1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* Freescale QUICC Engine HDLC Device Driver 3 * 4 * Copyright 2016 Freescale Semiconductor Inc. 5 */ 6 7 #include <linux/delay.h> 8 #include <linux/dma-mapping.h> 9 #include <linux/hdlc.h> 10 #include <linux/init.h> 11 #include <linux/interrupt.h> 12 #include <linux/io.h> 13 #include <linux/irq.h> 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/netdevice.h> 17 #include <linux/of_address.h> 18 #include <linux/of_irq.h> 19 #include <linux/of_platform.h> 20 #include <linux/platform_device.h> 21 #include <linux/sched.h> 22 #include <linux/skbuff.h> 23 #include <linux/slab.h> 24 #include <linux/spinlock.h> 25 #include <linux/stddef.h> 26 #include <soc/fsl/qe/qe_tdm.h> 27 #include <uapi/linux/if_arp.h> 28 29 #include "fsl_ucc_hdlc.h" 30 31 #define DRV_DESC "Freescale QE UCC HDLC Driver" 32 #define DRV_NAME "ucc_hdlc" 33 34 #define TDM_PPPOHT_SLIC_MAXIN 35 #define RX_BD_ERRORS (R_CD_S | R_OV_S | R_CR_S | R_AB_S | R_NO_S | R_LG_S) 36 37 static struct ucc_tdm_info utdm_primary_info = { 38 .uf_info = { 39 .tsa = 0, 40 .cdp = 0, 41 .cds = 1, 42 .ctsp = 1, 43 .ctss = 1, 44 .revd = 0, 45 .urfs = 256, 46 .utfs = 256, 47 .urfet = 128, 48 .urfset = 192, 49 .utfet = 128, 50 .utftt = 0x40, 51 .ufpt = 256, 52 .mode = UCC_FAST_PROTOCOL_MODE_HDLC, 53 .ttx_trx = UCC_FAST_GUMR_TRANSPARENT_TTX_TRX_NORMAL, 54 .tenc = UCC_FAST_TX_ENCODING_NRZ, 55 .renc = UCC_FAST_RX_ENCODING_NRZ, 56 .tcrc = UCC_FAST_16_BIT_CRC, 57 .synl = UCC_FAST_SYNC_LEN_NOT_USED, 58 }, 59 60 .si_info = { 61 #ifdef TDM_PPPOHT_SLIC_MAXIN 62 .simr_rfsd = 1, 63 .simr_tfsd = 2, 64 #else 65 .simr_rfsd = 0, 66 .simr_tfsd = 0, 67 #endif 68 .simr_crt = 0, 69 .simr_sl = 0, 70 .simr_ce = 1, 71 .simr_fe = 1, 72 .simr_gm = 0, 73 }, 74 }; 75 76 static struct ucc_tdm_info utdm_info[UCC_MAX_NUM]; 77 78 static int uhdlc_init(struct ucc_hdlc_private *priv) 79 { 80 struct ucc_tdm_info *ut_info; 81 struct ucc_fast_info *uf_info; 82 u32 cecr_subblock; 83 u16 bd_status; 84 int ret, i; 85 void *bd_buffer; 86 dma_addr_t bd_dma_addr; 87 s32 riptr; 88 s32 tiptr; 89 u32 gumr; 90 91 ut_info = priv->ut_info; 92 uf_info = &ut_info->uf_info; 93 94 if (priv->tsa) { 95 uf_info->tsa = 1; 96 uf_info->ctsp = 1; 97 uf_info->cds = 1; 98 uf_info->ctss = 1; 99 } else { 100 uf_info->cds = 0; 101 uf_info->ctsp = 0; 102 uf_info->ctss = 0; 103 } 104 105 /* This sets HPM register in CMXUCR register which configures a 106 * open drain connected HDLC bus 107 */ 108 if (priv->hdlc_bus) 109 uf_info->brkpt_support = 1; 110 111 uf_info->uccm_mask = ((UCC_HDLC_UCCE_RXB | UCC_HDLC_UCCE_RXF | 112 UCC_HDLC_UCCE_TXB) << 16); 113 114 ret = ucc_fast_init(uf_info, &priv->uccf); 115 if (ret) { 116 dev_err(priv->dev, "Failed to init uccf."); 117 return ret; 118 } 119 120 priv->uf_regs = priv->uccf->uf_regs; 121 ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX); 122 123 /* Loopback mode */ 124 if (priv->loopback) { 125 dev_info(priv->dev, "Loopback Mode\n"); 126 /* use the same clock when work in loopback */ 127 qe_setbrg(ut_info->uf_info.rx_clock, 20000000, 1); 128 129 gumr = ioread32be(&priv->uf_regs->gumr); 130 gumr |= (UCC_FAST_GUMR_LOOPBACK | UCC_FAST_GUMR_CDS | 131 UCC_FAST_GUMR_TCI); 132 gumr &= ~(UCC_FAST_GUMR_CTSP | UCC_FAST_GUMR_RSYN); 133 iowrite32be(gumr, &priv->uf_regs->gumr); 134 } 135 136 /* Initialize SI */ 137 if (priv->tsa) 138 ucc_tdm_init(priv->utdm, priv->ut_info); 139 140 /* Write to QE CECR, UCCx channel to Stop Transmission */ 141 cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num); 142 ret = qe_issue_cmd(QE_STOP_TX, cecr_subblock, 143 QE_CR_PROTOCOL_UNSPECIFIED, 0); 144 145 /* Set UPSMR normal mode (need fixed)*/ 146 iowrite32be(0, &priv->uf_regs->upsmr); 147 148 /* hdlc_bus mode */ 149 if (priv->hdlc_bus) { 150 u32 upsmr; 151 152 dev_info(priv->dev, "HDLC bus Mode\n"); 153 upsmr = ioread32be(&priv->uf_regs->upsmr); 154 155 /* bus mode and retransmit enable, with collision window 156 * set to 8 bytes 157 */ 158 upsmr |= UCC_HDLC_UPSMR_RTE | UCC_HDLC_UPSMR_BUS | 159 UCC_HDLC_UPSMR_CW8; 160 iowrite32be(upsmr, &priv->uf_regs->upsmr); 161 162 /* explicitly disable CDS & CTSP */ 163 gumr = ioread32be(&priv->uf_regs->gumr); 164 gumr &= ~(UCC_FAST_GUMR_CDS | UCC_FAST_GUMR_CTSP); 165 /* set automatic sync to explicitly ignore CD signal */ 166 gumr |= UCC_FAST_GUMR_SYNL_AUTO; 167 iowrite32be(gumr, &priv->uf_regs->gumr); 168 } 169 