1 /* 2 * Generic HDLC support routines for Linux 3 * Frame Relay support 4 * 5 * Copyright (C) 1999 - 2006 Krzysztof Halasa <khc@pm.waw.pl> 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms of version 2 of the GNU General Public License 9 * as published by the Free Software Foundation. 10 * 11 12 Theory of PVC state 13 14 DCE mode: 15 16 (exist,new) -> 0,0 when "PVC create" or if "link unreliable" 17 0,x -> 1,1 if "link reliable" when sending FULL STATUS 18 1,1 -> 1,0 if received FULL STATUS ACK 19 20 (active) -> 0 when "ifconfig PVC down" or "link unreliable" or "PVC create" 21 -> 1 when "PVC up" and (exist,new) = 1,0 22 23 DTE mode: 24 (exist,new,active) = FULL STATUS if "link reliable" 25 = 0, 0, 0 if "link unreliable" 26 No LMI: 27 active = open and "link reliable" 28 exist = new = not used 29 30 CCITT LMI: ITU-T Q.933 Annex A 31 ANSI LMI: ANSI T1.617 Annex D 32 CISCO LMI: the original, aka "Gang of Four" LMI 33 34 */ 35 36 #include <linux/errno.h> 37 #include <linux/etherdevice.h> 38 #include <linux/hdlc.h> 39 #include <linux/if_arp.h> 40 #include <linux/inetdevice.h> 41 #include <linux/init.h> 42 #include <linux/kernel.h> 43 #include <linux/module.h> 44 #include <linux/pkt_sched.h> 45 #include <linux/poll.h> 46 #include <linux/rtnetlink.h> 47 #include <linux/skbuff.h> 48 #include <linux/slab.h> 49 50 #undef DEBUG_PKT 51 #undef DEBUG_ECN 52 #undef DEBUG_LINK 53 #undef DEBUG_PROTO 54 #undef DEBUG_PVC 55 56 #define FR_UI 0x03 57 #define FR_PAD 0x00 58 59 #define NLPID_IP 0xCC 60 #define NLPID_IPV6 0x8E 61 #define NLPID_SNAP 0x80 62 #define NLPID_PAD 0x00 63 #define NLPID_CCITT_ANSI_LMI 0x08 64 #define NLPID_CISCO_LMI 0x09 65 66 67 #define LMI_CCITT_ANSI_DLCI 0 /* LMI DLCI */ 68 #define LMI_CISCO_DLCI 1023 69 70 #define LMI_CALLREF 0x00 /* Call Reference */ 71 #define LMI_ANSI_LOCKSHIFT 0x95 /* ANSI locking shift */ 72 #define LMI_ANSI_CISCO_REPTYPE 0x01 /* report type */ 73 #define LMI_CCITT_REPTYPE 0x51 74 #define LMI_ANSI_CISCO_ALIVE 0x03 /* keep alive */ 75 #define LMI_CCITT_ALIVE 0x53 76 #define LMI_ANSI_CISCO_PVCSTAT 0x07 /* PVC status */ 77 #define LMI_CCITT_PVCSTAT 0x57 78 79 #define LMI_FULLREP 0x00 /* full report */ 80 #define LMI_INTEGRITY 0x01 /* link integrity report */ 81 #define LMI_SINGLE 0x02 /* single PVC report */ 82 83 #define LMI_STATUS_ENQUIRY 0x75 84 #define LMI_STATUS 0x7D /* reply */ 85 86 #define LMI_REPT_LEN 1 /* report type element length */ 87 #define LMI_INTEG_LEN 2 /* link integrity element length */ 88 89 #define LMI_CCITT_CISCO_LENGTH 13 /* LMI frame lengths */ 90 #define LMI_ANSI_LENGTH 14 91 92 93 typedef struct { 94 #if defined(__LITTLE_ENDIAN_BITFIELD) 95 unsigned ea1: 1; 96 unsigned cr: 1; 97 unsigned dlcih: 6; 98 99 unsigned ea2: 1; 100 unsigned de: 1; 101 unsigned becn: 1; 102 unsigned fecn: 1; 103 unsigned dlcil: 4; 104 #else 105 unsigned dlcih: 6; 106 unsigned cr: 1; 107 unsigned ea1: 1; 108 109 unsigned dlcil: 4; 110 unsigned fecn: 1; 111 unsigned becn: 1; 112 unsigned de: 1; 113 unsigned ea2: 1; 114 #endif 115 }__attribute__ ((packed)) fr_hdr; 116 117 118 typedef struct pvc_device_struct { 119 struct net_device *frad; 120 struct net_device *main; 121 struct net_device *ether; /* bridged Ethernet interface */ 122 struct pvc_device_struct *next; /* Sorted in ascending DLCI order */ 123 int dlci; 124 int open_count; 125 126 struct { 127 unsigned int new: 1; 128 unsigned int active: 1; 129 unsigned int exist: 1; 130 unsigned int deleted: 1; 131 unsigned int fecn: 1; 132 unsigned int becn: 1; 133 unsigned int bandwidth; /* Cisco LMI reporting only */ 134 }state; 135 }pvc_device; 136 137 struct frad_state { 138 fr_proto settings; 139 pvc_device *first_pvc; 140 int dce_pvc_count; 141 142 struct timer_list timer; 143 unsigned long last_poll; 144 int reliable; 145 int dce_changed; 146 int request; 147 int fullrep_sent; 148 u32 last_errors; /* last errors bit list */ 149 u8 n391cnt; 150 u8 txseq; /* TX sequence number */ 151 u8 rxseq; /* RX sequence number */ 152 }; 153 154 155 static int fr_ioctl(struct net_device *dev, struct ifreq *ifr); 156 157 158 static inline u16 q922_to_dlci(u8 *hdr) 159 { 160 return ((hdr[0] & 0xFC) << 2) | ((hdr[1] & 0xF0) >> 4); 161 } 162 163 164 static