xref: /openbmc/linux/drivers/net/wan/fsl_ucc_hdlc.c (revision bf8981a2aa082d9d64771b47c8a1c9c388d8cd40)
1 /* Freescale QUICC Engine HDLC Device Driver
2  *
3  * Copyright 2016 Freescale Semiconductor Inc.
4  *
5  * This program is free software; you can redistribute  it and/or modify it
6  * under  the terms of  the GNU General  Public License as published by the
7  * Free Software Foundation;  either version 2 of the  License, or (at your
8  * option) any later version.
9  */
10 
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/hdlc.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/irq.h>
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/netdevice.h>
21 #include <linux/of_address.h>
22 #include <linux/of_irq.h>
23 #include <linux/of_platform.h>
24 #include <linux/platform_device.h>
25 #include <linux/sched.h>
26 #include <linux/skbuff.h>
27 #include <linux/slab.h>
28 #include <linux/spinlock.h>
29 #include <linux/stddef.h>
30 #include <soc/fsl/qe/qe_tdm.h>
31 #include <uapi/linux/if_arp.h>
32 
33 #include "fsl_ucc_hdlc.h"
34 
35 #define DRV_DESC "Freescale QE UCC HDLC Driver"
36 #define DRV_NAME "ucc_hdlc"
37 
38 #define TDM_PPPOHT_SLIC_MAXIN
39 #define RX_BD_ERRORS (R_CD_S | R_OV_S | R_CR_S | R_AB_S | R_NO_S | R_LG_S)
40 
41 static struct ucc_tdm_info utdm_primary_info = {
42 	.uf_info = {
43 		.tsa = 0,
44 		.cdp = 0,
45 		.cds = 1,
46 		.ctsp = 1,
47 		.ctss = 1,
48 		.revd = 0,
49 		.urfs = 256,
50 		.utfs = 256,
51 		.urfet = 128,
52 		.urfset = 192,
53 		.utfet = 128,
54 		.utftt = 0x40,
55 		.ufpt = 256,
56 		.mode = UCC_FAST_PROTOCOL_MODE_HDLC,
57 		.ttx_trx = UCC_FAST_GUMR_TRANSPARENT_TTX_TRX_NORMAL,
58 		.tenc = UCC_FAST_TX_ENCODING_NRZ,
59 		.renc = UCC_FAST_RX_ENCODING_NRZ,
60 		.tcrc = UCC_FAST_16_BIT_CRC,
61 		.synl = UCC_FAST_SYNC_LEN_NOT_USED,
62 	},
63 
64 	.si_info = {
65 #ifdef TDM_PPPOHT_SLIC_MAXIN
66 		.simr_rfsd = 1,
67 		.simr_tfsd = 2,
68 #else
69 		.simr_rfsd = 0,
70 		.simr_tfsd = 0,
71 #endif
72 		.simr_crt = 0,
73 		.simr_sl = 0,
74 		.simr_ce = 1,
75 		.simr_fe = 1,
76 		.simr_gm = 0,
77 	},
78 };
79 
80 static struct ucc_tdm_info utdm_info[MAX_HDLC_NUM];
81 
82 static int uhdlc_init(struct ucc_hdlc_private *priv)
83 {
84 	struct ucc_tdm_info *ut_info;
85 	struct ucc_fast_info *uf_info;
86 	u32 cecr_subblock;
87 	u16 bd_status;
88 	int ret, i;
89 	void *bd_buffer;
90 	dma_addr_t bd_dma_addr;
91 	u32 riptr;
92 	u32 tiptr;
93 	u32 gumr;
94 
95 	ut_info = priv->ut_info;
96 	uf_info = &ut_info->uf_info;
97 
98 	if (priv->tsa) {
99 		uf_info->tsa = 1;
100 		uf_info->ctsp = 1;
101 		uf_info->cds = 1;
102 		uf_info->ctss = 1;
103 	} else {
104 		uf_info->cds = 0;
105 		uf_info->ctsp = 0;
106 		uf_info->ctss = 0;
107 	}
108 
109 	/* This sets HPM register in CMXUCR register which configures a
110 	 * open drain connected HDLC bus
111 	 */
112 	if (priv->hdlc_bus)
113 		uf_info->brkpt_support = 1;
114 
115 	uf_info->uccm_mask = ((UCC_HDLC_UCCE_RXB | UCC_HDLC_UCCE_RXF |
116 				UCC_HDLC_UCCE_TXB) << 16);
117 
118 	ret = ucc_fast_init(uf_info, &priv->uccf);
119 	if (ret) {
120 		dev_err(priv->dev, "Failed to init uccf.");
121 		return ret;
122 	}
123 
124 	priv->uf_regs = priv->uccf->uf_regs;
125 	ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
126 
127 	/* Loopback mode */
128 	if (priv->loopback) {
129 		dev_info(priv->dev, "Loopback Mode\n");
130 		/* use the same clock when work in loopback */
131 		qe_setbrg(ut_info->uf_info.rx_clock, 20000000, 1);
132 
133 		gumr = ioread32be(&priv->uf_regs->gumr);
134 		gumr |= (UCC_FAST_GUMR_LOOPBACK | UCC_FAST_GUMR_CDS |
135 			 UCC_FAST_GUMR_TCI);
136 		gumr &= ~(UCC_FAST_GUMR_CTSP | UCC_FAST_GUMR_RSYN);
137 		iowrite32be(gumr, &priv->uf_regs->gumr);
138 	}
139 
140 	/* Initialize SI */
141 	if (priv->tsa)
142 		ucc_tdm_init(priv->utdm, priv->ut_info);
143 
144 	/* Write to QE CECR, UCCx channel to Stop Transmission */
145 	cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
146 	ret = qe_issue_cmd(QE_STOP_TX, cecr_subblock,
147 			   QE_CR_PROTOCOL_UNSPECIFIED, 0);
148 
149 	/* Set UPSMR normal mode (need fixed)*/
150 	iowrite32be(0, &priv->uf_regs->upsmr);
151 
152 	/* hdlc_bus mode */
153 	if (priv->hdlc_bus) {
154 		u32 upsmr;
155 
156 		dev_info(priv->dev, "HDLC bus Mode\n");
157 		upsmr = ioread32be(&priv->uf_regs->upsmr);
158 
159 		/* bus mode and retransmit enable, with collision window
160 		 * set to 8 bytes
161 		 */
162 		upsmr |= UCC_HDLC_UPSMR_RTE | UCC_HDLC_UPSMR_BUS |
163 				UCC_HDLC_UPSMR_CW8;
164 		iowrite32be(upsmr, &priv->uf_regs->upsmr);
165 
166 		/* explicitly disable CDS & CTSP */
167 		gumr = ioread32be(&priv->uf_regs->gumr);
168 		gumr &= ~(UCC_FAST_GUMR_CDS | UCC_FAST_GUMR_CTSP);
