xref: /openbmc/linux/drivers/net/wan/farsync.c (revision f7018c21)
1 /*
2  *      FarSync WAN driver for Linux (2.6.x kernel version)
3  *
4  *      Actually sync driver for X.21, V.35 and V.24 on FarSync T-series cards
5  *
6  *      Copyright (C) 2001-2004 FarSite Communications Ltd.
7  *      www.farsite.co.uk
8  *
9  *      This program is free software; you can redistribute it and/or
10  *      modify it under the terms of the GNU General Public License
11  *      as published by the Free Software Foundation; either version
12  *      2 of the License, or (at your option) any later version.
13  *
14  *      Author:      R.J.Dunlop    <bob.dunlop@farsite.co.uk>
15  *      Maintainer:  Kevin Curtis  <kevin.curtis@farsite.co.uk>
16  */
17 
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/module.h>
21 #include <linux/kernel.h>
22 #include <linux/version.h>
23 #include <linux/pci.h>
24 #include <linux/sched.h>
25 #include <linux/slab.h>
26 #include <linux/ioport.h>
27 #include <linux/init.h>
28 #include <linux/interrupt.h>
29 #include <linux/if.h>
30 #include <linux/hdlc.h>
31 #include <asm/io.h>
32 #include <asm/uaccess.h>
33 
34 #include "farsync.h"
35 
36 /*
37  *      Module info
38  */
39 MODULE_AUTHOR("R.J.Dunlop <bob.dunlop@farsite.co.uk>");
40 MODULE_DESCRIPTION("FarSync T-Series WAN driver. FarSite Communications Ltd.");
41 MODULE_LICENSE("GPL");
42 
43 /*      Driver configuration and global parameters
44  *      ==========================================
45  */
46 
47 /*      Number of ports (per card) and cards supported
48  */
49 #define FST_MAX_PORTS           4
50 #define FST_MAX_CARDS           32
51 
52 /*      Default parameters for the link
53  */
54 #define FST_TX_QUEUE_LEN        100	/* At 8Mbps a longer queue length is
55 					 * useful */
56 #define FST_TXQ_DEPTH           16	/* This one is for the buffering
57 					 * of frames on the way down to the card
58 					 * so that we can keep the card busy
59 					 * and maximise throughput
60 					 */
61 #define FST_HIGH_WATER_MARK     12	/* Point at which we flow control
62 					 * network layer */
63 #define FST_LOW_WATER_MARK      8	/* Point at which we remove flow
64 					 * control from network layer */
65 #define FST_MAX_MTU             8000	/* Huge but possible */
66 #define FST_DEF_MTU             1500	/* Common sane value */
67 
68 #define FST_TX_TIMEOUT          (2*HZ)
69 
70 #ifdef ARPHRD_RAWHDLC
71 #define ARPHRD_MYTYPE   ARPHRD_RAWHDLC	/* Raw frames */
72 #else
73 #define ARPHRD_MYTYPE   ARPHRD_HDLC	/* Cisco-HDLC (keepalives etc) */
74 #endif
75 
76 /*
77  * Modules parameters and associated variables
78  */
79 static int fst_txq_low = FST_LOW_WATER_MARK;
80 static int fst_txq_high = FST_HIGH_WATER_MARK;
81 static int fst_max_reads = 7;
82 static int fst_excluded_cards = 0;
83 static int fst_excluded_list[FST_MAX_CARDS];
84 
85 module_param(fst_txq_low, int, 0);
86 module_param(fst_txq_high, int, 0);
87 module_param(fst_max_reads, int, 0);
88 module_param(fst_excluded_cards, int, 0);
89 module_param_array(fst_excluded_list, int, NULL, 0);
90 
91 /*      Card shared memory layout
92  *      =========================
93  */
94 #pragma pack(1)
95 
96 /*      This information is derived in part from the FarSite FarSync Smc.h
97  *      file. Unfortunately various name clashes and the non-portability of the
98  *      bit field declarations in that file have meant that I have chosen to
99  *      recreate the information here.
100  *
101  *      The SMC (Shared Memory Configuration) has a version number that is
102  *      incremented every time there is a significant change. This number can
103  *      be used to check that we have not got out of step with the firmware
104  *      contained in the .CDE files.