inline void dlci_to_q922(u8 *hdr, u16 dlci) 165 { 166 hdr[0] = (dlci >> 2) & 0xFC; 167 hdr[1] = ((dlci << 4) & 0xF0) | 0x01; 168 } 169 170 171 static inline struct frad_state* state(hdlc_device *hdlc) 172 { 173 return(struct frad_state *)(hdlc->state); 174 } 175 176 177 static inline pvc_device* find_pvc(hdlc_device *hdlc, u16 dlci) 178 { 179 pvc_device *pvc = state(hdlc)->first_pvc; 180 181 while (pvc) { 182 if (pvc->dlci == dlci) 183 return pvc; 184 if (pvc->dlci > dlci) 185 return NULL; /* the listed is sorted */ 186 pvc = pvc->next; 187 } 188 189 return NULL; 190 } 191 192 193 static pvc_device* add_pvc(struct net_device *dev, u16 dlci) 194 { 195 hdlc_device *hdlc = dev_to_hdlc(dev); 196 pvc_device *pvc, **pvc_p = &state(hdlc)->first_pvc; 197 198 while (*pvc_p) { 199 if ((*pvc_p)->dlci == dlci) 200 return *pvc_p; 201 if ((*pvc_p)->dlci > dlci) 202 break; /* the list is sorted */ 203 pvc_p = &(*pvc_p)->next; 204 } 205 206 pvc = kzalloc(sizeof(pvc_device), GFP_ATOMIC); 207 #ifdef DEBUG_PVC 208 printk(KERN_DEBUG "add_pvc: allocated pvc %p, frad %p\n", pvc, dev); 209 #endif 210 if (!pvc) 211 return NULL; 212 213 pvc->dlci = dlci; 214 pvc->frad = dev; 215 pvc->next = *pvc_p; /* Put it in the chain */ 216 *pvc_p = pvc; 217 return pvc; 218 } 219 220 221 static inline int pvc_is_used(pvc_device *pvc) 222 { 223 return pvc->main || pvc->ether; 224 } 225 226 227 static inline void pvc_carrier(int on, pvc_device *pvc) 228 { 229 if (on) { 230 if (pvc->main) 231 if (!netif_carrier_ok(pvc->main)) 232 netif_carrier_on(pvc->main); 233 if (pvc->ether) 234 if (!netif_carrier_ok(pvc->ether)) 235 netif_carrier_on(pvc->ether); 236 } else { 237 if (pvc->main) 238 if (netif_carrier_ok(pvc->main)) 239 netif_carrier_off(pvc->main); 240 if (pvc->ether) 241 if (netif_carrier_ok(pvc->ether)) 242 netif_carrier_off(pvc->ether); 243 } 244 } 245 246 247 static inline void delete_unused_pvcs(hdlc_device *hdlc) 248 { 249 pvc_device **pvc_p = &state(hdlc)->first_pvc; 250 251 while (*pvc_p) { 252 if (!pvc_is_used(*pvc_p)) { 253 pvc_device *pvc = *pvc_p; 254 #ifdef DEBUG_PVC 255 printk(KERN_DEBUG "freeing unused pvc: %p\n", pvc); 256 #endif 257 *pvc_p = pvc->next; 258 kfree(pvc); 259 continue; 260 } 261 pvc_p = &(*pvc_p)->next; 262 } 263 } 264 265 266 static inline struct net_device** get_dev_p(pvc_device *pvc, int type) 267 { 268 if (type == ARPHRD_ETHER) 269 return &pvc->ether; 270 else 271 return &pvc->main; 272 } 273 274 275 static int fr_hard_header(struct sk_buff **skb_p, u16 dlci) 276 { 277 u16 head_len; 278 struct sk_buff *skb = *skb_p; 279 280 switch (skb->protocol) { 281 case __constant_htons(NLPID_CCITT_ANSI_LMI): 282 head_len = 4; 283 skb_push(skb, head_len); 284 skb->data[3] = NLPID_CCITT_ANSI_LMI; 285 break; 286 287 case __constant_htons(NLPID_CISCO_LMI): 288 head_len = 4; 289 skb_push(skb, head_len); 290 skb->data[3] = NLPID_CISCO_LMI; 291 break; 292 293 case __constant_htons(ETH_P_IP): 294 head_len = 4; 295 skb_push(skb, head_len); 296 skb->data[3] = NLPID_IP; 297 break; 298 299 case __constant_htons(ETH_P_IPV6): 300 head_len = 4; 301 skb_push(skb, head_len); 302 skb->data[3] = NLPID_IPV6; 303 break; 304 305 case __constant_htons(ETH_P_802_3): 306 head_len = 10; 307 if (skb_headroom(skb) < head_len) { 308 struct sk_buff *skb2 = skb_realloc_headroom(skb, 309 head_len); 310 if (!skb2) 311 return -ENOBUFS; 312 dev_kfree_skb(skb); 313 skb = *skb_p = skb2; 314 } 315 skb_push(skb, head_len); 316 skb->data[3] = FR_PAD; 317 skb->data[4] = NLPID_SNAP; 318 skb->data[5] = FR_PAD; 319 skb->data[6] = 0x80; 320 skb->data[7] = 0xC2; 321 skb->data[8] = 0x00; 322 skb->data[9] = 0x07; /* bridged Ethernet frame w/out FCS */ 323 break; 324 325 default: 326 head_len = 10; 327 skb_push(skb, head_len); 328 skb->data[3] = FR_PAD; 329 skb->data[4] = NLPID_SNAP; 330 skb->data[5] = FR_PAD; 331 skb->data[6] = FR_PAD; 332 skb->data[7] = FR_PAD; 333 *(__be16*)(skb->data + 8) = skb->protocol; 334 } 335 336 dlci_to_q922(skb->data, dlci); 337 skb->data[2] = FR_UI; 338 return 0; 339 } 340 341 342 343 static int pvc_open(struct net_device *dev) 344 { 345 pvc_device *pvc = dev->priv; 346 347 if ((pvc->frad->flags & IFF_UP) == 0) 348 return -EIO; /* Frad must be UP in order to