xref: /openbmc/linux/drivers/net/wan/fsl_ucc_hdlc.c (revision b9b77222)
1 /* Freescale QUICC Engine HDLC Device Driver
2  *
3  * Copyright 2016 Freescale Semiconductor Inc.
4  *
5  * This program is free software; you can redistribute  it and/or modify it
6  * under  the terms of  the GNU General  Public License as published by the
7  * Free Software Foundation;  either version 2 of the  License, or (at your
8  * option) any later version.
9  */
10 
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/hdlc.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/irq.h>
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/netdevice.h>
21 #include <linux/of_address.h>
22 #include <linux/of_irq.h>
23 #include <linux/of_platform.h>
24 #include <linux/platform_device.h>
25 #include <linux/sched.h>
26 #include <linux/skbuff.h>
27 #include <linux/slab.h>
28 #include <linux/spinlock.h>
29 #include <linux/stddef.h>
30 #include <soc/fsl/qe/qe_tdm.h>
31 #include <uapi/linux/if_arp.h>
32 
33 #include "fsl_ucc_hdlc.h"
34 
35 #define DRV_DESC "Freescale QE UCC HDLC Driver"
36 #define DRV_NAME "ucc_hdlc"
37 
38 #define TDM_PPPOHT_SLIC_MAXIN
39 
40 static struct ucc_tdm_info utdm_primary_info = {
41 	.uf_info = {
42 		.tsa = 0,
43 		.cdp = 0,
44 		.cds = 1,
45 		.ctsp = 1,
46 		.ctss = 1,
47 		.revd = 0,
48 		.urfs = 256,
49 		.utfs = 256,
50 		.urfet = 128,
51 		.urfset = 192,
52 		.utfet = 128,
53 		.utftt = 0x40,
54 		.ufpt = 256,
55 		.mode = UCC_FAST_PROTOCOL_MODE_HDLC,
56 		.ttx_trx = UCC_FAST_GUMR_TRANSPARENT_TTX_TRX_NORMAL,
57 		.tenc = UCC_FAST_TX_ENCODING_NRZ,
58 		.renc = UCC_FAST_RX_ENCODING_NRZ,
59 		.tcrc = UCC_FAST_16_BIT_CRC,
60 		.synl = UCC_FAST_SYNC_LEN_NOT_USED,
61 	},
62 
63 	.si_info = {
64 #ifdef TDM_PPPOHT_SLIC_MAXIN
65 		.simr_rfsd = 1,
66 		.simr_tfsd = 2,
67 #else
68 		.simr_rfsd = 0,
69 		.simr_tfsd = 0,
70 #endif
71 		.simr_crt = 0,
72 		.simr_sl = 0,
73 		.simr_ce = 1,
74 		.simr_fe = 1,
75 		.simr_gm = 0,
76 	},
77 };
78 
79 static struct ucc_tdm_info utdm_info[MAX_HDLC_NUM];
80 
81 static int uhdlc_init(struct ucc_hdlc_private *priv)
82 {
83 	struct ucc_tdm_info *ut_info;
84 	struct ucc_fast_info *uf_info;
85 	u32 cecr_subblock;
86 	u16 bd_status;
87 	int ret, i;
88 	void *bd_buffer;
89 	dma_addr_t bd_dma_addr;
90 	u32 riptr;
91 	u32 tiptr;
92 	u32 gumr;
93 
94 	ut_info = priv->ut_info;
95 	uf_info = &ut_info->uf_info;
96 
97 	if (priv->tsa) {
98 		uf_info->tsa = 1;
99 		uf_info->ctsp = 1;
100 	}
101 
102 	/* This sets HPM register in CMXUCR register which configures a
103 	 * open drain connected HDLC bus
104 	 */
105 	if (priv->hdlc_bus)
106 		uf_info->brkpt_support = 1;
107 
108 	uf_info->uccm_mask = ((UCC_HDLC_UCCE_RXB | UCC_HDLC_UCCE_RXF |
109 				UCC_HDLC_UCCE_TXB) << 16);
110 
111 	ret = ucc_fast_init(uf_info, &priv->uccf);
112 	if (ret) {
113 		dev_err(priv->dev, "Failed to init uccf.");
114 		return ret;
115 	}
116 
117 	priv->uf_regs = priv->uccf->uf_regs;
118 	ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
119 
120 	/* Loopback mode */
121 	if (priv->loopback) {
122 		dev_info(priv->dev, "Loopback Mode\n");
123 		/* use the same clock when work in loopback */
124 		qe_setbrg(ut_info->uf_info.rx_clock, 20000000, 1);
125 
126 		gumr = ioread32be(&priv->uf_regs->gumr);
127 		gumr |= (UCC_FAST_GUMR_LOOPBACK | UCC_FAST_GUMR_CDS |
128 			 UCC_FAST_GUMR_TCI);
129 		gumr &= ~(UCC_FAST_GUMR_CTSP | UCC_FAST_GUMR_RSYN);
130 		iowrite32be(gumr, &priv->uf_regs->gumr);
131 	}
132 
133 	/* Initialize SI */
134 	if (priv->tsa)
135 		ucc_tdm_init(priv->utdm, priv->ut_info);
136 
137 	/* Write to QE CECR, UCCx channel to Stop Transmission */
138 	cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
139 	ret = qe_issue_cmd(QE_STOP_TX, cecr_subblock,
140 			   QE_CR_PROTOCOL_UNSPECIFIED, 0);
141 
142 	/* Set UPSMR normal mode (need fixed)*/
143 	iowrite32be(0, &priv->uf_regs->upsmr);
144 
145 	/* hdlc_bus mode */
146 	if (priv->hdlc_bus) {
147 		u32 upsmr;
148 
149 		dev_info(priv->dev, "HDLC bus Mode\n");
150 		upsmr = ioread32be(&priv->uf_regs->upsmr);
151 
152 		/* bus mode and retransmit enable, with collision window
153 		 * set to 8 bytes
154 		 */
155 		upsmr |= UCC_HDLC_UPSMR_RTE | UCC_HDLC_UPSMR_BUS |
