1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Intel IXP4xx HSS (synchronous serial port) driver for Linux 4 * 5 * Copyright (C) 2007-2008 Krzysztof Hałasa <khc@pm.waw.pl> 6 */ 7 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10 #include <linux/module.h> 11 #include <linux/bitops.h> 12 #include <linux/cdev.h> 13 #include <linux/dma-mapping.h> 14 #include <linux/dmapool.h> 15 #include <linux/fs.h> 16 #include <linux/hdlc.h> 17 #include <linux/io.h> 18 #include <linux/kernel.h> 19 #include <linux/platform_device.h> 20 #include <linux/platform_data/wan_ixp4xx_hss.h> 21 #include <linux/poll.h> 22 #include <linux/slab.h> 23 #include <linux/soc/ixp4xx/npe.h> 24 #include <linux/soc/ixp4xx/qmgr.h> 25 26 #define DEBUG_DESC 0 27 #define DEBUG_RX 0 28 #define DEBUG_TX 0 29 #define DEBUG_PKT_BYTES 0 30 #define DEBUG_CLOSE 0 31 32 #define DRV_NAME "ixp4xx_hss" 33 34 #define PKT_EXTRA_FLAGS 0 /* orig 1 */ 35 #define PKT_NUM_PIPES 1 /* 1, 2 or 4 */ 36 #define PKT_PIPE_FIFO_SIZEW 4 /* total 4 dwords per HSS */ 37 38 #define RX_DESCS 16 /* also length of all RX queues */ 39 #define TX_DESCS 16 /* also length of all TX queues */ 40 41 #define POOL_ALLOC_SIZE (sizeof(struct desc) * (RX_DESCS + TX_DESCS)) 42 #define RX_SIZE (HDLC_MAX_MRU + 4) /* NPE needs more space */ 43 #define MAX_CLOSE_WAIT 1000 /* microseconds */ 44 #define HSS_COUNT 2 45 #define FRAME_SIZE 256 /* doesn't matter at this point */ 46 #define FRAME_OFFSET 0 47 #define MAX_CHANNELS (FRAME_SIZE / 8) 48 49 #define NAPI_WEIGHT 16 50 51 /* Queue IDs */ 52 #define HSS0_CHL_RXTRIG_QUEUE 12 /* orig size = 32 dwords */ 53 #define HSS0_PKT_RX_QUEUE 13 /* orig size = 32 dwords */ 54 #define HSS0_PKT_TX0_QUEUE 14 /* orig size = 16 dwords */ 55 #define HSS0_PKT_TX1_QUEUE 15 56 #define HSS0_PKT_TX2_QUEUE 16 57 #define HSS0_PKT_TX3_QUEUE 17 58 #define HSS0_PKT_RXFREE0_QUEUE 18 /* orig size = 16 dwords */ 59 #define HSS0_PKT_RXFREE1_QUEUE 19 60 #define HSS0_PKT_RXFREE2_QUEUE 20 61 #define HSS0_PKT_RXFREE3_QUEUE 21 62 #define HSS0_PKT_TXDONE_QUEUE 22 /* orig size = 64 dwords */ 63 64 #define HSS1_CHL_RXTRIG_QUEUE 10 65 #define HSS1_PKT_RX_QUEUE 0 66 #define HSS1_PKT_TX0_QUEUE 5 67 #define HSS1_PKT_TX1_QUEUE 6 68 #define HSS1_PKT_TX2_QUEUE 7 69 #define HSS1_PKT_TX3_QUEUE 8 70 #define HSS1_PKT_RXFREE0_QUEUE 1 71 #define HSS1_PKT_RXFREE1_QUEUE 2 72 #define HSS1_PKT_RXFREE2_QUEUE 3 73 #define HSS1_PKT_RXFREE3_QUEUE 4 74 #define HSS1_PKT_TXDONE_QUEUE 9 75 76 #define NPE_PKT_MODE_HDLC 0 77 #define NPE_PKT_MODE_RAW 1 78 #define NPE_PKT_MODE_56KMODE 2 79 #define NPE_PKT_MODE_56KENDIAN_MSB 4 80 81 /* PKT_PIPE_HDLC_CFG_WRITE flags */ 82 #define PKT_HDLC_IDLE_ONES 0x1 /* default = flags */ 83 #define PKT_HDLC_CRC_32 0x2 /* default = CRC-16 */ 84 #define PKT_HDLC_MSB_ENDIAN 0x4 /* default = LE */ 85 86 87 /* hss_config, PCRs */ 88 /* Frame sync sampling, default = active low */ 89 #define PCR_FRM_SYNC_ACTIVE_HIGH 0x40000000 90 #define PCR_FRM_SYNC_FALLINGEDGE 0x80000000 91 #define PCR_FRM_SYNC_RISINGEDGE 0xC0000000 92 93 /* Frame sync pin: input (default) or output generated off a given clk edge */ 94 #define PCR_FRM_SYNC_OUTPUT_FALLING 0x20000000 95 #define PCR_FRM_SYNC_OUTPUT_RISING 0x30000000 96 97 /* Frame and data clock sampling on edge, default = falling */ 98 #define PCR_FCLK_EDGE_RISING 0x08000000 99 #define PCR_DCLK_EDGE_RISING 0x04000000 100 101 /* Clock direction, default = input */ 102 #define PCR_SYNC_CLK_DIR_OUTPUT 0x02000000 103 104 /* Generate/Receive frame pulses, default = enabled */ 105 #define PCR_FRM_PULSE_DISABLED 0x01000000 106 107 /* Data rate is full (default) or half the configured clk speed */ 108 #define PCR_HALF_CLK_RATE 0x00200000 109 110 /* Invert data between NPE and HSS FIFOs? (default = no) */ 111 #define PCR_DATA_POLARITY_INVERT 0x00100000 112 113 /* TX/RX endianness, default = LSB */ 114 #define PCR_MSB_ENDIAN 0x00080000 115 116 /* Normal (default) / open drain mode (TX only) */ 117 #define PCR_TX_PINS_OPEN_DRAIN 0x00040000 118 119 /* No framing bit transmitted and expected on RX? (default = framing bit) */ 120 #define PCR_SOF_NO_FBIT 0x00020000 121 122 /* Drive data pins? */ 123 #define PCR_TX_DATA_ENABLE 0x00010000 124 125 /* Voice 56k type: drive the data pins low (default), high, high Z */ 126 #define PCR_TX_V56K_HIGH 0x00002000 127 #define PCR_TX_V56K_HIGH_IMP 0x00004000 128 129 /* Unassigned type: drive the data pins low (default), high, high Z */ 130 #define PCR_TX_UNASS_HIGH 0x00000800 131 #define PCR_TX_UNASS_HIGH_IMP 0x00001000 132 133 /* T1 @ 1.544MHz only: Fbit dictated in FIFO (default) or high Z */ 134 #define PCR_TX_FB_HIGH_IMP 0x00000400 135 136 /* 56k data endiannes - which bit unused: high (default) or low */ 137 #define PCR_TX_56KE_BIT_0_UNUSED 0x00000200 138 139 /* 56k data transmission type: 32/8 bit data (default) or 56K data */ 140 #define PCR_TX_56KS_56K_DATA 0x00000100 141 142 /* hss_config, cCR */ 143 /* Number of packetized clients, default = 1 */ 144 #define CCR_NPE_HFIFO_2_HDLC 0x04000000 145 #define CCR_NPE_HFIFO_3_OR_4HDLC 0x08000000 146 147 /* default = no loopback */ 148 #define CCR_LOOPBACK 0x02000000 149 150 /* HSS number, default = 0 (first) */ 151 #define CCR_SECOND_HSS 0x01000000 152 153 154 /* hss_config, clkCR: main:10, num:10, denom:12 */ 155 #define CLK42X_SPEED_EXP ((0x3FF << 22) | ( 2 << 12) | 15) /*65 KHz*/ 156 157 #define CLK42X_SPEED_512KHZ (( 130 << 22) | ( 2 << 12) | 15) 158 #define CLK42X_SPEED_1536KHZ (( 43 << 22) | ( 18 << 12) | 47) 159 #define CLK42X_SPEED_1544KHZ (( 43 << 22) | ( 33 << 12) | 192) 160 #define CLK42X_SPEED_2048KHZ (( 32 << 22) | ( 34 << 12) | 63) 161 #define CLK42X_SPEED_4096KHZ (( 16 << 22) | ( 34 << 12) | 127) 162 #define CLK42X_SPEED_8192KHZ (( 8 << 22) | ( 34 << 12) | 255) 163 164 #define CLK46X_SPEED_512KHZ (( 130 << 22) | ( 24 << 12) | 127) 165 #define CLK46X_SPEED_1536KHZ (( 43 << 22) | (152 << 12) | 383) 166 #define CLK46X_SPEED_1544KHZ (( 43 << 22) | ( 66 << 12) | 385) 167 #define CLK46X_SPEED_2048KHZ (( 32 << 22) | (280 << 12) | 511) 168 #define CLK46X_SPEED_4096KHZ (( 16 << 22) | (280 << 12) | 1023) 169 #define CLK46X_SPEED_8192KHZ (( 8 << 22) | (280 << 12) | 2047) 170 171 /* 172 * HSS_CONFIG_CLOCK_CR register consists of 3 parts: 173 * A (10 bits), B (10 bits) and C (12 bits). 174 * IXP42x HSS clock generator operation (verified with an oscilloscope): 175 * Each clock bit takes 7.5 ns (1 / 133.xx MHz). 176 * The clock sequence consists of (C - B) states of 0s and 1s, each state is 177 * A bits wide. It's followed by (B + 1) states of 0s and 1s, each state is 178 * (A + 1) bits wide. 179 * 180 * The resulting average clock frequency (assuming 33.333 MHz oscillator) is: 181 * freq = 66.666 MHz / (A + (B + 1) / (C + 1)) 182 * minimum freq = 66.666 MHz / (A + 1) 183 * maximum freq = 66.666 MHz / A 184 * 185 * Example: A = 2, B = 2, C = 7, CLOCK_CR register = 2 << 22 | 2 << 12 | 7 186 * freq = 66.666 MHz / (2 + (2 + 1) / (7 + 1)) = 28.07 MHz (Mb/s). 187 * The clock sequence is: 1100110011 (5 doubles) 000111000 (3 triples). 188 * The sequence takes (C - B) * A + (B + 1) * (A + 1) = 5 * 2 + 3 * 3 bits 189 * = 19 bits (each 7.5 ns long) = 142.5 ns (then the sequence repeats). 190 * The sequence consists of 4 complete clock periods, thus the average 191 * frequency (= clock rate) is 4 / 142.5 ns = 28.07 MHz (Mb/s). 192 * (max specified clock rate for IXP42x HSS is 8.192 Mb/s). 193 */ 194 195 /* hss_config, LUT entries */ 196 #define TDMMAP_UNASSIGNED 0 197 #define TDMMAP_HDLC 1 /* HDLC - packetized */ 198 #define TDMMAP_VOICE56K 2 /* Voice56K - 7-bit channelized */ 199 #define TDMMAP_VOICE64K 3 /* Voice64K - 8-bit channelized */ 200 201 /* offsets into HSS config */ 202 #define HSS_CONFIG_TX_PCR 0x00 /* port configuration registers */ 203 #define HSS_CONFIG_RX_PCR 0x04 204 #define HSS_CONFIG_CORE_CR 0x08 /* loopback control, HSS# */ 205 #define HSS_CONFIG_CLOCK_CR 0x0C /* clock generator control */ 206 #define HSS_CONFIG_TX_FCR 0x10 /* frame configuration registers */ 207 #define HSS_CONFIG_RX_FCR 0x14 208 #define HSS_CONFIG_TX_LUT 0x18 /* channel look-up tables */ 209 #define HSS_CONFIG_RX_LUT 0x38 210 211 212 /* NPE command codes */ 213 /* writes the ConfigWord value to the location specified by offset */ 214 #define PORT_CONFIG_WRITE 0x40 215 216 /* triggers the NPE to load the contents of the configuration table */ 217 #define PORT_CONFIG_LOAD 0x41 218 219 /* triggers the NPE to return an HssErrorReadResponse message */ 220 #define PORT_ERROR_READ 0x42 221 222 /* triggers the NPE to reset internal status and enable the HssPacketized 223 operation for the flow specified by pPipe */ 224 #define PKT_PIPE_FLOW_ENABLE 0x50 225 #define PKT_PIPE_FLOW_DISABLE 0x51 226 #define PKT_NUM_PIPES_WRITE 0x52 227 #define PKT_PIPE_FIFO_SIZEW_WRITE 0x53 228 #define PKT_PIPE_HDLC_CFG_WRITE 0x54 229 #define PKT_PIPE_IDLE_PATTERN_WRITE 0x55 230 #define PKT_PIPE_RX_SIZE_WRITE 0x56 231 #define PKT_PIPE_MODE_WRITE 0x57 232 233 /* HDLC packet status values - desc->status */ 234 #define ERR_SHUTDOWN 1 /* stop or shutdown occurrence */ 235 #define ERR_HDLC_ALIGN 2 /* HDLC alignment error */ 236 #define ERR_HDLC_FCS 3 /* HDLC Frame Check Sum error */ 237 #define ERR_RXFREE_Q_EMPTY 4 /* RX-free queue became empty while receiving 238 this packet (if buf_len < pkt_len) */ 239 #define ERR_HDLC_TOO_LONG 5 /* HDLC frame size too long */ 240 #define ERR_HDLC_ABORT 6 /* abort sequence received */ 241 #define ERR_DISCONNECTING 7 /* disconnect is in progress */ 242 243 244 #ifdef __ARMEB__ 245 typedef struct sk_buff buffer_t; 246 #define free_buffer dev_kfree_skb 247 #define free_buffer_irq dev_consume_skb_irq 248 #else 249 typedef void buffer_t; 250 #define free_buffer kfree 251 #define free_buffer_irq kfree 252 #endif 253 254 struct port { 255 struct device *dev; 256 struct npe *npe; 257 struct net_device *netdev; 258 struct napi_struct napi; 259 struct hss_plat_info *plat; 260 buffer_t *rx_buff_tab[RX_DESCS], *tx_buff_tab[TX_DESCS]; 261 struct desc *desc_tab; /* coherent */ 262 dma_addr_t desc_tab_phys; 263 unsigned int id; 264 unsigned int clock_type, clock_rate, loopback; 265 unsigned int initialized, carrier; 266 u8 hdlc_cfg; 267 u32 clock_reg; 268 }; 269 270 /* NPE message structure */ 271 struct msg { 272 #ifdef __ARMEB__ 273 u8 cmd, unused, hss_port, index; 274 union { 275 struct { u8 data8a, data8b, data8c, data8d; }; 276 struct { u16 data16a, data16b; }; 277 struct { u32 data32; }; 278 }; 279 #else 280 u8 index, hss_port, unused, cmd; 281 union { 