1 /* 2 * Generic HDLC support routines for Linux 3 * Frame Relay support 4 * 5 * Copyright (C) 1999 - 2006 Krzysztof Halasa <khc@pm.waw.pl> 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms of version 2 of the GNU General Public License 9 * as published by the Free Software Foundation. 10 * 11 12 Theory of PVC state 13 14 DCE mode: 15 16 (exist,new) -> 0,0 when "PVC create" or if "link unreliable" 17 0,x -> 1,1 if "link reliable" when sending FULL STATUS 18 1,1 -> 1,0 if received FULL STATUS ACK 19 20 (active) -> 0 when "ifconfig PVC down" or "link unreliable" or "PVC create" 21 -> 1 when "PVC up" and (exist,new) = 1,0 22 23 DTE mode: 24 (exist,new,active) = FULL STATUS if "link reliable" 25 = 0, 0, 0 if "link unreliable" 26 No LMI: 27 active = open and "link reliable" 28 exist = new = not used 29 30 CCITT LMI: ITU-T Q.933 Annex A 31 ANSI LMI: ANSI T1.617 Annex D 32 CISCO LMI: the original, aka "Gang of Four" LMI 33 34 */ 35 36 #include <linux/module.h> 37 #include <linux/kernel.h> 38 #include <linux/slab.h> 39 #include <linux/poll.h> 40 #include <linux/errno.h> 41 #include <linux/if_arp.h> 42 #include <linux/init.h> 43 #include <linux/skbuff.h> 44 #include <linux/pkt_sched.h> 45 #include <linux/inetdevice.h> 46 #include <linux/lapb.h> 47 #include <linux/rtnetlink.h> 48 #include <linux/etherdevice.h> 49 #include <linux/hdlc.h> 50 51 #undef DEBUG_PKT 52 #undef DEBUG_ECN 53 #undef DEBUG_LINK 54 #undef DEBUG_PROTO 55 #undef DEBUG_PVC 56 57 #define FR_UI 0x03 58 #define FR_PAD 0x00 59 60 #define NLPID_IP 0xCC 61 #define NLPID_IPV6 0x8E 62 #define NLPID_SNAP 0x80 63 #define NLPID_PAD 0x00 64 #define NLPID_CCITT_ANSI_LMI 0x08 65 #define NLPID_CISCO_LMI 0x09 66 67 68 #define LMI_CCITT_ANSI_DLCI 0 /* LMI DLCI */ 69 #define LMI_CISCO_DLCI 1023 70 71 #define LMI_CALLREF 0x00 /* Call Reference */ 72 #define LMI_ANSI_LOCKSHIFT 0x95 /* ANSI locking shift */ 73 #define LMI_ANSI_CISCO_REPTYPE 0x01 /* report type */ 74 #define LMI_CCITT_REPTYPE 0x51 75 #define LMI_ANSI_CISCO_ALIVE 0x03 /* keep alive */ 76 #define LMI_CCITT_ALIVE 0x53 77 #define LMI_ANSI_CISCO_PVCSTAT 0x07 /* PVC status */ 78 #define LMI_CCITT_PVCSTAT 0x57 79 80 #define LMI_FULLREP 0x00 /* full report */ 81 #define LMI_INTEGRITY 0x01 /* link integrity report */ 82 #define LMI_SINGLE 0x02 /* single PVC report */ 83 84 #define LMI_STATUS_ENQUIRY 0x75 85 #define LMI_STATUS 0x7D /* reply */ 86 87 #define LMI_REPT_LEN 1 /* report type element length */ 88 #define LMI_INTEG_LEN 2 /* link integrity element length */ 89 90 #define LMI_CCITT_CISCO_LENGTH 13 /* LMI frame lengths */ 91 #define LMI_ANSI_LENGTH 14 92 93 94 typedef struct { 95 #if defined(__LITTLE_ENDIAN_BITFIELD) 96 unsigned ea1: 1; 97 unsigned cr: 1; 98 unsigned dlcih: 6; 99 100 unsigned ea2: 1; 101 unsigned de: 1; 102 unsigned becn: 1; 103 unsigned fecn: 1; 104 unsigned dlcil: 4; 105 #else 106 unsigned dlcih: 6; 107 unsigned cr: 1; 108 unsigned ea1: 1; 109 110 unsigned dlcil: 4; 111 unsigned fecn: 1; 112 unsigned becn: 1; 113 unsigned de: 1; 114 unsigned ea2: 1; 115 #endif 116 }__attribute__ ((packed)) fr_hdr; 117 118 119 typedef struct pvc_device_struct { 120 struct net_device *frad; 121 struct net_device *main; 122 struct net_device *ether; /* bridged Ethernet interface */ 123 struct pvc_device_struct *next; /* Sorted in ascending DLCI order */ 124 int dlci; 125 int open_count; 126 127 struct { 128 unsigned int new: 1; 129 unsigned int active: 1; 130 unsigned int exist: 1; 131 unsigned int deleted: 1; 132 unsigned int fecn: 1; 133 unsigned int becn: 1; 134 unsigned int bandwidth; /* Cisco LMI reporting only */ 135 }state; 136 }pvc_device; 137 138 struct frad_state { 139 fr_proto settings; 140 pvc_device *first_pvc; 141 int dce_pvc_count; 142 143 struct timer_list timer; 144 unsigned long last_poll; 145 int reliable; 146 int dce_changed; 147 int request; 148 int fullrep_sent; 149 u32 last_errors; /* last errors bit list */ 150 u8 n391cnt; 151 u8 txseq; /* TX sequence number */ 152 u8 rxseq; /* RX sequence number */ 153 }; 154 155 156 static int fr_ioctl(struct net_device *dev, struct ifreq *ifr); 157 158 159 static inline u16 q922_to_dlci(u8 *hdr) 160 { 161 return ((hdr[0] & 0xFC) << 2) | ((hdr[1] & 0xF0) >> 4); 