156 				UCC_HDLC_UPSMR_CW8;
157 		iowrite32be(upsmr, &priv->uf_regs->upsmr);
158 
159 		/* explicitly disable CDS & CTSP */
160 		gumr = ioread32be(&priv->uf_regs->gumr);
161 		gumr &= ~(UCC_FAST_GUMR_CDS | UCC_FAST_GUMR_CTSP);
162 		/* set automatic sync to explicitly ignore CD signal */
163 		gumr |= UCC_FAST_GUMR_SYNL_AUTO;
164 		iowrite32be(gumr, &priv->uf_regs->gumr);
165 	}
166 
167 	priv->rx_ring_size = RX_BD_RING_LEN;
168 	priv->tx_ring_size = TX_BD_RING_LEN;
169 	/* Alloc Rx BD */
170 	priv->rx_bd_base = dma_alloc_coherent(priv->dev,
171 			RX_BD_RING_LEN * sizeof(struct qe_bd),
172 			&priv->dma_rx_bd, GFP_KERNEL);
173 
174 	if (!priv->rx_bd_base) {
175 		dev_err(priv->dev, "Cannot allocate MURAM memory for RxBDs\n");
176 		ret = -ENOMEM;
177 		goto free_uccf;
178 	}
179 
180 	/* Alloc Tx BD */
181 	priv->tx_bd_base = dma_alloc_coherent(priv->dev,
182 			TX_BD_RING_LEN * sizeof(struct qe_bd),
183 			&priv->dma_tx_bd, GFP_KERNEL);
184 
185 	if (!priv->tx_bd_base) {
186 		dev_err(priv->dev, "Cannot allocate MURAM memory for TxBDs\n");
187 		ret = -ENOMEM;
188 		goto free_rx_bd;
189 	}
190 
191 	/* Alloc parameter ram for ucc hdlc */
192 	priv->ucc_pram_offset = qe_muram_alloc(sizeof(struct ucc_hdlc_param),
193 				ALIGNMENT_OF_UCC_HDLC_PRAM);
194 
195 	if (priv->ucc_pram_offset < 0) {
196 		dev_err(priv->dev, "Can not allocate MURAM for hdlc parameter.\n");
197 		ret = -ENOMEM;
198 		goto free_tx_bd;
199 	}
200 
201 	priv->rx_skbuff = kcalloc(priv->rx_ring_size,
202 				  sizeof(*priv->rx_skbuff),
203 				  GFP_KERNEL);
204 	if (!priv->rx_skbuff)
205 		goto free_ucc_pram;
206 
207 	priv->tx_skbuff = kcalloc(priv->tx_ring_size,
208 				  sizeof(*priv->tx_skbuff),
209 				  GFP_KERNEL);
210 	if (!priv->tx_skbuff)
211 		goto free_rx_skbuff;
212 
213 	priv->skb_curtx = 0;
214 	priv->skb_dirtytx = 0;
215 	priv->curtx_bd = priv->tx_bd_base;
216 	priv->dirty_tx = priv->tx_bd_base;
217 	priv->currx_bd = priv->rx_bd_base;
218 	priv->currx_bdnum = 0;
219 
220 	/* init parameter base */
221 	cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
222 	ret = qe_issue_cmd(QE_ASSIGN_PAGE_TO_DEVICE, cecr_subblock,
223 			   QE_CR_PROTOCOL_UNSPECIFIED, priv->ucc_pram_offset);
224 
225 	priv->ucc_pram = (struct ucc_hdlc_param __iomem *)
226 					qe_muram_addr(priv->ucc_pram_offset);
227 
228 	/* Zero out parameter ram */
229 	memset_io(priv->ucc_pram, 0, sizeof(struct ucc_hdlc_param));
230 
231 	/* Alloc riptr, tiptr */
232 	riptr = qe_muram_alloc(32, 32);
233 	if (riptr < 0) {
234 		dev_err(priv->dev, "Cannot allocate MURAM mem for Receive internal temp data pointer\n");
235 		ret = -ENOMEM;
236 		goto free_tx_skbuff;
237 	}
238 
239 	tiptr = qe_muram_alloc(32, 32);
240 	if (tiptr < 0) {
241 		dev_err(priv->dev, "Cannot allocate MURAM mem for Transmit internal temp data pointer\n");
242 		ret = -ENOMEM;
243 		goto free_riptr;
244 	}
245 
246 	/* Set RIPTR, TIPTR */
247 	iowrite16be(riptr, &priv->ucc_pram->riptr);
248 	iowrite16be(tiptr, &priv->ucc_pram->tiptr);
249 
250 	/* Set MRBLR */
251 	iowrite16be(MAX_RX_BUF_LENGTH, &priv->ucc_pram->mrblr);
252 
253 	/* Set RBASE, TBASE */
254 	iowrite32be(priv->dma_rx_bd, &priv->ucc_pram->rbase);
255 	iowrite32be(priv->dma_tx_bd, &priv->ucc_pram->tbase);
256 
257 	/* Set RSTATE, TSTATE */
258 	iowrite32be(BMR_GBL | BMR_BIG_ENDIAN, &priv->ucc_pram->rstate);
259 	iowrite32be(BMR_GBL | BMR_BIG_ENDIAN, &priv->ucc_pram->tstate);
260 
261 	/* Set C_MASK, C_PRES for 16bit CRC */
262 	iowrite32be(CRC_16BIT_MASK, &priv->ucc_pram->c_mask);
263 	iowrite32be(CRC_16BIT_PRES, &priv->ucc_pram->c_pres);
264 
265 	iowrite16be(MAX_FRAME_LENGTH, &priv->ucc_pram->mflr);
266 	iowrite16be(DEFAULT_RFTHR, &priv->ucc_pram->rfthr);
267 	iowrite16be(DEFAULT_RFTHR, &priv->ucc_pram->rfcnt);
268 	iowrite16be(DEFAULT_ADDR_MASK, &priv->ucc_pram->hmask);
269 	iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr1);
270 	iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr2);
271 	iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr3);
272 	iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr4);
273 
274 	/* Get BD buffer */
275 	bd_buffer = dma_zalloc_coherent(priv->dev,
276 					(RX_BD_RING_LEN + TX_BD_RING_LEN) *