282 struct { u8 data8d, data8c, data8b, data8a; }; 283 struct { u16 data16b, data16a; }; 284 struct { u32 data32; }; 285 }; 286 #endif 287 }; 288 289 /* HDLC packet descriptor */ 290 struct desc { 291 u32 next; /* pointer to next buffer, unused */ 292 293 #ifdef __ARMEB__ 294 u16 buf_len; /* buffer length */ 295 u16 pkt_len; /* packet length */ 296 u32 data; /* pointer to data buffer in RAM */ 297 u8 status; 298 u8 error_count; 299 u16 __reserved; 300 #else 301 u16 pkt_len; /* packet length */ 302 u16 buf_len; /* buffer length */ 303 u32 data; /* pointer to data buffer in RAM */ 304 u16 __reserved; 305 u8 error_count; 306 u8 status; 307 #endif 308 u32 __reserved1[4]; 309 }; 310 311 312 #define rx_desc_phys(port, n) ((port)->desc_tab_phys + \ 313 (n) * sizeof(struct desc)) 314 #define rx_desc_ptr(port, n) (&(port)->desc_tab[n]) 315 316 #define tx_desc_phys(port, n) ((port)->desc_tab_phys + \ 317 ((n) + RX_DESCS) * sizeof(struct desc)) 318 #define tx_desc_ptr(port, n) (&(port)->desc_tab[(n) + RX_DESCS]) 319 320 /***************************************************************************** 321 * global variables 322 ****************************************************************************/ 323 324 static int ports_open; 325 static struct dma_pool *dma_pool; 326 static spinlock_t npe_lock; 327 328 static const struct { 329 int tx, txdone, rx, rxfree; 330 }queue_ids[2] = {{HSS0_PKT_TX0_QUEUE, HSS0_PKT_TXDONE_QUEUE, HSS0_PKT_RX_QUEUE, 331 HSS0_PKT_RXFREE0_QUEUE}, 332 {HSS1_PKT_TX0_QUEUE, HSS1_PKT_TXDONE_QUEUE, HSS1_PKT_RX_QUEUE, 333 HSS1_PKT_RXFREE0_QUEUE}, 334 }; 335 336 /***************************************************************************** 337 * utility functions 338 ****************************************************************************/ 339 340 static inline struct port* dev_to_port(struct net_device *dev) 341 { 342 return dev_to_hdlc(dev)->priv; 343 } 344 345 #ifndef __ARMEB__ 346 static inline void memcpy_swab32(u32 *dest, u32 *src, int cnt) 347 { 348 int i; 349 for (i = 0; i < cnt; i++) 350 dest[i] = swab32(src[i]); 351 } 352 #endif 353 354 /***************************************************************************** 355 * HSS access 356 ****************************************************************************/ 357 358 static void hss_npe_send(struct port *port, struct msg *msg, const char* what) 359 { 360 u32 *val = (u32*)msg; 361 if (npe_send_message(port->npe, msg, what)) { 362 pr_crit("HSS-%i: unable to send command [%08X:%08X] to %s\n", 363 port->id, val[0], val[1], npe_name(port->npe)); 364 BUG(); 365 } 366 } 367 368 static void hss_config_set_lut(struct port *port) 369 { 370 struct msg msg; 371 int ch; 372 373 memset(&msg, 0, sizeof(msg)); 374 msg.cmd = PORT_CONFIG_WRITE; 375 msg.hss_port = port->id; 376 377 for (ch = 0; ch < MAX_CHANNELS; ch++) { 378 msg.data32 >>= 2; 379 msg.data32 |= TDMMAP_HDLC << 30; 380 381 if (ch % 16 == 15) { 382 msg.index = HSS_CONFIG_TX_LUT + ((ch / 4) & ~3); 383 hss_npe_send(port, &msg, "HSS_SET_TX_LUT"); 384 385 msg.index += HSS_CONFIG_RX_LUT - HSS_CONFIG_TX_LUT; 386 hss_npe_send(port, &msg, "HSS_SET_RX_LUT"); 387 } 388 } 389 } 390 391 static void hss_config(struct port *port) 392 { 393 struct msg msg; 394 395 memset(&msg, 0, sizeof(msg)); 396 msg.cmd = PORT_CONFIG_WRITE; 397 msg.hss_port = port->id; 398 msg.index = HSS_CONFIG_TX_PCR; 399 msg.data32 = PCR_FRM_PULSE_DISABLED | PCR_MSB_ENDIAN | 400 PCR_TX_DATA_ENABLE | PCR_SOF_NO_FBIT; 401 if (port->clock_type == CLOCK_INT) 402 msg.data32 |= PCR_SYNC_CLK_DIR_OUTPUT; 403 hss_npe_send(port, &msg, "HSS_SET_TX_PCR"); 404 405 msg.index = HSS_CONFIG_RX_PCR; 406 msg.data32 ^= PCR_TX_DATA_ENABLE | PCR_DCLK_EDGE_RISING; 407 hss_npe_send(port, &msg, "HSS_SET_RX_PCR"); 408 409 memset(&msg, 0, sizeof(msg)); 410 msg.cmd = PORT_CONFIG_WRITE; 411 msg.hss_port = port->id; 412 msg.index = HSS_CONFIG_CORE_CR; 413 msg.data32 = (port->loopback ? CCR_LOOPBACK : 0) | 414 (port->id ? CCR_SECOND_HSS : 0); 415 hss_npe_send(port, &msg, "HSS_SET_CORE_CR"); 416 417 memset(&msg, 0, sizeof(msg)); 418 msg.cmd = PORT_CONFIG_WRITE; 419 msg.hss_port = port->id; 420 msg.index = HSS_CONFIG_CLOCK_CR; 421 msg.data32 = port->clock_reg; 422 hss_npe_send(port, &msg, "HSS_SET_CLOCK_CR"); 423 424 memset(&msg, 0, sizeof(msg)); 425 msg.cmd = PORT_CONFIG_WRITE; 426 msg.hss_port = port->id; 427 msg.index = HSS_CONFIG_TX_FCR; 428 msg.data16a = FRAME_OFFSET; 429 msg.data16b = FRAME_SIZE - 1; 430 hss_npe_send(port, &msg, "HSS_SET_TX_FCR"); 431 432 memset(&msg, 0, sizeof(msg)); 433 msg.cmd = PORT_CONFIG_WRITE; 434 msg.hss_port = port->id; 435 msg.index = HSS_CONFIG_RX_FCR; 436 msg.data16a = FRAME_OFFSET; 437 msg.data16b = FRAME_SIZE - 1; 438 hss_npe_send(port, &msg, "HSS_SET_RX_FCR"); 439 440 hss_config_set_lut(port); 441 442 memset(&msg, 0, sizeof(msg)); 443 msg.cmd = PORT_CONFIG_LOAD; 444 msg.hss_port = port->id; 445 hss_npe_send(port, &msg, "HSS_LOAD_CONFIG"); 446 447 if (npe_recv_message(port->npe, &msg, "HSS_LOAD_CONFIG") || 448 /* HSS_LOAD_CONFIG for port #1 returns port_id = #4 */ 449 msg.cmd != PORT_CONFIG_LOAD || msg.data32) { 450 pr_crit("HSS-%i: HSS_LOAD_CONFIG failed\n", port->id); 451 BUG(); 452 } 453 454 /* HDLC may stop working without this - check FIXME */ 455 