activate PVC */ 349 350 if (pvc->open_count++ == 0) { 351 hdlc_device *hdlc = dev_to_hdlc(pvc->frad); 352 if (state(hdlc)->settings.lmi == LMI_NONE) 353 pvc->state.active = netif_carrier_ok(pvc->frad); 354 355 pvc_carrier(pvc->state.active, pvc); 356 state(hdlc)->dce_changed = 1; 357 } 358 return 0; 359 } 360 361 362 363 static int pvc_close(struct net_device *dev) 364 { 365 pvc_device *pvc = dev->priv; 366 367 if (--pvc->open_count == 0) { 368 hdlc_device *hdlc = dev_to_hdlc(pvc->frad); 369 if (state(hdlc)->settings.lmi == LMI_NONE) 370 pvc->state.active = 0; 371 372 if (state(hdlc)->settings.dce) { 373 state(hdlc)->dce_changed = 1; 374 pvc->state.active = 0; 375 } 376 } 377 return 0; 378 } 379 380 381 382 static int pvc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 383 { 384 pvc_device *pvc = dev->priv; 385 fr_proto_pvc_info info; 386 387 if (ifr->ifr_settings.type == IF_GET_PROTO) { 388 if (dev->type == ARPHRD_ETHER) 389 ifr->ifr_settings.type = IF_PROTO_FR_ETH_PVC; 390 else 391 ifr->ifr_settings.type = IF_PROTO_FR_PVC; 392 393 if (ifr->ifr_settings.size < sizeof(info)) { 394 /* data size wanted */ 395 ifr->ifr_settings.size = sizeof(info); 396 return -ENOBUFS; 397 } 398 399 info.dlci = pvc->dlci; 400 memcpy(info.master, pvc->frad->name, IFNAMSIZ); 401 if (copy_to_user(ifr->ifr_settings.ifs_ifsu.fr_pvc_info, 402 &info, sizeof(info))) 403 return -EFAULT; 404 return 0; 405 } 406 407 return -EINVAL; 408 } 409 410 static int pvc_xmit(struct sk_buff *skb, struct net_device *dev) 411 { 412 pvc_device *pvc = dev->priv; 413 414 if (pvc->state.active) { 415 if (dev->type == ARPHRD_ETHER) { 416 int pad = ETH_ZLEN - skb->len; 417 if (pad > 0) { /* Pad the frame with zeros */ 418 int len = skb->len; 419 if (skb_tailroom(skb) < pad) 420 if (pskb_expand_head(skb, 0, pad, 421 GFP_ATOMIC)) { 422 dev->stats.tx_dropped++; 423 dev_kfree_skb(skb); 424 return 0; 425 } 426 skb_put(skb, pad); 427 memset(skb->data + len, 0, pad); 428 } 429 skb->protocol = __constant_htons(ETH_P_802_3); 430 } 431 if (!fr_hard_header(&skb, pvc->dlci)) { 432 dev->stats.tx_bytes += skb->len; 433 dev->stats.tx_packets++; 434 if (pvc->state.fecn) /* TX Congestion counter */ 435 dev->stats.tx_compressed++; 436 skb->dev = pvc->frad; 437 dev_queue_xmit(skb); 438 return 0; 439 } 440 } 441 442 dev->stats.tx_dropped++; 443 dev_kfree_skb(skb); 444 return 0; 445 } 446 447 448 449 static int pvc_change_mtu(struct net_device *dev, int new_mtu) 450 { 451 if ((new_mtu < 68) || (new_mtu > HDLC_MAX_MTU)) 452 return -EINVAL; 453 dev->mtu = new_mtu; 454 return 0; 455 } 456 457 458 459 static inline void fr_log_dlci_active(pvc_device *pvc) 460 { 461 printk(KERN_INFO "%s: DLCI %d [%s%s%s]%s %s\n", 462 pvc->frad->name, 463 pvc->dlci, 464 pvc->main ? pvc->main->name : "", 465 pvc->main && pvc->ether ? " " : "", 466 pvc->ether ? pvc->ether->name : "", 467 pvc->state.new ? " new" : "", 468 !pvc->state.exist ? "deleted" : 469 pvc->state.active ? "active" : "inactive"); 470 } 471 472 473 474 static inline u8 fr_lmi_nextseq(u8 x) 475 { 476 x++; 477 return x ? x : 1; 478 } 479 480 481 static void fr_lmi_send(struct net_device *dev, int fullrep) 482 { 483 hdlc_device *hdlc = dev_to_hdlc(dev); 484 struct sk_buff *skb; 485 pvc_device *pvc = state(hdlc)->first_pvc; 486 int lmi = state(hdlc)->settings.lmi; 487 int dce = state(hdlc)->settings.dce; 488 int len = lmi == LMI_ANSI ? LMI_ANSI_LENGTH : LMI_CCITT_CISCO_LENGTH; 489 int stat_len = (lmi == LMI_CISCO) ? 6 : 3; 490 u8 *data; 491 int i = 0; 492 493 if (dce && fullrep) { 494 len += state(hdlc)->dce_pvc_count * (2 + stat_len); 495 if (len > HDLC_MAX_MRU) { 496 printk(KERN_WARNING "%s: Too many PVCs while sending " 497 "LMI full report\n", dev->name); 498 return; 499 } 500 } 501 502 skb = dev_alloc_skb(len); 503 if (!skb) { 504 printk(KERN_WARNING "%s: Memory squeeze on fr_lmi_send()\n", 505 dev->name); 506 return; 507 } 508 memset(skb->data, 0, len); 509 skb_reserve(skb, 4); 510 if (lmi == LMI_CISCO) { 511 skb->protocol = __constant_htons(NLPID_CISCO_LMI); 512 fr_hard_header(&skb, LMI_CISCO_DLCI); 513 } else { 514 skb->protocol = __constant_htons(NLPID_CCITT_ANSI_LMI); 515 fr_hard_header(&skb, LMI_CCITT_ANSI_DLCI); 516 } 517 data = skb_tail_pointer(skb); 518 data[i++] = LMI_CALLREF; 519 data[i++] = dce ? LMI_STATUS : LMI_STATUS_ENQUIRY; 520 if (lmi == LMI_ANSI) 521 data[i++] = LMI_ANSI_LOCKSHIFT; 522 data[i++] = lmi == LMI_CCITT ? LMI_CCITT_REPTYPE : 523 LMI_ANSI_CISCO_REPTYPE; 524 data[i++] = LMI_REPT_LEN; 525 data[i++] = fullrep ? LMI_FULLREP : LMI_INTEGRITY; 526 data[i++] = lmi == LMI_CCITT ? LMI_CCITT_ALIVE : LMI_ANSI_CISCO_ALIVE; 527 data[i++] = LMI_INTEG_LEN; 528 data[i++] = state(hdlc)->txseq = 529 fr_lmi_nextseq(state(hdlc)->txseq); 530 data[i++] = state(hdlc)->rxseq; 531 532 if (dce && fullrep) { 533 while (pvc) { 534 data[i++] = lmi == LMI_CCITT ? LMI_CCITT_PVCSTAT : 535 LMI_ANSI_CISCO_PVCSTAT; 536 data[i++] = stat_len; 537 538 /* LMI start/restart */ 539 if (state(hdlc)->reliable && !pvc->state.exist) { 540 pvc->state.exist = pvc->state.new = 1; 541 fr_log_dlci_active(pvc); 542 } 543 544 /* ifconfig PVC up */ 545 if (pvc->open_count && !pvc->state.active && 546 pvc->state.exist && !pvc->state.new) { 547 pvc_carrier(1, pvc); 548 pvc->state.active = 1; 549 fr_log_dlci_active(pvc); 550 } 551 552 if (lmi == LMI_CISCO) { 553 data[i] = pvc->dlci >> 8; 554 data[i + 1] = pvc->dlci & 0xFF; 555 } else { 556 data[i] = (pvc->dlci >> 4) & 0x3F; 557 data[i + 1] = ((pvc->dlci << 3) & 0x78) | 0x80; 558 data[i + 2] = 0x80; 559 } 560 561 if (pvc->state.new) 562 data[i + 2] |= 0x08; 563 else if (pvc->state.active) 564 data[i + 2] |= 0x02; 565 566 i += stat_len; 567 pvc = pvc->next; 568 } 569 } 570 571 skb_put(skb, i); 572 skb->priority = TC_PRIO_CONTROL; 573 skb->dev = dev; 574 skb_reset_network_header(skb); 575 576 dev_queue_xmit(skb); 577 } 578 579 580 581 static void fr_set_link_state(int reliable, struct net_device *dev) 582 { 583 hdlc_device *hdlc = dev_to_hdlc(dev); 584 pvc_device *pvc = state(hdlc)->first_pvc; 585 586 state(hdlc)->reliable = reliable; 587 if (reliable) { 588 netif_dormant_off(dev); 589 state(hdlc)->n391cnt = 0; /* Request full status */ 590 state(hdlc)->dce_changed = 1; 591 592 if (state(hdlc)->settings.lmi == LMI_NONE) { 593 while (pvc) { /* Activate all PVCs */ 594 pvc_carrier(1, pvc); 595 pvc->state.exist = pvc->state.active = 1; 596 pvc->state.new = 0; 597 pvc = pvc->next; 598 } 599 } 600 } else { 601 netif_dormant_on(dev); 602 while (pvc) { /* Deactivate all PVCs */ 603 pvc_carrier(0, pvc); 604 pvc->state.exist = pvc->state.active = 0; 605 pvc->state.new = 0; 606 if (!state(hdlc)->settings.dce) 607 pvc->state.bandwidth = 0; 608 pvc = pvc->next; 609 } 610 } 611 } 612 613 614 static void fr_timer(unsigned long arg) 615 { 616 struct net_device *dev = (struct net_device *)arg; 617 hdlc_device *hdlc = dev_to_hdlc(dev); 618 int i, cnt = 0, reliable; 619 u32 list; 620 621 if (state(hdlc)->settings.dce) { 622 reliable = state(hdlc)->request && 623 time_before(jiffies, state(hdlc)->last_poll + 624 state(hdlc)->settings.t392 * HZ); 625 state(hdlc)->request = 0; 626 } else { 627 state(hdlc)->last_errors <<= 1; /* Shift the list */ 628 if (state(hdlc)->request) { 629 if (state(hdlc)->reliable) 630 printk(KERN_INFO "%s: No LMI status reply " 631 "received\n", dev->name); 632 state(hdlc)->last_errors |= 1; 633 } 634 635 list = state(hdlc)->last_errors; 636 for (i = 0; i < state(hdlc)->settings.n393; i++, list >>= 1) 637 cnt += (list & 1); /* errors count */ 638 639 reliable = (cnt < state(hdlc)->settings.n392); 640 } 641 642 if (state(hdlc)->reliable != reliable) { 643 printk(KERN_INFO "%s: Link %sreliable\n", dev->name, 644 reliable ? "" : "un"); 645 fr_set_link_state(reliable, dev); 646 } 647 648 if (state(hdlc)->settings.dce) 649 state(hdlc)->timer.expires = jiffies + 650 state(hdlc)->settings.t392 * HZ; 651 else { 652 if (state(hdlc)->n391cnt) 653 state(hdlc)->n391cnt--; 654 655 fr_lmi_send(dev, state(hdlc)->n391cnt == 0); 656 657 state(hdlc)->last_poll = jiffies; 658 state(hdlc)->request = 1; 659 state(hdlc)->timer.expires = jiffies + 660 state(hdlc)->settings.t391 * HZ; 661 } 662 663 state(hdlc)->timer.function = fr_timer; 664 state(hdlc)->timer.data = arg; 665 add_timer(&state(hdlc)->timer); 666 } 667 668 669 static int fr_lmi_recv(struct net_device *dev, struct sk_buff *skb) 670 { 671 hdlc_device *hdlc = dev_to_hdlc(dev); 672 pvc_device *pvc; 673 u8 rxseq, txseq; 674 int lmi = state(hdlc)->settings.lmi; 675 int dce = state(hdlc)->settings.dce; 676 int stat_len = (lmi == LMI_CISCO) ? 