1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* Freescale QUICC Engine HDLC Device Driver 3 * 4 * Copyright 2016 Freescale Semiconductor Inc. 5 */ 6 7 #include <linux/delay.h> 8 #include <linux/dma-mapping.h> 9 #include <linux/hdlc.h> 10 #include <linux/init.h> 11 #include <linux/interrupt.h> 12 #include <linux/io.h> 13 #include <linux/irq.h> 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/netdevice.h> 17 #include <linux/of_address.h> 18 #include <linux/of_irq.h> 19 #include <linux/of_platform.h> 20 #include <linux/platform_device.h> 21 #include <linux/sched.h> 22 #include <linux/skbuff.h> 23 #include <linux/slab.h> 24 #include <linux/spinlock.h> 25 #include <linux/stddef.h> 26 #include <soc/fsl/qe/qe_tdm.h> 27 #include <uapi/linux/if_arp.h> 28 29 #include "fsl_ucc_hdlc.h" 30 31 #define DRV_DESC "Freescale QE UCC HDLC Driver" 32 #define DRV_NAME "ucc_hdlc" 33 34 #define TDM_PPPOHT_SLIC_MAXIN 35 #define RX_BD_ERRORS (R_CD_S | R_OV_S | R_CR_S | R_AB_S | R_NO_S | R_LG_S) 36 37 static struct ucc_tdm_info utdm_primary_info = { 38 .uf_info = { 39 .tsa = 0, 40 .cdp = 0, 41 .cds = 1, 42 .ctsp = 1, 43 .ctss = 1, 44 .revd = 0, 45 .urfs = 256, 46 .utfs = 256, 47 .urfet = 128, 48 .urfset = 192, 49 .utfet = 128, 50 .utftt = 0x40, 51 .ufpt = 256, 52 .mode = UCC_FAST_PROTOCOL_MODE_HDLC, 53 .ttx_trx = UCC_FAST_GUMR_TRANSPARENT_TTX_TRX_NORMAL, 54 .tenc = UCC_FAST_TX_ENCODING_NRZ, 55 .renc = UCC_FAST_RX_ENCODING_NRZ, 56 .tcrc = UCC_FAST_16_BIT_CRC, 57 .synl = UCC_FAST_SYNC_LEN_NOT_USED, 58 }, 59 60 .si_info = { 61 #ifdef TDM_PPPOHT_SLIC_MAXIN 62 .simr_rfsd = 1, 63 .simr_tfsd = 2, 64 #else 65 .simr_rfsd = 0, 66 .simr_tfsd = 0, 67 #endif 68 .simr_crt = 0, 69 .simr_sl = 0, 70 .simr_ce = 1, 71 .simr_fe = 1, 72 .simr_gm = 0, 73 }, 74 }; 75 76 static struct ucc_tdm_info utdm_info[UCC_MAX_NUM]; 77 78 static int uhdlc_init(struct ucc_hdlc_private *priv) 79 { 80 struct ucc_tdm_info *ut_info; 81 struct ucc_fast_info *uf_info; 82 u32 cecr_subblock; 83 u16 bd_status; 84 int ret, i; 85 void *bd_buffer; 86 dma_addr_t bd_dma_addr; 87 u32 riptr; 88 u32 tiptr; 89 u32 gumr; 90 91 ut_info = priv->ut_info; 92 uf_info = &ut_info->uf_info; 93 94 if (priv->tsa) { 95 uf_info->tsa = 1; 96 uf_info->ctsp = 1; 97 uf_info->cds = 1; 98 uf_info->ctss = 1; 99 } else { 100 uf_info->cds = 0; 101 uf_info->ctsp = 0; 102 uf_info->ctss = 0; 103 } 104 105 /* This sets HPM register in CMXUCR register which configures a 106 * open drain connected HDLC bus 107 */ 108 if (priv->hdlc_bus) 109 uf_info->brkpt_support = 1; 110 111 uf_info->uccm_mask = ((UCC_HDLC_UCCE_RXB | UCC_HDLC_UCCE_RXF | 112 UCC_HDLC_UCCE_TXB) << 16); 113 114 ret = ucc_fast_init(uf_info, &priv->uccf); 115 if (ret) { 116 dev_err(priv->dev, "Failed to init uccf."); 117 return ret; 118 } 119 120 priv->uf_regs = priv->uccf->uf_regs; 121 ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX); 122 123 /* Loopback mode */ 124 if (priv->loopback) { 125 dev_info(priv->dev, "Loopback Mode\n"); 126 /* use the same clock when work in loopback */ 127 qe_setbrg(ut_info->uf_info.rx_clock, 20000000, 1); 128 129 gumr = ioread32be(&priv->uf_regs->gumr); 130 gumr |= (UCC_FAST_GUMR_LOOPBACK | UCC_FAST_GUMR_CDS | 131 UCC_FAST_GUMR_TCI); 132 gumr &= ~(UCC_FAST_GUMR_CTSP | UCC_FAST_GUMR_RSYN); 133 iowrite32be(gumr, &priv->uf_regs->gumr); 134 } 135 136 /* Initialize SI */ 137 if (priv->tsa) 138 ucc_tdm_init(priv->utdm, priv->ut_info); 139 140 /* Write to QE CECR, UCCx channel to Stop Transmission */ 141 cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num); 142 ret = qe_issue_cmd(QE_STOP_TX, cecr_subblock, 143 QE_CR_PROTOCOL_UNSPECIFIED, 0); 144 145 /* Set UPSMR normal mode (need fixed)*/ 146 iowrite32be(0, &priv->uf_regs->upsmr); 147 148 /* hdlc_bus mode */ 149 if (priv->hdlc_bus) { 150 u32 upsmr; 151 152 dev_info(priv->dev, "HDLC bus Mode\n"); 153 upsmr = ioread32be(&priv->uf_regs->upsmr); 154 155 /* bus mode and retransmit enable, with collision window 156 * set to 8 bytes 157 */ 158 upsmr |= UCC_HDLC_UPSMR_RTE | UCC_HDLC_UPSMR_BUS | 159 UCC_HDLC_UPSMR_CW8; 160 iowrite32be(upsmr, &priv->uf_regs->upsmr); 161 162 /* explicitly disable CDS & CTSP */ 163 gumr = ioread32be(&priv->uf_regs->gumr); 164 gumr &= ~(UCC_FAST_GUMR_CDS | UCC_FAST_GUMR_CTSP); 165 /* set automatic sync to explicitly ignore CD signal */ 166 gumr |= UCC_FAST_GUMR_SYNL_AUTO; 167 iowrite32be(gumr, &priv->uf_regs->gumr); 