169 		/* set automatic sync to explicitly ignore CD signal */
170 		gumr |= UCC_FAST_GUMR_SYNL_AUTO;
171 		iowrite32be(gumr, &priv->uf_regs->gumr);
172 	}
173 
174 	priv->rx_ring_size = RX_BD_RING_LEN;
175 	priv->tx_ring_size = TX_BD_RING_LEN;
176 	/* Alloc Rx BD */
177 	priv->rx_bd_base = dma_alloc_coherent(priv->dev,
178 			RX_BD_RING_LEN * sizeof(struct qe_bd),
179 			&priv->dma_rx_bd, GFP_KERNEL);
180 
181 	if (!priv->rx_bd_base) {
182 		dev_err(priv->dev, "Cannot allocate MURAM memory for RxBDs\n");
183 		ret = -ENOMEM;
184 		goto free_uccf;
185 	}
186 
187 	/* Alloc Tx BD */
188 	priv->tx_bd_base = dma_alloc_coherent(priv->dev,
189 			TX_BD_RING_LEN * sizeof(struct qe_bd),
190 			&priv->dma_tx_bd, GFP_KERNEL);
191 
192 	if (!priv->tx_bd_base) {
193 		dev_err(priv->dev, "Cannot allocate MURAM memory for TxBDs\n");
194 		ret = -ENOMEM;
195 		goto free_rx_bd;
196 	}
197 
198 	/* Alloc parameter ram for ucc hdlc */
199 	priv->ucc_pram_offset = qe_muram_alloc(sizeof(struct ucc_hdlc_param),
200 				ALIGNMENT_OF_UCC_HDLC_PRAM);
201 
202 	if (IS_ERR_VALUE(priv->ucc_pram_offset)) {
203 		dev_err(priv->dev, "Can not allocate MURAM for hdlc parameter.\n");
204 		ret = -ENOMEM;
205 		goto free_tx_bd;
206 	}
207 
208 	priv->rx_skbuff = kcalloc(priv->rx_ring_size,
209 				  sizeof(*priv->rx_skbuff),
210 				  GFP_KERNEL);
211 	if (!priv->rx_skbuff)
212 		goto free_ucc_pram;
213 
214 	priv->tx_skbuff = kcalloc(priv->tx_ring_size,
215 				  sizeof(*priv->tx_skbuff),
216 				  GFP_KERNEL);
217 	if (!priv->tx_skbuff)
218 		goto free_rx_skbuff;
219 
220 	priv->skb_curtx = 0;
221 	priv->skb_dirtytx = 0;
222 	priv->curtx_bd = priv->tx_bd_base;
223 	priv->dirty_tx = priv->tx_bd_base;
224 	priv->currx_bd = priv->rx_bd_base;
225 	priv->currx_bdnum = 0;
226 
227 	/* init parameter base */
228 	cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
229 	ret = qe_issue_cmd(QE_ASSIGN_PAGE_TO_DEVICE, cecr_subblock,
230 			   QE_CR_PROTOCOL_UNSPECIFIED, priv->ucc_pram_offset);
231 
232 	priv->ucc_pram = (struct ucc_hdlc_param __iomem *)
233 					qe_muram_addr(priv->ucc_pram_offset);
234 
235 	/* Zero out parameter ram */
236 	memset_io(priv->ucc_pram, 0, sizeof(struct ucc_hdlc_param));
237 
238 	/* Alloc riptr, tiptr */
239 	riptr = qe_muram_alloc(32, 32);
240 	if (IS_ERR_VALUE(riptr)) {
241 		dev_err(priv->dev, "Cannot allocate MURAM mem for Receive internal temp data pointer\n");
242 		ret = -ENOMEM;
243 		goto free_tx_skbuff;
244 	}
245 
246 	tiptr = qe_muram_alloc(32, 32);
247 	if (IS_ERR_VALUE(tiptr)) {
248 		dev_err(priv->dev, "Cannot allocate MURAM mem for Transmit internal temp data pointer\n");
249 		ret = -ENOMEM;
250 		goto free_riptr;
251 	}
252 
253 	/* Set RIPTR, TIPTR */
254 	iowrite16be(riptr, &priv->ucc_pram->riptr);
255 	iowrite16be(tiptr, &priv->ucc_pram->tiptr);
256 
257 	/* Set MRBLR */
258 	iowrite16be(MAX_RX_BUF_LENGTH, &priv->ucc_pram->mrblr);
259 
260 	/* Set RBASE, TBASE */
261 	iowrite32be(priv->dma_rx_bd, &priv->ucc_pram->rbase);
262 	iowrite32be(priv->dma_tx_bd, &priv->ucc_pram->tbase);
263 
264 	/* Set RSTATE, TSTATE */
265 	iowrite32be(BMR_GBL | BMR_BIG_ENDIAN, &priv->ucc_pram->rstate);
266 	iowrite32be(BMR_GBL | BMR_BIG_ENDIAN, &priv->ucc_pram->tstate);
267 
268 	/* Set C_MASK, C_PRES for 16bit CRC */
269 	iowrite32be(CRC_16BIT_MASK, &priv->ucc_pram->c_mask);
270 	iowrite32be(CRC_16BIT_PRES, &priv->ucc_pram->c_pres);
271 
272 	iowrite16be(MAX_FRAME_LENGTH, &priv->ucc_pram->mflr);
273 	iowrite16be(DEFAULT_RFTHR, &priv->ucc_pram->rfthr);
274 	iowrite16be(DEFAULT_RFTHR, &priv->ucc_pram->rfcnt);
275 	iowrite16be(priv->hmask, &priv->ucc_pram->hmask);
276 	iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr1);
277 	iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr2);
278 	iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr3);
279 	iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr4);
280 
281 	/* Get BD buffer */
282 	bd_buffer = dma_alloc_coherent(priv->dev,
283 				       (RX_BD_RING_LEN + TX_BD_RING_LEN) * MAX_RX_BUF_LENGTH,
284 				       &bd_dma_addr, GFP_KERNEL);
285 
286 	if (!bd_buffer) {
287 		dev_err(priv->dev, "Could not allocate buffer descriptors\n");
288 		ret = -ENOMEM;
289 		goto free_tiptr;
290 	}
291 
292 	priv->rx_buffer = bd_buffer;
293 	priv->tx_buffer = bd_buffer + RX_BD_RING_LEN * MAX_RX_BUF_LENGTH;
294 
295 	priv->dma_rx_addr = bd_dma_addr;
296 	priv->dma_tx_addr = bd_dma_addr + RX_BD_RING_LEN * MAX_RX_BUF_LENGTH;
297 
298 	for (i = 0; i < RX_BD_RING_LEN; i++) {
299 		if (i < (RX_BD_RING_LEN - 1))
300 			bd_status = R_E_S | R_I_S;
301 		else
302 			bd_status = R_E_S | R_I_S | R_W_S;
303 
