xref: /openbmc/linux/drivers/net/wan/ixp4xx_hss.c (revision 8dda2eac)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Intel IXP4xx HSS (synchronous serial port) driver for Linux
4  *
5  * Copyright (C) 2007-2008 Krzysztof Hałasa <khc@pm.waw.pl>
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/module.h>
11 #include <linux/bitops.h>
12 #include <linux/cdev.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmapool.h>
15 #include <linux/fs.h>
16 #include <linux/hdlc.h>
17 #include <linux/io.h>
18 #include <linux/kernel.h>
19 #include <linux/platform_device.h>
20 #include <linux/platform_data/wan_ixp4xx_hss.h>
21 #include <linux/poll.h>
22 #include <linux/slab.h>
23 #include <linux/soc/ixp4xx/npe.h>
24 #include <linux/soc/ixp4xx/qmgr.h>
25 #include <linux/soc/ixp4xx/cpu.h>
26 
27 #define DEBUG_DESC		0
28 #define DEBUG_RX		0
29 #define DEBUG_TX		0
30 #define DEBUG_PKT_BYTES		0
31 #define DEBUG_CLOSE		0
32 
33 #define DRV_NAME		"ixp4xx_hss"
34 
35 #define PKT_EXTRA_FLAGS		0 /* orig 1 */
36 #define PKT_NUM_PIPES		1 /* 1, 2 or 4 */
37 #define PKT_PIPE_FIFO_SIZEW	4 /* total 4 dwords per HSS */
38 
39 #define RX_DESCS		16 /* also length of all RX queues */
40 #define TX_DESCS		16 /* also length of all TX queues */
41 
42 #define POOL_ALLOC_SIZE		(sizeof(struct desc) * (RX_DESCS + TX_DESCS))
43 #define RX_SIZE			(HDLC_MAX_MRU + 4) /* NPE needs more space */
44 #define MAX_CLOSE_WAIT		1000 /* microseconds */
45 #define HSS_COUNT		2
46 #define FRAME_SIZE		256 /* doesn't matter at this point */
47 #define FRAME_OFFSET		0
48 #define MAX_CHANNELS		(FRAME_SIZE / 8)
49 
50 #define NAPI_WEIGHT		16
51 
52 /* Queue IDs */
53 #define HSS0_CHL_RXTRIG_QUEUE	12	/* orig size = 32 dwords */
54 #define HSS0_PKT_RX_QUEUE	13	/* orig size = 32 dwords */
55 #define HSS0_PKT_TX0_QUEUE	14	/* orig size = 16 dwords */
56 #define HSS0_PKT_TX1_QUEUE	15
57 #define HSS0_PKT_TX2_QUEUE	16
58 #define HSS0_PKT_TX3_QUEUE	17
59 #define HSS0_PKT_RXFREE0_QUEUE	18	/* orig size = 16 dwords */
60 #define HSS0_PKT_RXFREE1_QUEUE	19
61 #define HSS0_PKT_RXFREE2_QUEUE	20
62 #define HSS0_PKT_RXFREE3_QUEUE	21
63 #define HSS0_PKT_TXDONE_QUEUE	22	/* orig size = 64 dwords */
64 
65 #define HSS1_CHL_RXTRIG_QUEUE	10
66 #define HSS1_PKT_RX_QUEUE	0
67 #define HSS1_PKT_TX0_QUEUE	5
68 #define HSS1_PKT_TX1_QUEUE	6
69 #define HSS1_PKT_TX2_QUEUE	7
70 #define HSS1_PKT_TX3_QUEUE	8
71 #define HSS1_PKT_RXFREE0_QUEUE	1
72 #define HSS1_PKT_RXFREE1_QUEUE	2
73 #define HSS1_PKT_RXFREE2_QUEUE	3
74 #define HSS1_PKT_RXFREE3_QUEUE	4
75 #define HSS1_PKT_TXDONE_QUEUE	9
76 
77 #define NPE_PKT_MODE_HDLC		0
78 #define NPE_PKT_MODE_RAW		1
79 #define NPE_PKT_MODE_56KMODE		2
80 #define NPE_PKT_MODE_56KENDIAN_MSB	4
81 
82 /* PKT_PIPE_HDLC_CFG_WRITE flags */
83 #define PKT_HDLC_IDLE_ONES		0x1 /* default = flags */
84 #define PKT_HDLC_CRC_32			0x2 /* default = CRC-16 */
85 #define PKT_HDLC_MSB_ENDIAN		0x4 /* default = LE */
86 
87 /* hss_config, PCRs */
88 /* Frame sync sampling, default = active low */
89 #define PCR_FRM_SYNC_ACTIVE_HIGH	0x40000000
90 #define PCR_FRM_SYNC_FALLINGEDGE	0x80000000
91 #define PCR_FRM_SYNC_RISINGEDGE		0xC0000000
92 
93 /* Frame sync pin: input (default) or output generated off a given clk edge */
94 #define PCR_FRM_SYNC_OUTPUT_FALLING	0x20000000
95 #define PCR_FRM_SYNC_OUTPUT_RISING	0x30000000
96 
97 /* Frame and data clock sampling on edge, default = falling */
98 #define PCR_FCLK_EDGE_RISING		0x08000000
99 #define PCR_DCLK_EDGE_RISING		0x04000000
100 
101 /* Clock direction, default = input */
102 #define PCR_SYNC_CLK_DIR_OUTPUT		0x02000000
103 
104 /* Generate/Receive frame pulses, default = enabled */
105 #define PCR_FRM_PULSE_DISABLED		0x01000000
106 
107  /* Data rate is full (default) or half the configured clk speed */
108 #define PCR_HALF_CLK_RATE		0x00200000
109 
110 /* Invert data between NPE and HSS FIFOs? (default = no) */
111 #define PCR_DATA_POLARITY_INVERT	0x00100000
112 
113 /* TX/RX endianness, default = LSB */
114 #define PCR_MSB_ENDIAN			0x00080000
115 
116 /* Normal (default) / open drain mode (TX only) */
117 #define PCR_TX_PINS_OPEN_DRAIN		0x00040000
118 
119 /* No framing bit transmitted and expected on RX? (default = framing bit) */
120 #define PCR_SOF_NO_FBIT			0x00020000
121 
122 /* Drive data pins? */
123 #define PCR_TX_DATA_ENABLE		0x00010000
124 
125 /* Voice 56k type: drive the data pins low (default), high, high Z */
126 #define PCR_TX_V56K_HIGH		0x00002000
127 #define PCR_TX_V56K_HIGH_IMP		0x00004000
128 
129 /* Unassigned type: drive the data pins low (default), high, high Z */
130 #define PCR_TX_UNASS_HIGH		0x00000800
131 #define PCR_TX_UNASS_HIGH_IMP		0x00001000
132 
133 /* T1 @ 1.544MHz only: Fbit dictated in FIFO (default) or high Z */
134 #define PCR_TX_FB_HIGH_IMP		0x00000400
135 
136 /* 56k data endiannes - which bit unused: high (default) or low */
137 #define PCR_TX_56KE_BIT_0_UNUSED	0x00000200
138 
139 /* 56k data transmission type: 32/8 bit data (default) or 56K data */
140 #define PCR_TX_56KS_56K_DATA		0x00000100
141 
142 /* hss_config, cCR */
143 /* Number of packetized clients, default = 1 */
144 #define CCR_NPE_HFIFO_2_HDLC		0x04000000
145 #define CCR_NPE_HFIFO_3_OR_4HDLC	0x08000000
146 
147 /* default = no loopback */
148 #define CCR_LOOPBACK			0x02000000
149 
150 /* HSS number, default = 0 (first) */
151 #define CCR_SECOND_HSS			0x01000000
152 
153 /* hss_config, clkCR: main:10, num:10, denom:12 */
154 #define CLK42X_SPEED_EXP	((0x3FF << 22) | (2 << 12) |   15) /*65 KHz*/
155 
156 #define CLK42X_SPEED_512KHZ	((130 << 22) | (2 << 12) |   15)
157 #define CLK42X_SPEED_1536KHZ	((43 << 22) | (18 << 12) |   47)
158 #define CLK42X_SPEED_1544KHZ	((43 << 22) | (33 << 12) |  192)
159 #define CLK42X_SPEED_2048KHZ	((32 << 22) | (34 << 12) |   63)
160 #define CLK42X_SPEED_4096KHZ	((16 << 22) | (34 << 12) |  127)
161 #define CLK42X_SPEED_8192KHZ	((8 << 22) | (34 << 12) |  255)
162 
163 #define CLK46X_SPEED_512KHZ	((130 << 22) | (24 << 12) |  127)
164 #define CLK46X_SPEED_1536KHZ	((43 << 22) | (152 << 12) |  383)
165 #define CLK46X_SPEED_1544KHZ	((43 << 22) | (66 << 12) |  385)
166 #define CLK46X_SPEED_2048KHZ	((32 << 22) | (280 << 12) |  511)
167 #define CLK46X_SPEED_4096KHZ	((16 << 22) | (280 << 12) | 1023)
168 #define CLK46X_SPEED_8192KHZ	((8 << 22) | (280 << 12) | 2047)
169 
170 /* HSS_CONFIG_CLOCK_CR register consists of 3 parts:
171  *     A (10 bits), B (10 bits) and C (12 bits).
