xref: /openbmc/linux/drivers/net/wan/hdlc_fr.c (revision b68e31d0)
1 /*
2  * Generic HDLC support routines for Linux
3  * Frame Relay support
4  *
5  * Copyright (C) 1999 - 2006 Krzysztof Halasa <khc@pm.waw.pl>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms of version 2 of the GNU General Public License
9  * as published by the Free Software Foundation.
10  *
11 
12             Theory of PVC state
13 
14  DCE mode:
15 
16  (exist,new) -> 0,0 when "PVC create" or if "link unreliable"
17          0,x -> 1,1 if "link reliable" when sending FULL STATUS
18          1,1 -> 1,0 if received FULL STATUS ACK
19 
20  (active)    -> 0 when "ifconfig PVC down" or "link unreliable" or "PVC create"
21              -> 1 when "PVC up" and (exist,new) = 1,0
22 
23  DTE mode:
24  (exist,new,active) = FULL STATUS if "link reliable"
25 		    = 0, 0, 0 if "link unreliable"
26  No LMI:
27  active = open and "link reliable"
28  exist = new = not used
29 
30  CCITT LMI: ITU-T Q.933 Annex A
31  ANSI LMI: ANSI T1.617 Annex D
32  CISCO LMI: the original, aka "Gang of Four" LMI
33 
34 */
35 
36 #include <linux/module.h>
37 #include <linux/kernel.h>
38 #include <linux/slab.h>
39 #include <linux/poll.h>
40 #include <linux/errno.h>
41 #include <linux/if_arp.h>
42 #include <linux/init.h>
43 #include <linux/skbuff.h>
44 #include <linux/pkt_sched.h>
45 #include <linux/random.h>
46 #include <linux/inetdevice.h>
47 #include <linux/lapb.h>
48 #include <linux/rtnetlink.h>
49 #include <linux/etherdevice.h>
50 #include <linux/hdlc.h>
51 
52 #undef DEBUG_PKT
53 #undef DEBUG_ECN
54 #undef DEBUG_LINK
55 #undef DEBUG_PROTO
56 #undef DEBUG_PVC
57 
58 #define FR_UI			0x03
59 #define FR_PAD			0x00
60 
61 #define NLPID_IP		0xCC
62 #define NLPID_IPV6		0x8E
63 #define NLPID_SNAP		0x80
64 #define NLPID_PAD		0x00
65 #define NLPID_CCITT_ANSI_LMI	0x08
66 #define NLPID_CISCO_LMI		0x09
67 
68 
69 #define LMI_CCITT_ANSI_DLCI	   0 /* LMI DLCI */
70 #define LMI_CISCO_DLCI		1023
71 
72 #define LMI_CALLREF		0x00 /* Call Reference */
73 #define LMI_ANSI_LOCKSHIFT	0x95 /* ANSI locking shift */
74 #define LMI_ANSI_CISCO_REPTYPE	0x01 /* report type */
75 #define LMI_CCITT_REPTYPE	0x51
76 #define LMI_ANSI_CISCO_ALIVE	0x03 /* keep alive */
77 #define LMI_CCITT_ALIVE		0x53
78 #define LMI_ANSI_CISCO_PVCSTAT	0x07 /* PVC status */
79 #define LMI_CCITT_PVCSTAT	0x57
80 
81 #define LMI_FULLREP		0x00 /* full report  */
82 #define LMI_INTEGRITY		0x01 /* link integrity report */
83 #define LMI_SINGLE		0x02 /* single PVC report */
84 
85 #define LMI_STATUS_ENQUIRY      0x75
86 #define LMI_STATUS              0x7D /* reply */
87 
88 #define LMI_REPT_LEN               1 /* report type element length */
89 #define LMI_INTEG_LEN              2 /* link integrity element length */
90 
91 #define LMI_CCITT_CISCO_LENGTH	  13 /* LMI frame lengths */
92 #define LMI_ANSI_LENGTH		  14
93 
94 
95 typedef struct {
96 #if defined(__LITTLE_ENDIAN_BITFIELD)
97 	unsigned ea1:	1;
98 	unsigned cr:	1;
99 	unsigned dlcih:	6;
100 
101 	unsigned ea2:	1;
102 	unsigned de:	1;
103 	unsigned becn:	1;
104 	unsigned fecn:	1;
105 	unsigned dlcil:	4;
106 #else
107 	unsigned dlcih:	6;
108 	unsigned cr:	1;
109 	unsigned ea1:	1;
110 
111 	unsigned dlcil:	4;
112 	unsigned fecn:	1;
113 	unsigned becn:	1;
114 	unsigned de:	1;
115 	unsigned ea2:	1;
116 #endif
117 }__attribute__ ((packed)) fr_hdr;
118 
119 
120 typedef struct pvc_device_struct {
121 	struct net_device *frad;
122 	struct net_device *main;
123 	struct net_device *ether;	/* bridged Ethernet interface	*/
124 	struct pvc_device_struct *next;	/* Sorted in ascending DLCI order */
125 	int dlci;
126 	int open_count;
127 
128 	struct {
129 		unsigned int new: 1;
130 		unsigned int active: 1;
131 		unsigned int exist: 1;
132 		unsigned int deleted: 1;
133 		unsigned int fecn: 1;
134 		unsigned int becn: 1;
135 		unsigned int bandwidth;	/* Cisco LMI reporting only */
136 	}state;
137 }pvc_device;
138 
139 
140 struct frad_state {
141 	fr_proto settings;
142 	pvc_device *first_pvc;
143 	int dce_pvc_count;
144 
145 	struct timer_list timer;
146 	unsigned long last_poll;
147 	int reliable;
148 	int dce_changed;
149 	int request;
150 	int fullrep_sent;
151 	u32 last_errors; /* last errors bit list */
152 	u8 n391cnt;
153 	u8 txseq; /* TX sequence number */
154 	u8 rxseq; /* RX sequence number */
155 };
156 
157 
158 static int fr_ioctl(struct net_device *dev, struct ifreq *ifr);
159 
160 
161 static inline u16 q922_to_dlci(u8 *hdr)
162 {
163 	return ((hdr[0] & 0xFC) << 2) | ((hdr[1] & 0xF0) >> 4);
164 }
165 
166 
167 static inline void dlci_to_q922(u8 *hdr, u16 dlci)
168 {
169 	hdr[0] = (dlci >> 2) & 0xFC;