277 					MAX_RX_BUF_LENGTH,
278 					&bd_dma_addr, GFP_KERNEL);
279 
280 	if (!bd_buffer) {
281 		dev_err(priv->dev, "Could not allocate buffer descriptors\n");
282 		ret = -ENOMEM;
283 		goto free_tiptr;
284 	}
285 
286 	priv->rx_buffer = bd_buffer;
287 	priv->tx_buffer = bd_buffer + RX_BD_RING_LEN * MAX_RX_BUF_LENGTH;
288 
289 	priv->dma_rx_addr = bd_dma_addr;
290 	priv->dma_tx_addr = bd_dma_addr + RX_BD_RING_LEN * MAX_RX_BUF_LENGTH;
291 
292 	for (i = 0; i < RX_BD_RING_LEN; i++) {
293 		if (i < (RX_BD_RING_LEN - 1))
294 			bd_status = R_E_S | R_I_S;
295 		else
296 			bd_status = R_E_S | R_I_S | R_W_S;
297 
298 		iowrite16be(bd_status, &priv->rx_bd_base[i].status);
299 		iowrite32be(priv->dma_rx_addr + i * MAX_RX_BUF_LENGTH,
300 			    &priv->rx_bd_base[i].buf);
301 	}
302 
303 	for (i = 0; i < TX_BD_RING_LEN; i++) {
304 		if (i < (TX_BD_RING_LEN - 1))
305 			bd_status =  T_I_S | T_TC_S;
306 		else
307 			bd_status =  T_I_S | T_TC_S | T_W_S;
308 
309 		iowrite16be(bd_status, &priv->tx_bd_base[i].status);
310 		iowrite32be(priv->dma_tx_addr + i * MAX_RX_BUF_LENGTH,
311 			    &priv->tx_bd_base[i].buf);
312 	}
313 
314 	return 0;
315 
316 free_tiptr:
317 	qe_muram_free(tiptr);
318 free_riptr:
319 	qe_muram_free(riptr);
320 free_tx_skbuff:
321 	kfree(priv->tx_skbuff);
322 free_rx_skbuff:
323 	kfree(priv->rx_skbuff);
324 free_ucc_pram:
325 	qe_muram_free(priv->ucc_pram_offset);
326 free_tx_bd:
327 	dma_free_coherent(priv->dev,
328 			  TX_BD_RING_LEN * sizeof(struct qe_bd),
329 			  priv->tx_bd_base, priv->dma_tx_bd);
330 free_rx_bd:
331 	dma_free_coherent(priv->dev,
332 			  RX_BD_RING_LEN * sizeof(struct qe_bd),
333 			  priv->rx_bd_base, priv->dma_rx_bd);
334 free_uccf:
335 	ucc_fast_free(priv->uccf);
336 
337 	return ret;
338 }
339 
340 static netdev_tx_t ucc_hdlc_tx(struct sk_buff *skb, struct net_device *dev)
341 {
342 	hdlc_device *hdlc = dev_to_hdlc(dev);
343 	struct ucc_hdlc_private *priv = (struct ucc_hdlc_private *)hdlc->priv;
344 	struct qe_bd __iomem *bd;
345 	u16 bd_status;
346 	unsigned long flags;
347 	u16 *proto_head;
348 
349 	switch (dev->type) {
350 	case ARPHRD_RAWHDLC:
351 		if (skb_headroom(skb) < HDLC_HEAD_LEN) {
352 			dev->stats.tx_dropped++;
353 			dev_kfree_skb(skb);
354 			netdev_err(dev, "No enough space for hdlc head\n");
355 			return -ENOMEM;
356 		}
357 
358 		skb_push(skb, HDLC_HEAD_LEN);
359 
360 		proto_head = (u16 *)skb->data;
361 		*proto_head = htons(DEFAULT_HDLC_HEAD);
362 
363 		dev->stats.tx_bytes += skb->len;
364 		break;
365 
366 	case ARPHRD_PPP:
367 		proto_head = (u16 *)skb->data;
368 		if (*proto_head != htons(DEFAULT_PPP_HEAD)) {
369 			dev->stats.tx_dropped++;
370 			dev_kfree_skb(skb);
371 			netdev_err(dev, "Wrong ppp header\n");
372 			return -ENOMEM;
373 		}
374 
375 		dev->stats.tx_bytes += skb->len;
376 		break;
377 
378 	default:
379 		dev->stats.tx_dropped++;
380 		dev_kfree_skb(skb);
381 		return -ENOMEM;
382 	}
383 	spin_lock_irqsave(&priv->lock, flags);
384 
385 	/* Start from the next BD that should be filled */
386 	bd = priv->curtx_bd;
387 	bd_status = ioread16be(&bd->status);
388 	/* Save the skb pointer so we can free it later */
389 	priv->tx_skbuff[priv->skb_curtx] = skb;
390 
391 	/* Update the current skb pointer (wrapping if this was the last) */
392 	priv->skb_curtx =
393 	    (priv->skb_curtx + 1) & TX_RING_MOD_MASK(TX_BD_RING_LEN);
394 
395 	/* copy skb data to tx buffer for sdma processing */
396 	memcpy(priv->tx_buffer + (be32_to_cpu(bd->buf) - priv->dma_tx_addr),
397 	       skb->data, skb->len);
398 
399 	/* set bd status and length */
400 	bd_status = (bd_status & T_W_S) | T_R_S | T_I_S | T_L_S | T_TC_S;
401 
402 	iowrite16be(skb->len, &bd->length);
403 	iowrite16be(bd_status, &bd->status);
404 
405 	/* Move to next BD in the ring */
406 	if (!(bd_status & T_W_S))
407 		bd += 1;
408 	else
409 		bd = priv->tx_bd_base;
410 
411 	if (bd == priv->dirty_tx) {
412 		if (!netif_queue_stopped(dev))
413 			netif_stop_queue(dev);
414 	}
415 
416 	priv->curtx_bd = bd;
417 
418 	spin_unlock_irqrestore(&priv->lock, flags);
419 
420 	return NETDEV_TX_OK;
421 }
422 
423 static int hdlc_tx_done(struct ucc_hdlc_private *priv)
424 {
425 	/* Start from the next BD that should be filled */