170 priv->rx_ring_size = RX_BD_RING_LEN; 171 priv->tx_ring_size = TX_BD_RING_LEN; 172 /* Alloc Rx BD */ 173 priv->rx_bd_base = dma_alloc_coherent(priv->dev, 174 RX_BD_RING_LEN * sizeof(struct qe_bd), 175 &priv->dma_rx_bd, GFP_KERNEL); 176 177 if (!priv->rx_bd_base) { 178 dev_err(priv->dev, "Cannot allocate MURAM memory for RxBDs\n"); 179 ret = -ENOMEM; 180 goto free_uccf; 181 } 182 183 /* Alloc Tx BD */ 184 priv->tx_bd_base = dma_alloc_coherent(priv->dev, 185 TX_BD_RING_LEN * sizeof(struct qe_bd), 186 &priv->dma_tx_bd, GFP_KERNEL); 187 188 if (!priv->tx_bd_base) { 189 dev_err(priv->dev, "Cannot allocate MURAM memory for TxBDs\n"); 190 ret = -ENOMEM; 191 goto free_rx_bd; 192 } 193 194 /* Alloc parameter ram for ucc hdlc */ 195 priv->ucc_pram_offset = qe_muram_alloc(sizeof(struct ucc_hdlc_param), 196 ALIGNMENT_OF_UCC_HDLC_PRAM); 197 198 if (priv->ucc_pram_offset < 0) { 199 dev_err(priv->dev, "Can not allocate MURAM for hdlc parameter.\n"); 200 ret = -ENOMEM; 201 goto free_tx_bd; 202 } 203 204 priv->rx_skbuff = kcalloc(priv->rx_ring_size, 205 sizeof(*priv->rx_skbuff), 206 GFP_KERNEL); 207 if (!priv->rx_skbuff) 208 goto free_ucc_pram; 209 210 priv->tx_skbuff = kcalloc(priv->tx_ring_size, 211 sizeof(*priv->tx_skbuff), 212 GFP_KERNEL); 213 if (!priv->tx_skbuff) 214 goto free_rx_skbuff; 215 216 priv->skb_curtx = 0; 217 priv->skb_dirtytx = 0; 218 priv->curtx_bd = priv->tx_bd_base; 219 priv->dirty_tx = priv->tx_bd_base; 220 priv->currx_bd = priv->rx_bd_base; 221 priv->currx_bdnum = 0; 222 223 /* init parameter base */ 224 cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num); 225 ret = qe_issue_cmd(QE_ASSIGN_PAGE_TO_DEVICE, cecr_subblock, 226 QE_CR_PROTOCOL_UNSPECIFIED, priv->ucc_pram_offset); 227 228 priv->ucc_pram = (struct ucc_hdlc_param __iomem *) 229 qe_muram_addr(priv->ucc_pram_offset); 230 231 /* Zero out parameter ram */ 232 memset_io(priv->ucc_pram, 0, sizeof(struct ucc_hdlc_param)); 233 234 /* Alloc riptr, tiptr */ 235 riptr = qe_muram_alloc(32, 32); 236 if (riptr < 0) { 237 dev_err(priv->dev, "Cannot allocate MURAM mem for Receive internal temp data pointer\n"); 238 ret = -ENOMEM; 239 goto free_tx_skbuff; 240 } 241 242 tiptr = qe_muram_alloc(32, 32); 243 if (tiptr < 0) { 244 dev_err(priv->dev, "Cannot allocate MURAM mem for Transmit internal temp data pointer\n"); 245 ret = -ENOMEM; 246 goto free_riptr; 247 } 248 if (riptr != (u16)riptr || tiptr != (u16)tiptr) { 249 dev_err(priv->dev, "MURAM allocation out of addressable range\n"); 250 ret = -ENOMEM; 251 goto free_tiptr; 252 } 253 254 /* Set RIPTR, TIPTR */ 255 iowrite16be(riptr, &priv->ucc_pram->riptr); 256 iowrite16be(tiptr, &priv->ucc_pram->tiptr); 257 258 /* Set MRBLR */ 259 iowrite16be(MAX_RX_BUF_LENGTH, &priv->ucc_pram->mrblr); 260 261 /* Set RBASE, TBASE */ 262 iowrite32be(priv->dma_rx_bd, &priv->ucc_pram->rbase); 263 iowrite32be(priv->dma_tx_bd, &priv->ucc_pram->tbase); 264 265 /* Set RSTATE, TSTATE */ 266 iowrite32be(BMR_GBL | BMR_BIG_ENDIAN, &priv->ucc_pram->rstate); 267 iowrite32be(BMR_GBL | BMR_BIG_ENDIAN, &priv->ucc_pram->tstate); 268 269 /* Set C_MASK, C_PRES for 16bit CRC */ 270 iowrite32be(CRC_16BIT_MASK, &priv->ucc_pram->c_mask); 271 iowrite32be(CRC_16BIT_PRES, &priv->ucc_pram->c_pres); 272 273 iowrite16be(MAX_FRAME_LENGTH, &priv->ucc_pram->mflr); 274 iowrite16be(DEFAULT_RFTHR, &priv->ucc_pram->rfthr); 275 iowrite16be(DEFAULT_RFTHR, &priv->ucc_pram->rfcnt); 276 iowrite16be(priv->hmask, &priv->ucc_pram->hmask); 277 iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr1); 278 iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr2); 279 iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr3); 280 iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr4); 281 282 /* Get BD buffer */ 283 bd_buffer = dma_alloc_coherent(priv->dev, 284 (RX_BD_RING_LEN + TX_BD_RING_LEN) * MAX_RX_BUF_LENGTH, 285 &bd_dma_addr, GFP_KERNEL); 286 287 if (!bd_buffer) { 288 dev_err(priv->dev, "Could not allocate buffer descriptors\n"); 289 ret = -ENOMEM; 290 goto free_tiptr; 291 } 292 293 priv->rx_buffer = bd_buffer; 294 priv->tx_buffer = bd_buffer + RX_BD_RING_LEN * MAX_RX_BUF_LENGTH; 295 296 priv->dma_rx_addr = bd_dma_addr; 297 priv->dma_tx_addr = bd_dma_addr + RX_BD_RING_LEN * MAX_RX_BUF_LENGTH; 298 299 for (i = 0; i < RX_BD_RING_LEN; i++) { 300 if (i < (RX_BD_RING_LEN - 1)) 301 bd_status = R_E_S | R_I_S; 302 else 303 bd_status = R_E_S | R_I_S | R_W_S; 