6 : 3, reptype, error, no_ram, i; 677 678 if (skb->len < (lmi == LMI_ANSI ? LMI_ANSI_LENGTH : 679 LMI_CCITT_CISCO_LENGTH)) { 680 printk(KERN_INFO "%s: Short LMI frame\n", dev->name); 681 return 1; 682 } 683 684 if (skb->data[3] != (lmi == LMI_CISCO ? NLPID_CISCO_LMI : 685 NLPID_CCITT_ANSI_LMI)) { 686 printk(KERN_INFO "%s: Received non-LMI frame with LMI DLCI\n", 687 dev->name); 688 return 1; 689 } 690 691 if (skb->data[4] != LMI_CALLREF) { 692 printk(KERN_INFO "%s: Invalid LMI Call reference (0x%02X)\n", 693 dev->name, skb->data[4]); 694 return 1; 695 } 696 697 if (skb->data[5] != (dce ? LMI_STATUS_ENQUIRY : LMI_STATUS)) { 698 printk(KERN_INFO "%s: Invalid LMI Message type (0x%02X)\n", 699 dev->name, skb->data[5]); 700 return 1; 701 } 702 703 if (lmi == LMI_ANSI) { 704 if (skb->data[6] != LMI_ANSI_LOCKSHIFT) { 705 printk(KERN_INFO "%s: Not ANSI locking shift in LMI" 706 " message (0x%02X)\n", dev->name, skb->data[6]); 707 return 1; 708 } 709 i = 7; 710 } else 711 i = 6; 712 713 if (skb->data[i] != (lmi == LMI_CCITT ? LMI_CCITT_REPTYPE : 714 LMI_ANSI_CISCO_REPTYPE)) { 715 printk(KERN_INFO "%s: Not an LMI Report type IE (0x%02X)\n", 716 dev->name, skb->data[i]); 717 return 1; 718 } 719 720 if (skb->data[++i] != LMI_REPT_LEN) { 721 printk(KERN_INFO "%s: Invalid LMI Report type IE length" 722 " (%u)\n", dev->name, skb->data[i]); 723 return 1; 724 } 725 726 reptype = skb->data[++i]; 727 if (reptype != LMI_INTEGRITY && reptype != LMI_FULLREP) { 728 printk(KERN_INFO "%s: Unsupported LMI Report type (0x%02X)\n", 729 dev->name, reptype); 730 return 1; 731 } 732 733 if (skb->data[++i] != (lmi == LMI_CCITT ? LMI_CCITT_ALIVE : 734 LMI_ANSI_CISCO_ALIVE)) { 735 printk(KERN_INFO "%s: Not an LMI Link integrity verification" 736 " IE (0x%02X)\n", dev->name, skb->data[i]); 737 return 1; 738 } 739 740 if (skb->data[++i] != LMI_INTEG_LEN) { 741 printk(KERN_INFO "%s: Invalid LMI Link integrity verification" 742 " IE length (%u)\n", dev->name, skb->data[i]); 743 return 1; 744 } 745 i++; 746 747 state(hdlc)->rxseq = skb->data[i++]; /* TX sequence from peer */ 748 rxseq = skb->data[i++]; /* Should confirm our sequence */ 749 750 txseq = state(hdlc)->txseq; 751 752 if (dce) 753 state(hdlc)->last_poll = jiffies; 754 755 error = 0; 756 if (!state(hdlc)->reliable) 757 error = 1; 758 759 if (rxseq == 0 || rxseq != txseq) { /* Ask for full report next time */ 760 state(hdlc)->n391cnt = 0; 761 error = 1; 762 } 763 764 if (dce) { 765 if (state(hdlc)->fullrep_sent && !error) { 766 /* Stop sending full report - the last one has been confirmed by DTE */ 767 state(hdlc)->fullrep_sent = 0; 768 pvc = state(hdlc)->first_pvc; 769 while (pvc) { 770 if (pvc->state.new) { 771 pvc->state.new = 0; 772 773 /* Tell DTE that new PVC is now active */ 774 state(hdlc)->dce_changed = 1; 775 } 776 pvc = pvc->next; 777 } 778 } 779 780 if (state(hdlc)->dce_changed) { 781 reptype = LMI_FULLREP; 782 state(hdlc)->fullrep_sent = 1; 783 state(hdlc)->dce_changed = 0; 784 } 785 786 state(hdlc)->request = 1; /* got request */ 787 fr_lmi_send(dev, reptype == LMI_FULLREP ? 1 : 0); 788 return 0; 789 } 790 791 /* DTE */ 792 793 state(hdlc)->request = 0; /* got response, no request pending */ 794 795 if (error) 796 return 0; 797 798 if (reptype != LMI_FULLREP) 799 return 0; 800 801 pvc = state(hdlc)->first_pvc; 802 803 while (pvc) { 804 pvc->state.deleted = 1; 805 pvc = pvc->next; 806 } 807 808 no_ram = 0; 809 while (skb->len >= i + 2 + stat_len) { 810 u16 dlci; 811 u32 bw; 812 unsigned int active, new; 813 814 if (skb->data[i] != (lmi == LMI_CCITT ? LMI_CCITT_PVCSTAT : 815 LMI_ANSI_CISCO_PVCSTAT)) { 816 printk(KERN_INFO "%s: Not an LMI PVC status IE" 817 " (0x%02X)\n", dev->name, skb->data[i]); 818 return 1; 819 } 820 821 if (skb->data[++i] != stat_len) { 822 printk(KERN_INFO "%s: Invalid LMI PVC status IE length" 823 " (%u)\n", dev->name, skb->data[i]); 824 return 1; 825 } 826 i++; 827 828 new = !! (skb->data[i + 2] & 0x08); 829 active = !! (skb->data[i + 2] & 0x02); 830 if (lmi == LMI_CISCO) { 831 dlci = (skb->data[i] << 8) | skb->data[i + 1]; 