172  * IXP42x HSS clock generator operation (verified with an oscilloscope):
173  * Each clock bit takes 7.5 ns (1 / 133.xx MHz).
174  * The clock sequence consists of (C - B) states of 0s and 1s, each state is
175  * A bits wide. It's followed by (B + 1) states of 0s and 1s, each state is
176  * (A + 1) bits wide.
177  *
178  * The resulting average clock frequency (assuming 33.333 MHz oscillator) is:
179  * freq = 66.666 MHz / (A + (B + 1) / (C + 1))
180  * minimum freq = 66.666 MHz / (A + 1)
181  * maximum freq = 66.666 MHz / A
182  *
183  * Example: A = 2, B = 2, C = 7, CLOCK_CR register = 2 << 22 | 2 << 12 | 7
184  * freq = 66.666 MHz / (2 + (2 + 1) / (7 + 1)) = 28.07 MHz (Mb/s).
185  * The clock sequence is: 1100110011 (5 doubles) 000111000 (3 triples).
186  * The sequence takes (C - B) * A + (B + 1) * (A + 1) = 5 * 2 + 3 * 3 bits
187  * = 19 bits (each 7.5 ns long) = 142.5 ns (then the sequence repeats).
188  * The sequence consists of 4 complete clock periods, thus the average
189  * frequency (= clock rate) is 4 / 142.5 ns = 28.07 MHz (Mb/s).
190  * (max specified clock rate for IXP42x HSS is 8.192 Mb/s).
191  */
192 
193 /* hss_config, LUT entries */
194 #define TDMMAP_UNASSIGNED	0
195 #define TDMMAP_HDLC		1	/* HDLC - packetized */
196 #define TDMMAP_VOICE56K		2	/* Voice56K - 7-bit channelized */
197 #define TDMMAP_VOICE64K		3	/* Voice64K - 8-bit channelized */
198 
199 /* offsets into HSS config */
200 #define HSS_CONFIG_TX_PCR	0x00 /* port configuration registers */
201 #define HSS_CONFIG_RX_PCR	0x04
202 #define HSS_CONFIG_CORE_CR	0x08 /* loopback control, HSS# */
203 #define HSS_CONFIG_CLOCK_CR	0x0C /* clock generator control */
204 #define HSS_CONFIG_TX_FCR	0x10 /* frame configuration registers */
205 #define HSS_CONFIG_RX_FCR	0x14
206 #define HSS_CONFIG_TX_LUT	0x18 /* channel look-up tables */
207 #define HSS_CONFIG_RX_LUT	0x38
208 
209 /* NPE command codes */
210 /* writes the ConfigWord value to the location specified by offset */
211 #define PORT_CONFIG_WRITE		0x40
212 
213 /* triggers the NPE to load the contents of the configuration table */
214 #define PORT_CONFIG_LOAD		0x41
215 
216 /* triggers the NPE to return an HssErrorReadResponse message */
217 #define PORT_ERROR_READ			0x42
218 
219 /* triggers the NPE to reset internal status and enable the HssPacketized
220  * operation for the flow specified by pPipe
221  */
222 #define PKT_PIPE_FLOW_ENABLE		0x50
223 #define PKT_PIPE_FLOW_DISABLE		0x51
224 #define PKT_NUM_PIPES_WRITE		0x52
225 #define PKT_PIPE_FIFO_SIZEW_WRITE	0x53
226 #define PKT_PIPE_HDLC_CFG_WRITE		0x54
227 #define PKT_PIPE_IDLE_PATTERN_WRITE	0x55
228 #define PKT_PIPE_RX_SIZE_WRITE		0x56
229 #define PKT_PIPE_MODE_WRITE		0x57
230 
231 /* HDLC packet status values - desc->status */
232 #define ERR_SHUTDOWN		1 /* stop or shutdown occurrence */
233 #define ERR_HDLC_ALIGN		2 /* HDLC alignment error */
234 #define ERR_HDLC_FCS		3 /* HDLC Frame Check Sum error */
235 #define ERR_RXFREE_Q_EMPTY	4 /* RX-free queue became empty while receiving
236 				   * this packet (if buf_len < pkt_len)
237 				   */
238 #define ERR_HDLC_TOO_LONG	5 /* HDLC frame size too long */
239 #define ERR_HDLC_ABORT		6 /* abort sequence received */
240 #define ERR_DISCONNECTING	7 /* disconnect is in progress */
241 
242 #ifdef __ARMEB__
243 typedef struct sk_buff buffer_t;
244 #define free_buffer dev_kfree_skb
245 #define free_buffer_irq dev_consume_skb_irq
246 #else
247 typedef void buffer_t;
248 #define free_buffer kfree
249 #define free_buffer_irq kfree
250 #endif
251 
252 struct port {
253 	struct device *dev;
254 	struct npe *npe;
255 	struct net_device *netdev;
256 	struct napi_struct napi;
257 	struct hss_plat_info *plat;
258 	buffer_t *rx_buff_tab[RX_DESCS], *tx_buff_tab[TX_DESCS];
259 	struct desc *desc_tab;	/* coherent */
260 	dma_addr_t desc_tab_phys;
261 	unsigned int id;
262 	unsigned int clock_type, clock_rate, loopback;
263 	unsigned int initialized, carrier;
264 	u8 hdlc_cfg;
265 	u32 clock_reg;
266 };
267 
268 /* NPE message structure */
269 struct msg {
270 #ifdef __ARMEB__
271 	u8 cmd, unused, hss_port, index;
272 	union {
273 		struct { u8 data8a, data8b, data8c, data8d; };
274 		struct { u16 data16a, data16b; };
275 		struct { u32 data32; };
276 	};
277 #else
278 	u8 index, hss_port, unused, cmd;
279 	union {
280 		struct { u8 data8d, data8c, data8b, data8a; };
281 		struct { u16 data16b, data16a; };
282 		struct { u32 data32; };
283 	};
284 #endif
285 };
286 
287 /* HDLC packet descriptor */
288 struct desc {
289 	u32 next;		/* pointer to next buffer, unused */
290 
291 #ifdef __ARMEB__
292 	u16 buf_len;		/* buffer length */
293 	u16 pkt_len;		/* packet length */
294 	u32 data;		/* pointer to data buffer in RAM */
295 	u8 status;