304 305 iowrite16be(bd_status, &priv->rx_bd_base[i].status); 306 iowrite32be(priv->dma_rx_addr + i * MAX_RX_BUF_LENGTH, 307 &priv->rx_bd_base[i].buf); 308 } 309 310 for (i = 0; i < TX_BD_RING_LEN; i++) { 311 if (i < (TX_BD_RING_LEN - 1)) 312 bd_status = T_I_S | T_TC_S; 313 else 314 bd_status = T_I_S | T_TC_S | T_W_S; 315 316 iowrite16be(bd_status, &priv->tx_bd_base[i].status); 317 iowrite32be(priv->dma_tx_addr + i * MAX_RX_BUF_LENGTH, 318 &priv->tx_bd_base[i].buf); 319 } 320 321 return 0; 322 323 free_tiptr: 324 qe_muram_free(tiptr); 325 free_riptr: 326 qe_muram_free(riptr); 327 free_tx_skbuff: 328 kfree(priv->tx_skbuff); 329 free_rx_skbuff: 330 kfree(priv->rx_skbuff); 331 free_ucc_pram: 332 qe_muram_free(priv->ucc_pram_offset); 333 free_tx_bd: 334 dma_free_coherent(priv->dev, 335 TX_BD_RING_LEN * sizeof(struct qe_bd), 336 priv->tx_bd_base, priv->dma_tx_bd); 337 free_rx_bd: 338 dma_free_coherent(priv->dev, 339 RX_BD_RING_LEN * sizeof(struct qe_bd), 340 priv->rx_bd_base, priv->dma_rx_bd); 341 free_uccf: 342 ucc_fast_free(priv->uccf); 343 344 return ret; 345 } 346 347 static netdev_tx_t ucc_hdlc_tx(struct sk_buff *skb, struct net_device *dev) 348 { 349 hdlc_device *hdlc = dev_to_hdlc(dev); 350 struct ucc_hdlc_private *priv = (struct ucc_hdlc_private *)hdlc->priv; 351 struct qe_bd __iomem *bd; 352 u16 bd_status; 353 unsigned long flags; 354 u16 *proto_head; 355 356 switch (dev->type) { 357 case ARPHRD_RAWHDLC: 358 if (skb_headroom(skb) < HDLC_HEAD_LEN) { 359 dev->stats.tx_dropped++; 360 dev_kfree_skb(skb); 361 netdev_err(dev, "No enough space for hdlc head\n"); 362 return -ENOMEM; 363 } 364 365 skb_push(skb, HDLC_HEAD_LEN); 366 367 proto_head = (u16 *)skb->data; 368 *proto_head = htons(DEFAULT_HDLC_HEAD); 369 370 dev->stats.tx_bytes += skb->len; 371 break; 372 373 case ARPHRD_PPP: 374 proto_head = (u16 *)skb->data; 375 if (*proto_head != htons(DEFAULT_PPP_HEAD)) { 376 dev->stats.tx_dropped++; 377 dev_kfree_skb(skb); 378 netdev_err(dev, "Wrong ppp header\n"); 379 return -ENOMEM; 380 } 381 382 dev->stats.tx_bytes += skb->len; 383 break; 384 385 case ARPHRD_ETHER: 386 dev->stats.tx_bytes += skb->len; 387 break; 388 389 default: 390 dev->stats.tx_dropped++; 391 dev_kfree_skb(skb); 392 return -ENOMEM; 393 } 394 netdev_sent_queue(dev, skb->len); 395 spin_lock_irqsave(&priv->lock, flags); 396 397 /* Start from the next BD that should be filled */ 398 bd = priv->curtx_bd; 399 bd_status = ioread16be(&bd->status); 400 /* Save the skb pointer so we can free it later */ 401 priv->tx_skbuff[priv->skb_curtx] = skb; 402 403 /* Update the current skb pointer (wrapping if this was the last) */ 404 priv->skb_curtx = 405 (priv->skb_curtx + 1) & TX_RING_MOD_MASK(TX_BD_RING_LEN); 406 407 /* copy skb data to tx buffer for sdma processing */ 408 memcpy(priv->tx_buffer + (be32_to_cpu(bd->buf) - priv->dma_tx_addr), 409 skb->data, skb->len); 410 411 /* set bd status and length */ 412 bd_status = (bd_status & T_W_S) | T_R_S | T_I_S | T_L_S | T_TC_S; 413 414 iowrite16be(skb->len, &bd->length); 415 iowrite16be(bd_status, &bd->status); 416 417 /* Move to next BD in the ring */ 418 if (!(bd_status & T_W_S)) 419 bd += 1; 420 else 421 bd = priv->tx_bd_base; 422 423 if (bd == priv->dirty_tx) { 424 if (!netif_queue_stopped(dev)) 425 netif_stop_queue(dev); 426 } 427 428 priv->curtx_bd = bd; 429 430 spin_unlock_irqrestore(&priv->lock, flags); 431 432 return NETDEV_TX_OK; 433 } 434 435 static int hdlc_tx_restart(struct ucc_hdlc_private *priv) 436 { 437 u32 cecr_subblock; 438 439 cecr_subblock = 440 ucc_fast_get_qe_cr_subblock(priv->ut_info->uf_info.ucc_num); 441 442 qe_issue_cmd(QE_RESTART_TX, cecr_subblock, 443 QE_CR_PROTOCOL_UNSPECIFIED, 0); 444 return 0; 445 } 446 447 static int hdlc_tx_done(struct ucc_hdlc_private *priv) 448 { 449 /* Start from the next BD that should be filled */ 450 struct net_device *dev = priv->ndev; 451 unsigned int bytes_sent = 0; 452 int howmany = 0; 453 struct qe_bd *bd; /* BD pointer */ 454 u16 bd_status; 455 int tx_restart = 0; 456 457 bd = priv->dirty_tx; 458 bd_status = ioread16be(&bd->status); 459 460 /* Normal processing. */ 461 while ((bd_status & T_R_S) == 0) { 462 struct sk_buff *skb; 463 464 if (bd_status & T_UN_S) { /* Underrun */ 465 dev->stats.tx_fifo_errors++; 466 tx_restart = 1; 467 } 468 if (bd_status & T_CT_S) { /* Carrier lost */ 469 dev->stats.tx_carrier_errors++; 470 tx_restart = 1; 471 } 472 