1 /* Freescale QUICC Engine HDLC Device Driver 2 * 3 * Copyright 2016 Freescale Semiconductor Inc. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License as published by the 7 * Free Software Foundation; either version 2 of the License, or (at your 8 * option) any later version. 9 */ 10 11 #include <linux/delay.h> 12 #include <linux/dma-mapping.h> 13 #include <linux/hdlc.h> 14 #include <linux/init.h> 15 #include <linux/interrupt.h> 16 #include <linux/io.h> 17 #include <linux/irq.h> 18 #include <linux/kernel.h> 19 #include <linux/module.h> 20 #include <linux/netdevice.h> 21 #include <linux/of_address.h> 22 #include <linux/of_irq.h> 23 #include <linux/of_platform.h> 24 #include <linux/platform_device.h> 25 #include <linux/sched.h> 26 #include <linux/skbuff.h> 27 #include <linux/slab.h> 28 #include <linux/spinlock.h> 29 #include <linux/stddef.h> 30 #include <soc/fsl/qe/qe_tdm.h> 31 #include <uapi/linux/if_arp.h> 32 33 #include "fsl_ucc_hdlc.h" 34 35 #define DRV_DESC "Freescale QE UCC HDLC Driver" 36 #define DRV_NAME "ucc_hdlc" 37 38 #define TDM_PPPOHT_SLIC_MAXIN 39 #define RX_BD_ERRORS (R_CD_S | R_OV_S | R_CR_S | R_AB_S | R_NO_S | R_LG_S) 40 41 static struct ucc_tdm_info utdm_primary_info = { 42 .uf_info = { 43 .tsa = 0, 44 .cdp = 0, 45 .cds = 1, 46 .ctsp = 1, 47 .ctss = 1, 48 .revd = 0, 49 .urfs = 256, 50 .utfs = 256, 51 .urfet = 128, 52 .urfset = 192, 53 .utfet = 128, 54 .utftt = 0x40, 55 .ufpt = 256, 56 .mode = UCC_FAST_PROTOCOL_MODE_HDLC, 57 .ttx_trx = UCC_FAST_GUMR_TRANSPARENT_TTX_TRX_NORMAL, 58 .tenc = UCC_FAST_TX_ENCODING_NRZ, 59 .renc = UCC_FAST_RX_ENCODING_NRZ, 60 .tcrc = UCC_FAST_16_BIT_CRC, 61 .synl = UCC_FAST_SYNC_LEN_NOT_USED, 62 }, 63 64 .si_info = { 65 #ifdef TDM_PPPOHT_SLIC_MAXIN 66 .simr_rfsd = 1, 67 .simr_tfsd = 2, 68 #else 69 .simr_rfsd = 0, 70 .simr_tfsd = 0, 71 #endif 72 .simr_crt = 0, 73 .simr_sl = 0, 74 .simr_ce = 1, 75 .simr_fe = 1, 76 .simr_gm = 0, 77 }, 78 }; 79 80 static struct ucc_tdm_info utdm_info[MAX_HDLC_NUM]; 81 82 static int uhdlc_init(struct ucc_hdlc_private *priv) 83 { 84 struct ucc_tdm_info *ut_info; 85 struct ucc_fast_info *uf_info; 86 u32 cecr_subblock; 87 u16 bd_status; 88 int ret, i; 89 void *bd_buffer; 90 dma_addr_t bd_dma_addr; 91 u32 riptr; 92 u32 tiptr; 93 u32 gumr; 94 95 ut_info = priv->ut_info; 96 uf_info = &ut_info->uf_info; 97 98 if (priv->tsa) { 99 uf_info->tsa = 1; 100 uf_info->ctsp = 1; 101 uf_info->cds = 1; 102 uf_info->ctss = 1; 103 } else { 104 uf_info->cds = 0; 105 uf_info->ctsp = 0; 106 uf_info->ctss = 0; 107 } 108 109 /* This sets HPM register in CMXUCR register which configures a 110 * open drain connected HDLC bus 111 */ 112 if (priv->hdlc_bus) 113 uf_info->brkpt_support = 1; 114 115 uf_info->uccm_mask = ((UCC_HDLC_UCCE_RXB | UCC_HDLC_UCCE_RXF | 116 UCC_HDLC_UCCE_TXB) << 16); 117 118 ret = ucc_fast_init(uf_info, &priv->uccf); 119 if (ret) { 120 dev_err(priv->dev, "Failed to init uccf."); 121 return ret; 122 } 123 124 priv->uf_regs = priv->uccf->uf_regs; 125 ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX); 126 127 /* Loopback mode */ 128 if (priv->loopback) { 129 dev_info(priv->dev, "Loopback Mode\n"); 130 /* use the same clock when work in loopback */ 131 qe_setbrg(ut_info->uf_info.rx_clock, 20000000, 1); 132 133 gumr = ioread32be(&priv->uf_regs->gumr); 134 gumr |= (UCC_FAST_GUMR_LOOPBACK | UCC_FAST_GUMR_CDS | 135 UCC_FAST_GUMR_TCI); 136 gumr &= ~(UCC_FAST_GUMR_CTSP | UCC_FAST_GUMR_RSYN); 137 iowrite32be(gumr, &priv->uf_regs->gumr); 138 } 139 140 /* Initialize SI */ 141 if (priv->tsa) 142 ucc_tdm_init(priv->utdm, priv->ut_info); 143 144 /* Write to QE CECR, UCCx channel to Stop Transmission */ 145 cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num); 146 ret = qe_issue_cmd(QE_STOP_TX, cecr_subblock, 147 QE_CR_PROTOCOL_UNSPECIFIED, 0); 148 149 /* Set UPSMR normal mode (need fixed)*/ 150 iowrite32be(0, &priv->uf_regs->upsmr); 151 152 /* hdlc_bus mode */ 153 if (priv->hdlc_bus) { 154 u32 upsmr; 155 156 dev_info(priv->dev, "HDLC bus Mode\n"); 157 upsmr = ioread32be(&priv->uf_regs->upsmr); 158 159 /* bus mode and retransmit enable, with collision window 160 * set to 8 bytes 161 */ 162 upsmr |= UCC_HDLC_UPSMR_RTE | UCC_HDLC_UPSMR_BUS | 163 UCC_HDLC_UPSMR_CW8; 164 iowrite32be(upsmr, &priv->uf_regs->upsmr); 165 166 /* explicitly disable CDS & CTSP */ 167 gumr = ioread32be(&priv->uf_regs->gumr); 168 gumr &= ~(UCC_FAST_GUMR_CDS | UCC_FAST_GUMR_CTSP); 