162 } 163 164 165 static inline void dlci_to_q922(u8 *hdr, u16 dlci) 166 { 167 hdr[0] = (dlci >> 2) & 0xFC; 168 hdr[1] = ((dlci << 4) & 0xF0) | 0x01; 169 } 170 171 172 static inline struct frad_state* state(hdlc_device *hdlc) 173 { 174 return(struct frad_state *)(hdlc->state); 175 } 176 177 178 static inline pvc_device* find_pvc(hdlc_device *hdlc, u16 dlci) 179 { 180 pvc_device *pvc = state(hdlc)->first_pvc; 181 182 while (pvc) { 183 if (pvc->dlci == dlci) 184 return pvc; 185 if (pvc->dlci > dlci) 186 return NULL; /* the listed is sorted */ 187 pvc = pvc->next; 188 } 189 190 return NULL; 191 } 192 193 194 static pvc_device* add_pvc(struct net_device *dev, u16 dlci) 195 { 196 hdlc_device *hdlc = dev_to_hdlc(dev); 197 pvc_device *pvc, **pvc_p = &state(hdlc)->first_pvc; 198 199 while (*pvc_p) { 200 if ((*pvc_p)->dlci == dlci) 201 return *pvc_p; 202 if ((*pvc_p)->dlci > dlci) 203 break; /* the list is sorted */ 204 pvc_p = &(*pvc_p)->next; 205 } 206 207 pvc = kzalloc(sizeof(pvc_device), GFP_ATOMIC); 208 #ifdef DEBUG_PVC 209 printk(KERN_DEBUG "add_pvc: allocated pvc %p, frad %p\n", pvc, dev); 210 #endif 211 if (!pvc) 212 return NULL; 213 214 pvc->dlci = dlci; 215 pvc->frad = dev; 216 pvc->next = *pvc_p; /* Put it in the chain */ 217 *pvc_p = pvc; 218 return pvc; 219 } 220 221 222 static inline int pvc_is_used(pvc_device *pvc) 223 { 224 return pvc->main || pvc->ether; 225 } 226 227 228 static inline void pvc_carrier(int on, pvc_device *pvc) 229 { 230 if (on) { 231 if (pvc->main) 232 if (!netif_carrier_ok(pvc->main)) 233 netif_carrier_on(pvc->main); 234 if (pvc->ether) 235 if (!netif_carrier_ok(pvc->ether)) 236 netif_carrier_on(pvc->ether); 237 } else { 238 if (pvc->main) 239 if (netif_carrier_ok(pvc->main)) 240 netif_carrier_off(pvc->main); 241 if (pvc->ether) 242 if (netif_carrier_ok(pvc->ether)) 243 netif_carrier_off(pvc->ether); 244 } 245 } 246 247 248 static inline void delete_unused_pvcs(hdlc_device *hdlc) 249 { 250 pvc_device **pvc_p = &state(hdlc)->first_pvc; 251 252 while (*pvc_p) { 253 if (!pvc_is_used(*pvc_p)) { 254 pvc_device *pvc = *pvc_p; 255 #ifdef DEBUG_PVC 256 printk(KERN_DEBUG "freeing unused pvc: %p\n", pvc); 257 #endif 258 *pvc_p = pvc->next; 259 kfree(pvc); 260 continue; 261 } 262 pvc_p = &(*pvc_p)->next; 263 } 264 } 265 266 267 static inline struct net_device** get_dev_p(pvc_device *pvc, int type) 268 { 269 if (type == ARPHRD_ETHER) 270 return &pvc->ether; 271 else 272 return &pvc->main; 273 } 274 275 276 static int fr_hard_header(struct sk_buff **skb_p, u16 dlci) 277 { 278 u16 head_len; 279 struct sk_buff *skb = *skb_p; 280 281 switch (skb->protocol) { 282 case __constant_htons(NLPID_CCITT_ANSI_LMI): 283 head_len = 4; 284 skb_push(skb, head_len); 285 skb->data[3] = NLPID_CCITT_ANSI_LMI; 286 break; 287 288 case __constant_htons(NLPID_CISCO_LMI): 289 head_len = 4; 290 skb_push(skb, head_len); 291 skb->data[3] = NLPID_CISCO_LMI; 292 break; 293 294 case __constant_htons(ETH_P_IP): 295 head_len = 4; 296 skb_push(skb, head_len); 297 skb->data[3] = NLPID_IP; 298 break; 299 300 case __constant_htons(ETH_P_IPV6): 301 head_len = 4; 302 skb_push(skb, head_len); 303 skb->data[3] = NLPID_IPV6; 304 break; 305 306 case __constant_htons(ETH_P_802_3): 307 head_len = 10; 308 if (skb_headroom(skb) < head_len) { 309 struct sk_buff *skb2 = skb_realloc_headroom(skb, 310 head_len); 311 if (!skb2) 312 return -ENOBUFS; 313 dev_kfree_skb(skb); 314 skb = *skb_p = skb2; 315 } 316 skb_push(skb, head_len); 317 skb->data[3] = FR_PAD; 318 skb->data[4] = NLPID_SNAP; 319 skb->data[5] = FR_PAD; 320 skb->data[6] = 0x80; 321 skb->data[7] = 0xC2; 322 skb->data[8] = 0x00; 323 skb->data[9] = 0x07; /* bridged Ethernet frame w/out FCS */ 324 break; 325 326 default: 327 head_len = 10; 328 skb_push(skb, head_len); 329 skb->data[3] = FR_PAD; 330 skb->data[4] = NLPID_SNAP; 331 skb->data[5] = FR_PAD; 332 skb->data[6] = FR_PAD; 333 skb->data[7] = FR_PAD; 334 *(__be16*)(skb->data + 8) = skb->protocol; 335 } 336 337 dlci_to_q922(skb->data, dlci); 338 skb->data[2] = FR_UI; 339 return 0; 340 } 341 342 343 344 static int pvc_open(struct net_device *dev) 345 { 346 pvc_device *pvc = dev->priv; 347 348 if ((pvc->frad->flags & IFF_UP) == 0) 349 return -EIO; /* Frad