426 	struct net_device *dev = priv->ndev;
427 	struct qe_bd *bd;		/* BD pointer */
428 	u16 bd_status;
429 
430 	bd = priv->dirty_tx;
431 	bd_status = ioread16be(&bd->status);
432 
433 	/* Normal processing. */
434 	while ((bd_status & T_R_S) == 0) {
435 		struct sk_buff *skb;
436 
437 		/* BD contains already transmitted buffer.   */
438 		/* Handle the transmitted buffer and release */
439 		/* the BD to be used with the current frame  */
440 
441 		skb = priv->tx_skbuff[priv->skb_dirtytx];
442 		if (!skb)
443 			break;
444 		dev->stats.tx_packets++;
445 		memset(priv->tx_buffer +
446 		       (be32_to_cpu(bd->buf) - priv->dma_tx_addr),
447 		       0, skb->len);
448 		dev_kfree_skb_irq(skb);
449 
450 		priv->tx_skbuff[priv->skb_dirtytx] = NULL;
451 		priv->skb_dirtytx =
452 		    (priv->skb_dirtytx +
453 		     1) & TX_RING_MOD_MASK(TX_BD_RING_LEN);
454 
455 		/* We freed a buffer, so now we can restart transmission */
456 		if (netif_queue_stopped(dev))
457 			netif_wake_queue(dev);
458 
459 		/* Advance the confirmation BD pointer */
460 		if (!(bd_status & T_W_S))
461 			bd += 1;
462 		else
463 			bd = priv->tx_bd_base;
464 		bd_status = ioread16be(&bd->status);
465 	}
466 	priv->dirty_tx = bd;
467 
468 	return 0;
469 }
470 
471 static int hdlc_rx_done(struct ucc_hdlc_private *priv, int rx_work_limit)
472 {
473 	struct net_device *dev = priv->ndev;
474 	struct sk_buff *skb = NULL;
475 	hdlc_device *hdlc = dev_to_hdlc(dev);
476 	struct qe_bd *bd;
477 	u16 bd_status;
478 	u16 length, howmany = 0;
479 	u8 *bdbuffer;
480 
481 	bd = priv->currx_bd;
482 	bd_status = ioread16be(&bd->status);
483 
484 	/* while there are received buffers and BD is full (~R_E) */
485 	while (!((bd_status & (R_E_S)) || (--rx_work_limit < 0))) {
486 		if (bd_status & R_OV_S)
487 			dev->stats.rx_over_errors++;
488 		if (bd_status & R_CR_S) {
489 			dev->stats.rx_crc_errors++;
490 			dev->stats.rx_dropped++;
491 			goto recycle;
492 		}
493 		bdbuffer = priv->rx_buffer +
494 			(priv->currx_bdnum * MAX_RX_BUF_LENGTH);
495 		length = ioread16be(&bd->length);
496 
497 		switch (dev->type) {
498 		case ARPHRD_RAWHDLC:
499 			bdbuffer += HDLC_HEAD_LEN;
500 			length -= (HDLC_HEAD_LEN + HDLC_CRC_SIZE);
501 
502 			skb = dev_alloc_skb(length);
503 			if (!skb) {
504 				dev->stats.rx_dropped++;
505 				return -ENOMEM;
506 			}
507 
508 			skb_put(skb, length);
509 			skb->len = length;
510 			skb->dev = dev;
511 			memcpy(skb->data, bdbuffer, length);
512 			break;
513 
514 		case ARPHRD_PPP:
515 			length -= HDLC_CRC_SIZE;
516 
517 			skb = dev_alloc_skb(length);
518 			if (!skb) {
519 				dev->stats.rx_dropped++;
520 				return -ENOMEM;
521 			}
522 
523 			skb_put(skb, length);
524 			skb->len = length;
525 			skb->dev = dev;
526 			memcpy(skb->data, bdbuffer, length);
527 			break;
528 		}
529 
530 		dev->stats.rx_packets++;
531 		dev->stats.rx_bytes += skb->len;
532 		howmany++;
533 		if (hdlc->proto)
534 			skb->protocol = hdlc_type_trans(skb, dev);
535 		netif_receive_skb(skb);
536 
537 recycle:
538 		iowrite16be(bd_status | R_E_S | R_I_S, &bd->status);
539 
540 		/* update to point at the next bd */
541 		if (bd_status & R_W_S) {
542 			priv->currx_bdnum = 0;
543 			bd = priv->rx_bd_base;
544 		} else {
545 			if (priv->currx_bdnum < (RX_BD_RING_LEN - 1))
546 				priv->currx_bdnum += 1;
547 			else
548 				priv->currx_bdnum = RX_BD_RING_LEN - 1;
549 
550 			bd += 1;
551 		}
552 
553 		bd_status = ioread16be(&bd->status);
554 	}
555 
556 	priv->currx_bd = bd;
557 	return howmany;
558 }
559 
560 static int ucc_hdlc_poll(struct napi_struct *napi, int budget)
561 {
562 	struct ucc_hdlc_private *priv = container_of(napi,
563 						     struct ucc_hdlc_private,
564 						     napi);
565 	int howmany;
566 
567 	/* Tx event processing */
568 	spin_lock(&priv->lock);
569 	hdlc_tx_done(priv);
570 	spin_unlock(&priv->lock);
571 
572 	howmany = 0;
573 	howmany += hdlc_rx_done(priv, budget - howmany);
574 
575 	if (howmany < budget) {
576 		napi_complete_done(napi, howmany);
577 		qe_setbits32(priv->uccf->p_uccm,
578 			     (UCCE_HDLC_RX_EVENTS | UCCE_HDLC_TX_EVENTS) << 16);
579 	}
580 
581 	return howmany;
582 }
583 
584 static irqreturn_t ucc_hdlc_irq_handler(int irq, void *dev_id)
