xref: /openbmc/linux/drivers/net/wan/hdlc_cisco.c (revision b6dcefde)
1 /*
2  * Generic HDLC support routines for Linux
3  * Cisco HDLC support
4  *
5  * Copyright (C) 2000 - 2006 Krzysztof Halasa <khc@pm.waw.pl>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms of version 2 of the GNU General Public License
9  * as published by the Free Software Foundation.
10  */
11 
12 #include <linux/errno.h>
13 #include <linux/hdlc.h>
14 #include <linux/if_arp.h>
15 #include <linux/inetdevice.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/pkt_sched.h>
20 #include <linux/poll.h>
21 #include <linux/rtnetlink.h>
22 #include <linux/skbuff.h>
23 #include <linux/slab.h>
24 
25 #undef DEBUG_HARD_HEADER
26 
27 #define CISCO_MULTICAST		0x8F	/* Cisco multicast address */
28 #define CISCO_UNICAST		0x0F	/* Cisco unicast address */
29 #define CISCO_KEEPALIVE		0x8035	/* Cisco keepalive protocol */
30 #define CISCO_SYS_INFO		0x2000	/* Cisco interface/system info */
31 #define CISCO_ADDR_REQ		0	/* Cisco address request */
32 #define CISCO_ADDR_REPLY	1	/* Cisco address reply */
33 #define CISCO_KEEPALIVE_REQ	2	/* Cisco keepalive request */
34 
35 
36 struct hdlc_header {
37 	u8 address;
38 	u8 control;
39 	__be16 protocol;
40 }__attribute__ ((packed));
41 
42 
43 struct cisco_packet {
44 	__be32 type;		/* code */
45 	__be32 par1;
46 	__be32 par2;
47 	__be16 rel;		/* reliability */
48 	__be32 time;
49 }__attribute__ ((packed));
50 #define	CISCO_PACKET_LEN	18
51 #define	CISCO_BIG_PACKET_LEN	20
52 
53 
54 struct cisco_state {
55 	cisco_proto settings;
56 
57 	struct timer_list timer;
58 	spinlock_t lock;
59 	unsigned long last_poll;
60 	int up;
61 	u32 txseq; /* TX sequence number, 0 = none */
62 	u32 rxseq; /* RX sequence number */
63 };
64 
65 
66 static int cisco_ioctl(struct net_device *dev, struct ifreq *ifr);
67 
68 
69 static inline struct cisco_state* state(hdlc_device *hdlc)
70 {
71 	return (struct cisco_state *)hdlc->state;
72 }
73 
74 
75 static int cisco_hard_header(struct sk_buff *skb, struct net_device *dev,
76 			     u16 type, const void *daddr, const void *saddr,
77 			     unsigned int len)
78 {
79 	struct hdlc_header *data;
80 #ifdef DEBUG_HARD_HEADER
81 	printk(KERN_DEBUG "%s: cisco_hard_header called\n", dev->name);
82 #endif
83 
84 	skb_push(skb, sizeof(struct hdlc_header));
85 	data = (struct hdlc_header*)skb->data;
86 	if (type == CISCO_KEEPALIVE)
87 		data->address = CISCO_MULTICAST;
88 	else
89 		data->address = CISCO_UNICAST;
90 	data->control = 0;
91 	data->protocol = htons(type);
92 
93 	return sizeof(struct hdlc_header);
94 }
95 
96 
97 
98 static void cisco_keepalive_send(struct net_device *dev, u32 type,
99 				 __be32 par1, __be32 par2)
100 {
101 	struct sk_buff *skb;
102 	struct cisco_packet *data;
103 
104 	skb = dev_alloc_skb(sizeof(struct hdlc_header) +
105 			    sizeof(struct cisco_packet));
106 	if (!skb) {
