repeats). 192 * The sequence consists of 4 complete clock periods, thus the average 193 * frequency (= clock rate) is 4 / 142.5 ns = 28.07 MHz (Mb/s). 194 * (max specified clock rate for IXP42x HSS is 8.192 Mb/s). 195 */ 196 197 /* hss_config, LUT entries */ 198 #define TDMMAP_UNASSIGNED 0 199 #define TDMMAP_HDLC 1 /* HDLC - packetized */ 200 #define TDMMAP_VOICE56K 2 /* Voice56K - 7-bit channelized */ 201 #define TDMMAP_VOICE64K 3 /* Voice64K - 8-bit channelized */ 202 203 /* offsets into HSS config */ 204 #define HSS_CONFIG_TX_PCR 0x00 /* port configuration registers */ 205 #define HSS_CONFIG_RX_PCR 0x04 206 #define HSS_CONFIG_CORE_CR 0x08 /* loopback control, HSS# */ 207 #define HSS_CONFIG_CLOCK_CR 0x0C /* clock generator control */ 208 #define HSS_CONFIG_TX_FCR 0x10 /* frame configuration registers */ 209 #define HSS_CONFIG_RX_FCR 0x14 210 #define HSS_CONFIG_TX_LUT 0x18 /* channel look-up tables */ 211 #define HSS_CONFIG_RX_LUT 0x38 212 213 214 /* NPE command codes */ 215 /* writes the ConfigWord value to the location specified by offset */ 216 #define PORT_CONFIG_WRITE 0x40 217 218 /* triggers the NPE to load the contents of the configuration table */ 219 #define PORT_CONFIG_LOAD 0x41 220 221 /* triggers the NPE to return an HssErrorReadResponse message */ 222 #define PORT_ERROR_READ 0x42 223 224 /* triggers the NPE to reset internal status and enable the HssPacketized 225 operation for the flow specified by pPipe */ 226 #define PKT_PIPE_FLOW_ENABLE 0x50 227 #define PKT_PIPE_FLOW_DISABLE 0x51 228 #define PKT_NUM_PIPES_WRITE 0x52 229 #define PKT_PIPE_FIFO_SIZEW_WRITE 0x53 230 #define PKT_PIPE_HDLC_CFG_WRITE 0x54 231 #define PKT_PIPE_IDLE_PATTERN_WRITE 0x55 232 #define PKT_PIPE_RX_SIZE_WRITE 0x56 233 #define PKT_PIPE_MODE_WRITE 0x57 234 235 /* HDLC packet status values - desc->status */ 236 #define ERR_SHUTDOWN 1 /* stop or shutdown occurrence */ 237 #define ERR_HDLC_ALIGN 2 /* HDLC alignment error */ 238 #define ERR_HDLC_FCS 3 /* HDLC Frame Check Sum error */ 239 #define ERR_RXFREE_Q_EMPTY 4 /* RX-free queue became empty while receiving 240 this packet (if buf_len < pkt_len) */ 241 #define ERR_HDLC_TOO_LONG 5 /* HDLC frame size too long */ 242 #define ERR_HDLC_ABORT 6 /* abort sequence received */ 243 #define ERR_DISCONNECTING 7 /* disconnect is in progress */ 244 245 246 #ifdef __ARMEB__ 247 typedef struct sk_buff buffer_t; 248 #define free_buffer dev_kfree_skb 249 #define free_buffer_irq dev_consume_skb_irq 250 #else 251 typedef void buffer_t; 252 #define free_buffer kfree 253 #define free_buffer_irq kfree 254 #endif 255 256 struct port { 257 struct device *dev; 258 struct npe *npe; 259 struct net_device *netdev; 260 struct napi_struct napi; 261 struct hss_plat_info *plat; 262 buffer_t *rx_buff_tab[RX_DESCS], *tx_buff_tab[TX_DESCS]; 263 struct desc *desc_tab; /* coherent */ 264 u32 desc_tab_phys; 265 unsigned int id; 266 unsigned int clock_type, clock_rate, loopback; 267 unsigned int initialized, carrier; 268 u8 hdlc_cfg; 269 u32 clock_reg; 270 }; 271 272 /* NPE message structure */ 273 struct msg { 274 #ifdef __ARMEB__ 275 u8 cmd, unused, hss_port, index; 276 union { 277 struct { u8 data8a, data8b, data8c, data8d; }; 278 struct { u16 data16a, data16b; }; 279 struct { u32 data32; }; 280 }; 281 #else 282 u8 index, hss_port, unused, cmd; 283 union { 284 struct { u8 data8d, data8c, data8b, data8a; }; 285 struct { u16 data16b, data16a; }; 286 struct { u32 data32; }; 287 }; 288 #endif 289 }; 290 291 /* HDLC packet descriptor */ 292 struct desc { 293 u32 next; /* pointer to next buffer, unused */ 294 295 #ifdef __ARMEB__ 296 u16 buf_len; /* buffer length */ 297 u16 pkt_len; /* packet length */ 298 u32 data; /* pointer to data buffer in RAM */ 299 u8 status; 300 u8 error_count; 301 u16 __reserved; 302 #else 303 u16 pkt_len; /* packet length */ 304 u16 buf_len; /* buffer length */ 305 u32 data; /* pointer to data buffer in RAM */ 306 u16 __reserved; 307 u8 error_count; 308 u8 status; 309 #endif 310 u32 __reserved1[4]; 311 }; 312 313 314 #define rx_desc_phys(port, n) ((port)->desc_tab_phys + \ 315 (n) * sizeof(struct desc)) 316 #define rx_desc_ptr(port, n) (&(port)->desc_tab[n]) 317 318 #define tx_desc_phys(port, n) ((port)->desc_tab_phys + \ 319 ((n) + RX_DESCS) * sizeof(struct desc)) 320 #define tx_desc_ptr(port, n) (&(port)->desc_tab[(n) + RX_DESCS]) 