585 {
586 	struct ucc_hdlc_private *priv = (struct ucc_hdlc_private *)dev_id;
587 	struct net_device *dev = priv->ndev;
588 	struct ucc_fast_private *uccf;
589 	struct ucc_tdm_info *ut_info;
590 	u32 ucce;
591 	u32 uccm;
592 
593 	ut_info = priv->ut_info;
594 	uccf = priv->uccf;
595 
596 	ucce = ioread32be(uccf->p_ucce);
597 	uccm = ioread32be(uccf->p_uccm);
598 	ucce &= uccm;
599 	iowrite32be(ucce, uccf->p_ucce);
600 	if (!ucce)
601 		return IRQ_NONE;
602 
603 	if ((ucce >> 16) & (UCCE_HDLC_RX_EVENTS | UCCE_HDLC_TX_EVENTS)) {
604 		if (napi_schedule_prep(&priv->napi)) {
605 			uccm &= ~((UCCE_HDLC_RX_EVENTS | UCCE_HDLC_TX_EVENTS)
606 				  << 16);
607 			iowrite32be(uccm, uccf->p_uccm);
608 			__napi_schedule(&priv->napi);
609 		}
610 	}
611 
612 	/* Errors and other events */
613 	if (ucce >> 16 & UCC_HDLC_UCCE_BSY)
614 		dev->stats.rx_errors++;
615 	if (ucce >> 16 & UCC_HDLC_UCCE_TXE)
616 		dev->stats.tx_errors++;
617 
618 	return IRQ_HANDLED;
619 }
620 
621 static int uhdlc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
622 {
623 	const size_t size = sizeof(te1_settings);
624 	te1_settings line;
625 	struct ucc_hdlc_private *priv = netdev_priv(dev);
626 
627 	if (cmd != SIOCWANDEV)
628 		return hdlc_ioctl(dev, ifr, cmd);
629 
630 	switch (ifr->ifr_settings.type) {
631 	case IF_GET_IFACE:
632 		ifr->ifr_settings.type = IF_IFACE_E1;
633 		if (ifr->ifr_settings.size < size) {
634 			ifr->ifr_settings.size = size; /* data size wanted */
635 			return -ENOBUFS;
636 		}
637 		memset(&line, 0, sizeof(line));
638 		line.clock_type = priv->clocking;
639 
640 		if (copy_to_user(ifr->ifr_settings.ifs_ifsu.sync, &line, size))
641 			return -EFAULT;
642 		return 0;
643 
644 	default:
645 		return hdlc_ioctl(dev, ifr, cmd);
646 	}
647 }
648 
649 static int uhdlc_open(struct net_device *dev)
650 {
651 	u32 cecr_subblock;
652 	hdlc_device *hdlc = dev_to_hdlc(dev);
653 	struct ucc_hdlc_private *priv = hdlc->priv;
654 	struct ucc_tdm *utdm = priv->utdm;
655 
656 	if (priv->hdlc_busy != 1) {
657 		if (request_irq(priv->ut_info->uf_info.irq,
658 				ucc_hdlc_irq_handler, 0, "hdlc", priv))
659 			return -ENODEV;
660 
661 		cecr_subblock = ucc_fast_get_qe_cr_subblock(
662 					priv->ut_info->uf_info.ucc_num);
663 
664 		qe_issue_cmd(QE_INIT_TX_RX, cecr_subblock,
665 			     QE_CR_PROTOCOL_UNSPECIFIED, 0);
666 
667 		ucc_fast_enable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
668 
669 		/* Enable the TDM port */
670 		if (priv->tsa)
671 			utdm->si_regs->siglmr1_h |= (0x1 << utdm->tdm_port);
672 
673 		priv->hdlc_busy = 1;
674 		netif_device_attach(priv->ndev);
675 		napi_enable(&priv->napi);
676 		netif_start_queue(dev);
677 		hdlc_open(dev);
678 	}
679 
680 	return 0;
681 }
682 
683 static void uhdlc_memclean(struct ucc_hdlc_private *priv)
684 {
685 	qe_muram_free(priv->ucc_pram->riptr);
686 	qe_muram_free(priv->ucc_pram->tiptr);
687 
688 	if (priv->rx_bd_base) {
689 		dma_free_coherent(priv->dev,
690 				  RX_BD_RING_LEN * sizeof(struct qe_bd),
691 				  priv->rx_bd_base, priv->dma_rx_bd);
692 
693 		priv->rx_bd_base = NULL;
694 		priv->dma_rx_bd = 0;
695 	}
696 
697 	if (priv->tx_bd_base) {
698 		dma_free_coherent(priv->dev,
699 				  TX_BD_RING_LEN * sizeof(struct qe_bd),
700 				  priv->tx_bd_base, priv->dma_tx_bd);
701 
702 		priv->tx_bd_base = NULL;
703 		priv->dma_tx_bd = 0;
704 	}
705 
706 	if (priv->ucc_pram) {
707 		qe_muram_free(priv->ucc_pram_offset);
708 		priv->ucc_pram = NULL;
709 		priv->ucc_pram_offset = 0;
710 	 }
711 
712 	kfree(priv->rx_skbuff);
713 	priv->rx_skbuff = NULL;
714 
715 	kfree(priv->tx_skbuff);
716 	priv->tx_skbuff = NULL;
717 
718 	if (priv->uf_regs) {
719 		iounmap(priv->uf_regs);
720 		priv->uf_regs = NULL;
721 	}
722 
723 	if (priv->uccf) {
724 		ucc_fast_free(priv->uccf);
725 		priv->uccf = NULL;
726 	}
727 
728 	if (priv->rx_buffer) {
729 		dma_free_coherent(priv->dev,
730 				  RX_BD_RING_LEN * MAX_RX_BUF_LENGTH,
731 				  priv->rx_buffer, priv->dma_rx_addr);
732 		priv->rx_buffer = NULL;
733 		priv->dma_rx_addr = 0;
734 	}
735 
736 	if (priv->tx_buffer) {
737 		dma_free_coherent(priv->dev,
738 				  TX_BD_RING_LEN * MAX_RX_BUF_LENGTH,
739 				  priv->tx_buffer, priv->dma_tx_addr);