296 	u8 error_count;
297 	u16 __reserved;
298 #else
299 	u16 pkt_len;		/* packet length */
300 	u16 buf_len;		/* buffer length */
301 	u32 data;		/* pointer to data buffer in RAM */
302 	u16 __reserved;
303 	u8 error_count;
304 	u8 status;
305 #endif
306 	u32 __reserved1[4];
307 };
308 
309 #define rx_desc_phys(port, n)	((port)->desc_tab_phys +		\
310 				 (n) * sizeof(struct desc))
311 #define rx_desc_ptr(port, n)	(&(port)->desc_tab[n])
312 
313 #define tx_desc_phys(port, n)	((port)->desc_tab_phys +		\
314 				 ((n) + RX_DESCS) * sizeof(struct desc))
315 #define tx_desc_ptr(port, n)	(&(port)->desc_tab[(n) + RX_DESCS])
316 
317 /*****************************************************************************
318  * global variables
319  ****************************************************************************/
320 
321 static int ports_open;
322 static struct dma_pool *dma_pool;
323 static DEFINE_SPINLOCK(npe_lock);
324 
325 static const struct {
326 	int tx, txdone, rx, rxfree;
327 } queue_ids[2] = {{HSS0_PKT_TX0_QUEUE, HSS0_PKT_TXDONE_QUEUE, HSS0_PKT_RX_QUEUE,
328 		  HSS0_PKT_RXFREE0_QUEUE},
329 		 {HSS1_PKT_TX0_QUEUE, HSS1_PKT_TXDONE_QUEUE, HSS1_PKT_RX_QUEUE,
330 		  HSS1_PKT_RXFREE0_QUEUE},
331 };
332 
333 /*****************************************************************************
334  * utility functions
335  ****************************************************************************/
336 
337 static inline struct port *dev_to_port(struct net_device *dev)
338 {
339 	return dev_to_hdlc(dev)->priv;
340 }
341 
342 #ifndef __ARMEB__
343 static inline void memcpy_swab32(u32 *dest, u32 *src, int cnt)
344 {
345 	int i;
346 
347 	for (i = 0; i < cnt; i++)
348 		dest[i] = swab32(src[i]);
349 }
350 #endif
351 
352 /*****************************************************************************
353  * HSS access
354  ****************************************************************************/
355 
356 static void hss_npe_send(struct port *port, struct msg *msg, const char *what)
357 {
358 	u32 *val = (u32 *)msg;
359 
360 	if (npe_send_message(port->npe, msg, what)) {
361 		pr_crit("HSS-%i: unable to send command [%08X:%08X] to %s\n",
362 			port->id, val[0], val[1], npe_name(port->npe));
363 		BUG();
364 	}
365 }
366 
367 static void hss_config_set_lut(struct port *port)
368 {
369 	struct msg msg;
370 	int ch;
371 
372 	memset(&msg, 0, sizeof(msg));
373 	msg.cmd = PORT_CONFIG_WRITE;
374 	msg.hss_port = port->id;
375 
376 	for (ch = 0; ch < MAX_CHANNELS; ch++) {
377 		msg.data32 >>= 2;
378 		msg.data32 |= TDMMAP_HDLC << 30;
379 
380 		if (ch % 16 == 15) {
381 			msg.index = HSS_CONFIG_TX_LUT + ((ch / 4) & ~3);
382 			hss_npe_send(port, &msg, "HSS_SET_TX_LUT");
383 
384 			msg.index += HSS_CONFIG_RX_LUT - HSS_CONFIG_TX_LUT;
385 			hss_npe_send(port, &msg, "HSS_SET_RX_LUT");
386 		}
387 	}
388 }
389 
390 static void hss_config(struct port *port)
391 {
392 	struct msg msg;
393 
394 	memset(&msg, 0, sizeof(msg));
395 	msg.cmd = PORT_CONFIG_WRITE;
396 	msg.hss_port = port->id;
397 	msg.index = HSS_CONFIG_TX_PCR;
398 	msg.data32 = PCR_FRM_PULSE_DISABLED | PCR_MSB_ENDIAN |
399 		PCR_TX_DATA_ENABLE | PCR_SOF_NO_FBIT;
400 	if (port->clock_type == CLOCK_INT)
401 		msg.data32 |= PCR_SYNC_CLK_DIR_OUTPUT;
402 	hss_npe_send(port, &msg, "HSS_SET_TX_PCR");
403 
404 	msg.index = HSS_CONFIG_RX_PCR;
405 	msg.data32 ^= PCR_TX_DATA_ENABLE | PCR_DCLK_EDGE_RISING;
406 	hss_npe_send(port, &msg, "HSS_SET_RX_PCR");
407 
408 	memset(&msg, 0, sizeof(msg));
409 	msg.cmd = PORT_CONFIG_WRITE;
410 	msg.hss_port = port->id;
411 	msg.index = HSS_CONFIG_CORE_CR;
412 	msg.data32 = (port->loopback ? CCR_LOOPBACK : 0) |
413 		(port->id ? CCR_SECOND_HSS : 0);
414 	hss_npe_send(port, &msg, "HSS_SET_CORE_CR");
415 
416 	memset(&msg, 0, sizeof(msg));
417 	msg.cmd = PORT_CONFIG_WRITE;
418 	msg.hss_port = port->id;
419 	msg.index = HSS_CONFIG_CLOCK_CR;
420 	msg.data32 = port->clock_reg;
421 	hss_npe_send(port, &msg, "HSS_SET_CLOCK_CR");
422 
423 	memset(&msg, 0, sizeof(msg));
424 	msg.cmd = PORT_CONFIG_WRITE;
425 	msg.hss_port = port->id;
426 	msg.index = HSS_CONFIG_TX_FCR;
427 	msg.data16a = FRAME_OFFSET;
428 	msg.data16b = FRAME_SIZE - 1;
429 	hss_npe_send(port, &msg, "HSS_SET_TX_FCR");
430 
431 	memset(&msg, 0, sizeof(msg));
432 	msg.cmd = PORT_CONFIG_WRITE;
433 	msg.hss_port = port->id;
434 	msg.index = HSS_CONFIG_RX_FCR;
435 	msg.data16a = FRAME_OFFSET;
436 	msg.data16b = FRAME_SIZE - 1;
437 	hss_npe_send(port, &msg, "HSS_SET_RX_FCR");
438 
439 	hss_config_set_lut(port);
440 
441 	memset(&msg, 0, sizeof(msg));
442 	msg.cmd = PORT_CONFIG_LOAD;
443 	msg.hss_port = port->id;
444 	hss_npe_send(port, &msg, "HSS_LOAD_CONFIG");
445 
446 	if (npe_recv_message(port->npe, &msg, "HSS_LOAD_CONFIG") ||