170 	hdr[1] = ((dlci << 4) & 0xF0) | 0x01;
171 }
172 
173 
174 static inline struct frad_state * state(hdlc_device *hdlc)
175 {
176 	return(struct frad_state *)(hdlc->state);
177 }
178 
179 
180 static __inline__ pvc_device* dev_to_pvc(struct net_device *dev)
181 {
182 	return dev->priv;
183 }
184 
185 
186 static inline pvc_device* find_pvc(hdlc_device *hdlc, u16 dlci)
187 {
188 	pvc_device *pvc = state(hdlc)->first_pvc;
189 
190 	while (pvc) {
191 		if (pvc->dlci == dlci)
192 			return pvc;
193 		if (pvc->dlci > dlci)
194 			return NULL; /* the listed is sorted */
195 		pvc = pvc->next;
196 	}
197 
198 	return NULL;
199 }
200 
201 
202 static pvc_device* add_pvc(struct net_device *dev, u16 dlci)
203 {
204 	hdlc_device *hdlc = dev_to_hdlc(dev);
205 	pvc_device *pvc, **pvc_p = &state(hdlc)->first_pvc;
206 
207 	while (*pvc_p) {
208 		if ((*pvc_p)->dlci == dlci)
209 			return *pvc_p;
210 		if ((*pvc_p)->dlci > dlci)
211 			break;	/* the list is sorted */
212 		pvc_p = &(*pvc_p)->next;
213 	}
214 
215 	pvc = kmalloc(sizeof(pvc_device), GFP_ATOMIC);
216 #ifdef DEBUG_PVC
217 	printk(KERN_DEBUG "add_pvc: allocated pvc %p, frad %p\n", pvc, dev);
218 #endif
219 	if (!pvc)
220 		return NULL;
221 
222 	memset(pvc, 0, sizeof(pvc_device));
223 	pvc->dlci = dlci;
224 	pvc->frad = dev;
225 	pvc->next = *pvc_p;	/* Put it in the chain */
226 	*pvc_p = pvc;
227 	return pvc;
228 }
229 
230 
231 static inline int pvc_is_used(pvc_device *pvc)
232 {
233 	return pvc->main || pvc->ether;
234 }
235 
236 
237 static inline void pvc_carrier(int on, pvc_device *pvc)
238 {
239 	if (on) {
240 		if (pvc->main)
241 			if (!netif_carrier_ok(pvc->main))
242 				netif_carrier_on(pvc->main);
243 		if (pvc->ether)
244 			if (!netif_carrier_ok(pvc->ether))
245 				netif_carrier_on(pvc->ether);
246 	} else {
247 		if (pvc->main)
248 			if (netif_carrier_ok(pvc->main))
249 				netif_carrier_off(pvc->main);
250 		if (pvc->ether)
251 			if (netif_carrier_ok(pvc->ether))
252 				netif_carrier_off(pvc->ether);
253 	}
254 }
255 
256 
257 static inline void delete_unused_pvcs(hdlc_device *hdlc)
258 {
259 	pvc_device **pvc_p = &state(hdlc)->first_pvc;
260 
261 	while (*pvc_p) {
262 		if (!pvc_is_used(*pvc_p)) {
263 			pvc_device *pvc = *pvc_p;
264 #ifdef DEBUG_PVC
265 			printk(KERN_DEBUG "freeing unused pvc: %p\n", pvc);
266 #endif
267 			*pvc_p = pvc->next;
268 			kfree(pvc);
269 			continue;
270 		}
271 		pvc_p = &(*pvc_p)->next;
272 	}
273 }
274 
275 
276 static inline struct net_device** get_dev_p(pvc_device *pvc, int type)
277 {
278 	if (type == ARPHRD_ETHER)
279 		return &pvc->ether;
280 	else
281 		return &pvc->main;
282 }
283 
284 
285 static int fr_hard_header(struct sk_buff **skb_p, u16 dlci)
286 {
287 	u16 head_len;
288 	struct sk_buff *skb = *skb_p;
289 
290 	switch (skb->protocol) {
291 	case __constant_ntohs(NLPID_CCITT_ANSI_LMI):
292 		head_len = 4;
293 		skb_push(skb, head_len);
294 		skb->data[3] = NLPID_CCITT_ANSI_LMI;
295 		break;
296 
297 	case __constant_ntohs(NLPID_CISCO_LMI):
298 		head_len = 4;
299 		skb_push(skb, head_len);
300 		skb->data[3] = NLPID_CISCO_LMI;
301 		break;
302 
303 	case __constant_ntohs(ETH_P_IP):
304 		head_len = 4;
305 		skb_push(skb, head_len);
306 		skb->data[3] = NLPID_IP;
307 		break;
308 
309 	case __constant_ntohs(ETH_P_IPV6):
310 		head_len = 4;
311 		skb_push(skb, head_len);
312 		skb->data[3] = NLPID_IPV6;
313 		break;
314 
315 	case __constant_ntohs(ETH_P_802_3):
316 		head_len = 10;
317 		if (skb_headroom(skb) < head_len) {
318 			struct sk_buff *skb2 = skb_realloc_headroom(skb,
319 								    head_len);
320 			if (!skb2)
321 				return -ENOBUFS;
322 			dev_kfree_skb(skb);
323 			skb = *skb_p = skb2;
324 		}
325 		skb_push(skb, head_len);
326 		skb->data[3] = FR_PAD;
327 		skb->data[4] = NLPID_SNAP;
328 		skb->data[5] = FR_PAD;
329 		skb->data[6] = 0x80;
330 		skb->data[7] = 0xC2;
331 		skb->data[8] = 0x00;
332 		skb->data[9] = 0x07; /* bridged Ethernet frame w/out FCS */
333 		break;
334 
335 	default:
336 		head_len = 10;
337 		skb_push(skb, head_len);
338 		skb->data[3] = FR_PAD;
339 		skb->data[4] = NLPID_SNAP;
340 		skb->data[5] = FR_PAD;
341 		skb->data[6] = FR_PAD;
342 		skb->data[7] = FR_PAD;
343 		*(u16*)(skb->data + 8) = skb->protocol;
344 	}
345 
346 	dlci_to_q922(skb->data, dlci);
347 	skb->data[2] = FR_UI;
348 	return 0;
349 }
350 
351 
352 
353 static int pvc_open(struct net_device *dev)
354 {
355 	pvc_device *pvc = dev_to_pvc(dev);
356 
357 	if ((pvc->frad->flags & IFF_UP) == 0)
358 		return -EIO;  /* Frad must be UP in order to activate PVC */
359 
360 	if (pvc->open_count++ == 0) {
