1 /* 2 * Intel IXP4xx HSS (synchronous serial port) driver for Linux 3 * 4 * Copyright (C) 2007-2008 Krzysztof Hałasa <khc@pm.waw.pl> 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of version 2 of the GNU General Public License 8 * as published by the Free Software Foundation. 9 */ 10 11 #include <linux/bitops.h> 12 #include <linux/cdev.h> 13 #include <linux/dma-mapping.h> 14 #include <linux/dmapool.h> 15 #include <linux/fs.h> 16 #include <linux/hdlc.h> 17 #include <linux/io.h> 18 #include <linux/kernel.h> 19 #include <linux/platform_device.h> 20 #include <linux/poll.h> 21 #include <linux/slab.h> 22 #include <mach/npe.h> 23 #include <mach/qmgr.h> 24 25 #define DEBUG_DESC 0 26 #define DEBUG_RX 0 27 #define DEBUG_TX 0 28 #define DEBUG_PKT_BYTES 0 29 #define DEBUG_CLOSE 0 30 31 #define DRV_NAME "ixp4xx_hss" 32 33 #define PKT_EXTRA_FLAGS 0 /* orig 1 */ 34 #define PKT_NUM_PIPES 1 /* 1, 2 or 4 */ 35 #define PKT_PIPE_FIFO_SIZEW 4 /* total 4 dwords per HSS */ 36 37 #define RX_DESCS 16 /* also length of all RX queues */ 38 #define TX_DESCS 16 /* also length of all TX queues */ 39 40 #define POOL_ALLOC_SIZE (sizeof(struct desc) * (RX_DESCS + TX_DESCS)) 41 #define RX_SIZE (HDLC_MAX_MRU + 4) /* NPE needs more space */ 42 #define MAX_CLOSE_WAIT 1000 /* microseconds */ 43 #define HSS_COUNT 2 44 #define FRAME_SIZE 256 /* doesn't matter at this point */ 45 #define FRAME_OFFSET 0 46 #define MAX_CHANNELS (FRAME_SIZE / 8) 47 48 #define NAPI_WEIGHT 16 49 50 /* Queue IDs */ 51 #define HSS0_CHL_RXTRIG_QUEUE 12 /* orig size = 32 dwords */ 52 #define HSS0_PKT_RX_QUEUE 13 /* orig size = 32 dwords */ 53 #define HSS0_PKT_TX0_QUEUE 14 /* orig size = 16 dwords */ 54 #define HSS0_PKT_TX1_QUEUE 15 55 #define HSS0_PKT_TX2_QUEUE 16 56 #define HSS0_PKT_TX3_QUEUE 17 57 #define HSS0_PKT_RXFREE0_QUEUE 18 /* orig size = 16 dwords */ 58 #define HSS0_PKT_RXFREE1_QUEUE 19 59 #define HSS0_PKT_RXFREE2_QUEUE 20 60 #define HSS0_PKT_RXFREE3_QUEUE 21 61 #define HSS0_PKT_TXDONE_QUEUE 22 /* orig size = 64 dwords */ 62 63 #define HSS1_CHL_RXTRIG_QUEUE 10 64 #define HSS1_PKT_RX_QUEUE 0 65 #define HSS1_PKT_TX0_QUEUE 5 66 #define HSS1_PKT_TX1_QUEUE 6 67 #define HSS1_PKT_TX2_QUEUE 7 68 #define HSS1_PKT_TX3_QUEUE 8 69 #define HSS1_PKT_RXFREE0_QUEUE 1 70 #define HSS1_PKT_RXFREE1_QUEUE 2 71 #define HSS1_PKT_RXFREE2_QUEUE 3 72 #define HSS1_PKT_RXFREE3_QUEUE 4 73 #define HSS1_PKT_TXDONE_QUEUE 9 74 75 #define NPE_PKT_MODE_HDLC 0 76 #define NPE_PKT_MODE_RAW 1 77 #define NPE_PKT_MODE_56KMODE 2 78 #define NPE_PKT_MODE_56KENDIAN_MSB 4 79 80 /* PKT_PIPE_HDLC_CFG_WRITE flags */ 81 #define PKT_HDLC_IDLE_ONES 0x1 /* default = flags */ 82 #define PKT_HDLC_CRC_32 0x2 /* default = CRC-16 */ 83 #define PKT_HDLC_MSB_ENDIAN 0x4 /* default = LE */ 84 85 86 /* hss_config, PCRs */ 87 /* Frame sync sampling, default = active low */ 88 #define PCR_FRM_SYNC_ACTIVE_HIGH 0x40000000 89 #define PCR_FRM_SYNC_FALLINGEDGE 0x80000000 90 #define PCR_FRM_SYNC_RISINGEDGE 0xC0000000 91 92 /* Frame sync pin: input (default) or output generated off a given clk edge */ 93 #define PCR_FRM_SYNC_OUTPUT_FALLING 0x20000000 94 #define PCR_FRM_SYNC_OUTPUT_RISING 0x30000000 95 96 /* Frame and data clock sampling on edge, default = falling */ 97 #define PCR_FCLK_EDGE_RISING 0x08000000 98 #define PCR_DCLK_EDGE_RISING 0x04000000 99 100 /* Clock direction, default = input */ 101 #define PCR_SYNC_CLK_DIR_OUTPUT 0x02000000 102 103 /* Generate/Receive frame pulses, default = enabled */ 104 #define PCR_FRM_PULSE_DISABLED 0x01000000 105 106 /* Data rate is full (default) or half the configured clk speed */ 107 #define PCR_HALF_CLK_RATE 0x00200000 108 109 /* Invert data between NPE and HSS FIFOs? (default = no) */ 110 #define PCR_DATA_POLARITY_INVERT 0x00100000 111 112 /* TX/RX endianness, default = LSB */ 113 #define PCR_MSB_ENDIAN 0x00080000 114 115 /* Normal (default) / open drain mode (TX only) */ 116 #define PCR_TX_PINS_OPEN_DRAIN 0x00040000 117 118 /* No framing bit transmitted and expected on RX? (default = framing bit) */ 119 #define PCR_SOF_NO_FBIT 0x00020000 120 121 /* Drive data pins? */ 122 #define PCR_TX_DATA_ENABLE 0x00010000 123 124 /* Voice 56k type: drive the data pins low (default), high, high Z */ 125 #define PCR_TX_V56K_HIGH 0x00002000 126 #define PCR_TX_V56K_HIGH_IMP 0x00004000 127 128 /* Unassigned type: drive the data pins low (default), high, high Z */ 129 #define PCR_TX_UNASS_HIGH 0x00000800 130 #define PCR_TX_UNASS_HIGH_IMP 0x00001000 131 132 /* T1 @ 1.544MHz only: Fbit dictated in FIFO (default) or high Z */ 133 #define PCR_TX_FB_HIGH_IMP 0x00000400 134 135 /* 56k data endiannes - which bit unused: high (default) or low */ 136 #define PCR_TX_56KE_BIT_0_UNUSED 0x00000200 137 138 /* 56k data transmission type: 32/8 bit data (default) or 56K data */ 139 #define PCR_TX_56KS_56K_DATA 0x00000100 140 141 /* hss_config, cCR */ 142 /* Number of packetized clients, default = 1 */ 143 #define CCR_NPE_HFIFO_2_HDLC 0x04000000 144 #define CCR_NPE_HFIFO_3_OR_4HDLC 0x08000000 145 146 /* default = no loopback */ 147 #define CCR_LOOPBACK 0x02000000 148 149 /* HSS number, default = 0 (first) */ 150 #define CCR_SECOND_HSS 0x01000000 151 152 153 /* hss_config, clkCR: main:10, num:10, denom:12 */ 154 #define CLK42X_SPEED_EXP ((0x3FF << 22) | ( 2 << 12) | 15) /*65 KHz*/ 155 156 #define CLK42X_SPEED_512KHZ (( 130 << 22) | ( 2 << 12) | 15) 157 #define CLK42X_SPEED_1536KHZ (( 43 << 22) | ( 18 << 12) | 47) 158 #define CLK42X_SPEED_1544KHZ (( 43 << 22) | ( 33 << 12) | 192) 159 #define CLK42X_SPEED_2048KHZ (( 32 << 22) | ( 34 << 12) | 63) 160 #define CLK42X_SPEED_4096KHZ (( 16 << 22) | ( 34 << 12) | 127) 161 #define CLK42X_SPEED_8192KHZ (( 8 << 22) | ( 34 << 12) | 255) 162 163 #define CLK46X_SPEED_512KHZ (( 130 << 22) | ( 24 << 12) | 127) 164 #define CLK46X_SPEED_1536KHZ (( 43 << 22) | (152 << 12) | 383) 165 #define CLK46X_SPEED_1544KHZ (( 43 << 22) | ( 66 << 12) | 385) 166 #define CLK46X_SPEED_2048KHZ (( 32 << 22) | (280 << 12) | 511) 167 #define CLK46X_SPEED_4096KHZ (( 16 << 22) | (280 << 12) | 1023) 168 #define CLK46X_SPEED_8192KHZ (( 8 << 22) | (280 << 12) | 2047) 169 170 /* 171 * HSS_CONFIG_CLOCK_CR register consists of 3 parts: 172 * A (10 bits), B (10 bits) and C (12 bits). 173 * IXP42x HSS clock generator operation (verified with an oscilloscope): 174 * Each clock bit takes 7.5 ns (1 / 133.xx MHz). 175 * The clock sequence consists of (C - B) states of 0s and 1s, each state is 176 * A bits wide. It's followed by (B + 1) states of 0s and 1s, each state is 177 * (A + 1) bits wide. 178 * 179 * The resulting average clock frequency (assuming 33.333 MHz oscillator) is: 180 * freq = 66.666 MHz / (A + (B + 1) / (C + 1)) 181 * minumum freq = 66.666 MHz / (A + 1) 182 * maximum freq = 66.666 MHz / A 183 * 184 * Example: A = 2, B = 2, C = 7, CLOCK_CR register = 2 << 22 | 2 << 12 | 7 185 * freq = 66.666 MHz / (2 + (2 + 1) / (7 + 1)) = 28.07 MHz (Mb/s). 186 * The clock sequence is: 1100110011 (5 doubles) 000111000 (3 triples). 187 * The sequence takes (C - B) * A + (B + 1) * (A + 1) = 5 * 2 + 3 * 3 bits 188 * = 19 bits (each 7.5 ns long) = 142.5 ns (then the sequence repeats). 189 * The sequence consists of 4 complete clock periods, thus the average 190 * frequency (= clock rate) is 4 / 142.5 ns = 28.07 MHz (Mb/s). 191 * (max specified clock rate for IXP42x HSS is 8.192 Mb/s). 192 */ 193 194 /* hss_config, LUT entries */ 195 #define TDMMAP_UNASSIGNED 0 196 #define TDMMAP_HDLC 1 /* HDLC - packetized */ 197 #define TDMMAP_VOICE56K 2 /* Voice56K - 7-bit channelized */ 198 #define TDMMAP_VOICE64K 3 /* Voice64K - 8-bit channelized */ 199 200 /* offsets into HSS config */ 201 #define HSS_CONFIG_TX_PCR 0x00 /* port configuration registers */ 202 #define HSS_CONFIG_RX_PCR 0x04 203 #define HSS_CONFIG_CORE_CR 0x08 /* loopback control, HSS# */ 204 #define HSS_CONFIG_CLOCK_CR 0x0C /* clock generator control */ 205 #define HSS_CONFIG_TX_FCR 0x10 /* frame configuration registers */ 206 #define HSS_CONFIG_RX_FCR 0x14 207 #define HSS_CONFIG_TX_LUT 0x18 /* channel look-up tables */ 208 #define HSS_CONFIG_RX_LUT 0x38 209 210 211 /* NPE command codes */ 212 /* writes the ConfigWord value to the location specified by offset */ 213 #define PORT_CONFIG_WRITE 0x40 214 215 /* triggers the NPE to load the contents of the configuration table */ 216 #define PORT_CONFIG_LOAD 0x41 217 218 /* triggers the NPE to return an HssErrorReadResponse message */ 219 #define PORT_ERROR_READ 0x42 220 221 /* triggers the NPE to reset internal status and enable the HssPacketized 222 operation for the flow specified by pPipe */ 223 #define PKT_PIPE_FLOW_ENABLE 0x50 224 #define PKT_PIPE_FLOW_DISABLE 0x51 225 #define PKT_NUM_PIPES_WRITE 0x52 226 #define PKT_PIPE_FIFO_SIZEW_WRITE 0x53 227 #define PKT_PIPE_HDLC_CFG_WRITE 0x54 228 #define PKT_PIPE_IDLE_PATTERN_WRITE 0x55 229 #define PKT_PIPE_RX_SIZE_WRITE 0x56 230 #define PKT_PIPE_MODE_WRITE 0x57 231 232 /* HDLC packet status values - desc->status */ 233 #define ERR_SHUTDOWN 1 /* stop or shutdown occurrance */ 234 #define ERR_HDLC_ALIGN 2 /* HDLC alignment error */ 235 #define ERR_HDLC_FCS 3 /* HDLC Frame Check Sum error */ 236 #define ERR_RXFREE_Q_EMPTY 4 /* RX-free queue became empty while receiving 237 this packet (if buf_len < pkt_len) */ 238 #define ERR_HDLC_TOO_LONG 5 /* HDLC frame size too long */ 239 #define ERR_HDLC_ABORT 6 /* abort sequence received */ 240 #define ERR_DISCONNECTING 7 /* disconnect is in progress */ 241 242 243 #ifdef __ARMEB__ 244 typedef struct sk_buff buffer_t; 245 #define free_buffer dev_kfree_skb 246 #define free_buffer_irq dev_kfree_skb_irq 247 #else 248 typedef void buffer_t; 249 #define free_buffer kfree 250 #define free_buffer_irq kfree 251 #endif 252 253 struct port { 254 struct device *dev; 255 struct npe *npe; 256 struct net_device *netdev; 257 struct napi_struct napi; 258 struct hss_plat_info *plat; 259 buffer_t *rx_buff_tab[RX_DESCS], *tx_buff_tab[TX_DESCS]; 260 struct desc *desc_tab; /* coherent */ 261 u32 desc_tab_phys; 262 unsigned int id; 263 unsigned int clock_type, clock_rate, loopback; 264 unsigned int initialized, carrier; 265 u8 hdlc_cfg; 266 u32 clock_reg; 267 }; 268 269 /* NPE message structure */ 270 struct msg { 271 #ifdef __ARMEB__ 272 u8 cmd, unused, hss_port, index; 273 union { 274 struct { u8 data8a, data8b, data8c, data8d; }; 275 struct { u16 data16a, data16b; }; 276 struct { u32 data32; }; 277 }; 278 #else 279 u8 index, hss_port, unused, cmd; 280 union { 281 struct { u8 data8d, data8c, data8b, data8a; }; 282 struct { u16 data16b, data16a; }; 283 struct { u32 data32; }; 284 }; 285 #endif 286 }; 287 288 /* HDLC packet descriptor */ 289 struct desc { 290 u32 next; /* pointer to next buffer, unused */ 291 292 #ifdef __ARMEB__ 293 u16 buf_len; /* buffer length */ 294 u16 pkt_len; /* packet length */ 295 u32 data; /* pointer to data buffer in RAM */ 296 u8 status; 297 u8 error_count; 298 u16 __reserved; 299 #else 300 u16 pkt_len; /* packet length */ 301 u16 buf_len; /* buffer length */ 302 u32 data; /* pointer to data buffer in RAM */ 303 u16 __reserved; 304 u8 error_count; 305 u8 status; 306 #endif 307 u32 __reserved1[4]; 308 }; 309 310 311 #define rx_desc_phys(port, n) ((port)->desc_tab_phys + \ 312 (n) * sizeof(struct desc)) 313 #define rx_desc_ptr(port, n) (&(port)->desc_tab[n]) 314 315 #define tx_desc_phys(port, n) ((port)->desc_tab_phys + \ 316 ((n) + RX_DESCS) * sizeof(struct desc)) 317 #define tx_desc_ptr(port, n) (&(port)->desc_tab[(n) + RX_DESCS]) 318 319 /***************************************************************************** 320 * global variables 321 ****************************************************************************/ 322 323 static int ports_open; 324 static struct dma_pool *dma_pool; 325 static spinlock_t npe_lock; 326 327 static const struct { 328 int tx, txdone, rx, rxfree; 329 }queue_ids[2] = {{HSS0_PKT_TX0_QUEUE, HSS0_PKT_TXDONE_QUEUE, HSS0_PKT_RX_QUEUE, 330 HSS0_PKT_RXFREE0_QUEUE}, 331 {HSS1_PKT_TX0_QUEUE, HSS1_PKT_TXDONE_QUEUE, HSS1_PKT_RX_QUEUE, 332 HSS1_PKT_RXFREE0_QUEUE}, 333 }; 334 335 /***************************************************************************** 336 * utility functions 337 ****************************************************************************/ 338 339 static inline struct port* dev_to_port(struct net_device *dev) 340 { 341 return dev_to_hdlc(dev)->priv; 342 } 343 344 #ifndef __ARMEB__ 345 static inline void memcpy_swab32(u32 *dest, u32 *src, int cnt) 346 { 347 int i; 348 for (i = 0; i < cnt; i++) 349 dest[i] = swab32(src[i]); 350 } 351 #endif 352 353 /***************************************************************************** 354 * HSS access 355 ****************************************************************************/ 356 357 static void hss_npe_send(struct port *port, struct msg *msg, const char* what) 358 { 359 u32 *val = (u32*)msg; 360 if (npe_send_message(port->npe, msg, what)) { 361 printk(KERN_CRIT "HSS-%i: unable to send command [%08X:%08X]" 362 " to %s\n", port->id, val[0], val[1], 363 npe_name(port->npe)); 364 BUG(); 365 } 366 } 367 368 static void hss_config_set_lut(struct port *port) 369 { 370 struct msg msg; 371 int ch; 372 373 memset(&msg, 0, sizeof(msg)); 374 msg.cmd = PORT_CONFIG_WRITE; 375 msg.hss_port = port->id; 376 377 for (ch = 0; ch < MAX_CHANNELS; ch++) { 378 msg.data32 >>= 2; 379 msg.data32 |= TDMMAP_HDLC << 30; 380 381 if (ch % 16 == 15) { 382 msg.index = HSS_CONFIG_TX_LUT + ((ch / 4) & ~3); 383 hss_npe_send(port, &msg, "HSS_SET_TX_LUT"); 384 385 msg.index += HSS_CONFIG_RX_LUT - HSS_CONFIG_TX_LUT; 386 hss_npe_send(port, &msg, "HSS_SET_RX_LUT"); 387 } 388 } 389 } 390 391 static void hss_config(struct port *port) 392 { 393 struct msg msg; 394 395 memset(&msg, 0, sizeof(msg)); 396 msg.cmd = PORT_CONFIG_WRITE; 397 msg.hss_port = port->id; 398 msg.index = HSS_CONFIG_TX_PCR; 399 msg.data32 = PCR_FRM_PULSE_DISABLED | PCR_MSB_ENDIAN | 400 PCR_TX_DATA_ENABLE | PCR_SOF_NO_FBIT; 401 if (port->clock_type == CLOCK_INT) 402 msg.data32 |= PCR_SYNC_CLK_DIR_OUTPUT; 403 hss_npe_send(port, &msg, "HSS_SET_TX_PCR"); 404 405 msg.index = HSS_CONFIG_RX_PCR; 406 msg.data32 ^= PCR_TX_DATA_ENABLE | PCR_DCLK_EDGE_RISING; 407 hss_npe_send(port, &msg, "HSS_SET_RX_PCR"); 408 409 memset(&msg, 0, sizeof(msg)); 410 msg.cmd = PORT_CONFIG_WRITE; 411 msg.hss_port = port->id; 412 msg.index = HSS_CONFIG_CORE_CR; 413 msg.data32 = (port->loopback ? CCR_LOOPBACK : 0) | 414 (port->id ? CCR_SECOND_HSS : 0); 415 hss_npe_send(port, &msg, "HSS_SET_CORE_CR"); 416 417 memset(&msg, 0, sizeof(msg)); 418 msg.cmd = PORT_CONFIG_WRITE; 419 msg.hss_port = port->id; 420 msg.index = HSS_CONFIG_CLOCK_CR; 421 msg.data32 = port->clock_reg; 422 hss_npe_send(port, &msg, "HSS_SET_CLOCK_CR"); 423 424 memset(&msg, 0, sizeof(msg)); 425 msg.cmd = PORT_CONFIG_WRITE; 426 msg.hss_port = port->id; 427 msg.index = HSS_CONFIG_TX_FCR; 428 msg.data16a = FRAME_OFFSET; 429 msg.data16b = FRAME_SIZE - 1; 430 hss_npe_send(port, &msg, "HSS_SET_TX_FCR"); 431 432 memset(&msg, 0, sizeof(msg)); 433 msg.cmd = PORT_CONFIG_WRITE; 434 msg.hss_port = port->id; 435 msg.index = HSS_CONFIG_RX_FCR; 436 msg.data16a = FRAME_OFFSET; 437 msg.data16b = FRAME_SIZE - 1; 438 hss_npe_send(port, &msg, "HSS_SET_RX_FCR"); 439 440 hss_config_set_lut(port); 441 442 memset(&msg, 0, sizeof(msg)); 443 msg.cmd = PORT_CONFIG_LOAD; 444 msg.hss_port = port->id; 445 hss_npe_send(port, &msg, "HSS_LOAD_CONFIG"); 446 447 if (npe_recv_message(port->npe, &msg, "HSS_LOAD_CONFIG") || 448 /* HSS_LOAD_CONFIG for port #1 returns port_id = #4 */ 449 msg.cmd != PORT_CONFIG_LOAD || msg.data32) { 450 printk(KERN_CRIT "HSS-%i: HSS_LOAD_CONFIG failed\n", 451 port->id); 452 BUG(); 453 } 454 455 /* HDLC may stop working without this - check FIXME */ 456 npe_recv_message(port->npe, &msg, "FLUSH_IT"); 