447 	    /* HSS_LOAD_CONFIG for port #1 returns port_id = #4 */
448 	    msg.cmd != PORT_CONFIG_LOAD || msg.data32) {
449 		pr_crit("HSS-%i: HSS_LOAD_CONFIG failed\n", port->id);
450 		BUG();
451 	}
452 
453 	/* HDLC may stop working without this - check FIXME */
454 	npe_recv_message(port->npe, &msg, "FLUSH_IT");
455 }
456 
457 static void hss_set_hdlc_cfg(struct port *port)
458 {
459 	struct msg msg;
460 
461 	memset(&msg, 0, sizeof(msg));
462 	msg.cmd = PKT_PIPE_HDLC_CFG_WRITE;
463 	msg.hss_port = port->id;
464 	msg.data8a = port->hdlc_cfg; /* rx_cfg */
465 	msg.data8b = port->hdlc_cfg | (PKT_EXTRA_FLAGS << 3); /* tx_cfg */
466 	hss_npe_send(port, &msg, "HSS_SET_HDLC_CFG");
467 }
468 
469 static u32 hss_get_status(struct port *port)
470 {
471 	struct msg msg;
472 
473 	memset(&msg, 0, sizeof(msg));
474 	msg.cmd = PORT_ERROR_READ;
475 	msg.hss_port = port->id;
476 	hss_npe_send(port, &msg, "PORT_ERROR_READ");
477 	if (npe_recv_message(port->npe, &msg, "PORT_ERROR_READ")) {
478 		pr_crit("HSS-%i: unable to read HSS status\n", port->id);
479 		BUG();
480 	}
481 
482 	return msg.data32;
483 }
484 
485 static void hss_start_hdlc(struct port *port)
486 {
487 	struct msg msg;
488 
489 	memset(&msg, 0, sizeof(msg));
490 	msg.cmd = PKT_PIPE_FLOW_ENABLE;
491 	msg.hss_port = port->id;
492 	msg.data32 = 0;
493 	hss_npe_send(port, &msg, "HSS_ENABLE_PKT_PIPE");
494 }
495 
496 static void hss_stop_hdlc(struct port *port)
497 {
498 	struct msg msg;
499 
500 	memset(&msg, 0, sizeof(msg));
501 	msg.cmd = PKT_PIPE_FLOW_DISABLE;
502 	msg.hss_port = port->id;
503 	hss_npe_send(port, &msg, "HSS_DISABLE_PKT_PIPE");
504 	hss_get_status(port); /* make sure it's halted */
505 }
506 
507 static int hss_load_firmware(struct port *port)
508 {
509 	struct msg msg;
510 	int err;
511 
512 	if (port->initialized)
513 		return 0;
514 
515 	if (!npe_running(port->npe)) {
516 		err = npe_load_firmware(port->npe, npe_name(port->npe),
517 					port->dev);
518 		if (err)
519 			return err;
520 	}
521 
522 	/* HDLC mode configuration */
523 	memset(&msg, 0, sizeof(msg));
524 	msg.cmd = PKT_NUM_PIPES_WRITE;
525 	msg.hss_port = port->id;
526 	msg.data8a = PKT_NUM_PIPES;
527 	hss_npe_send(port, &msg, "HSS_SET_PKT_PIPES");
528 
529 	msg.cmd = PKT_PIPE_FIFO_SIZEW_WRITE;
530 	msg.data8a = PKT_PIPE_FIFO_SIZEW;
531 	hss_npe_send(port, &msg, "HSS_SET_PKT_FIFO");
532 
533 	msg.cmd = PKT_PIPE_MODE_WRITE;
534 	msg.data8a = NPE_PKT_MODE_HDLC;
535 	/* msg.data8b = inv_mask */
536 	/* msg.data8c = or_mask */
537 	hss_npe_send(port, &msg, "HSS_SET_PKT_MODE");
538 
539 	msg.cmd = PKT_PIPE_RX_SIZE_WRITE;
540 	msg.data16a = HDLC_MAX_MRU; /* including CRC */
541 	hss_npe_send(port, &msg, "HSS_SET_PKT_RX_SIZE");
542 
543 	msg.cmd = PKT_PIPE_IDLE_PATTERN_WRITE;
544 	msg.data32 = 0x7F7F7F7F; /* ??? FIXME */
545 	hss_npe_send(port, &msg, "HSS_SET_PKT_IDLE");
546 
547 	port->initialized = 1;
548 	return 0;
549 }
550 
551 /*****************************************************************************
552  * packetized (HDLC) operation
553  ****************************************************************************/
554 
555 static inline void debug_pkt(struct net_device *dev, const char *func,
556 			     u8 *data, int len)
557 {
558 #if DEBUG_PKT_BYTES
559 	int i;
560 
561 	printk(KERN_DEBUG "%s: %s(%i)", dev->name, func, len);
562 	for (i = 0; i < len; i++) {
563 		if (i >= DEBUG_PKT_BYTES)
564 			break;
565 		printk("%s%02X", !(i % 4) ? " " : "", data[i]);
566 	}
567 	printk("\n");
568 #endif
569 }
570 
571 static inline void debug_desc(u32 phys, struct desc *desc)
572 {
573 #if DEBUG_DESC
574 	printk(KERN_DEBUG "%X: %X %3X %3X %08X %X %X\n",
575 	       phys, desc->next, desc->buf_len, desc->pkt_len,
576 	       desc->data, desc->status, desc->error_count);
577 #endif
578 }
579 
580 static inline int queue_get_desc(unsigned int queue, struct port *port,
581 				 int is_tx)
582 {
583 	u32 phys, tab_phys, n_desc;
584 	struct desc *tab;
585 
586 	phys = qmgr_get_entry(queue);
587 	if (!phys)
588 		return -1;
589 
590 	BUG_ON(phys & 0x1F);
591 	tab_phys = is_tx ? tx_desc_phys(port, 0) : rx_desc_phys(port, 0);
592 	tab = is_tx ? tx_desc_ptr(port, 0) : rx_desc_ptr(port, 0);
593 	n_desc = (phys - tab_phys) / sizeof(struct desc);
594 	BUG_ON(n_desc >= (is_tx ? TX_DESCS : RX_DESCS));
595 	debug_desc(phys, &tab[n_desc]);
596 	BUG_ON(tab[n_desc].next);
597 	return n_desc;
598 }
599 
600 static inline void queue_put_desc(unsigned int queue, u32 phys,
601 				  struct desc *desc)
602 {
603 	debug_desc(phys, desc);
604 	BUG_ON(phys & 0x1F);
605 	qmgr_put_entry(queue, phys);
606 	/* Don't check for queue overflow here, we've allocated sufficient
607 	 * length and queues >= 32 don't support this check anyway.