168 } 169 170 priv->rx_ring_size = RX_BD_RING_LEN; 171 priv->tx_ring_size = TX_BD_RING_LEN; 172 /* Alloc Rx BD */ 173 priv->rx_bd_base = dma_alloc_coherent(priv->dev, 174 RX_BD_RING_LEN * sizeof(struct qe_bd), 175 &priv->dma_rx_bd, GFP_KERNEL); 176 177 if (!priv->rx_bd_base) { 178 dev_err(priv->dev, "Cannot allocate MURAM memory for RxBDs\n"); 179 ret = -ENOMEM; 180 goto free_uccf; 181 } 182 183 /* Alloc Tx BD */ 184 priv->tx_bd_base = dma_alloc_coherent(priv->dev, 185 TX_BD_RING_LEN * sizeof(struct qe_bd), 186 &priv->dma_tx_bd, GFP_KERNEL); 187 188 if (!priv->tx_bd_base) { 189 dev_err(priv->dev, "Cannot allocate MURAM memory for TxBDs\n"); 190 ret = -ENOMEM; 191 goto free_rx_bd; 192 } 193 194 /* Alloc parameter ram for ucc hdlc */ 195 priv->ucc_pram_offset = qe_muram_alloc(sizeof(struct ucc_hdlc_param), 196 ALIGNMENT_OF_UCC_HDLC_PRAM); 197 198 if (IS_ERR_VALUE(priv->ucc_pram_offset)) { 199 dev_err(priv->dev, "Can not allocate MURAM for hdlc parameter.\n"); 200 ret = -ENOMEM; 201 goto free_tx_bd; 202 } 203 204 priv->rx_skbuff = kcalloc(priv->rx_ring_size, 205 sizeof(*priv->rx_skbuff), 206 GFP_KERNEL); 207 if (!priv->rx_skbuff) 208 goto free_ucc_pram; 209 210 priv->tx_skbuff = kcalloc(priv->tx_ring_size, 211 sizeof(*priv->tx_skbuff), 212 GFP_KERNEL); 213 if (!priv->tx_skbuff) 214 goto free_rx_skbuff; 215 216 priv->skb_curtx = 0; 217 priv->skb_dirtytx = 0; 218 priv->curtx_bd = priv->tx_bd_base; 219 priv->dirty_tx = priv->tx_bd_base; 220 priv->currx_bd = priv->rx_bd_base; 221 priv->currx_bdnum = 0; 222 223 /* init parameter base */ 224 cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num); 225 ret = qe_issue_cmd(QE_ASSIGN_PAGE_TO_DEVICE, cecr_subblock, 226 QE_CR_PROTOCOL_UNSPECIFIED, priv->ucc_pram_offset); 227 228 priv->ucc_pram = (struct ucc_hdlc_param __iomem *) 229 qe_muram_addr(priv->ucc_pram_offset); 230 231 /* Zero out parameter ram */ 232 memset_io(priv->ucc_pram, 0, sizeof(struct ucc_hdlc_param)); 233 234 /* Alloc riptr, tiptr */ 235 riptr = qe_muram_alloc(32, 32); 236 if (IS_ERR_VALUE(riptr)) { 237 dev_err(priv->dev, "Cannot allocate MURAM mem for Receive internal temp data pointer\n"); 238 ret = -ENOMEM; 239 goto free_tx_skbuff; 240 } 241 242 tiptr = qe_muram_alloc(32, 32); 243 if (IS_ERR_VALUE(tiptr)) { 244 dev_err(priv->dev, "Cannot allocate MURAM mem for Transmit internal temp data pointer\n"); 245 ret = -ENOMEM; 246 goto free_riptr; 247 } 248 249 /* Set RIPTR, TIPTR */ 250 iowrite16be(riptr, &priv->ucc_pram->riptr); 251 iowrite16be(tiptr, &priv->ucc_pram->tiptr); 252 253 /* Set MRBLR */ 254 iowrite16be(MAX_RX_BUF_LENGTH, &priv->ucc_pram->mrblr); 255 256 /* Set RBASE, TBASE */ 257 iowrite32be(priv->dma_rx_bd, &priv->ucc_pram->rbase); 258 iowrite32be(priv->dma_tx_bd, &priv->ucc_pram->tbase); 259 260 /* Set RSTATE, TSTATE */ 261 iowrite32be(BMR_GBL | BMR_BIG_ENDIAN, &priv->ucc_pram->rstate); 262 iowrite32be(BMR_GBL | BMR_BIG_ENDIAN, &priv->ucc_pram->tstate); 263 264 /* Set C_MASK, C_PRES for 16bit CRC */ 265 iowrite32be(CRC_16BIT_MASK, &priv->ucc_pram->c_mask); 266 iowrite32be(CRC_16BIT_PRES, &priv->ucc_pram->c_pres); 267 268 iowrite16be(MAX_FRAME_LENGTH, &priv->ucc_pram->mflr); 269 iowrite16be(DEFAULT_RFTHR, &priv->ucc_pram->rfthr); 270 iowrite16be(DEFAULT_RFTHR, &priv->ucc_pram->rfcnt); 271 iowrite16be(priv->hmask, &priv->ucc_pram->hmask); 272 iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr1); 273 iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr2); 274 iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr3); 275 iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr4); 276 277 /* Get BD buffer */ 278 bd_buffer = dma_alloc_coherent(priv->dev, 279 (RX_BD_RING_LEN + TX_BD_RING_LEN) * MAX_RX_BUF_LENGTH, 280 &bd_dma_addr, GFP_KERNEL); 281 282 if (!bd_buffer) { 283 dev_err(priv->dev, "Could not allocate buffer descriptors\n"); 284 ret = -ENOMEM; 285 goto free_tiptr; 286 } 287 288 priv->rx_buffer = bd_buffer; 289 priv->tx_buffer = bd_buffer + RX_BD_RING_LEN * MAX_RX_BUF_LENGTH; 290 291 priv->dma_rx_addr = bd_dma_addr; 292 priv->dma_tx_addr = bd_dma_addr + RX_BD_RING_LEN * MAX_RX_BUF_LENGTH; 293 294 for (i = 0; i < RX_BD_RING_LEN; i++) { 295 if (i < (RX_BD_RING_LEN - 1)) 296 bd_status = R_E_S | R_I_S; 297 else 298 bd_status = R_E_S | R_I_S | R_W_S; 299 300 iowrite16be(bd_status, &priv->rx_bd_base[i].status); 301 iowrite32be(priv->dma_rx_addr + i * MAX_RX_BUF_LENGTH, 302 &priv->rx_bd_base[i].buf); 303 } 304 305 for (i = 0; i < TX_BD_RING_LEN; i++) { 306 if (i < (TX_BD_RING_LEN - 1)) 307 bd_status = T_I_S | T_TC_S; 308 else 309 bd_status = T_I_S | T_TC_S | T_W_S; 310 311 iowrite16be(bd_status, &priv->tx_bd_base[i].status); 312 iowrite32be(priv->dma_tx_addr + i * MAX_RX_BUF_LENGTH, 313 &priv->tx_bd_base[i].buf); 314 } 315 316 return 0; 317 318 free_tiptr: 319 qe_muram_free(tiptr); 320 free_riptr: 321 qe_muram_free(riptr); 322 free_tx_skbuff: 323 kfree(priv->tx_skbuff); 324 free_rx_skbuff: 325 kfree(priv->rx_skbuff); 326 free_ucc_pram: 327 qe_muram_free(priv->ucc_pram_offset); 328 free_tx_bd: 329 dma_free_coherent(priv->dev, 330 TX_BD_RING_LEN * sizeof(struct qe_bd), 331 priv->tx_bd_base, priv->dma_tx_bd); 332 free_rx_bd: 333 dma_free_coherent(priv->dev, 334 RX_BD_RING_LEN * sizeof(struct qe_bd), 335 priv->rx_bd_base, priv->dma_rx_bd); 336 free_uccf: 337 ucc_fast_free(priv->uccf); 338 339 return ret; 340 } 341 342 static netdev_tx_t ucc_hdlc_tx(struct sk_buff *skb, struct net_device *dev) 343 { 344 hdlc_device *hdlc = dev_to_hdlc(dev); 345 struct ucc_hdlc_private *priv = (struct ucc_hdlc_private *)hdlc->priv; 346 struct qe_bd __iomem *bd; 347 u16 bd_status; 348 unsigned long flags; 349 u16 *proto_head; 350 351 switch (dev->type) { 352 case ARPHRD_RAWHDLC: 353 if (skb_headroom(skb) < HDLC_HEAD_LEN) { 354 dev->stats.tx_dropped++; 355 dev_kfree_skb(skb); 356 netdev_err(dev, "No enough space for hdlc head\n"); 357 return -ENOMEM; 358 } 359 360 skb_push(skb, HDLC_HEAD_LEN); 361 362 proto_head = (u16 *)skb->data; 363 *proto_head = htons(DEFAULT_HDLC_HEAD); 364 365 dev->stats.tx_bytes += skb->len; 366 break; 367 368 case ARPHRD_PPP: 369 proto_head = (u16 *)skb->data; 370 if (*proto_head != htons(DEFAULT_PPP_HEAD)) { 371 dev->stats.tx_dropped++; 372 dev_kfree_skb(skb); 373 netdev_err(dev, "Wrong ppp header\n"); 374 return -ENOMEM; 375 } 376 377 dev->stats.tx_bytes += skb->len; 378 break; 379 380 case ARPHRD_ETHER: 381 dev->stats.tx_bytes += skb->len; 382 break; 383 384 default: 385 dev->stats.tx_dropped++; 386 dev_kfree_skb(skb); 387 return -ENOMEM; 388 } 389 netdev_sent_queue(dev, skb->len); 390 spin_lock_irqsave(&priv->lock, flags); 391 392 /* Start from the next BD that should be filled */ 393 bd = priv->curtx_bd; 394 bd_status = ioread16be(&bd->status); 395 /* Save the skb pointer so we can free it later */ 396 priv->tx_skbuff[priv->skb_curtx] = skb; 397 398 /* Update the current skb pointer (wrapping if this was the last) */ 399 priv->skb_curtx = 400 (priv->skb_curtx + 1) & TX_RING_MOD_MASK(TX_BD_RING_LEN); 401 402 /* copy skb data to tx buffer for sdma processing */ 403 memcpy(priv->tx_buffer + (be32_to_cpu(bd->buf) - priv->dma_tx_addr), 404 skb->data, skb->len); 405 406 /* set bd status and length */ 407 bd_status = (bd_status & T_W_S) | T_R_S | T_I_S | T_L_S | T_TC_S; 408 409 iowrite16be(skb->len, &bd->length); 410 iowrite16be(bd_status, &bd->status); 411 412 /* Move to next BD in the ring */ 413 if (!(bd_status & T_W_S)) 414 bd += 1; 415 else 416 bd = priv->tx_bd_base; 417 418 if (bd == priv->dirty_tx) { 419 if (!netif_queue_stopped(dev)) 420 netif_stop_queue(dev); 421 } 422 423 priv->curtx_bd = bd; 424 425 spin_unlock_irqrestore(&priv->lock, flags); 426 427 return NETDEV_TX_OK; 428 } 429 430 static int hdlc_tx_restart(struct ucc_hdlc_private *priv) 431 { 432 u32 cecr_subblock; 433 434 cecr_subblock = 435 ucc_fast_get_qe_cr_subblock(priv->ut_info->uf_info.ucc_num); 436 437 qe_issue_cmd(QE_RESTART_TX, cecr_subblock, 438 QE_CR_PROTOCOL_UNSPECIFIED, 0); 439 return 0; 440 } 441 442 static int hdlc_tx_done(struct ucc_hdlc_private *priv) 443 { 444 /* Start from the next BD that should be filled */ 445 struct net_device *dev = priv->ndev; 446 unsigned int bytes_sent = 0; 447 int howmany = 0; 448 struct qe_bd *bd; /* BD pointer */ 449 u16 bd_status; 450 int tx_restart = 0; 451 452 bd = priv->dirty_tx; 453 bd_status = ioread16be(&bd->status); 454 455 /* Normal processing. */ 456 while ((bd_status & T_R_S) == 0) { 457 struct sk_buff *skb; 458 459 if (bd_status & T_UN_S) { /* Underrun */ 460 dev->stats.tx_fifo_errors++; 461 tx_restart = 1; 462 } 463 if (bd_status & T_CT_S) { /* Carrier lost */ 464 dev->stats.tx_carrier_errors++; 465 tx_restart = 1; 466 } 467 468 /* BD contains already transmitted buffer. */ 469 /* Handle the transmitted