1 /* 2 * Generic HDLC support routines for Linux 3 * Frame Relay support 4 * 5 * Copyright (C) 1999 - 2006 Krzysztof Halasa <khc@pm.waw.pl> 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms of version 2 of the GNU General Public License 9 * as published by the Free Software Foundation. 10 * 11 12 Theory of PVC state 13 14 DCE mode: 15 16 (exist,new) -> 0,0 when "PVC create" or if "link unreliable" 17 0,x -> 1,1 if "link reliable" when sending FULL STATUS 18 1,1 -> 1,0 if received FULL STATUS ACK 19 20 (active) -> 0 when "ifconfig PVC down" or "link unreliable" or "PVC create" 21 -> 1 when "PVC up" and (exist,new) = 1,0 22 23 DTE mode: 24 (exist,new,active) = FULL STATUS if "link reliable" 25 = 0, 0, 0 if "link unreliable" 26 No LMI: 27 active = open and "link reliable" 28 exist = new = not used 29 30 CCITT LMI: ITU-T Q.933 Annex A 31 ANSI LMI: ANSI T1.617 Annex D 32 CISCO LMI: the original, aka "Gang of Four" LMI 33 34 */ 35 36 #include <linux/module.h> 37 #include <linux/kernel.h> 38 #include <linux/slab.h> 39 #include <linux/poll.h> 40 #include <linux/errno.h> 41 #include <linux/if_arp.h> 42 #include <linux/init.h> 43 #include <linux/skbuff.h> 44 #include <linux/pkt_sched.h> 45 #include <linux/random.h> 46 #include <linux/inetdevice.h> 47 #include <linux/lapb.h> 48 #include <linux/rtnetlink.h> 49 #include <linux/etherdevice.h> 50 #include <linux/hdlc.h> 51 52 #undef DEBUG_PKT 53 #undef DEBUG_ECN 54 #undef DEBUG_LINK 55 #undef DEBUG_PROTO 56 #undef DEBUG_PVC 57 58 #define FR_UI 0x03 59 #define FR_PAD 0x00 60 61 #define NLPID_IP 0xCC 62 #define NLPID_IPV6 0x8E 63 #define NLPID_SNAP 0x80 64 #define NLPID_PAD 0x00 65 #define NLPID_CCITT_ANSI_LMI 0x08 66 #define NLPID_CISCO_LMI 0x09 67 68 69 #define LMI_CCITT_ANSI_DLCI 0 /* LMI DLCI */ 70 #define LMI_CISCO_DLCI 1023 71 72 #define LMI_CALLREF 0x00 /* Call Reference */ 73 #define LMI_ANSI_LOCKSHIFT 0x95 /* ANSI locking shift */ 74 #define LMI_ANSI_CISCO_REPTYPE 0x01 /* report type */ 75 #define LMI_CCITT_REPTYPE 0x51 76 #define LMI_ANSI_CISCO_ALIVE 0x03 /* keep alive */ 77 #define LMI_CCITT_ALIVE 0x53 78 #define LMI_ANSI_CISCO_PVCSTAT 0x07 /* PVC status */ 79 #define LMI_CCITT_PVCSTAT 0x57 80 81 #define LMI_FULLREP 0x00 /* full report */ 82 #define LMI_INTEGRITY 0x01 /* link integrity report */ 83 #define LMI_SINGLE 0x02 /* single PVC report */ 84 85 #define LMI_STATUS_ENQUIRY 0x75 86 #define LMI_STATUS 0x7D /* reply */ 87 88 #define LMI_REPT_LEN 1 /* report type element length */ 89 #define LMI_INTEG_LEN 2 /* link integrity element length */ 90 91 #define LMI_CCITT_CISCO_LENGTH 13 /* LMI frame lengths */ 92 #define LMI_ANSI_LENGTH 14 93 94 95 typedef struct { 96 #if defined(__LITTLE_ENDIAN_BITFIELD) 97 unsigned ea1: 1; 98 unsigned cr: 1; 99 unsigned dlcih: 6; 100 101 unsigned ea2: 1; 102 unsigned de: 1; 103 unsigned becn: 1; 104 unsigned fecn: 1; 105 unsigned dlcil: 4; 106 #else 107 unsigned dlcih: 6; 108 unsigned cr: 1; 109 unsigned ea1: 1; 110 111 unsigned dlcil: 4; 112 unsigned fecn: 1; 113 unsigned becn: 1; 114 unsigned de: 1; 115 unsigned ea2: 1; 116 #endif 117 }__attribute__ ((packed)) fr_hdr; 118 119 120 typedef struct pvc_device_struct { 121 struct net_device *frad; 122 struct net_device *main; 123 struct net_device *ether; /* bridged Ethernet interface */ 124 struct pvc_device_struct *next; /* Sorted in ascending DLCI order */ 125 int dlci; 126 int open_count; 127 128 struct { 129 unsigned int new: 1; 130 unsigned int active: 1; 131 unsigned int exist: 1; 132 unsigned int deleted: 1; 133 unsigned int fecn: 1; 134 unsigned int becn: 1; 135 unsigned int bandwidth; /* Cisco LMI reporting only */ 136 }state; 137 }pvc_device; 138 139 140 struct frad_state { 141 fr_proto settings; 142 pvc_device *first_pvc; 143 int dce_pvc_count; 144 145 struct timer_list timer; 146 unsigned long last_poll; 147 int reliable; 148 int dce_changed; 149 int request; 150 int fullrep_sent; 151 u32 last_errors; /* last errors bit list */ 152 u8 n391cnt; 153 u8 txseq; /* TX sequence number */ 154 u8 rxseq; /* RX sequence number */ 155 }; 156 157 158 static int fr_ioctl(struct net_device *dev, struct ifreq *ifr); 159 160 161 static inline u16 q922_to_dlci(u8 *hdr) 162 { 163 return ((hdr[0] & 0xFC) << 2) | ((hdr[1] & 0xF0) >> 4); 164 } 165 166 167 static inline void dlci_to_q922(u8 *hdr, u16 dlci) 168 { 169 hdr[0] = (dlci >> 2) & 0xFC; 170 hdr[1] = ((dlci << 4) & 0xF0) | 0x01; 171 } 172 173 174 static inline struct frad_state * state(hdlc_device *hdlc) 175 { 176 return(struct frad_state *)(hdlc->state); 177 } 178 179 180 static __inline__ pvc_device* dev_to_pvc(struct net_device *dev) 181 { 182 return dev->priv; 183 } 184 185 186 static inline pvc_device* find_pvc(hdlc_device *hdlc, u16 dlci) 187 { 188 pvc_device *pvc = state(hdlc)->first_pvc; 189 190 while (pvc) { 191 if (pvc->dlci == dlci) 192 return pvc; 193 if (pvc->dlci > dlci) 194 return NULL; /* the listed is sorted */ 195 pvc = pvc->next; 196 } 197 198 return NULL; 199 } 200 201 202 static pvc_device* add_pvc(struct net_device *dev, u16 dlci) 203 { 204 hdlc_device *hdlc = dev_to_hdlc(dev); 205 pvc_device *pvc, **pvc_p = &state(hdlc)->first_pvc; 206 207 while (*pvc_p) { 208 if ((*pvc_p)->dlci == dlci) 209 return *pvc_p; 210 if ((*pvc_p)->dlci > dlci) 211 break; /* the list is sorted */ 212 pvc_p = &(*pvc_p)->next; 213 } 214 215 pvc = kmalloc(sizeof(pvc_device), GFP_ATOMIC); 216 #ifdef DEBUG_PVC 217 printk(KERN_DEBUG "add_pvc: allocated pvc %p, frad %p\n", pvc, dev); 218 #endif 219 if (!pvc) 220 return NULL; 221 222 memset(pvc, 0, sizeof(pvc_device)); 223 pvc->dlci = dlci; 224 pvc->frad = dev; 225 pvc->next = *pvc_p; /* Put it in the chain */ 226 *pvc_p = pvc; 227 return pvc; 228 } 229 230 231 static inline int pvc_is_used(pvc_device *pvc) 232 { 233 return pvc->main || pvc->ether; 234 } 235 236 237 static inline void pvc_carrier(int on, pvc_device *pvc) 238 { 239 if (on) { 240 if (pvc->main) 241 if (!netif_carrier_ok(pvc->main)) 242 netif_carrier_on(pvc->main); 243 if (pvc->ether) 244 if (!netif_carrier_ok(pvc->ether)) 245 netif_carrier_on(pvc->ether); 246 } else { 247 if (pvc->main) 248 if (netif_carrier_ok(pvc->main)) 249 netif_carrier_off(pvc->main); 250 if (pvc->ether) 251 if (netif_carrier_ok(pvc->ether)) 252 netif_carrier_off(pvc->ether); 253 } 254 } 255 256 257 static inline void delete_unused_pvcs(hdlc_device *hdlc) 258 { 259 pvc_device **pvc_p = &state(hdlc)->first_pvc; 260 261 while (*pvc_p) { 262 if (!pvc_is_used(*pvc_p)) { 263 pvc_device *pvc = *pvc_p; 264 #ifdef DEBUG_PVC 265 printk(KERN_DEBUG "freeing unused pvc: %p\n", pvc); 266 #endif 267 *pvc_p = pvc->next; 268 kfree(pvc); 269 continue; 270 } 271 pvc_p = &(*pvc_p)->next; 272 } 273 } 274 275 276 static inline struct net_device** get_dev_p(pvc_device *pvc, int type) 277 { 278 if (type == ARPHRD_ETHER) 279 return &pvc->ether; 280 else 281 return &pvc->main; 282 } 283 284 285 static int fr_hard_header(struct sk_buff **skb_p, u16 dlci) 286 { 287 u16 head_len; 288 struct sk_buff *skb = *skb_p; 289 290 switch (skb->protocol) { 291 case __constant_htons(NLPID_CCITT_ANSI_LMI): 292 head_len = 4; 293 skb_push(skb, head_len); 294 skb->data[3] = NLPID_CCITT_ANSI_LMI; 295 break; 296 297 case __constant_htons(NLPID_CISCO_LMI): 298 head_len = 4; 299 skb_push(skb, head_len); 300 skb->data[3] = NLPID_CISCO_LMI; 301 break; 302 303 case __constant_htons(ETH_P_IP): 304 head_len = 4; 305 skb_push(skb, head_len); 306 skb->data[3] = NLPID_IP; 307 break; 308 309 case __constant_htons(ETH_P_IPV6): 310 head_len = 4; 311 skb_push(skb, head_len); 312 skb->data[3] = NLPID_IPV6; 313 break; 314 315 case __constant_htons(ETH_P_802_3): 316 head_len = 10; 317 if (skb_headroom(skb) < head_len) { 318 struct sk_buff *skb2 = skb_realloc_headroom(skb, 319 head_len); 320 if (!skb2) 321 return -ENOBUFS; 322 dev_kfree_skb(skb); 323 skb = *skb_p = skb2; 324 } 325 skb_push(skb, head_len); 326 skb->data[3] = FR_PAD; 327 skb->data[4] = NLPID_SNAP; 328 skb->data[5] = FR_PAD; 329 skb->data[6] = 0x80; 330 skb->data[7] = 0xC2; 331 skb->data[8] = 0x00; 332 skb->data[9] = 0x07; /* bridged Ethernet frame w/out FCS */ 333 break; 334 335 default: 336 head_len = 10; 337 skb_push(skb, head_len); 338 skb->data[3] = FR_PAD; 339 skb->data[4] = NLPID_SNAP; 340 skb->data[5] = FR_PAD; 341 skb->data[6] = FR_PAD; 342 skb->data[7] = FR_PAD; 343 *(__be16*)(skb->data + 8) = skb->protocol; 344 } 345 346 dlci_to_q922(skb->data, dlci); 347 skb->data[2] = FR_UI; 348 return 0; 349 } 350 351 352 353 static int pvc_open(struct net_device *dev) 354 { 355 pvc_device *pvc = dev_to_pvc(dev); 356 357 if ((pvc->frad->flags & IFF_UP) == 0) 358 return -EIO; /* Frad must be UP in order to activate PVC */ 359 360 if (pvc->open_count++ == 0) { 361 hdlc_device *hdlc = dev_to_hdlc(pvc->frad); 362 if (state(hdlc)->settings.lmi == LMI_NONE) 363 pvc->state.active = netif_carrier_ok(pvc->frad); 364 365 pvc_carrier(pvc->state.active, pvc); 366 state(hdlc)->dce_changed = 1; 367 } 368 return 0; 369 } 370 371 372 373 static int pvc_close(struct net_device *dev) 374 { 375 pvc_device *pvc = dev_to_pvc(dev); 376 377 if (--pvc->open_count == 0) { 378 hdlc_device *hdlc = dev_to_hdlc(pvc->frad); 379 if (state(hdlc)->settings.lmi == LMI_NONE) 380 pvc->state.active = 0; 381 382 if (state(hdlc)->settings.dce) { 383 state(hdlc)->dce_changed = 1; 384 pvc->state.active = 0; 385 } 386 } 387 return 0; 388 } 389 390 391 392 static int pvc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 393 { 394 pvc_device *pvc = dev_to_pvc(dev); 395 fr_proto_pvc_info info; 396 397 if (ifr->ifr_settings.type == IF_GET_PROTO) { 398 if (dev->type == ARPHRD_ETHER) 399 ifr->ifr_settings.type = IF_PROTO_FR_ETH_PVC; 400 else 401 ifr->ifr_settings.type = IF_PROTO_FR_PVC; 402 403 if (ifr->ifr_settings.size < sizeof(info)) { 404 /* data size wanted */ 405 ifr->ifr_settings.size = sizeof(info); 406 return -ENOBUFS; 407 } 408 409 info.dlci = pvc->dlci; 410 memcpy(info.master, pvc->frad->name, IFNAMSIZ); 411 if (copy_to_user(ifr->ifr_settings.ifs_ifsu.fr_pvc_info, 412 &info, sizeof(info))) 413 return -EFAULT; 414 return 0; 415 } 416 417 return -EINVAL; 418 } 419 420 421 static inline struct net_device_stats *pvc_get_stats(struct net_device *dev) 422 { 423 return &dev_to_desc(dev)->stats; 424 } 425 426 427 428 static int pvc_xmit(struct sk_buff *skb, struct net_device *dev) 429 { 430 pvc_device *pvc = dev_to_pvc(dev); 431 struct net_device_stats *stats = pvc_get_stats(dev); 432 433 if (pvc->state.active) { 434 if (dev->type == ARPHRD_ETHER) { 435 int pad = ETH_ZLEN - skb->len; 436 if (pad > 0) { /* Pad the frame with zeros */ 437 int len = skb->len; 438 if (skb_tailroom(skb) < pad) 439 if (pskb_expand_head(skb, 0, pad, 440 GFP_ATOMIC)) { 441 stats->tx_dropped++; 442 dev_kfree_skb(skb); 443 return 0; 444 } 445 skb_put(skb, pad); 446 memset(skb->data + len, 0, pad); 447 } 448 skb->protocol = __constant_htons(ETH_P_802_3); 449 } 450 if (!fr_hard_header(&skb, pvc->dlci)) { 451 stats->tx_bytes += skb->len; 452 stats->tx_packets++; 453 if (pvc->state.fecn) /* TX Congestion counter */ 454 stats->tx_compressed++; 455 skb->dev = pvc->frad; 456 dev_queue_xmit(skb); 457 return 0; 458 } 459 } 460 461 stats->tx_dropped++; 462 dev_kfree_skb(skb); 463 return 0; 464 } 465 466 467 468 static int pvc_change_mtu(struct net_device *dev, int new_mtu) 469 { 470 if ((new_mtu < 68) || (new_mtu > HDLC_MAX_MTU)) 471 return -EINVAL; 472 dev->mtu = new_mtu; 473 return 0; 474 } 475 476 477 478 static inline void fr_log_dlci_active(pvc_device *pvc) 479 { 480 printk(KERN_INFO "%s: DLCI %d [%s%s%s]%s %s\n", 481 pvc->frad->name, 482 pvc->dlci, 483 pvc->main ? pvc->main->name : "", 484 pvc->main && pvc->ether ? " " : "", 485 pvc->ether ? pvc->ether->name : "", 486 pvc->state.new ? " new" : "", 487 !pvc->state.exist ? "deleted" : 488 pvc->state.active ? "active" : "inactive"); 489 } 490 491 492 493 static inline u8 fr_lmi_nextseq(u8 x) 494 { 495 x++; 496 return x ? x : 1; 497 } 498 499 500 static void fr_lmi_send(struct net_device *dev, int fullrep) 501 { 502 hdlc_device *hdlc = dev_to_hdlc(dev); 503 struct sk_buff *skb; 504 pvc_device *pvc = state(hdlc)->first_pvc; 505 int lmi = state(hdlc)->settings.lmi; 506 int dce = state(hdlc)->settings.dce; 507 int len = lmi == LMI_ANSI ? LMI_ANSI_LENGTH : LMI_CCITT_CISCO_LENGTH; 508 int stat_len = (lmi == LMI_CISCO) ? 