457 } 458 459 static void hss_set_hdlc_cfg(struct port *port) 460 { 461 struct msg msg; 462 463 memset(&msg, 0, sizeof(msg)); 464 msg.cmd = PKT_PIPE_HDLC_CFG_WRITE; 465 msg.hss_port = port->id; 466 msg.data8a = port->hdlc_cfg; /* rx_cfg */ 467 msg.data8b = port->hdlc_cfg | (PKT_EXTRA_FLAGS << 3); /* tx_cfg */ 468 hss_npe_send(port, &msg, "HSS_SET_HDLC_CFG"); 469 } 470 471 static u32 hss_get_status(struct port *port) 472 { 473 struct msg msg; 474 475 memset(&msg, 0, sizeof(msg)); 476 msg.cmd = PORT_ERROR_READ; 477 msg.hss_port = port->id; 478 hss_npe_send(port, &msg, "PORT_ERROR_READ"); 479 if (npe_recv_message(port->npe, &msg, "PORT_ERROR_READ")) { 480 printk(KERN_CRIT "HSS-%i: unable to read HSS status\n", 481 port->id); 482 BUG(); 483 } 484 485 return msg.data32; 486 } 487 488 static void hss_start_hdlc(struct port *port) 489 { 490 struct msg msg; 491 492 memset(&msg, 0, sizeof(msg)); 493 msg.cmd = PKT_PIPE_FLOW_ENABLE; 494 msg.hss_port = port->id; 495 msg.data32 = 0; 496 hss_npe_send(port, &msg, "HSS_ENABLE_PKT_PIPE"); 497 } 498 499 static void hss_stop_hdlc(struct port *port) 500 { 501 struct msg msg; 502 503 memset(&msg, 0, sizeof(msg)); 504 msg.cmd = PKT_PIPE_FLOW_DISABLE; 505 msg.hss_port = port->id; 506 hss_npe_send(port, &msg, "HSS_DISABLE_PKT_PIPE"); 507 hss_get_status(port); /* make sure it's halted */ 508 } 509 510 static int hss_load_firmware(struct port *port) 511 { 512 struct msg msg; 513 int err; 514 515 if (port->initialized) 516 return 0; 517 518 if (!npe_running(port->npe) && 519 (err = npe_load_firmware(port->npe, npe_name(port->npe), 520 port->dev))) 521 return err; 522 523 /* HDLC mode configuration */ 524 memset(&msg, 0, sizeof(msg)); 525 msg.cmd = PKT_NUM_PIPES_WRITE; 526 msg.hss_port = port->id; 527 msg.data8a = PKT_NUM_PIPES; 528 hss_npe_send(port, &msg, "HSS_SET_PKT_PIPES"); 529 530 msg.cmd = PKT_PIPE_FIFO_SIZEW_WRITE; 531 msg.data8a = PKT_PIPE_FIFO_SIZEW; 532 hss_npe_send(port, &msg, "HSS_SET_PKT_FIFO"); 533 534 msg.cmd = PKT_PIPE_MODE_WRITE; 535 msg.data8a = NPE_PKT_MODE_HDLC; 536 /* msg.data8b = inv_mask */ 537 /* msg.data8c = or_mask */ 538 hss_npe_send(port, &msg, "HSS_SET_PKT_MODE"); 539 540 msg.cmd = PKT_PIPE_RX_SIZE_WRITE; 541 msg.data16a = HDLC_MAX_MRU; /* including CRC */ 542 hss_npe_send(port, &msg, "HSS_SET_PKT_RX_SIZE"); 543 544 msg.cmd = PKT_PIPE_IDLE_PATTERN_WRITE; 545 msg.data32 = 0x7F7F7F7F; /* ??? FIXME */ 546 hss_npe_send(port, &msg, "HSS_SET_PKT_IDLE"); 547 548 port->initialized = 1; 549 return 0; 550 } 551 552 /***************************************************************************** 553 * packetized (HDLC) operation 554 ****************************************************************************/ 555 556 static inline void debug_pkt(struct net_device *dev, const char *func, 557 u8 *data, int len) 558 { 559 #if DEBUG_PKT_BYTES 560 int i; 561 562 printk(KERN_DEBUG "%s: %s(%i)", dev->name, func, len); 563 for (i = 0; i < len; i++) { 564 if (i >= DEBUG_PKT_BYTES) 565 break; 566 printk("%s%02X", !(i % 4) ? " " : "", data[i]); 567 } 568 printk("\n"); 569 #endif 570 } 571 572 573 static inline void debug_desc(u32 phys, struct desc *desc) 574 { 575 #if DEBUG_DESC 576 printk(KERN_DEBUG "%X: %X %3X %3X %08X %X %X\n", 577 phys, desc->next, desc->buf_len, desc->pkt_len, 578 desc->data, desc->status, desc->error_count); 579 #endif 580 } 581 582 static inline int queue_get_desc(unsigned int queue, struct port *port, 583 int is_tx) 584 { 585 u32 phys, tab_phys, n_desc; 586 struct desc *tab; 587 588 if (!(phys = qmgr_get_entry(queue))) 589 return -1; 590 591 BUG_ON(phys & 0x1F); 592 tab_phys = is_tx ? tx_desc_phys(port, 0) : rx_desc_phys(port, 0); 593 tab = is_tx ? tx_desc_ptr(port, 0) : rx_desc_ptr(port, 0); 594 n_desc = (phys - tab_phys) / sizeof(struct desc); 595 BUG_ON(n_desc >= (is_tx ? TX_DESCS : RX_DESCS)); 596 debug_desc(phys, &tab[n_desc]); 597 BUG_ON(tab[n_desc].next); 598 return n_desc; 599 } 600 601 static inline void queue_put_desc(unsigned int queue, u32 phys, 602 struct desc *desc) 603 { 604 debug_desc(phys, desc); 605 BUG_ON(phys & 0x1F); 606 qmgr_put_entry(queue, phys); 607 /* Don't check for queue overflow here, we've allocated sufficient 608 length and queues >= 32 don't support this check anyway. */ 609 } 610 611 612 static inline void dma_unmap_tx(struct port *port, struct desc *desc) 613 { 614 #ifdef __ARMEB__ 615 dma_unmap_single(&port->netdev->dev, desc->data, 616 desc->buf_len, DMA_TO_DEVICE); 617 #else 618 dma_unmap_single(&port->netdev->dev, desc->data & ~3, 619 ALIGN((desc->data & 3) + desc->buf_len, 4), 620 DMA_TO_DEVICE); 621 #endif 622 } 623 624 625 static void hss_hdlc_set_carrier(void *pdev, int carrier) 626 { 627 struct net_device *netdev = pdev; 628 struct port *port = dev_to_port(netdev); 629 unsigned long flags; 630 631 spin_lock_irqsave(&npe_lock, flags); 632 port->carrier = carrier; 633 if (!port->loopback) { 634 if (carrier) 635 netif_carrier_on(netdev); 636 else 637 netif_carrier_off(netdev); 638 } 639 spin_unlock_irqrestore(&npe_lock, flags); 640 } 641 642 static void hss_hdlc_rx_irq(void *pdev) 643 { 644 struct net_device *dev = pdev; 645 struct port *port = dev_to_port(dev); 646 647 #if DEBUG_RX 648 printk(KERN_DEBUG "%s: hss_hdlc_rx_irq\n", dev->name); 