321 322 /***************************************************************************** 323 * global variables 324 ****************************************************************************/ 325 326 static int ports_open; 327 static struct dma_pool *dma_pool; 328 static spinlock_t npe_lock; 329 330 static const struct { 331 int tx, txdone, rx, rxfree; 332 }queue_ids[2] = {{HSS0_PKT_TX0_QUEUE, HSS0_PKT_TXDONE_QUEUE, HSS0_PKT_RX_QUEUE, 333 HSS0_PKT_RXFREE0_QUEUE}, 334 {HSS1_PKT_TX0_QUEUE, HSS1_PKT_TXDONE_QUEUE, HSS1_PKT_RX_QUEUE, 335 HSS1_PKT_RXFREE0_QUEUE}, 336 }; 337 338 /***************************************************************************** 339 * utility functions 340 ****************************************************************************/ 341 342 static inline struct port* dev_to_port(struct net_device *dev) 343 { 344 return dev_to_hdlc(dev)->priv; 345 } 346 347 #ifndef __ARMEB__ 348 static inline void memcpy_swab32(u32 *dest, u32 *src, int cnt) 349 { 350 int i; 351 for (i = 0; i < cnt; i++) 352 dest[i] = swab32(src[i]); 353 } 354 #endif 355 356 /***************************************************************************** 357 * HSS access 358 ****************************************************************************/ 359 360 static void hss_npe_send(struct port *port, struct msg *msg, const char* what) 361 { 362 u32 *val = (u32*)msg; 363 if (npe_send_message(port->npe, msg, what)) { 364 pr_crit("HSS-%i: unable to send command [%08X:%08X] to %s\n", 365 port->id, val[0], val[1], npe_name(port->npe)); 366 BUG(); 367 } 368 } 369 370 static void hss_config_set_lut(struct port *port) 371 { 372 struct msg msg; 373 int ch; 374 375 memset(&msg, 0, sizeof(msg)); 376 msg.cmd = PORT_CONFIG_WRITE; 377 msg.hss_port = port->id; 378 379 for (ch = 0; ch < MAX_CHANNELS; ch++) { 380 msg.data32 >>= 2; 381 msg.data32 |= TDMMAP_HDLC << 30; 382 383 if (ch % 16 == 15) { 384 msg.index = HSS_CONFIG_TX_LUT + ((ch / 4) & ~3); 385 hss_npe_send(port, &msg, "HSS_SET_TX_LUT"); 386 387 msg.index += HSS_CONFIG_RX_LUT - HSS_CONFIG_TX_LUT; 388 hss_npe_send(port, &msg, "HSS_SET_RX_LUT"); 389 } 390 } 391 } 392 393 static void hss_config(struct port *port) 394 { 395 struct msg msg; 396 397 memset(&msg, 0, sizeof(msg)); 398 msg.cmd = PORT_CONFIG_WRITE; 399 msg.hss_port = port->id; 400 msg.index = HSS_CONFIG_TX_PCR; 401 msg.data32 = PCR_FRM_PULSE_DISABLED | PCR_MSB_ENDIAN | 402 PCR_TX_DATA_ENABLE | PCR_SOF_NO_FBIT; 403 if (port->clock_type == CLOCK_INT) 404 msg.data32 |= PCR_SYNC_CLK_DIR_OUTPUT; 405 hss_npe_send(port, &msg, "HSS_SET_TX_PCR"); 406 407 msg.index = HSS_CONFIG_RX_PCR; 408 msg.data32 ^= PCR_TX_DATA_ENABLE | PCR_DCLK_EDGE_RISING; 409 hss_npe_send(port, &msg, "HSS_SET_RX_PCR"); 410 411 memset(&msg, 0, sizeof(msg)); 412 msg.cmd = PORT_CONFIG_WRITE; 413 msg.hss_port = port->id; 414 msg.index = HSS_CONFIG_CORE_CR; 415 msg.data32 = (port->loopback ? CCR_LOOPBACK : 0) | 416 (port->id ? CCR_SECOND_HSS : 0); 417 hss_npe_send(port, &msg, "HSS_SET_CORE_CR"); 418 419 memset(&msg, 0, sizeof(msg)); 420 msg.cmd = PORT_CONFIG_WRITE; 421 msg.hss_port = port->id; 422 msg.index = HSS_CONFIG_CLOCK_CR; 423 msg.data32 = port->clock_reg; 424 hss_npe_send(port, &msg, "HSS_SET_CLOCK_CR"); 425 426 memset(&msg, 0, sizeof(msg)); 427 msg.cmd = PORT_CONFIG_WRITE; 428 msg.hss_port = port->id; 429 msg.index = HSS_CONFIG_TX_FCR; 430 msg.data16a = FRAME_OFFSET; 431 msg.data16b = FRAME_SIZE - 1; 432 hss_npe_send(port, &msg, "HSS_SET_TX_FCR"); 433 434 memset(&msg, 0, sizeof(msg)); 435 msg.cmd = PORT_CONFIG_WRITE; 436 msg.hss_port = port->id; 437 msg.index = HSS_CONFIG_RX_FCR; 438 msg.data16a = FRAME_OFFSET; 439 msg.data16b = FRAME_SIZE - 1; 440 hss_npe_send(port, &msg, "HSS_SET_RX_FCR"); 441 442 hss_config_set_lut(port); 443 444 memset(&msg, 0, sizeof(msg)); 445 msg.cmd = PORT_CONFIG_LOAD; 446 msg.hss_port = port->id; 447 hss_npe_send(port, &msg, "HSS_LOAD_CONFIG"); 448 449 if (npe_recv_message(port->npe, &msg, "HSS_LOAD_CONFIG") || 450 /* HSS_LOAD_CONFIG for port #1 returns port_id = #4 */ 451 msg.cmd != PORT_CONFIG_LOAD || msg.data32) { 452 pr_crit("HSS-%i: HSS_LOAD_CONFIG failed\n", port->id); 453 BUG(); 454 } 455 456 /* HDLC may stop working without this - check FIXME */ 457 npe_recv_message(port->npe, &msg, "FLUSH_IT"); 458 } 459 460 static void hss_set_hdlc_cfg(struct port *port) 461 { 462 struct msg msg; 463 464 memset(&msg, 0, sizeof(msg)); 465 msg.cmd = PKT_PIPE_HDLC_CFG_WRITE; 466 msg.hss_port = port->id; 467 msg.data8a = port->hdlc_cfg; /* rx_cfg */ 468 msg.data8b = port->hdlc_cfg | (PKT_EXTRA_FLAGS << 3); /* tx_cfg */ 469 hss_npe_send(port, &msg, "HSS_SET_HDLC_CFG"); 470 } 471 472 static u32 hss_get_status(struct port *port) 473 { 474 struct msg msg; 475 476 memset(&msg, 0, sizeof(msg)); 477 msg.cmd = PORT_ERROR_READ; 478 msg.hss_port = port->id; 479 hss_npe_send(port, &msg, "PORT_ERROR_READ"); 480 if (npe_recv_message(port->npe, &msg, "PORT_ERROR_READ")) { 481 pr_crit("HSS-%i: unable to read HSS status\n", port->id); 482 BUG(); 483 } 484 485 return msg.data32; 486 } 487 488 static void hss_start_hdlc(struct port *port) 489 { 490 struct msg msg; 491 492 memset(&msg, 0, sizeof(msg)); 493 msg.cmd = PKT_PIPE_FLOW_ENABLE; 494 msg.hss_port = port->id; 495 msg.data32 = 0; 496 hss_npe_send(port, &msg, "HSS_ENABLE_PKT_PIPE"); 497 } 498 499 static void hss_stop_hdlc(struct port *port) 500 { 501 struct msg msg; 502 503 memset(&msg, 0, sizeof(msg)); 504 msg.cmd = PKT_PIPE_FLOW_DISABLE; 505 msg.hss_port = port->id; 506 hss_npe_send(port, &msg, "HSS_DISABLE_PKT_PIPE"); 507 hss_get_status(port); /* make sure it's halted */ 508 } 509 510 static int hss_load_firmware(struct port *port) 511 { 512 struct msg msg; 513 int err; 514 515 if (port->initialized) 516 return 0; 517 518 if (!npe_running(port->npe) && 519 (err = npe_load_firmware(port->npe, npe_name(port->npe), 520 port->dev))) 521 return err; 522 523 /* HDLC mode configuration */ 524 memset(&msg, 0, sizeof(msg)); 525 msg.cmd = PKT_NUM_PIPES_WRITE; 526 msg.hss_port = port->id; 527 msg.data8a = PKT_NUM_PIPES; 528 hss_npe_send(port, &msg, "HSS_SET_PKT_PIPES"); 529 530 msg.cmd = PKT_PIPE_FIFO_SIZEW_WRITE; 531 msg.data8a = PKT_PIPE_FIFO_SIZEW; 532 hss_npe_send(port, &msg, "HSS_SET_PKT_FIFO"); 533 534 msg.cmd = PKT_PIPE_MODE_WRITE; 535 msg.data8a = NPE_PKT_MODE_HDLC; 536 /* msg.data8b = inv_mask */ 537 /* msg.data8c = or_mask */ 538 hss_npe_send(port, &msg, "HSS_SET_PKT_MODE"); 539 540 msg.cmd = PKT_PIPE_RX_SIZE_WRITE; 541 msg.data16a = HDLC_MAX_MRU; /* including CRC */ 542 hss_npe_send(port, &msg, "HSS_SET_PKT_RX_SIZE"); 543 544 msg.cmd = PKT_PIPE_IDLE_PATTERN_WRITE; 545 msg.data32 = 0x7F7F7F7F; /* ??? FIXME */ 546 hss_npe_send(port, &msg, "HSS_SET_PKT_IDLE"); 547 548 port->initialized = 1; 549 return 0; 550 } 551 552 /***************************************************************************** 553 * packetized (HDLC) operation 554 ****************************************************************************/ 555 556 static inline void debug_pkt(struct net_device *dev, const char *func, 557 u8 *data, int len) 558 { 559 #if DEBUG_PKT_BYTES 560 int i; 561 562 printk(KERN_DEBUG "%s: %s(%i)", dev->name, func, len); 563 for (i = 0; i < len; i++) { 564 if (i >= DEBUG_PKT_BYTES) 565 break; 566 printk("%s%02X", !(i % 4) ? " " : "", data[i]); 567 } 568 printk("\n"); 569 #endif 570 } 571 572 573 static inline void debug_desc(u32 phys, struct desc *desc) 574 { 575 #if DEBUG_DESC 576 printk(KERN_DEBUG "%X: %X %3X %3X %08X %X %X\n", 577 phys, desc->next, desc->buf_len, desc->pkt_len, 578 desc->data, desc->status, desc->error_count); 579 #endif 580 } 581 582 static inline int queue_get_desc(unsigned int queue, struct port *port, 583 int is_tx) 584 { 585 u32 phys, tab_phys, n_desc; 586 struct desc *tab; 587 588 if (!(phys = qmgr_get_entry(queue))) 589 return -1; 590 591 BUG_ON(phys & 0x1F); 592 tab_phys = is_tx ? tx_desc_phys(port, 0) : rx_desc_phys(port, 0); 593 tab = is_tx ? tx_desc_ptr(port, 0) : rx_desc_ptr(port, 0); 594 n_desc = (phys - tab_phys) / sizeof(struct desc); 595 BUG_ON(n_desc >= (is_tx ? TX_DESCS : RX_DESCS)); 596 debug_desc(phys, &tab[n_desc]); 597 BUG_ON(tab[n_desc].next); 598 return n_desc; 599 } 600 601 static inline void queue_put_desc(unsigned int queue, u32 phys, 602 struct desc *desc) 603 { 604 debug_desc(phys, desc); 605 BUG_ON(phys & 0x1F); 606 qmgr_put_entry(queue, phys); 607 /* Don't check for queue overflow here, we've allocated sufficient 608 length and queues >= 32 don't support this check anyway. */ 609 } 610 611 612 static inline void dma_unmap_tx(struct port *port, struct desc *desc) 613 { 614 #ifdef __ARMEB__ 615 dma_unmap_single(&port->netdev->dev, desc->data, 