169 /* set automatic sync to explicitly ignore CD signal */ 170 gumr |= UCC_FAST_GUMR_SYNL_AUTO; 171 iowrite32be(gumr, &priv->uf_regs->gumr); 172 } 173 174 priv->rx_ring_size = RX_BD_RING_LEN; 175 priv->tx_ring_size = TX_BD_RING_LEN; 176 /* Alloc Rx BD */ 177 priv->rx_bd_base = dma_alloc_coherent(priv->dev, 178 RX_BD_RING_LEN * sizeof(struct qe_bd), 179 &priv->dma_rx_bd, GFP_KERNEL); 180 181 if (!priv->rx_bd_base) { 182 dev_err(priv->dev, "Cannot allocate MURAM memory for RxBDs\n"); 183 ret = -ENOMEM; 184 goto free_uccf; 185 } 186 187 /* Alloc Tx BD */ 188 priv->tx_bd_base = dma_alloc_coherent(priv->dev, 189 TX_BD_RING_LEN * sizeof(struct qe_bd), 190 &priv->dma_tx_bd, GFP_KERNEL); 191 192 if (!priv->tx_bd_base) { 193 dev_err(priv->dev, "Cannot allocate MURAM memory for TxBDs\n"); 194 ret = -ENOMEM; 195 goto free_rx_bd; 196 } 197 198 /* Alloc parameter ram for ucc hdlc */ 199 priv->ucc_pram_offset = qe_muram_alloc(sizeof(struct ucc_hdlc_param), 200 ALIGNMENT_OF_UCC_HDLC_PRAM); 201 202 if (IS_ERR_VALUE(priv->ucc_pram_offset)) { 203 dev_err(priv->dev, "Can not allocate MURAM for hdlc parameter.\n"); 204 ret = -ENOMEM; 205 goto free_tx_bd; 206 } 207 208 priv->rx_skbuff = kcalloc(priv->rx_ring_size, 209 sizeof(*priv->rx_skbuff), 210 GFP_KERNEL); 211 if (!priv->rx_skbuff) 212 goto free_ucc_pram; 213 214 priv->tx_skbuff = kcalloc(priv->tx_ring_size, 215 sizeof(*priv->tx_skbuff), 216 GFP_KERNEL); 217 if (!priv->tx_skbuff) 218 goto free_rx_skbuff; 219 220 priv->skb_curtx = 0; 221 priv->skb_dirtytx = 0; 222 priv->curtx_bd = priv->tx_bd_base; 223 priv->dirty_tx = priv->tx_bd_base; 224 priv->currx_bd = priv->rx_bd_base; 225 priv->currx_bdnum = 0; 226 227 /* init parameter base */ 228 cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num); 229 ret = qe_issue_cmd(QE_ASSIGN_PAGE_TO_DEVICE, cecr_subblock, 230 QE_CR_PROTOCOL_UNSPECIFIED, priv->ucc_pram_offset); 231 232 priv->ucc_pram = (struct ucc_hdlc_param __iomem *) 233 qe_muram_addr(priv->ucc_pram_offset); 234 235 /* Zero out parameter ram */ 236 memset_io(priv->ucc_pram, 0, sizeof(struct ucc_hdlc_param)); 237 238 /* Alloc riptr, tiptr */ 239 riptr = qe_muram_alloc(32, 32); 240 if (IS_ERR_VALUE(riptr)) { 241 dev_err(priv->dev, "Cannot allocate MURAM mem for Receive internal temp data pointer\n"); 242 ret = -ENOMEM; 243 goto free_tx_skbuff; 244 } 245 246 tiptr = qe_muram_alloc(32, 32); 247 if (IS_ERR_VALUE(tiptr)) { 248 dev_err(priv->dev, "Cannot allocate MURAM mem for Transmit internal temp data pointer\n"); 249 ret = -ENOMEM; 250 goto free_riptr; 251 } 252 253 /* Set RIPTR, TIPTR */ 254 iowrite16be(riptr, &priv->ucc_pram->riptr); 255 iowrite16be(tiptr, &priv->ucc_pram->tiptr); 256 257 /* Set MRBLR */ 258 iowrite16be(MAX_RX_BUF_LENGTH, &priv->ucc_pram->mrblr); 259 260 /* Set RBASE, TBASE */ 261 iowrite32be(priv->dma_rx_bd, &priv->ucc_pram->rbase); 262 iowrite32be(priv->dma_tx_bd, &priv->ucc_pram->tbase); 263 264 /* Set RSTATE, TSTATE */ 265 iowrite32be(BMR_GBL | BMR_BIG_ENDIAN, &priv->ucc_pram->rstate); 266 iowrite32be(BMR_GBL | BMR_BIG_ENDIAN, &priv->ucc_pram->tstate); 267 268 /* Set C_MASK, C_PRES for 16bit CRC */ 269 iowrite32be(CRC_16BIT_MASK, &priv->ucc_pram->c_mask); 270 iowrite32be(CRC_16BIT_PRES, &priv->ucc_pram->c_pres); 271 272 iowrite16be(MAX_FRAME_LENGTH, &priv->ucc_pram->mflr); 273 iowrite16be(DEFAULT_RFTHR, &priv->ucc_pram->rfthr); 274 iowrite16be(DEFAULT_RFTHR, &priv->ucc_pram->rfcnt); 275 iowrite16be(priv->hmask, &priv->ucc_pram->hmask); 276 iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr1); 277 iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr2); 278 iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr3); 279 iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr4); 280 281 /* Get BD buffer */ 282 bd_buffer = dma_alloc_coherent(priv->dev, 283 (RX_BD_RING_LEN + TX_BD_RING_LEN) * MAX_RX_BUF_LENGTH, 284 &bd_dma_addr, GFP_KERNEL); 285 286 if (!bd_buffer) { 287 dev_err(priv->dev, "Could not allocate buffer descriptors\n"); 288 ret = -ENOMEM; 289 goto free_tiptr; 290 } 291 292 priv->rx_buffer = bd_buffer; 293 priv->tx_buffer = bd_buffer + RX_BD_RING_LEN * MAX_RX_BUF_LENGTH; 294 295 priv->dma_rx_addr = bd_dma_addr; 296 priv->dma_tx_addr = bd_dma_addr + RX_BD_RING_LEN * MAX_RX_BUF_LENGTH; 297 298 for (i = 0; i < RX_BD_RING_LEN; i++) { 299 if (i < (RX_BD_RING_LEN - 1)) 300 bd_status = R_E_S | R_I_S; 301 else 302 bd_status = R_E_S | R_I_S | R_W_S; 303 