608 	 */
609 }
610 
611 static inline void dma_unmap_tx(struct port *port, struct desc *desc)
612 {
613 #ifdef __ARMEB__
614 	dma_unmap_single(&port->netdev->dev, desc->data,
615 			 desc->buf_len, DMA_TO_DEVICE);
616 #else
617 	dma_unmap_single(&port->netdev->dev, desc->data & ~3,
618 			 ALIGN((desc->data & 3) + desc->buf_len, 4),
619 			 DMA_TO_DEVICE);
620 #endif
621 }
622 
623 static void hss_hdlc_set_carrier(void *pdev, int carrier)
624 {
625 	struct net_device *netdev = pdev;
626 	struct port *port = dev_to_port(netdev);
627 	unsigned long flags;
628 
629 	spin_lock_irqsave(&npe_lock, flags);
630 	port->carrier = carrier;
631 	if (!port->loopback) {
632 		if (carrier)
633 			netif_carrier_on(netdev);
634 		else
635 			netif_carrier_off(netdev);
636 	}
637 	spin_unlock_irqrestore(&npe_lock, flags);
638 }
639 
640 static void hss_hdlc_rx_irq(void *pdev)
641 {
642 	struct net_device *dev = pdev;
643 	struct port *port = dev_to_port(dev);
644 
645 #if DEBUG_RX
646 	printk(KERN_DEBUG "%s: hss_hdlc_rx_irq\n", dev->name);
647 #endif
648 	qmgr_disable_irq(queue_ids[port->id].rx);
649 	napi_schedule(&port->napi);
650 }
651 
652 static int hss_hdlc_poll(struct napi_struct *napi, int budget)
653 {
654 	struct port *port = container_of(napi, struct port, napi);
655 	struct net_device *dev = port->netdev;
656 	unsigned int rxq = queue_ids[port->id].rx;
657 	unsigned int rxfreeq = queue_ids[port->id].rxfree;
658 	int received = 0;
659 
660 #if DEBUG_RX
661 	printk(KERN_DEBUG "%s: hss_hdlc_poll\n", dev->name);
662 #endif
663 
664 	while (received < budget) {
665 		struct sk_buff *skb;
666 		struct desc *desc;
667 		int n;
668 #ifdef __ARMEB__
669 		struct sk_buff *temp;
670 		u32 phys;
671 #endif
672 
673 		n = queue_get_desc(rxq, port, 0);
674 		if (n < 0) {
675 #if DEBUG_RX
676 			printk(KERN_DEBUG "%s: hss_hdlc_poll"
677 			       " napi_complete\n", dev->name);
678 #endif
679 			napi_complete(napi);
680 			qmgr_enable_irq(rxq);
681 			if (!qmgr_stat_empty(rxq) &&
682 			    napi_reschedule(napi)) {
683 #if DEBUG_RX
684 				printk(KERN_DEBUG "%s: hss_hdlc_poll"
685 				       " napi_reschedule succeeded\n",
686 				       dev->name);
687 #endif
688 				qmgr_disable_irq(rxq);
689 				continue;
690 			}
691 #if DEBUG_RX
692 			printk(KERN_DEBUG "%s: hss_hdlc_poll all done\n",
693 			       dev->name);
694 #endif
695 			return received; /* all work done */
696 		}
697 
698 		desc = rx_desc_ptr(port, n);
699 #if 0 /* FIXME - error_count counts modulo 256, perhaps we should use it */
700 		if (desc->error_count)
701 			printk(KERN_DEBUG "%s: hss_hdlc_poll status 0x%02X"
702 			       " errors %u\n", dev->name, desc->status,
703 			       desc->error_count);
704 #endif
705 		skb = NULL;
706 		switch (desc->status) {
707 		case 0:
708 #ifdef __ARMEB__
709 			skb = netdev_alloc_skb(dev, RX_SIZE);
710 			if (skb) {
711 				phys = dma_map_single(&dev->dev, skb->data,
712 						      RX_SIZE,
713 						      DMA_FROM_DEVICE);
714 				if (dma_mapping_error(&dev->dev, phys)) {
715 					dev_kfree_skb(skb);
716 					skb = NULL;
717 				}
718 			}
719 #else
720 			skb = netdev_alloc_skb(dev, desc->pkt_len);
721 #endif
722 			if (!skb)
723 				dev->stats.rx_dropped++;
724 			break;
725 		case ERR_HDLC_ALIGN:
726 		case ERR_HDLC_ABORT:
727 			dev->stats.rx_frame_errors++;
728 			dev->stats.rx_errors++;
729 			break;
730 		case ERR_HDLC_FCS:
731 			dev->stats.rx_crc_errors++;
732 			dev->stats.rx_errors++;
733 			break;
734 		case ERR_HDLC_TOO_LONG:
735 			dev->stats.rx_length_errors++;
736 			dev->stats.rx_errors++;
737 			break;
738 		default:	/* FIXME - remove printk */
739 			netdev_err(dev, "hss_hdlc_poll: status 0x%02X errors %u\n",
740 				   desc->status, desc->error_count);
741 			dev->stats.rx_errors++;
742 		}
743 
744 		if (!skb) {
745 			/* put the desc back on RX-ready queue */
746 			desc->buf_len = RX_SIZE;
747 			desc->pkt_len = desc->status = 0;
748 			queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc);
749 			continue;
750 		}
751 
752 		/* process received frame */
753 #ifdef __ARMEB__
754 		temp = skb;
755 		skb = port->rx_buff_tab[n];
756 		dma_unmap_single(&dev->dev, desc->data,
757 				 RX_SIZE, DMA_FROM_DEVICE);
758 #else
759 		dma_sync_single_for_cpu(&dev->dev, desc->data,
760 					RX_SIZE, DMA_FROM_DEVICE);
761 		memcpy_swab32((u32 *)skb->data, (u32 *)port->rx_buff_tab[n],
762 			      ALIGN(desc->pkt_len, 4) / 4);
763 #endif
764 		skb_put(skb, desc->pkt_len);
765 
766 		debug_pkt(dev, "hss_hdlc_poll", skb->data, skb->len);
767 
768 		skb->protocol = hdlc_type_trans(skb, dev);
769 		dev->stats.rx_packets++;
770 		dev->stats.rx_bytes += skb->len;
771 		netif_receive_skb(skb);
772 
773 		/* put the new buffer on RX-free queue */
774 #ifdef __ARMEB__
775 		port->rx_buff_tab[n] = temp;
776 		desc->data = phys;
777 #endif
778 		desc->buf_len = RX_SIZE;
779 		desc->pkt_len = 0;
780 		queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc);
781 		received++;
782 	}
783 #if DEBUG_RX
784 	printk(KERN_DEBUG "hss_hdlc_poll: end, not all work done\n");
785 #endif
786 	return received;	/* not all work done */
787 }
788 
789 static void hss_hdlc_txdone_irq(void *pdev)
790 {
791 	struct net_device *dev = pdev;
792 	struct port *port = dev_to_port(dev);
793 	int n_desc;
794 
795 #if DEBUG_TX
796 	printk(KERN_DEBUG DRV_NAME ": hss_hdlc_txdone_irq\n");
797 #endif
798 	while ((n_desc = queue_get_desc(queue_ids[port->id].txdone,
799 					port, 1)) >= 0) {
800 		struct desc *desc;
801 		int start;
802 
803 		desc = tx_desc_ptr(port, n_desc);
804 
805 		dev->stats.tx_packets++;
806 		dev->stats.tx_bytes += desc->pkt_len;
807 
808 		dma_unmap_tx(port, desc);
809 #if DEBUG_TX
810 		printk(KERN_DEBUG "%s: hss_hdlc_txdone_irq free %p\n",
811 		       dev->name, port->tx_buff_tab[n_desc]);
812 #endif
813 		free_buffer_irq(port->tx_buff_tab[n_desc]);