107 		printk(KERN_WARNING
108 		       "%s: Memory squeeze on cisco_keepalive_send()\n",
109 		       dev->name);
110 		return;
111 	}
112 	skb_reserve(skb, 4);
113 	cisco_hard_header(skb, dev, CISCO_KEEPALIVE, NULL, NULL, 0);
114 	data = (struct cisco_packet*)(skb->data + 4);
115 
116 	data->type = htonl(type);
117 	data->par1 = par1;
118 	data->par2 = par2;
119 	data->rel = cpu_to_be16(0xFFFF);
120 	/* we will need do_div here if 1000 % HZ != 0 */
121 	data->time = htonl((jiffies - INITIAL_JIFFIES) * (1000 / HZ));
122 
123 	skb_put(skb, sizeof(struct cisco_packet));
124 	skb->priority = TC_PRIO_CONTROL;
125 	skb->dev = dev;
126 	skb_reset_network_header(skb);
127 
128 	dev_queue_xmit(skb);
129 }
130 
131 
132 
133 static __be16 cisco_type_trans(struct sk_buff *skb, struct net_device *dev)
134 {
135 	struct hdlc_header *data = (struct hdlc_header*)skb->data;
136 
137 	if (skb->len < sizeof(struct hdlc_header))
138 		return cpu_to_be16(ETH_P_HDLC);
139 
140 	if (data->address != CISCO_MULTICAST &&
141 	    data->address != CISCO_UNICAST)
142 		return cpu_to_be16(ETH_P_HDLC);
143 
144 	switch(data->protocol) {
145 	case cpu_to_be16(ETH_P_IP):
146 	case cpu_to_be16(ETH_P_IPX):
147 	case cpu_to_be16(ETH_P_IPV6):
148 		skb_pull(skb, sizeof(struct hdlc_header));
149 		return data->protocol;
150 	default:
151 		return cpu_to_be16(ETH_P_HDLC);
152 	}
153 }
154 
155 
156 static int cisco_rx(struct sk_buff *skb)
157 {
158 	struct net_device *dev = skb->dev;
159 	hdlc_device *hdlc = dev_to_hdlc(dev);
160 	struct cisco_state *st = state(hdlc);
161 	struct hdlc_header *data = (struct hdlc_header*)skb->data;
162 	struct cisco_packet *cisco_data;
163 	struct in_device *in_dev;
164 	__be32 addr, mask;
165 	u32 ack;
166 
167 	if (skb->len < sizeof(struct hdlc_header))
168 		goto rx_error;
169 
170 	if (data->address != CISCO_MULTICAST &&
171 	    data->address != CISCO_UNICAST)
172 		goto rx_error;
173 
174 	switch (ntohs(data->protocol)) {
175 	case CISCO_SYS_INFO:
176 		/* Packet is not needed, drop it. */
177 		dev_kfree_skb_any(skb);
178 		return NET_RX_SUCCESS;
179 
180 	case CISCO_KEEPALIVE:
181 		if ((skb->len != sizeof(struct hdlc_header) +
182 		     CISCO_PACKET_LEN) &&
183 		    (skb->len != sizeof(struct hdlc_header) +
184 		     CISCO_BIG_PACKET_LEN)) {
185 			printk(KERN_INFO "%s: Invalid length of Cisco control"
186 			       " packet (%d bytes)\n", dev->name, skb->len);
187 			goto rx_error;
188 		}
189 
190 		cisco_data = (struct cisco_packet*)(skb->data + sizeof
191 						    (struct hdlc_header));
192 
193 		switch(ntohl (cisco_data->type)) {
194 		case CISCO_ADDR_REQ: /* Stolen from syncppp.c :-) */
195 			in_dev = dev->ip_ptr;
196 			addr = 0;
197 			mask = ~cpu_to_be32(0); /* is the mask correct? */
198 
199 			if (in_dev != NULL) {
200 				struct in_ifaddr **ifap = &in_dev->ifa_list;
201 
202 				while (*ifap != NULL) {