649 #endif 650 qmgr_disable_irq(queue_ids[port->id].rx); 651 napi_schedule(&port->napi); 652 } 653 654 static int hss_hdlc_poll(struct napi_struct *napi, int budget) 655 { 656 struct port *port = container_of(napi, struct port, napi); 657 struct net_device *dev = port->netdev; 658 unsigned int rxq = queue_ids[port->id].rx; 659 unsigned int rxfreeq = queue_ids[port->id].rxfree; 660 int received = 0; 661 662 #if DEBUG_RX 663 printk(KERN_DEBUG "%s: hss_hdlc_poll\n", dev->name); 664 #endif 665 666 while (received < budget) { 667 struct sk_buff *skb; 668 struct desc *desc; 669 int n; 670 #ifdef __ARMEB__ 671 struct sk_buff *temp; 672 u32 phys; 673 #endif 674 675 if ((n = queue_get_desc(rxq, port, 0)) < 0) { 676 #if DEBUG_RX 677 printk(KERN_DEBUG "%s: hss_hdlc_poll" 678 " napi_complete\n", dev->name); 679 #endif 680 napi_complete(napi); 681 qmgr_enable_irq(rxq); 682 if (!qmgr_stat_empty(rxq) && 683 napi_reschedule(napi)) { 684 #if DEBUG_RX 685 printk(KERN_DEBUG "%s: hss_hdlc_poll" 686 " napi_reschedule succeeded\n", 687 dev->name); 688 #endif 689 qmgr_disable_irq(rxq); 690 continue; 691 } 692 #if DEBUG_RX 693 printk(KERN_DEBUG "%s: hss_hdlc_poll all done\n", 694 dev->name); 695 #endif 696 return received; /* all work done */ 697 } 698 699 desc = rx_desc_ptr(port, n); 700 #if 0 /* FIXME - error_count counts modulo 256, perhaps we should use it */ 701 if (desc->error_count) 702 printk(KERN_DEBUG "%s: hss_hdlc_poll status 0x%02X" 703 " errors %u\n", dev->name, desc->status, 704 desc->error_count); 705 #endif 706 skb = NULL; 707 switch (desc->status) { 708 case 0: 709 #ifdef __ARMEB__ 710 if ((skb = netdev_alloc_skb(dev, RX_SIZE)) != NULL) { 711 phys = dma_map_single(&dev->dev, skb->data, 712 RX_SIZE, 713 DMA_FROM_DEVICE); 714 if (dma_mapping_error(&dev->dev, phys)) { 715 dev_kfree_skb(skb); 716 skb = NULL; 717 } 718 } 719 #else 720 skb = netdev_alloc_skb(dev, desc->pkt_len); 721 #endif 722 if (!skb) 723 dev->stats.rx_dropped++; 724 break; 725 case ERR_HDLC_ALIGN: 726 case ERR_HDLC_ABORT: 727 dev->stats.rx_frame_errors++; 728 dev->stats.rx_errors++; 729 break; 730 case ERR_HDLC_FCS: 731 dev->stats.rx_crc_errors++; 732 dev->stats.rx_errors++; 733 break; 734 case ERR_HDLC_TOO_LONG: 735 dev->stats.rx_length_errors++; 736 dev->stats.rx_errors++; 737 break; 738 default: /* FIXME - remove printk */ 739 printk(KERN_ERR "%s: hss_hdlc_poll: status 0x%02X" 740 " errors %u\n", dev->name, desc->status, 741 desc->error_count); 742 dev->stats.rx_errors++; 743 } 744 745 if (!skb) { 746 /* put the desc back on RX-ready queue */ 747 desc->buf_len = RX_SIZE; 748 desc->pkt_len = desc->status = 0; 749 queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc); 750 continue; 751 } 752 753 /* process received frame */ 754 #ifdef __ARMEB__ 755 temp = skb; 756 skb = port->rx_buff_tab[n]; 757 dma_unmap_single(&dev->dev, desc->data, 758 RX_SIZE, DMA_FROM_DEVICE); 759 #else 760 dma_sync_single_for_cpu(&dev->dev, desc->data, 761 RX_SIZE, DMA_FROM_DEVICE); 762 memcpy_swab32((u32 *)skb->data, (u32 *)port->rx_buff_tab[n], 763 ALIGN(desc->pkt_len, 4) / 4); 764 #endif 765 skb_put(skb, desc->pkt_len); 766 767 debug_pkt(dev, "hss_hdlc_poll", skb->data, skb->len); 768 769 skb->protocol = hdlc_type_trans(skb, dev); 770 dev->stats.rx_packets++; 771 dev->stats.rx_bytes += skb->len; 772 netif_receive_skb(skb); 773 774 /* put the new buffer on RX-free queue */ 775 #ifdef __ARMEB__ 776 port->rx_buff_tab[n] = temp; 777 desc->data = phys; 778 #endif 779 desc->buf_len = RX_SIZE; 780 desc->pkt_len = 0; 781 queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc); 782 received++; 783 } 784 #if DEBUG_RX 785 printk(KERN_DEBUG "hss_hdlc_poll: end, not all work done\n"); 786 #endif 787 return received; /* not all work done */ 788 } 789 790 791 static void hss_hdlc_txdone_irq(void *pdev) 792 { 793 struct net_device *dev = pdev; 794 struct port *port = dev_to_port(dev); 795 int n_desc; 796 797 #if DEBUG_TX 798 printk(KERN_DEBUG DRV_NAME ": hss_hdlc_txdone_irq\n"); 799 #endif 800 while ((n_desc = queue_get_desc(queue_ids[port->id].txdone, 801 port, 1)) >= 0) { 802 struct desc *desc; 803 int start; 804 805 desc = tx_desc_ptr(port, n_desc); 806 807 dev->stats.tx_packets++; 808 dev->stats.tx_bytes += desc->pkt_len; 809 810 dma_unmap_tx(port, desc); 811 #if DEBUG_TX 812 printk(KERN_DEBUG "%s: hss_hdlc_txdone_irq free %p\n", 813 dev->name, port->tx_buff_tab[n_desc]); 814 #endif 815 free_buffer_irq(port->tx_buff_tab[n_desc]); 816 port->tx_buff_tab[n_desc] = NULL; 817 818 start = qmgr_stat_below_low_watermark(port->plat->txreadyq); 819 queue_put_desc(port->plat->txreadyq, 820 tx_desc_phys(port, n_desc), desc); 821 if (start) { /* TX-ready queue was empty */ 822 #if DEBUG_TX 823 printk(KERN_DEBUG "%s: hss_hdlc_txdone_irq xmit" 824 " ready\n", dev->name); 825 #endif 826 netif_wake_queue(dev); 827 } 828 } 829 } 830 831 static int hss_hdlc_xmit(struct sk_buff *skb, struct net_device *dev) 832 { 833 struct port *port = dev_to_port(dev); 834 unsigned int txreadyq = port->plat->txreadyq; 835 int len, offset, bytes, n; 836 void *mem; 837 u32 phys; 838 struct desc *desc; 839 840 #if DEBUG_TX 841 printk(KERN_DEBUG "%s: hss_hdlc_xmit\n", dev->name); 842 #endif 843 844 if (unlikely(skb->len > HDLC_MAX_MRU)) { 845 dev_kfree_skb(skb); 846 dev->stats.tx_errors++; 847 return NETDEV_TX_OK; 848 } 849 850 debug_pkt(dev, "hss_hdlc_xmit", skb->data, skb->len); 851 852 len = skb->len; 853 #ifdef __ARMEB__ 854 offset = 0; /* no need to keep alignment */ 855 bytes = len; 856 mem = skb->data; 857 #else 858 offset = (int)skb->data & 3; /* keep 32-bit alignment */ 859 bytes = ALIGN(offset + len, 4); 860 if (!