6 : 3; 509 u8 *data; 510 int i = 0; 511 512 if (dce && fullrep) { 513 len += state(hdlc)->dce_pvc_count * (2 + stat_len); 514 if (len > HDLC_MAX_MRU) { 515 printk(KERN_WARNING "%s: Too many PVCs while sending " 516 "LMI full report\n", dev->name); 517 return; 518 } 519 } 520 521 skb = dev_alloc_skb(len); 522 if (!skb) { 523 printk(KERN_WARNING "%s: Memory squeeze on fr_lmi_send()\n", 524 dev->name); 525 return; 526 } 527 memset(skb->data, 0, len); 528 skb_reserve(skb, 4); 529 if (lmi == LMI_CISCO) { 530 skb->protocol = __constant_htons(NLPID_CISCO_LMI); 531 fr_hard_header(&skb, LMI_CISCO_DLCI); 532 } else { 533 skb->protocol = __constant_htons(NLPID_CCITT_ANSI_LMI); 534 fr_hard_header(&skb, LMI_CCITT_ANSI_DLCI); 535 } 536 data = skb_tail_pointer(skb); 537 data[i++] = LMI_CALLREF; 538 data[i++] = dce ? LMI_STATUS : LMI_STATUS_ENQUIRY; 539 if (lmi == LMI_ANSI) 540 data[i++] = LMI_ANSI_LOCKSHIFT; 541 data[i++] = lmi == LMI_CCITT ? LMI_CCITT_REPTYPE : 542 LMI_ANSI_CISCO_REPTYPE; 543 data[i++] = LMI_REPT_LEN; 544 data[i++] = fullrep ? LMI_FULLREP : LMI_INTEGRITY; 545 data[i++] = lmi == LMI_CCITT ? LMI_CCITT_ALIVE : LMI_ANSI_CISCO_ALIVE; 546 data[i++] = LMI_INTEG_LEN; 547 data[i++] = state(hdlc)->txseq = 548 fr_lmi_nextseq(state(hdlc)->txseq); 549 data[i++] = state(hdlc)->rxseq; 550 551 if (dce && fullrep) { 552 while (pvc) { 553 data[i++] = lmi == LMI_CCITT ? LMI_CCITT_PVCSTAT : 554 LMI_ANSI_CISCO_PVCSTAT; 555 data[i++] = stat_len; 556 557 /* LMI start/restart */ 558 if (state(hdlc)->reliable && !pvc->state.exist) { 559 pvc->state.exist = pvc->state.new = 1; 560 fr_log_dlci_active(pvc); 561 } 562 563 /* ifconfig PVC up */ 564 if (pvc->open_count && !pvc->state.active && 565 pvc->state.exist && !pvc->state.new) { 566 pvc_carrier(1, pvc); 567 pvc->state.active = 1; 568 fr_log_dlci_active(pvc); 569 } 570 571 if (lmi == LMI_CISCO) { 572 data[i] = pvc->dlci >> 8; 573 data[i + 1] = pvc->dlci & 0xFF; 574 } else { 575 data[i] = (pvc->dlci >> 4) & 0x3F; 576 data[i + 1] = ((pvc->dlci << 3) & 0x78) | 0x80; 577 data[i + 2] = 0x80; 578 } 579 580 if (pvc->state.new) 581 data[i + 2] |= 0x08; 582 else if (pvc->state.active) 583 data[i + 2] |= 0x02; 584 585 i += stat_len; 586 pvc = pvc->next; 587 } 588 } 589 590 skb_put(skb, i); 591 skb->priority = TC_PRIO_CONTROL; 592 skb->dev = dev; 593 skb_reset_network_header(skb); 594 595 dev_queue_xmit(skb); 596 } 597 598 599 600 static void fr_set_link_state(int reliable, struct net_device *dev) 601 { 602 hdlc_device *hdlc = dev_to_hdlc(dev); 603 pvc_device *pvc = state(hdlc)->first_pvc; 604 605 state(hdlc)->reliable = reliable; 606 if (reliable) { 607 netif_dormant_off(dev); 608 state(hdlc)->n391cnt = 0; /* Request full status */ 609 state(hdlc)->dce_changed = 1; 610 611 if (state(hdlc)->settings.lmi == LMI_NONE) { 612 while (pvc) { /* Activate all PVCs */ 613 pvc_carrier(1, pvc); 614 pvc->state.exist = pvc->state.active = 1; 615 pvc->state.new = 0; 616 pvc = pvc->next; 617 } 618 } 619 } else { 620 netif_dormant_on(dev); 621 while (pvc) { /* Deactivate all PVCs */ 622 pvc_carrier(0, pvc); 623 pvc->state.exist = pvc->state.active = 0; 624 pvc->state.new = 0; 625 if (!state(hdlc)->settings.dce) 626 pvc->state.bandwidth = 0; 627 pvc = pvc->next; 628 } 629 } 630 } 631 632 633 static void fr_timer(unsigned long arg) 634 { 635 struct net_device *dev = (struct net_device *)arg; 636 hdlc_device *hdlc = dev_to_hdlc(dev); 637 int i, cnt = 0, reliable; 638 u32 list; 639 640 if (state(hdlc)->settings.dce) { 641 reliable = state(hdlc)->request && 642 time_before(jiffies, state(hdlc)->last_poll + 643 state(hdlc)->settings.t392 * HZ); 644 state(hdlc)->request = 0; 645 } else { 646 state(hdlc)->last_errors <<= 1; /* Shift the list */ 647 if (state(hdlc)->request) { 648 if (state(hdlc)->reliable) 649 printk(KERN_INFO "%s: No LMI status reply " 650 "received\n", dev->name); 651 state(hdlc)->last_errors |= 1; 652 } 653 654 list = state(hdlc)->last_errors; 655 for (i = 0; i < state(hdlc)->settings.n393; i++, list >>= 1) 656 cnt += (list & 1); /* errors count */ 657 658 reliable = (cnt < state(hdlc)->settings.n392); 659 } 660 661 if (state(hdlc)->reliable != reliable) { 662 printk(KERN_INFO "%s: Link %sreliable\n", dev->name, 663 reliable ? "" : "un"); 664 fr_set_link_state(reliable, dev); 665 } 666 667 if (state(hdlc)->settings.dce) 668 state(hdlc)->timer.expires = jiffies + 669 state(hdlc)->settings.t392 * HZ; 670 else { 671 if (state(hdlc)->n391cnt) 672 state(hdlc)->n391cnt--; 673 674 fr_lmi_send(dev, state(hdlc)->n391cnt == 0); 675 676 state(hdlc)->last_poll = jiffies; 677 state(hdlc)->request = 1; 678 state(hdlc)->timer.expires = jiffies + 679 state(hdlc)->settings.t391 * HZ; 680 } 681 682 state(hdlc)->timer.function = fr_timer; 683 state(hdlc)->timer.data = arg; 684 add_timer(&state(hdlc)->timer); 685 } 686 687 688 static int fr_lmi_recv(struct net_device *dev, struct sk_buff *skb) 689 { 690 hdlc_device *hdlc = dev_to_hdlc(dev); 691 pvc_device *pvc; 692 u8 rxseq, txseq; 693 int lmi = state(hdlc)->settings.lmi; 694 int dce = state(hdlc)->settings.dce; 695 int stat_len = (lmi == LMI_CISCO) ? 