304 iowrite16be(bd_status, &priv->rx_bd_base[i].status); 305 iowrite32be(priv->dma_rx_addr + i * MAX_RX_BUF_LENGTH, 306 &priv->rx_bd_base[i].buf); 307 } 308 309 for (i = 0; i < TX_BD_RING_LEN; i++) { 310 if (i < (TX_BD_RING_LEN - 1)) 311 bd_status = T_I_S | T_TC_S; 312 else 313 bd_status = T_I_S | T_TC_S | T_W_S; 314 315 iowrite16be(bd_status, &priv->tx_bd_base[i].status); 316 iowrite32be(priv->dma_tx_addr + i * MAX_RX_BUF_LENGTH, 317 &priv->tx_bd_base[i].buf); 318 } 319 320 return 0; 321 322 free_tiptr: 323 qe_muram_free(tiptr); 324 free_riptr: 325 qe_muram_free(riptr); 326 free_tx_skbuff: 327 kfree(priv->tx_skbuff); 328 free_rx_skbuff: 329 kfree(priv->rx_skbuff); 330 free_ucc_pram: 331 qe_muram_free(priv->ucc_pram_offset); 332 free_tx_bd: 333 dma_free_coherent(priv->dev, 334 TX_BD_RING_LEN * sizeof(struct qe_bd), 335 priv->tx_bd_base, priv->dma_tx_bd); 336 free_rx_bd: 337 dma_free_coherent(priv->dev, 338 RX_BD_RING_LEN * sizeof(struct qe_bd), 339 priv->rx_bd_base, priv->dma_rx_bd); 340 free_uccf: 341 ucc_fast_free(priv->uccf); 342 343 return ret; 344 } 345 346 static netdev_tx_t ucc_hdlc_tx(struct sk_buff *skb, struct net_device *dev) 347 { 348 hdlc_device *hdlc = dev_to_hdlc(dev); 349 struct ucc_hdlc_private *priv = (struct ucc_hdlc_private *)hdlc->priv; 350 struct qe_bd __iomem *bd; 351 u16 bd_status; 352 unsigned long flags; 353 u16 *proto_head; 354 355 switch (dev->type) { 356 case ARPHRD_RAWHDLC: 357 if (skb_headroom(skb) < HDLC_HEAD_LEN) { 358 dev->stats.tx_dropped++; 359 dev_kfree_skb(skb); 360 netdev_err(dev, "No enough space for hdlc head\n"); 361 return -ENOMEM; 362 } 363 364 skb_push(skb, HDLC_HEAD_LEN); 365 366 proto_head = (u16 *)skb->data; 367 *proto_head = htons(DEFAULT_HDLC_HEAD); 368 369 dev->stats.tx_bytes += skb->len; 370 break; 371 372 case ARPHRD_PPP: 373 proto_head = (u16 *)skb->data; 374 if (*proto_head != htons(DEFAULT_PPP_HEAD)) { 375 dev->stats.tx_dropped++; 376 dev_kfree_skb(skb); 377 netdev_err(dev, "Wrong ppp header\n"); 378 return -ENOMEM; 379 } 380 381 dev->stats.tx_bytes += skb->len; 382 break; 383 384 case ARPHRD_ETHER: 385 dev->stats.tx_bytes += skb->len; 386 break; 387 388 default: 389 dev->stats.tx_dropped++; 390 dev_kfree_skb(skb); 391 return -ENOMEM; 392 } 393 netdev_sent_queue(dev, skb->len); 394 spin_lock_irqsave(&priv->lock, flags); 395 396 /* Start from the next BD that should be filled */ 397 bd = priv->curtx_bd; 398 bd_status = ioread16be(&bd->status); 399 /* Save the skb pointer so we can free it later */ 400 priv->tx_skbuff[priv->skb_curtx] = skb; 401 402 /* Update the current skb pointer (wrapping if this was the last) */ 403 priv->skb_curtx = 404 (priv->skb_curtx + 1) & TX_RING_MOD_MASK(TX_BD_RING_LEN); 405 406 /* copy skb data to tx buffer for sdma processing */ 407 memcpy(priv->tx_buffer + (be32_to_cpu(bd->buf) - priv->dma_tx_addr), 408 skb->data, skb->len); 409 410 /* set bd status and length */ 411 bd_status = (bd_status & T_W_S) | T_R_S | T_I_S | T_L_S | T_TC_S; 412 413 iowrite16be(skb->len, &bd->length); 414 iowrite16be(bd_status, &bd->status); 415 416 /* Move to next BD in the ring */ 417 if (!(bd_status & T_W_S)) 418 bd += 1; 419 else 420 bd = priv->tx_bd_base; 421 422 if (bd == priv->dirty_tx) { 423 if (!netif_queue_stopped(dev)) 424 netif_stop_queue(dev); 425 } 426 427 priv->curtx_bd = bd; 428 429 spin_unlock_irqrestore(&priv->lock, flags); 430 431 return NETDEV_TX_OK; 432 } 433 434 static int hdlc_tx_restart(struct ucc_hdlc_private *priv) 435 { 436 u32 cecr_subblock; 437 438 cecr_subblock = 439 ucc_fast_get_qe_cr_subblock(priv->ut_info->uf_info.ucc_num); 440 441 qe_issue_cmd(QE_RESTART_TX, cecr_subblock, 442 QE_CR_PROTOCOL_UNSPECIFIED, 0); 443 return 0; 444 } 445 446 static int hdlc_tx_done(struct ucc_hdlc_private *priv) 447 { 448 /* Start from the next BD that should be filled */ 449 struct net_device *dev = priv->ndev; 450 unsigned int bytes_sent = 0; 451 int howmany = 0; 452 struct qe_bd *bd; /* BD pointer */ 453 u16 bd_status; 454 int tx_restart = 0; 455 456 bd = priv->dirty_tx; 457 bd_status = ioread16be(&bd->status); 458 459 /* Normal processing. */ 460 while ((bd_status & T_R_S) == 0) { 461 struct sk_buff *skb; 462 463 if (bd_status & T_UN_S) { /* Underrun */ 464 dev->stats.tx_fifo_errors++; 465 tx_restart = 1; 466 } 467 if (bd_status & T_CT_S) { /* Carrier lost */ 468 dev->stats.tx_carrier_errors++; 469 tx_restart = 1; 470 } 471 472 /* BD contains