304 		iowrite16be(bd_status, &priv->rx_bd_base[i].status);
305 		iowrite32be(priv->dma_rx_addr + i * MAX_RX_BUF_LENGTH,
306 			    &priv->rx_bd_base[i].buf);
307 	}
308 
309 	for (i = 0; i < TX_BD_RING_LEN; i++) {
310 		if (i < (TX_BD_RING_LEN - 1))
311 			bd_status =  T_I_S | T_TC_S;
312 		else
313 			bd_status =  T_I_S | T_TC_S | T_W_S;
314 
315 		iowrite16be(bd_status, &priv->tx_bd_base[i].status);
316 		iowrite32be(priv->dma_tx_addr + i * MAX_RX_BUF_LENGTH,
317 			    &priv->tx_bd_base[i].buf);
318 	}
319 
320 	return 0;
321 
322 free_tiptr:
323 	qe_muram_free(tiptr);
324 free_riptr:
325 	qe_muram_free(riptr);
326 free_tx_skbuff:
327 	kfree(priv->tx_skbuff);
328 free_rx_skbuff:
329 	kfree(priv->rx_skbuff);
330 free_ucc_pram:
331 	qe_muram_free(priv->ucc_pram_offset);
332 free_tx_bd:
333 	dma_free_coherent(priv->dev,
334 			  TX_BD_RING_LEN * sizeof(struct qe_bd),
335 			  priv->tx_bd_base, priv->dma_tx_bd);
336 free_rx_bd:
337 	dma_free_coherent(priv->dev,
338 			  RX_BD_RING_LEN * sizeof(struct qe_bd),
339 			  priv->rx_bd_base, priv->dma_rx_bd);
340 free_uccf:
341 	ucc_fast_free(priv->uccf);
342 
343 	return ret;
344 }
345 
346 static netdev_tx_t ucc_hdlc_tx(struct sk_buff *skb, struct net_device *dev)
347 {
348 	hdlc_device *hdlc = dev_to_hdlc(dev);
349 	struct ucc_hdlc_private *priv = (struct ucc_hdlc_private *)hdlc->priv;
350 	struct qe_bd __iomem *bd;
351 	u16 bd_status;
352 	unsigned long flags;
353 	u16 *proto_head;
354 
355 	switch (dev->type) {
356 	case ARPHRD_RAWHDLC:
357 		if (skb_headroom(skb) < HDLC_HEAD_LEN) {
358 			dev->stats.tx_dropped++;
359 			dev_kfree_skb(skb);
360 			netdev_err(dev, "No enough space for hdlc head\n");
361 			return -ENOMEM;
362 		}
363 
364 		skb_push(skb, HDLC_HEAD_LEN);
365 
366 		proto_head = (u16 *)skb->data;
367 		*proto_head = htons(DEFAULT_HDLC_HEAD);
368 
369 		dev->stats.tx_bytes += skb->len;
370 		break;
371 
372 	case ARPHRD_PPP:
373 		proto_head = (u16 *)skb->data;
374 		if (*proto_head != htons(DEFAULT_PPP_HEAD)) {
375 			dev->stats.tx_dropped++;
376 			dev_kfree_skb(skb);
377 			netdev_err(dev, "Wrong ppp header\n");
378 			return -ENOMEM;
379 		}
380 
381 		dev->stats.tx_bytes += skb->len;
382 		break;
383 
384 	case ARPHRD_ETHER:
385 		dev->stats.tx_bytes += skb->len;
386 		break;
387 
388 	default:
389 		dev->stats.tx_dropped++;
390 		dev_kfree_skb(skb);
391 		return -ENOMEM;
392 	}
393 	netdev_sent_queue(dev, skb->len);
394 	spin_lock_irqsave(&priv->lock, flags);
395 
396 	/* Start from the next BD that should be filled */
397 	bd = priv->curtx_bd;
398 	bd_status = ioread16be(&bd->status);
399 	/* Save the skb pointer so we can free it later */
400 	priv->tx_skbuff[priv->skb_curtx] = skb;
401 
402 	/* Update the current skb pointer (wrapping if this was the last) */
403 	priv->skb_curtx =
404 	    (priv->skb_curtx + 1) & TX_RING_MOD_MASK(TX_BD_RING_LEN);
405 
406 	/* copy skb data to tx buffer for sdma processing */
407 	memcpy(priv->tx_buffer + (be32_to_cpu(bd->buf) - priv->dma_tx_addr),
408 	       skb->data, skb->len);
409 
410 	/* set bd status and length */
411 	bd_status = (bd_status & T_W_S) | T_R_S | T_I_S | T_L_S | T_TC_S;
412 
413 	iowrite16be(skb->len, &bd->length);
414 	iowrite16be(bd_status, &bd->status);
415 
416 	/* Move to next BD in the ring */
417 	if (!(bd_status & T_W_S))
418 		bd += 1;
419 	else
420 		bd = priv->tx_bd_base;
421 
422 	if (bd == priv->dirty_tx) {
423 		if (!netif_queue_stopped(dev))
424 			netif_stop_queue(dev);
425 	}
426 
427 	priv->curtx_bd = bd;
428 
429 	spin_unlock_irqrestore(&priv->lock, flags);
430 
431 	return NETDEV_TX_OK;
432 }
433 
434 static int hdlc_tx_restart(struct ucc_hdlc_private *priv)
435 {
436 	u32 cecr_subblock;
437 
438 	cecr_subblock =
439 		ucc_fast_get_qe_cr_subblock(priv->ut_info->uf_info.ucc_num);
440 
441 	qe_issue_cmd(QE_RESTART_TX, cecr_subblock,
442 		     QE_CR_PROTOCOL_UNSPECIFIED, 0);
443 	return 0;
444 }
445 
446 static int hdlc_tx_done(struct ucc_hdlc_private *priv)
447 {
448 	/* Start from the next BD that should be filled */
449 	struct net_device *dev = priv->ndev;
450 	unsigned int bytes_sent = 0;
451 	int howmany = 0;
452 	struct qe_bd *bd;		/* BD pointer */
453 	u16 bd_status;
454 	int tx_restart = 0;
455 
456 	bd = priv->dirty_tx;
457 	bd_status = ioread16be(&bd->status);
458 
459 	/* Normal processing. */
460 	while ((bd_status & T_R_S) == 0) {
461 		struct sk_buff *skb;
462 
463 		if (bd_status & T_UN_S) { /* Underrun */
464 			dev->stats.tx_fifo_errors++;
465 			tx_restart = 1;
466 		}
467 		if (bd_status & T_CT_S) { /* Carrier lost */
468 			dev->stats.tx_carrier_errors++;
469 			tx_restart = 1;
470 		}
471 
472 		/* BD contains already transmitted buffer.   */