832 bw = (skb->data[i + 3] << 16) | 833 (skb->data[i + 4] << 8) | 834 (skb->data[i + 5]); 835 } else { 836 dlci = ((skb->data[i] & 0x3F) << 4) | 837 ((skb->data[i + 1] & 0x78) >> 3); 838 bw = 0; 839 } 840 841 pvc = add_pvc(dev, dlci); 842 843 if (!pvc && !no_ram) { 844 printk(KERN_WARNING 845 "%s: Memory squeeze on fr_lmi_recv()\n", 846 dev->name); 847 no_ram = 1; 848 } 849 850 if (pvc) { 851 pvc->state.exist = 1; 852 pvc->state.deleted = 0; 853 if (active != pvc->state.active || 854 new != pvc->state.new || 855 bw != pvc->state.bandwidth || 856 !pvc->state.exist) { 857 pvc->state.new = new; 858 pvc->state.active = active; 859 pvc->state.bandwidth = bw; 860 pvc_carrier(active, pvc); 861 fr_log_dlci_active(pvc); 862 } 863 } 864 865 i += stat_len; 866 } 867 868 pvc = state(hdlc)->first_pvc; 869 870 while (pvc) { 871 if (pvc->state.deleted && pvc->state.exist) { 872 pvc_carrier(0, pvc); 873 pvc->state.active = pvc->state.new = 0; 874 pvc->state.exist = 0; 875 pvc->state.bandwidth = 0; 876 fr_log_dlci_active(pvc); 877 } 878 pvc = pvc->next; 879 } 880 881 /* Next full report after N391 polls */ 882 state(hdlc)->n391cnt = state(hdlc)->settings.n391; 883 884 return 0; 885 } 886 887 888 static int fr_rx(struct sk_buff *skb) 889 { 890 struct net_device *frad = skb->dev; 891 hdlc_device *hdlc = dev_to_hdlc(frad); 892 fr_hdr *fh = (fr_hdr*)skb->data; 893 u8 *data = skb->data; 894 u16 dlci; 895 pvc_device *pvc; 896 struct net_device *dev = NULL; 897 898 if (skb->len <= 4 || fh->ea1 || data[2] != FR_UI) 899 goto rx_error; 900 901 dlci = q922_to_dlci(skb->data); 902 903 if ((dlci == LMI_CCITT_ANSI_DLCI && 904 (state(hdlc)->settings.lmi == LMI_ANSI || 905 state(hdlc)->settings.lmi == LMI_CCITT)) || 906 (dlci == LMI_CISCO_DLCI && 907 state(hdlc)->settings.lmi == LMI_CISCO)) { 908 if (fr_lmi_recv(frad, skb)) 909 goto rx_error; 910 dev_kfree_skb_any(skb); 911 return NET_RX_SUCCESS; 912 } 913 914 pvc = find_pvc(hdlc, dlci); 915 if (!pvc) { 916 #ifdef DEBUG_PKT 917 printk(KERN_INFO "%s: No PVC for received frame's DLCI %d\n", 918 frad->name, dlci); 919 #endif 920 dev_kfree_skb_any(skb); 921 return NET_RX_DROP; 922 } 923 924 if (pvc->state.fecn != fh->fecn) { 925 #ifdef DEBUG_ECN 926 printk(KERN_DEBUG "%s: DLCI %d FECN O%s\n", frad->name, 927 dlci, fh->fecn ? "N" : "FF"); 928 #endif 929 pvc->state.fecn ^= 1; 930 } 931 932 if (pvc->state.becn != fh->becn) { 933 #ifdef DEBUG_ECN 934 printk(KERN_DEBUG "%s: DLCI %d BECN O%s\n", frad->name, 935 dlci, fh->becn ? "N" : "FF"); 936 #endif 937 pvc->state.becn ^= 1; 938 } 939 940 941 if ((skb = skb_share_check(skb, GFP_ATOMIC)) == NULL) { 942 frad->stats.rx_dropped++; 943 return NET_RX_DROP; 944 } 945 946 if (data[3] == NLPID_IP) { 947 skb_pull(skb, 4); /* Remove 4-byte header (hdr, UI, NLPID) */ 948 dev = pvc->main; 949 skb->protocol = htons(ETH_P_IP); 950 951 } else if (data[3] == NLPID_IPV6) { 952 skb_pull(skb, 4); /* Remove 4-byte header (hdr, UI, NLPID) */ 953 dev = pvc->main; 954 skb->protocol = htons(ETH_P_IPV6); 955 956 } else if (skb->len > 10 && data[3] == FR_PAD && 957 data[4] == NLPID_SNAP && data[5] == FR_PAD) { 958 u16 oui = ntohs(*(__be16*)(data + 6)); 959 u16 pid = ntohs(*(__be16*)(data + 8)); 960 skb_pull(skb, 10); 961 962 switch ((((u32)oui) << 16) | pid) { 963 case ETH_P_ARP: /* routed frame with SNAP */ 964 case ETH_P_IPX: 965 case ETH_P_IP: /* a long variant */ 966 case ETH_P_IPV6: 967 dev = pvc->main; 968 skb->protocol = htons(pid); 969 break; 970 971 case 0x80C20007: /* bridged Ethernet frame */ 972 if ((dev = pvc->ether) != NULL) 973 skb->protocol = eth_type_trans(skb, dev); 974 break; 975 976 default: 977 printk(KERN_INFO "%s: Unsupported protocol, OUI=%x " 978 "PID=%x\n", frad->name, oui, pid); 979 dev_kfree_skb_any(skb); 980 return NET_RX_DROP; 981 } 982 } else { 983 printk(KERN_INFO "%s: Unsupported protocol, NLPID=%x " 984 "length = %i\n", frad->name, data[3], skb->len); 985 dev_kfree_skb_any(skb); 986 return NET_RX_DROP; 987 } 988 989 if (dev) { 990 dev->stats.rx_packets++; /* PVC traffic */ 991 dev->stats.rx_bytes += skb->len; 992 if (pvc->state.becn) 993 dev->stats.rx_compressed++; 994 skb->dev = dev; 995 netif_rx(skb); 996 return NET_RX_SUCCESS; 997 } else { 998 