740 		priv->tx_buffer = NULL;
741 		priv->dma_tx_addr = 0;
742 	}
743 }
744 
745 static int uhdlc_close(struct net_device *dev)
746 {
747 	struct ucc_hdlc_private *priv = dev_to_hdlc(dev)->priv;
748 	struct ucc_tdm *utdm = priv->utdm;
749 	u32 cecr_subblock;
750 
751 	napi_disable(&priv->napi);
752 	cecr_subblock = ucc_fast_get_qe_cr_subblock(
753 				priv->ut_info->uf_info.ucc_num);
754 
755 	qe_issue_cmd(QE_GRACEFUL_STOP_TX, cecr_subblock,
756 		     (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0);
757 	qe_issue_cmd(QE_CLOSE_RX_BD, cecr_subblock,
758 		     (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0);
759 
760 	if (priv->tsa)
761 		utdm->si_regs->siglmr1_h &= ~(0x1 << utdm->tdm_port);
762 
763 	ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
764 
765 	free_irq(priv->ut_info->uf_info.irq, priv);
766 	netif_stop_queue(dev);
767 	priv->hdlc_busy = 0;
768 
769 	return 0;
770 }
771 
772 static int ucc_hdlc_attach(struct net_device *dev, unsigned short encoding,
773 			   unsigned short parity)
774 {
775 	struct ucc_hdlc_private *priv = dev_to_hdlc(dev)->priv;
776 
777 	if (encoding != ENCODING_NRZ &&
778 	    encoding != ENCODING_NRZI)
779 		return -EINVAL;
780 
781 	if (parity != PARITY_NONE &&
782 	    parity != PARITY_CRC32_PR1_CCITT &&
783 	    parity != PARITY_CRC16_PR1_CCITT)
784 		return -EINVAL;
785 
786 	priv->encoding = encoding;
787 	priv->parity = parity;
788 
789 	return 0;
790 }
791 
792 #ifdef CONFIG_PM
793 static void store_clk_config(struct ucc_hdlc_private *priv)
794 {
795 	struct qe_mux *qe_mux_reg = &qe_immr->qmx;
796 
797 	/* store si clk */
798 	priv->cmxsi1cr_h = ioread32be(&qe_mux_reg->cmxsi1cr_h);
799 	priv->cmxsi1cr_l = ioread32be(&qe_mux_reg->cmxsi1cr_l);
800 
801 	/* store si sync */
802 	priv->cmxsi1syr = ioread32be(&qe_mux_reg->cmxsi1syr);
803 
804 	/* store ucc clk */
805 	memcpy_fromio(priv->cmxucr, qe_mux_reg->cmxucr, 4 * sizeof(u32));
806 }
807 
808 static void resume_clk_config(struct ucc_hdlc_private *priv)
809 {
810 	struct qe_mux *qe_mux_reg = &qe_immr->qmx;
811 
812 	memcpy_toio(qe_mux_reg->cmxucr, priv->cmxucr, 4 * sizeof(u32));
813 
814 	iowrite32be(priv->cmxsi1cr_h, &qe_mux_reg->cmxsi1cr_h);
815 	iowrite32be(priv->cmxsi1cr_l, &qe_mux_reg->cmxsi1cr_l);
816 
817 	iowrite32be(priv->cmxsi1syr, &qe_mux_reg->cmxsi1syr);
818 }
819 
820 static int uhdlc_suspend(struct device *dev)
821 {
822 	struct ucc_hdlc_private *priv = dev_get_drvdata(dev);
823 	struct ucc_tdm_info *ut_info;
824 	struct ucc_fast __iomem *uf_regs;
825 
826 	if (!priv)
827 		return -EINVAL;
828 
829 	if (!netif_running(priv->ndev))
830 		return 0;
831 
832 	netif_device_detach(priv->ndev);
833 	napi_disable(&priv->napi);
834 
835 	ut_info = priv->ut_info;
836 	uf_regs = priv->uf_regs;
837 
838 	/* backup gumr guemr*/
839 	priv->gumr = ioread32be(&uf_regs->gumr);
840 	priv->guemr = ioread8(&uf_regs->guemr);
841 
842 	priv->ucc_pram_bak = kmalloc(sizeof(*priv->ucc_pram_bak),
843 					GFP_KERNEL);
844 	if (!priv->ucc_pram_bak)
845 		return -ENOMEM;
846 
847 	/* backup HDLC parameter */
848 	memcpy_fromio(priv->ucc_pram_bak, priv->ucc_pram,
849 		      sizeof(struct ucc_hdlc_param));
850 
851 	/* store the clk configuration */
852 	store_clk_config(priv);
853 
854 	/* save power */
855 	ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
856 
857 	return 0;
858 }
859 
860 static int uhdlc_resume(struct device *dev)
861 {
862 	struct ucc_hdlc_private *priv = dev_get_drvdata(dev);
863 	struct ucc_tdm *utdm;
864 	struct ucc_tdm_info *ut_info;
865 	struct ucc_fast __iomem *uf_regs;
866 	struct ucc_fast_private *uccf;
867 	struct ucc_fast_info *uf_info;
868 	int ret, i;
869 	u32 cecr_subblock;
870 	u16 bd_status;
871 
872 	if (!priv)
873 		return -EINVAL;
874 
875 	if (!netif_running(priv->ndev))
876 		return 0;
877 
878 	utdm = priv->utdm;
879 	ut_info = priv->ut_info;
880 	uf_info = &ut_info->uf_info;
881 	uf_regs = priv->uf_regs;
882 	uccf = priv->uccf;
883 
884 	/* restore gumr guemr */
885 	iowrite8(priv->guemr, &uf_regs->guemr);
886 	iowrite32be(priv->gumr, &uf_regs->gumr);
887 
888 	/* Set Virtual Fifo registers */
889 	iowrite16be(uf_info->urfs, &uf_regs->urfs);