473 		/* Handle the transmitted buffer and release */
474 		/* the BD to be used with the current frame  */
475 
476 		skb = priv->tx_skbuff[priv->skb_dirtytx];
477 		if (!skb)
478 			break;
479 		howmany++;
480 		bytes_sent += skb->len;
481 		dev->stats.tx_packets++;
482 		memset(priv->tx_buffer +
483 		       (be32_to_cpu(bd->buf) - priv->dma_tx_addr),
484 		       0, skb->len);
485 		dev_consume_skb_irq(skb);
486 
487 		priv->tx_skbuff[priv->skb_dirtytx] = NULL;
488 		priv->skb_dirtytx =
489 		    (priv->skb_dirtytx +
490 		     1) & TX_RING_MOD_MASK(TX_BD_RING_LEN);
491 
492 		/* We freed a buffer, so now we can restart transmission */
493 		if (netif_queue_stopped(dev))
494 			netif_wake_queue(dev);
495 
496 		/* Advance the confirmation BD pointer */
497 		if (!(bd_status & T_W_S))
498 			bd += 1;
499 		else
500 			bd = priv->tx_bd_base;
501 		bd_status = ioread16be(&bd->status);
502 	}
503 	priv->dirty_tx = bd;
504 
505 	if (tx_restart)
506 		hdlc_tx_restart(priv);
507 
508 	netdev_completed_queue(dev, howmany, bytes_sent);
509 	return 0;
510 }
511 
512 static int hdlc_rx_done(struct ucc_hdlc_private *priv, int rx_work_limit)
513 {
514 	struct net_device *dev = priv->ndev;
515 	struct sk_buff *skb = NULL;
516 	hdlc_device *hdlc = dev_to_hdlc(dev);
517 	struct qe_bd *bd;
518 	u16 bd_status;
519 	u16 length, howmany = 0;
520 	u8 *bdbuffer;
521 
522 	bd = priv->currx_bd;
523 	bd_status = ioread16be(&bd->status);
524 
525 	/* while there are received buffers and BD is full (~R_E) */
526 	while (!((bd_status & (R_E_S)) || (--rx_work_limit < 0))) {
527 		if (bd_status & (RX_BD_ERRORS)) {
528 			dev->stats.rx_errors++;
529 
530 			if (bd_status & R_CD_S)
531 				dev->stats.collisions++;
532 			if (bd_status & R_OV_S)
533 				dev->stats.rx_fifo_errors++;
534 			if (bd_status & R_CR_S)
535 				dev->stats.rx_crc_errors++;
536 			if (bd_status & R_AB_S)
537 				dev->stats.rx_over_errors++;
538 			if (bd_status & R_NO_S)
539 				dev->stats.rx_frame_errors++;
540 			if (bd_status & R_LG_S)
541 				dev->stats.rx_length_errors++;
542 
543 			goto recycle;
544 		}
545 		bdbuffer = priv->rx_buffer +
546 			(priv->currx_bdnum * MAX_RX_BUF_LENGTH);
547 		length = ioread16be(&bd->length);
548 
549 		switch (dev->type) {
550 		case ARPHRD_RAWHDLC:
551 			bdbuffer += HDLC_HEAD_LEN;
552 			length -= (HDLC_HEAD_LEN + HDLC_CRC_SIZE);
553 
554 			skb = dev_alloc_skb(length);
555 			if (!skb) {
556 				dev->stats.rx_dropped++;
557 				return -ENOMEM;
558 			}
559 
560 			skb_put(skb, length);
561 			skb->len = length;
562 			skb->dev = dev;
563 			memcpy(skb->data, bdbuffer, length);
564 			break;
565 
566 		case ARPHRD_PPP:
567 		case ARPHRD_ETHER:
568 			length -= HDLC_CRC_SIZE;
569 
570 			skb = dev_alloc_skb(length);
571 			if (!skb) {
572 				dev->stats.rx_dropped++;
573 				return -ENOMEM;
574 			}
575 
576 			skb_put(skb, length);
577 			skb->len = length;
578 			skb->dev = dev;
579 			memcpy(skb->data, bdbuffer, length);
580 			break;
581 		}
582 
583 		dev->stats.rx_packets++;
584 		dev->stats.rx_bytes += skb->len;
585 		howmany++;
586 		if (hdlc->proto)
587 			skb->protocol = hdlc_type_trans(skb, dev);
588 		netif_receive_skb(skb);
589 
590 recycle:
591 		iowrite16be((bd_status & R_W_S) | R_E_S | R_I_S, &bd->status);
592 
593 		/* update to point at the next bd */
594 		if (bd_status & R_W_S) {
595 			priv->currx_bdnum = 0;
596 			bd = priv->rx_bd_base;
597 		} else {
598 			if (priv->currx_bdnum < (RX_BD_RING_LEN - 1))
599 				priv->currx_bdnum += 1;
600 			else
601 				priv->currx_bdnum = RX_BD_RING_LEN - 1;
602 
603 			bd += 1;
604 		}
605 
606 		bd_status = ioread16be(&bd->status);
607 	}
608 
609 	priv->currx_bd = bd;
610 	return howmany;
611 }
612 
613 static int ucc_hdlc_poll(struct napi_struct *napi, int budget)
614 {
615 	struct ucc_hdlc_private *priv = container_of(napi,
616 						     struct ucc_hdlc_private,
617 						     napi);
618 	int howmany;
619 
620 	/* Tx event processing */
621 	spin_lock(&priv->lock);
622 	hdlc_tx_done(priv);
623 	spin_unlock(&priv->lock);
624 
625 	howmany = 0;
626 	howmany += hdlc_rx_done(priv, budget - howmany);
627 
628 	if (howmany < budget) {
629 		napi_complete_done(napi, howmany);
630 		qe_setbits32(priv->uccf->p_uccm,
631 			     (UCCE_HDLC_RX_EVENTS | UCCE_HDLC_TX_EVENTS) << 16);
632 	}
633 
634 	return howmany;
635 }
636 
637 static irqreturn_t ucc_hdlc_irq_handler(int irq, void *dev_id)
638 {
639 	struct ucc_hdlc_private *priv = (struct ucc_hdlc_private *)dev_id;
640 	struct net_device *dev = priv->ndev;
641 	struct ucc_fast_private *uccf;
642 	struct ucc_tdm_info *ut_info;
643 	u32 ucce;
644 	u32 uccm;
645 