dev_kfree_skb_any(skb); 999 return NET_RX_DROP; 1000 } 1001 1002 rx_error: 1003 frad->stats.rx_errors++; /* Mark error */ 1004 dev_kfree_skb_any(skb); 1005 return NET_RX_DROP; 1006 } 1007 1008 1009 1010 static void fr_start(struct net_device *dev) 1011 { 1012 hdlc_device *hdlc = dev_to_hdlc(dev); 1013 #ifdef DEBUG_LINK 1014 printk(KERN_DEBUG "fr_start\n"); 1015 #endif 1016 if (state(hdlc)->settings.lmi != LMI_NONE) { 1017 state(hdlc)->reliable = 0; 1018 state(hdlc)->dce_changed = 1; 1019 state(hdlc)->request = 0; 1020 state(hdlc)->fullrep_sent = 0; 1021 state(hdlc)->last_errors = 0xFFFFFFFF; 1022 state(hdlc)->n391cnt = 0; 1023 state(hdlc)->txseq = state(hdlc)->rxseq = 0; 1024 1025 init_timer(&state(hdlc)->timer); 1026 /* First poll after 1 s */ 1027 state(hdlc)->timer.expires = jiffies + HZ; 1028 state(hdlc)->timer.function = fr_timer; 1029 state(hdlc)->timer.data = (unsigned long)dev; 1030 add_timer(&state(hdlc)->timer); 1031 } else 1032 fr_set_link_state(1, dev); 1033 } 1034 1035 1036 static void fr_stop(struct net_device *dev) 1037 { 1038 hdlc_device *hdlc = dev_to_hdlc(dev); 1039 #ifdef DEBUG_LINK 1040 printk(KERN_DEBUG "fr_stop\n"); 1041 #endif 1042 if (state(hdlc)->settings.lmi != LMI_NONE) 1043 del_timer_sync(&state(hdlc)->timer); 1044 fr_set_link_state(0, dev); 1045 } 1046 1047 1048 static void fr_close(struct net_device *dev) 1049 { 1050 hdlc_device *hdlc = dev_to_hdlc(dev); 1051 pvc_device *pvc = state(hdlc)->first_pvc; 1052 1053 while (pvc) { /* Shutdown all PVCs for this FRAD */ 1054 if (pvc->main) 1055 dev_close(pvc->main); 1056 if (pvc->ether) 1057 dev_close(pvc->ether); 1058 pvc = pvc->next; 1059 } 1060 } 1061 1062 1063 static void pvc_setup(struct net_device *dev) 1064 { 1065 dev->type = ARPHRD_DLCI; 1066 dev->flags = IFF_POINTOPOINT; 1067 dev->hard_header_len = 10; 1068 dev->addr_len = 2; 1069 } 1070 1071 static int fr_add_pvc(struct net_device *frad, unsigned int dlci, int type) 1072 { 1073 hdlc_device *hdlc = dev_to_hdlc(frad); 1074 pvc_device *pvc; 1075 struct net_device *dev; 1076 int result, used; 1077 1078 if ((pvc = add_pvc(frad, dlci)) == NULL) { 1079 printk(KERN_WARNING "%s: Memory squeeze on fr_add_pvc()\n", 1080 frad->name); 1081 return -ENOBUFS; 1082 } 1083 1084 if (*get_dev_p(pvc, type)) 1085 return -EEXIST; 1086 1087 used = pvc_is_used(pvc); 1088 1089 if (type == ARPHRD_ETHER) 1090 dev = alloc_netdev(0, "pvceth%d", ether_setup); 1091 else 1092 dev = alloc_netdev(0, "pvc%d", pvc_setup); 1093 1094 if (!dev) { 1095 printk(KERN_WARNING "%s: Memory squeeze on fr_pvc()\n", 1096 frad->name); 1097 delete_unused_pvcs(hdlc); 1098 return -ENOBUFS; 1099 } 1100 1101 if (type == ARPHRD_ETHER) 1102 random_ether_addr(dev->dev_addr); 1103 else { 1104 *(__be16*)dev->dev_addr = htons(dlci); 1105 dlci_to_q922(dev->broadcast, dlci); 1106 } 1107 dev->hard_start_xmit = pvc_xmit; 1108 dev->open = pvc_open; 1109 dev->stop = pvc_close; 1110 dev->do_ioctl = pvc_ioctl; 1111 dev->change_mtu = pvc_change_mtu; 1112 dev->mtu = HDLC_MAX_MTU; 1113 dev->tx_queue_len = 0; 1114 dev->priv = pvc; 1115 1116 result = dev_alloc_name(dev, dev->name); 1117 if (result < 0) { 1118 free_netdev(dev); 1119 delete_unused_pvcs(hdlc); 1120 return result; 1121 } 1122 1123 if (register_netdevice(dev) != 0) { 1124 free_netdev(dev); 1125 delete_unused_pvcs(hdlc); 1126 return -EIO; 1127 } 1128 1129 dev->destructor = free_netdev; 1130 *get_dev_p(pvc, type) = dev; 1131 if (!used) { 1132 state(hdlc)->dce_changed = 1; 1133 state(hdlc)->dce_pvc_count++; 1134 } 1135 return 0; 1136 } 1137 1138 1139 1140 static int fr_del_pvc(hdlc_device *hdlc, unsigned int dlci, int type) 1141 { 1142 pvc_device *pvc; 1143 struct net_device *dev; 1144 1145 if ((pvc = find_pvc(hdlc, dlci)) == NULL) 1146 return -ENOENT; 1147 1148 if ((dev = *get_dev_p(pvc, type)) == NULL) 1149 return -ENOENT; 1150 1151 if (dev->flags & IFF_UP) 1152 return -EBUSY; /* PVC in use */ 1153 1154 unregister_netdevice(dev); /* the destructor will free_netdev(dev) */ 1155 *get_dev_p(pvc, type) = NULL; 1156 1157 if (!pvc_is_used(pvc)) { 1158 state(hdlc)->dce_pvc_count--; 1159 state(hdlc)->dce_changed = 1; 1160 } 1161 delete_unused_pvcs(hdlc); 1162 return 0; 1163 } 1164 1165 1166 1167 static void fr_destroy(struct