361 		hdlc_device *hdlc = dev_to_hdlc(pvc->frad);
362 		if (state(hdlc)->settings.lmi == LMI_NONE)
363 			pvc->state.active = netif_carrier_ok(pvc->frad);
364 
365 		pvc_carrier(pvc->state.active, pvc);
366 		state(hdlc)->dce_changed = 1;
367 	}
368 	return 0;
369 }
370 
371 
372 
373 static int pvc_close(struct net_device *dev)
374 {
375 	pvc_device *pvc = dev_to_pvc(dev);
376 
377 	if (--pvc->open_count == 0) {
378 		hdlc_device *hdlc = dev_to_hdlc(pvc->frad);
379 		if (state(hdlc)->settings.lmi == LMI_NONE)
380 			pvc->state.active = 0;
381 
382 		if (state(hdlc)->settings.dce) {
383 			state(hdlc)->dce_changed = 1;
384 			pvc->state.active = 0;
385 		}
386 	}
387 	return 0;
388 }
389 
390 
391 
392 static int pvc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
393 {
394 	pvc_device *pvc = dev_to_pvc(dev);
395 	fr_proto_pvc_info info;
396 
397 	if (ifr->ifr_settings.type == IF_GET_PROTO) {
398 		if (dev->type == ARPHRD_ETHER)
399 			ifr->ifr_settings.type = IF_PROTO_FR_ETH_PVC;
400 		else
401 			ifr->ifr_settings.type = IF_PROTO_FR_PVC;
402 
403 		if (ifr->ifr_settings.size < sizeof(info)) {
404 			/* data size wanted */
405 			ifr->ifr_settings.size = sizeof(info);
406 			return -ENOBUFS;
407 		}
408 
409 		info.dlci = pvc->dlci;
410 		memcpy(info.master, pvc->frad->name, IFNAMSIZ);
411 		if (copy_to_user(ifr->ifr_settings.ifs_ifsu.fr_pvc_info,
412 				 &info, sizeof(info)))
413 			return -EFAULT;
414 		return 0;
415 	}
416 
417 	return -EINVAL;
418 }
419 
420 
421 static inline struct net_device_stats *pvc_get_stats(struct net_device *dev)
422 {
423 	return &dev_to_desc(dev)->stats;
424 }
425 
426 
427 
428 static int pvc_xmit(struct sk_buff *skb, struct net_device *dev)
429 {
430 	pvc_device *pvc = dev_to_pvc(dev);
431 	struct net_device_stats *stats = pvc_get_stats(dev);
432 
433 	if (pvc->state.active) {
434 		if (dev->type == ARPHRD_ETHER) {
435 			int pad = ETH_ZLEN - skb->len;
436 			if (pad > 0) { /* Pad the frame with zeros */
437 				int len = skb->len;
438 				if (skb_tailroom(skb) < pad)
439 					if (pskb_expand_head(skb, 0, pad,
440 							     GFP_ATOMIC)) {
441 						stats->tx_dropped++;
442 						dev_kfree_skb(skb);
443 						return 0;
444 					}
445 				skb_put(skb, pad);
446 				memset(skb->data + len, 0, pad);
447 			}
448 			skb->protocol = __constant_htons(ETH_P_802_3);
449 		}
450 		if (!fr_hard_header(&skb, pvc->dlci)) {
451 			stats->tx_bytes += skb->len;
452 			stats->tx_packets++;
453 			if (pvc->state.fecn) /* TX Congestion counter */
454 				stats->tx_compressed++;
455 			skb->dev = pvc->frad;
456 			dev_queue_xmit(skb);
457 			return 0;
458 		}
459 	}
460 
461 	stats->tx_dropped++;
462 	dev_kfree_skb(skb);
463 	return 0;
464 }
465 
466 
467 
468 static int pvc_change_mtu(struct net_device *dev, int new_mtu)
469 {
470 	if ((new_mtu < 68) || (new_mtu > HDLC_MAX_MTU))
471 		return -EINVAL;
472 	dev->mtu = new_mtu;
473 	return 0;
474 }
475 
476 
477 
478 static inline void fr_log_dlci_active(pvc_device *pvc)
479 {
480 	printk(KERN_INFO "%s: DLCI %d [%s%s%s]%s %s\n",
481 	       pvc->frad->name,
482 	       pvc->dlci,
483 	       pvc->main ? pvc->main->name : "",
484 	       pvc->main && pvc->ether ? " " : "",
485 	       pvc->ether ? pvc->ether->name : "",
486 	       pvc->state.new ? " new" : "",
487 	       !pvc->state.exist ? "deleted" :
488 	       pvc->state.active ? "active" : "inactive");
489 }
490 
491 
492 
493 static inline u8 fr_lmi_nextseq(u8 x)
494 {
495 	x++;
496 	return x ? x : 1;
497 }
498 
499 
500 static void fr_lmi_send(struct net_device *dev, int fullrep)
501 {
502 	hdlc_device *hdlc = dev_to_hdlc(dev);
503 	struct sk_buff *skb;
504 	pvc_device *pvc = state(hdlc)->first_pvc;
505 	int lmi = state(hdlc)->settings.lmi;
506 	int dce = state(hdlc)->settings.dce;
507 	int len = lmi == LMI_ANSI ? LMI_ANSI_LENGTH : LMI_CCITT_CISCO_LENGTH;
508 	int stat_len = (lmi == LMI_CISCO) ? 6 : 3;
509 	u8 *data;
510 	int i = 0;
511 
512 	if (dce && fullrep) {
513 		len += state(hdlc)->dce_pvc_count * (2 + stat_len);
514 		if (len > HDLC_MAX_MRU) {
515 			printk(KERN_WARNING "%s: Too many PVCs while sending "
516 			       "LMI full report\n", dev->name);
517 			return;
518 		}
519 	}
520 
521 	skb = dev_alloc_skb(len);
522 	if (!skb) {
523 		printk(KERN_WARNING "%s: Memory squeeze on fr_lmi_send()\n",
524 		       dev->name);
525 		return;
526 	}
527 	memset(skb->data, 0, len);
528 	skb_reserve(skb, 4);
529 	if (lmi == LMI_CISCO) {
530 		skb->protocol = __constant_htons(NLPID_CISCO_LMI);
531 		fr_hard_header(&skb, LMI_CISCO_DLCI);
532 	} else {
533 		skb->protocol = __constant_htons(NLPID_CCITT_ANSI_LMI);