473 /* BD contains already transmitted buffer. */ 474 /* Handle the transmitted buffer and release */ 475 /* the BD to be used with the current frame */ 476 477 skb = priv->tx_skbuff[priv->skb_dirtytx]; 478 if (!skb) 479 break; 480 howmany++; 481 bytes_sent += skb->len; 482 dev->stats.tx_packets++; 483 memset(priv->tx_buffer + 484 (be32_to_cpu(bd->buf) - priv->dma_tx_addr), 485 0, skb->len); 486 dev_consume_skb_irq(skb); 487 488 priv->tx_skbuff[priv->skb_dirtytx] = NULL; 489 priv->skb_dirtytx = 490 (priv->skb_dirtytx + 491 1) & TX_RING_MOD_MASK(TX_BD_RING_LEN); 492 493 /* We freed a buffer, so now we can restart transmission */ 494 if (netif_queue_stopped(dev)) 495 netif_wake_queue(dev); 496 497 /* Advance the confirmation BD pointer */ 498 if (!(bd_status & T_W_S)) 499 bd += 1; 500 else 501 bd = priv->tx_bd_base; 502 bd_status = ioread16be(&bd->status); 503 } 504 priv->dirty_tx = bd; 505 506 if (tx_restart) 507 hdlc_tx_restart(priv); 508 509 netdev_completed_queue(dev, howmany, bytes_sent); 510 return 0; 511 } 512 513 static int hdlc_rx_done(struct ucc_hdlc_private *priv, int rx_work_limit) 514 { 515 struct net_device *dev = priv->ndev; 516 struct sk_buff *skb = NULL; 517 hdlc_device *hdlc = dev_to_hdlc(dev); 518 struct qe_bd *bd; 519 u16 bd_status; 520 u16 length, howmany = 0; 521 u8 *bdbuffer; 522 523 bd = priv->currx_bd; 524 bd_status = ioread16be(&bd->status); 525 526 /* while there are received buffers and BD is full (~R_E) */ 527 while (!((bd_status & (R_E_S)) || (--rx_work_limit < 0))) { 528 if (bd_status & (RX_BD_ERRORS)) { 529 dev->stats.rx_errors++; 530 531 if (bd_status & R_CD_S) 532 dev->stats.collisions++; 533 if (bd_status & R_OV_S) 534 dev->stats.rx_fifo_errors++; 535 if (bd_status & R_CR_S) 536 dev->stats.rx_crc_errors++; 537 if (bd_status & R_AB_S) 538 dev->stats.rx_over_errors++; 539 if (bd_status & R_NO_S) 540 dev->stats.rx_frame_errors++; 541 if (bd_status & R_LG_S) 542 dev->stats.rx_length_errors++; 543 544 goto recycle; 545 } 546 bdbuffer = priv->rx_buffer + 547 (priv->currx_bdnum * MAX_RX_BUF_LENGTH); 548 length = ioread16be(&bd->length); 549 550 switch (dev->type) { 551 case ARPHRD_RAWHDLC: 552 bdbuffer += HDLC_HEAD_LEN; 553 length -= (HDLC_HEAD_LEN + HDLC_CRC_SIZE); 554 555 skb = dev_alloc_skb(length); 556 if (!skb) { 557 dev->stats.rx_dropped++; 558 return -ENOMEM; 559 } 560 561 skb_put(skb, length); 562 skb->len = length; 563 skb->dev = dev; 564 memcpy(skb->data, bdbuffer, length); 565 break; 566 567 case ARPHRD_PPP: 568 case ARPHRD_ETHER: 569 length -= HDLC_CRC_SIZE; 570 571 skb = dev_alloc_skb(length); 572 if (!skb) { 573 dev->stats.rx_dropped++; 574 return -ENOMEM; 575 } 576 577 skb_put(skb, length); 578 skb->len = length; 579 skb->dev = dev; 580 memcpy(skb->data, bdbuffer, length); 581 break; 582 } 583 584 dev->stats.rx_packets++; 585 dev->stats.rx_bytes += skb->len; 586 howmany++; 587 if (hdlc->proto) 588 skb->protocol = hdlc_type_trans(skb, dev); 589 netif_receive_skb(skb); 590 591 recycle: 592 iowrite16be((bd_status & R_W_S) | R_E_S | R_I_S, &bd->status); 593 594 /* update to point at the next bd */ 595 if (bd_status & R_W_S) { 596 priv->currx_bdnum = 0; 597 bd = priv->rx_bd_base; 598 } else { 599 if (priv->currx_bdnum < (RX_BD_RING_LEN - 1)) 600 priv->currx_bdnum += 1; 601 else 602 priv->currx_bdnum = RX_BD_RING_LEN - 1; 603 604 bd += 1; 605 } 606 607 bd_status = ioread16be(&bd->status); 608 } 609 610 priv->currx_bd = bd; 611 return howmany; 612 } 613 614 static int ucc_hdlc_poll(struct napi_struct *napi, int budget) 615 { 616 struct ucc_hdlc_private *priv = container_of(napi, 617 struct ucc_hdlc_private, 618 napi); 619 int howmany; 620 621 /* Tx event processing */ 622 spin_lock(&priv->lock); 623 hdlc_tx_done(priv); 624 spin_unlock(&priv->lock); 625 626 howmany = 0; 627 howmany += hdlc_rx_done(priv, budget - howmany); 628 629 if (howmany < budget) { 630 napi_complete_done(napi, howmany); 631 qe_setbits_be32(priv->uccf->p_uccm, 632 (UCCE_HDLC_RX_EVENTS | UCCE_HDLC_TX_EVENTS) << 16); 633 } 634 635 return howmany; 636 } 637 638 static irqreturn_t ucc_hdlc_irq_handler(int irq, void *dev_id) 639 { 640 struct ucc_hdlc_private *priv = (struct ucc_hdlc_private *)dev_id; 641 struct net_device *dev = priv->ndev; 642 struct ucc_fast_private *uccf; 643 u32 ucce; 644 u32 uccm; 645 646 uccf = priv->uccf; 647 648 ucce = ioread32be(uccf->p_ucce); 649 uccm = ioread32be(uccf->p_uccm); 