814 		port->tx_buff_tab[n_desc] = NULL;
815 
816 		start = qmgr_stat_below_low_watermark(port->plat->txreadyq);
817 		queue_put_desc(port->plat->txreadyq,
818 			       tx_desc_phys(port, n_desc), desc);
819 		if (start) { /* TX-ready queue was empty */
820 #if DEBUG_TX
821 			printk(KERN_DEBUG "%s: hss_hdlc_txdone_irq xmit"
822 			       " ready\n", dev->name);
823 #endif
824 			netif_wake_queue(dev);
825 		}
826 	}
827 }
828 
829 static int hss_hdlc_xmit(struct sk_buff *skb, struct net_device *dev)
830 {
831 	struct port *port = dev_to_port(dev);
832 	unsigned int txreadyq = port->plat->txreadyq;
833 	int len, offset, bytes, n;
834 	void *mem;
835 	u32 phys;
836 	struct desc *desc;
837 
838 #if DEBUG_TX
839 	printk(KERN_DEBUG "%s: hss_hdlc_xmit\n", dev->name);
840 #endif
841 
842 	if (unlikely(skb->len > HDLC_MAX_MRU)) {
843 		dev_kfree_skb(skb);
844 		dev->stats.tx_errors++;
845 		return NETDEV_TX_OK;
846 	}
847 
848 	debug_pkt(dev, "hss_hdlc_xmit", skb->data, skb->len);
849 
850 	len = skb->len;
851 #ifdef __ARMEB__
852 	offset = 0; /* no need to keep alignment */
853 	bytes = len;
854 	mem = skb->data;
855 #else
856 	offset = (int)skb->data & 3; /* keep 32-bit alignment */
857 	bytes = ALIGN(offset + len, 4);
858 	mem = kmalloc(bytes, GFP_ATOMIC);
859 	if (!mem) {
860 		dev_kfree_skb(skb);
861 		dev->stats.tx_dropped++;
862 		return NETDEV_TX_OK;
863 	}
864 	memcpy_swab32(mem, (u32 *)((uintptr_t)skb->data & ~3), bytes / 4);
865 	dev_kfree_skb(skb);
866 #endif
867 
868 	phys = dma_map_single(&dev->dev, mem, bytes, DMA_TO_DEVICE);
869 	if (dma_mapping_error(&dev->dev, phys)) {
870 #ifdef __ARMEB__
871 		dev_kfree_skb(skb);
872 #else
873 		kfree(mem);
874 #endif
875 		dev->stats.tx_dropped++;
876 		return NETDEV_TX_OK;
877 	}
878 
879 	n = queue_get_desc(txreadyq, port, 1);
880 	BUG_ON(n < 0);
881 	desc = tx_desc_ptr(port, n);
882 
883 #ifdef __ARMEB__
884 	port->tx_buff_tab[n] = skb;
885 #else
886 	port->tx_buff_tab[n] = mem;
887 #endif
888 	desc->data = phys + offset;
889 	desc->buf_len = desc->pkt_len = len;
890 
891 	wmb();
892 	queue_put_desc(queue_ids[port->id].tx, tx_desc_phys(port, n), desc);
893 
894 	if (qmgr_stat_below_low_watermark(txreadyq)) { /* empty */
895 #if DEBUG_TX
896 		printk(KERN_DEBUG "%s: hss_hdlc_xmit queue full\n", dev->name);
897 #endif
898 		netif_stop_queue(dev);
899 		/* we could miss TX ready interrupt */
900 		if (!qmgr_stat_below_low_watermark(txreadyq)) {
901 #if DEBUG_TX
902 			printk(KERN_DEBUG "%s: hss_hdlc_xmit ready again\n",
903 			       dev->name);
904 #endif
905 			netif_wake_queue(dev);
906 		}
907 	}
908 
909 #if DEBUG_TX
910 	printk(KERN_DEBUG "%s: hss_hdlc_xmit end\n", dev->name);
911 #endif
912 	return NETDEV_TX_OK;
913 }
914 
915 static int request_hdlc_queues(struct port *port)
916 {
917 	int err;
918 
919 	err = qmgr_request_queue(queue_ids[port->id].rxfree, RX_DESCS, 0, 0,
920 				 "%s:RX-free", port->netdev->name);
921 	if (err)
922 		return err;
923 
924 	err = qmgr_request_queue(queue_ids[port->id].rx, RX_DESCS, 0, 0,
925 				 "%s:RX", port->netdev->name);
926 	if (err)
927 		goto rel_rxfree;
928 
929 	err = qmgr_request_queue(queue_ids[port->id].tx, TX_DESCS, 0, 0,
930 				 "%s:TX", port->netdev->name);
931 	if (err)
932 		goto rel_rx;
933 
934 	err = qmgr_request_queue(port->plat->txreadyq, TX_DESCS, 0, 0,
935 				 "%s:TX-ready", port->netdev->name);
936 	if (err)
937 		goto rel_tx;
938 
939 	err = qmgr_request_queue(queue_ids[port->id].txdone, TX_DESCS, 0, 0,
940 				 "%s:TX-done", port->netdev->name);
941 	if (err)
942 		goto rel_txready;
943 	return 0;
944 
945 rel_txready:
946 	qmgr_release_queue(port->plat->txreadyq);
947 rel_tx:
948 	qmgr_release_queue(queue_ids[port->id].tx);
949 rel_rx:
950 	qmgr_release_queue(queue_ids[port->id].rx);
951 rel_rxfree:
952 	qmgr_release_queue(queue_ids[port->id].rxfree);
953 	printk(KERN_DEBUG "%s: unable to request hardware queues\n",
954 	       port->netdev->name);
955 	return err;
956 }
957 
958 static void release_hdlc_queues(struct port *port)
959 {
960 	qmgr_release_queue(queue_ids[port->id].rxfree);
961 	qmgr_release_queue(queue_ids[port->id].rx);
962 	qmgr_release_queue(queue_ids[port->id].txdone);
963 	qmgr_release_queue(queue_ids[port->id].tx);
964 	qmgr_release_queue(port->plat->txreadyq);
965 }
966 
967 static int init_hdlc_queues(struct port *port)
968 {
969 	int i;
970 
971 	if (!ports_open) {
972 		dma_pool = dma_pool_create(DRV_NAME, &port->netdev->dev,
973 					   POOL_ALLOC_SIZE, 32, 0);
974 		if (!dma_pool)
975 			return -ENOMEM;
976 	}
977 
978 	port->desc_tab = dma_pool_alloc(dma_pool, GFP_KERNEL,
979 					&port->desc_tab_phys);
980 	if (!port->desc_tab)
981 		return -ENOMEM;
982 	memset(port->desc_tab, 0, POOL_ALLOC_SIZE);
983 	memset(port->rx_buff_tab, 0, sizeof(port->rx_buff_tab)); /* tables */
984 	memset(port->tx_buff_tab, 0, sizeof(port->tx_buff_tab));
985 
986 	/* Setup RX buffers */
987 	for (i = 0; i < RX_DESCS; i++) {
988 		struct desc *desc = rx_desc_ptr(port, i);
989 		buffer_t *buff;
990 		void *data;
991 #ifdef __ARMEB__
992 		buff = netdev_alloc_skb(port->netdev, RX_SIZE);
993 		if (!buff)
994 			return -ENOMEM;
995 		data = buff->data;
996 #else
997 		buff = kmalloc(RX_SIZE, GFP_KERNEL);
998 		if (!buff)
999 			return -ENOMEM;
1000 		data = buff;
1001 #endif
1002 		desc->buf_len = RX_SIZE;
1003 		desc->data = dma_map_single(&port->netdev->dev, data,
1004 					    RX_SIZE, DMA_FROM_DEVICE);
1005 		if (dma_mapping_error(&port->netdev->dev, desc->data)) {
1006 			free_buffer(buff);
1007 			return -EIO;
1008 		}
1009 		port->rx_buff_tab[i] = buff;
1010 	}
1011 
1012 	return 0;
1013 }
1014 
1015 static void destroy_hdlc_queues(struct port *port)
1016 {
1017 	int i;
1018 
1019 	if (port->desc_tab) {
1020 		for (i = 0; i < RX_DESCS; i++) {
1021 			struct desc *desc = rx_desc_ptr(port, i);