already transmitted buffer. */ 473 /* Handle the transmitted buffer and release */ 474 /* the BD to be used with the current frame */ 475 476 skb = priv->tx_skbuff[priv->skb_dirtytx]; 477 if (!skb) 478 break; 479 howmany++; 480 bytes_sent += skb->len; 481 dev->stats.tx_packets++; 482 memset(priv->tx_buffer + 483 (be32_to_cpu(bd->buf) - priv->dma_tx_addr), 484 0, skb->len); 485 dev_kfree_skb_irq(skb); 486 487 priv->tx_skbuff[priv->skb_dirtytx] = NULL; 488 priv->skb_dirtytx = 489 (priv->skb_dirtytx + 490 1) & TX_RING_MOD_MASK(TX_BD_RING_LEN); 491 492 /* We freed a buffer, so now we can restart transmission */ 493 if (netif_queue_stopped(dev)) 494 netif_wake_queue(dev); 495 496 /* Advance the confirmation BD pointer */ 497 if (!(bd_status & T_W_S)) 498 bd += 1; 499 else 500 bd = priv->tx_bd_base; 501 bd_status = ioread16be(&bd->status); 502 } 503 priv->dirty_tx = bd; 504 505 if (tx_restart) 506 hdlc_tx_restart(priv); 507 508 netdev_completed_queue(dev, howmany, bytes_sent); 509 return 0; 510 } 511 512 static int hdlc_rx_done(struct ucc_hdlc_private *priv, int rx_work_limit) 513 { 514 struct net_device *dev = priv->ndev; 515 struct sk_buff *skb = NULL; 516 hdlc_device *hdlc = dev_to_hdlc(dev); 517 struct qe_bd *bd; 518 u16 bd_status; 519 u16 length, howmany = 0; 520 u8 *bdbuffer; 521 522 bd = priv->currx_bd; 523 bd_status = ioread16be(&bd->status); 524 525 /* while there are received buffers and BD is full (~R_E) */ 526 while (!((bd_status & (R_E_S)) || (--rx_work_limit < 0))) { 527 if (bd_status & (RX_BD_ERRORS)) { 528 dev->stats.rx_errors++; 529 530 if (bd_status & R_CD_S) 531 dev->stats.collisions++; 532 if (bd_status & R_OV_S) 533 dev->stats.rx_fifo_errors++; 534 if (bd_status & R_CR_S) 535 dev->stats.rx_crc_errors++; 536 if (bd_status & R_AB_S) 537 dev->stats.rx_over_errors++; 538 if (bd_status & R_NO_S) 539 dev->stats.rx_frame_errors++; 540 if (bd_status & R_LG_S) 541 dev->stats.rx_length_errors++; 542 543 goto recycle; 544 } 545 bdbuffer = priv->rx_buffer + 546 (priv->currx_bdnum * MAX_RX_BUF_LENGTH); 547 length = ioread16be(&bd->length); 548 549 switch (dev->type) { 550 case ARPHRD_RAWHDLC: 551 bdbuffer += HDLC_HEAD_LEN; 552 length -= (HDLC_HEAD_LEN + HDLC_CRC_SIZE); 553 554 skb = dev_alloc_skb(length); 555 if (!skb) { 556 dev->stats.rx_dropped++; 557 return -ENOMEM; 558 } 559 560 skb_put(skb, length); 561 skb->len = length; 562 skb->dev = dev; 563 memcpy(skb->data, bdbuffer, length); 564 break; 565 566 case ARPHRD_PPP: 567 case ARPHRD_ETHER: 568 length -= HDLC_CRC_SIZE; 569 570 skb = dev_alloc_skb(length); 571 if (!skb) { 572 dev->stats.rx_dropped++; 573 return -ENOMEM; 574 } 575 576 skb_put(skb, length); 577 skb->len = length; 578 skb->dev = dev; 579 memcpy(skb->data, bdbuffer, length); 580 break; 581 } 582 583 dev->stats.rx_packets++; 584 dev->stats.rx_bytes += skb->len; 585 howmany++; 586 if (hdlc->proto) 587 skb->protocol = hdlc_type_trans(skb, dev); 588 netif_receive_skb(skb); 589 590 recycle: 591 iowrite16be((bd_status & R_W_S) | R_E_S | R_I_S, &bd->status); 592 593 /* update to point at the next bd */ 594 if (bd_status & R_W_S) { 595 priv->currx_bdnum = 0; 596 bd = priv->rx_bd_base; 597 } else { 598 if (priv->currx_bdnum < (RX_BD_RING_LEN - 1)) 599 priv->currx_bdnum += 1; 600 else 601 priv->currx_bdnum = RX_BD_RING_LEN - 1; 602 603 bd += 1; 604 } 605 606 bd_status = ioread16be(&bd->status); 607 } 608 609 priv->currx_bd = bd; 610 return howmany; 611 } 612 613 static int ucc_hdlc_poll(struct napi_struct *napi, int budget) 614 { 615 struct ucc_hdlc_private *priv = container_of(napi, 616 struct ucc_hdlc_private, 617 napi); 618 int howmany; 619 620 /* Tx event processing */ 621 spin_lock(&priv->lock); 622 hdlc_tx_done(priv); 623 spin_unlock(&priv->lock); 624 625 howmany = 0; 626 howmany += hdlc_rx_done(priv, budget - howmany); 627 628 if (howmany < budget) { 629 napi_complete_done(napi, howmany); 630 qe_setbits32(priv->uccf->p_uccm, 631 (UCCE_HDLC_RX_EVENTS | UCCE_HDLC_TX_EVENTS) << 16); 632 } 633 634 return howmany; 635 } 636 637 static irqreturn_t ucc_hdlc_irq_handler(int irq, void *dev_id) 638 { 639 struct ucc_hdlc_private *priv = (struct ucc_hdlc_private *)dev_id; 640 struct net_device *dev = priv->ndev; 641 struct ucc_fast_private *uccf; 642 struct ucc_tdm_info *ut_info; 643 u32 ucce; 644 u32 uccm; 645 646 ut_info = priv->ut_info; 647 uccf = priv->uccf; 648 649 ucce = ioread32be(uccf->p_ucce); 650 uccm = ioread32be(uccf->p_uccm); 651 ucce &= uccm; 652 iowrite32be(ucce, uccf->p_ucce); 653 if (!ucce) 654 return IRQ_NONE; 655 656 if ((ucce >> 16) & (UCCE_HDLC_RX_EVENTS | UCCE_HDLC_TX_EVENTS)) { 657 if (napi_schedule_prep(&priv->napi)) { 658 uccm &= ~((UCCE_HDLC_RX_EVENTS | UCCE_HDLC_TX_EVENTS) 659 << 16); 660 iowrite32be(uccm, uccf->p_uccm); 661 __napi_schedule(&priv->napi); 662 } 663 } 664 665 /* Errors and other events */ 666 if (ucce >> 16 & UCC_HDLC_UCCE_BSY) 667 dev->stats.rx_missed_errors++; 668 if (ucce >> 16 & UCC_HDLC_UCCE_TXE) 669 dev->stats.tx_errors++; 670 671 return IRQ_HANDLED; 672 } 673 674 static int uhdlc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 675 { 676 const size_t size = sizeof(te1_settings); 677 te1_settings line; 678 struct ucc_hdlc_private *priv = netdev_priv(dev); 679 680 if (cmd != SIOCWANDEV) 681 return hdlc_ioctl(dev, ifr, cmd); 682 683 switch (ifr->ifr_settings.type) { 684 case IF_GET_IFACE: 685 ifr->ifr_settings.type = IF_IFACE_E1; 686 if (ifr->ifr_settings.size < size) { 687 ifr->ifr_settings.size = size; /* data size wanted */ 688 return -ENOBUFS; 689 } 690 memset(&line, 0, sizeof(line)); 691 line.clock_type = priv->clocking; 692 693 if (copy_to_user(ifr->ifr_settings.ifs_ifsu.sync, &line, size)) 694 return -EFAULT; 695 return 0; 696 697 default: 698 return hdlc_ioctl(dev, ifr, cmd); 699 } 700 } 701 702 static int uhdlc_open(struct net_device *dev) 703 { 704 u32 cecr_subblock; 705 hdlc_device *hdlc = dev_to_hdlc(dev); 706 struct ucc_hdlc_private *priv = hdlc->priv; 707 struct ucc_tdm *utdm = priv->utdm; 708 709 if (priv->hdlc_busy != 1) { 710 if (request_irq(priv->ut_info->uf_info.irq, 711 ucc_hdlc_irq_handler, 0, "hdlc", priv)) 712 return -ENODEV; 713 714 cecr_subblock = ucc_fast_get_qe_cr_subblock( 715 priv->ut_info->uf_info.ucc_num); 716 717 qe_issue_cmd(QE_INIT_TX_RX, cecr_subblock, 718 QE_CR_PROTOCOL_UNSPECIFIED, 0); 719 720 ucc_fast_enable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX); 721 722 /* Enable the TDM port */ 723 if (priv->tsa) 724 utdm->si_regs->siglmr1_h |= (0x1 << utdm->tdm_port); 725 726 priv->hdlc_busy = 1; 727 netif_device_attach(priv->ndev); 728 napi_enable(&priv->napi); 729 netdev_reset_queue(dev); 730 netif_start_queue(dev); 731 hdlc_open(dev); 732 } 733 734 return 0; 735 } 736 737 static void uhdlc_memclean(struct ucc_hdlc_private *priv) 738 { 739 qe_muram_free(priv->ucc_pram->riptr); 740 qe_muram_free(priv->ucc_pram->tiptr); 741 742 if (priv->rx_bd_base) { 743 dma_free_coherent(priv->dev, 744 RX_BD_RING_LEN * sizeof(struct qe_bd), 745 priv->rx_bd_base, priv->dma_rx_bd); 746 747 priv->rx_bd_base = NULL; 748 priv->dma_rx_bd = 0; 749 } 750 751 if (priv->tx_bd_base) { 752 dma_free_coherent(priv->dev, 753 TX_BD_RING_LEN * sizeof(struct qe_bd), 754 priv->tx_bd_base, priv->dma_tx_bd); 755 756 priv->tx_bd_base = NULL; 757 priv->dma_tx_bd = 0; 758 } 759 760 if (priv->ucc_pram) { 761 qe_muram_free(priv->ucc_pram_offset); 762 priv->ucc_pram = NULL; 763 priv->ucc_pram_offset = 0; 764 } 765 766 kfree(priv->rx_skbuff); 767 priv->rx_skbuff = NULL; 768 769 kfree(priv->tx_skbuff); 770 priv->tx_skbuff = NULL; 771 772 if (priv->uf_regs) { 773 iounmap(priv->uf_regs); 774 priv->uf_regs = NULL; 775 } 776 777 if (priv->uccf) { 778 ucc_fast_free(priv->uccf); 779 priv->uccf = NULL; 780 } 781 782 if (priv->rx_buffer) { 783 dma_free_coherent(priv->dev, 784 RX_BD_RING_LEN * MAX_RX_BUF_LENGTH, 785 priv->rx_buffer, priv->dma_rx_addr); 786 priv->rx_buffer = NULL; 787 priv->dma_rx_addr = 0; 788 } 789 790 if (priv->tx_buffer) { 791 dma_free_coherent(priv->dev, 792 TX_BD_RING_LEN * MAX_RX_BUF_LENGTH, 793 priv->tx_buffer, priv->dma_tx_addr); 794 priv->tx_buffer = NULL; 795 priv->dma_tx_addr = 0; 796 } 797 } 798 799 static int uhdlc_close(struct net_device *dev) 800 { 801 struct ucc_hdlc_private *priv = dev_to_hdlc(dev)->priv; 802 struct ucc_tdm *utdm = priv->utdm; 803 u32 cecr_subblock; 804 805 napi_disable(&priv->napi); 806 cecr_subblock = ucc_fast_get_qe_cr_subblock( 807 priv->ut_info->uf_info.ucc_num); 808 809 qe_issue_cmd(QE_GRACEFUL_STOP_TX, cecr_subblock, 810 (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0); 811 qe_issue_cmd(QE_CLOSE_RX_BD, cecr_subblock, 812 (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0); 813 814 if (priv->tsa) 815 utdm->si_regs->siglmr1_h &= ~(0x1 << utdm->tdm_port); 816 817 ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX); 