(mem = kmalloc(bytes, GFP_ATOMIC))) { 861 dev_kfree_skb(skb); 862 dev->stats.tx_dropped++; 863 return NETDEV_TX_OK; 864 } 865 memcpy_swab32(mem, (u32 *)((int)skb->data & ~3), bytes / 4); 866 dev_kfree_skb(skb); 867 #endif 868 869 phys = dma_map_single(&dev->dev, mem, bytes, DMA_TO_DEVICE); 870 if (dma_mapping_error(&dev->dev, phys)) { 871 #ifdef __ARMEB__ 872 dev_kfree_skb(skb); 873 #else 874 kfree(mem); 875 #endif 876 dev->stats.tx_dropped++; 877 return NETDEV_TX_OK; 878 } 879 880 n = queue_get_desc(txreadyq, port, 1); 881 BUG_ON(n < 0); 882 desc = tx_desc_ptr(port, n); 883 884 #ifdef __ARMEB__ 885 port->tx_buff_tab[n] = skb; 886 #else 887 port->tx_buff_tab[n] = mem; 888 #endif 889 desc->data = phys + offset; 890 desc->buf_len = desc->pkt_len = len; 891 892 wmb(); 893 queue_put_desc(queue_ids[port->id].tx, tx_desc_phys(port, n), desc); 894 895 if (qmgr_stat_below_low_watermark(txreadyq)) { /* empty */ 896 #if DEBUG_TX 897 printk(KERN_DEBUG "%s: hss_hdlc_xmit queue full\n", dev->name); 898 #endif 899 netif_stop_queue(dev); 900 /* we could miss TX ready interrupt */ 901 if (!qmgr_stat_below_low_watermark(txreadyq)) { 902 #if DEBUG_TX 903 printk(KERN_DEBUG "%s: hss_hdlc_xmit ready again\n", 904 dev->name); 905 #endif 906 netif_wake_queue(dev); 907 } 908 } 909 910 #if DEBUG_TX 911 printk(KERN_DEBUG "%s: hss_hdlc_xmit end\n", dev->name); 912 #endif 913 return NETDEV_TX_OK; 914 } 915 916 917 static int request_hdlc_queues(struct port *port) 918 { 919 int err; 920 921 err = qmgr_request_queue(queue_ids[port->id].rxfree, RX_DESCS, 0, 0, 922 "%s:RX-free", port->netdev->name); 923 if (err) 924 return err; 925 926 err = qmgr_request_queue(queue_ids[port->id].rx, RX_DESCS, 0, 0, 927 "%s:RX", port->netdev->name); 928 if (err) 929 goto rel_rxfree; 930 931 err = qmgr_request_queue(queue_ids[port->id].tx, TX_DESCS, 0, 0, 932 "%s:TX", port->netdev->name); 933 if (err) 934 goto rel_rx; 935 936 err = qmgr_request_queue(port->plat->txreadyq, TX_DESCS, 0, 0, 937 "%s:TX-ready", port->netdev->name); 938 if (err) 939 goto rel_tx; 940 941 err = qmgr_request_queue(queue_ids[port->id].txdone, TX_DESCS, 0, 0, 942 "%s:TX-done", port->netdev->name); 943 if (err) 944 goto rel_txready; 945 return 0; 946 947 rel_txready: 948 qmgr_release_queue(port->plat->txreadyq); 949 rel_tx: 950 qmgr_release_queue(queue_ids[port->id].tx); 951 rel_rx: 952 qmgr_release_queue(queue_ids[port->id].rx); 953 rel_rxfree: 954 qmgr_release_queue(queue_ids[port->id].rxfree); 955 printk(KERN_DEBUG "%s: unable to request hardware queues\n", 956 port->netdev->name); 957 return err; 958 } 959 960 static void release_hdlc_queues(struct port *port) 961 { 962 qmgr_release_queue(queue_ids[port->id].rxfree); 963 qmgr_release_queue(queue_ids[port->id].rx); 964 qmgr_release_queue(queue_ids[port->id].txdone); 965 qmgr_release_queue(queue_ids[port->id].tx); 966 qmgr_release_queue(port->plat->txreadyq); 967 } 968 969 static int init_hdlc_queues(struct port *port) 970 { 971 int i; 972 973 if (!ports_open) 974 if (!(dma_pool = dma_pool_create(DRV_NAME, NULL, 975 POOL_ALLOC_SIZE, 32, 0))) 976 return -ENOMEM; 977 978 if (!(port->desc_tab = dma_pool_alloc(dma_pool, GFP_KERNEL, 979 &port->desc_tab_phys))) 980 return -ENOMEM; 981 memset(port->desc_tab, 0, POOL_ALLOC_SIZE); 982 memset(port->rx_buff_tab, 0, sizeof(port->rx_buff_tab)); /* tables */ 983 memset(port->tx_buff_tab, 0, sizeof(port->tx_buff_tab)); 984 985 /* Setup RX buffers */ 986 for (i = 0; i < RX_DESCS; i++) { 987 struct desc *desc = rx_desc_ptr(port, i); 988 buffer_t *buff; 989 void *data; 990 #ifdef __ARMEB__ 991 if (!(buff = netdev_alloc_skb(port->netdev, RX_SIZE))) 992 return -ENOMEM; 993 data = buff->data; 994 #else 995 if (!(buff = kmalloc(RX_SIZE, GFP_KERNEL))) 996 return -ENOMEM; 997 data = buff; 998 #endif 999 desc->buf_len = RX_SIZE; 1000 desc->data = dma_map_single(&port->netdev->dev, data, 1001 RX_SIZE, DMA_FROM_DEVICE); 1002 if (dma_mapping_error(&port->netdev->dev, desc->data)) { 1003 free_buffer(buff); 1004 return -EIO; 1005 } 1006 port->rx_buff_tab[i] = buff; 1007 } 1008 1009 return 0; 1010 } 1011 1012 static void destroy_hdlc_queues(struct port *port) 1013 { 1014 int i; 1015 1016 if (port->desc_tab) { 1017 for (i = 0; i < RX_DESCS; i++) { 1018 struct desc *desc = rx_desc_ptr(port, i); 1019 buffer_t *buff = port->rx_buff_tab[i]; 1020 if (buff) { 1021 dma_unmap_single(&port->netdev->dev, 1022 desc->data, RX_SIZE, 1023 DMA_FROM_DEVICE); 1024 free_buffer(buff); 1025 } 1026 } 1027 for (i = 0; i < TX_DESCS; i++) { 1028 struct desc *desc = tx_desc_ptr(port, i); 1029 buffer_t *buff = port->tx_buff_tab[i]; 1030 if (buff) { 1031 dma_unmap_tx(port, desc); 1032 free_buffer(buff); 1033 } 1034 } 1035 dma_pool_free(dma_pool, port->desc_tab, port->desc_tab_phys); 1036 port->desc_tab = NULL; 1037 } 1038 1039 if (!ports_open && dma_pool) { 1040 dma_pool_destroy(dma_pool); 