must be UP in order to activate PVC */ 350 351 if (pvc->open_count++ == 0) { 352 hdlc_device *hdlc = dev_to_hdlc(pvc->frad); 353 if (state(hdlc)->settings.lmi == LMI_NONE) 354 pvc->state.active = netif_carrier_ok(pvc->frad); 355 356 pvc_carrier(pvc->state.active, pvc); 357 state(hdlc)->dce_changed = 1; 358 } 359 return 0; 360 } 361 362 363 364 static int pvc_close(struct net_device *dev) 365 { 366 pvc_device *pvc = dev->priv; 367 368 if (--pvc->open_count == 0) { 369 hdlc_device *hdlc = dev_to_hdlc(pvc->frad); 370 if (state(hdlc)->settings.lmi == LMI_NONE) 371 pvc->state.active = 0; 372 373 if (state(hdlc)->settings.dce) { 374 state(hdlc)->dce_changed = 1; 375 pvc->state.active = 0; 376 } 377 } 378 return 0; 379 } 380 381 382 383 static int pvc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 384 { 385 pvc_device *pvc = dev->priv; 386 fr_proto_pvc_info info; 387 388 if (ifr->ifr_settings.type == IF_GET_PROTO) { 389 if (dev->type == ARPHRD_ETHER) 390 ifr->ifr_settings.type = IF_PROTO_FR_ETH_PVC; 391 else 392 ifr->ifr_settings.type = IF_PROTO_FR_PVC; 393 394 if (ifr->ifr_settings.size < sizeof(info)) { 395 /* data size wanted */ 396 ifr->ifr_settings.size = sizeof(info); 397 return -ENOBUFS; 398 } 399 400 info.dlci = pvc->dlci; 401 memcpy(info.master, pvc->frad->name, IFNAMSIZ); 402 if (copy_to_user(ifr->ifr_settings.ifs_ifsu.fr_pvc_info, 403 &info, sizeof(info))) 404 return -EFAULT; 405 return 0; 406 } 407 408 return -EINVAL; 409 } 410 411 static int pvc_xmit(struct sk_buff *skb, struct net_device *dev) 412 { 413 pvc_device *pvc = dev->priv; 414 415 if (pvc->state.active) { 416 if (dev->type == ARPHRD_ETHER) { 417 int pad = ETH_ZLEN - skb->len; 418 if (pad > 0) { /* Pad the frame with zeros */ 419 int len = skb->len; 420 if (skb_tailroom(skb) < pad) 421 if (pskb_expand_head(skb, 0, pad, 422 GFP_ATOMIC)) { 423 dev->stats.tx_dropped++; 424 dev_kfree_skb(skb); 425 return 0; 426 } 427 skb_put(skb, pad); 428 memset(skb->data + len, 0, pad); 429 } 430 skb->protocol = __constant_htons(ETH_P_802_3); 431 } 432 if (!fr_hard_header(&skb, pvc->dlci)) { 433 dev->stats.tx_bytes += skb->len; 434 dev->stats.tx_packets++; 435 if (pvc->state.fecn) /* TX Congestion counter */ 436 dev->stats.tx_compressed++; 437 skb->dev = pvc->frad; 438 dev_queue_xmit(skb); 439 return 0; 440 } 441 } 442 443 dev->stats.tx_dropped++; 444 dev_kfree_skb(skb); 445 return 0; 446 } 447 448 449 450 static int pvc_change_mtu(struct net_device *dev, int new_mtu) 451 { 452 if ((new_mtu < 68) || (new_mtu > HDLC_MAX_MTU)) 453 return -EINVAL; 454 dev->mtu = new_mtu; 455 return 0; 456 } 457 458 459 460 static inline void fr_log_dlci_active(pvc_device *pvc) 461 { 462 printk(KERN_INFO "%s: DLCI %d [%s%s%s]%s %s\n", 463 pvc->frad->name, 464 pvc->dlci, 465 pvc->main ? pvc->main->name : "", 466 pvc->main && pvc->ether ? " " : "", 467 pvc->ether ? pvc->ether->name : "", 468 pvc->state.new ? " new" : "", 469 !pvc->state.exist ? "deleted" : 470 pvc->state.active ? "active" : "inactive"); 471 } 472 473 474 475 static inline u8 fr_lmi_nextseq(u8 x) 476 { 477 x++; 478 return x ? x : 1; 479 } 480 481 482 static void fr_lmi_send(struct net_device *dev, int fullrep) 483 { 484 hdlc_device *hdlc = dev_to_hdlc(dev); 485 struct sk_buff *skb; 486 pvc_device *pvc = state(hdlc)->first_pvc; 487 int lmi = state(hdlc)->settings.lmi; 488 int dce = state(hdlc)->settings.dce; 489 int len = lmi == LMI_ANSI ? LMI_ANSI_LENGTH : LMI_CCITT_CISCO_LENGTH; 490 int stat_len = (lmi == LMI_CISCO) ? 6 : 3; 491 u8 *data; 492 int i = 0; 493 494 if (dce && fullrep) { 495 len += state(hdlc)->dce_pvc_count * (2 + stat_len); 496 if (len > HDLC_MAX_MRU) { 497 printk(KERN_WARNING "%s: Too many PVCs while sending " 498 "LMI full report\n", dev->name); 499 return; 500 } 501 } 502 503 skb = dev_alloc_skb(len); 504 if (!skb) { 505 printk(KERN_WARNING "%s: Memory squeeze on fr_lmi_send()\n", 506 dev->name); 507 return; 508 } 509 memset(skb->data, 0, len); 510 skb_reserve(skb, 4); 511 if (lmi == LMI_CISCO) { 512 skb->protocol = __constant_htons(NLPID_CISCO_LMI); 513 fr_hard_header(&skb, LMI_CISCO_DLCI); 514 } else { 515 skb->protocol = __constant_htons(NLPID_CCITT_ANSI_LMI); 516 fr_hard_header(&skb, LMI_CCITT_ANSI_DLCI); 517 } 