818 819 free_irq(priv->ut_info->uf_info.irq, priv); 820 netif_stop_queue(dev); 821 netdev_reset_queue(dev); 822 priv->hdlc_busy = 0; 823 824 return 0; 825 } 826 827 static int ucc_hdlc_attach(struct net_device *dev, unsigned short encoding, 828 unsigned short parity) 829 { 830 struct ucc_hdlc_private *priv = dev_to_hdlc(dev)->priv; 831 832 if (encoding != ENCODING_NRZ && 833 encoding != ENCODING_NRZI) 834 return -EINVAL; 835 836 if (parity != PARITY_NONE && 837 parity != PARITY_CRC32_PR1_CCITT && 838 parity != PARITY_CRC16_PR0_CCITT && 839 parity != PARITY_CRC16_PR1_CCITT) 840 return -EINVAL; 841 842 priv->encoding = encoding; 843 priv->parity = parity; 844 845 return 0; 846 } 847 848 #ifdef CONFIG_PM 849 static void store_clk_config(struct ucc_hdlc_private *priv) 850 { 851 struct qe_mux *qe_mux_reg = &qe_immr->qmx; 852 853 /* store si clk */ 854 priv->cmxsi1cr_h = ioread32be(&qe_mux_reg->cmxsi1cr_h); 855 priv->cmxsi1cr_l = ioread32be(&qe_mux_reg->cmxsi1cr_l); 856 857 /* store si sync */ 858 priv->cmxsi1syr = ioread32be(&qe_mux_reg->cmxsi1syr); 859 860 /* store ucc clk */ 861 memcpy_fromio(priv->cmxucr, qe_mux_reg->cmxucr, 4 * sizeof(u32)); 862 } 863 864 static void resume_clk_config(struct ucc_hdlc_private *priv) 865 { 866 struct qe_mux *qe_mux_reg = &qe_immr->qmx; 867 868 memcpy_toio(qe_mux_reg->cmxucr, priv->cmxucr, 4 * sizeof(u32)); 869 870 iowrite32be(priv->cmxsi1cr_h, &qe_mux_reg->cmxsi1cr_h); 871 iowrite32be(priv->cmxsi1cr_l, &qe_mux_reg->cmxsi1cr_l); 872 873 iowrite32be(priv->cmxsi1syr, &qe_mux_reg->cmxsi1syr); 874 } 875 876 static int uhdlc_suspend(struct device *dev) 877 { 878 struct ucc_hdlc_private *priv = dev_get_drvdata(dev); 879 struct ucc_tdm_info *ut_info; 880 struct ucc_fast __iomem *uf_regs; 881 882 if (!priv) 883 return -EINVAL; 884 885 if (!netif_running(priv->ndev)) 886 return 0; 887 888 netif_device_detach(priv->ndev); 889 napi_disable(&priv->napi); 890 891 ut_info = priv->ut_info; 892 uf_regs = priv->uf_regs; 893 894 /* backup gumr guemr*/ 895 priv->gumr = ioread32be(&uf_regs->gumr); 896 priv->guemr = ioread8(&uf_regs->guemr); 897 898 priv->ucc_pram_bak = kmalloc(sizeof(*priv->ucc_pram_bak), 899 GFP_KERNEL); 900 if (!priv->ucc_pram_bak) 901 return -ENOMEM; 902 903 /* backup HDLC parameter */ 904 memcpy_fromio(priv->ucc_pram_bak, priv->ucc_pram, 905 sizeof(struct ucc_hdlc_param)); 906 907 /* store the clk configuration */ 908 store_clk_config(priv); 909 910 /* save power */ 911 ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX); 912 913 return 0; 914 } 915 916 static int uhdlc_resume(struct device *dev) 917 { 918 struct ucc_hdlc_private *priv = dev_get_drvdata(dev); 919 struct ucc_tdm *utdm; 920 struct ucc_tdm_info *ut_info; 921 struct ucc_fast __iomem *uf_regs; 922 struct ucc_fast_private *uccf; 923 struct ucc_fast_info *uf_info; 924 int ret, i; 925 u32 cecr_subblock; 926 u16 bd_status; 927 928 if (!priv) 929 return -EINVAL; 930 931 if (!netif_running(priv->ndev)) 932 return 0; 933 934 utdm = priv->utdm; 935 ut_info = priv->ut_info; 936 uf_info = &ut_info->uf_info; 937 uf_regs = priv->uf_regs; 938 uccf = priv->uccf; 939 940 /* restore gumr guemr */ 941 iowrite8(priv->guemr, &uf_regs->guemr); 942 iowrite32be(priv->gumr, &uf_regs->gumr); 943 944 /* Set Virtual Fifo registers */ 945 iowrite16be(uf_info->urfs, &uf_regs->urfs); 946 iowrite16be(uf_info->urfet, &uf_regs->urfet); 947 iowrite16be(uf_info->urfset, &uf_regs->urfset); 948 iowrite16be(uf_info->utfs, &uf_regs->utfs); 949 iowrite16be(uf_info->utfet, &uf_regs->utfet); 950 iowrite16be(uf_info->utftt, &uf_regs->utftt); 951 /* utfb, urfb are offsets from MURAM base */ 952 iowrite32be(uccf->ucc_fast_tx_virtual_fifo_base_offset, &uf_regs->utfb); 953 iowrite32be(uccf->ucc_fast_rx_virtual_fifo_base_offset, &uf_regs->urfb); 954 955 /* Rx Tx and sync clock routing */ 956 resume_clk_config(priv); 957 958 iowrite32be(uf_info->uccm_mask, &uf_regs->uccm); 959 iowrite32be(0xffffffff, &uf_regs->ucce); 960 961 ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX); 962 963 /* rebuild SIRAM */ 964 if (priv->tsa) 965 ucc_tdm_init(priv->utdm, priv->ut_info); 966 967 /* Write to QE CECR, UCCx channel to Stop Transmission */ 968 cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num); 969 ret = qe_issue_cmd(QE_STOP_TX, cecr_subblock, 970 (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0); 971 972 /* Set UPSMR normal mode */ 973 iowrite32be(0, &uf_regs->upsmr); 