890 	iowrite16be(uf_info->urfet, &uf_regs->urfet);
891 	iowrite16be(uf_info->urfset, &uf_regs->urfset);
892 	iowrite16be(uf_info->utfs, &uf_regs->utfs);
893 	iowrite16be(uf_info->utfet, &uf_regs->utfet);
894 	iowrite16be(uf_info->utftt, &uf_regs->utftt);
895 	/* utfb, urfb are offsets from MURAM base */
896 	iowrite32be(uccf->ucc_fast_tx_virtual_fifo_base_offset, &uf_regs->utfb);
897 	iowrite32be(uccf->ucc_fast_rx_virtual_fifo_base_offset, &uf_regs->urfb);
898 
899 	/* Rx Tx and sync clock routing */
900 	resume_clk_config(priv);
901 
902 	iowrite32be(uf_info->uccm_mask, &uf_regs->uccm);
903 	iowrite32be(0xffffffff, &uf_regs->ucce);
904 
905 	ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
906 
907 	/* rebuild SIRAM */
908 	if (priv->tsa)
909 		ucc_tdm_init(priv->utdm, priv->ut_info);
910 
911 	/* Write to QE CECR, UCCx channel to Stop Transmission */
912 	cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
913 	ret = qe_issue_cmd(QE_STOP_TX, cecr_subblock,
914 			   (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0);
915 
916 	/* Set UPSMR normal mode */
917 	iowrite32be(0, &uf_regs->upsmr);
918 
919 	/* init parameter base */
920 	cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
921 	ret = qe_issue_cmd(QE_ASSIGN_PAGE_TO_DEVICE, cecr_subblock,
922 			   QE_CR_PROTOCOL_UNSPECIFIED, priv->ucc_pram_offset);
923 
924 	priv->ucc_pram = (struct ucc_hdlc_param __iomem *)
925 				qe_muram_addr(priv->ucc_pram_offset);
926 
927 	/* restore ucc parameter */
928 	memcpy_toio(priv->ucc_pram, priv->ucc_pram_bak,
929 		    sizeof(struct ucc_hdlc_param));
930 	kfree(priv->ucc_pram_bak);
931 
932 	/* rebuild BD entry */
933 	for (i = 0; i < RX_BD_RING_LEN; i++) {
934 		if (i < (RX_BD_RING_LEN - 1))
935 			bd_status = R_E_S | R_I_S;
936 		else
937 			bd_status = R_E_S | R_I_S | R_W_S;
938 
939 		iowrite16be(bd_status, &priv->rx_bd_base[i].status);
940 		iowrite32be(priv->dma_rx_addr + i * MAX_RX_BUF_LENGTH,
941 			    &priv->rx_bd_base[i].buf);
942 	}
943 
944 	for (i = 0; i < TX_BD_RING_LEN; i++) {
945 		if (i < (TX_BD_RING_LEN - 1))
946 			bd_status =  T_I_S | T_TC_S;
947 		else
948 			bd_status =  T_I_S | T_TC_S | T_W_S;
949 
950 		iowrite16be(bd_status, &priv->tx_bd_base[i].status);
951 		iowrite32be(priv->dma_tx_addr + i * MAX_RX_BUF_LENGTH,
952 			    &priv->tx_bd_base[i].buf);
953 	}
954 
955 	/* if hdlc is busy enable TX and RX */
956 	if (priv->hdlc_busy == 1) {
957 		cecr_subblock = ucc_fast_get_qe_cr_subblock(
958 					priv->ut_info->uf_info.ucc_num);
959 
960 		qe_issue_cmd(QE_INIT_TX_RX, cecr_subblock,
961 			     (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0);
962 
963 		ucc_fast_enable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
964 
965 		/* Enable the TDM port */
966 		if (priv->tsa)
967 			utdm->si_regs->siglmr1_h |= (0x1 << utdm->tdm_port);
968 	}
969 
970 	napi_enable(&priv->napi);
971 	netif_device_attach(priv->ndev);
972 
973 	return 0;
974 }
975 
976 static const struct dev_pm_ops uhdlc_pm_ops = {
977 	.suspend = uhdlc_suspend,
978 	.resume = uhdlc_resume,
979 	.freeze = uhdlc_suspend,
980 	.thaw = uhdlc_resume,
981 };
982 
983 #define HDLC_PM_OPS (&uhdlc_pm_ops)
984 
985 #else
986 
987 #define HDLC_PM_OPS NULL
988 
989 #endif
990 static const struct net_device_ops uhdlc_ops = {
991 	.ndo_open       = uhdlc_open,
992 	.ndo_stop       = uhdlc_close,
993 	.ndo_start_xmit = hdlc_start_xmit,
994 	.ndo_do_ioctl   = uhdlc_ioctl,
995 };
996 
997 static int ucc_hdlc_probe(struct platform_device *pdev)
998 {
999 	struct device_node *np = pdev->dev.of_node;
1000 	struct ucc_hdlc_private *uhdlc_priv = NULL;
1001 	struct ucc_tdm_info *ut_info;
1002 	struct ucc_tdm *utdm = NULL;
1003 	struct resource res;
1004 	struct net_device *dev;
1005 	hdlc_device *hdlc;
1006 	int ucc_num;
1007 	const char *sprop;
1008 	int ret;
1009 	u32 val;
1010 
1011 	ret = of_property_read_u32_index(np, "cell-index", 0, &val);
1012 	if (ret) {
1013 		dev_err(&pdev->dev, "Invalid ucc property\n");
1014 		return -ENODEV;
1015 	}
1016 
1017 	ucc_num = val - 1;
1018 	if ((ucc_num > 3) || (ucc_num < 0)) {
1019 		dev_err(&pdev->dev, ": Invalid UCC num\n");
1020 		return -EINVAL;
1021 	}
1022 
1023 	memcpy(&utdm_info[ucc_num], &utdm_primary_info,