1041 dma_pool = NULL; 1042 } 1043 } 1044 1045 static int hss_hdlc_open(struct net_device *dev) 1046 { 1047 struct port *port = dev_to_port(dev); 1048 unsigned long flags; 1049 int i, err = 0; 1050 1051 if ((err = hdlc_open(dev))) 1052 return err; 1053 1054 if ((err = hss_load_firmware(port))) 1055 goto err_hdlc_close; 1056 1057 if ((err = request_hdlc_queues(port))) 1058 goto err_hdlc_close; 1059 1060 if ((err = init_hdlc_queues(port))) 1061 goto err_destroy_queues; 1062 1063 spin_lock_irqsave(&npe_lock, flags); 1064 if (port->plat->open) 1065 if ((err = port->plat->open(port->id, dev, 1066 hss_hdlc_set_carrier))) 1067 goto err_unlock; 1068 spin_unlock_irqrestore(&npe_lock, flags); 1069 1070 /* Populate queues with buffers, no failure after this point */ 1071 for (i = 0; i < TX_DESCS; i++) 1072 queue_put_desc(port->plat->txreadyq, 1073 tx_desc_phys(port, i), tx_desc_ptr(port, i)); 1074 1075 for (i = 0; i < RX_DESCS; i++) 1076 queue_put_desc(queue_ids[port->id].rxfree, 1077 rx_desc_phys(port, i), rx_desc_ptr(port, i)); 1078 1079 napi_enable(&port->napi); 1080 netif_start_queue(dev); 1081 1082 qmgr_set_irq(queue_ids[port->id].rx, QUEUE_IRQ_SRC_NOT_EMPTY, 1083 hss_hdlc_rx_irq, dev); 1084 1085 qmgr_set_irq(queue_ids[port->id].txdone, QUEUE_IRQ_SRC_NOT_EMPTY, 1086 hss_hdlc_txdone_irq, dev); 1087 qmgr_enable_irq(queue_ids[port->id].txdone); 1088 1089 ports_open++; 1090 1091 hss_set_hdlc_cfg(port); 1092 hss_config(port); 1093 1094 hss_start_hdlc(port); 1095 1096 /* we may already have RX data, enables IRQ */ 1097 napi_schedule(&port->napi); 1098 return 0; 1099 1100 err_unlock: 1101 spin_unlock_irqrestore(&npe_lock, flags); 1102 err_destroy_queues: 1103 destroy_hdlc_queues(port); 1104 release_hdlc_queues(port); 1105 err_hdlc_close: 1106 hdlc_close(dev); 1107 return err; 1108 } 1109 1110 static int hss_hdlc_close(struct net_device *dev) 1111 { 1112 struct port *port = dev_to_port(dev); 1113 unsigned long flags; 1114 int i, buffs = RX_DESCS; /* allocated RX buffers */ 1115 1116 spin_lock_irqsave(&npe_lock, flags); 1117 ports_open--; 1118 qmgr_disable_irq(queue_ids[port->id].rx); 1119 netif_stop_queue(dev); 1120 napi_disable(&port->napi); 1121 1122 hss_stop_hdlc(port); 1123 1124 while (queue_get_desc(queue_ids[port->id].rxfree, port, 0) >= 0) 1125 buffs--; 1126 while (queue_get_desc(queue_ids[port->id].rx, port, 0) >= 0) 1127 buffs--; 1128 1129 if (buffs) 1130 printk(KERN_CRIT "%s: unable to drain RX queue, %i buffer(s)" 1131 " left in NPE\n", dev->name, buffs); 1132 1133 buffs = TX_DESCS; 1134 while (queue_get_desc(queue_ids[port->id].tx, port, 1) >= 0) 1135 buffs--; /* cancel TX */ 1136 1137 i = 0; 1138 do { 1139 while (queue_get_desc(port->plat->txreadyq, port, 1) >= 0) 1140 buffs--; 1141 if (!buffs) 1142 break; 1143 } while (++i < MAX_CLOSE_WAIT); 1144 1145 if (buffs) 1146 printk(KERN_CRIT "%s: unable to drain TX queue, %i buffer(s) " 1147 "left in NPE\n", dev->name, buffs); 1148 #if DEBUG_CLOSE 1149 if (!buffs) 1150 printk(KERN_DEBUG "Draining TX queues took %i cycles\n", i); 1151 #endif 1152 qmgr_disable_irq(queue_ids[port->id].txdone); 1153 1154 if (port->plat->close) 1155 port->plat->close(port->id, dev); 1156 spin_unlock_irqrestore(&npe_lock, flags); 1157 1158 destroy_hdlc_queues(port); 1159 release_hdlc_queues(port); 1160 hdlc_close(dev); 1161 return 0; 1162 } 1163 1164 1165 static int hss_hdlc_attach(struct net_device *dev, unsigned short encoding, 1166 unsigned short parity) 1167 { 1168 struct port *port = dev_to_port(dev); 1169 1170 if (encoding != ENCODING_NRZ) 1171 return -EINVAL; 1172 1173 switch(parity) { 1174 case PARITY_CRC16_PR1_CCITT: 1175 port->hdlc_cfg = 0; 1176 return 0; 1177 1178 case PARITY_CRC32_PR1_CCITT: 1179 port->hdlc_cfg = PKT_HDLC_CRC_32; 1180 return 0; 1181 1182 default: 1183 return -EINVAL; 1184 } 1185 } 1186 1187 static u32 check_clock(u32 rate, u32 a, u32 b, u32 c, 1188 u32 *best, u32 *best_diff, u32 *reg) 1189 { 1190 /* a is 10-bit, b is 10-bit, c is 12-bit */ 1191 u64 new_rate; 1192 u32 new_diff; 1193 1194 new_rate = ixp4xx_timer_freq * (u64)(c + 1); 1195 do_div(new_rate, a * (c + 1) + b + 1); 1196 new_diff = abs((u32)new_rate - rate); 1197 1198 if (new_diff < *best_diff) { 1199 *best = new_rate; 1200 *best_diff = new_diff; 1201 *reg = (a << 22) | (b << 12) | c; 1202 } 1203 return new_diff; 1204 } 1205 1206 static void find_best_clock(u32 rate, u32 *best, u32 *reg) 1207 { 1208 u32 a, b, diff = 0xFFFFFFFF; 1209 1210 a = ixp4xx_timer_freq / rate; 1211 1212 if (a > 0x3FF) { /* 10-bit value - we can go as slow as ca. 65 kb/s */ 1213 check_clock(rate, 0x3FF, 1, 1, best, &diff, reg); 1214 return; 1215 } 1216 if (a == 0) { /* > 66.666 MHz */ 1217 a = 1; /* minimum divider is 1 (a = 0, b = 1, c = 1) */ 1218 rate = ixp4xx_timer_freq; 1219 } 1220 1221 if (rate * a == ixp4xx_timer_freq) { /* don't divide by 0 later */ 1222 check_clock(rate, a - 1, 1, 1, best, &diff, reg); 1223 return; 1224 } 1225 1226 for (b = 0; b < 0x400; b++) { 1227 u64 c = (b + 1) * (u64)rate; 1228 do_div(c, ixp4xx_timer_freq - rate * a); 1229 c--; 1230 if (c >= 0xFFF) { /* 12-bit - no need to check more 'b's */ 1231 if (b == 0 && /* also try a bit higher rate */ 1232 !check_clock(rate, a - 1, 1, 1, best, &diff, reg)) 1233 return; 1234 