646 	ut_info = priv->ut_info;
647 	uccf = priv->uccf;
648 
649 	ucce = ioread32be(uccf->p_ucce);
650 	uccm = ioread32be(uccf->p_uccm);
651 	ucce &= uccm;
652 	iowrite32be(ucce, uccf->p_ucce);
653 	if (!ucce)
654 		return IRQ_NONE;
655 
656 	if ((ucce >> 16) & (UCCE_HDLC_RX_EVENTS | UCCE_HDLC_TX_EVENTS)) {
657 		if (napi_schedule_prep(&priv->napi)) {
658 			uccm &= ~((UCCE_HDLC_RX_EVENTS | UCCE_HDLC_TX_EVENTS)
659 				  << 16);
660 			iowrite32be(uccm, uccf->p_uccm);
661 			__napi_schedule(&priv->napi);
662 		}
663 	}
664 
665 	/* Errors and other events */
666 	if (ucce >> 16 & UCC_HDLC_UCCE_BSY)
667 		dev->stats.rx_missed_errors++;
668 	if (ucce >> 16 & UCC_HDLC_UCCE_TXE)
669 		dev->stats.tx_errors++;
670 
671 	return IRQ_HANDLED;
672 }
673 
674 static int uhdlc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
675 {
676 	const size_t size = sizeof(te1_settings);
677 	te1_settings line;
678 	struct ucc_hdlc_private *priv = netdev_priv(dev);
679 
680 	if (cmd != SIOCWANDEV)
681 		return hdlc_ioctl(dev, ifr, cmd);
682 
683 	switch (ifr->ifr_settings.type) {
684 	case IF_GET_IFACE:
685 		ifr->ifr_settings.type = IF_IFACE_E1;
686 		if (ifr->ifr_settings.size < size) {
687 			ifr->ifr_settings.size = size; /* data size wanted */
688 			return -ENOBUFS;
689 		}
690 		memset(&line, 0, sizeof(line));
691 		line.clock_type = priv->clocking;
692 
693 		if (copy_to_user(ifr->ifr_settings.ifs_ifsu.sync, &line, size))
694 			return -EFAULT;
695 		return 0;
696 
697 	default:
698 		return hdlc_ioctl(dev, ifr, cmd);
699 	}
700 }
701 
702 static int uhdlc_open(struct net_device *dev)
703 {
704 	u32 cecr_subblock;
705 	hdlc_device *hdlc = dev_to_hdlc(dev);
706 	struct ucc_hdlc_private *priv = hdlc->priv;
707 	struct ucc_tdm *utdm = priv->utdm;
708 
709 	if (priv->hdlc_busy != 1) {
710 		if (request_irq(priv->ut_info->uf_info.irq,
711 				ucc_hdlc_irq_handler, 0, "hdlc", priv))
712 			return -ENODEV;
713 
714 		cecr_subblock = ucc_fast_get_qe_cr_subblock(
715 					priv->ut_info->uf_info.ucc_num);
716 
717 		qe_issue_cmd(QE_INIT_TX_RX, cecr_subblock,
718 			     QE_CR_PROTOCOL_UNSPECIFIED, 0);
719 
720 		ucc_fast_enable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
721 
722 		/* Enable the TDM port */
723 		if (priv->tsa)
724 			utdm->si_regs->siglmr1_h |= (0x1 << utdm->tdm_port);
725 
726 		priv->hdlc_busy = 1;
727 		netif_device_attach(priv->ndev);
728 		napi_enable(&priv->napi);
729 		netdev_reset_queue(dev);
730 		netif_start_queue(dev);
731 		hdlc_open(dev);
732 	}
733 
734 	return 0;
735 }
736 
737 static void uhdlc_memclean(struct ucc_hdlc_private *priv)
738 {
739 	qe_muram_free(priv->ucc_pram->riptr);
740 	qe_muram_free(priv->ucc_pram->tiptr);
741 
742 	if (priv->rx_bd_base) {
743 		dma_free_coherent(priv->dev,
744 				  RX_BD_RING_LEN * sizeof(struct qe_bd),
745 				  priv->rx_bd_base, priv->dma_rx_bd);
746 
747 		priv->rx_bd_base = NULL;
748 		priv->dma_rx_bd = 0;
749 	}
750 
751 	if (priv->tx_bd_base) {
752 		dma_free_coherent(priv->dev,
753 				  TX_BD_RING_LEN * sizeof(struct qe_bd),
754 				  priv->tx_bd_base, priv->dma_tx_bd);
755 
756 		priv->tx_bd_base = NULL;
757 		priv->dma_tx_bd = 0;
758 	}
759 
760 	if (priv->ucc_pram) {
761 		qe_muram_free(priv->ucc_pram_offset);
762 		priv->ucc_pram = NULL;
763 		priv->ucc_pram_offset = 0;
764 	 }
765 
766 	kfree(priv->rx_skbuff);
767 	priv->rx_skbuff = NULL;
768 
769 	kfree(priv->tx_skbuff);
770 	priv->tx_skbuff = NULL;
771 
772 	if (priv->uf_regs) {
773 		iounmap(priv->uf_regs);
774 		priv->uf_regs = NULL;
775 	}
776 
777 	if (priv->uccf) {
778 		ucc_fast_free(priv->uccf);
779 		priv->uccf = NULL;
780 	}
781 
782 	if (priv->rx_buffer) {
783 		dma_free_coherent(priv->dev,
784 				  RX_BD_RING_LEN * MAX_RX_BUF_LENGTH,
785 				  priv->rx_buffer, priv->dma_rx_addr);
786 		priv->rx_buffer = NULL;
787 		priv->dma_rx_addr = 0;
788 	}
789 
790 	if (priv->tx_buffer) {
791 		dma_free_coherent(priv->dev,
792 				  TX_BD_RING_LEN * MAX_RX_BUF_LENGTH,
793 				  priv->tx_buffer, priv->dma_tx_addr);
794 		priv->tx_buffer = NULL;
795 		priv->dma_tx_addr = 0;
796 	}
797 }
798 
799 static int uhdlc_close(struct net_device *dev)
800 {
801 	struct ucc_hdlc_private *priv = dev_to_hdlc(dev)->priv;
802 	struct ucc_tdm *utdm = priv->utdm;
803 	u32 cecr_subblock;
804 
805 	napi_disable(&priv->napi);
806 	cecr_subblock = ucc_fast_get_qe_cr_subblock(
807 				priv->ut_info->uf_info.ucc_num);
808 
809 	qe_issue_cmd(QE_GRACEFUL_STOP_TX, cecr_subblock,
810 		     (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0);
811 	qe_issue_cmd(QE_CLOSE_RX_BD, cecr_subblock,
812 		     (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0);
813 
814 	if (priv->tsa)