6 : 3, reptype, error, no_ram, i; 696 697 if (skb->len < (lmi == LMI_ANSI ? LMI_ANSI_LENGTH : 698 LMI_CCITT_CISCO_LENGTH)) { 699 printk(KERN_INFO "%s: Short LMI frame\n", dev->name); 700 return 1; 701 } 702 703 if (skb->data[3] != (lmi == LMI_CISCO ? NLPID_CISCO_LMI : 704 NLPID_CCITT_ANSI_LMI)) { 705 printk(KERN_INFO "%s: Received non-LMI frame with LMI DLCI\n", 706 dev->name); 707 return 1; 708 } 709 710 if (skb->data[4] != LMI_CALLREF) { 711 printk(KERN_INFO "%s: Invalid LMI Call reference (0x%02X)\n", 712 dev->name, skb->data[4]); 713 return 1; 714 } 715 716 if (skb->data[5] != (dce ? LMI_STATUS_ENQUIRY : LMI_STATUS)) { 717 printk(KERN_INFO "%s: Invalid LMI Message type (0x%02X)\n", 718 dev->name, skb->data[5]); 719 return 1; 720 } 721 722 if (lmi == LMI_ANSI) { 723 if (skb->data[6] != LMI_ANSI_LOCKSHIFT) { 724 printk(KERN_INFO "%s: Not ANSI locking shift in LMI" 725 " message (0x%02X)\n", dev->name, skb->data[6]); 726 return 1; 727 } 728 i = 7; 729 } else 730 i = 6; 731 732 if (skb->data[i] != (lmi == LMI_CCITT ? LMI_CCITT_REPTYPE : 733 LMI_ANSI_CISCO_REPTYPE)) { 734 printk(KERN_INFO "%s: Not an LMI Report type IE (0x%02X)\n", 735 dev->name, skb->data[i]); 736 return 1; 737 } 738 739 if (skb->data[++i] != LMI_REPT_LEN) { 740 printk(KERN_INFO "%s: Invalid LMI Report type IE length" 741 " (%u)\n", dev->name, skb->data[i]); 742 return 1; 743 } 744 745 reptype = skb->data[++i]; 746 if (reptype != LMI_INTEGRITY && reptype != LMI_FULLREP) { 747 printk(KERN_INFO "%s: Unsupported LMI Report type (0x%02X)\n", 748 dev->name, reptype); 749 return 1; 750 } 751 752 if (skb->data[++i] != (lmi == LMI_CCITT ? LMI_CCITT_ALIVE : 753 LMI_ANSI_CISCO_ALIVE)) { 754 printk(KERN_INFO "%s: Not an LMI Link integrity verification" 755 " IE (0x%02X)\n", dev->name, skb->data[i]); 756 return 1; 757 } 758 759 if (skb->data[++i] != LMI_INTEG_LEN) { 760 printk(KERN_INFO "%s: Invalid LMI Link integrity verification" 761 " IE length (%u)\n", dev->name, skb->data[i]); 762 return 1; 763 } 764 i++; 765 766 state(hdlc)->rxseq = skb->data[i++]; /* TX sequence from peer */ 767 rxseq = skb->data[i++]; /* Should confirm our sequence */ 768 769 txseq = state(hdlc)->txseq; 770 771 if (dce) 772 state(hdlc)->last_poll = jiffies; 773 774 error = 0; 775 if (!state(hdlc)->reliable) 776 error = 1; 777 778 if (rxseq == 0 || rxseq != txseq) { /* Ask for full report next time */ 779 state(hdlc)->n391cnt = 0; 780 error = 1; 781 } 782 783 if (dce) { 784 if (state(hdlc)->fullrep_sent && !error) { 785 /* Stop sending full report - the last one has been confirmed by DTE */ 786 state(hdlc)->fullrep_sent = 0; 787 pvc = state(hdlc)->first_pvc; 788 while (pvc) { 789 if (pvc->state.new) { 790 pvc->state.new = 0; 791 792 /* Tell DTE that new PVC is now active */ 793 state(hdlc)->dce_changed = 1; 794 } 795 pvc = pvc->next; 796 } 797 } 798 799 if (state(hdlc)->dce_changed) { 800 reptype = LMI_FULLREP; 801 state(hdlc)->fullrep_sent = 1; 802 state(hdlc)->dce_changed = 0; 803 } 804 805 state(hdlc)->request = 1; /* got request */ 806 fr_lmi_send(dev, reptype == LMI_FULLREP ? 1 : 0); 807 return 0; 808 } 809 810 /* DTE */ 811 812 state(hdlc)->request = 0; /* got response, no request pending */ 813 814 if (error) 815 return 0; 816 817 if (reptype != LMI_FULLREP) 818 return 0; 819 820 pvc = state(hdlc)->first_pvc; 821 822 while (pvc) { 823 pvc->state.deleted = 1; 824 pvc = pvc->next; 825 } 826 827 no_ram = 0; 828 while (skb->len >= i + 2 + stat_len) { 829 u16 dlci; 830 u32 bw; 831 unsigned int active, new; 832 833 if (skb->data[i] != (lmi == LMI_CCITT ? LMI_CCITT_PVCSTAT : 834 LMI_ANSI_CISCO_PVCSTAT)) { 835 printk(KERN_INFO "%s: Not an LMI PVC status IE" 836 " (0x%02X)\n", dev->name, skb->data[i]); 837 return 1; 838 } 839 840 if (skb->data[++i] != stat_len) { 841 printk(KERN_INFO "%s: Invalid LMI PVC status IE length" 842 " (%u)\n", dev->name, skb->data[i]); 843 return 1; 844 } 845 i++; 846 847 new = !! (skb->data[i + 2] & 0x08); 848 active = !! (skb->data[i + 2] & 0x02); 849 if (lmi == LMI_CISCO) { 850 dlci = (skb->data[i] << 8) | skb->data[i + 1]; 851 bw = (skb->data[i + 3] << 16) | 852 (skb->data[i + 4] << 8) | 853 (skb->data[i + 5]); 854 } else { 855 dlci = ((skb->data[i] & 0x3F) << 4) | 856 ((skb->data[i + 1] & 0x78) >> 3); 857 bw = 0; 858 } 859 860 pvc = add_pvc(dev, dlci); 861 862 if (!pvc && !no_ram) { 863 printk(KERN_WARNING 864 "%s: Memory squeeze on fr_lmi_recv()\n", 865 dev->name); 866 no_ram = 1; 867 } 868 869 if (pvc) { 870 pvc->state.exist = 1; 871 pvc->state.deleted = 0; 872 if (active != pvc->state.active || 873 new != pvc->state.new || 874 bw != pvc->state.bandwidth || 875 !pvc->state.exist) { 876 pvc->state.new = new; 877 pvc->state.active = active; 878 pvc->state.bandwidth = bw; 879 pvc_carrier(active, pvc); 880 fr_log_dlci_active(pvc); 881 } 882 } 883 884 i += stat_len; 885 } 886 887 pvc = state(hdlc)->first_pvc; 888 889 while (pvc) { 890 if (pvc->state.deleted && pvc->state.exist) { 891 pvc_carrier(0, pvc); 892 pvc->state.active = pvc->state.new = 0; 893 pvc->state.exist = 0; 894 pvc->state.bandwidth = 0; 895 fr_log_dlci_active(pvc); 896 } 897 pvc = pvc->next; 898 } 899 900 /* Next full report after N391 polls */ 901 state(hdlc)->n391cnt = state(hdlc)->settings.n391; 902 903 return 0; 904 } 905 906 907 static int fr_rx(struct sk_buff *skb) 908 { 909 struct net_device *frad = skb->dev; 910 hdlc_device *hdlc = dev_to_hdlc(frad); 911 fr_hdr *fh = (fr_hdr*)skb->data; 912 u8 *data = skb->data; 913 u16 dlci; 914 pvc_device *pvc; 915 struct net_device *dev = NULL; 916 917 if (skb->len <= 4 || fh->ea1 || data[2] != FR_UI) 918 goto rx_error; 919 920 dlci = q922_to_dlci(skb->data); 921 922 if ((dlci == LMI_CCITT_ANSI_DLCI && 923 (state(hdlc)->settings.lmi == LMI_ANSI || 924 state(hdlc)->settings.lmi == LMI_CCITT)) || 925 (dlci == LMI_CISCO_DLCI && 926 state(hdlc)->settings.lmi == LMI_CISCO)) { 927 if (fr_lmi_recv(frad, skb)) 928 goto rx_error; 929 dev_kfree_skb_any(skb); 930 return NET_RX_SUCCESS; 931 } 932 933 pvc = find_pvc(hdlc, dlci); 934 if (!pvc) { 935 #ifdef DEBUG_PKT 936 printk(KERN_INFO "%s: No PVC for received frame's DLCI %d\n", 937 frad->name, dlci); 938 #endif 939 dev_kfree_skb_any(skb); 940 return NET_RX_DROP; 941 } 942 943 if (pvc->state.fecn != fh->fecn) { 944 #ifdef DEBUG_ECN 945 printk(KERN_DEBUG "%s: DLCI %d FECN O%s\n", frad->name, 946 dlci, fh->fecn ? "N" : "FF"); 947 #endif 948 pvc->state.fecn ^= 1; 949 } 950 951 if (pvc->state.becn != fh->becn) { 952 #ifdef DEBUG_ECN 953 printk(KERN_DEBUG "%s: DLCI %d BECN O%s\n", frad->name, 954 dlci, fh->becn ? "N" : "FF"); 955 #endif 956 pvc->state.becn ^= 1; 957 } 958 959 960 if ((skb = skb_share_check(skb, GFP_ATOMIC)) == NULL) { 961 dev_to_desc(frad)->stats.rx_dropped++; 962 return NET_RX_DROP; 963 } 964 965 if (data[3] == NLPID_IP) { 966 skb_pull(skb, 4); /* Remove 4-byte header (hdr, UI, NLPID) */ 967 dev = pvc->main; 968 skb->protocol = htons(ETH_P_IP); 969 970 } else if (data[3] == NLPID_IPV6) { 971 skb_pull(skb, 4); /* Remove 4-byte header (hdr, UI, NLPID) */ 972 dev = pvc->main; 973 skb->protocol = htons(ETH_P_IPV6); 974 975 } else if (skb->len > 10 && data[3] == FR_PAD && 976 data[4] == NLPID_SNAP && data[5] == FR_PAD) { 977 u16 oui = ntohs(*(__be16*)(data + 6)); 978 u16 pid = ntohs(*(__be16*)(data + 8)); 979 skb_pull(skb, 10); 980 981 switch ((((u32)oui) << 16) | pid) { 982 case ETH_P_ARP: /* routed frame with SNAP */ 983 case ETH_P_IPX: 984 case ETH_P_IP: /* a long variant */ 985 case ETH_P_IPV6: 986 dev = pvc->main; 987 skb->protocol = htons(pid); 988 break; 989 990 case 0x80C20007: /* bridged Ethernet frame */ 991 if ((dev = pvc->ether) != NULL) 992 skb->protocol = eth_type_trans(skb, dev); 993 break; 994 995 default: 996 printk(KERN_INFO "%s: Unsupported protocol, OUI=%x " 997 "PID=%x\n", frad->name, oui, pid); 998 dev_kfree_skb_any(skb); 999 return NET_RX_DROP; 1000 } 1001 } else { 1002 printk(KERN_INFO "%s: Unsupported protocol, NLPID=%x " 1003 "length = %i\n", frad->name, data[3], skb->len); 1004 dev_kfree_skb_any(skb); 1005 return NET_RX_DROP; 1006 } 1007 1008 if (dev) { 1009 struct net_device_stats *stats = pvc_get_stats(dev); 1010 stats->rx_packets++; /* PVC traffic */ 1011 stats->rx_bytes += skb->len; 1012 if (pvc->state.becn) 1013 stats->rx_compressed++; 1014 netif_rx(skb); 1015 return NET_RX_SUCCESS; 1016 } else { 1017 dev_kfree_skb_any(skb); 1018 return NET_RX_DROP; 1019 } 1020 1021 rx_error: 1022 