974 975 /* init parameter base */ 976 cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num); 977 ret = qe_issue_cmd(QE_ASSIGN_PAGE_TO_DEVICE, cecr_subblock, 978 QE_CR_PROTOCOL_UNSPECIFIED, priv->ucc_pram_offset); 979 980 priv->ucc_pram = (struct ucc_hdlc_param __iomem *) 981 qe_muram_addr(priv->ucc_pram_offset); 982 983 /* restore ucc parameter */ 984 memcpy_toio(priv->ucc_pram, priv->ucc_pram_bak, 985 sizeof(struct ucc_hdlc_param)); 986 kfree(priv->ucc_pram_bak); 987 988 /* rebuild BD entry */ 989 for (i = 0; i < RX_BD_RING_LEN; i++) { 990 if (i < (RX_BD_RING_LEN - 1)) 991 bd_status = R_E_S | R_I_S; 992 else 993 bd_status = R_E_S | R_I_S | R_W_S; 994 995 iowrite16be(bd_status, &priv->rx_bd_base[i].status); 996 iowrite32be(priv->dma_rx_addr + i * MAX_RX_BUF_LENGTH, 997 &priv->rx_bd_base[i].buf); 998 } 999 1000 for (i = 0; i < TX_BD_RING_LEN; i++) { 1001 if (i < (TX_BD_RING_LEN - 1)) 1002 bd_status = T_I_S | T_TC_S; 1003 else 1004 bd_status = T_I_S | T_TC_S | T_W_S; 1005 1006 iowrite16be(bd_status, &priv->tx_bd_base[i].status); 1007 iowrite32be(priv->dma_tx_addr + i * MAX_RX_BUF_LENGTH, 1008 &priv->tx_bd_base[i].buf); 1009 } 1010 1011 /* if hdlc is busy enable TX and RX */ 1012 if (priv->hdlc_busy == 1) { 1013 cecr_subblock = ucc_fast_get_qe_cr_subblock( 1014 priv->ut_info->uf_info.ucc_num); 1015 1016 qe_issue_cmd(QE_INIT_TX_RX, cecr_subblock, 1017 (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0); 1018 1019 ucc_fast_enable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX); 1020 1021 /* Enable the TDM port */ 1022 if (priv->tsa) 1023 utdm->si_regs->siglmr1_h |= (0x1 << utdm->tdm_port); 1024 } 1025 1026 napi_enable(&priv->napi); 1027 netif_device_attach(priv->ndev); 1028 1029 return 0; 1030 } 1031 1032 static const struct dev_pm_ops uhdlc_pm_ops = { 1033 .suspend = uhdlc_suspend, 1034 .resume = uhdlc_resume, 1035 .freeze = uhdlc_suspend, 1036 .thaw = uhdlc_resume, 1037 }; 1038 1039 #define HDLC_PM_OPS (&uhdlc_pm_ops) 1040 1041 #else 1042 1043 #define HDLC_PM_OPS NULL 1044 1045 #endif 1046 static void uhdlc_tx_timeout(struct net_device *ndev) 1047 { 1048 netdev_err(ndev, "%s\n", __func__); 1049 } 1050 1051 static const struct net_device_ops uhdlc_ops = { 1052 .ndo_open = uhdlc_open, 1053 .ndo_stop = uhdlc_close, 1054 .ndo_start_xmit = hdlc_start_xmit, 1055 .ndo_do_ioctl = uhdlc_ioctl, 1056 .ndo_tx_timeout = uhdlc_tx_timeout, 1057 }; 1058 1059 static int hdlc_map_iomem(char *name, int init_flag, void __iomem **ptr) 1060 { 1061 struct device_node *np; 1062 struct platform_device *pdev; 1063 struct resource *res; 1064 static int siram_init_flag; 1065 int ret = 0; 1066 1067 np = of_find_compatible_node(NULL, NULL, name); 1068 if (!np) 1069 return -EINVAL; 1070 1071 pdev = of_find_device_by_node(np); 1072 if (!pdev) { 1073 pr_err("%pOFn: failed to lookup pdev\n", np); 1074 of_node_put(np); 1075 return -EINVAL; 1076 } 1077 1078 of_node_put(np); 1079 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1080 if (!res) { 1081 ret = -EINVAL; 1082 goto error_put_device; 1083 } 1084 *ptr = ioremap(res->start, resource_size(res)); 1085 if (!*ptr) { 1086 ret = -ENOMEM; 1087 goto error_put_device; 1088 } 1089 1090 /* We've remapped the addresses, and we don't need the device any 1091 * more, so we should release it. 1092 */ 1093 put_device(&pdev->dev); 1094 1095 if (init_flag && siram_init_flag == 0) { 1096 memset_io(*ptr, 0, resource_size(res)); 1097 siram_init_flag = 1; 1098 } 1099 return 0; 1100 1101 error_put_device: 1102 put_device(&pdev->dev); 1103 1104 return ret; 1105 } 1106 1107 static int ucc_hdlc_probe(struct platform_device *pdev) 1108 { 1109 struct device_node *np = pdev->dev.of_node; 1110 struct ucc_hdlc_private *uhdlc_priv = NULL; 1111 struct ucc_tdm_info *ut_info; 1112 struct ucc_tdm *utdm = NULL; 1113 struct resource res; 1114 struct net_device *dev; 1115 hdlc_device *hdlc; 1116 int ucc_num; 1117 const char *sprop; 1118 int ret; 1119 u32 val; 1120 1121 ret = of_property_read_u32_index(np, "cell-index", 0, &val); 1122 if (ret) { 1123 dev_err(&pdev->dev, "Invalid ucc property\n"); 1124 return -ENODEV; 1125 } 1126 1127 ucc_num = val - 1; 1128 if (ucc_num > (UCC_MAX_NUM - 1) || ucc_num < 0) { 1129 dev_err(&pdev->dev, ": Invalid UCC num\n"); 1130 return -EINVAL; 1131 } 1132 1133 memcpy(&utdm_info[ucc_num], &utdm_primary_info, 1134 sizeof(utdm_primary_info)); 1135 1136 ut_info = &utdm_info[ucc_num]; 