1022 			buffer_t *buff = port->rx_buff_tab[i];
1023 
1024 			if (buff) {
1025 				dma_unmap_single(&port->netdev->dev,
1026 						 desc->data, RX_SIZE,
1027 						 DMA_FROM_DEVICE);
1028 				free_buffer(buff);
1029 			}
1030 		}
1031 		for (i = 0; i < TX_DESCS; i++) {
1032 			struct desc *desc = tx_desc_ptr(port, i);
1033 			buffer_t *buff = port->tx_buff_tab[i];
1034 
1035 			if (buff) {
1036 				dma_unmap_tx(port, desc);
1037 				free_buffer(buff);
1038 			}
1039 		}
1040 		dma_pool_free(dma_pool, port->desc_tab, port->desc_tab_phys);
1041 		port->desc_tab = NULL;
1042 	}
1043 
1044 	if (!ports_open && dma_pool) {
1045 		dma_pool_destroy(dma_pool);
1046 		dma_pool = NULL;
1047 	}
1048 }
1049 
1050 static int hss_hdlc_open(struct net_device *dev)
1051 {
1052 	struct port *port = dev_to_port(dev);
1053 	unsigned long flags;
1054 	int i, err = 0;
1055 
1056 	err = hdlc_open(dev);
1057 	if (err)
1058 		return err;
1059 
1060 	err = hss_load_firmware(port);
1061 	if (err)
1062 		goto err_hdlc_close;
1063 
1064 	err = request_hdlc_queues(port);
1065 	if (err)
1066 		goto err_hdlc_close;
1067 
1068 	err = init_hdlc_queues(port);
1069 	if (err)
1070 		goto err_destroy_queues;
1071 
1072 	spin_lock_irqsave(&npe_lock, flags);
1073 	if (port->plat->open) {
1074 		err = port->plat->open(port->id, dev, hss_hdlc_set_carrier);
1075 		if (err)
1076 			goto err_unlock;
1077 	}
1078 
1079 	spin_unlock_irqrestore(&npe_lock, flags);
1080 
1081 	/* Populate queues with buffers, no failure after this point */
1082 	for (i = 0; i < TX_DESCS; i++)
1083 		queue_put_desc(port->plat->txreadyq,
1084 			       tx_desc_phys(port, i), tx_desc_ptr(port, i));
1085 
1086 	for (i = 0; i < RX_DESCS; i++)
1087 		queue_put_desc(queue_ids[port->id].rxfree,
1088 			       rx_desc_phys(port, i), rx_desc_ptr(port, i));
1089 
1090 	napi_enable(&port->napi);
1091 	netif_start_queue(dev);
1092 
1093 	qmgr_set_irq(queue_ids[port->id].rx, QUEUE_IRQ_SRC_NOT_EMPTY,
1094 		     hss_hdlc_rx_irq, dev);
1095 
1096 	qmgr_set_irq(queue_ids[port->id].txdone, QUEUE_IRQ_SRC_NOT_EMPTY,
1097 		     hss_hdlc_txdone_irq, dev);
1098 	qmgr_enable_irq(queue_ids[port->id].txdone);
1099 
1100 	ports_open++;
1101 
1102 	hss_set_hdlc_cfg(port);
1103 	hss_config(port);
1104 
1105 	hss_start_hdlc(port);
1106 
1107 	/* we may already have RX data, enables IRQ */
1108 	napi_schedule(&port->napi);
1109 	return 0;
1110 
1111 err_unlock:
1112 	spin_unlock_irqrestore(&npe_lock, flags);
1113 err_destroy_queues:
1114 	destroy_hdlc_queues(port);
1115 	release_hdlc_queues(port);
1116 err_hdlc_close:
1117 	hdlc_close(dev);
1118 	return err;
1119 }
1120 
1121 static int hss_hdlc_close(struct net_device *dev)
1122 {
1123 	struct port *port = dev_to_port(dev);
1124 	unsigned long flags;
1125 	int i, buffs = RX_DESCS; /* allocated RX buffers */
1126 
1127 	spin_lock_irqsave(&npe_lock, flags);
1128 	ports_open--;
1129 	qmgr_disable_irq(queue_ids[port->id].rx);
1130 	netif_stop_queue(dev);
1131 	napi_disable(&port->napi);
1132 
1133 	hss_stop_hdlc(port);
1134 
1135 	while (queue_get_desc(queue_ids[port->id].rxfree, port, 0) >= 0)
1136 		buffs--;
1137 	while (queue_get_desc(queue_ids[port->id].rx, port, 0) >= 0)
1138 		buffs--;
1139 
1140 	if (buffs)
1141 		netdev_crit(dev, "unable to drain RX queue, %i buffer(s) left in NPE\n",
1142 			    buffs);
1143 
1144 	buffs = TX_DESCS;
1145 	while (queue_get_desc(queue_ids[port->id].tx, port, 1) >= 0)
1146 		buffs--; /* cancel TX */
1147 
1148 	i = 0;
1149 	do {
1150 		while (queue_get_desc(port->plat->txreadyq, port, 1) >= 0)
1151 			buffs--;
1152 		if (!buffs)
1153 			break;
1154 	} while (++i < MAX_CLOSE_WAIT);
1155 
1156 	if (buffs)
1157 		netdev_crit(dev, "unable to drain TX queue, %i buffer(s) left in NPE\n",
1158 			    buffs);
1159 #if DEBUG_CLOSE
1160 	if (!buffs)
1161 		printk(KERN_DEBUG "Draining TX queues took %i cycles\n", i);
1162 #endif
1163 	qmgr_disable_irq(queue_ids[port->id].txdone);
1164 
1165 	if (port->plat->close)
1166 		port->plat->close(port->id, dev);
1167 	spin_unlock_irqrestore(&npe_lock, flags);
1168 
1169 	destroy_hdlc_queues(port);
1170 	release_hdlc_queues(port);
1171 	hdlc_close(dev);
1172 	return 0;
1173 }
1174 
1175 static int hss_hdlc_attach(struct net_device *dev, unsigned short encoding,
1176 			   unsigned short parity)
1177 {
1178 	struct port *port = dev_to_port(dev);
1179 
1180 	if (encoding != ENCODING_NRZ)
1181 		return -EINVAL;
1182 
1183 	switch (parity) {
1184 	case PARITY_CRC16_PR1_CCITT:
1185 		port->hdlc_cfg = 0;
1186 		return 0;
1187 
1188 	case PARITY_CRC32_PR1_CCITT:
1189 		port->hdlc_cfg = PKT_HDLC_CRC_32;
1190 		return 0;
1191 
1192 	default:
1193 		return -EINVAL;
1194 	}
1195 }
1196 
1197 static u32 check_clock(u32 timer_freq, u32 rate, u32 a, u32 b, u32 c,
1198 		       u32 *best, u32 *best_diff, u32 *reg)
1199 {
1200 	/* a is 10-bit, b is 10-bit, c is 12-bit */
1201 	u64 new_rate;
1202 	u32 new_diff;
1203 
1204 	new_rate = timer_freq * (u64)(c + 1);
1205 	do_div(new_rate, a * (c + 1) + b + 1);
1206 	new_diff = abs((u32)new_rate - rate);
1207 
1208 	if (new_diff < *best_diff) {
1209 		*best = new_rate;
1210 		*best_diff = new_diff;
1211 		*reg = (a << 22) | (b << 12) | c;
1212 	}
1213 	return new_diff;
1214 }
1215 
1216 static void find_best_clock(u32 timer_freq, u32 rate, u32 *best, u32 *reg)
1217 {
1218 	u32 a, b, diff = 0xFFFFFFFF;
1219 
1220 	a = timer_freq / rate;
1221 
1222 	if (a > 0x3FF) { /* 10-bit value - we can go as slow as ca. 65 kb/s */
1223 		check_clock(timer_freq, rate, 0x3FF, 1, 1, best, &diff, reg);
1224 		return;
1225 	}
1226 	if (a == 0) { /* > 66.666 MHz */
1227 		a = 1; /* minimum divider is 1 (a = 0, b = 1, c = 1) */
1228 		rate = timer_freq;
1229 	}
1230 
1231 	if (rate * a == timer_freq) { /* don't divide by 0 later */
1232 		check_clock(timer_freq, rate, a - 1, 1, 1, best, &diff, reg);
1233 		return;
1234 	}
1235 