dev_to_desc(frad)->stats.rx_errors++; /* Mark error */ 1023 dev_kfree_skb_any(skb); 1024 return NET_RX_DROP; 1025 } 1026 1027 1028 1029 static void fr_start(struct net_device *dev) 1030 { 1031 hdlc_device *hdlc = dev_to_hdlc(dev); 1032 #ifdef DEBUG_LINK 1033 printk(KERN_DEBUG "fr_start\n"); 1034 #endif 1035 if (state(hdlc)->settings.lmi != LMI_NONE) { 1036 state(hdlc)->reliable = 0; 1037 state(hdlc)->dce_changed = 1; 1038 state(hdlc)->request = 0; 1039 state(hdlc)->fullrep_sent = 0; 1040 state(hdlc)->last_errors = 0xFFFFFFFF; 1041 state(hdlc)->n391cnt = 0; 1042 state(hdlc)->txseq = state(hdlc)->rxseq = 0; 1043 1044 init_timer(&state(hdlc)->timer); 1045 /* First poll after 1 s */ 1046 state(hdlc)->timer.expires = jiffies + HZ; 1047 state(hdlc)->timer.function = fr_timer; 1048 state(hdlc)->timer.data = (unsigned long)dev; 1049 add_timer(&state(hdlc)->timer); 1050 } else 1051 fr_set_link_state(1, dev); 1052 } 1053 1054 1055 static void fr_stop(struct net_device *dev) 1056 { 1057 hdlc_device *hdlc = dev_to_hdlc(dev); 1058 #ifdef DEBUG_LINK 1059 printk(KERN_DEBUG "fr_stop\n"); 1060 #endif 1061 if (state(hdlc)->settings.lmi != LMI_NONE) 1062 del_timer_sync(&state(hdlc)->timer); 1063 fr_set_link_state(0, dev); 1064 } 1065 1066 1067 static void fr_close(struct net_device *dev) 1068 { 1069 hdlc_device *hdlc = dev_to_hdlc(dev); 1070 pvc_device *pvc = state(hdlc)->first_pvc; 1071 1072 while (pvc) { /* Shutdown all PVCs for this FRAD */ 1073 if (pvc->main) 1074 dev_close(pvc->main); 1075 if (pvc->ether) 1076 dev_close(pvc->ether); 1077 pvc = pvc->next; 1078 } 1079 } 1080 1081 1082 static void pvc_setup(struct net_device *dev) 1083 { 1084 dev->type = ARPHRD_DLCI; 1085 dev->flags = IFF_POINTOPOINT; 1086 dev->hard_header_len = 10; 1087 dev->addr_len = 2; 1088 } 1089 1090 static int fr_add_pvc(struct net_device *frad, unsigned int dlci, int type) 1091 { 1092 hdlc_device *hdlc = dev_to_hdlc(frad); 1093 pvc_device *pvc = NULL; 1094 struct net_device *dev; 1095 int result, used; 1096 char * prefix = "pvc%d"; 1097 1098 if (type == ARPHRD_ETHER) 1099 prefix = "pvceth%d"; 1100 1101 if ((pvc = add_pvc(frad, dlci)) == NULL) { 1102 printk(KERN_WARNING "%s: Memory squeeze on fr_add_pvc()\n", 1103 frad->name); 1104 return -ENOBUFS; 1105 } 1106 1107 if (*get_dev_p(pvc, type)) 1108 return -EEXIST; 1109 1110 used = pvc_is_used(pvc); 1111 1112 if (type == ARPHRD_ETHER) 1113 dev = alloc_netdev(sizeof(struct net_device_stats), 1114 "pvceth%d", ether_setup); 1115 else 1116 dev = alloc_netdev(sizeof(struct net_device_stats), 1117 "pvc%d", pvc_setup); 1118 1119 if (!dev) { 1120 printk(KERN_WARNING "%s: Memory squeeze on fr_pvc()\n", 1121 frad->name); 1122 delete_unused_pvcs(hdlc); 1123 return -ENOBUFS; 1124 } 1125 1126 if (type == ARPHRD_ETHER) { 1127 memcpy(dev->dev_addr, "\x00\x01", 2); 1128 get_random_bytes(dev->dev_addr + 2, ETH_ALEN - 2); 1129 } else { 1130 *(__be16*)dev->dev_addr = htons(dlci); 1131 dlci_to_q922(dev->broadcast, dlci); 1132 } 1133 dev->hard_start_xmit = pvc_xmit; 1134 dev->get_stats = pvc_get_stats; 1135 dev->open = pvc_open; 1136 dev->stop = pvc_close; 1137 dev->do_ioctl = pvc_ioctl; 1138 dev->change_mtu = pvc_change_mtu; 1139 dev->mtu = HDLC_MAX_MTU; 1140 dev->tx_queue_len = 0; 1141 dev->priv = pvc; 1142 1143 result = dev_alloc_name(dev, dev->name); 1144 if (result < 0) { 1145 free_netdev(dev); 1146 delete_unused_pvcs(hdlc); 1147 return result; 1148 } 1149 1150 if (register_netdevice(dev) != 0) { 1151 free_netdev(dev); 1152 delete_unused_pvcs(hdlc); 1153 return -EIO; 1154 } 1155 1156 dev->destructor = free_netdev; 1157 *get_dev_p(pvc, type) = dev; 1158 if (!used) { 1159 state(hdlc)->dce_changed = 1; 1160 state(hdlc)->dce_pvc_count++; 1161 } 1162 return 0; 1163 } 1164 1165 1166 1167 static int fr_del_pvc(hdlc_device *hdlc, unsigned int dlci, int type) 1168 { 1169 pvc_device *pvc; 1170 struct net_device *dev; 1171 1172 if ((pvc = find_pvc(hdlc, dlci)) == NULL) 1173 return -ENOENT; 1174 1175 if ((dev = *get_dev_p(pvc, type)) == NULL) 1176 return -ENOENT; 1177 1178 if (dev->flags & IFF_UP) 1179 return -EBUSY; /* PVC in use */ 1180 1181 unregister_netdevice(dev); /* the destructor will free_netdev(dev) */ 1182 *get_dev_p(pvc, type) = NULL; 1183 1184 if (!pvc_is_used(pvc)) { 1185 state(hdlc)->dce_pvc_count--; 1186 state(hdlc)->dce_changed = 