1137 ut_info->uf_info.ucc_num = ucc_num; 1138 1139 sprop = of_get_property(np, "rx-clock-name", NULL); 1140 if (sprop) { 1141 ut_info->uf_info.rx_clock = qe_clock_source(sprop); 1142 if ((ut_info->uf_info.rx_clock < QE_CLK_NONE) || 1143 (ut_info->uf_info.rx_clock > QE_CLK24)) { 1144 dev_err(&pdev->dev, "Invalid rx-clock-name property\n"); 1145 return -EINVAL; 1146 } 1147 } else { 1148 dev_err(&pdev->dev, "Invalid rx-clock-name property\n"); 1149 return -EINVAL; 1150 } 1151 1152 sprop = of_get_property(np, "tx-clock-name", NULL); 1153 if (sprop) { 1154 ut_info->uf_info.tx_clock = qe_clock_source(sprop); 1155 if ((ut_info->uf_info.tx_clock < QE_CLK_NONE) || 1156 (ut_info->uf_info.tx_clock > QE_CLK24)) { 1157 dev_err(&pdev->dev, "Invalid tx-clock-name property\n"); 1158 return -EINVAL; 1159 } 1160 } else { 1161 dev_err(&pdev->dev, "Invalid tx-clock-name property\n"); 1162 return -EINVAL; 1163 } 1164 1165 ret = of_address_to_resource(np, 0, &res); 1166 if (ret) 1167 return -EINVAL; 1168 1169 ut_info->uf_info.regs = res.start; 1170 ut_info->uf_info.irq = irq_of_parse_and_map(np, 0); 1171 1172 uhdlc_priv = kzalloc(sizeof(*uhdlc_priv), GFP_KERNEL); 1173 if (!uhdlc_priv) { 1174 return -ENOMEM; 1175 } 1176 1177 dev_set_drvdata(&pdev->dev, uhdlc_priv); 1178 uhdlc_priv->dev = &pdev->dev; 1179 uhdlc_priv->ut_info = ut_info; 1180 1181 if (of_get_property(np, "fsl,tdm-interface", NULL)) 1182 uhdlc_priv->tsa = 1; 1183 1184 if (of_get_property(np, "fsl,ucc-internal-loopback", NULL)) 1185 uhdlc_priv->loopback = 1; 1186 1187 if (of_get_property(np, "fsl,hdlc-bus", NULL)) 1188 uhdlc_priv->hdlc_bus = 1; 1189 1190 if (uhdlc_priv->tsa == 1) { 1191 utdm = kzalloc(sizeof(*utdm), GFP_KERNEL); 1192 if (!utdm) { 1193 ret = -ENOMEM; 1194 dev_err(&pdev->dev, "No mem to alloc ucc tdm data\n"); 1195 goto free_uhdlc_priv; 1196 } 1197 uhdlc_priv->utdm = utdm; 1198 ret = ucc_of_parse_tdm(np, utdm, ut_info); 1199 if (ret) 1200 goto free_utdm; 1201 1202 ret = hdlc_map_iomem("fsl,t1040-qe-si", 0, 1203 (void __iomem **)&utdm->si_regs); 1204 if (ret) 1205 goto free_utdm; 1206 ret = hdlc_map_iomem("fsl,t1040-qe-siram", 1, 1207 (void __iomem **)&utdm->siram); 1208 if (ret) 1209 goto unmap_si_regs; 1210 } 1211 1212 if (of_property_read_u16(np, "fsl,hmask", &uhdlc_priv->hmask)) 1213 uhdlc_priv->hmask = DEFAULT_ADDR_MASK; 1214 1215 ret = uhdlc_init(uhdlc_priv); 1216 if (ret) { 1217 dev_err(&pdev->dev, "Failed to init uhdlc\n"); 1218 goto undo_uhdlc_init; 1219 } 1220 1221 dev = alloc_hdlcdev(uhdlc_priv); 1222 if (!dev) { 1223 ret = -ENOMEM; 1224 pr_err("ucc_hdlc: unable to allocate memory\n"); 1225 goto undo_uhdlc_init; 1226 } 1227 1228 uhdlc_priv->ndev = dev; 1229 hdlc = dev_to_hdlc(dev); 1230 dev->tx_queue_len = 16; 1231 dev->netdev_ops = &uhdlc_ops; 1232 dev->watchdog_timeo = 2 * HZ; 1233 hdlc->attach = ucc_hdlc_attach; 1234 hdlc->xmit = ucc_hdlc_tx; 1235 netif_napi_add(dev, &uhdlc_priv->napi, ucc_hdlc_poll, 32); 1236 if (register_hdlc_device(dev)) { 1237 ret = -ENOBUFS; 1238 pr_err("ucc_hdlc: unable to register hdlc device\n"); 1239 goto free_dev; 1240 } 1241 1242 return 0; 1243 1244 free_dev: 1245 free_netdev(dev); 1246 undo_uhdlc_init: 1247 iounmap(utdm->siram); 1248 unmap_si_regs: 1249 iounmap(utdm->si_regs); 1250 free_utdm: 1251 if (uhdlc_priv->tsa) 1252 kfree(utdm); 1253 free_uhdlc_priv: 1254 kfree(uhdlc_priv); 1255 return ret; 1256 } 1257 1258 static int ucc_hdlc_remove(struct platform_device *pdev) 1259 { 1260 struct ucc_hdlc_private *priv = dev_get_drvdata(&pdev->dev); 1261 1262 uhdlc_memclean(priv); 1263 1264 if (priv->utdm->si_regs) { 1265 iounmap(priv->utdm->si_regs); 1266 priv->utdm->si_regs = NULL; 1267 } 1268 1269 if (priv->utdm->siram) { 1270 iounmap(priv->utdm->siram); 1271 priv->utdm->siram = NULL; 1272 } 1273 kfree(priv); 1274 1275 dev_info(&pdev->dev, "UCC based hdlc module removed\n"); 1276 1277 return 0; 1278 } 1279 1280 static const struct of_device_id fsl_ucc_hdlc_of_match[] = { 1281 { 1282 .compatible = "fsl,ucc-hdlc", 1283 }, 1284 {}, 1285 }; 1286 1287 MODULE_DEVICE_TABLE(of, fsl_ucc_hdlc_of_match); 1288 1289 static struct platform_driver ucc_hdlc_driver = { 1290 .probe = ucc_hdlc_probe, 1291 .remove = ucc_hdlc_remove, 1292 .driver = { 1293 .name = DRV_NAME, 1294 .pm = HDLC_PM_OPS, 1295 .of_match_table = fsl_ucc_hdlc_of_match, 1296 }, 1297 }; 1298 1299 module_platform_driver(ucc_hdlc_driver); 1300 MODULE_LICENSE("GPL"); 1301