650 ucce &= uccm; 651 iowrite32be(ucce, uccf->p_ucce); 652 if (!ucce) 653 return IRQ_NONE; 654 655 if ((ucce >> 16) & (UCCE_HDLC_RX_EVENTS | UCCE_HDLC_TX_EVENTS)) { 656 if (napi_schedule_prep(&priv->napi)) { 657 uccm &= ~((UCCE_HDLC_RX_EVENTS | UCCE_HDLC_TX_EVENTS) 658 << 16); 659 iowrite32be(uccm, uccf->p_uccm); 660 __napi_schedule(&priv->napi); 661 } 662 } 663 664 /* Errors and other events */ 665 if (ucce >> 16 & UCC_HDLC_UCCE_BSY) 666 dev->stats.rx_missed_errors++; 667 if (ucce >> 16 & UCC_HDLC_UCCE_TXE) 668 dev->stats.tx_errors++; 669 670 return IRQ_HANDLED; 671 } 672 673 static int uhdlc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 674 { 675 const size_t size = sizeof(te1_settings); 676 te1_settings line; 677 struct ucc_hdlc_private *priv = netdev_priv(dev); 678 679 if (cmd != SIOCWANDEV) 680 return hdlc_ioctl(dev, ifr, cmd); 681 682 switch (ifr->ifr_settings.type) { 683 case IF_GET_IFACE: 684 ifr->ifr_settings.type = IF_IFACE_E1; 685 if (ifr->ifr_settings.size < size) { 686 ifr->ifr_settings.size = size; /* data size wanted */ 687 return -ENOBUFS; 688 } 689 memset(&line, 0, sizeof(line)); 690 line.clock_type = priv->clocking; 691 692 if (copy_to_user(ifr->ifr_settings.ifs_ifsu.sync, &line, size)) 693 return -EFAULT; 694 return 0; 695 696 default: 697 return hdlc_ioctl(dev, ifr, cmd); 698 } 699 } 700 701 static int uhdlc_open(struct net_device *dev) 702 { 703 u32 cecr_subblock; 704 hdlc_device *hdlc = dev_to_hdlc(dev); 705 struct ucc_hdlc_private *priv = hdlc->priv; 706 struct ucc_tdm *utdm = priv->utdm; 707 708 if (priv->hdlc_busy != 1) { 709 if (request_irq(priv->ut_info->uf_info.irq, 710 ucc_hdlc_irq_handler, 0, "hdlc", priv)) 711 return -ENODEV; 712 713 cecr_subblock = ucc_fast_get_qe_cr_subblock( 714 priv->ut_info->uf_info.ucc_num); 715 716 qe_issue_cmd(QE_INIT_TX_RX, cecr_subblock, 717 QE_CR_PROTOCOL_UNSPECIFIED, 0); 718 719 ucc_fast_enable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX); 720 721 /* Enable the TDM port */ 722 if (priv->tsa) 723 utdm->si_regs->siglmr1_h |= (0x1 << utdm->tdm_port); 724 725 priv->hdlc_busy = 1; 726 netif_device_attach(priv->ndev); 727 napi_enable(&priv->napi); 728 netdev_reset_queue(dev); 729 netif_start_queue(dev); 730 hdlc_open(dev); 731 } 732 733 return 0; 734 } 735 736 static void uhdlc_memclean(struct ucc_hdlc_private *priv) 737 { 738 qe_muram_free(ioread16be(&priv->ucc_pram->riptr)); 739 qe_muram_free(ioread16be(&priv->ucc_pram->tiptr)); 740 741 if (priv->rx_bd_base) { 742 dma_free_coherent(priv->dev, 743 RX_BD_RING_LEN * sizeof(struct qe_bd), 744 priv->rx_bd_base, priv->dma_rx_bd); 745 746 priv->rx_bd_base = NULL; 747 priv->dma_rx_bd = 0; 748 } 749 750 if (priv->tx_bd_base) { 751 dma_free_coherent(priv->dev, 752 TX_BD_RING_LEN * sizeof(struct qe_bd), 753 priv->tx_bd_base, priv->dma_tx_bd); 754 755 priv->tx_bd_base = NULL; 756 priv->dma_tx_bd = 0; 757 } 758 759 if (priv->ucc_pram) { 760 qe_muram_free(priv->ucc_pram_offset); 761 priv->ucc_pram = NULL; 762 priv->ucc_pram_offset = 0; 763 } 764 765 kfree(priv->rx_skbuff); 766 priv->rx_skbuff = NULL; 767 768 kfree(priv->tx_skbuff); 769 priv->tx_skbuff = NULL; 770 771 if (priv->uf_regs) { 772 iounmap(priv->uf_regs); 773 priv->uf_regs = NULL; 774 } 775 776 if (priv->uccf) { 777 ucc_fast_free(priv->uccf); 778 priv->uccf = NULL; 779 } 780 781 if (priv->rx_buffer) { 782 dma_free_coherent(priv->dev, 783 RX_BD_RING_LEN * MAX_RX_BUF_LENGTH, 784 priv->rx_buffer, priv->dma_rx_addr); 785 priv->rx_buffer = NULL; 786 priv->dma_rx_addr = 0; 787 } 788 789 if (priv->tx_buffer) { 790 dma_free_coherent(priv->dev, 791 TX_BD_RING_LEN * MAX_RX_BUF_LENGTH, 792 priv->tx_buffer, priv->dma_tx_addr); 793 priv->tx_buffer = NULL; 794 priv->dma_tx_addr = 0; 795 } 796 } 797 798 static int uhdlc_close(struct net_device *dev) 799 { 800 struct ucc_hdlc_private *priv = dev_to_hdlc(dev)->priv; 801 struct ucc_tdm *utdm = priv->utdm; 802 u32 cecr_subblock; 803 804 napi_disable(&priv->napi); 805 cecr_subblock = ucc_fast_get_qe_cr_subblock( 806 priv->ut_info->uf_info.ucc_num); 807 808 qe_issue_cmd(QE_GRACEFUL_STOP_TX, cecr_subblock, 809 (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0); 810 qe_issue_cmd(QE_CLOSE_RX_BD, cecr_subblock, 811 (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0); 812 813 if (priv->tsa) 814 utdm->si_regs->siglmr1_h &= ~(0x1 << utdm->tdm_port); 815 816 ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX); 