105  */
106 #define SMC_VERSION 24
107 
108 #define FST_MEMSIZE 0x100000	/* Size of card memory (1Mb) */
109 
110 #define SMC_BASE 0x00002000L	/* Base offset of the shared memory window main
111 				 * configuration structure */
112 #define BFM_BASE 0x00010000L	/* Base offset of the shared memory window DMA
113 				 * buffers */
114 
115 #define LEN_TX_BUFFER 8192	/* Size of packet buffers */
116 #define LEN_RX_BUFFER 8192
117 
118 #define LEN_SMALL_TX_BUFFER 256	/* Size of obsolete buffs used for DOS diags */
119 #define LEN_SMALL_RX_BUFFER 256
120 
121 #define NUM_TX_BUFFER 2		/* Must be power of 2. Fixed by firmware */
122 #define NUM_RX_BUFFER 8
123 
124 /* Interrupt retry time in milliseconds */
125 #define INT_RETRY_TIME 2
126 
127 /*      The Am186CH/CC processors support a SmartDMA mode using circular pools
128  *      of buffer descriptors. The structure is almost identical to that used
129  *      in the LANCE Ethernet controllers. Details available as PDF from the
130  *      AMD web site: http://www.amd.com/products/epd/processors/\
131  *                    2.16bitcont/3.am186cxfa/a21914/21914.pdf
132  */
133 struct txdesc {			/* Transmit descriptor */
134 	volatile u16 ladr;	/* Low order address of packet. This is a
135 				 * linear address in the Am186 memory space
136 				 */
137 	volatile u8 hadr;	/* High order address. Low 4 bits only, high 4
138 				 * bits must be zero
139 				 */
140 	volatile u8 bits;	/* Status and config */
141 	volatile u16 bcnt;	/* 2s complement of packet size in low 15 bits.
142 				 * Transmit terminal count interrupt enable in
143 				 * top bit.
144 				 */
145 	u16 unused;		/* Not used in Tx */
146 };
147 
148 struct rxdesc {			/* Receive descriptor */
149 	volatile u16 ladr;	/* Low order address of packet */
150 	volatile u8 hadr;	/* High order address */
151 	volatile u8 bits;	/* Status and config */
152 	volatile u16 bcnt;	/* 2s complement of buffer size in low 15 bits.
153 				 * Receive terminal count interrupt enable in
154 				 * top bit.
155 				 */
156 	volatile u16 mcnt;	/* Message byte count (15 bits) */
157 };
158 
159 /* Convert a length into the 15 bit 2's complement */
160 /* #define cnv_bcnt(len)   (( ~(len) + 1 ) & 0x7FFF ) */
161 /* Since we need to set the high bit to enable the completion interrupt this
162  * can be made a lot simpler
163  */
164 #define cnv_bcnt(len)   (-(len))
165 
166 /* Status and config bits for the above */
167 #define DMA_OWN         0x80	/* SmartDMA owns the descriptor */
168 #define TX_STP          0x02	/* Tx: start of packet */
169 #define TX_ENP          0x01	/* Tx: end of packet */
170 #define RX_ERR          0x40	/* Rx: error (OR of next 4 bits) */
171 #define RX_FRAM         0x20	/* Rx: framing error */
172 #define RX_OFLO         0x10	/* Rx: overflow error */
173 #define RX_CRC          0x08	/* Rx: CRC error */
174 #define RX_HBUF         0x04	/* Rx: buffer error */
175 #define RX_STP          0x02	/* Rx: start of packet */
176 #define RX_ENP          0x01	/* Rx: end of packet */
177 
178 /* Interrupts from the card are caused by various events which are presented
179  * in a circular buffer as several events may be processed on one physical int
180  */
181 #define MAX_CIRBUFF     32
182 
183 struct cirbuff {
184 	u8 rdindex;		/* read, then increment and wrap */
185 	u8 wrindex;		/* write, then increment and wrap */
186 	u8 evntbuff[MAX_CIRBUFF];
187 };
188 
189 /* Interrupt event codes.
190  * Where appropriate the two low order bits indicate the port number
191  */
192 #define CTLA_CHG        0x18	/* Control signal changed */
193 #define CTLB_CHG        0x19
194 #define CTLC_CHG        0x1A
195 #define CTLD_CHG        0x1B
196 
197 #define INIT_CPLT       0x20	/* Initialisation complete */
198 #define INIT_FAIL       0x21	/* Initialisation failed */
199 
200 #define ABTA_SENT       0x24	/* Abort sent */
201 #define ABTB_SENT       0x25
202 #define ABTC_SENT       0x26
203 #define ABTD_SENT       0x27
204 
205 #define TXA_UNDF        0x28	/* Transmission underflow */
206 #define TXB_UNDF        0x29
207 #define TXC_UNDF        0x2A
208 #define TXD_UNDF        0x2B
209 
210 #define F56_INT         0x2C
211 #define M32_INT         0x2D
212 
213 #define TE1_ALMA        0x30
214 
215 /* Port physical configuration. See farsync.h for field values */
216 struct port_cfg {
217 	u16 lineInterface;	/* Physical interface type */
218 	u8 x25op;		/* Unused at present */
219 	u8 internalClock;	/* 1 => internal clock, 0 => external */
220 	u8 transparentMode;	/* 1 => on, 0 => off */
221 	u8 invertClock;		/* 0 => normal, 1 => inverted */
222 	u8 padBytes[6];		/* Padding */
223 	u32 lineSpeed;		/* Speed in bps */
224 };
225 
226 /* TE1 port physical configuration */
227 struct su_config {
228 	u32 dataRate;
229 	u8 clocking;
230 	u8 framing;
231 	u8 structure;
232 	u8 interface;
233 	u8 coding;
234 	u8 lineBuildOut;
235 	u8 equalizer;
236 	u8 transparentMode;
237 	u8 loopMode;
238 	u8 range;
239 	u8 txBufferMode;
240 	u8 rxBufferMode;
241 	u8 startingSlot;
242 	u8 losThreshold;
243 	u8 enableIdleCode;
244 	u8 idleCode;
245 	u8 spare[44];
246 };
247 
248 /* TE1 Status */
249 struct su_status {
250 	u32 receiveBufferDelay;
251 	u32 framingErrorCount;
252 	u32 codeViolationCount;
253 	u32 crcErrorCount;
254 	u32 lineAttenuation;
255 	u8 portStarted;
256 	u8 lossOfSignal;
257 	u8 receiveRemoteAlarm;
258 	u8 alarmIndicationSignal;
259 	u8 spare[40];
260 };
261 
262 /* Finally sling all the above together into the shared memory structure.