net_device *frad) 1168 { 1169 hdlc_device *hdlc = dev_to_hdlc(frad); 1170 pvc_device *pvc = state(hdlc)->first_pvc; 1171 state(hdlc)->first_pvc = NULL; /* All PVCs destroyed */ 1172 state(hdlc)->dce_pvc_count = 0; 1173 state(hdlc)->dce_changed = 1; 1174 1175 while (pvc) { 1176 pvc_device *next = pvc->next; 1177 /* destructors will free_netdev() main and ether */ 1178 if (pvc->main) 1179 unregister_netdevice(pvc->main); 1180 1181 if (pvc->ether) 1182 unregister_netdevice(pvc->ether); 1183 1184 kfree(pvc); 1185 pvc = next; 1186 } 1187 } 1188 1189 1190 static struct hdlc_proto proto = { 1191 .close = fr_close, 1192 .start = fr_start, 1193 .stop = fr_stop, 1194 .detach = fr_destroy, 1195 .ioctl = fr_ioctl, 1196 .netif_rx = fr_rx, 1197 .module = THIS_MODULE, 1198 }; 1199 1200 1201 static int fr_ioctl(struct net_device *dev, struct ifreq *ifr) 1202 { 1203 fr_proto __user *fr_s = ifr->ifr_settings.ifs_ifsu.fr; 1204 const size_t size = sizeof(fr_proto); 1205 fr_proto new_settings; 1206 hdlc_device *hdlc = dev_to_hdlc(dev); 1207 fr_proto_pvc pvc; 1208 int result; 1209 1210 switch (ifr->ifr_settings.type) { 1211 case IF_GET_PROTO: 1212 if (dev_to_hdlc(dev)->proto != &proto) /* Different proto */ 1213 return -EINVAL; 1214 ifr->ifr_settings.type = IF_PROTO_FR; 1215 if (ifr->ifr_settings.size < size) { 1216 ifr->ifr_settings.size = size; /* data size wanted */ 1217 return -ENOBUFS; 1218 } 1219 if (copy_to_user(fr_s, &state(hdlc)->settings, size)) 1220 return -EFAULT; 1221 return 0; 1222 1223 case IF_PROTO_FR: 1224 if(!capable(CAP_NET_ADMIN)) 1225 return -EPERM; 1226 1227 if(dev->flags & IFF_UP) 1228 return -EBUSY; 1229 1230 if (copy_from_user(&new_settings, fr_s, size)) 1231 return -EFAULT; 1232 1233 if (new_settings.lmi == LMI_DEFAULT) 1234 new_settings.lmi = LMI_ANSI; 1235 1236 if ((new_settings.lmi != LMI_NONE && 1237 new_settings.lmi != LMI_ANSI && 1238 new_settings.lmi != LMI_CCITT && 1239 new_settings.lmi != LMI_CISCO) || 1240 new_settings.t391 < 1 || 1241 new_settings.t392 < 2 || 1242 new_settings.n391 < 1 || 1243 new_settings.n392 < 1 || 1244 new_settings.n393 < new_settings.n392 || 1245 new_settings.n393 > 32 || 1246 (new_settings.dce != 0 && 1247 new_settings.dce != 1)) 1248 return -EINVAL; 1249 1250 result=hdlc->attach(dev, ENCODING_NRZ,PARITY_CRC16_PR1_CCITT); 1251 if (result) 1252 return result; 1253 1254 if (dev_to_hdlc(dev)->proto != &proto) { /* Different proto */ 1255 result = attach_hdlc_protocol(dev, &proto, 1256 sizeof(struct frad_state)); 1257 if (result) 1258 return result; 1259 state(hdlc)->first_pvc = NULL; 1260 state(hdlc)->dce_pvc_count = 0; 1261 } 1262 memcpy(&state(hdlc)->settings, &new_settings, size); 1263 1264 dev->hard_start_xmit = hdlc->xmit; 1265 dev->type = ARPHRD_FRAD; 1266 return 0; 1267 1268 case IF_PROTO_FR_ADD_PVC: 1269 case IF_PROTO_FR_DEL_PVC: 1270 case IF_PROTO_FR_ADD_ETH_PVC: 1271 case IF_PROTO_FR_DEL_ETH_PVC: 1272 if (dev_to_hdlc(dev)->proto != &proto) /* Different proto */ 1273 return -EINVAL; 1274 1275 if(!capable(CAP_NET_ADMIN)) 1276 return -EPERM; 1277 1278 if (copy_from_user(&pvc, ifr->ifr_settings.ifs_ifsu.fr_pvc, 1279 sizeof(fr_proto_pvc))) 1280 return -EFAULT; 1281 1282 if (pvc.dlci <= 0 || pvc.dlci >= 1024) 1283 return -EINVAL; /* Only 10 bits, DLCI 0 reserved */ 1284 1285 if (ifr->ifr_settings.type == IF_PROTO_FR_ADD_ETH_PVC || 1286 ifr->ifr_settings.type == IF_PROTO_FR_DEL_ETH_PVC) 1287 result = ARPHRD_ETHER; /* bridged Ethernet device */ 1288 else 1289 result = ARPHRD_DLCI; 1290 1291 if (ifr->ifr_settings.type == IF_PROTO_FR_ADD_PVC || 1292 ifr->ifr_settings.type == IF_PROTO_FR_ADD_ETH_PVC) 1293 return fr_add_pvc(dev, pvc.dlci, result); 1294 else 1295 return fr_del_pvc(hdlc, pvc.dlci, result); 1296 } 1297 1298 return -EINVAL; 1299 } 1300 1301 1302 static int __init mod_init(void) 1303 { 1304 register_hdlc_protocol(&proto); 1305 return 0; 1306 } 1307 1308 1309 static void __exit mod_exit(void) 1310 { 1311 unregister_hdlc_protocol(&proto); 1312 } 1313 1314 1315 module_init(mod_init); 1316 module_exit(mod_exit); 1317 1318 MODULE_AUTHOR("Krzysztof Halasa <khc@pm.waw.pl>"); 1319 MODULE_DESCRIPTION("Frame-Relay protocol support for generic HDLC"); 1320 MODULE_LICENSE("GPL v2"); 1321