203 					if (strcmp(dev->name,
204 						   (*ifap)->ifa_label) == 0) {
205 						addr = (*ifap)->ifa_local;
206 						mask = (*ifap)->ifa_mask;
207 						break;
208 					}
209 					ifap = &(*ifap)->ifa_next;
210 				}
211 
212 				cisco_keepalive_send(dev, CISCO_ADDR_REPLY,
213 						     addr, mask);
214 			}
215 			dev_kfree_skb_any(skb);
216 			return NET_RX_SUCCESS;
217 
218 		case CISCO_ADDR_REPLY:
219 			printk(KERN_INFO "%s: Unexpected Cisco IP address "
220 			       "reply\n", dev->name);
221 			goto rx_error;
222 
223 		case CISCO_KEEPALIVE_REQ:
224 			spin_lock(&st->lock);
225 			st->rxseq = ntohl(cisco_data->par1);
226 			ack = ntohl(cisco_data->par2);
227 			if (ack && (ack == st->txseq ||
228 				    /* our current REQ may be in transit */
229 				    ack == st->txseq - 1)) {
230 				st->last_poll = jiffies;
231 				if (!st->up) {
232 					u32 sec, min, hrs, days;
233 					sec = ntohl(cisco_data->time) / 1000;
234 					min = sec / 60; sec -= min * 60;
235 					hrs = min / 60; min -= hrs * 60;
236 					days = hrs / 24; hrs -= days * 24;
237 					printk(KERN_INFO "%s: Link up (peer "
238 					       "uptime %ud%uh%um%us)\n",
239 					       dev->name, days, hrs, min, sec);
240 					netif_dormant_off(dev);
241 					st->up = 1;
242 				}
243 			}
244 			spin_unlock(&st->lock);
245 
246 			dev_kfree_skb_any(skb);
247 			return NET_RX_SUCCESS;
248 		} /* switch(keepalive type) */
249 	} /* switch(protocol) */
250 
251 	printk(KERN_INFO "%s: Unsupported protocol %x\n", dev->name,
252 	       ntohs(data->protocol));
253 	dev_kfree_skb_any(skb);
254 	return NET_RX_DROP;
255 
256 rx_error:
257 	dev->stats.rx_errors++; /* Mark error */
258 	dev_kfree_skb_any(skb);
259 	return NET_RX_DROP;
260 }
261 
262 
263 
264 static void cisco_timer(unsigned long arg)
265 {
266 	struct net_device *dev = (struct net_device *)arg;
267 	hdlc_device *hdlc = dev_to_hdlc(dev);
268 	struct cisco_state *st = state(hdlc);
269 
270 	spin_lock(&st->lock);
271 	if (st->up &&
272 	    time_after(jiffies, st->last_poll + st->settings.timeout * HZ)) {
273 		st->up = 0;
274 		printk(KERN_INFO "%s: Link down\n", dev->name);
275 		netif_dormant_on(dev);
276 	}
277 
278 	cisco_keepalive_send(dev, CISCO_KEEPALIVE_REQ, htonl(++st->txseq),
279 			     htonl(st->rxseq));
280 	spin_unlock(&st->lock);
281 
282 	st->timer.expires = jiffies + st->settings.interval * HZ;
283 	st->timer.function = cisco_timer;
284 	st->timer.data = arg;
285 	add_timer(&st->timer);
286 }
287 
288 
289 
290 static void cisco_start(struct net_device *dev)
291 {
292 	hdlc_device *hdlc = dev_to_hdlc(dev);
293 	struct cisco_state *st = state(hdlc);
294 	unsigned long flags;
295 
296 	spin_lock_irqsave(&st->lock, flags);
297 	st->up = st->txseq = st->rxseq = 0;
298 	spin_unlock_irqrestore(&st->lock, flags);
299 
300 	init_timer(&st->timer);