npe_recv_message(port->npe, &msg, "FLUSH_IT"); 456 } 457 458 static void hss_set_hdlc_cfg(struct port *port) 459 { 460 struct msg msg; 461 462 memset(&msg, 0, sizeof(msg)); 463 msg.cmd = PKT_PIPE_HDLC_CFG_WRITE; 464 msg.hss_port = port->id; 465 msg.data8a = port->hdlc_cfg; /* rx_cfg */ 466 msg.data8b = port->hdlc_cfg | (PKT_EXTRA_FLAGS << 3); /* tx_cfg */ 467 hss_npe_send(port, &msg, "HSS_SET_HDLC_CFG"); 468 } 469 470 static u32 hss_get_status(struct port *port) 471 { 472 struct msg msg; 473 474 memset(&msg, 0, sizeof(msg)); 475 msg.cmd = PORT_ERROR_READ; 476 msg.hss_port = port->id; 477 hss_npe_send(port, &msg, "PORT_ERROR_READ"); 478 if (npe_recv_message(port->npe, &msg, "PORT_ERROR_READ")) { 479 pr_crit("HSS-%i: unable to read HSS status\n", port->id); 480 BUG(); 481 } 482 483 return msg.data32; 484 } 485 486 static void hss_start_hdlc(struct port *port) 487 { 488 struct msg msg; 489 490 memset(&msg, 0, sizeof(msg)); 491 msg.cmd = PKT_PIPE_FLOW_ENABLE; 492 msg.hss_port = port->id; 493 msg.data32 = 0; 494 hss_npe_send(port, &msg, "HSS_ENABLE_PKT_PIPE"); 495 } 496 497 static void hss_stop_hdlc(struct port *port) 498 { 499 struct msg msg; 500 501 memset(&msg, 0, sizeof(msg)); 502 msg.cmd = PKT_PIPE_FLOW_DISABLE; 503 msg.hss_port = port->id; 504 hss_npe_send(port, &msg, "HSS_DISABLE_PKT_PIPE"); 505 hss_get_status(port); /* make sure it's halted */ 506 } 507 508 static int hss_load_firmware(struct port *port) 509 { 510 struct msg msg; 511 int err; 512 513 if (port->initialized) 514 return 0; 515 516 if (!npe_running(port->npe) && 517 (err = npe_load_firmware(port->npe, npe_name(port->npe), 518 port->dev))) 519 return err; 520 521 /* HDLC mode configuration */ 522 memset(&msg, 0, sizeof(msg)); 523 msg.cmd = PKT_NUM_PIPES_WRITE; 524 msg.hss_port = port->id; 525 msg.data8a = PKT_NUM_PIPES; 526 hss_npe_send(port, &msg, "HSS_SET_PKT_PIPES"); 527 528 msg.cmd = PKT_PIPE_FIFO_SIZEW_WRITE; 529 msg.data8a = PKT_PIPE_FIFO_SIZEW; 530 hss_npe_send(port, &msg, "HSS_SET_PKT_FIFO"); 531 532 msg.cmd = PKT_PIPE_MODE_WRITE; 533 msg.data8a = NPE_PKT_MODE_HDLC; 534 /* msg.data8b = inv_mask */ 535 /* msg.data8c = or_mask */ 536 hss_npe_send(port, &msg, "HSS_SET_PKT_MODE"); 537 538 msg.cmd = PKT_PIPE_RX_SIZE_WRITE; 539 msg.data16a = HDLC_MAX_MRU; /* including CRC */ 540 hss_npe_send(port, &msg, "HSS_SET_PKT_RX_SIZE"); 541 542 msg.cmd = PKT_PIPE_IDLE_PATTERN_WRITE; 543 msg.data32 = 0x7F7F7F7F; /* ??? FIXME */ 544 hss_npe_send(port, &msg, "HSS_SET_PKT_IDLE"); 545 546 port->initialized = 1; 547 return 0; 548 } 549 550 /***************************************************************************** 551 * packetized (HDLC) operation 552 ****************************************************************************/ 553 554 static inline void debug_pkt(struct net_device *dev, const char *func, 555 u8 *data, int len) 556 { 557 #if DEBUG_PKT_BYTES 558 int i; 559 560 printk(KERN_DEBUG "%s: %s(%i)", dev->name, func, len); 561 for (i = 0; i < len; i++) { 562 if (i >= DEBUG_PKT_BYTES) 563 break; 564 printk("%s%02X", !(i % 4) ? " " : "", data[i]); 565 } 566 printk("\n"); 567 #endif 568 } 569 570 571 static inline void debug_desc(u32 phys, struct desc *desc) 572 { 573 #if DEBUG_DESC 574 printk(KERN_DEBUG "%X: %X %3X %3X %08X %X %X\n", 575 phys, desc->next, desc->buf_len, desc->pkt_len, 576 desc->data, desc->status, desc->error_count); 577 #endif 578 } 579 580 static inline int queue_get_desc(unsigned int queue, struct port *port, 581 int is_tx) 582 { 583 u32 phys, tab_phys, n_desc; 584 struct desc *tab; 585 586 if (!(phys = qmgr_get_entry(queue))) 587 return -1; 588 589 BUG_ON(phys & 0x1F); 590 tab_phys = is_tx ? tx_desc_phys(port, 0) : rx_desc_phys(port, 0); 591 tab = is_tx ? tx_desc_ptr(port, 0) : rx_desc_ptr(port, 0); 592 n_desc = (phys - tab_phys) / sizeof(struct desc); 593 BUG_ON(n_desc >= (is_tx ? TX_DESCS : RX_DESCS)); 594 debug_desc(phys, &tab[n_desc]); 595 BUG_ON(tab[n_desc].next); 596 return n_desc; 597 } 598 599 static inline void queue_put_desc(unsigned int queue, u32 phys, 600 struct desc *desc) 601 { 602 debug_desc(phys, desc); 603 BUG_ON(phys & 0x1F); 604 qmgr_put_entry(queue, phys); 605 /* Don't check for queue overflow here, we've allocated sufficient 606 length and queues >= 32 don't support this check anyway. */ 607 } 608 609 610 static inline void dma_unmap_tx(struct port *port, struct desc *desc) 611 { 612 #ifdef __ARMEB__ 613 dma_unmap_single(&port->netdev->dev, desc->data, 614 desc->buf_len, DMA_TO_DEVICE); 615 #else 616 dma_unmap_single(&port->netdev->dev, desc->data & ~3, 617 ALIGN((desc->data & 3) + desc->buf_len, 4), 618 DMA_TO_DEVICE); 619 #endif 620 } 621 622 623 static void hss_hdlc_set_carrier(void *pdev, int carrier) 624 { 625 struct net_device *netdev = pdev; 626 struct port *port = dev_to_port(netdev); 627 unsigned long flags; 628 629 spin_lock_irqsave(&npe_lock, flags); 630 port->carrier = carrier; 631 if (!port->loopback) { 632 if (carrier) 633 netif_carrier_on(netdev); 634 else 635 netif_carrier_off(netdev); 636 } 637 spin_unlock_irqrestore(&npe_lock, flags); 638 } 639 640 static void hss_hdlc_rx_irq(void *pdev) 641 { 642 struct net_device *dev = pdev; 643 struct port *port = dev_to_port(dev); 644 645 #if DEBUG_RX 646 printk(KERN_DEBUG "%s: hss_hdlc_rx_irq\n", dev->name); 647 #endif 648 qmgr_disable_irq(queue_ids[port->id].rx); 649 napi_schedule(&port->napi); 650 } 651 652 static int hss_hdlc_poll(struct napi_struct *napi, int budget) 653 { 654 struct port *port = container_of(napi, struct port, napi); 655 struct net_device *dev = port->netdev; 656 unsigned int rxq = queue_ids[port->id].rx; 657 unsigned int rxfreeq = queue_ids[port->id].rxfree; 658 int received = 0; 659 660 #if DEBUG_RX 661 printk(KERN_DEBUG "%s: hss_hdlc_poll\n", dev->name); 662 #endif 663 664 while (received < budget) { 665 struct sk_buff *skb; 666 struct desc *desc; 667 int n; 668 #ifdef __ARMEB__ 669 struct sk_buff *temp; 670 u32 phys; 671 #endif 672 673 if ((n = queue_get_desc(rxq, port, 0)) < 0) { 674 #if DEBUG_RX 675 printk(KERN_DEBUG "%s: hss_hdlc_poll" 676 " napi_complete\n", dev->name); 677 #endif 678 napi_complete(napi); 679 qmgr_enable_irq(rxq); 680 if (!qmgr_stat_empty(rxq) && 681 napi_reschedule(napi)) { 682 #if DEBUG_RX 683 printk(KERN_DEBUG "%s: hss_hdlc_poll" 684 " napi_reschedule succeeded\n", 685 dev->name); 686 #endif 687 qmgr_disable_irq(rxq); 688 continue; 689 } 690 #if DEBUG_RX 691 printk(KERN_DEBUG "%s: hss_hdlc_poll all done\n", 692 dev->name); 693 #endif 694 return received; /* all work done */ 695 } 696 697 desc = rx_desc_ptr(port, n); 698 #if 0 /* FIXME - error_count counts modulo 256, perhaps we should use it */ 699 if (desc->error_count) 700 printk(KERN_DEBUG "%s: hss_hdlc_poll status 0x%02X" 701 " errors %u\n", dev->name, desc->status, 702 desc->error_count); 703 #endif 704 skb = NULL; 705 switch (desc->status) { 706 case 0: 707 #ifdef __ARMEB__ 708 if ((skb = netdev_alloc_skb(dev, RX_SIZE)) != NULL) { 709 phys = dma_map_single(&dev->dev, skb->data, 710 RX_SIZE, 711 DMA_FROM_DEVICE); 712 if (dma_mapping_error(&dev->dev, phys)) { 713 dev_kfree_skb(skb); 714 skb = NULL; 715 } 716 } 717 #else 718 skb = netdev_alloc_skb(dev, desc->pkt_len); 719 #endif 720 if (!skb) 721 dev->stats.rx_dropped++; 722 break; 723 case ERR_HDLC_ALIGN: 724 case ERR_HDLC_ABORT: 725 dev->stats.rx_frame_errors++; 726 dev->stats.rx_errors++; 727 break; 728 case ERR_HDLC_FCS: 729 dev->stats.rx_crc_errors++; 730 dev->stats.rx_errors++; 731 break; 732 case ERR_HDLC_TOO_LONG: 733 dev->stats.rx_length_errors++; 734 dev->stats.rx_errors++; 735 break; 736 default: /* FIXME - remove printk */ 737 netdev_err(dev, "hss_hdlc_poll: status 0x%02X errors %u\n", 738 desc->status, desc->error_count); 739 dev->stats.rx_errors++; 740 } 741 742 if (!skb) { 743 /* put the desc back on RX-ready queue */ 744 desc->buf_len = RX_SIZE; 745 desc->pkt_len = desc->status = 0; 746 queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc); 747 continue; 748 } 749 750 /* process received frame */ 751 #ifdef __ARMEB__ 752 temp = skb; 753 skb = port->rx_buff_tab[n]; 754 dma_unmap_single(&dev->dev, desc->data, 755 RX_SIZE, DMA_FROM_DEVICE); 756 #else 757 dma_sync_single_for_cpu(&dev->dev, desc->data, 758 RX_SIZE, DMA_FROM_DEVICE); 759 memcpy_swab32((u32 *)skb->data, (u32 *)port->rx_buff_tab[n], 760 ALIGN(desc->pkt_len, 4) / 4); 761 #endif 762 skb_put(skb, desc->pkt_len); 763 764 debug_pkt(dev, "hss_hdlc_poll", skb->data, skb->len); 765 766 skb->protocol = hdlc_type_trans(skb, dev); 767 dev->stats.rx_packets++; 768 dev->stats.rx_bytes += skb->len; 769 netif_receive_skb(skb); 770 771 /* put the new buffer on RX-free queue */ 772 #ifdef __ARMEB__ 773 port->rx_buff_tab[n] = temp; 774 desc->data = phys; 775 #endif 776 desc->buf_len = RX_SIZE; 777 desc->pkt_len = 0; 778 queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc); 779 received++; 780 } 781 #if DEBUG_RX 782 printk(KERN_DEBUG "hss_hdlc_poll: end, not all work done\n"); 783 #endif 784 return received; /* not all work done */ 785 } 786 787 788 static void hss_hdlc_txdone_irq(void *pdev) 789 { 790 struct net_device *dev = pdev; 791 struct port *port = dev_to_port(dev); 792 int n_desc; 793 794 #if DEBUG_TX 795 printk(KERN_DEBUG DRV_NAME ": hss_hdlc_txdone_irq\n"); 796 #endif 797 while ((n_desc = queue_get_desc(queue_ids[port->id].txdone, 798 port, 1)) >= 0) { 799 struct desc *desc; 800 int start; 801 802 desc = tx_desc_ptr(port, n_desc); 803 804 dev->stats.tx_packets++; 805 dev->stats.tx_bytes += desc->pkt_len; 806 807 dma_unmap_tx(port, desc); 808 #if DEBUG_TX 809 printk(KERN_DEBUG "%s: hss_hdlc_txdone_irq free %p\n", 810 dev->name, port->tx_buff_tab[n_desc]); 811 #endif 812 free_buffer_irq(port->tx_buff_tab[n_desc]); 813 port->tx_buff_tab[n_desc] = NULL; 814 815 start = qmgr_stat_below_low_watermark(port->plat->txreadyq); 816 queue_put_desc(port->plat->txreadyq, 817 tx_desc_phys(port, n_desc), desc); 818 if (start) { /* TX-ready queue was empty */ 819 #if DEBUG_TX 820 printk(KERN_DEBUG "%s: hss_hdlc_txdone_irq xmit" 821 " ready\n", dev->name); 822 #endif 823 netif_wake_queue(dev); 824 } 825 } 826 } 827 828 static int hss_hdlc_xmit(struct sk_buff *skb, struct net_device *dev) 829 { 830 struct port *port = dev_to_port(dev); 831 unsigned int txreadyq = port->plat->txreadyq; 832 int len, offset, bytes, n; 833 void *mem; 834 u32 phys; 835 struct desc *desc; 836 837 #if DEBUG_TX 838 printk(KERN_DEBUG "%s: hss_hdlc_xmit\n", dev->name); 839 #endif 840 841 if (unlikely(skb->len > HDLC_MAX_MRU)) { 842 dev_kfree_skb(skb); 843 dev->stats.tx_errors++; 844 return NETDEV_TX_OK; 845 } 846 847 debug_pkt(dev, "hss_hdlc_xmit", skb->data, skb->len); 848 849 len = skb->len; 850 #ifdef __ARMEB__ 851 offset = 0; /* no need to keep alignment */ 852 bytes = len; 853 mem = skb->data; 854 #else 855 offset = (int)skb->data & 3; /* keep 32-bit alignment */ 856 bytes = ALIGN(offset + len, 4); 857 if (!