815 		utdm->si_regs->siglmr1_h &= ~(0x1 << utdm->tdm_port);
816 
817 	ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
818 
819 	free_irq(priv->ut_info->uf_info.irq, priv);
820 	netif_stop_queue(dev);
821 	netdev_reset_queue(dev);
822 	priv->hdlc_busy = 0;
823 
824 	return 0;
825 }
826 
827 static int ucc_hdlc_attach(struct net_device *dev, unsigned short encoding,
828 			   unsigned short parity)
829 {
830 	struct ucc_hdlc_private *priv = dev_to_hdlc(dev)->priv;
831 
832 	if (encoding != ENCODING_NRZ &&
833 	    encoding != ENCODING_NRZI)
834 		return -EINVAL;
835 
836 	if (parity != PARITY_NONE &&
837 	    parity != PARITY_CRC32_PR1_CCITT &&
838 	    parity != PARITY_CRC16_PR0_CCITT &&
839 	    parity != PARITY_CRC16_PR1_CCITT)
840 		return -EINVAL;
841 
842 	priv->encoding = encoding;
843 	priv->parity = parity;
844 
845 	return 0;
846 }
847 
848 #ifdef CONFIG_PM
849 static void store_clk_config(struct ucc_hdlc_private *priv)
850 {
851 	struct qe_mux *qe_mux_reg = &qe_immr->qmx;
852 
853 	/* store si clk */
854 	priv->cmxsi1cr_h = ioread32be(&qe_mux_reg->cmxsi1cr_h);
855 	priv->cmxsi1cr_l = ioread32be(&qe_mux_reg->cmxsi1cr_l);
856 
857 	/* store si sync */
858 	priv->cmxsi1syr = ioread32be(&qe_mux_reg->cmxsi1syr);
859 
860 	/* store ucc clk */
861 	memcpy_fromio(priv->cmxucr, qe_mux_reg->cmxucr, 4 * sizeof(u32));
862 }
863 
864 static void resume_clk_config(struct ucc_hdlc_private *priv)
865 {
866 	struct qe_mux *qe_mux_reg = &qe_immr->qmx;
867 
868 	memcpy_toio(qe_mux_reg->cmxucr, priv->cmxucr, 4 * sizeof(u32));
869 
870 	iowrite32be(priv->cmxsi1cr_h, &qe_mux_reg->cmxsi1cr_h);
871 	iowrite32be(priv->cmxsi1cr_l, &qe_mux_reg->cmxsi1cr_l);
872 
873 	iowrite32be(priv->cmxsi1syr, &qe_mux_reg->cmxsi1syr);
874 }
875 
876 static int uhdlc_suspend(struct device *dev)
877 {
878 	struct ucc_hdlc_private *priv = dev_get_drvdata(dev);
879 	struct ucc_tdm_info *ut_info;
880 	struct ucc_fast __iomem *uf_regs;
881 
882 	if (!priv)
883 		return -EINVAL;
884 
885 	if (!netif_running(priv->ndev))
886 		return 0;
887 
888 	netif_device_detach(priv->ndev);
889 	napi_disable(&priv->napi);
890 
891 	ut_info = priv->ut_info;
892 	uf_regs = priv->uf_regs;
893 
894 	/* backup gumr guemr*/
895 	priv->gumr = ioread32be(&uf_regs->gumr);
896 	priv->guemr = ioread8(&uf_regs->guemr);
897 
898 	priv->ucc_pram_bak = kmalloc(sizeof(*priv->ucc_pram_bak),
899 					GFP_KERNEL);
900 	if (!priv->ucc_pram_bak)
901 		return -ENOMEM;
902 
903 	/* backup HDLC parameter */
904 	memcpy_fromio(priv->ucc_pram_bak, priv->ucc_pram,
905 		      sizeof(struct ucc_hdlc_param));
906 
907 	/* store the clk configuration */
908 	store_clk_config(priv);
909 
910 	/* save power */
911 	ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
912 
913 	return 0;
914 }
915 
916 static int uhdlc_resume(struct device *dev)
917 {
918 	struct ucc_hdlc_private *priv = dev_get_drvdata(dev);
919 	struct ucc_tdm *utdm;
920 	struct ucc_tdm_info *ut_info;
921 	struct ucc_fast __iomem *uf_regs;
922 	struct ucc_fast_private *uccf;
923 	struct ucc_fast_info *uf_info;
924 	int ret, i;
925 	u32 cecr_subblock;
926 	u16 bd_status;
927 
928 	if (!priv)
929 		return -EINVAL;
930 
931 	if (!netif_running(priv->ndev))
932 		return 0;
933 
934 	utdm = priv->utdm;
935 	ut_info = priv->ut_info;
936 	uf_info = &ut_info->uf_info;
937 	uf_regs = priv->uf_regs;
938 	uccf = priv->uccf;
939 
940 	/* restore gumr guemr */
941 	iowrite8(priv->guemr, &uf_regs->guemr);
942 	iowrite32be(priv->gumr, &uf_regs->gumr);
943 
944 	/* Set Virtual Fifo registers */
945 	iowrite16be(uf_info->urfs, &uf_regs->urfs);
946 	iowrite16be(uf_info->urfet, &uf_regs->urfet);
947 	iowrite16be(uf_info->urfset, &uf_regs->urfset);
948 	iowrite16be(uf_info->utfs, &uf_regs->utfs);
949 	iowrite16be(uf_info->utfet, &uf_regs->utfet);
950 	iowrite16be(uf_info->utftt, &uf_regs->utftt);
951 	/* utfb, urfb are offsets from MURAM base */
952 	iowrite32be(uccf->ucc_fast_tx_virtual_fifo_base_offset, &uf_regs->utfb);
953 	iowrite32be(uccf->ucc_fast_rx_virtual_fifo_base_offset, &uf_regs->urfb);
954 
955 	/* Rx Tx and sync clock routing */
956 	resume_clk_config(priv);
957 
958 	iowrite32be(uf_info->uccm_mask, &uf_regs->uccm);
959 	iowrite32be(0xffffffff, &uf_regs->ucce);
960 
961 	ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
962 
963 	/* rebuild SIRAM */
964 	if (priv->tsa)
965 		ucc_tdm_init(priv->utdm, priv->ut_info);
966 
967 	/* Write to QE CECR, UCCx channel to Stop Transmission */
968 	cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
969 	ret = qe_issue_cmd(QE_STOP_TX, cecr_subblock,
970 			   (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0);
971 