1; 1187 } 1188 delete_unused_pvcs(hdlc); 1189 return 0; 1190 } 1191 1192 1193 1194 static void fr_destroy(struct net_device *frad) 1195 { 1196 hdlc_device *hdlc = dev_to_hdlc(frad); 1197 pvc_device *pvc = state(hdlc)->first_pvc; 1198 state(hdlc)->first_pvc = NULL; /* All PVCs destroyed */ 1199 state(hdlc)->dce_pvc_count = 0; 1200 state(hdlc)->dce_changed = 1; 1201 1202 while (pvc) { 1203 pvc_device *next = pvc->next; 1204 /* destructors will free_netdev() main and ether */ 1205 if (pvc->main) 1206 unregister_netdevice(pvc->main); 1207 1208 if (pvc->ether) 1209 unregister_netdevice(pvc->ether); 1210 1211 kfree(pvc); 1212 pvc = next; 1213 } 1214 } 1215 1216 1217 static struct hdlc_proto proto = { 1218 .close = fr_close, 1219 .start = fr_start, 1220 .stop = fr_stop, 1221 .detach = fr_destroy, 1222 .ioctl = fr_ioctl, 1223 .module = THIS_MODULE, 1224 }; 1225 1226 1227 static int fr_ioctl(struct net_device *dev, struct ifreq *ifr) 1228 { 1229 fr_proto __user *fr_s = ifr->ifr_settings.ifs_ifsu.fr; 1230 const size_t size = sizeof(fr_proto); 1231 fr_proto new_settings; 1232 hdlc_device *hdlc = dev_to_hdlc(dev); 1233 fr_proto_pvc pvc; 1234 int result; 1235 1236 switch (ifr->ifr_settings.type) { 1237 case IF_GET_PROTO: 1238 if (dev_to_hdlc(dev)->proto != &proto) /* Different proto */ 1239 return -EINVAL; 1240 ifr->ifr_settings.type = IF_PROTO_FR; 1241 if (ifr->ifr_settings.size < size) { 1242 ifr->ifr_settings.size = size; /* data size wanted */ 1243 return -ENOBUFS; 1244 } 1245 if (copy_to_user(fr_s, &state(hdlc)->settings, size)) 1246 return -EFAULT; 1247 return 0; 1248 1249 case IF_PROTO_FR: 1250 if(!capable(CAP_NET_ADMIN)) 1251 return -EPERM; 1252 1253 if(dev->flags & IFF_UP) 1254 return -EBUSY; 1255 1256 if (copy_from_user(&new_settings, fr_s, size)) 1257 return -EFAULT; 1258 1259 if (new_settings.lmi == LMI_DEFAULT) 1260 new_settings.lmi = LMI_ANSI; 1261 1262 if ((new_settings.lmi != LMI_NONE && 1263 new_settings.lmi != LMI_ANSI && 1264 new_settings.lmi != LMI_CCITT && 1265 new_settings.lmi != LMI_CISCO) || 1266 new_settings.t391 < 1 || 1267 new_settings.t392 < 2 || 1268 new_settings.n391 < 1 || 1269 new_settings.n392 < 1 || 1270 new_settings.n393 < new_settings.n392 || 1271 new_settings.n393 > 32 || 1272 (new_settings.dce != 0 && 1273 new_settings.dce != 1)) 1274 return -EINVAL; 1275 1276 result=hdlc->attach(dev, ENCODING_NRZ,PARITY_CRC16_PR1_CCITT); 1277 if (result) 1278 return result; 1279 1280 if (dev_to_hdlc(dev)->proto != &proto) { /* Different proto */ 1281 result = attach_hdlc_protocol(dev, &proto, fr_rx, 1282 sizeof(struct frad_state)); 1283 if (result) 1284 return result; 1285 state(hdlc)->first_pvc = NULL; 1286 state(hdlc)->dce_pvc_count = 0; 1287 } 1288 memcpy(&state(hdlc)->settings, &new_settings, size); 1289 1290 dev->hard_start_xmit = hdlc->xmit; 1291 dev->type = ARPHRD_FRAD; 1292 return 0; 1293 1294 case IF_PROTO_FR_ADD_PVC: 1295 case IF_PROTO_FR_DEL_PVC: 1296 case IF_PROTO_FR_ADD_ETH_PVC: 1297 case IF_PROTO_FR_DEL_ETH_PVC: 1298 if (dev_to_hdlc(dev)->proto != &proto) /* Different proto */ 1299 return -EINVAL; 1300 1301 if(!capable(CAP_NET_ADMIN)) 1302 return -EPERM; 1303 1304 if (copy_from_user(&pvc, ifr->ifr_settings.ifs_ifsu.fr_pvc, 1305 sizeof(fr_proto_pvc))) 1306 return -EFAULT; 1307 1308 if (pvc.dlci <= 0 || pvc.dlci >= 1024) 1309 return -EINVAL; /* Only 10 bits, DLCI 0 reserved */ 1310 1311 if (ifr->ifr_settings.type == IF_PROTO_FR_ADD_ETH_PVC || 1312 ifr->ifr_settings.type == IF_PROTO_FR_DEL_ETH_PVC) 1313 result = ARPHRD_ETHER; /* bridged Ethernet device */ 1314 else 1315 result = ARPHRD_DLCI; 1316 1317 if (ifr->ifr_settings.type == IF_PROTO_FR_ADD_PVC || 1318 ifr->ifr_settings.type == IF_PROTO_FR_ADD_ETH_PVC) 1319 return fr_add_pvc(dev, pvc.dlci, result); 1320 else 1321 return fr_del_pvc(hdlc, pvc.dlci, result); 1322 } 1323 1324 return -EINVAL; 1325 } 1326 1327 1328 static int __init mod_init(void) 1329 { 1330 register_hdlc_protocol(&proto); 1331 return 0; 1332 } 1333 1334 1335 static void __exit mod_exit(void) 1336 { 1337 unregister_hdlc_protocol(&proto); 1338 } 1339 1340 1341 module_init(mod_init); 1342 module_exit(mod_exit); 1343 1344 MODULE_AUTHOR("Krzysztof Halasa <khc@pm.waw.pl>"); 1345 MODULE_DESCRIPTION("Frame-Relay protocol support for generic HDLC"); 1346 MODULE_LICENSE("GPL v2"); 1347