(mem = kmalloc(bytes, GFP_ATOMIC))) { 858 dev_kfree_skb(skb); 859 dev->stats.tx_dropped++; 860 return NETDEV_TX_OK; 861 } 862 memcpy_swab32(mem, (u32 *)((uintptr_t)skb->data & ~3), bytes / 4); 863 dev_kfree_skb(skb); 864 #endif 865 866 phys = dma_map_single(&dev->dev, mem, bytes, DMA_TO_DEVICE); 867 if (dma_mapping_error(&dev->dev, phys)) { 868 #ifdef __ARMEB__ 869 dev_kfree_skb(skb); 870 #else 871 kfree(mem); 872 #endif 873 dev->stats.tx_dropped++; 874 return NETDEV_TX_OK; 875 } 876 877 n = queue_get_desc(txreadyq, port, 1); 878 BUG_ON(n < 0); 879 desc = tx_desc_ptr(port, n); 880 881 #ifdef __ARMEB__ 882 port->tx_buff_tab[n] = skb; 883 #else 884 port->tx_buff_tab[n] = mem; 885 #endif 886 desc->data = phys + offset; 887 desc->buf_len = desc->pkt_len = len; 888 889 wmb(); 890 queue_put_desc(queue_ids[port->id].tx, tx_desc_phys(port, n), desc); 891 892 if (qmgr_stat_below_low_watermark(txreadyq)) { /* empty */ 893 #if DEBUG_TX 894 printk(KERN_DEBUG "%s: hss_hdlc_xmit queue full\n", dev->name); 895 #endif 896 netif_stop_queue(dev); 897 /* we could miss TX ready interrupt */ 898 if (!qmgr_stat_below_low_watermark(txreadyq)) { 899 #if DEBUG_TX 900 printk(KERN_DEBUG "%s: hss_hdlc_xmit ready again\n", 901 dev->name); 902 #endif 903 netif_wake_queue(dev); 904 } 905 } 906 907 #if DEBUG_TX 908 printk(KERN_DEBUG "%s: hss_hdlc_xmit end\n", dev->name); 909 #endif 910 return NETDEV_TX_OK; 911 } 912 913 914 static int request_hdlc_queues(struct port *port) 915 { 916 int err; 917 918 err = qmgr_request_queue(queue_ids[port->id].rxfree, RX_DESCS, 0, 0, 919 "%s:RX-free", port->netdev->name); 920 if (err) 921 return err; 922 923 err = qmgr_request_queue(queue_ids[port->id].rx, RX_DESCS, 0, 0, 924 "%s:RX", port->netdev->name); 925 if (err) 926 goto rel_rxfree; 927 928 err = qmgr_request_queue(queue_ids[port->id].tx, TX_DESCS, 0, 0, 929 "%s:TX", port->netdev->name); 930 if (err) 931 goto rel_rx; 932 933 err = qmgr_request_queue(port->plat->txreadyq, TX_DESCS, 0, 0, 934 "%s:TX-ready", port->netdev->name); 935 if (err) 936 goto rel_tx; 937 938 err = qmgr_request_queue(queue_ids[port->id].txdone, TX_DESCS, 0, 0, 939 "%s:TX-done", port->netdev->name); 940 if (err) 941 goto rel_txready; 942 return 0; 943 944 rel_txready: 945 qmgr_release_queue(port->plat->txreadyq); 946 rel_tx: 947 qmgr_release_queue(queue_ids[port->id].tx); 948 rel_rx: 949 qmgr_release_queue(queue_ids[port->id].rx); 950 rel_rxfree: 951 qmgr_release_queue(queue_ids[port->id].rxfree); 952 printk(KERN_DEBUG "%s: unable to request hardware queues\n", 953 port->netdev->name); 954 return err; 955 } 956 957 static void release_hdlc_queues(struct port *port) 958 { 959 qmgr_release_queue(queue_ids[port->id].rxfree); 960 qmgr_release_queue(queue_ids[port->id].rx); 961 qmgr_release_queue(queue_ids[port->id].txdone); 962 qmgr_release_queue(queue_ids[port->id].tx); 963 qmgr_release_queue(port->plat->txreadyq); 964 } 965 966 static int init_hdlc_queues(struct port *port) 967 { 968 int i; 969 970 if (!ports_open) { 971 dma_pool = dma_pool_create(DRV_NAME, &port->netdev->dev, 972 POOL_ALLOC_SIZE, 32, 0); 973 if (!dma_pool) 974 return -ENOMEM; 975 } 976 977 if (!(port->desc_tab = dma_pool_alloc(dma_pool, GFP_KERNEL, 978 &port->desc_tab_phys))) 979 return -ENOMEM; 980 memset(port->desc_tab, 0, POOL_ALLOC_SIZE); 981 memset(port->rx_buff_tab, 0, sizeof(port->rx_buff_tab)); /* tables */ 982 memset(port->tx_buff_tab, 0, sizeof(port->tx_buff_tab)); 983 984 /* Setup RX buffers */ 985 for (i = 0; i < RX_DESCS; i++) { 986 struct desc *desc = rx_desc_ptr(port, i); 987 buffer_t *buff; 988 void *data; 989 #ifdef __ARMEB__ 990 if (!(buff = netdev_alloc_skb(port->netdev, RX_SIZE))) 991 return -ENOMEM; 992 data = buff->data; 993 #else 994 if (!(buff = kmalloc(RX_SIZE, GFP_KERNEL))) 995 return -ENOMEM; 996 data = buff; 997 #endif 998 desc->buf_len = RX_SIZE; 999 desc->data = dma_map_single(&port->netdev->dev, data, 1000 RX_SIZE, DMA_FROM_DEVICE); 1001 if (dma_mapping_error(&port->netdev->dev, desc->data)) { 1002 free_buffer(buff); 1003 return -EIO; 1004 } 1005 port->rx_buff_tab[i] = buff; 1006 } 1007 1008 return 0; 1009 } 1010 1011 static void destroy_hdlc_queues(struct port *port) 1012 { 1013 int i; 1014 1015 if (port->desc_tab) { 1016 for (i = 0; i < RX_DESCS; i++) { 1017 struct desc *desc = rx_desc_ptr(port, i); 1018 buffer_t *buff = port->rx_buff_tab[i]; 1019 if (buff) { 1020 dma_unmap_single(&port->netdev->dev, 1021 desc->data, RX_SIZE, 1022 DMA_FROM_DEVICE); 1023 free_buffer(buff); 1024 } 1025 } 1026 for (i = 0; i < TX_DESCS; i++) { 1027 struct desc *desc = tx_desc_ptr(port, i); 1028 buffer_t *buff = port->tx_buff_tab[i]; 1029 if (buff) { 1030 dma_unmap_tx(port, desc); 1031 free_buffer(buff); 1032 } 1033 } 1034 dma_pool_free(dma_pool, port->desc_tab, port->desc_tab_phys); 1035 port->desc_tab = NULL; 1036 } 1037 1038 if (!ports_open && dma_pool) { 1039 dma_pool_destroy(dma_pool); 1040 dma_pool = NULL; 1041 } 1042 } 1043 1044 static int hss_hdlc_open(struct net_device *dev) 1045 { 1046 struct port *port = dev_to_port(dev); 1047 unsigned long flags; 1048 int i, err = 0; 1049 1050 if ((err = hdlc_open(dev))) 1051 return err; 1052 1053 if ((err = hss_load_firmware(port))) 1054 goto err_hdlc_close; 1055 1056 if ((err = request_hdlc_queues(port))) 1057 goto err_hdlc_close; 1058 1059 if ((err = init_hdlc_queues(port))) 1060 goto err_destroy_queues; 1061 1062 spin_lock_irqsave(&npe_lock, flags); 1063 if (port->plat->open) 1064 if ((err = port->plat->open(port->id, dev, 1065 hss_hdlc_set_carrier))) 1066 goto err_unlock; 1067 spin_unlock_irqrestore(&npe_lock, flags); 1068 1069 /* Populate queues with buffers, no failure after this point */ 1070 for (i = 0; i < TX_DESCS; i++) 1071 queue_put_desc(port->plat->txreadyq, 1072 tx_desc_phys(port, i), tx_desc_ptr(port, i)); 1073 1074 for (i = 0; i < RX_DESCS; i++) 1075 queue_put_desc(queue_ids[port->id].rxfree, 1076 rx_desc_phys(port, i), rx_desc_ptr(port, i)); 1077 1078 napi_enable(&port->napi); 1079 netif_start_queue(dev); 1080 1081 qmgr_set_irq(queue_ids[port->id].rx, QUEUE_IRQ_SRC_NOT_EMPTY, 1082 hss_hdlc_rx_irq, dev); 1083 1084 qmgr_set_irq(queue_ids[port->id].txdone, QUEUE_IRQ_SRC_NOT_EMPTY, 1085 hss_hdlc_txdone_irq, dev); 1086 qmgr_enable_irq(queue_ids[port->id].txdone); 1087 1088 ports_open++; 1089 1090 hss_set_hdlc_cfg(port); 1091 hss_config(port); 1092 1093 hss_start_hdlc(port); 1094 1095 /* we may already have RX data, enables IRQ */ 1096 napi_schedule(&port->napi); 1097 return 0; 1098 1099 err_unlock: 1100 spin_unlock_irqrestore(&npe_lock, flags); 1101 err_destroy_queues: 1102 destroy_hdlc_queues(port); 1103 release_hdlc_queues(port); 1104 err_hdlc_close: 1105 hdlc_close(dev); 1106 return err; 1107 } 1108 1109 static int hss_hdlc_close(struct net_device *dev) 1110 { 1111 struct port *port = dev_to_port(dev); 1112 unsigned long flags; 1113 int i, buffs = RX_DESCS; /* allocated RX buffers */ 1114 1115 spin_lock_irqsave(&npe_lock, flags); 1116 ports_open--; 1117 qmgr_disable_irq(queue_ids[port->id].rx); 1118 netif_stop_queue(dev); 1119 napi_disable(&port->napi); 1120 1121 hss_stop_hdlc(port); 1122 1123 while (queue_get_desc(queue_ids[port->id].rxfree, port, 0) >= 0) 1124 buffs--; 1125 while (queue_get_desc(queue_ids[port->id].rx, port, 0) >= 0) 1126 buffs--; 1127 1128 if (buffs) 1129 netdev_crit(dev, "unable to drain RX queue, %i buffer(s) left in NPE\n", 1130 buffs); 1131 1132 buffs = TX_DESCS; 1133 while (queue_get_desc(queue_ids[port->id].tx, port, 1) >= 0) 1134 buffs--; /* cancel TX */ 1135 1136 i = 0; 1137 do { 1138 while (queue_get_desc(port->plat->txreadyq, port, 1) >= 0) 1139 buffs--; 1140 if (!buffs) 1141 break; 1142 } while (++i < MAX_CLOSE_WAIT); 1143 1144 if (buffs) 1145 netdev_crit(dev, "unable to drain TX queue, %i buffer(s) left in NPE\n", 1146 buffs); 1147 #if DEBUG_CLOSE 1148 if (!buffs) 1149 printk(KERN_DEBUG "Draining TX queues took %i cycles\n", i); 1150 #endif 1151 qmgr_disable_irq(queue_ids[port->id].txdone); 1152 1153 if (port->plat->close) 1154 port->plat->close(port->id, dev); 1155 spin_unlock_irqrestore(&npe_lock, flags); 1156 1157 destroy_hdlc_queues(port); 1158 release_hdlc_queues(port); 1159 hdlc_close(dev); 1160 return 0; 1161 } 1162 1163 1164 static int hss_hdlc_attach(struct net_device *dev, unsigned short encoding, 1165 unsigned short parity) 1166 { 1167 struct port *port = dev_to_port(dev); 1168 1169 if (encoding != ENCODING_NRZ) 1170 return -EINVAL; 1171 1172 switch(parity) { 1173 case PARITY_CRC16_PR1_CCITT: 1174 port->hdlc_cfg = 0; 1175 return 0; 1176 1177 case PARITY_CRC32_PR1_CCITT: 1178 port->hdlc_cfg = PKT_HDLC_CRC_32; 1179 return 0; 1180 1181 default: 1182 return -EINVAL; 1183 } 1184 } 1185 1186 static u32 check_clock(u32 timer_freq, u32 rate, u32 a, u32 b, u32 c, 1187 u32 *best, u32 *best_diff, u32 *reg) 1188 { 1189 /* a is 10-bit, b is 10-bit, c is 12-bit */ 1190 u64 new_rate; 1191 u32 new_diff; 1192 1193 new_rate = timer_freq * (u64)(c + 1); 1194 do_div(new_rate, a * (c + 1) + b + 1); 1195 new_diff = abs((u32)new_rate - rate); 1196 1197 if (new_diff < *best_diff) { 1198 *best = new_rate; 1199 *best_diff = new_diff; 1200 *reg = (a << 22) | (b << 12) | c; 1201 } 1202 return new_diff; 1203 } 1204 1205 static void find_best_clock(u32 timer_freq, u32 rate, u32 *best, u32 *reg) 1206 { 1207 u32 a, b, diff = 0xFFFFFFFF; 1208 1209 a = timer_freq / rate; 1210 1211 if (a > 0x3FF) { /* 10-bit value - we can go as slow as ca. 65 kb/s */ 1212 check_clock(timer_freq, rate, 0x3FF, 1, 1, best, &diff, reg); 1213 return; 1214 } 1215 if (a == 0) { /* > 66.666 MHz */ 1216 a = 1; /* minimum divider is 1 (a = 0, b = 1, c = 1) */ 1217 rate = timer_freq; 1218 } 1219 1220 if (rate * a == timer_freq) { /* don't divide by 0 later */ 1221 check_clock(timer_freq, rate, a - 1, 1, 1, best, &diff, reg); 1222 return; 1223 } 1224 1225 for (b = 0; b < 0x400; b++) { 1226 u64 c = (b + 1) * (u64)rate; 1227 do_div(c, timer_freq - rate * a); 1228 c--; 1229 if (c >= 0xFFF) { /* 12-bit - no need to check more 'b's */ 1230 if (b == 0 && /* also try a bit higher rate */ 1231 !check_clock(timer_freq, rate, a - 1, 1, 