616 desc->buf_len, DMA_TO_DEVICE); 617 #else 618 dma_unmap_single(&port->netdev->dev, desc->data & ~3, 619 ALIGN((desc->data & 3) + desc->buf_len, 4), 620 DMA_TO_DEVICE); 621 #endif 622 } 623 624 625 static void hss_hdlc_set_carrier(void *pdev, int carrier) 626 { 627 struct net_device *netdev = pdev; 628 struct port *port = dev_to_port(netdev); 629 unsigned long flags; 630 631 spin_lock_irqsave(&npe_lock, flags); 632 port->carrier = carrier; 633 if (!port->loopback) { 634 if (carrier) 635 netif_carrier_on(netdev); 636 else 637 netif_carrier_off(netdev); 638 } 639 spin_unlock_irqrestore(&npe_lock, flags); 640 } 641 642 static void hss_hdlc_rx_irq(void *pdev) 643 { 644 struct net_device *dev = pdev; 645 struct port *port = dev_to_port(dev); 646 647 #if DEBUG_RX 648 printk(KERN_DEBUG "%s: hss_hdlc_rx_irq\n", dev->name); 649 #endif 650 qmgr_disable_irq(queue_ids[port->id].rx); 651 napi_schedule(&port->napi); 652 } 653 654 static int hss_hdlc_poll(struct napi_struct *napi, int budget) 655 { 656 struct port *port = container_of(napi, struct port, napi); 657 struct net_device *dev = port->netdev; 658 unsigned int rxq = queue_ids[port->id].rx; 659 unsigned int rxfreeq = queue_ids[port->id].rxfree; 660 int received = 0; 661 662 #if DEBUG_RX 663 printk(KERN_DEBUG "%s: hss_hdlc_poll\n", dev->name); 664 #endif 665 666 while (received < budget) { 667 struct sk_buff *skb; 668 struct desc *desc; 669 int n; 670 #ifdef __ARMEB__ 671 struct sk_buff *temp; 672 u32 phys; 673 #endif 674 675 if ((n = queue_get_desc(rxq, port, 0)) < 0) { 676 #if DEBUG_RX 677 printk(KERN_DEBUG "%s: hss_hdlc_poll" 678 " napi_complete\n", dev->name); 679 #endif 680 napi_complete(napi); 681 qmgr_enable_irq(rxq); 682 if (!qmgr_stat_empty(rxq) && 683 napi_reschedule(napi)) { 684 #if DEBUG_RX 685 printk(KERN_DEBUG "%s: hss_hdlc_poll" 686 " napi_reschedule succeeded\n", 687 dev->name); 688 #endif 689 qmgr_disable_irq(rxq); 690 continue; 691 } 692 #if DEBUG_RX 693 printk(KERN_DEBUG "%s: hss_hdlc_poll all done\n", 694 dev->name); 695 #endif 696 return received; /* all work done */ 697 } 698 699 desc = rx_desc_ptr(port, n); 700 #if 0 /* FIXME - error_count counts modulo 256, perhaps we should use it */ 701 if (desc->error_count) 702 printk(KERN_DEBUG "%s: hss_hdlc_poll status 0x%02X" 703 " errors %u\n", dev->name, desc->status, 704 desc->error_count); 705 #endif 706 skb = NULL; 707 switch (desc->status) { 708 case 0: 709 #ifdef __ARMEB__ 710 if ((skb = netdev_alloc_skb(dev, RX_SIZE)) != NULL) { 711 phys = dma_map_single(&dev->dev, skb->data, 712 RX_SIZE, 713 DMA_FROM_DEVICE); 714 if (dma_mapping_error(&dev->dev, phys)) { 715 dev_kfree_skb(skb); 716 skb = NULL; 717 } 718 } 719 #else 720 skb = netdev_alloc_skb(dev, desc->pkt_len); 721 #endif 722 if (!skb) 723 dev->stats.rx_dropped++; 724 break; 725 case ERR_HDLC_ALIGN: 726 case ERR_HDLC_ABORT: 727 dev->stats.rx_frame_errors++; 728 dev->stats.rx_errors++; 729 break; 730 case ERR_HDLC_FCS: 731 dev->stats.rx_crc_errors++; 732 dev->stats.rx_errors++; 733 break; 734 case ERR_HDLC_TOO_LONG: 735 dev->stats.rx_length_errors++; 736 dev->stats.rx_errors++; 737 break; 738 default: /* FIXME - remove printk */ 739 netdev_err(dev, "hss_hdlc_poll: status 0x%02X errors %u\n", 740 desc->status, desc->error_count); 741 dev->stats.rx_errors++; 742 } 743 744 if (!skb) { 745 /* put the desc back on RX-ready queue */ 746 desc->buf_len = RX_SIZE; 747 desc->pkt_len = desc->status = 0; 748 queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc); 749 continue; 750 } 751 752 /* process received frame */ 753 #ifdef __ARMEB__ 754 temp = skb; 755 skb = port->rx_buff_tab[n]; 756 dma_unmap_single(&dev->dev, desc->data, 757 RX_SIZE, DMA_FROM_DEVICE); 758 #else 759 dma_sync_single_for_cpu(&dev->dev, desc->data, 760 RX_SIZE, DMA_FROM_DEVICE); 761 memcpy_swab32((u32 *)skb->data, (u32 *)port->rx_buff_tab[n], 762 ALIGN(desc->pkt_len, 4) / 4); 763 #endif 764 skb_put(skb, desc->pkt_len); 765 766 debug_pkt(dev, "hss_hdlc_poll", skb->data, skb->len); 767 768 skb->protocol = hdlc_type_trans(skb, dev); 769 dev->stats.rx_packets++; 770 dev->stats.rx_bytes += skb->len; 771 netif_receive_skb(skb); 772 773 /* put the new buffer on RX-free queue */ 774 #ifdef __ARMEB__ 775 port->rx_buff_tab[n] = temp; 776 desc->data = phys; 777 #endif 778 desc->buf_len = RX_SIZE; 779 desc->pkt_len = 0; 780 queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc); 781 received++; 782 } 783 #if DEBUG_RX 784 printk(KERN_DEBUG "hss_hdlc_poll: end, not all work done\n"); 785 #endif 786 return received; /* not all work done */ 787 } 788 789 790 static void hss_hdlc_txdone_irq(void *pdev) 791 { 792 struct net_device *dev = pdev; 793 struct port *port = dev_to_port(dev); 794 int n_desc; 795 796 #if DEBUG_TX 797 printk(KERN_DEBUG DRV_NAME ": hss_hdlc_txdone_irq\n"); 798 #endif 799 while ((n_desc = queue_get_desc(queue_ids[port->id].txdone, 800 port, 1)) >= 0) { 801 struct desc *desc; 802 int start; 803 804 desc = tx_desc_ptr(port, n_desc); 805 806 dev->stats.tx_packets++; 807 dev->stats.tx_bytes += desc->pkt_len; 808 809 dma_unmap_tx(port, desc); 810 #if DEBUG_TX 811 printk(KERN_DEBUG "%s: hss_hdlc_txdone_irq free %p\n", 812 dev->name, port->tx_buff_tab[n_desc]); 813 #endif 814 free_buffer_irq(port->tx_buff_tab[n_desc]); 815 port->tx_buff_tab[n_desc] = NULL; 816 817 start = qmgr_stat_below_low_watermark(port->plat->txreadyq); 818 queue_put_desc(port->plat->txreadyq, 819 tx_desc_phys(port, n_desc), desc); 820 if (start) { /* TX-ready queue was empty */ 821 #if DEBUG_TX 822 printk(KERN_DEBUG "%s: hss_hdlc_txdone_irq xmit" 823 " ready\n", dev->name); 824 #endif 825 netif_wake_queue(dev); 826 } 827 } 828 } 829 830 static int hss_hdlc_xmit(struct sk_buff *skb, struct net_device *dev) 831 { 832 struct port *port = dev_to_port(dev); 833 unsigned int txreadyq = port->plat->txreadyq; 834 int len, offset, bytes, n; 835 void *mem; 836 u32 phys; 837 struct desc *desc; 838 839 #if DEBUG_TX 840 printk(KERN_DEBUG "%s: hss_hdlc_xmit\n", dev->name); 841 #endif 842 843 if (unlikely(skb->len > HDLC_MAX_MRU)) { 844 dev_kfree_skb(skb); 845 dev->stats.tx_errors++; 846 return NETDEV_TX_OK; 847 } 848 849 debug_pkt(dev, "hss_hdlc_xmit", skb->data, skb->len); 850 851 len = skb->len; 852 #ifdef __ARMEB__ 853 offset = 0; /* no need to keep alignment */ 854 bytes = len; 855 mem = skb->data; 856 #else 857 offset = (int)skb->data & 3; /* keep 32-bit alignment */ 858 bytes = ALIGN(offset + len, 4); 859 if (!(mem = kmalloc(bytes, GFP_ATOMIC))) { 860 dev_kfree_skb(skb); 861 dev->stats.tx_dropped++; 862 return NETDEV_TX_OK; 863 } 864 memcpy_swab32(mem, (u32 *)((int)skb->data & ~3), bytes / 4); 865 dev_kfree_skb(skb); 866 #endif 867 868 phys = dma_map_single(&dev->dev, mem, bytes, DMA_TO_DEVICE); 869 if (dma_mapping_error(&dev->dev, phys)) { 870 #ifdef __ARMEB__ 871 dev_kfree_skb(skb); 872 #else 873 kfree(mem); 874 #endif 875 dev->stats.tx_dropped++; 876 return NETDEV_TX_OK; 877 } 878 879 n = queue_get_desc(txreadyq, port, 1); 880 BUG_ON(n < 0); 881 desc = tx_desc_ptr(port, n); 882 883 #ifdef __ARMEB__ 884 port->tx_buff_tab[n] = skb; 885 #else 886 port->tx_buff_tab[n] = mem; 887 #endif 888 desc->data = phys + offset; 889 desc->buf_len = desc->pkt_len = len; 890 891 wmb(); 892 queue_put_desc(queue_ids[port->id].tx, tx_desc_phys(port, n), desc); 893 894 if (qmgr_stat_below_low_watermark(txreadyq)) { /* empty */ 895 #if DEBUG_TX 896 printk(KERN_DEBUG "%s: hss_hdlc_xmit queue full\n", dev->name); 897 #endif 898 netif_stop_queue(dev); 899 /* we could miss TX ready interrupt */ 900 if (!qmgr_stat_below_low_watermark(txreadyq)) { 901 #if DEBUG_TX 902 printk(KERN_DEBUG "%s: hss_hdlc_xmit ready again\n", 903 dev->name); 904 #endif 905 netif_wake_queue(dev); 906 } 907 } 908 909 #if DEBUG_TX 910 printk(KERN_DEBUG "%s: hss_hdlc_xmit end\n", dev->name); 911 #endif 912 return NETDEV_TX_OK; 913 } 914 915 916 static int request_hdlc_queues(struct port *port) 917 { 918 int err; 919 920 err = qmgr_request_queue(queue_ids[port->id].rxfree, RX_DESCS, 0, 0, 921 "%s:RX-free", port->netdev->name); 922 if (err) 923 return err; 924 925 err = qmgr_request_queue(queue_ids[port->id].rx, RX_DESCS, 0, 0, 926 "%s:RX", port->netdev->name); 927 if (err) 928 goto rel_rxfree; 929 930 err = qmgr_request_queue(queue_ids[port->id].tx, TX_DESCS, 0, 0, 931 "%s:TX", port->netdev->name); 932 if (err) 933 goto rel_rx; 934 935 err = qmgr_request_queue(port->plat->txreadyq, TX_DESCS, 0, 0, 936 "%s:TX-ready", port->netdev->name); 937 if (err) 938 goto rel_tx; 939 940 err = qmgr_request_queue(queue_ids[port->id].txdone, TX_DESCS, 0, 0, 941 "%s:TX-done", port->netdev->name); 942 if (err) 943 goto rel_txready; 944 return 0; 