518 data = skb_tail_pointer(skb); 519 data[i++] = LMI_CALLREF; 520 data[i++] = dce ? LMI_STATUS : LMI_STATUS_ENQUIRY; 521 if (lmi == LMI_ANSI) 522 data[i++] = LMI_ANSI_LOCKSHIFT; 523 data[i++] = lmi == LMI_CCITT ? LMI_CCITT_REPTYPE : 524 LMI_ANSI_CISCO_REPTYPE; 525 data[i++] = LMI_REPT_LEN; 526 data[i++] = fullrep ? LMI_FULLREP : LMI_INTEGRITY; 527 data[i++] = lmi == LMI_CCITT ? LMI_CCITT_ALIVE : LMI_ANSI_CISCO_ALIVE; 528 data[i++] = LMI_INTEG_LEN; 529 data[i++] = state(hdlc)->txseq = 530 fr_lmi_nextseq(state(hdlc)->txseq); 531 data[i++] = state(hdlc)->rxseq; 532 533 if (dce && fullrep) { 534 while (pvc) { 535 data[i++] = lmi == LMI_CCITT ? LMI_CCITT_PVCSTAT : 536 LMI_ANSI_CISCO_PVCSTAT; 537 data[i++] = stat_len; 538 539 /* LMI start/restart */ 540 if (state(hdlc)->reliable && !pvc->state.exist) { 541 pvc->state.exist = pvc->state.new = 1; 542 fr_log_dlci_active(pvc); 543 } 544 545 /* ifconfig PVC up */ 546 if (pvc->open_count && !pvc->state.active && 547 pvc->state.exist && !pvc->state.new) { 548 pvc_carrier(1, pvc); 549 pvc->state.active = 1; 550 fr_log_dlci_active(pvc); 551 } 552 553 if (lmi == LMI_CISCO) { 554 data[i] = pvc->dlci >> 8; 555 data[i + 1] = pvc->dlci & 0xFF; 556 } else { 557 data[i] = (pvc->dlci >> 4) & 0x3F; 558 data[i + 1] = ((pvc->dlci << 3) & 0x78) | 0x80; 559 data[i + 2] = 0x80; 560 } 561 562 if (pvc->state.new) 563 data[i + 2] |= 0x08; 564 else if (pvc->state.active) 565 data[i + 2] |= 0x02; 566 567 i += stat_len; 568 pvc = pvc->next; 569 } 570 } 571 572 skb_put(skb, i); 573 skb->priority = TC_PRIO_CONTROL; 574 skb->dev = dev; 575 skb_reset_network_header(skb); 576 577 dev_queue_xmit(skb); 578 } 579 580 581 582 static void fr_set_link_state(int reliable, struct net_device *dev) 583 { 584 hdlc_device *hdlc = dev_to_hdlc(dev); 585 pvc_device *pvc = state(hdlc)->first_pvc; 586 587 state(hdlc)->reliable = reliable; 588 if (reliable) { 589 netif_dormant_off(dev); 590 state(hdlc)->n391cnt = 0; /* Request full status */ 591 state(hdlc)->dce_changed = 1; 592 593 if (state(hdlc)->settings.lmi == LMI_NONE) { 594 while (pvc) { /* Activate all PVCs */ 595 pvc_carrier(1, pvc); 596 pvc->state.exist = pvc->state.active = 1; 597 pvc->state.new = 0; 598 pvc = pvc->next; 599 } 600 } 601 } else { 602 netif_dormant_on(dev); 603 while (pvc) { /* Deactivate all PVCs */ 604 pvc_carrier(0, pvc); 605 pvc->state.exist = pvc->state.active = 0; 606 pvc->state.new = 0; 607 if (!state(hdlc)->settings.dce) 608 pvc->state.bandwidth = 0; 609 pvc = pvc->next; 610 } 611 } 612 } 613 614 615 static void fr_timer(unsigned long arg) 616 { 617 struct net_device *dev = (struct net_device *)arg; 618 hdlc_device *hdlc = dev_to_hdlc(dev); 619 int i, cnt = 0, reliable; 620 u32 list; 621 622 if (state(hdlc)->settings.dce) { 623 reliable = state(hdlc)->request && 624 time_before(jiffies, state(hdlc)->last_poll + 625 state(hdlc)->settings.t392 * HZ); 626 state(hdlc)->request = 0; 627 } else { 628 state(hdlc)->last_errors <<= 1; /* Shift the list */ 629 if (state(hdlc)->request) { 630 if (state(hdlc)->reliable) 631 printk(KERN_INFO "%s: No LMI status reply " 632 "received\n", dev->name); 633 state(hdlc)->last_errors |= 1; 634 } 635 636 list = state(hdlc)->last_errors; 637 for (i = 0; i < state(hdlc)->settings.n393; i++, list >>= 1) 638 cnt += (list & 1); /* errors count */ 639 640 reliable = (cnt < state(hdlc)->settings.n392); 641 } 642 643 if (state(hdlc)->reliable != reliable) { 644 printk(KERN_INFO "%s: Link %sreliable\n", dev->name, 645 reliable ? "" : "un"); 646 fr_set_link_state(reliable, dev); 647 } 648 649 if (state(hdlc)->settings.dce) 650 state(hdlc)->timer.expires = jiffies + 651 state(hdlc)->settings.t392 * HZ; 652 else { 653 if (state(hdlc)->n391cnt) 654 state(hdlc)->n391cnt--; 655 656 fr_lmi_send(dev, state(hdlc)->n391cnt == 0); 657 658 state(hdlc)->last_poll = jiffies; 659 state(hdlc)->request = 1; 660 state(hdlc)->timer.expires = jiffies + 661 state(hdlc)->settings.t391 * HZ; 662 } 663 664 state(hdlc)->timer.function = fr_timer; 665 state(hdlc)->timer.data = arg; 666 add_timer(&state(hdlc)->timer); 667 } 668 669 670 static int fr_lmi_recv(struct net_device *dev, struct sk_buff *skb) 671 { 672 hdlc_device *hdlc = dev_to_hdlc(dev); 673 pvc_device *pvc; 674 u8 rxseq, txseq; 675 int lmi = state(hdlc)->settings.lmi; 676 int dce = state(hdlc)->settings.dce; 677 int stat_len = (lmi == LMI_CISCO) ? 