check_clock(rate, a, b, 0xFFF, best, &diff, reg); 1235 return; 1236 } 1237 if (!check_clock(rate, a, b, c, best, &diff, reg)) 1238 return; 1239 if (!check_clock(rate, a, b, c + 1, best, &diff, reg)) 1240 return; 1241 } 1242 } 1243 1244 static int hss_hdlc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 1245 { 1246 const size_t size = sizeof(sync_serial_settings); 1247 sync_serial_settings new_line; 1248 sync_serial_settings __user *line = ifr->ifr_settings.ifs_ifsu.sync; 1249 struct port *port = dev_to_port(dev); 1250 unsigned long flags; 1251 int clk; 1252 1253 if (cmd != SIOCWANDEV) 1254 return hdlc_ioctl(dev, ifr, cmd); 1255 1256 switch(ifr->ifr_settings.type) { 1257 case IF_GET_IFACE: 1258 ifr->ifr_settings.type = IF_IFACE_V35; 1259 if (ifr->ifr_settings.size < size) { 1260 ifr->ifr_settings.size = size; /* data size wanted */ 1261 return -ENOBUFS; 1262 } 1263 memset(&new_line, 0, sizeof(new_line)); 1264 new_line.clock_type = port->clock_type; 1265 new_line.clock_rate = port->clock_rate; 1266 new_line.loopback = port->loopback; 1267 if (copy_to_user(line, &new_line, size)) 1268 return -EFAULT; 1269 return 0; 1270 1271 case IF_IFACE_SYNC_SERIAL: 1272 case IF_IFACE_V35: 1273 if(!capable(CAP_NET_ADMIN)) 1274 return -EPERM; 1275 if (copy_from_user(&new_line, line, size)) 1276 return -EFAULT; 1277 1278 clk = new_line.clock_type; 1279 if (port->plat->set_clock) 1280 clk = port->plat->set_clock(port->id, clk); 1281 1282 if (clk != CLOCK_EXT && clk != CLOCK_INT) 1283 return -EINVAL; /* No such clock setting */ 1284 1285 if (new_line.loopback != 0 && new_line.loopback != 1) 1286 return -EINVAL; 1287 1288 port->clock_type = clk; /* Update settings */ 1289 if (clk == CLOCK_INT) 1290 find_best_clock(new_line.clock_rate, &port->clock_rate, 1291 &port->clock_reg); 1292 else { 1293 port->clock_rate = 0; 1294 port->clock_reg = CLK42X_SPEED_2048KHZ; 1295 } 1296 port->loopback = new_line.loopback; 1297 1298 spin_lock_irqsave(&npe_lock, flags); 1299 1300 if (dev->flags & IFF_UP) 1301 hss_config(port); 1302 1303 if (port->loopback || port->carrier) 1304 netif_carrier_on(port->netdev); 1305 else 1306 netif_carrier_off(port->netdev); 1307 spin_unlock_irqrestore(&npe_lock, flags); 1308 1309 return 0; 1310 1311 default: 1312 return hdlc_ioctl(dev, ifr, cmd); 1313 } 1314 } 1315 1316 /***************************************************************************** 1317 * initialization 1318 ****************************************************************************/ 1319 1320 static const struct net_device_ops hss_hdlc_ops = { 1321 .ndo_open = hss_hdlc_open, 1322 .ndo_stop = hss_hdlc_close, 1323 .ndo_change_mtu = hdlc_change_mtu, 1324 .ndo_start_xmit = hdlc_start_xmit, 1325 .ndo_do_ioctl = hss_hdlc_ioctl, 1326 }; 1327 1328 static int __devinit hss_init_one(struct platform_device *pdev) 1329 { 1330 struct port *port; 1331 struct net_device *dev; 1332 hdlc_device *hdlc; 1333 int err; 1334 1335 if ((port = kzalloc(sizeof(*port), GFP_KERNEL)) == NULL) 1336 return -ENOMEM; 1337 1338 if ((port->npe = npe_request(0)) == NULL) { 1339 err = -ENODEV; 1340 goto err_free; 1341 } 1342 1343 if ((port->netdev = dev = alloc_hdlcdev(port)) == NULL) { 1344 err = -ENOMEM; 1345 goto err_plat; 1346 } 1347 1348 SET_NETDEV_DEV(dev, &pdev->dev); 1349 hdlc = dev_to_hdlc(dev); 1350 hdlc->attach = hss_hdlc_attach; 1351 hdlc->xmit = hss_hdlc_xmit; 1352 dev->netdev_ops = &hss_hdlc_ops; 1353 dev->tx_queue_len = 100; 1354 port->clock_type = CLOCK_EXT; 1355 port->clock_rate = 0; 1356 port->clock_reg = CLK42X_SPEED_2048KHZ; 1357 port->id = pdev->id; 1358 port->dev = &pdev->dev; 1359 port->plat = pdev->dev.platform_data; 1360 netif_napi_add(dev, &port->napi, hss_hdlc_poll, NAPI_WEIGHT); 1361 1362 if ((err = register_hdlc_device(dev))) 1363 goto err_free_netdev; 1364 1365 platform_set_drvdata(pdev, port); 1366 1367 printk(KERN_INFO "%s: HSS-%i\n", dev->name, port->id); 1368 return 0; 1369 1370 err_free_netdev: 1371 free_netdev(dev); 1372 err_plat: 1373 npe_release(port->npe); 1374 err_free: 1375 kfree(port); 1376 return err; 1377 } 1378 1379 static int __devexit hss_remove_one(struct platform_device *pdev) 1380 { 1381 struct port *port = platform_get_drvdata(pdev); 1382 1383 unregister_hdlc_device(port->netdev); 1384 free_netdev(port->netdev); 1385 npe_release(port->npe); 1386 platform_set_drvdata(pdev, NULL); 1387 kfree(port); 1388 return 0; 1389 } 1390 1391 static struct platform_driver ixp4xx_hss_driver = { 1392 .driver.name = DRV_NAME, 1393 .probe = hss_init_one, 1394 .remove = hss_remove_one, 1395 }; 1396 1397 static int __init hss_init_module(void) 1398 { 1399 if ((ixp4xx_read_feature_bits() & 1400 (IXP4XX_FEATURE_HDLC | IXP4XX_FEATURE_HSS)) != 1401 (IXP4XX_FEATURE_HDLC | IXP4XX_FEATURE_HSS)) 1402 return -ENODEV; 1403 1404 spin_lock_init(&npe_lock); 1405 1406 return platform_driver_register(&ixp4xx_hss_driver); 1407 } 1408 1409 static void __exit hss_cleanup_module(void) 1410 { 1411 platform_driver_unregister(&ixp4xx_hss_driver); 1412 } 1413 1414 MODULE_AUTHOR("Krzysztof Halasa"); 1415 MODULE_DESCRIPTION("Intel IXP4xx HSS driver"); 1416 MODULE_LICENSE("GPL v2"); 1417 MODULE_ALIAS("platform:ixp4xx_hss"); 1418 module_init(hss_init_module); 1419 module_exit(hss_cleanup_module); 1420