817 818 free_irq(priv->ut_info->uf_info.irq, priv); 819 netif_stop_queue(dev); 820 netdev_reset_queue(dev); 821 priv->hdlc_busy = 0; 822 823 return 0; 824 } 825 826 static int ucc_hdlc_attach(struct net_device *dev, unsigned short encoding, 827 unsigned short parity) 828 { 829 struct ucc_hdlc_private *priv = dev_to_hdlc(dev)->priv; 830 831 if (encoding != ENCODING_NRZ && 832 encoding != ENCODING_NRZI) 833 return -EINVAL; 834 835 if (parity != PARITY_NONE && 836 parity != PARITY_CRC32_PR1_CCITT && 837 parity != PARITY_CRC16_PR0_CCITT && 838 parity != PARITY_CRC16_PR1_CCITT) 839 return -EINVAL; 840 841 priv->encoding = encoding; 842 priv->parity = parity; 843 844 return 0; 845 } 846 847 #ifdef CONFIG_PM 848 static void store_clk_config(struct ucc_hdlc_private *priv) 849 { 850 struct qe_mux *qe_mux_reg = &qe_immr->qmx; 851 852 /* store si clk */ 853 priv->cmxsi1cr_h = ioread32be(&qe_mux_reg->cmxsi1cr_h); 854 priv->cmxsi1cr_l = ioread32be(&qe_mux_reg->cmxsi1cr_l); 855 856 /* store si sync */ 857 priv->cmxsi1syr = ioread32be(&qe_mux_reg->cmxsi1syr); 858 859 /* store ucc clk */ 860 memcpy_fromio(priv->cmxucr, qe_mux_reg->cmxucr, 4 * sizeof(u32)); 861 } 862 863 static void resume_clk_config(struct ucc_hdlc_private *priv) 864 { 865 struct qe_mux *qe_mux_reg = &qe_immr->qmx; 866 867 memcpy_toio(qe_mux_reg->cmxucr, priv->cmxucr, 4 * sizeof(u32)); 868 869 iowrite32be(priv->cmxsi1cr_h, &qe_mux_reg->cmxsi1cr_h); 870 iowrite32be(priv->cmxsi1cr_l, &qe_mux_reg->cmxsi1cr_l); 871 872 iowrite32be(priv->cmxsi1syr, &qe_mux_reg->cmxsi1syr); 873 } 874 875 static int uhdlc_suspend(struct device *dev) 876 { 877 struct ucc_hdlc_private *priv = dev_get_drvdata(dev); 878 struct ucc_fast __iomem *uf_regs; 879 880 if (!priv) 881 return -EINVAL; 882 883 if (!netif_running(priv->ndev)) 884 return 0; 885 886 netif_device_detach(priv->ndev); 887 napi_disable(&priv->napi); 888 889 uf_regs = priv->uf_regs; 890 891 /* backup gumr guemr*/ 892 priv->gumr = ioread32be(&uf_regs->gumr); 893 priv->guemr = ioread8(&uf_regs->guemr); 894 895 priv->ucc_pram_bak = kmalloc(sizeof(*priv->ucc_pram_bak), 896 GFP_KERNEL); 897 if (!priv->ucc_pram_bak) 898 return -ENOMEM; 899 900 /* backup HDLC parameter */ 901 memcpy_fromio(priv->ucc_pram_bak, priv->ucc_pram, 902 sizeof(struct ucc_hdlc_param)); 903 904 /* store the clk configuration */ 905 store_clk_config(priv); 906 907 /* save power */ 908 ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX); 909 910 return 0; 911 } 912 913 static int uhdlc_resume(struct device *dev) 914 { 915 struct ucc_hdlc_private *priv = dev_get_drvdata(dev); 916 struct ucc_tdm *utdm; 917 struct ucc_tdm_info *ut_info; 918 struct ucc_fast __iomem *uf_regs; 919 struct ucc_fast_private *uccf; 920 struct ucc_fast_info *uf_info; 921 int i; 922 u32 cecr_subblock; 923 u16 bd_status; 924 925 if (!priv) 926 return -EINVAL; 927 928 if (!netif_running(priv->ndev)) 929 return 0; 930 931 utdm = priv->utdm; 932 ut_info = priv->ut_info; 933 uf_info = &ut_info->uf_info; 934 uf_regs = priv->uf_regs; 935 uccf = priv->uccf; 936 937 /* restore gumr guemr */ 938 iowrite8(priv->guemr, &uf_regs->guemr); 939 iowrite32be(priv->gumr, &uf_regs->gumr); 940 941 /* Set Virtual Fifo registers */ 942 iowrite16be(uf_info->urfs, &uf_regs->urfs); 943 iowrite16be(uf_info->urfet, &uf_regs->urfet); 944 iowrite16be(uf_info->urfset, &uf_regs->urfset); 945 iowrite16be(uf_info->utfs, &uf_regs->utfs); 946 iowrite16be(uf_info->utfet, &uf_regs->utfet); 947 iowrite16be(uf_info->utftt, &uf_regs->utftt); 948 /* utfb, urfb are offsets from MURAM base */ 949 iowrite32be(uccf->ucc_fast_tx_virtual_fifo_base_offset, &uf_regs->utfb); 950 iowrite32be(uccf->ucc_fast_rx_virtual_fifo_base_offset, &uf_regs->urfb); 951 952 /* Rx Tx and sync clock routing */ 953 resume_clk_config(priv); 954 955 iowrite32be(uf_info->uccm_mask, &uf_regs->uccm); 956 iowrite32be(0xffffffff, &uf_regs->ucce); 957 958 ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX); 959 960 /* rebuild SIRAM */ 961 if (priv->tsa) 962 ucc_tdm_init(priv->utdm, priv->ut_info); 963 964 /* Write to QE CECR, UCCx channel to Stop Transmission */ 965 cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num); 966 qe_issue_cmd(QE_STOP_TX, cecr_subblock, 967 (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0); 968 969 /* Set UPSMR normal mode */ 970 iowrite32be(0, &uf_regs->upsmr); 971 972 /* init parameter base */ 973 cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num); 974 qe_issue_cmd(QE_ASSIGN_PAGE_TO_DEVICE, cecr_subblock, 975 QE_CR_PROTOCOL_UNSPECIFIED, priv->ucc_pram_offset); 976 977 priv->ucc_pram = (struct ucc_hdlc_param __iomem *) 978 qe_muram_addr(priv->ucc_pram_offset); 979 980 /* restore ucc parameter */ 981 memcpy_toio(priv->ucc_pram, priv->ucc_pram_bak, 982 sizeof(struct ucc_hdlc_param)); 983 kfree(priv->ucc_pram_bak); 984 985 /* rebuild BD entry */ 986 for (i = 0; i < RX_BD_RING_LEN; i++) { 987 if (i < (RX_BD_RING_LEN - 1)) 988 bd_status = R_E_S | R_I_S; 989 else 990 bd_status = R_E_S | R_I_S | R_W_S; 991 992 iowrite16be(bd_status, &priv->rx_bd_base[i].status); 993 iowrite32be(priv->dma_rx_addr + i * MAX_RX_BUF_LENGTH, 994 &priv->rx_bd_base[i].buf); 995 } 996 997 for (i = 0; i < TX_BD_RING_LEN; i++) { 998 if (i < (TX_BD_RING_LEN - 1)) 999 bd_status = T_I_S | T_TC_S; 1000 else 1001 bd_status = T_I_S | T_TC_S | T_W_S; 1002 1003 iowrite16be(bd_status, &priv->tx_bd_base[i].status); 1004 iowrite32be(priv->dma_tx_addr + i * MAX_RX_BUF_LENGTH, 1005 &priv->tx_bd_base[i].buf); 1006 } 1007 1008 /* if hdlc is busy enable TX and RX */ 1009 if (priv->hdlc_busy == 1) { 1010 cecr_subblock = ucc_fast_get_qe_cr_subblock( 1011 priv->ut_info->uf_info.ucc_num); 1012 1013 qe_issue_cmd(QE_INIT_TX_RX, cecr_subblock, 1014 (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0); 1015 1016 ucc_fast_enable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX); 1017 1018 /* Enable the TDM port */ 1019 if (priv->tsa) 1020 utdm->si_regs->siglmr1_h |= (0x1 << utdm->tdm_port); 1021 } 1022 1023 napi_enable(&priv->napi); 1024 netif_device_attach(priv->ndev); 1025 1026 return 0; 1027 } 1028 1029 static const struct dev_pm_ops uhdlc_pm_ops = { 1030 .suspend = uhdlc_suspend, 1031 .resume = uhdlc_resume, 1032 .freeze = uhdlc_suspend, 1033 .thaw = uhdlc_resume, 1034 }; 1035 1036 #define HDLC_PM_OPS (&uhdlc_pm_ops) 1037 1038 #else 1039 1040 #define HDLC_PM_OPS NULL 1041 1042 #endif 1043 static void uhdlc_tx_timeout(struct net_device *ndev, unsigned int txqueue) 1044 { 1045 netdev_err(ndev, "%s\n", __func__); 1046 } 1047 1048 static const struct net_device_ops uhdlc_ops = { 1049 .ndo_open = uhdlc_open, 1050 .ndo_stop = uhdlc_close, 1051 .ndo_start_xmit = hdlc_start_xmit, 1052 .ndo_do_ioctl = uhdlc_ioctl, 1053 .ndo_tx_timeout = uhdlc_tx_timeout, 1054 }; 1055 1056 static int hdlc_map_iomem(char *name, int init_flag, void __iomem **ptr) 1057 { 1058 struct device_node *np; 1059 struct platform_device *pdev; 1060 struct resource *res; 1061 static int siram_init_flag; 1062 int ret = 0; 1063 1064 np = of_find_compatible_node(NULL, NULL, name); 1065 if (!np) 1066 return -EINVAL; 1067 1068 pdev = of_find_device_by_node(np); 1069 if (!pdev) { 1070 pr_err("%pOFn: failed to lookup pdev\n", np); 1071 of_node_put(np); 1072 return -EINVAL; 1073 } 1074 1075 of_node_put(np); 1076 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1077 if (!res) { 1078 ret = -EINVAL; 1079 goto error_put_device; 1080 } 1081 *ptr = ioremap(res->start, resource_size(res)); 1082 if (!*ptr) { 1083 ret = -ENOMEM; 1084 goto error_put_device; 1085 } 1086 1087 /* We've remapped the addresses, and we don't need the device any 1088 * more, so we should release it. 1089 */ 1090 put_device(&pdev->dev); 1091 1092 if (init_flag && siram_init_flag == 0) { 1093 memset_io(*ptr, 0, resource_size(res)); 1094 siram_init_flag = 1; 1095 } 1096 return 0; 1097 1098 error_put_device: 1099 put_device(&pdev->dev); 1100 1101 return ret; 1102 } 1103 1104 static int ucc_hdlc_probe(struct platform_device *pdev) 1105 { 1106 struct device_node *np = pdev->dev.of_node; 1107 struct ucc_hdlc_private *uhdlc_priv = NULL; 1108 struct ucc_tdm_info *ut_info; 1109 struct ucc_tdm *utdm = NULL; 1110 struct resource res; 1111 struct net_device *dev; 1112 hdlc_device *hdlc; 1113 int ucc_num; 1114 const char *sprop; 1115 int ret; 1116 u32 val; 1117 1118 ret = of_property_read_u32_index(np, "cell-index", 0, &val); 1119 if (ret) { 1120 dev_err(&pdev->dev, "Invalid ucc property\n"); 1121 return -ENODEV; 1122 } 1123 1124 ucc_num = val - 1; 1125 if (ucc_num > (UCC_MAX_NUM - 1) || ucc_num < 0) { 1126 dev_err(&pdev->dev, ": Invalid UCC num\n"); 1127 return -EINVAL; 1128 } 1129 1130 memcpy(&utdm_info[ucc_num], &utdm_primary_info, 1131 sizeof(utdm_primary_info)); 1132 1133 ut_info = &utdm_info[ucc_num]; 1134 