972 	/* Set UPSMR normal mode */
973 	iowrite32be(0, &uf_regs->upsmr);
974 
975 	/* init parameter base */
976 	cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
977 	ret = qe_issue_cmd(QE_ASSIGN_PAGE_TO_DEVICE, cecr_subblock,
978 			   QE_CR_PROTOCOL_UNSPECIFIED, priv->ucc_pram_offset);
979 
980 	priv->ucc_pram = (struct ucc_hdlc_param __iomem *)
981 				qe_muram_addr(priv->ucc_pram_offset);
982 
983 	/* restore ucc parameter */
984 	memcpy_toio(priv->ucc_pram, priv->ucc_pram_bak,
985 		    sizeof(struct ucc_hdlc_param));
986 	kfree(priv->ucc_pram_bak);
987 
988 	/* rebuild BD entry */
989 	for (i = 0; i < RX_BD_RING_LEN; i++) {
990 		if (i < (RX_BD_RING_LEN - 1))
991 			bd_status = R_E_S | R_I_S;
992 		else
993 			bd_status = R_E_S | R_I_S | R_W_S;
994 
995 		iowrite16be(bd_status, &priv->rx_bd_base[i].status);
996 		iowrite32be(priv->dma_rx_addr + i * MAX_RX_BUF_LENGTH,
997 			    &priv->rx_bd_base[i].buf);
998 	}
999 
1000 	for (i = 0; i < TX_BD_RING_LEN; i++) {
1001 		if (i < (TX_BD_RING_LEN - 1))
1002 			bd_status =  T_I_S | T_TC_S;
1003 		else
1004 			bd_status =  T_I_S | T_TC_S | T_W_S;
1005 
1006 		iowrite16be(bd_status, &priv->tx_bd_base[i].status);
1007 		iowrite32be(priv->dma_tx_addr + i * MAX_RX_BUF_LENGTH,
1008 			    &priv->tx_bd_base[i].buf);
1009 	}
1010 
1011 	/* if hdlc is busy enable TX and RX */
1012 	if (priv->hdlc_busy == 1) {
1013 		cecr_subblock = ucc_fast_get_qe_cr_subblock(
1014 					priv->ut_info->uf_info.ucc_num);
1015 
1016 		qe_issue_cmd(QE_INIT_TX_RX, cecr_subblock,
1017 			     (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0);
1018 
1019 		ucc_fast_enable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
1020 
1021 		/* Enable the TDM port */
1022 		if (priv->tsa)
1023 			utdm->si_regs->siglmr1_h |= (0x1 << utdm->tdm_port);
1024 	}
1025 
1026 	napi_enable(&priv->napi);
1027 	netif_device_attach(priv->ndev);
1028 
1029 	return 0;
1030 }
1031 
1032 static const struct dev_pm_ops uhdlc_pm_ops = {
1033 	.suspend = uhdlc_suspend,
1034 	.resume = uhdlc_resume,
1035 	.freeze = uhdlc_suspend,
1036 	.thaw = uhdlc_resume,
1037 };
1038 
1039 #define HDLC_PM_OPS (&uhdlc_pm_ops)
1040 
1041 #else
1042 
1043 #define HDLC_PM_OPS NULL
1044 
1045 #endif
1046 static void uhdlc_tx_timeout(struct net_device *ndev)
1047 {
1048 	netdev_err(ndev, "%s\n", __func__);
1049 }
1050 
1051 static const struct net_device_ops uhdlc_ops = {
1052 	.ndo_open       = uhdlc_open,
1053 	.ndo_stop       = uhdlc_close,
1054 	.ndo_start_xmit = hdlc_start_xmit,
1055 	.ndo_do_ioctl   = uhdlc_ioctl,
1056 	.ndo_tx_timeout	= uhdlc_tx_timeout,
1057 };
1058 
1059 static int hdlc_map_iomem(char *name, int init_flag, void __iomem **ptr)
1060 {
1061 	struct device_node *np;
1062 	struct platform_device *pdev;
1063 	struct resource *res;
1064 	static int siram_init_flag;
1065 	int ret = 0;
1066 
1067 	np = of_find_compatible_node(NULL, NULL, name);
1068 	if (!np)
1069 		return -EINVAL;
1070 
1071 	pdev = of_find_device_by_node(np);
1072 	if (!pdev) {
1073 		pr_err("%pOFn: failed to lookup pdev\n", np);
1074 		of_node_put(np);
1075 		return -EINVAL;
1076 	}
1077 
1078 	of_node_put(np);
1079 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1080 	if (!res) {
1081 		ret = -EINVAL;
1082 		goto error_put_device;
1083 	}
1084 	*ptr = ioremap(res->start, resource_size(res));
1085 	if (!*ptr) {
1086 		ret = -ENOMEM;
1087 		goto error_put_device;
1088 	}
1089 
1090 	/* We've remapped the addresses, and we don't need the device any
1091 	 * more, so we should release it.
1092 	 */
1093 	put_device(&pdev->dev);
1094 
1095 	if (init_flag && siram_init_flag == 0) {
1096 		memset_io(*ptr, 0, resource_size(res));
1097 		siram_init_flag = 1;
1098 	}
1099 	return  0;
1100 
1101 error_put_device:
1102 	put_device(&pdev->dev);
1103 
1104 	return ret;
1105 }
1106 
1107 static int ucc_hdlc_probe(struct platform_device *pdev)
1108 {
1109 	struct device_node *np = pdev->dev.of_node;
1110 	struct ucc_hdlc_private *uhdlc_priv = NULL;
1111 	struct ucc_tdm_info *ut_info;
1112 	struct ucc_tdm *utdm = NULL;
1113 	struct resource res;
1114 	struct net_device *dev;
1115 	hdlc_device *hdlc;
1116 	int ucc_num;
1117 	const char *sprop;
1118 	int ret;
1119 	u32 val;
1120 
1121 	ret = of_property_read_u32_index(np, "cell-index", 0, &val);
1122 	if (ret) {
1123 		dev_err(&pdev->dev, "Invalid ucc property\n");
1124 		return -ENODEV;
1125 	}
1126 
1127 	ucc_num = val - 1;
1128 	if (ucc_num > (UCC_MAX_NUM - 1) || ucc_num < 0) {
1129 		dev_err(&pdev->dev, ": Invalid UCC num\n");
1130 		return -EINVAL;
1131 	}
1132 
1133 	memcpy(&utdm_info[ucc_num], &utdm_primary_info,
1134 	       sizeof(utdm_primary_info));
1135 