6 : 3, reptype, error, no_ram, i; 678 679 if (skb->len < (lmi == LMI_ANSI ? LMI_ANSI_LENGTH : 680 LMI_CCITT_CISCO_LENGTH)) { 681 printk(KERN_INFO "%s: Short LMI frame\n", dev->name); 682 return 1; 683 } 684 685 if (skb->data[3] != (lmi == LMI_CISCO ? NLPID_CISCO_LMI : 686 NLPID_CCITT_ANSI_LMI)) { 687 printk(KERN_INFO "%s: Received non-LMI frame with LMI DLCI\n", 688 dev->name); 689 return 1; 690 } 691 692 if (skb->data[4] != LMI_CALLREF) { 693 printk(KERN_INFO "%s: Invalid LMI Call reference (0x%02X)\n", 694 dev->name, skb->data[4]); 695 return 1; 696 } 697 698 if (skb->data[5] != (dce ? LMI_STATUS_ENQUIRY : LMI_STATUS)) { 699 printk(KERN_INFO "%s: Invalid LMI Message type (0x%02X)\n", 700 dev->name, skb->data[5]); 701 return 1; 702 } 703 704 if (lmi == LMI_ANSI) { 705 if (skb->data[6] != LMI_ANSI_LOCKSHIFT) { 706 printk(KERN_INFO "%s: Not ANSI locking shift in LMI" 707 " message (0x%02X)\n", dev->name, skb->data[6]); 708 return 1; 709 } 710 i = 7; 711 } else 712 i = 6; 713 714 if (skb->data[i] != (lmi == LMI_CCITT ? LMI_CCITT_REPTYPE : 715 LMI_ANSI_CISCO_REPTYPE)) { 716 printk(KERN_INFO "%s: Not an LMI Report type IE (0x%02X)\n", 717 dev->name, skb->data[i]); 718 return 1; 719 } 720 721 if (skb->data[++i] != LMI_REPT_LEN) { 722 printk(KERN_INFO "%s: Invalid LMI Report type IE length" 723 " (%u)\n", dev->name, skb->data[i]); 724 return 1; 725 } 726 727 reptype = skb->data[++i]; 728 if (reptype != LMI_INTEGRITY && reptype != LMI_FULLREP) { 729 printk(KERN_INFO "%s: Unsupported LMI Report type (0x%02X)\n", 730 dev->name, reptype); 731 return 1; 732 } 733 734 if (skb->data[++i] != (lmi == LMI_CCITT ? LMI_CCITT_ALIVE : 735 LMI_ANSI_CISCO_ALIVE)) { 736 printk(KERN_INFO "%s: Not an LMI Link integrity verification" 737 " IE (0x%02X)\n", dev->name, skb->data[i]); 738 return 1; 739 } 740 741 if (skb->data[++i] != LMI_INTEG_LEN) { 742 printk(KERN_INFO "%s: Invalid LMI Link integrity verification" 743 " IE length (%u)\n", dev->name, skb->data[i]); 744 return 1; 745 } 746 i++; 747 748 state(hdlc)->rxseq = skb->data[i++]; /* TX sequence from peer */ 749 rxseq = skb->data[i++]; /* Should confirm our sequence */ 750 751 txseq = state(hdlc)->txseq; 752 753 if (dce) 754 state(hdlc)->last_poll = jiffies; 755 756 error = 0; 757 if (!state(hdlc)->reliable) 758 error = 1; 759 760 if (rxseq == 0 || rxseq != txseq) { /* Ask for full report next time */ 761 state(hdlc)->n391cnt = 0; 762 error = 1; 763 } 764 765 if (dce) { 766 if (state(hdlc)->fullrep_sent && !error) { 767 /* Stop sending full report - the last one has been confirmed by DTE */ 768 state(hdlc)->fullrep_sent = 0; 769 pvc = state(hdlc)->first_pvc; 770 while (pvc) { 771 if (pvc->state.new) { 772 pvc->state.new = 0; 773 774 /* Tell DTE that new PVC is now active */ 775 state(hdlc)->dce_changed = 1; 776 } 777 pvc = pvc->next; 778 } 779 } 780 781 if (state(hdlc)->dce_changed) { 782 reptype = LMI_FULLREP; 783 state(hdlc)->fullrep_sent = 1; 784 state(hdlc)->dce_changed = 0; 785 } 786 787 state(hdlc)->request = 1; /* got request */ 788 fr_lmi_send(dev, reptype == LMI_FULLREP ? 1 : 0); 789 return 0; 790 } 791 792 /* DTE */ 793 794 state(hdlc)->request = 0; /* got response, no request pending */ 795 796 if (error) 797 return 0; 798 799 if (reptype != LMI_FULLREP) 800 return 0; 801 802 pvc = state(hdlc)->first_pvc; 803 804 while (pvc) { 805 pvc->state.deleted = 1; 806 pvc = pvc->next; 807 } 808 809 no_ram = 0; 810 while (skb->len >= i + 2 + stat_len) { 811 u16 dlci; 812 u32 bw; 813 unsigned int active, new; 814 815 if (skb->data[i] != (lmi == LMI_CCITT ? LMI_CCITT_PVCSTAT : 816 LMI_ANSI_CISCO_PVCSTAT)) { 817 printk(KERN_INFO "%s: Not an LMI PVC status IE" 818 " (0x%02X)\n", dev->name, skb->data[i]); 819 return 1; 820 } 821 822 if (skb->data[++i] != stat_len) { 823 printk(KERN_INFO "%s: Invalid LMI PVC status IE length" 824 " (%u)\n", dev->name, skb->data[i]); 825 return 1; 826 } 827 i++; 828 829 new = !! (skb->data[i + 2] & 0x08); 830 active = !! (skb->data[i + 2] & 0x02); 831 if (lmi == LMI_CISCO) { 832 dlci = (skb->data[i] << 8) | skb->data[i + 1]; 833 bw = (skb->data[i + 3] << 16) | 834 (skb->data[i + 4] << 8) | 835 (skb->data[i + 5]); 836 } else { 837 dlci = ((skb->data[i] & 0x3F) << 4) | 838 ((skb->data[i + 1] & 0x78) >> 3); 839 bw = 0; 840 } 841 842 pvc = add_pvc(dev, dlci); 843 844 if (!pvc && !no_ram) { 845 printk(KERN_WARNING 846 "%s: Memory squeeze on fr_lmi_recv()\n", 847 dev->name); 848 no_ram = 1; 849 } 850 851 if (pvc) { 852 pvc->state.exist = 1; 853 pvc->state.deleted = 0; 854 if (active != pvc->state.active || 855 new != pvc->state.new || 856 bw != pvc->state.bandwidth || 857 !pvc->state.exist) { 858 pvc->state.new = new; 859 pvc->state.active = active; 860 pvc->state.bandwidth = bw; 861 pvc_carrier(active, pvc); 862 fr_log_dlci_active(pvc); 863 } 864 } 865 866 i += stat_len; 867 } 868 869 pvc = state(hdlc)->first_pvc; 870 871 while (pvc) { 872 if (pvc->state.deleted && pvc->state.exist) { 873 pvc_carrier(0, pvc); 874 pvc->state.active = pvc->state.new = 0; 875 pvc->state.exist = 0; 876 pvc->state.bandwidth = 0; 877 fr_log_dlci_active(pvc); 878 } 879 pvc = pvc->next; 880 } 881 882 /* Next full report after N391 polls */ 883 state(hdlc)->n391cnt = state(hdlc)->settings.n391; 884 885 return 0; 886 } 887 888 889 static int fr_rx(struct sk_buff *skb) 890 { 891 struct net_device *frad = skb->dev; 892 hdlc_device *hdlc = dev_to_hdlc(frad); 893 fr_hdr *fh = (fr_hdr*)skb->data; 894 u8 *data = skb->data; 895 u16 dlci; 896 pvc_device *pvc; 897 struct net_device *dev = NULL; 898 899 if (skb->len <= 4 || fh->ea1 || data[2] != FR_UI) 900 goto rx_error; 901 902 dlci = q922_to_dlci(skb->data); 903 904 if ((dlci == LMI_CCITT_ANSI_DLCI && 905 (state(hdlc)->settings.lmi == LMI_ANSI || 906 state(hdlc)->settings.lmi == LMI_CCITT)) || 907 (dlci == LMI_CISCO_DLCI && 908 state(hdlc)->settings.lmi == LMI_CISCO)) { 909 if (fr_lmi_recv(frad, skb)) 910 goto rx_error; 911 dev_kfree_skb_any(skb); 912 return NET_RX_SUCCESS; 913 } 914 915 pvc = find_pvc(hdlc, dlci); 916 if (!pvc) { 917 #ifdef DEBUG_PKT 918 printk(KERN_INFO "%s: No PVC for received frame's DLCI %d\n", 919 frad->name, dlci); 920 #endif 921 dev_kfree_skb_any(skb); 922 return NET_RX_DROP; 923 } 924 925 if (pvc->state.fecn != fh->fecn) { 926 #ifdef DEBUG_ECN 927 printk(KERN_DEBUG "%s: DLCI %d FECN O%s\n", frad->name, 928 dlci, fh->fecn ? "N" : "FF"); 929 #endif 930 pvc->state.fecn ^= 1; 931 } 932 933 if (pvc->state.becn != fh->becn) { 934 #ifdef DEBUG_ECN 935 printk(KERN_DEBUG "%s: DLCI %d BECN O%s\n", frad->name, 936 dlci, fh->becn ? "N" : "FF"); 937 #endif 938 pvc->state.becn ^= 1; 939 } 940 941 942 if ((skb = skb_share_check(skb, GFP_ATOMIC)) == NULL) { 943 frad->stats.rx_dropped++; 944 return NET_RX_DROP; 945 } 946 947 if (data[3] == NLPID_IP) { 948 skb_pull(skb, 4); /* Remove 4-byte header (hdr, UI, NLPID) */ 949 dev = pvc->main; 950 skb->protocol = htons(ETH_P_IP); 951 952 } else if (data[3] == NLPID_IPV6) { 953 skb_pull(skb, 4); /* Remove 4-byte header (hdr, UI, NLPID) */ 954 dev = pvc->main; 955 skb->protocol = htons(ETH_P_IPV6); 956 957 } else if (skb->len > 10 && data[3] == FR_PAD && 958 data[4] == NLPID_SNAP && data[5] == FR_PAD) { 959 u16 oui = ntohs(*(__be16*)(data + 6)); 960 u16 pid = ntohs(*(__be16*)(data + 8)); 961 skb_pull(skb, 10); 962 963 switch ((((u32)oui) << 16) | pid) { 964 case ETH_P_ARP: /* routed frame with SNAP */ 965 case ETH_P_IPX: 966 case ETH_P_IP: /* a long variant */ 967 case ETH_P_IPV6: 968 dev = pvc->main; 969 skb->protocol = htons(pid); 970 break; 971 972 case 0x80C20007: /* bridged Ethernet frame */ 973 if ((dev = pvc->ether) != NULL) 974 skb->protocol = eth_type_trans(skb, dev); 975 break; 976 977 default: 978 printk(KERN_INFO "%s: Unsupported protocol, OUI=%x " 979 "PID=%x\n", frad->name, oui, pid); 980 dev_kfree_skb_any(skb); 981 return NET_RX_DROP; 982 } 983 } else { 984 printk(KERN_INFO "%s: Unsupported protocol, NLPID=%x " 985 "length = %i\n", frad->name, data[3], skb->len); 986 dev_kfree_skb_any(skb); 987 return NET_RX_DROP; 988 } 989 990 if (dev) { 991 dev->stats.rx_packets++; /* PVC traffic */ 992 dev->stats.rx_bytes += skb->len; 993 if (pvc->state.becn) 994 dev->stats.rx_compressed++; 995 skb->dev = dev; 996 netif_rx(skb); 997 return NET_RX_SUCCESS; 998 } else { 999 