945 946 rel_txready: 947 qmgr_release_queue(port->plat->txreadyq); 948 rel_tx: 949 qmgr_release_queue(queue_ids[port->id].tx); 950 rel_rx: 951 qmgr_release_queue(queue_ids[port->id].rx); 952 rel_rxfree: 953 qmgr_release_queue(queue_ids[port->id].rxfree); 954 printk(KERN_DEBUG "%s: unable to request hardware queues\n", 955 port->netdev->name); 956 return err; 957 } 958 959 static void release_hdlc_queues(struct port *port) 960 { 961 qmgr_release_queue(queue_ids[port->id].rxfree); 962 qmgr_release_queue(queue_ids[port->id].rx); 963 qmgr_release_queue(queue_ids[port->id].txdone); 964 qmgr_release_queue(queue_ids[port->id].tx); 965 qmgr_release_queue(port->plat->txreadyq); 966 } 967 968 static int init_hdlc_queues(struct port *port) 969 { 970 int i; 971 972 if (!ports_open) { 973 dma_pool = dma_pool_create(DRV_NAME, &port->netdev->dev, 974 POOL_ALLOC_SIZE, 32, 0); 975 if (!dma_pool) 976 return -ENOMEM; 977 } 978 979 if (!(port->desc_tab = dma_pool_alloc(dma_pool, GFP_KERNEL, 980 &port->desc_tab_phys))) 981 return -ENOMEM; 982 memset(port->desc_tab, 0, POOL_ALLOC_SIZE); 983 memset(port->rx_buff_tab, 0, sizeof(port->rx_buff_tab)); /* tables */ 984 memset(port->tx_buff_tab, 0, sizeof(port->tx_buff_tab)); 985 986 /* Setup RX buffers */ 987 for (i = 0; i < RX_DESCS; i++) { 988 struct desc *desc = rx_desc_ptr(port, i); 989 buffer_t *buff; 990 void *data; 991 #ifdef __ARMEB__ 992 if (!(buff = netdev_alloc_skb(port->netdev, RX_SIZE))) 993 return -ENOMEM; 994 data = buff->data; 995 #else 996 if (!(buff = kmalloc(RX_SIZE, GFP_KERNEL))) 997 return -ENOMEM; 998 data = buff; 999 #endif 1000 desc->buf_len = RX_SIZE; 1001 desc->data = dma_map_single(&port->netdev->dev, data, 1002 RX_SIZE, DMA_FROM_DEVICE); 1003 if (dma_mapping_error(&port->netdev->dev, desc->data)) { 1004 free_buffer(buff); 1005 return -EIO; 1006 } 1007 port->rx_buff_tab[i] = buff; 1008 } 1009 1010 return 0; 1011 } 1012 1013 static void destroy_hdlc_queues(struct port *port) 1014 { 1015 int i; 1016 1017 if (port->desc_tab) { 1018 for (i = 0; i < RX_DESCS; i++) { 1019 struct desc *desc = rx_desc_ptr(port, i); 1020 buffer_t *buff = port->rx_buff_tab[i]; 1021 if (buff) { 1022 dma_unmap_single(&port->netdev->dev, 1023 desc->data, RX_SIZE, 1024 DMA_FROM_DEVICE); 1025 free_buffer(buff); 1026 } 1027 } 1028 for (i = 0; i < TX_DESCS; i++) { 1029 struct desc *desc = tx_desc_ptr(port, i); 1030 buffer_t *buff = port->tx_buff_tab[i]; 1031 if (buff) { 1032 dma_unmap_tx(port, desc); 1033 free_buffer(buff); 1034 } 1035 } 1036 dma_pool_free(dma_pool, port->desc_tab, port->desc_tab_phys); 1037 port->desc_tab = NULL; 1038 } 1039 1040 if (!ports_open && dma_pool) { 1041 dma_pool_destroy(dma_pool); 1042 dma_pool = NULL; 1043 } 1044 } 1045 1046 static int hss_hdlc_open(struct net_device *dev) 1047 { 1048 struct port *port = dev_to_port(dev); 1049 unsigned long flags; 1050 int i, err = 0; 1051 1052 if ((err = hdlc_open(dev))) 1053 return err; 1054 1055 if ((err = hss_load_firmware(port))) 1056 goto err_hdlc_close; 1057 1058 if ((err = request_hdlc_queues(port))) 1059 goto err_hdlc_close; 1060 1061 if ((err = init_hdlc_queues(port))) 1062 goto err_destroy_queues; 1063 1064 spin_lock_irqsave(&npe_lock, flags); 1065 if (port->plat->open) 1066 if ((err = port->plat->open(port->id, dev, 1067 hss_hdlc_set_carrier))) 1068 goto err_unlock; 1069 spin_unlock_irqrestore(&npe_lock, flags); 1070 1071 /* Populate queues with buffers, no failure after this point */ 1072 for (i = 0; i < TX_DESCS; i++) 1073 queue_put_desc(port->plat->txreadyq, 1074 tx_desc_phys(port, i), tx_desc_ptr(port, i)); 1075 1076 for (i = 0; i < RX_DESCS; i++) 1077 queue_put_desc(queue_ids[port->id].rxfree, 1078 rx_desc_phys(port, i), rx_desc_ptr(port, i)); 1079 1080 napi_enable(&port->napi); 1081 netif_start_queue(dev); 1082 1083 qmgr_set_irq(queue_ids[port->id].rx, QUEUE_IRQ_SRC_NOT_EMPTY, 1084 hss_hdlc_rx_irq, dev); 1085 1086 qmgr_set_irq(queue_ids[port->id].txdone, QUEUE_IRQ_SRC_NOT_EMPTY, 1087 hss_hdlc_txdone_irq, dev); 1088 qmgr_enable_irq(queue_ids[port->id].txdone); 1089 1090 ports_open++; 1091 1092 hss_set_hdlc_cfg(port); 1093 hss_config(port); 1094 1095 hss_start_hdlc(port); 1096 1097 /* we may already have RX data, enables IRQ */ 1098 napi_schedule(&port->napi); 1099 return 0; 1100 1101 err_unlock: 1102 spin_unlock_irqrestore(&npe_lock, flags); 1103 