534 		fr_hard_header(&skb, LMI_CCITT_ANSI_DLCI);
535 	}
536 	data = skb->tail;
537 	data[i++] = LMI_CALLREF;
538 	data[i++] = dce ? LMI_STATUS : LMI_STATUS_ENQUIRY;
539 	if (lmi == LMI_ANSI)
540 		data[i++] = LMI_ANSI_LOCKSHIFT;
541 	data[i++] = lmi == LMI_CCITT ? LMI_CCITT_REPTYPE :
542 		LMI_ANSI_CISCO_REPTYPE;
543 	data[i++] = LMI_REPT_LEN;
544 	data[i++] = fullrep ? LMI_FULLREP : LMI_INTEGRITY;
545 	data[i++] = lmi == LMI_CCITT ? LMI_CCITT_ALIVE : LMI_ANSI_CISCO_ALIVE;
546 	data[i++] = LMI_INTEG_LEN;
547 	data[i++] = state(hdlc)->txseq =
548 		fr_lmi_nextseq(state(hdlc)->txseq);
549 	data[i++] = state(hdlc)->rxseq;
550 
551 	if (dce && fullrep) {
552 		while (pvc) {
553 			data[i++] = lmi == LMI_CCITT ? LMI_CCITT_PVCSTAT :
554 				LMI_ANSI_CISCO_PVCSTAT;
555 			data[i++] = stat_len;
556 
557 			/* LMI start/restart */
558 			if (state(hdlc)->reliable && !pvc->state.exist) {
559 				pvc->state.exist = pvc->state.new = 1;
560 				fr_log_dlci_active(pvc);
561 			}
562 
563 			/* ifconfig PVC up */
564 			if (pvc->open_count && !pvc->state.active &&
565 			    pvc->state.exist && !pvc->state.new) {
566 				pvc_carrier(1, pvc);
567 				pvc->state.active = 1;
568 				fr_log_dlci_active(pvc);
569 			}
570 
571 			if (lmi == LMI_CISCO) {
572 				data[i] = pvc->dlci >> 8;
573 				data[i + 1] = pvc->dlci & 0xFF;
574 			} else {
575 				data[i] = (pvc->dlci >> 4) & 0x3F;
576 				data[i + 1] = ((pvc->dlci << 3) & 0x78) | 0x80;
577 				data[i + 2] = 0x80;
578 			}
579 
580 			if (pvc->state.new)
581 				data[i + 2] |= 0x08;
582 			else if (pvc->state.active)
583 				data[i + 2] |= 0x02;
584 
585 			i += stat_len;
586 			pvc = pvc->next;
587 		}
588 	}
589 
590 	skb_put(skb, i);
591 	skb->priority = TC_PRIO_CONTROL;
592 	skb->dev = dev;
593 	skb->nh.raw = skb->data;
594 
595 	dev_queue_xmit(skb);
596 }
597 
598 
599 
600 static void fr_set_link_state(int reliable, struct net_device *dev)
601 {
602 	hdlc_device *hdlc = dev_to_hdlc(dev);
603 	pvc_device *pvc = state(hdlc)->first_pvc;
604 
605 	state(hdlc)->reliable = reliable;
606 	if (reliable) {
607 		netif_dormant_off(dev);
608 		state(hdlc)->n391cnt = 0; /* Request full status */
609 		state(hdlc)->dce_changed = 1;
610 
611 		if (state(hdlc)->settings.lmi == LMI_NONE) {
612 			while (pvc) {	/* Activate all PVCs */
613 				pvc_carrier(1, pvc);
614 				pvc->state.exist = pvc->state.active = 1;
615 				pvc->state.new = 0;
616 				pvc = pvc->next;
617 			}
618 		}
619 	} else {
620 		netif_dormant_on(dev);
621 		while (pvc) {		/* Deactivate all PVCs */
622 			pvc_carrier(0, pvc);
623 			pvc->state.exist = pvc->state.active = 0;
624 			pvc->state.new = 0;
625 			if (!state(hdlc)->settings.dce)
626 				pvc->state.bandwidth = 0;
627 			pvc = pvc->next;
628 		}
629 	}
630 }
631 
632 
633 static void fr_timer(unsigned long arg)
634 {
635 	struct net_device *dev = (struct net_device *)arg;
636 	hdlc_device *hdlc = dev_to_hdlc(dev);
637 	int i, cnt = 0, reliable;
638 	u32 list;
639 
640 	if (state(hdlc)->settings.dce) {
641 		reliable = state(hdlc)->request &&
642 			time_before(jiffies, state(hdlc)->last_poll +
643 				    state(hdlc)->settings.t392 * HZ);
644 		state(hdlc)->request = 0;
645 	} else {
646 		state(hdlc)->last_errors <<= 1; /* Shift the list */
647 		if (state(hdlc)->request) {
648 			if (state(hdlc)->reliable)
649 				printk(KERN_INFO "%s: No LMI status reply "
650 				       "received\n", dev->name);
651 			state(hdlc)->last_errors |= 1;
652 		}
653 
654 		list = state(hdlc)->last_errors;
655 		for (i = 0; i < state(hdlc)->settings.n393; i++, list >>= 1)
656 			cnt += (list & 1);	/* errors count */
657 
658 		reliable = (cnt < state(hdlc)->settings.n392);
659 	}
660 
661 	if (state(hdlc)->reliable != reliable) {
662 		printk(KERN_INFO "%s: Link %sreliable\n", dev->name,
663 		       reliable ? "" : "un");
664 		fr_set_link_state(reliable, dev);
665 	}
666 
667 	if (state(hdlc)->settings.dce)
668 		state(hdlc)->timer.expires = jiffies +
669 			state(hdlc)->settings.t392 * HZ;
670 	else {
671 		if (state(hdlc)->n391cnt)
672 			state(hdlc)->n391cnt--;
673 
674 		fr_lmi_send(dev, state(hdlc)->n391cnt == 0);
675 
676 		state(hdlc)->last_poll = jiffies;
677 		state(hdlc)->request = 1;
678 		state(hdlc)->timer.expires = jiffies +
679 			state(hdlc)->settings.t391 * HZ;
680 	}
681 
682 	state(hdlc)->timer.function = fr_timer;
683 	state(hdlc)->timer.data = arg;
684 	add_timer(&state(hdlc)->timer);
685 }
686 
687 
688 static int fr_lmi_recv(struct net_device *dev, struct sk_buff *skb)
689 {
690 	hdlc_device *hdlc = dev_to_hdlc(dev);
691 	pvc_device *pvc;
692 	u8 rxseq, txseq;
693 	int lmi = state(hdlc)->settings.lmi;