1236 	for (b = 0; b < 0x400; b++) {
1237 		u64 c = (b + 1) * (u64)rate;
1238 
1239 		do_div(c, timer_freq - rate * a);
1240 		c--;
1241 		if (c >= 0xFFF) { /* 12-bit - no need to check more 'b's */
1242 			if (b == 0 && /* also try a bit higher rate */
1243 			    !check_clock(timer_freq, rate, a - 1, 1, 1, best,
1244 					 &diff, reg))
1245 				return;
1246 			check_clock(timer_freq, rate, a, b, 0xFFF, best,
1247 				    &diff, reg);
1248 			return;
1249 		}
1250 		if (!check_clock(timer_freq, rate, a, b, c, best, &diff, reg))
1251 			return;
1252 		if (!check_clock(timer_freq, rate, a, b, c + 1, best, &diff,
1253 				 reg))
1254 			return;
1255 	}
1256 }
1257 
1258 static int hss_hdlc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1259 {
1260 	const size_t size = sizeof(sync_serial_settings);
1261 	sync_serial_settings new_line;
1262 	sync_serial_settings __user *line = ifr->ifr_settings.ifs_ifsu.sync;
1263 	struct port *port = dev_to_port(dev);
1264 	unsigned long flags;
1265 	int clk;
1266 
1267 	if (cmd != SIOCWANDEV)
1268 		return hdlc_ioctl(dev, ifr, cmd);
1269 
1270 	switch (ifr->ifr_settings.type) {
1271 	case IF_GET_IFACE:
1272 		ifr->ifr_settings.type = IF_IFACE_V35;
1273 		if (ifr->ifr_settings.size < size) {
1274 			ifr->ifr_settings.size = size; /* data size wanted */
1275 			return -ENOBUFS;
1276 		}
1277 		memset(&new_line, 0, sizeof(new_line));
1278 		new_line.clock_type = port->clock_type;
1279 		new_line.clock_rate = port->clock_rate;
1280 		new_line.loopback = port->loopback;
1281 		if (copy_to_user(line, &new_line, size))
1282 			return -EFAULT;
1283 		return 0;
1284 
1285 	case IF_IFACE_SYNC_SERIAL:
1286 	case IF_IFACE_V35:
1287 		if (!capable(CAP_NET_ADMIN))
1288 			return -EPERM;
1289 		if (copy_from_user(&new_line, line, size))
1290 			return -EFAULT;
1291 
1292 		clk = new_line.clock_type;
1293 		if (port->plat->set_clock)
1294 			clk = port->plat->set_clock(port->id, clk);
1295 
1296 		if (clk != CLOCK_EXT && clk != CLOCK_INT)
1297 			return -EINVAL;	/* No such clock setting */
1298 
1299 		if (new_line.loopback != 0 && new_line.loopback != 1)
1300 			return -EINVAL;
1301 
1302 		port->clock_type = clk; /* Update settings */
1303 		if (clk == CLOCK_INT) {
1304 			find_best_clock(port->plat->timer_freq,
1305 					new_line.clock_rate,
1306 					&port->clock_rate, &port->clock_reg);
1307 		} else {
1308 			port->clock_rate = 0;
1309 			port->clock_reg = CLK42X_SPEED_2048KHZ;
1310 		}
1311 		port->loopback = new_line.loopback;
1312 
1313 		spin_lock_irqsave(&npe_lock, flags);
1314 
1315 		if (dev->flags & IFF_UP)
1316 			hss_config(port);
1317 
1318 		if (port->loopback || port->carrier)
1319 			netif_carrier_on(port->netdev);
1320 		else
1321 			netif_carrier_off(port->netdev);
1322 		spin_unlock_irqrestore(&npe_lock, flags);
1323 
1324 		return 0;
1325 
1326 	default:
1327 		return hdlc_ioctl(dev, ifr, cmd);
1328 	}
1329 }
1330 
1331 /*****************************************************************************
1332  * initialization
1333  ****************************************************************************/
1334 
1335 static const struct net_device_ops hss_hdlc_ops = {
1336 	.ndo_open       = hss_hdlc_open,
1337 	.ndo_stop       = hss_hdlc_close,
1338 	.ndo_start_xmit = hdlc_start_xmit,
1339 	.ndo_do_ioctl   = hss_hdlc_ioctl,
1340 };
1341 
1342 static int hss_init_one(struct platform_device *pdev)
1343 {
1344 	struct port *port;
1345 	struct net_device *dev;
1346 	hdlc_device *hdlc;
1347 	int err;
1348 
1349 	port = kzalloc(sizeof(*port), GFP_KERNEL);
1350 	if (!port)
1351 		return -ENOMEM;
1352 
1353 	port->npe = npe_request(0);
1354 	if (!port->npe) {
1355 		err = -ENODEV;
1356 		goto err_free;
1357 	}
1358 
1359 	dev = alloc_hdlcdev(port);
1360 	port->netdev = alloc_hdlcdev(port);
1361 	if (!port->netdev) {
1362 		err = -ENOMEM;
1363 		goto err_plat;
1364 	}
1365 
1366 	SET_NETDEV_DEV(dev, &pdev->dev);
1367 	hdlc = dev_to_hdlc(dev);
1368 	hdlc->attach = hss_hdlc_attach;
1369 	hdlc->xmit = hss_hdlc_xmit;
1370 	dev->netdev_ops = &hss_hdlc_ops;
1371 	dev->tx_queue_len = 100;
1372 	port->clock_type = CLOCK_EXT;
1373 	port->clock_rate = 0;
1374 	port->clock_reg = CLK42X_SPEED_2048KHZ;
1375 	port->id = pdev->id;
1376 	port->dev = &pdev->dev;
1377 	port->plat = pdev->dev.platform_data;
1378 	netif_napi_add(dev, &port->napi, hss_hdlc_poll, NAPI_WEIGHT);
1379 
1380 	err = register_hdlc_device(dev);
1381 	if (err)
1382 		goto err_free_netdev;
1383 
1384 	platform_set_drvdata(pdev, port);
1385 
1386 	netdev_info(dev, "initialized\n");
1387 	return 0;
1388 
1389 err_free_netdev:
1390 	free_netdev(dev);
1391 err_plat:
1392 	npe_release(port->npe);
1393 err_free:
1394 	kfree(port);
1395 	return err;
1396 }
1397 
1398 static int hss_remove_one(struct platform_device *pdev)
1399 {
1400 	struct port *port = platform_get_drvdata(pdev);
1401 
1402 	unregister_hdlc_device(port->netdev);
1403 	free_netdev(port->netdev);
1404 	npe_release(port->npe);
1405 	kfree(port);
1406 	return 0;
1407 }
1408 
1409 static struct platform_driver ixp4xx_hss_driver = {
1410 	.driver.name	= DRV_NAME,
1411 	.probe		= hss_init_one,
1412 	.remove		= hss_remove_one,
1413 };
1414 
1415 static int __init hss_init_module(void)
1416 {
1417 	if ((ixp4xx_read_feature_bits() &
1418 	     (IXP4XX_FEATURE_HDLC | IXP4XX_FEATURE_HSS)) !=
1419 	    (IXP4XX_FEATURE_HDLC | IXP4XX_FEATURE_HSS))
1420 		return -ENODEV;
1421 
1422 	return platform_driver_register(&ixp4xx_hss_driver);
1423 }
1424 
1425 static void __exit hss_cleanup_module(void)
1426 {
1427 	platform_driver_unregister(&ixp4xx_hss_driver);
1428 }
1429 
1430 MODULE_AUTHOR("Krzysztof Halasa");
1431 MODULE_DESCRIPTION("Intel IXP4xx HSS driver");
1432 MODULE_LICENSE("GPL v2");
1433 MODULE_ALIAS("platform:ixp4xx_hss");
1434 module_init(hss_init_module);
1435 module_exit(hss_cleanup_module);
1436