dev_kfree_skb_any(skb); 1000 return NET_RX_DROP; 1001 } 1002 1003 rx_error: 1004 frad->stats.rx_errors++; /* Mark error */ 1005 dev_kfree_skb_any(skb); 1006 return NET_RX_DROP; 1007 } 1008 1009 1010 1011 static void fr_start(struct net_device *dev) 1012 { 1013 hdlc_device *hdlc = dev_to_hdlc(dev); 1014 #ifdef DEBUG_LINK 1015 printk(KERN_DEBUG "fr_start\n"); 1016 #endif 1017 if (state(hdlc)->settings.lmi != LMI_NONE) { 1018 state(hdlc)->reliable = 0; 1019 state(hdlc)->dce_changed = 1; 1020 state(hdlc)->request = 0; 1021 state(hdlc)->fullrep_sent = 0; 1022 state(hdlc)->last_errors = 0xFFFFFFFF; 1023 state(hdlc)->n391cnt = 0; 1024 state(hdlc)->txseq = state(hdlc)->rxseq = 0; 1025 1026 init_timer(&state(hdlc)->timer); 1027 /* First poll after 1 s */ 1028 state(hdlc)->timer.expires = jiffies + HZ; 1029 state(hdlc)->timer.function = fr_timer; 1030 state(hdlc)->timer.data = (unsigned long)dev; 1031 add_timer(&state(hdlc)->timer); 1032 } else 1033 fr_set_link_state(1, dev); 1034 } 1035 1036 1037 static void fr_stop(struct net_device *dev) 1038 { 1039 hdlc_device *hdlc = dev_to_hdlc(dev); 1040 #ifdef DEBUG_LINK 1041 printk(KERN_DEBUG "fr_stop\n"); 1042 #endif 1043 if (state(hdlc)->settings.lmi != LMI_NONE) 1044 del_timer_sync(&state(hdlc)->timer); 1045 fr_set_link_state(0, dev); 1046 } 1047 1048 1049 static void fr_close(struct net_device *dev) 1050 { 1051 hdlc_device *hdlc = dev_to_hdlc(dev); 1052 pvc_device *pvc = state(hdlc)->first_pvc; 1053 1054 while (pvc) { /* Shutdown all PVCs for this FRAD */ 1055 if (pvc->main) 1056 dev_close(pvc->main); 1057 if (pvc->ether) 1058 dev_close(pvc->ether); 1059 pvc = pvc->next; 1060 } 1061 } 1062 1063 1064 static void pvc_setup(struct net_device *dev) 1065 { 1066 dev->type = ARPHRD_DLCI; 1067 dev->flags = IFF_POINTOPOINT; 1068 dev->hard_header_len = 10; 1069 dev->addr_len = 2; 1070 } 1071 1072 static int fr_add_pvc(struct net_device *frad, unsigned int dlci, int type) 1073 { 1074 hdlc_device *hdlc = dev_to_hdlc(frad); 1075 pvc_device *pvc; 1076 struct net_device *dev; 1077 int result, used; 1078 1079 if ((pvc = add_pvc(frad, dlci)) == NULL) { 1080 printk(KERN_WARNING "%s: Memory squeeze on fr_add_pvc()\n", 1081 frad->name); 1082 return -ENOBUFS; 1083 } 1084 1085 if (*get_dev_p(pvc, type)) 1086 return -EEXIST; 1087 1088 used = pvc_is_used(pvc); 1089 1090 if (type == ARPHRD_ETHER) 1091 dev = alloc_netdev(0, "pvceth%d", ether_setup); 1092 else 1093 dev = alloc_netdev(0, "pvc%d", pvc_setup); 1094 1095 if (!dev) { 1096 printk(KERN_WARNING "%s: Memory squeeze on fr_pvc()\n", 1097 frad->name); 1098 delete_unused_pvcs(hdlc); 1099 return -ENOBUFS; 1100 } 1101 1102 if (type == ARPHRD_ETHER) 1103 random_ether_addr(dev->dev_addr); 1104 else { 1105 *(__be16*)dev->dev_addr = htons(dlci); 1106 dlci_to_q922(dev->broadcast, dlci); 1107 } 1108 dev->hard_start_xmit = pvc_xmit; 1109 dev->open = pvc_open; 1110 dev->stop = pvc_close; 1111 dev->do_ioctl = pvc_ioctl; 1112 dev->change_mtu = pvc_change_mtu; 1113 dev->mtu = HDLC_MAX_MTU; 1114 dev->tx_queue_len = 0; 1115 dev->priv = pvc; 1116 1117 result = dev_alloc_name(dev, dev->name); 1118 if (result < 0) { 1119 free_netdev(dev); 1120 delete_unused_pvcs(hdlc); 1121 return result; 1122 } 1123 1124 if (register_netdevice(dev) != 0) { 1125 free_netdev(dev); 1126 delete_unused_pvcs(hdlc); 1127 return -EIO; 1128 } 1129 1130 dev->destructor = free_netdev; 1131 *get_dev_p(pvc, type) = dev; 1132 if (!used) { 1133 state(hdlc)->dce_changed = 1; 1134 state(hdlc)->dce_pvc_count++; 1135 } 1136 return 0; 1137 } 1138 1139 1140 1141 static int fr_del_pvc(hdlc_device *hdlc, unsigned int dlci, int type) 1142 { 1143 pvc_device *pvc; 1144 struct net_device *dev; 1145 1146 if ((pvc = find_pvc(hdlc, dlci)) == NULL) 1147 return -ENOENT; 1148 1149 if ((dev = *get_dev_p(pvc, type)) == NULL) 1150 return -ENOENT; 1151 1152 if (dev->flags & IFF_UP) 1153 return -EBUSY; /* PVC in use */ 1154 1155 unregister_netdevice(dev); /* the destructor will free_netdev(dev) */ 1156 *get_dev_p(pvc, type) = NULL; 1157 1158 if (!pvc_is_used(pvc)) { 1159 state(hdlc)->dce_pvc_count--; 1160 state(hdlc)->dce_changed = 1; 1161 } 1162 delete_unused_pvcs(hdlc); 1163 return 0; 1164 } 1165 1166 1167 1168 static void fr_destroy(struct