buffer and release */ 470 /* the BD to be used with the current frame */ 471 472 skb = priv->tx_skbuff[priv->skb_dirtytx]; 473 if (!skb) 474 break; 475 howmany++; 476 bytes_sent += skb->len; 477 dev->stats.tx_packets++; 478 memset(priv->tx_buffer + 479 (be32_to_cpu(bd->buf) - priv->dma_tx_addr), 480 0, skb->len); 481 dev_consume_skb_irq(skb); 482 483 priv->tx_skbuff[priv->skb_dirtytx] = NULL; 484 priv->skb_dirtytx = 485 (priv->skb_dirtytx + 486 1) & TX_RING_MOD_MASK(TX_BD_RING_LEN); 487 488 /* We freed a buffer, so now we can restart transmission */ 489 if (netif_queue_stopped(dev)) 490 netif_wake_queue(dev); 491 492 /* Advance the confirmation BD pointer */ 493 if (!(bd_status & T_W_S)) 494 bd += 1; 495 else 496 bd = priv->tx_bd_base; 497 bd_status = ioread16be(&bd->status); 498 } 499 priv->dirty_tx = bd; 500 501 if (tx_restart) 502 hdlc_tx_restart(priv); 503 504 netdev_completed_queue(dev, howmany, bytes_sent); 505 return 0; 506 } 507 508 static int hdlc_rx_done(struct ucc_hdlc_private *priv, int rx_work_limit) 509 { 510 struct net_device *dev = priv->ndev; 511 struct sk_buff *skb = NULL; 512 hdlc_device *hdlc = dev_to_hdlc(dev); 513 struct qe_bd *bd; 514 u16 bd_status; 515 u16 length, howmany = 0; 516 u8 *bdbuffer; 517 518 bd = priv->currx_bd; 519 bd_status = ioread16be(&bd->status); 520 521 /* while there are received buffers and BD is full (~R_E) */ 522 while (!((bd_status & (R_E_S)) || (--rx_work_limit < 0))) { 523 if (bd_status & (RX_BD_ERRORS)) { 524 dev->stats.rx_errors++; 525 526 if (bd_status & R_CD_S) 527 dev->stats.collisions++; 528 if (bd_status & R_OV_S) 529 dev->stats.rx_fifo_errors++; 530 if (bd_status & R_CR_S) 531 dev->stats.rx_crc_errors++; 532 if (bd_status & R_AB_S) 533 dev->stats.rx_over_errors++; 534 if (bd_status & R_NO_S) 535 dev->stats.rx_frame_errors++; 536 if (bd_status & R_LG_S) 537 dev->stats.rx_length_errors++; 538 539 goto recycle; 540 } 541 bdbuffer = priv->rx_buffer + 542 (priv->currx_bdnum * MAX_RX_BUF_LENGTH); 543 length = ioread16be(&bd->length); 544 545 switch (dev->type) { 546 case ARPHRD_RAWHDLC: 547 bdbuffer += HDLC_HEAD_LEN; 548 length -= (HDLC_HEAD_LEN + HDLC_CRC_SIZE); 549 550 skb = dev_alloc_skb(length); 551 if (!skb) { 552 dev->stats.rx_dropped++; 553 return -ENOMEM; 554 } 555 556 skb_put(skb, length); 557 skb->len = length; 558 skb->dev = dev; 559 memcpy(skb->data, bdbuffer, length); 560 break; 561 562 case ARPHRD_PPP: 563 case ARPHRD_ETHER: 564 length -= HDLC_CRC_SIZE; 565 566 skb = dev_alloc_skb(length); 567 if (!skb) { 568 dev->stats.rx_dropped++; 569 return -ENOMEM; 570 } 571 572 skb_put(skb, length); 573 skb->len = length; 574 skb->dev = dev; 575 memcpy(skb->data, bdbuffer, length); 576 break; 577 } 578 579 dev->stats.rx_packets++; 580 dev->stats.rx_bytes += skb->len; 581 howmany++; 582 if (hdlc->proto) 583 skb->protocol = hdlc_type_trans(skb, dev); 584 netif_receive_skb(skb); 585 586 recycle: 587 iowrite16be((bd_status & R_W_S) | R_E_S | R_I_S, &bd->status); 588 589 /* update to point at the next bd */ 590 if (bd_status & R_W_S) { 591 priv->currx_bdnum = 0; 592 bd = priv->rx_bd_base; 593 } else { 594 if (priv->currx_bdnum < (RX_BD_RING_LEN - 1)) 595 priv->currx_bdnum += 1; 596 else 597 priv->currx_bdnum = RX_BD_RING_LEN - 1; 598 599 bd += 1; 600 } 601 602 bd_status = ioread16be(&bd->status); 603 } 604 605 priv->currx_bd = bd; 606 return howmany; 607 } 608 609 static int ucc_hdlc_poll(struct napi_struct *napi, int budget) 610 { 611 struct ucc_hdlc_private *priv = container_of(napi, 612 struct ucc_hdlc_private, 613 napi); 614 int howmany; 615 616 /* Tx event processing */ 617 spin_lock(&priv->lock); 618 hdlc_tx_done(priv); 619 spin_unlock(&priv->lock); 620 621 howmany = 0; 622 howmany += hdlc_rx_done(priv, budget - howmany); 623 624 if (howmany < budget) { 625 napi_complete_done(napi, howmany); 626 qe_setbits32(priv->uccf->p_uccm, 627 (UCCE_HDLC_RX_EVENTS | UCCE_HDLC_TX_EVENTS) << 16); 628 } 629 630 return howmany; 631 } 632 633 static irqreturn_t ucc_hdlc_irq_handler(int irq, void *dev_id) 634 { 635 struct ucc_hdlc_private *priv = (struct ucc_hdlc_private *)dev_id; 636 struct net_device *dev = priv->ndev; 637 struct ucc_fast_private *uccf; 638 u32 ucce; 639 u32 uccm; 640 641 uccf = priv->uccf; 642 643 ucce = ioread32be(uccf->p_ucce); 644 uccm = ioread32be(uccf->p_uccm); 645 ucce &= uccm; 646 iowrite32be(ucce, uccf->p_ucce); 