1024 	       sizeof(utdm_primary_info));
1025 
1026 	ut_info = &utdm_info[ucc_num];
1027 	ut_info->uf_info.ucc_num = ucc_num;
1028 
1029 	sprop = of_get_property(np, "rx-clock-name", NULL);
1030 	if (sprop) {
1031 		ut_info->uf_info.rx_clock = qe_clock_source(sprop);
1032 		if ((ut_info->uf_info.rx_clock < QE_CLK_NONE) ||
1033 		    (ut_info->uf_info.rx_clock > QE_CLK24)) {
1034 			dev_err(&pdev->dev, "Invalid rx-clock-name property\n");
1035 			return -EINVAL;
1036 		}
1037 	} else {
1038 		dev_err(&pdev->dev, "Invalid rx-clock-name property\n");
1039 		return -EINVAL;
1040 	}
1041 
1042 	sprop = of_get_property(np, "tx-clock-name", NULL);
1043 	if (sprop) {
1044 		ut_info->uf_info.tx_clock = qe_clock_source(sprop);
1045 		if ((ut_info->uf_info.tx_clock < QE_CLK_NONE) ||
1046 		    (ut_info->uf_info.tx_clock > QE_CLK24)) {
1047 			dev_err(&pdev->dev, "Invalid tx-clock-name property\n");
1048 			return -EINVAL;
1049 		}
1050 	} else {
1051 		dev_err(&pdev->dev, "Invalid tx-clock-name property\n");
1052 		return -EINVAL;
1053 	}
1054 
1055 	ret = of_address_to_resource(np, 0, &res);
1056 	if (ret)
1057 		return -EINVAL;
1058 
1059 	ut_info->uf_info.regs = res.start;
1060 	ut_info->uf_info.irq = irq_of_parse_and_map(np, 0);
1061 
1062 	uhdlc_priv = kzalloc(sizeof(*uhdlc_priv), GFP_KERNEL);
1063 	if (!uhdlc_priv) {
1064 		return -ENOMEM;
1065 	}
1066 
1067 	dev_set_drvdata(&pdev->dev, uhdlc_priv);
1068 	uhdlc_priv->dev = &pdev->dev;
1069 	uhdlc_priv->ut_info = ut_info;
1070 
1071 	if (of_get_property(np, "fsl,tdm-interface", NULL))
1072 		uhdlc_priv->tsa = 1;
1073 
1074 	if (of_get_property(np, "fsl,ucc-internal-loopback", NULL))
1075 		uhdlc_priv->loopback = 1;
1076 
1077 	if (of_get_property(np, "fsl,hdlc-bus", NULL))
1078 		uhdlc_priv->hdlc_bus = 1;
1079 
1080 	if (uhdlc_priv->tsa == 1) {
1081 		utdm = kzalloc(sizeof(*utdm), GFP_KERNEL);
1082 		if (!utdm) {
1083 			ret = -ENOMEM;
1084 			dev_err(&pdev->dev, "No mem to alloc ucc tdm data\n");
1085 			goto free_uhdlc_priv;
1086 		}
1087 		uhdlc_priv->utdm = utdm;
1088 		ret = ucc_of_parse_tdm(np, utdm, ut_info);
1089 		if (ret)
1090 			goto free_utdm;
1091 	}
1092 
1093 	ret = uhdlc_init(uhdlc_priv);
1094 	if (ret) {
1095 		dev_err(&pdev->dev, "Failed to init uhdlc\n");
1096 		goto free_utdm;
1097 	}
1098 
1099 	dev = alloc_hdlcdev(uhdlc_priv);
1100 	if (!dev) {
1101 		ret = -ENOMEM;
1102 		pr_err("ucc_hdlc: unable to allocate memory\n");
1103 		goto undo_uhdlc_init;
1104 	}
1105 
1106 	uhdlc_priv->ndev = dev;
1107 	hdlc = dev_to_hdlc(dev);
1108 	dev->tx_queue_len = 16;
1109 	dev->netdev_ops = &uhdlc_ops;
1110 	hdlc->attach = ucc_hdlc_attach;
1111 	hdlc->xmit = ucc_hdlc_tx;
1112 	netif_napi_add(dev, &uhdlc_priv->napi, ucc_hdlc_poll, 32);
1113 	if (register_hdlc_device(dev)) {
1114 		ret = -ENOBUFS;
1115 		pr_err("ucc_hdlc: unable to register hdlc device\n");
1116 		free_netdev(dev);
1117 		goto free_dev;
1118 	}
1119 
1120 	return 0;
1121 
1122 free_dev:
1123 	free_netdev(dev);
1124 undo_uhdlc_init:
1125 free_utdm:
1126 	if (uhdlc_priv->tsa)
1127 		kfree(utdm);
1128 free_uhdlc_priv:
1129 	kfree(uhdlc_priv);
1130 	return ret;
1131 }
1132 
1133 static int ucc_hdlc_remove(struct platform_device *pdev)
1134 {
1135 	struct ucc_hdlc_private *priv = dev_get_drvdata(&pdev->dev);
1136 
1137 	uhdlc_memclean(priv);
1138 
1139 	if (priv->utdm->si_regs) {
1140 		iounmap(priv->utdm->si_regs);
1141 		priv->utdm->si_regs = NULL;
1142 	}
1143 
1144 	if (priv->utdm->siram) {
1145 		iounmap(priv->utdm->siram);
1146 		priv->utdm->siram = NULL;
1147 	}
1148 	kfree(priv);
1149 
1150 	dev_info(&pdev->dev, "UCC based hdlc module removed\n");
1151 
1152 	return 0;
1153 }
1154 
1155 static const struct of_device_id fsl_ucc_hdlc_of_match[] = {
1156 	{
1157 	.compatible = "fsl,ucc-hdlc",
1158 	},
1159 	{},
1160 };
1161 
1162 MODULE_DEVICE_TABLE(of, fsl_ucc_hdlc_of_match);
1163 
1164 static struct platform_driver ucc_hdlc_driver = {
1165 	.probe	= ucc_hdlc_probe,
1166 	.remove	= ucc_hdlc_remove,
1167 	.driver	= {
1168 		.name		= DRV_NAME,
1169 		.pm		= HDLC_PM_OPS,
1170 		.of_match_table	= fsl_ucc_hdlc_of_match,
1171 	},
1172 };
1173 
1174 module_platform_driver(ucc_hdlc_driver);
1175 MODULE_LICENSE("GPL");
1176