err_destroy_queues: 1104 destroy_hdlc_queues(port); 1105 release_hdlc_queues(port); 1106 err_hdlc_close: 1107 hdlc_close(dev); 1108 return err; 1109 } 1110 1111 static int hss_hdlc_close(struct net_device *dev) 1112 { 1113 struct port *port = dev_to_port(dev); 1114 unsigned long flags; 1115 int i, buffs = RX_DESCS; /* allocated RX buffers */ 1116 1117 spin_lock_irqsave(&npe_lock, flags); 1118 ports_open--; 1119 qmgr_disable_irq(queue_ids[port->id].rx); 1120 netif_stop_queue(dev); 1121 napi_disable(&port->napi); 1122 1123 hss_stop_hdlc(port); 1124 1125 while (queue_get_desc(queue_ids[port->id].rxfree, port, 0) >= 0) 1126 buffs--; 1127 while (queue_get_desc(queue_ids[port->id].rx, port, 0) >= 0) 1128 buffs--; 1129 1130 if (buffs) 1131 netdev_crit(dev, "unable to drain RX queue, %i buffer(s) left in NPE\n", 1132 buffs); 1133 1134 buffs = TX_DESCS; 1135 while (queue_get_desc(queue_ids[port->id].tx, port, 1) >= 0) 1136 buffs--; /* cancel TX */ 1137 1138 i = 0; 1139 do { 1140 while (queue_get_desc(port->plat->txreadyq, port, 1) >= 0) 1141 buffs--; 1142 if (!buffs) 1143 break; 1144 } while (++i < MAX_CLOSE_WAIT); 1145 1146 if (buffs) 1147 netdev_crit(dev, "unable to drain TX queue, %i buffer(s) left in NPE\n", 1148 buffs); 1149 #if DEBUG_CLOSE 1150 if (!buffs) 1151 printk(KERN_DEBUG "Draining TX queues took %i cycles\n", i); 1152 #endif 1153 qmgr_disable_irq(queue_ids[port->id].txdone); 1154 1155 if (port->plat->close) 1156 port->plat->close(port->id, dev); 1157 spin_unlock_irqrestore(&npe_lock, flags); 1158 1159 destroy_hdlc_queues(port); 1160 release_hdlc_queues(port); 1161 hdlc_close(dev); 1162 return 0; 1163 } 1164 1165 1166 static int hss_hdlc_attach(struct net_device *dev, unsigned short encoding, 1167 unsigned short parity) 1168 { 1169 struct port *port = dev_to_port(dev); 1170 1171 if (encoding != ENCODING_NRZ) 1172 return -EINVAL; 1173 1174 switch(parity) { 1175 case PARITY_CRC16_PR1_CCITT: 1176 port->hdlc_cfg = 0; 1177 return 0; 1178 1179 case PARITY_CRC32_PR1_CCITT: 1180 port->hdlc_cfg = PKT_HDLC_CRC_32; 1181 return 0; 1182 1183 default: 1184 return -EINVAL; 1185 } 1186 } 1187 1188 static u32 check_clock(u32 rate, u32 a, u32 b, u32 c, 1189 u32 *best, u32 *best_diff, u32 *reg) 1190 { 1191 /* a is 10-bit, b is 10-bit, c is 12-bit */ 1192 u64 new_rate; 1193 u32 new_diff; 1194 1195 new_rate = ixp4xx_timer_freq * (u64)(c + 1); 1196 do_div(new_rate, a * (c + 1) + b + 1); 1197 new_diff = abs((u32)new_rate - rate); 1198 1199 if (new_diff < *best_diff) { 1200 *best = new_rate; 1201 *best_diff = new_diff; 1202 *reg = (a << 22) | (b << 12) | c; 1203 } 1204 return new_diff; 1205 } 1206 1207 static void find_best_clock(u32 rate, u32 *best, u32 *reg) 1208 { 1209 u32 a, b, diff = 0xFFFFFFFF; 1210 1211 a = ixp4xx_timer_freq / rate; 1212 1213 if (a > 0x3FF) { /* 10-bit value - we can go as slow as ca. 65 kb/s */ 1214 check_clock(rate, 0x3FF, 1, 1, best, &diff, reg); 1215 return; 1216 } 1217 if (a == 0) { /* > 66.666 MHz */ 1218 a = 1; /* minimum divider is 1 (a = 0, b = 1, c = 1) */ 1219 rate = ixp4xx_timer_freq; 1220 } 1221 1222 if (rate * a == ixp4xx_timer_freq) { /* don't divide by 0 later */ 1223 check_clock(rate, a - 1, 1, 1, best, &diff, reg); 1224 return; 1225 } 1226 1227 for (b = 0; b < 0x400; b++) { 1228 u64 c = (b + 1) * (u64)rate; 1229 do_div(c, ixp4xx_timer_freq - rate * a); 1230 c--; 1231 if (c >= 0xFFF) { /* 12-bit - no need to check more 'b's */ 1232 if (b == 0 && /* also try a bit higher rate */ 1233 !check_clock(rate, a - 1, 1, 1, best, &diff, reg)) 1234 return; 1235 check_clock(rate, a, b, 0xFFF, best, &diff, reg); 1236 return; 1237 } 1238 if (!check_clock(rate, a, b, c, best, &diff, reg)) 1239 return; 1240 if (!check_clock(rate, a, b, c + 1, best, &diff, reg)) 1241 return; 1242 } 1243 } 1244 1245 static int hss_hdlc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 1246 { 1247 const size_t size = sizeof(sync_serial_settings); 1248 sync_serial_settings new_line; 1249 sync_serial_settings __user *line = ifr->ifr_settings.ifs_ifsu.sync; 1250 struct port *port = dev_to_port(dev); 1251 unsigned long flags; 1252 int clk; 1253 1254 if (cmd != SIOCWANDEV) 1255 return hdlc_ioctl(dev, ifr, cmd); 1256 1257 switch(ifr->ifr_settings.type) { 1258 case IF_GET_IFACE: 1259 ifr->ifr_settings.type = IF_IFACE_V35; 1260 if (ifr->ifr_settings.size < size) { 