1136 	ut_info = &utdm_info[ucc_num];
1137 	ut_info->uf_info.ucc_num = ucc_num;
1138 
1139 	sprop = of_get_property(np, "rx-clock-name", NULL);
1140 	if (sprop) {
1141 		ut_info->uf_info.rx_clock = qe_clock_source(sprop);
1142 		if ((ut_info->uf_info.rx_clock < QE_CLK_NONE) ||
1143 		    (ut_info->uf_info.rx_clock > QE_CLK24)) {
1144 			dev_err(&pdev->dev, "Invalid rx-clock-name property\n");
1145 			return -EINVAL;
1146 		}
1147 	} else {
1148 		dev_err(&pdev->dev, "Invalid rx-clock-name property\n");
1149 		return -EINVAL;
1150 	}
1151 
1152 	sprop = of_get_property(np, "tx-clock-name", NULL);
1153 	if (sprop) {
1154 		ut_info->uf_info.tx_clock = qe_clock_source(sprop);
1155 		if ((ut_info->uf_info.tx_clock < QE_CLK_NONE) ||
1156 		    (ut_info->uf_info.tx_clock > QE_CLK24)) {
1157 			dev_err(&pdev->dev, "Invalid tx-clock-name property\n");
1158 			return -EINVAL;
1159 		}
1160 	} else {
1161 		dev_err(&pdev->dev, "Invalid tx-clock-name property\n");
1162 		return -EINVAL;
1163 	}
1164 
1165 	ret = of_address_to_resource(np, 0, &res);
1166 	if (ret)
1167 		return -EINVAL;
1168 
1169 	ut_info->uf_info.regs = res.start;
1170 	ut_info->uf_info.irq = irq_of_parse_and_map(np, 0);
1171 
1172 	uhdlc_priv = kzalloc(sizeof(*uhdlc_priv), GFP_KERNEL);
1173 	if (!uhdlc_priv) {
1174 		return -ENOMEM;
1175 	}
1176 
1177 	dev_set_drvdata(&pdev->dev, uhdlc_priv);
1178 	uhdlc_priv->dev = &pdev->dev;
1179 	uhdlc_priv->ut_info = ut_info;
1180 
1181 	if (of_get_property(np, "fsl,tdm-interface", NULL))
1182 		uhdlc_priv->tsa = 1;
1183 
1184 	if (of_get_property(np, "fsl,ucc-internal-loopback", NULL))
1185 		uhdlc_priv->loopback = 1;
1186 
1187 	if (of_get_property(np, "fsl,hdlc-bus", NULL))
1188 		uhdlc_priv->hdlc_bus = 1;
1189 
1190 	if (uhdlc_priv->tsa == 1) {
1191 		utdm = kzalloc(sizeof(*utdm), GFP_KERNEL);
1192 		if (!utdm) {
1193 			ret = -ENOMEM;
1194 			dev_err(&pdev->dev, "No mem to alloc ucc tdm data\n");
1195 			goto free_uhdlc_priv;
1196 		}
1197 		uhdlc_priv->utdm = utdm;
1198 		ret = ucc_of_parse_tdm(np, utdm, ut_info);
1199 		if (ret)
1200 			goto free_utdm;
1201 
1202 		ret = hdlc_map_iomem("fsl,t1040-qe-si", 0,
1203 				     (void __iomem **)&utdm->si_regs);
1204 		if (ret)
1205 			goto free_utdm;
1206 		ret = hdlc_map_iomem("fsl,t1040-qe-siram", 1,
1207 				     (void __iomem **)&utdm->siram);
1208 		if (ret)
1209 			goto unmap_si_regs;
1210 	}
1211 
1212 	if (of_property_read_u16(np, "fsl,hmask", &uhdlc_priv->hmask))
1213 		uhdlc_priv->hmask = DEFAULT_ADDR_MASK;
1214 
1215 	ret = uhdlc_init(uhdlc_priv);
1216 	if (ret) {
1217 		dev_err(&pdev->dev, "Failed to init uhdlc\n");
1218 		goto undo_uhdlc_init;
1219 	}
1220 
1221 	dev = alloc_hdlcdev(uhdlc_priv);
1222 	if (!dev) {
1223 		ret = -ENOMEM;
1224 		pr_err("ucc_hdlc: unable to allocate memory\n");
1225 		goto undo_uhdlc_init;
1226 	}
1227 
1228 	uhdlc_priv->ndev = dev;
1229 	hdlc = dev_to_hdlc(dev);
1230 	dev->tx_queue_len = 16;
1231 	dev->netdev_ops = &uhdlc_ops;
1232 	dev->watchdog_timeo = 2 * HZ;
1233 	hdlc->attach = ucc_hdlc_attach;
1234 	hdlc->xmit = ucc_hdlc_tx;
1235 	netif_napi_add(dev, &uhdlc_priv->napi, ucc_hdlc_poll, 32);
1236 	if (register_hdlc_device(dev)) {
1237 		ret = -ENOBUFS;
1238 		pr_err("ucc_hdlc: unable to register hdlc device\n");
1239 		goto free_dev;
1240 	}
1241 
1242 	return 0;
1243 
1244 free_dev:
1245 	free_netdev(dev);
1246 undo_uhdlc_init:
1247 	iounmap(utdm->siram);
1248 unmap_si_regs:
1249 	iounmap(utdm->si_regs);
1250 free_utdm:
1251 	if (uhdlc_priv->tsa)
1252 		kfree(utdm);
1253 free_uhdlc_priv:
1254 	kfree(uhdlc_priv);
1255 	return ret;
1256 }
1257 
1258 static int ucc_hdlc_remove(struct platform_device *pdev)
1259 {
1260 	struct ucc_hdlc_private *priv = dev_get_drvdata(&pdev->dev);
1261 
1262 	uhdlc_memclean(priv);
1263 
1264 	if (priv->utdm->si_regs) {
1265 		iounmap(priv->utdm->si_regs);
1266 		priv->utdm->si_regs = NULL;
1267 	}
1268 
1269 	if (priv->utdm->siram) {
1270 		iounmap(priv->utdm->siram);
1271 		priv->utdm->siram = NULL;
1272 	}
1273 	kfree(priv);
1274 
1275 	dev_info(&pdev->dev, "UCC based hdlc module removed\n");
1276 
1277 	return 0;
1278 }
1279 
1280 static const struct of_device_id fsl_ucc_hdlc_of_match[] = {
1281 	{
1282 	.compatible = "fsl,ucc-hdlc",
1283 	},
1284 	{},
1285 };
1286 
1287 MODULE_DEVICE_TABLE(of, fsl_ucc_hdlc_of_match);
1288 
1289 static struct platform_driver ucc_hdlc_driver = {
1290 	.probe	= ucc_hdlc_probe,
1291 	.remove	= ucc_hdlc_remove,
1292 	.driver	= {
1293 		.name		= DRV_NAME,
1294 		.pm		= HDLC_PM_OPS,
1295 		.of_match_table	= fsl_ucc_hdlc_of_match,
1296 	},
1297 };
1298 
1299 module_platform_driver(ucc_hdlc_driver);
1300 MODULE_LICENSE("GPL");
1301