647 if (!ucce) 648 return IRQ_NONE; 649 650 if ((ucce >> 16) & (UCCE_HDLC_RX_EVENTS | UCCE_HDLC_TX_EVENTS)) { 651 if (napi_schedule_prep(&priv->napi)) { 652 uccm &= ~((UCCE_HDLC_RX_EVENTS | UCCE_HDLC_TX_EVENTS) 653 << 16); 654 iowrite32be(uccm, uccf->p_uccm); 655 __napi_schedule(&priv->napi); 656 } 657 } 658 659 /* Errors and other events */ 660 if (ucce >> 16 & UCC_HDLC_UCCE_BSY) 661 dev->stats.rx_missed_errors++; 662 if (ucce >> 16 & UCC_HDLC_UCCE_TXE) 663 dev->stats.tx_errors++; 664 665 return IRQ_HANDLED; 666 } 667 668 static int uhdlc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 669 { 670 const size_t size = sizeof(te1_settings); 671 te1_settings line; 672 struct ucc_hdlc_private *priv = netdev_priv(dev); 673 674 if (cmd != SIOCWANDEV) 675 return hdlc_ioctl(dev, ifr, cmd); 676 677 switch (ifr->ifr_settings.type) { 678 case IF_GET_IFACE: 679 ifr->ifr_settings.type = IF_IFACE_E1; 680 if (ifr->ifr_settings.size < size) { 681 ifr->ifr_settings.size = size; /* data size wanted */ 682 return -ENOBUFS; 683 } 684 memset(&line, 0, sizeof(line)); 685 line.clock_type = priv->clocking; 686 687 if (copy_to_user(ifr->ifr_settings.ifs_ifsu.sync, &line, size)) 688 return -EFAULT; 689 return 0; 690 691 default: 692 return hdlc_ioctl(dev, ifr, cmd); 693 } 694 } 695 696 static int uhdlc_open(struct net_device *dev) 697 { 698 u32 cecr_subblock; 699 hdlc_device *hdlc = dev_to_hdlc(dev); 700 struct ucc_hdlc_private *priv = hdlc->priv; 701 struct ucc_tdm *utdm = priv->utdm; 702 703 if (priv->hdlc_busy != 1) { 704 if (request_irq(priv->ut_info->uf_info.irq, 705 ucc_hdlc_irq_handler, 0, "hdlc", priv)) 706 return -ENODEV; 707 708 cecr_subblock = ucc_fast_get_qe_cr_subblock( 709 priv->ut_info->uf_info.ucc_num); 710 711 qe_issue_cmd(QE_INIT_TX_RX, cecr_subblock, 712 QE_CR_PROTOCOL_UNSPECIFIED, 0); 713 714 ucc_fast_enable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX); 715 716 /* Enable the TDM port */ 717 if (priv->tsa) 718 utdm->si_regs->siglmr1_h |= (0x1 << utdm->tdm_port); 719 720 priv->hdlc_busy = 1; 721 netif_device_attach(priv->ndev); 722 napi_enable(&priv->napi); 723 netdev_reset_queue(dev); 724 netif_start_queue(dev); 725 hdlc_open(dev); 726 } 727 728 return 0; 729 } 730 731 static void uhdlc_memclean(struct ucc_hdlc_private *priv) 732 { 733 qe_muram_free(priv->ucc_pram->riptr); 734 qe_muram_free(priv->ucc_pram->tiptr); 735 736 if (priv->rx_bd_base) { 737 dma_free_coherent(priv->dev, 738 RX_BD_RING_LEN * sizeof(struct qe_bd), 739 priv->rx_bd_base, priv->dma_rx_bd); 740 741 priv->rx_bd_base = NULL; 742 priv->dma_rx_bd = 0; 743 } 744 745 if (priv->tx_bd_base) { 746 dma_free_coherent(priv->dev, 747 TX_BD_RING_LEN * sizeof(struct qe_bd), 748 priv->tx_bd_base, priv->dma_tx_bd); 749 750 priv->tx_bd_base = NULL; 751 priv->dma_tx_bd = 0; 752 } 753 754 if (priv->ucc_pram) { 755 qe_muram_free(priv->ucc_pram_offset); 756 priv->ucc_pram = NULL; 757 priv->ucc_pram_offset = 0; 758 } 759 760 kfree(priv->rx_skbuff); 761 priv->rx_skbuff = NULL; 762 763 kfree(priv->tx_skbuff); 764 priv->tx_skbuff = NULL; 765 766 if (priv->uf_regs) { 767 iounmap(priv->uf_regs); 768 priv->uf_regs = NULL; 769 } 770 771 if (priv->uccf) { 772 ucc_fast_free(priv->uccf); 773 priv->uccf = NULL; 774 } 775 776 if (priv->rx_buffer) { 777 dma_free_coherent(priv->dev, 778 RX_BD_RING_LEN * MAX_RX_BUF_LENGTH, 779 priv->rx_buffer, priv->dma_rx_addr); 780 priv->rx_buffer = NULL; 781 priv->dma_rx_addr = 0; 782 } 783 784 if (priv->tx_buffer) { 785 dma_free_coherent(priv->dev, 786 TX_BD_RING_LEN * MAX_RX_BUF_LENGTH, 787 priv->tx_buffer, priv->dma_tx_addr); 788 priv->tx_buffer = NULL; 789 priv->dma_tx_addr = 0; 790 } 791 } 792 793 static int uhdlc_close(struct net_device *dev) 794 { 795 struct ucc_hdlc_private *priv = dev_to_hdlc(dev)->priv; 796 struct ucc_tdm *utdm = priv->utdm; 797 u32 cecr_subblock; 798 799 napi_disable(&priv->napi); 800 cecr_subblock = ucc_fast_get_qe_cr_subblock( 801 priv->ut_info->uf_info.ucc_num); 802 803 qe_issue_cmd(QE_GRACEFUL_STOP_TX, cecr_subblock, 804 (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0); 805 qe_issue_cmd(QE_CLOSE_RX_BD, cecr_subblock, 806 (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0); 807 808 if (priv->tsa) 809 utdm->si_regs->siglmr1_h &= ~(0x1 << utdm->tdm_port); 810 811 ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX); 812 813 free_irq(priv->ut_info->uf_info.irq, priv); 