net_device *frad) 1169 { 1170 hdlc_device *hdlc = dev_to_hdlc(frad); 1171 pvc_device *pvc = state(hdlc)->first_pvc; 1172 state(hdlc)->first_pvc = NULL; /* All PVCs destroyed */ 1173 state(hdlc)->dce_pvc_count = 0; 1174 state(hdlc)->dce_changed = 1; 1175 1176 while (pvc) { 1177 pvc_device *next = pvc->next; 1178 /* destructors will free_netdev() main and ether */ 1179 if (pvc->main) 1180 unregister_netdevice(pvc->main); 1181 1182 if (pvc->ether) 1183 unregister_netdevice(pvc->ether); 1184 1185 kfree(pvc); 1186 pvc = next; 1187 } 1188 } 1189 1190 1191 static struct hdlc_proto proto = { 1192 .close = fr_close, 1193 .start = fr_start, 1194 .stop = fr_stop, 1195 .detach = fr_destroy, 1196 .ioctl = fr_ioctl, 1197 .netif_rx = fr_rx, 1198 .module = THIS_MODULE, 1199 }; 1200 1201 1202 static int fr_ioctl(struct net_device *dev, struct ifreq *ifr) 1203 { 1204 fr_proto __user *fr_s = ifr->ifr_settings.ifs_ifsu.fr; 1205 const size_t size = sizeof(fr_proto); 1206 fr_proto new_settings; 1207 hdlc_device *hdlc = dev_to_hdlc(dev); 1208 fr_proto_pvc pvc; 1209 int result; 1210 1211 switch (ifr->ifr_settings.type) { 1212 case IF_GET_PROTO: 1213 if (dev_to_hdlc(dev)->proto != &proto) /* Different proto */ 1214 return -EINVAL; 1215 ifr->ifr_settings.type = IF_PROTO_FR; 1216 if (ifr->ifr_settings.size < size) { 1217 ifr->ifr_settings.size = size; /* data size wanted */ 1218 return -ENOBUFS; 1219 } 1220 if (copy_to_user(fr_s, &state(hdlc)->settings, size)) 1221 return -EFAULT; 1222 return 0; 1223 1224 case IF_PROTO_FR: 1225 if(!capable(CAP_NET_ADMIN)) 1226 return -EPERM; 1227 1228 if(dev->flags & IFF_UP) 1229 return -EBUSY; 1230 1231 if (copy_from_user(&new_settings, fr_s, size)) 1232 return -EFAULT; 1233 1234 if (new_settings.lmi == LMI_DEFAULT) 1235 new_settings.lmi = LMI_ANSI; 1236 1237 if ((new_settings.lmi != LMI_NONE && 1238 new_settings.lmi != LMI_ANSI && 1239 new_settings.lmi != LMI_CCITT && 1240 new_settings.lmi != LMI_CISCO) || 1241 new_settings.t391 < 1 || 1242 new_settings.t392 < 2 || 1243 new_settings.n391 < 1 || 1244 new_settings.n392 < 1 || 1245 new_settings.n393 < new_settings.n392 || 1246 new_settings.n393 > 32 || 1247 (new_settings.dce != 0 && 1248 new_settings.dce != 1)) 1249 return -EINVAL; 1250 1251 result=hdlc->attach(dev, ENCODING_NRZ,PARITY_CRC16_PR1_CCITT); 1252 if (result) 1253 return result; 1254 1255 if (dev_to_hdlc(dev)->proto != &proto) { /* Different proto */ 1256 result = attach_hdlc_protocol(dev, &proto, 1257 sizeof(struct frad_state)); 1258 if (result) 1259 return result; 1260 state(hdlc)->first_pvc = NULL; 1261 state(hdlc)->dce_pvc_count = 0; 1262 } 1263 memcpy(&state(hdlc)->settings, &new_settings, size); 1264 1265 dev->hard_start_xmit = hdlc->xmit; 1266 dev->type = ARPHRD_FRAD; 1267 return 0; 1268 1269 case IF_PROTO_FR_ADD_PVC: 1270 case IF_PROTO_FR_DEL_PVC: 1271 case IF_PROTO_FR_ADD_ETH_PVC: 1272 case IF_PROTO_FR_DEL_ETH_PVC: 1273 if (dev_to_hdlc(dev)->proto != &proto) /* Different proto */ 1274 return -EINVAL; 1275 1276 if(!capable(CAP_NET_ADMIN)) 1277 return -EPERM; 1278 1279 if (copy_from_user(&pvc, ifr->ifr_settings.ifs_ifsu.fr_pvc, 1280 sizeof(fr_proto_pvc))) 1281 return -EFAULT; 1282 1283 if (pvc.dlci <= 0 || pvc.dlci >= 1024) 1284 return -EINVAL; /* Only 10 bits, DLCI 0 reserved */ 1285 1286 if (ifr->ifr_settings.type == IF_PROTO_FR_ADD_ETH_PVC || 1287 ifr->ifr_settings.type == IF_PROTO_FR_DEL_ETH_PVC) 1288 result = ARPHRD_ETHER; /* bridged Ethernet device */ 1289 else 1290 result = ARPHRD_DLCI; 1291 1292 if (ifr->ifr_settings.type == IF_PROTO_FR_ADD_PVC || 1293 ifr->ifr_settings.type == IF_PROTO_FR_ADD_ETH_PVC) 1294 return fr_add_pvc(dev, pvc.dlci, result); 1295 else 1296 return fr_del_pvc(hdlc, pvc.dlci, result); 1297 } 1298 1299 return -EINVAL; 1300 } 1301 1302 1303 static int __init mod_init(void) 1304 { 1305 register_hdlc_protocol(&proto); 1306 return 0; 1307 } 1308 1309 1310 static void __exit mod_exit(void) 1311 { 1312 unregister_hdlc_protocol(&proto); 1313 } 1314 1315 1316 module_init(mod_init); 1317 module_exit(mod_exit); 1318 1319 MODULE_AUTHOR("Krzysztof Halasa <khc@pm.waw.pl>"); 1320 MODULE_DESCRIPTION("Frame-Relay protocol support for generic HDLC"); 1321 MODULE_LICENSE("GPL v2"); 1322