694 	int dce = state(hdlc)->settings.dce;
695 	int stat_len = (lmi == LMI_CISCO) ? 6 : 3, reptype, error, no_ram, i;
696 
697 	if (skb->len < (lmi == LMI_ANSI ? LMI_ANSI_LENGTH :
698 			LMI_CCITT_CISCO_LENGTH)) {
699 		printk(KERN_INFO "%s: Short LMI frame\n", dev->name);
700 		return 1;
701 	}
702 
703 	if (skb->data[3] != (lmi == LMI_CISCO ? NLPID_CISCO_LMI :
704 			     NLPID_CCITT_ANSI_LMI)) {
705 		printk(KERN_INFO "%s: Received non-LMI frame with LMI DLCI\n",
706 		       dev->name);
707 		return 1;
708 	}
709 
710 	if (skb->data[4] != LMI_CALLREF) {
711 		printk(KERN_INFO "%s: Invalid LMI Call reference (0x%02X)\n",
712 		       dev->name, skb->data[4]);
713 		return 1;
714 	}
715 
716 	if (skb->data[5] != (dce ? LMI_STATUS_ENQUIRY : LMI_STATUS)) {
717 		printk(KERN_INFO "%s: Invalid LMI Message type (0x%02X)\n",
718 		       dev->name, skb->data[5]);
719 		return 1;
720 	}
721 
722 	if (lmi == LMI_ANSI) {
723 		if (skb->data[6] != LMI_ANSI_LOCKSHIFT) {
724 			printk(KERN_INFO "%s: Not ANSI locking shift in LMI"
725 			       " message (0x%02X)\n", dev->name, skb->data[6]);
726 			return 1;
727 		}
728 		i = 7;
729 	} else
730 		i = 6;
731 
732 	if (skb->data[i] != (lmi == LMI_CCITT ? LMI_CCITT_REPTYPE :
733 			     LMI_ANSI_CISCO_REPTYPE)) {
734 		printk(KERN_INFO "%s: Not an LMI Report type IE (0x%02X)\n",
735 		       dev->name, skb->data[i]);
736 		return 1;
737 	}
738 
739 	if (skb->data[++i] != LMI_REPT_LEN) {
740 		printk(KERN_INFO "%s: Invalid LMI Report type IE length"
741 		       " (%u)\n", dev->name, skb->data[i]);
742 		return 1;
743 	}
744 
745 	reptype = skb->data[++i];
746 	if (reptype != LMI_INTEGRITY && reptype != LMI_FULLREP) {
747 		printk(KERN_INFO "%s: Unsupported LMI Report type (0x%02X)\n",
748 		       dev->name, reptype);
749 		return 1;
750 	}
751 
752 	if (skb->data[++i] != (lmi == LMI_CCITT ? LMI_CCITT_ALIVE :
753 			       LMI_ANSI_CISCO_ALIVE)) {
754 		printk(KERN_INFO "%s: Not an LMI Link integrity verification"
755 		       " IE (0x%02X)\n", dev->name, skb->data[i]);
756 		return 1;
757 	}
758 
759 	if (skb->data[++i] != LMI_INTEG_LEN) {
760 		printk(KERN_INFO "%s: Invalid LMI Link integrity verification"
761 		       " IE length (%u)\n", dev->name, skb->data[i]);
762 		return 1;
763 	}
764 	i++;
765 
766 	state(hdlc)->rxseq = skb->data[i++]; /* TX sequence from peer */
767 	rxseq = skb->data[i++];	/* Should confirm our sequence */
768 
769 	txseq = state(hdlc)->txseq;
770 
771 	if (dce)
772 		state(hdlc)->last_poll = jiffies;
773 
774 	error = 0;
775 	if (!state(hdlc)->reliable)
776 		error = 1;
777 
778 	if (rxseq == 0 || rxseq != txseq) { /* Ask for full report next time */
779 		state(hdlc)->n391cnt = 0;
780 		error = 1;
781 	}
782 
783 	if (dce) {
784 		if (state(hdlc)->fullrep_sent && !error) {
785 /* Stop sending full report - the last one has been confirmed by DTE */
786 			state(hdlc)->fullrep_sent = 0;
787 			pvc = state(hdlc)->first_pvc;
788 			while (pvc) {
789 				if (pvc->state.new) {
790 					pvc->state.new = 0;
791 
792 /* Tell DTE that new PVC is now active */
793 					state(hdlc)->dce_changed = 1;
794 				}
795 				pvc = pvc->next;
796 			}
797 		}
798 
799 		if (state(hdlc)->dce_changed) {
800 			reptype = LMI_FULLREP;
801 			state(hdlc)->fullrep_sent = 1;
802 			state(hdlc)->dce_changed = 0;
803 		}
804 
805 		state(hdlc)->request = 1; /* got request */
806 		fr_lmi_send(dev, reptype == LMI_FULLREP ? 1 : 0);
807 		return 0;
808 	}
809 
810 	/* DTE */
811 
812 	state(hdlc)->request = 0; /* got response, no request pending */
813 
814 	if (error)
815 		return 0;
816 
817 	if (reptype != LMI_FULLREP)
818 		return 0;
819 
820 	pvc = state(hdlc)->first_pvc;
821 
822 	while (pvc) {
823 		pvc->state.deleted = 1;
824 		pvc = pvc->next;
825 	}
826 
827 	no_ram = 0;
828 	while (skb->len >= i + 2 + stat_len) {
829 		u16 dlci;
830 		u32 bw;
831 		unsigned int active, new;
832 
833 		if (skb->data[i] != (lmi == LMI_CCITT ? LMI_CCITT_PVCSTAT :
834 				       LMI_ANSI_CISCO_PVCSTAT)) {
835 			printk(KERN_INFO "%s: Not an LMI PVC status IE"
836 			       " (0x%02X)\n", dev->name, skb->data[i]);
837 			return 1;
838 		}
839 
840 		if (skb->data[++i] != stat_len) {
841 			printk(KERN_INFO "%s: Invalid LMI PVC status IE length"
842 			       " (%u)\n", dev->name, skb->data[i]);
843 			return 1;
844 		}
845 		i++;
846 
847 		new = !! (skb->data[i + 2] & 0x08);
848 		active = !! (skb->data[i + 2] & 0x02);
849 		if (lmi == LMI_CISCO) {
850 			dlci = (skb->data[i] << 8) | skb->data[i + 1];
851 			bw = (skb->data[i + 3] << 16) |
852 				(skb->data[i + 4] << 8) |
853 				(skb->data[i + 5]);
854 		} else {