814 netif_stop_queue(dev); 815 netdev_reset_queue(dev); 816 priv->hdlc_busy = 0; 817 818 return 0; 819 } 820 821 static int ucc_hdlc_attach(struct net_device *dev, unsigned short encoding, 822 unsigned short parity) 823 { 824 struct ucc_hdlc_private *priv = dev_to_hdlc(dev)->priv; 825 826 if (encoding != ENCODING_NRZ && 827 encoding != ENCODING_NRZI) 828 return -EINVAL; 829 830 if (parity != PARITY_NONE && 831 parity != PARITY_CRC32_PR1_CCITT && 832 parity != PARITY_CRC16_PR0_CCITT && 833 parity != PARITY_CRC16_PR1_CCITT) 834 return -EINVAL; 835 836 priv->encoding = encoding; 837 priv->parity = parity; 838 839 return 0; 840 } 841 842 #ifdef CONFIG_PM 843 static void store_clk_config(struct ucc_hdlc_private *priv) 844 { 845 struct qe_mux *qe_mux_reg = &qe_immr->qmx; 846 847 /* store si clk */ 848 priv->cmxsi1cr_h = ioread32be(&qe_mux_reg->cmxsi1cr_h); 849 priv->cmxsi1cr_l = ioread32be(&qe_mux_reg->cmxsi1cr_l); 850 851 /* store si sync */ 852 priv->cmxsi1syr = ioread32be(&qe_mux_reg->cmxsi1syr); 853 854 /* store ucc clk */ 855 memcpy_fromio(priv->cmxucr, qe_mux_reg->cmxucr, 4 * sizeof(u32)); 856 } 857 858 static void resume_clk_config(struct ucc_hdlc_private *priv) 859 { 860 struct qe_mux *qe_mux_reg = &qe_immr->qmx; 861 862 memcpy_toio(qe_mux_reg->cmxucr, priv->cmxucr, 4 * sizeof(u32)); 863 864 iowrite32be(priv->cmxsi1cr_h, &qe_mux_reg->cmxsi1cr_h); 865 iowrite32be(priv->cmxsi1cr_l, &qe_mux_reg->cmxsi1cr_l); 866 867 iowrite32be(priv->cmxsi1syr, &qe_mux_reg->cmxsi1syr); 868 } 869 870 static int uhdlc_suspend(struct device *dev) 871 { 872 struct ucc_hdlc_private *priv = dev_get_drvdata(dev); 873 struct ucc_fast __iomem *uf_regs; 874 875 if (!priv) 876 return -EINVAL; 877 878 if (!netif_running(priv->ndev)) 879 return 0; 880 881 netif_device_detach(priv->ndev); 882 napi_disable(&priv->napi); 883 884 uf_regs = priv->uf_regs; 885 886 /* backup gumr guemr*/ 887 priv->gumr = ioread32be(&uf_regs->gumr); 888 priv->guemr = ioread8(&uf_regs->guemr); 889 890 priv->ucc_pram_bak = kmalloc(sizeof(*priv->ucc_pram_bak), 891 GFP_KERNEL); 892 if (!priv->ucc_pram_bak) 893 return -ENOMEM; 894 895 /* backup HDLC parameter */ 896 memcpy_fromio(priv->ucc_pram_bak, priv->ucc_pram, 897 sizeof(struct ucc_hdlc_param)); 898 899 /* store the clk configuration */ 900 store_clk_config(priv); 901 902 /* save power */ 903 ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX); 904 905 return 0; 906 } 907 908 static int uhdlc_resume(struct device *dev) 909 { 910 struct ucc_hdlc_private *priv = dev_get_drvdata(dev); 911 struct ucc_tdm *utdm; 912 struct ucc_tdm_info *ut_info; 913 struct ucc_fast __iomem *uf_regs; 914 struct ucc_fast_private *uccf; 915 struct ucc_fast_info *uf_info; 916 int i; 917 u32 cecr_subblock; 918 u16 bd_status; 919 920 if (!priv) 921 return -EINVAL; 922 923 if (!netif_running(priv->ndev)) 924 return 0; 925 926 utdm = priv->utdm; 927 ut_info = priv->ut_info; 928 uf_info = &ut_info->uf_info; 929 uf_regs = priv->uf_regs; 930 uccf = priv->uccf; 931 932 /* restore gumr guemr */ 933 iowrite8(priv->guemr, &uf_regs->guemr); 934 iowrite32be(priv->gumr, &uf_regs->gumr); 935 936 /* Set Virtual Fifo registers */ 937 iowrite16be(uf_info->urfs, &uf_regs->urfs); 938 iowrite16be(uf_info->urfet, &uf_regs->urfet); 939 iowrite16be(uf_info->urfset, &uf_regs->urfset); 940 iowrite16be(uf_info->utfs, &uf_regs->utfs); 941 iowrite16be(uf_info->utfet, &uf_regs->utfet); 942 iowrite16be(uf_info->utftt, &uf_regs->utftt); 943 /* utfb, urfb are offsets from MURAM base */ 944 iowrite32be(uccf->ucc_fast_tx_virtual_fifo_base_offset, &uf_regs->utfb); 945 iowrite32be(uccf->ucc_fast_rx_virtual_fifo_base_offset, &uf_regs->urfb); 946 947 /* Rx Tx and sync clock routing */ 948 resume_clk_config(priv); 949 950 iowrite32be(uf_info->uccm_mask, &uf_regs->uccm); 951 iowrite32be(0xffffffff, &uf_regs->ucce); 952 953 ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX); 954 955 /* rebuild SIRAM */ 956 if (priv->tsa) 957 ucc_tdm_init(priv->utdm, priv->ut_info); 958 959 /* Write to QE CECR, UCCx channel to Stop Transmission */ 960 cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num); 961 qe_issue_cmd(QE_STOP_TX, cecr_subblock, 962 (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0); 963 964 /* Set UPSMR normal mode */ 965 iowrite32be(0, &uf_regs->upsmr); 966 967 /* init parameter base */ 968 cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num); 969 qe_issue_cmd(QE_ASSIGN_PAGE_TO_DEVICE, cecr_subblock, 970 QE_CR_PROTOCOL_UNSPECIFIED, priv->ucc_pram_offset); 971 972 priv->ucc_pram = (struct ucc_hdlc_param __iomem *) 973 qe_muram_addr(priv->ucc_pram_offset); 974 975 /* restore ucc parameter */ 976 memcpy_toio(priv->ucc_pram, priv->ucc_pram_bak, 977 sizeof(struct ucc_hdlc_param)); 978 kfree(priv->ucc_pram_bak); 979 980 /* rebuild BD entry */ 981 for (i = 0; i < RX_BD_RING_LEN; i++) { 982 if (i < (RX_BD_RING_LEN - 1)) 983 bd_status = R_E_S | R_I_S; 984 else 985 bd_status = R_E_S | R_I_S | R_W_S; 986 987 iowrite16be(bd_status, &priv->rx_bd_base[i].status); 988 iowrite32be(priv->dma_rx_addr + i * MAX_RX_BUF_LENGTH, 989 &priv->rx_bd_base[i].buf); 990 } 991 992 for (i = 0; i < TX_BD_RING_LEN; i++) { 993 if (i < (TX_BD_RING_LEN - 1)) 994 bd_status = T_I_S | T_TC_S; 995 else 996 bd_status = T_I_S | T_TC_S | T_W_S; 997 998 iowrite16be(bd_status, &priv->tx_bd_base[i].status); 999 iowrite32be(priv->dma_tx_addr + i * MAX_RX_BUF_LENGTH, 1000 &priv->tx_bd_base[i].buf); 1001 } 1002 1003 /* if hdlc is busy enable TX and RX */ 1004 if (priv->hdlc_busy == 1) { 1005 cecr_subblock = ucc_fast_get_qe_cr_subblock( 1006 priv->ut_info->uf_info.ucc_num); 1007 1008 qe_issue_cmd(QE_INIT_TX_RX, cecr_subblock, 1009 (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0); 1010 1011 ucc_fast_enable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX); 1012 1013 /* Enable the TDM port */ 1014 if (priv->tsa) 1015 utdm->si_regs->siglmr1_h |= (0x1 << utdm->tdm_port); 1016 } 1017 1018 napi_enable(&priv->napi); 1019 netif_device_attach(priv->ndev); 1020 1021 return 0; 1022 } 1023 1024 static const struct dev_pm_ops uhdlc_pm_ops = { 1025 .suspend = uhdlc_suspend, 1026 .resume = uhdlc_resume, 1027 .freeze = uhdlc_suspend, 1028 .thaw = uhdlc_resume, 1029 }; 1030 1031 #define HDLC_PM_OPS (&uhdlc_pm_ops) 1032 1033 #else 1034 1035 #define HDLC_PM_OPS NULL 1036 1037 #endif 1038 static void uhdlc_tx_timeout(struct net_device *ndev, unsigned int txqueue) 1039 { 1040 netdev_err(ndev, "%s\n", __func__); 1041 } 1042 1043 static const struct net_device_ops uhdlc_ops = { 1044 .ndo_open = uhdlc_open, 1045 .ndo_stop = uhdlc_close, 1046 .ndo_start_xmit = hdlc_start_xmit, 1047 .ndo_do_ioctl = uhdlc_ioctl, 1048 .ndo_tx_timeout = uhdlc_tx_timeout, 1049 }; 1050 1051 static int hdlc_map_iomem(char *name, int init_flag, void __iomem **ptr) 1052 { 1053 struct device_node *np; 1054 struct platform_device *pdev; 1055 struct resource *res; 1056 static int siram_init_flag; 1057 int ret = 0; 1058 1059 np = of_find_compatible_node(NULL, NULL, name); 1060 if (!np) 1061 return -EINVAL; 1062 1063 pdev = of_find_device_by_node(np); 1064 if (!pdev) { 1065 pr_err("%pOFn: failed to lookup pdev\n", np); 1066 of_node_put(np); 1067 return -EINVAL; 1068 } 1069 1070 of_node_put(np); 1071 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1072 if (!res) { 1073 ret = -EINVAL; 1074 goto error_put_device; 1075 } 1076 *ptr = ioremap(res->start, resource_size(res)); 1077 if (!*ptr) { 1078 ret = -ENOMEM; 1079 goto error_put_device; 1080 } 1081 1082 /* We've remapped the addresses, and we don't need the device any 1083 * more, so we should release it. 1084 */ 1085 put_device(&pdev->dev); 1086 1087 if (init_flag && siram_init_flag == 0) { 1088 memset_io(*ptr, 0, resource_size(res)); 1089 siram_init_flag = 1; 1090 } 1091 return 0; 1092 1093 error_put_device: 1094 put_device(&pdev->dev); 1095 1096 return ret; 1097 } 1098 1099 static int ucc_hdlc_probe(struct platform_device *pdev) 1100 { 1101 struct device_node *np = pdev->dev.of_node; 1102 struct ucc_hdlc_private *uhdlc_priv = NULL; 1103 struct ucc_tdm_info *ut_info; 1104 struct ucc_tdm *utdm = NULL; 1105 struct resource res; 1106 struct net_device *dev; 1107 hdlc_device *hdlc; 1108 int ucc_num; 1109 const char *sprop; 1110 int ret; 1111 u32 val; 1112 1113 ret = of_property_read_u32_index(np, "cell-index", 0, &val); 1114 if (ret) { 1115 dev_err(&pdev->dev, "Invalid ucc property\n"); 1116 return -ENODEV; 1117 } 1118 1119 ucc_num = val - 1; 1120 if (ucc_num > (UCC_MAX_NUM - 1) || ucc_num < 0) { 1121 dev_err(&pdev->dev, ": Invalid UCC num\n"); 1122 return -EINVAL; 1123 } 1124 1125 memcpy(&utdm_info[ucc_num], &utdm_primary_info, 1126 sizeof(utdm_primary_info)); 1127 1128 ut_info = &utdm_info[ucc_num]; 1129 ut_info->uf_info.ucc_num = ucc_num; 1130 1131 sprop = of_get_property(np, "rx-clock-name", NULL); 1132 if (sprop) { 1133 ut_info->uf_info.rx_clock = qe_clock_source(sprop); 1134 if ((ut_info->uf_info.rx_clock < QE_CLK_NONE) || 1135 (ut_info->uf_info.rx_clock > QE_CLK24)) { 1136 dev_err(&pdev->dev, "Invalid rx-clock-name property\n"); 1137 return -EINVAL; 1138 } 1139 } else { 1140 dev_err(&pdev->dev, "Invalid rx-clock-name property\n"); 1141 return -EINVAL; 1142 } 1143 1144 sprop = of_get_property(np, "tx-clock-name", NULL); 1145 if (sprop) { 1146 ut_info->uf_info.tx_clock = qe_clock_source(sprop); 1147 if ((ut_info->uf_info.tx_clock < QE_CLK_NONE) || 1148 (ut_info->uf_info.tx_clock > QE_CLK24)) { 1149 dev_err(&pdev->dev, "Invalid tx-clock-name property\n"); 1150 return -EINVAL; 1151 } 1152 } else { 1153 dev_err(&pdev->dev, "Invalid tx-clock-name property\n"); 1154 return -EINVAL; 1155 } 1156 1157 ret = of_address_to_resource(np, 0, &res); 1158 if (ret) 1159 return -EINVAL; 1160 1161 ut_info->uf_info.regs = res.start; 1162 ut_info->uf_info.irq = irq_of_parse_and_map(np, 0); 1163 1164 uhdlc_priv = kzalloc(sizeof(*uhdlc_priv), GFP_KERNEL); 1165 if (!uhdlc_priv) { 1166 return -ENOMEM; 1167 } 1168 1169 dev_set_drvdata(&pdev->dev, uhdlc_priv); 1170 uhdlc_priv->dev = &pdev->dev; 1171 uhdlc_priv->ut_info = ut_info; 1172 1173 if (of_get_property(np, "fsl,tdm-interface", NULL)) 1174 uhdlc_priv->tsa = 1; 1175 1176 if (of_get_property(np, "fsl,ucc-internal-loopback", NULL)) 1177 uhdlc_priv->loopback = 1; 1178 1179 if (of_get_property(np, "fsl,hdlc-bus", NULL)) 1180 uhdlc_priv->hdlc_bus = 1; 1181 1182 if (uhdlc_priv->tsa == 1) { 1183 utdm = kzalloc(sizeof(*utdm), GFP_KERNEL); 1184 if (!utdm) { 1185 ret = -ENOMEM; 1186 dev_err(&pdev->dev, "No mem to alloc ucc tdm data\n"); 1187 goto free_uhdlc_priv; 1188 } 1189 uhdlc_priv->utdm = utdm; 1190 ret = ucc_of_parse_tdm(np, utdm, ut_info); 1191 if (ret) 1192 goto free_utdm; 1193 1194 ret = hdlc_map_iomem("fsl,t1040-qe-si", 0, 1195 (void __iomem **)&utdm->si_regs); 1196 if (ret) 1197 goto free_utdm; 1198 ret = hdlc_map_iomem("fsl,t1040-qe-siram", 1, 1199 (void __iomem **)&utdm->siram); 1200 if (ret) 1201 goto unmap_si_regs; 1202 } 1203 1204 if (of_property_read_u16(np, "fsl,hmask", &uhdlc_priv->hmask)) 1205 uhdlc_priv->hmask = DEFAULT_ADDR_MASK; 1206 1207 ret = uhdlc_init(uhdlc_priv); 1208 if (ret) { 1209 dev_err(&pdev->dev, "Failed to init uhdlc\n"); 1210 goto undo_uhdlc_init; 1211 } 1212 1213 dev = alloc_hdlcdev(uhdlc_priv); 1214 if (!dev) { 1215 ret = -ENOMEM; 1216 pr_err("ucc_hdlc: unable to allocate memory\n"); 1217 goto undo_uhdlc_init; 1218 } 1219 1220 uhdlc_priv->ndev = dev; 1221 hdlc = dev_to_hdlc(dev); 1222 dev->tx_queue_len = 16; 1223 dev->netdev_ops = &uhdlc_ops; 1224 dev->watchdog_timeo = 2 * HZ; 1225 hdlc->attach = ucc_hdlc_attach; 1226 hdlc->xmit = ucc_hdlc_tx; 1227 netif_napi_add(dev, &uhdlc_priv->napi, ucc_hdlc_poll, 32); 1228 if (register_hdlc_device(dev)) { 1229 ret = -ENOBUFS; 1230 pr_err("ucc_hdlc: unable to register hdlc device\n"); 1231 goto free_dev; 1232 } 1233 1234 return 0; 1235 1236 free_dev: 1237 free_netdev(dev); 1238 undo_uhdlc_init: 1239 iounmap(utdm->siram); 1240 unmap_si_regs: 1241 iounmap(utdm->si_regs); 1242 free_utdm: 1243 if (uhdlc_priv->tsa) 1244 kfree(utdm); 1245 free_uhdlc_priv: 1246 kfree(uhdlc_priv); 1247 return ret; 1248 } 1249 1250 static int ucc_hdlc_remove(struct platform_device *pdev) 1251 { 1252 struct ucc_hdlc_private *priv = dev_get_drvdata(&pdev->dev); 1253 1254 uhdlc_memclean(priv); 1255 1256 if (priv->utdm->si_regs) { 1257 iounmap(priv->utdm->si_regs); 1258 priv->utdm->si_regs = NULL; 1259 } 1260 1261 if (priv->utdm->siram) { 1262 iounmap(priv->utdm->siram); 1263 priv->utdm->siram = NULL; 1264 } 1265 kfree(priv); 1266 1267 dev_info(&pdev->dev, "UCC based hdlc module removed\n"); 1268 1269 return 0; 1270 } 1271 1272 static const struct of_device_id fsl_ucc_hdlc_of_match[] = { 1273 { 1274 .compatible = "fsl,ucc-hdlc", 1275 }, 1276 {}, 1277 }; 1278 1279 MODULE_DEVICE_TABLE(of, fsl_ucc_hdlc_of_match); 1280 1281 static struct platform_driver ucc_hdlc_driver = { 1282 .probe = ucc_hdlc_probe, 1283 .remove = ucc_hdlc_remove, 1284 .driver = { 1285 .name = DRV_NAME, 1286 .pm = HDLC_PM_OPS, 1287 .of_match_table = fsl_ucc_hdlc_of_match, 1288 }, 1289 }; 1290 1291 module_platform_driver(ucc_hdlc_driver); 1292 MODULE_LICENSE("GPL"); 1293