1261 ifr->ifr_settings.size = size; /* data size wanted */ 1262 return -ENOBUFS; 1263 } 1264 memset(&new_line, 0, sizeof(new_line)); 1265 new_line.clock_type = port->clock_type; 1266 new_line.clock_rate = port->clock_rate; 1267 new_line.loopback = port->loopback; 1268 if (copy_to_user(line, &new_line, size)) 1269 return -EFAULT; 1270 return 0; 1271 1272 case IF_IFACE_SYNC_SERIAL: 1273 case IF_IFACE_V35: 1274 if(!capable(CAP_NET_ADMIN)) 1275 return -EPERM; 1276 if (copy_from_user(&new_line, line, size)) 1277 return -EFAULT; 1278 1279 clk = new_line.clock_type; 1280 if (port->plat->set_clock) 1281 clk = port->plat->set_clock(port->id, clk); 1282 1283 if (clk != CLOCK_EXT && clk != CLOCK_INT) 1284 return -EINVAL; /* No such clock setting */ 1285 1286 if (new_line.loopback != 0 && new_line.loopback != 1) 1287 return -EINVAL; 1288 1289 port->clock_type = clk; /* Update settings */ 1290 if (clk == CLOCK_INT) 1291 find_best_clock(new_line.clock_rate, &port->clock_rate, 1292 &port->clock_reg); 1293 else { 1294 port->clock_rate = 0; 1295 port->clock_reg = CLK42X_SPEED_2048KHZ; 1296 } 1297 port->loopback = new_line.loopback; 1298 1299 spin_lock_irqsave(&npe_lock, flags); 1300 1301 if (dev->flags & IFF_UP) 1302 hss_config(port); 1303 1304 if (port->loopback || port->carrier) 1305 netif_carrier_on(port->netdev); 1306 else 1307 netif_carrier_off(port->netdev); 1308 spin_unlock_irqrestore(&npe_lock, flags); 1309 1310 return 0; 1311 1312 default: 1313 return hdlc_ioctl(dev, ifr, cmd); 1314 } 1315 } 1316 1317 /***************************************************************************** 1318 * initialization 1319 ****************************************************************************/ 1320 1321 static const struct net_device_ops hss_hdlc_ops = { 1322 .ndo_open = hss_hdlc_open, 1323 .ndo_stop = hss_hdlc_close, 1324 .ndo_start_xmit = hdlc_start_xmit, 1325 .ndo_do_ioctl = hss_hdlc_ioctl, 1326 }; 1327 1328 static int hss_init_one(struct platform_device *pdev) 1329 { 1330 struct port *port; 1331 struct net_device *dev; 1332 hdlc_device *hdlc; 1333 int err; 1334 1335 if ((port = kzalloc(sizeof(*port), GFP_KERNEL)) == NULL) 1336 return -ENOMEM; 1337 1338 if ((port->npe = npe_request(0)) == NULL) { 1339 err = -ENODEV; 1340 goto err_free; 1341 } 1342 1343 if ((port->netdev = dev = alloc_hdlcdev(port)) == NULL) { 1344 err = -ENOMEM; 1345 goto err_plat; 1346 } 1347 1348 SET_NETDEV_DEV(dev, &pdev->dev); 1349 hdlc = dev_to_hdlc(dev); 1350 hdlc->attach = hss_hdlc_attach; 1351 hdlc->xmit = hss_hdlc_xmit; 1352 dev->netdev_ops = &hss_hdlc_ops; 1353 dev->tx_queue_len = 100; 1354 port->clock_type = CLOCK_EXT; 1355 port->clock_rate = 0; 1356 port->clock_reg = CLK42X_SPEED_2048KHZ; 1357 port->id = pdev->id; 1358 port->dev = &pdev->dev; 1359 port->plat = pdev->dev.platform_data; 1360 netif_napi_add(dev, &port->napi, hss_hdlc_poll, NAPI_WEIGHT); 1361 1362 if ((err = register_hdlc_device(dev))) 1363 goto err_free_netdev; 1364 1365 platform_set_drvdata(pdev, port); 1366 1367 netdev_info(dev, "initialized\n"); 1368 return 0; 1369 1370 err_free_netdev: 1371 free_netdev(dev); 1372 err_plat: 1373 npe_release(port->npe); 1374 err_free: 1375 kfree(port); 1376 return err; 1377 } 1378 1379 static int hss_remove_one(struct platform_device *pdev) 1380 { 1381 struct port *port = platform_get_drvdata(pdev); 1382 1383 unregister_hdlc_device(port->netdev); 1384 free_netdev(port->netdev); 1385 npe_release(port->npe); 1386 kfree(port); 1387 return 0; 1388 } 1389 1390 static struct platform_driver ixp4xx_hss_driver = { 1391 .driver.name = DRV_NAME, 1392 .probe = hss_init_one, 1393 .remove = hss_remove_one, 1394 }; 1395 1396 static int __init hss_init_module(void) 1397 { 1398 if ((ixp4xx_read_feature_bits() & 1399 (IXP4XX_FEATURE_HDLC | IXP4XX_FEATURE_HSS)) != 1400 (IXP4XX_FEATURE_HDLC | IXP4XX_FEATURE_HSS)) 1401 return -ENODEV; 1402 1403 spin_lock_init(&npe_lock); 1404 1405 return platform_driver_register(&ixp4xx_hss_driver); 1406 } 1407 1408 static void __exit hss_cleanup_module(void) 1409 { 1410 platform_driver_unregister(&ixp4xx_hss_driver); 1411 } 1412 1413 MODULE_AUTHOR("Krzysztof Halasa"); 1414 MODULE_DESCRIPTION("Intel IXP4xx HSS driver"); 1415 MODULE_LICENSE("GPL v2"); 1416 MODULE_ALIAS("platform:ixp4xx_hss"); 1417 module_init(hss_init_module); 1418 module_exit(hss_cleanup_module); 1419