855 			dlci = ((skb->data[i] & 0x3F) << 4) |
856 				((skb->data[i + 1] & 0x78) >> 3);
857 			bw = 0;
858 		}
859 
860 		pvc = add_pvc(dev, dlci);
861 
862 		if (!pvc && !no_ram) {
863 			printk(KERN_WARNING
864 			       "%s: Memory squeeze on fr_lmi_recv()\n",
865 			       dev->name);
866 			no_ram = 1;
867 		}
868 
869 		if (pvc) {
870 			pvc->state.exist = 1;
871 			pvc->state.deleted = 0;
872 			if (active != pvc->state.active ||
873 			    new != pvc->state.new ||
874 			    bw != pvc->state.bandwidth ||
875 			    !pvc->state.exist) {
876 				pvc->state.new = new;
877 				pvc->state.active = active;
878 				pvc->state.bandwidth = bw;
879 				pvc_carrier(active, pvc);
880 				fr_log_dlci_active(pvc);
881 			}
882 		}
883 
884 		i += stat_len;
885 	}
886 
887 	pvc = state(hdlc)->first_pvc;
888 
889 	while (pvc) {
890 		if (pvc->state.deleted && pvc->state.exist) {
891 			pvc_carrier(0, pvc);
892 			pvc->state.active = pvc->state.new = 0;
893 			pvc->state.exist = 0;
894 			pvc->state.bandwidth = 0;
895 			fr_log_dlci_active(pvc);
896 		}
897 		pvc = pvc->next;
898 	}
899 
900 	/* Next full report after N391 polls */
901 	state(hdlc)->n391cnt = state(hdlc)->settings.n391;
902 
903 	return 0;
904 }
905 
906 
907 static int fr_rx(struct sk_buff *skb)
908 {
909 	struct net_device *frad = skb->dev;
910 	hdlc_device *hdlc = dev_to_hdlc(frad);
911 	fr_hdr *fh = (fr_hdr*)skb->data;
912 	u8 *data = skb->data;
913 	u16 dlci;
914 	pvc_device *pvc;
915 	struct net_device *dev = NULL;
916 
917 	if (skb->len <= 4 || fh->ea1 || data[2] != FR_UI)
918 		goto rx_error;
919 
920 	dlci = q922_to_dlci(skb->data);
921 
922 	if ((dlci == LMI_CCITT_ANSI_DLCI &&
923 	     (state(hdlc)->settings.lmi == LMI_ANSI ||
924 	      state(hdlc)->settings.lmi == LMI_CCITT)) ||
925 	    (dlci == LMI_CISCO_DLCI &&
926 	     state(hdlc)->settings.lmi == LMI_CISCO)) {
927 		if (fr_lmi_recv(frad, skb))
928 			goto rx_error;
929 		dev_kfree_skb_any(skb);
930 		return NET_RX_SUCCESS;
931 	}
932 
933 	pvc = find_pvc(hdlc, dlci);
934 	if (!pvc) {
935 #ifdef DEBUG_PKT
936 		printk(KERN_INFO "%s: No PVC for received frame's DLCI %d\n",
937 		       frad->name, dlci);
938 #endif
939 		dev_kfree_skb_any(skb);
940 		return NET_RX_DROP;
941 	}
942 
943 	if (pvc->state.fecn != fh->fecn) {
944 #ifdef DEBUG_ECN
945 		printk(KERN_DEBUG "%s: DLCI %d FECN O%s\n", frad->name,
946 		       dlci, fh->fecn ? "N" : "FF");
947 #endif
948 		pvc->state.fecn ^= 1;
949 	}
950 
951 	if (pvc->state.becn != fh->becn) {
952 #ifdef DEBUG_ECN
953 		printk(KERN_DEBUG "%s: DLCI %d BECN O%s\n", frad->name,
954 		       dlci, fh->becn ? "N" : "FF");
955 #endif
956 		pvc->state.becn ^= 1;
957 	}
958 
959 
960 	if ((skb = skb_share_check(skb, GFP_ATOMIC)) == NULL) {
961 		dev_to_desc(frad)->stats.rx_dropped++;
962 		return NET_RX_DROP;
963 	}
964 
965 	if (data[3] == NLPID_IP) {
966 		skb_pull(skb, 4); /* Remove 4-byte header (hdr, UI, NLPID) */
967 		dev = pvc->main;
968 		skb->protocol = htons(ETH_P_IP);
969 
970 	} else if (data[3] == NLPID_IPV6) {
971 		skb_pull(skb, 4); /* Remove 4-byte header (hdr, UI, NLPID) */
972 		dev = pvc->main;
973 		skb->protocol = htons(ETH_P_IPV6);
974 
975 	} else if (skb->len > 10 && data[3] == FR_PAD &&
976 		   data[4] == NLPID_SNAP && data[5] == FR_PAD) {
977 		u16 oui = ntohs(*(u16*)(data + 6));
978 		u16 pid = ntohs(*(u16*)(data + 8));
979 		skb_pull(skb, 10);
980 
981 		switch ((((u32)oui) << 16) | pid) {
982 		case ETH_P_ARP: /* routed frame with SNAP */
983 		case ETH_P_IPX:
984 		case ETH_P_IP:	/* a long variant */
985 		case ETH_P_IPV6:
986 			dev = pvc->main;
987 			skb->protocol = htons(pid);
988 			break;
989 
990 		case 0x80C20007: /* bridged Ethernet frame */
991 			if ((dev = pvc->ether) != NULL)
992 				skb->protocol = eth_type_trans(skb, dev);
993 			break;
994 
995 		default:
996 			printk(KERN_INFO "%s: Unsupported protocol, OUI=%x "
997 			       "PID=%x\n", frad->name, oui, pid);
998 			dev_kfree_skb_any(skb);
999 			return NET_RX_DROP;
1000 		}
1001 	} else {
1002 		printk(KERN_INFO "%s: Unsupported protocol, NLPID=%x "
1003 		       "length = %i\n", frad->name, data[3], skb->len);
1004 		dev_kfree_skb_any(skb);
1005 		return NET_RX_DROP;
1006 	}
1007 
1008 	if (dev) {
1009 		struct net_device_stats *stats = pvc_get_stats(dev);
1010 		stats->rx_packets++; /* PVC traffic */
1011 		stats->rx_bytes += skb->len;
1012 		if (pvc->state.becn)
1013 			stats->rx_compressed++;
1014 		skb->dev = dev;
1015 		netif_rx(skb);
1016 		return NET_RX_SUCCESS;
1017 	} else {
1018 		dev_kfree_skb_any(skb);
1019 		return NET_RX_DROP;
1020 	}
1021 
1022  rx_error:
1023 	dev_to_desc(frad)->stats.rx_errors++; /* Mark error */
1024 	dev_kfree_skb_any(skb);
1025 	return NET_RX_DROP;
1026 }
1027 
1028 
1029 
1030 static void fr_start(struct net_device *dev)
1031 {
1032 	hdlc_device *hdlc = dev_to_hdlc(dev);
1033 #ifdef DEBUG_LINK
1034 	printk(KERN_DEBUG "fr_start\n");
1035 #endif
1036 	if (state(hdlc)->settings.lmi != LMI_NONE) {
1037 		state(hdlc)->reliable = 0;
1038 		state(hdlc)->dce_changed = 1;
1039 		state(hdlc)->request = 0;
1040 		state(hdlc)->fullrep_sent = 0;
1041 		state(hdlc)->last_errors = 0xFFFFFFFF;
1042 		state(hdlc)->n391cnt = 0;
1043 		state(hdlc)->txseq = state(hdlc)->rxseq = 0;
1044 
1045 		init_timer(&state(hdlc)->timer);
1046 		/* First poll after 1 s */
1047 		state(hdlc)->timer.expires = jiffies + HZ;
1048 		state(hdlc)->timer.function = fr_timer;
1049 		state(hdlc)->timer.data = (unsigned long)dev;
1050 		add_timer(&state(hdlc)->timer);
1051 	} else
1052 		fr_set_link_state(1, dev);
1053 }
1054 
1055 
1056 static void fr_stop(struct net_device *dev)
1057 {
1058 	hdlc_device *hdlc = dev_to_hdlc(dev);
1059 #ifdef DEBUG_LINK
1060 	printk(KERN_DEBUG "fr_stop\n");
1061 #endif
1062 	if (state(hdlc)->settings.lmi != LMI_NONE)
1063 		del_timer_sync(&state(hdlc)->timer);
1064 	fr_set_link_state(0, dev);
1065 }
1066 
1067 
1068 static void fr_close(struct net_device *dev)
1069 {
1070 	hdlc_device *hdlc = dev_to_hdlc(dev);
1071 	pvc_device *pvc = state(hdlc)->first_pvc;
1072 
1073 	while (pvc) {		/* Shutdown all PVCs for this FRAD */
1074 		if (pvc->main)
1075 			dev_close(pvc->main);
1076 		if (pvc->ether)
1077 			dev_close(pvc->ether);
1078 		pvc = pvc->next;
1079 	}
1080 }
1081 
1082 
1083 static void pvc_setup(struct net_device *dev)
1084 {
1085 	dev->type = ARPHRD_DLCI;
1086 	dev->flags = IFF_POINTOPOINT;
1087 	dev->hard_header_len = 10;
1088 	dev->addr_len = 2;
1089 }
1090 
1091 static int fr_add_pvc(struct net_device *frad, unsigned int dlci, int type)
1092 {
1093 	hdlc_device *hdlc = dev_to_hdlc(frad);
1094 	pvc_device *pvc = NULL;
1095 	struct net_device *dev;
1096 	int result, used;
1097 	char * prefix = "pvc%d";
1098 
1099 	if (type == ARPHRD_ETHER)
1100 		prefix = "pvceth%d";
1101 
1102 	if ((pvc = add_pvc(frad, dlci)) == NULL) {
1103 		printk(KERN_WARNING "%s: Memory squeeze on fr_add_pvc()\n",
1104 		       frad->name);
1105 		return -ENOBUFS;
1106 	}
1107 
1108 	if (*get_dev_p(pvc, type))
1109 		return -EEXIST;
1110 
1111 	used = pvc_is_used(pvc);
1112 
1113 	if (type == ARPHRD_ETHER)
1114 		dev = alloc_netdev(sizeof(struct net_device_stats),
1115 				   "pvceth%d", ether_setup);
1116 	else
1117 		dev = alloc_netdev(sizeof(struct net_device_stats),
1118 				   "pvc%d", pvc_setup);
1119 
1120 	if (!dev) {
1121 		printk(KERN_WARNING "%s: Memory squeeze on fr_pvc()\n",
1122 		       frad->name);
1123 		delete_unused_pvcs(hdlc);
1124 		return -ENOBUFS;
1125 	}
1126 
1127 	if (type == ARPHRD_ETHER) {
1128 		memcpy(dev->dev_addr, "\x00\x01", 2);
1129                 get_random_bytes(dev->dev_addr + 2, ETH_ALEN - 2);
1130 	} else {
1131 		*(u16*)dev->dev_addr = htons(dlci);
1132 		dlci_to_q922(dev->broadcast, dlci);
1133 	}
1134 	dev->hard_start_xmit = pvc_xmit;
1135 	dev->get_stats = pvc_get_stats;
1136 	dev->open = pvc_open;
1137 	dev->stop = pvc_close;
1138 	dev->do_ioctl = pvc_ioctl;
1139 	dev->change_mtu = pvc_change_mtu;
1140 	dev->mtu = HDLC_MAX_MTU;
1141 	dev->tx_queue_len = 0;
1142 	dev->priv = pvc;
1143 
1144 	result = dev_alloc_name(dev, dev->name);
1145 	if (result < 0) {
1146 		free_netdev(dev);
1147 		delete_unused_pvcs(hdlc);
1148 		return result;
1149 	}
1150 
1151 	if (register_netdevice(dev) != 0) {
1152 		free_netdev(dev);
1153 		delete_unused_pvcs(hdlc);
1154 		return -EIO;
1155 	}
1156 
1157 	dev->destructor = free_netdev;
1158 	*get_dev_p(pvc, type) = dev;
1159 	if (!used) {
1160 		state(hdlc)->dce_changed = 1;
1161 		state(hdlc)->dce_pvc_count++;
1162 	}
1163 	return 0;
1164 }
1165 
1166 
1167 
1168 static int fr_del_pvc(hdlc_device *hdlc, unsigned int dlci, int type)
1169 {
1170 	pvc_device *pvc;
1171 	struct net_device *dev;
1172 
1173 	if ((pvc = find_pvc(hdlc, dlci)) == NULL)
1174 		return -ENOENT;
1175 
1176 	if ((dev = *get_dev_p(pvc, type)) == NULL)
1177 		return -ENOENT;
1178 
1179 	if (dev->flags & IFF_UP)
1180 		return -EBUSY;		/* PVC in use */
1181 
1182 	unregister_netdevice(dev); /* the destructor will free_netdev(dev) */
1183 	*get_dev_p(pvc, type) = NULL;
1184 
1185 	if (!pvc_is_used(pvc)) {
1186 		state(hdlc)->dce_pvc_count--;
1187 		state(hdlc)->dce_changed = 1;
1188 	}
1189 	delete_unused_pvcs(hdlc);
1190 	return 0;
1191 }
1192 
1193 
1194 