ut_info->uf_info.ucc_num = ucc_num; 1135 1136 sprop = of_get_property(np, "rx-clock-name", NULL); 1137 if (sprop) { 1138 ut_info->uf_info.rx_clock = qe_clock_source(sprop); 1139 if ((ut_info->uf_info.rx_clock < QE_CLK_NONE) || 1140 (ut_info->uf_info.rx_clock > QE_CLK24)) { 1141 dev_err(&pdev->dev, "Invalid rx-clock-name property\n"); 1142 return -EINVAL; 1143 } 1144 } else { 1145 dev_err(&pdev->dev, "Invalid rx-clock-name property\n"); 1146 return -EINVAL; 1147 } 1148 1149 sprop = of_get_property(np, "tx-clock-name", NULL); 1150 if (sprop) { 1151 ut_info->uf_info.tx_clock = qe_clock_source(sprop); 1152 if ((ut_info->uf_info.tx_clock < QE_CLK_NONE) || 1153 (ut_info->uf_info.tx_clock > QE_CLK24)) { 1154 dev_err(&pdev->dev, "Invalid tx-clock-name property\n"); 1155 return -EINVAL; 1156 } 1157 } else { 1158 dev_err(&pdev->dev, "Invalid tx-clock-name property\n"); 1159 return -EINVAL; 1160 } 1161 1162 ret = of_address_to_resource(np, 0, &res); 1163 if (ret) 1164 return -EINVAL; 1165 1166 ut_info->uf_info.regs = res.start; 1167 ut_info->uf_info.irq = irq_of_parse_and_map(np, 0); 1168 1169 uhdlc_priv = kzalloc(sizeof(*uhdlc_priv), GFP_KERNEL); 1170 if (!uhdlc_priv) { 1171 return -ENOMEM; 1172 } 1173 1174 dev_set_drvdata(&pdev->dev, uhdlc_priv); 1175 uhdlc_priv->dev = &pdev->dev; 1176 uhdlc_priv->ut_info = ut_info; 1177 1178 if (of_get_property(np, "fsl,tdm-interface", NULL)) 1179 uhdlc_priv->tsa = 1; 1180 1181 if (of_get_property(np, "fsl,ucc-internal-loopback", NULL)) 1182 uhdlc_priv->loopback = 1; 1183 1184 if (of_get_property(np, "fsl,hdlc-bus", NULL)) 1185 uhdlc_priv->hdlc_bus = 1; 1186 1187 if (uhdlc_priv->tsa == 1) { 1188 utdm = kzalloc(sizeof(*utdm), GFP_KERNEL); 1189 if (!utdm) { 1190 ret = -ENOMEM; 1191 dev_err(&pdev->dev, "No mem to alloc ucc tdm data\n"); 1192 goto free_uhdlc_priv; 1193 } 1194 uhdlc_priv->utdm = utdm; 1195 ret = ucc_of_parse_tdm(np, utdm, ut_info); 1196 if (ret) 1197 goto free_utdm; 1198 1199 ret = hdlc_map_iomem("fsl,t1040-qe-si", 0, 1200 (void __iomem **)&utdm->si_regs); 1201 if (ret) 1202 goto free_utdm; 1203 ret = hdlc_map_iomem("fsl,t1040-qe-siram", 1, 1204 (void __iomem **)&utdm->siram); 1205 if (ret) 1206 goto unmap_si_regs; 1207 } 1208 1209 if (of_property_read_u16(np, "fsl,hmask", &uhdlc_priv->hmask)) 1210 uhdlc_priv->hmask = DEFAULT_ADDR_MASK; 1211 1212 ret = uhdlc_init(uhdlc_priv); 1213 if (ret) { 1214 dev_err(&pdev->dev, "Failed to init uhdlc\n"); 1215 goto undo_uhdlc_init; 1216 } 1217 1218 dev = alloc_hdlcdev(uhdlc_priv); 1219 if (!dev) { 1220 ret = -ENOMEM; 1221 pr_err("ucc_hdlc: unable to allocate memory\n"); 1222 goto undo_uhdlc_init; 1223 } 1224 1225 uhdlc_priv->ndev = dev; 1226 hdlc = dev_to_hdlc(dev); 1227 dev->tx_queue_len = 16; 1228 dev->netdev_ops = &uhdlc_ops; 1229 dev->watchdog_timeo = 2 * HZ; 1230 hdlc->attach = ucc_hdlc_attach; 1231 hdlc->xmit = ucc_hdlc_tx; 1232 netif_napi_add(dev, &uhdlc_priv->napi, ucc_hdlc_poll, 32); 1233 if (register_hdlc_device(dev)) { 1234 ret = -ENOBUFS; 1235 pr_err("ucc_hdlc: unable to register hdlc device\n"); 1236 goto free_dev; 1237 } 1238 1239 return 0; 1240 1241 free_dev: 1242 free_netdev(dev); 1243 undo_uhdlc_init: 1244 iounmap(utdm->siram); 1245 unmap_si_regs: 1246 iounmap(utdm->si_regs); 1247 free_utdm: 1248 if (uhdlc_priv->tsa) 1249 kfree(utdm); 1250 free_uhdlc_priv: 1251 kfree(uhdlc_priv); 1252 return ret; 1253 } 1254 1255 static int ucc_hdlc_remove(struct platform_device *pdev) 1256 { 1257 struct ucc_hdlc_private *priv = dev_get_drvdata(&pdev->dev); 1258 1259 uhdlc_memclean(priv); 1260 1261 if (priv->utdm->si_regs) { 1262 iounmap(priv->utdm->si_regs); 1263 priv->utdm->si_regs = NULL; 1264 } 1265 1266 if (priv->utdm->siram) { 1267 iounmap(priv->utdm->siram); 1268 priv->utdm->siram = NULL; 1269 } 1270 kfree(priv); 1271 1272 dev_info(&pdev->dev, "UCC based hdlc module removed\n"); 1273 1274 return 0; 1275 } 1276 1277 static const struct of_device_id fsl_ucc_hdlc_of_match[] = { 1278 { 1279 .compatible = "fsl,ucc-hdlc", 1280 }, 1281 {}, 1282 }; 1283 1284 MODULE_DEVICE_TABLE(of, fsl_ucc_hdlc_of_match); 1285 1286 static struct platform_driver ucc_hdlc_driver = { 1287 .probe = ucc_hdlc_probe, 1288 .remove = ucc_hdlc_remove, 1289 .driver = { 1290 .name = DRV_NAME, 1291 .pm = HDLC_PM_OPS, 1292 .of_match_table = fsl_ucc_hdlc_of_match, 1293 }, 1294 }; 1295 1296 module_platform_driver(ucc_hdlc_driver); 1297 MODULE_LICENSE("GPL"); 1298