301 	st->timer.expires = jiffies + HZ; /* First poll after 1 s */
302 	st->timer.function = cisco_timer;
303 	st->timer.data = (unsigned long)dev;
304 	add_timer(&st->timer);
305 }
306 
307 
308 
309 static void cisco_stop(struct net_device *dev)
310 {
311 	hdlc_device *hdlc = dev_to_hdlc(dev);
312 	struct cisco_state *st = state(hdlc);
313 	unsigned long flags;
314 
315 	del_timer_sync(&st->timer);
316 
317 	spin_lock_irqsave(&st->lock, flags);
318 	netif_dormant_on(dev);
319 	st->up = st->txseq = 0;
320 	spin_unlock_irqrestore(&st->lock, flags);
321 }
322 
323 
324 static struct hdlc_proto proto = {
325 	.start		= cisco_start,
326 	.stop		= cisco_stop,
327 	.type_trans	= cisco_type_trans,
328 	.ioctl		= cisco_ioctl,
329 	.netif_rx	= cisco_rx,
330 	.module		= THIS_MODULE,
331 };
332 
333 static const struct header_ops cisco_header_ops = {
334 	.create = cisco_hard_header,
335 };
336 
337 static int cisco_ioctl(struct net_device *dev, struct ifreq *ifr)
338 {
339 	cisco_proto __user *cisco_s = ifr->ifr_settings.ifs_ifsu.cisco;
340 	const size_t size = sizeof(cisco_proto);
341 	cisco_proto new_settings;
342 	hdlc_device *hdlc = dev_to_hdlc(dev);
343 	int result;
344 
345 	switch (ifr->ifr_settings.type) {
346 	case IF_GET_PROTO:
347 		if (dev_to_hdlc(dev)->proto != &proto)
348 			return -EINVAL;
349 		ifr->ifr_settings.type = IF_PROTO_CISCO;
350 		if (ifr->ifr_settings.size < size) {
351 			ifr->ifr_settings.size = size; /* data size wanted */
352 			return -ENOBUFS;
353 		}
354 		if (copy_to_user(cisco_s, &state(hdlc)->settings, size))
355 			return -EFAULT;
356 		return 0;
357 
358 	case IF_PROTO_CISCO:
359 		if (!capable(CAP_NET_ADMIN))
360 			return -EPERM;
361 
362 		if (dev->flags & IFF_UP)
363 			return -EBUSY;
364 
365 		if (copy_from_user(&new_settings, cisco_s, size))
366 			return -EFAULT;
367 
368 		if (new_settings.interval < 1 ||
369 		    new_settings.timeout < 2)
370 			return -EINVAL;
371 
372 		result = hdlc->attach(dev, ENCODING_NRZ,PARITY_CRC16_PR1_CCITT);
373 		if (result)
374 			return result;
375 
376 		result = attach_hdlc_protocol(dev, &proto,
377 					      sizeof(struct cisco_state));
378 		if (result)
379 			return result;
380 
381 		memcpy(&state(hdlc)->settings, &new_settings, size);
382 		spin_lock_init(&state(hdlc)->lock);
383 		dev->header_ops = &cisco_header_ops;
384 		dev->type = ARPHRD_CISCO;
385 		netif_dormant_on(dev);
386 		return 0;
387 	}
388 
389 	return -EINVAL;
390 }
391 
392 
393 static int __init mod_init(void)
394 {
395 	register_hdlc_protocol(&proto);
396 	return 0;
397 }
398 
399 
400 
401 static void __exit mod_exit(void)
402 {
403 	unregister_hdlc_protocol(&proto);
404 }
405 
406 
407 module_init(mod_init);
408 module_exit(mod_exit);
409 
410 MODULE_AUTHOR("Krzysztof Halasa <khc@pm.waw.pl>");
411 MODULE_DESCRIPTION("Cisco HDLC protocol support for generic HDLC");
412 MODULE_LICENSE("GPL v2");
413