1195 static void fr_destroy(struct net_device *frad)
1196 {
1197 	hdlc_device *hdlc = dev_to_hdlc(frad);
1198 	pvc_device *pvc = state(hdlc)->first_pvc;
1199 	state(hdlc)->first_pvc = NULL; /* All PVCs destroyed */
1200 	state(hdlc)->dce_pvc_count = 0;
1201 	state(hdlc)->dce_changed = 1;
1202 
1203 	while (pvc) {
1204 		pvc_device *next = pvc->next;
1205 		/* destructors will free_netdev() main and ether */
1206 		if (pvc->main)
1207 			unregister_netdevice(pvc->main);
1208 
1209 		if (pvc->ether)
1210 			unregister_netdevice(pvc->ether);
1211 
1212 		kfree(pvc);
1213 		pvc = next;
1214 	}
1215 }
1216 
1217 
1218 static struct hdlc_proto proto = {
1219 	.close		= fr_close,
1220 	.start		= fr_start,
1221 	.stop		= fr_stop,
1222 	.detach		= fr_destroy,
1223 	.ioctl		= fr_ioctl,
1224 	.module		= THIS_MODULE,
1225 };
1226 
1227 
1228 static int fr_ioctl(struct net_device *dev, struct ifreq *ifr)
1229 {
1230 	fr_proto __user *fr_s = ifr->ifr_settings.ifs_ifsu.fr;
1231 	const size_t size = sizeof(fr_proto);
1232 	fr_proto new_settings;
1233 	hdlc_device *hdlc = dev_to_hdlc(dev);
1234 	fr_proto_pvc pvc;
1235 	int result;
1236 
1237 	switch (ifr->ifr_settings.type) {
1238 	case IF_GET_PROTO:
1239 		if (dev_to_hdlc(dev)->proto != &proto) /* Different proto */
1240 			return -EINVAL;
1241 		ifr->ifr_settings.type = IF_PROTO_FR;
1242 		if (ifr->ifr_settings.size < size) {
1243 			ifr->ifr_settings.size = size; /* data size wanted */
1244 			return -ENOBUFS;
1245 		}
1246 		if (copy_to_user(fr_s, &state(hdlc)->settings, size))
1247 			return -EFAULT;
1248 		return 0;
1249 
1250 	case IF_PROTO_FR:
1251 		if(!capable(CAP_NET_ADMIN))
1252 			return -EPERM;
1253 
1254 		if(dev->flags & IFF_UP)
1255 			return -EBUSY;
1256 
1257 		if (copy_from_user(&new_settings, fr_s, size))
1258 			return -EFAULT;
1259 
1260 		if (new_settings.lmi == LMI_DEFAULT)
1261 			new_settings.lmi = LMI_ANSI;
1262 
1263 		if ((new_settings.lmi != LMI_NONE &&
1264 		     new_settings.lmi != LMI_ANSI &&
1265 		     new_settings.lmi != LMI_CCITT &&
1266 		     new_settings.lmi != LMI_CISCO) ||
1267 		    new_settings.t391 < 1 ||
1268 		    new_settings.t392 < 2 ||
1269 		    new_settings.n391 < 1 ||
1270 		    new_settings.n392 < 1 ||
1271 		    new_settings.n393 < new_settings.n392 ||
1272 		    new_settings.n393 > 32 ||
1273 		    (new_settings.dce != 0 &&
1274 		     new_settings.dce != 1))
1275 			return -EINVAL;
1276 
1277 		result=hdlc->attach(dev, ENCODING_NRZ,PARITY_CRC16_PR1_CCITT);
1278 		if (result)
1279 			return result;
1280 
1281 		if (dev_to_hdlc(dev)->proto != &proto) { /* Different proto */
1282 			result = attach_hdlc_protocol(dev, &proto, fr_rx,
1283 						      sizeof(struct frad_state));
1284 			if (result)
1285 				return result;
1286 			state(hdlc)->first_pvc = NULL;
1287 			state(hdlc)->dce_pvc_count = 0;
1288 		}
1289 		memcpy(&state(hdlc)->settings, &new_settings, size);
1290 
1291 		dev->hard_start_xmit = hdlc->xmit;
1292 		dev->hard_header = NULL;
1293 		dev->type = ARPHRD_FRAD;
1294 		dev->flags = IFF_POINTOPOINT | IFF_NOARP;
1295 		dev->addr_len = 0;
1296 		return 0;
1297 
1298 	case IF_PROTO_FR_ADD_PVC:
1299 	case IF_PROTO_FR_DEL_PVC:
1300 	case IF_PROTO_FR_ADD_ETH_PVC:
1301 	case IF_PROTO_FR_DEL_ETH_PVC:
1302 		if (dev_to_hdlc(dev)->proto != &proto) /* Different proto */
1303 			return -EINVAL;
1304 
1305 		if(!capable(CAP_NET_ADMIN))
1306 			return -EPERM;
1307 
1308 		if (copy_from_user(&pvc, ifr->ifr_settings.ifs_ifsu.fr_pvc,
1309 				   sizeof(fr_proto_pvc)))
1310 			return -EFAULT;
1311 
1312 		if (pvc.dlci <= 0 || pvc.dlci >= 1024)
1313 			return -EINVAL;	/* Only 10 bits, DLCI 0 reserved */
1314 
1315 		if (ifr->ifr_settings.type == IF_PROTO_FR_ADD_ETH_PVC ||
1316 		    ifr->ifr_settings.type == IF_PROTO_FR_DEL_ETH_PVC)
1317 			result = ARPHRD_ETHER; /* bridged Ethernet device */
1318 		else
1319 			result = ARPHRD_DLCI;
1320 
1321 		if (ifr->ifr_settings.type == IF_PROTO_FR_ADD_PVC ||
1322 		    ifr->ifr_settings.type == IF_PROTO_FR_ADD_ETH_PVC)
1323 			return fr_add_pvc(dev, pvc.dlci, result);
1324 		else
1325 			return fr_del_pvc(hdlc, pvc.dlci, result);
1326 	}
1327 
1328 	return -EINVAL;
1329 }
1330 
1331 
1332 static int __init mod_init(void)
1333 {
1334 	register_hdlc_protocol(&proto);
1335 	return 0;
1336 }
1337 
1338 
1339 static void __exit mod_exit(void)
1340 {
1341 	unregister_hdlc_protocol(&proto);
1342 }
1343 
1344 
1345 module_init(mod_init);
1346 module_exit(mod_exit);
1347 
1348 MODULE_AUTHOR("Krzysztof Halasa <khc@pm.waw.pl>");
1349 MODULE_DESCRIPTION("Frame-Relay protocol support for generic HDLC");
1350 MODULE_LICENSE("GPL v2");
1351