1, best, 1232 &diff, reg)) 1233 return; 1234 check_clock(timer_freq, rate, a, b, 0xFFF, best, 1235 &diff, reg); 1236 return; 1237 } 1238 if (!check_clock(timer_freq, rate, a, b, c, best, &diff, reg)) 1239 return; 1240 if (!check_clock(timer_freq, rate, a, b, c + 1, best, &diff, 1241 reg)) 1242 return; 1243 } 1244 } 1245 1246 static int hss_hdlc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 1247 { 1248 const size_t size = sizeof(sync_serial_settings); 1249 sync_serial_settings new_line; 1250 sync_serial_settings __user *line = ifr->ifr_settings.ifs_ifsu.sync; 1251 struct port *port = dev_to_port(dev); 1252 unsigned long flags; 1253 int clk; 1254 1255 if (cmd != SIOCWANDEV) 1256 return hdlc_ioctl(dev, ifr, cmd); 1257 1258 switch(ifr->ifr_settings.type) { 1259 case IF_GET_IFACE: 1260 ifr->ifr_settings.type = IF_IFACE_V35; 1261 if (ifr->ifr_settings.size < size) { 1262 ifr->ifr_settings.size = size; /* data size wanted */ 1263 return -ENOBUFS; 1264 } 1265 memset(&new_line, 0, sizeof(new_line)); 1266 new_line.clock_type = port->clock_type; 1267 new_line.clock_rate = port->clock_rate; 1268 new_line.loopback = port->loopback; 1269 if (copy_to_user(line, &new_line, size)) 1270 return -EFAULT; 1271 return 0; 1272 1273 case IF_IFACE_SYNC_SERIAL: 1274 case IF_IFACE_V35: 1275 if(!capable(CAP_NET_ADMIN)) 1276 return -EPERM; 1277 if (copy_from_user(&new_line, line, size)) 1278 return -EFAULT; 1279 1280 clk = new_line.clock_type; 1281 if (port->plat->set_clock) 1282 clk = port->plat->set_clock(port->id, clk); 1283 1284 if (clk != CLOCK_EXT && clk != CLOCK_INT) 1285 return -EINVAL; /* No such clock setting */ 1286 1287 if (new_line.loopback != 0 && new_line.loopback != 1) 1288 return -EINVAL; 1289 1290 port->clock_type = clk; /* Update settings */ 1291 if (clk == CLOCK_INT) 1292 find_best_clock(port->plat->timer_freq, 1293 new_line.clock_rate, 1294 &port->clock_rate, &port->clock_reg); 1295 else { 1296 port->clock_rate = 0; 1297 port->clock_reg = CLK42X_SPEED_2048KHZ; 1298 } 1299 port->loopback = new_line.loopback; 1300 1301 spin_lock_irqsave(&npe_lock, flags); 1302 1303 if (dev->flags & IFF_UP) 1304 hss_config(port); 1305 1306 if (port->loopback || port->carrier) 1307 netif_carrier_on(port->netdev); 1308 else 1309 netif_carrier_off(port->netdev); 1310 spin_unlock_irqrestore(&npe_lock, flags); 1311 1312 return 0; 1313 1314 default: 1315 return hdlc_ioctl(dev, ifr, cmd); 1316 } 1317 } 1318 1319 /***************************************************************************** 1320 * initialization 1321 ****************************************************************************/ 1322 1323 static const struct net_device_ops hss_hdlc_ops = { 1324 .ndo_open = hss_hdlc_open, 1325 .ndo_stop = hss_hdlc_close, 1326 .ndo_start_xmit = hdlc_start_xmit, 1327 .ndo_do_ioctl = hss_hdlc_ioctl, 1328 }; 1329 1330 static int hss_init_one(struct platform_device *pdev) 1331 { 1332 struct port *port; 1333 struct net_device *dev; 1334 hdlc_device *hdlc; 1335 int err; 1336 1337 if ((port = kzalloc(sizeof(*port), GFP_KERNEL)) == NULL) 1338 return -ENOMEM; 1339 1340 if ((port->npe = npe_request(0)) == NULL) { 1341 err = -ENODEV; 1342 goto err_free; 1343 } 1344 1345 if ((port->netdev = dev = alloc_hdlcdev(port)) == NULL) { 1346 err = -ENOMEM; 1347 goto err_plat; 1348 } 1349 1350 SET_NETDEV_DEV(dev, &pdev->dev); 1351 hdlc = dev_to_hdlc(dev); 1352 hdlc->attach = hss_hdlc_attach; 1353 hdlc->xmit = hss_hdlc_xmit; 1354 dev->netdev_ops = &hss_hdlc_ops; 1355 dev->tx_queue_len = 100; 1356 port->clock_type = CLOCK_EXT; 1357 port->clock_rate = 0; 1358 port->clock_reg = CLK42X_SPEED_2048KHZ; 1359 port->id = pdev->id; 1360 port->dev = &pdev->dev; 1361 port->plat = pdev->dev.platform_data; 1362 netif_napi_add(dev, &port->napi, hss_hdlc_poll, NAPI_WEIGHT); 1363 1364 if ((err = register_hdlc_device(dev))) 1365 goto err_free_netdev; 1366 1367 platform_set_drvdata(pdev, port); 1368 1369 netdev_info(dev, "initialized\n"); 1370 return 0; 1371 1372 err_free_netdev: 1373 free_netdev(dev); 1374 err_plat: 1375 npe_release(port->npe); 1376 err_free: 1377 kfree(port); 1378 return err; 1379 } 1380 1381 static int hss_remove_one(struct platform_device *pdev) 1382 { 1383 struct port *port = platform_get_drvdata(pdev); 1384 1385 unregister_hdlc_device(port->netdev); 1386 free_netdev(port->netdev); 1387 npe_release(port->npe); 1388 kfree(port); 1389 return 0; 1390 } 1391 1392 static struct platform_driver ixp4xx_hss_driver = { 1393 .driver.name = DRV_NAME, 1394 .probe = hss_init_one, 1395 .remove = hss_remove_one, 1396 }; 1397 1398 static int __init hss_init_module(void) 1399 { 1400 if ((ixp4xx_read_feature_bits() & 1401 (IXP4XX_FEATURE_HDLC | IXP4XX_FEATURE_HSS)) != 1402 (IXP4XX_FEATURE_HDLC | IXP4XX_FEATURE_HSS)) 1403 return -ENODEV; 1404 1405 spin_lock_init(&npe_lock); 1406 1407 return platform_driver_register(&ixp4xx_hss_driver); 1408 } 1409 1410 static void __exit hss_cleanup_module(void) 1411 { 1412 platform_driver_unregister(&ixp4xx_hss_driver); 1413 } 1414 1415 MODULE_AUTHOR("Krzysztof Halasa"); 1416 MODULE_DESCRIPTION("Intel IXP4xx HSS driver"); 1417 MODULE_LICENSE("GPL v2"); 1418 MODULE_ALIAS("platform:ixp4xx_hss"); 1419 module_init(hss_init_module); 1420 module_exit(hss_cleanup_module); 1421