263  * Sorry it's a hodge podge of arrays, structures and unused bits, it's been
264  * evolving under NT for some time so I guess we're stuck with it.
265  * The structure starts at offset SMC_BASE.
266  * See farsync.h for some field values.
267  */
268 struct fst_shared {
269 	/* DMA descriptor rings */
270 	struct rxdesc rxDescrRing[FST_MAX_PORTS][NUM_RX_BUFFER];
271 	struct txdesc txDescrRing[FST_MAX_PORTS][NUM_TX_BUFFER];
272 
273 	/* Obsolete small buffers */
274 	u8 smallRxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_SMALL_RX_BUFFER];
275 	u8 smallTxBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_SMALL_TX_BUFFER];
276 
277 	u8 taskStatus;		/* 0x00 => initialising, 0x01 => running,
278 				 * 0xFF => halted
279 				 */
280 
281 	u8 interruptHandshake;	/* Set to 0x01 by adapter to signal interrupt,
282 				 * set to 0xEE by host to acknowledge interrupt
283 				 */
284 
285 	u16 smcVersion;		/* Must match SMC_VERSION */
286 
287 	u32 smcFirmwareVersion;	/* 0xIIVVRRBB where II = product ID, VV = major
288 				 * version, RR = revision and BB = build
289 				 */
290 
291 	u16 txa_done;		/* Obsolete completion flags */
292 	u16 rxa_done;
293 	u16 txb_done;
294 	u16 rxb_done;
295 	u16 txc_done;
296 	u16 rxc_done;
297 	u16 txd_done;
298 	u16 rxd_done;
299 
300 	u16 mailbox[4];		/* Diagnostics mailbox. Not used */
301 
302 	struct cirbuff interruptEvent;	/* interrupt causes */
303 
304 	u32 v24IpSts[FST_MAX_PORTS];	/* V.24 control input status */
305 	u32 v24OpSts[FST_MAX_PORTS];	/* V.24 control output status */
306 
307 	struct port_cfg portConfig[FST_MAX_PORTS];
308 
309 	u16 clockStatus[FST_MAX_PORTS];	/* lsb: 0=> present, 1=> absent */
310 
311 	u16 cableStatus;	/* lsb: 0=> present, 1=> absent */
312 
313 	u16 txDescrIndex[FST_MAX_PORTS];	/* transmit descriptor ring index */
314 	u16 rxDescrIndex[FST_MAX_PORTS];	/* receive descriptor ring index */
315 
316 	u16 portMailbox[FST_MAX_PORTS][2];	/* command, modifier */
317 	u16 cardMailbox[4];	/* Not used */
318 
319 	/* Number of times the card thinks the host has
320 	 * missed an interrupt by not acknowledging
321 	 * within 2mS (I guess NT has problems)
322 	 */
323 	u32 interruptRetryCount;
324 
325 	/* Driver private data used as an ID. We'll not
326 	 * use this as I'd rather keep such things
327 	 * in main memory rather than on the PCI bus
328 	 */
329 	u32 portHandle[FST_MAX_PORTS];
330 
331 	/* Count of Tx underflows for stats */
332 	u32 transmitBufferUnderflow[FST_MAX_PORTS];
333 
334 	/* Debounced V.24 control input status */
335 	u32 v24DebouncedSts[FST_MAX_PORTS];
336 
337 	/* Adapter debounce timers. Don't touch */
338 	u32 ctsTimer[FST_MAX_PORTS];
339 	u32 ctsTimerRun[FST_MAX_PORTS];
340 	u32 dcdTimer[FST_MAX_PORTS];
341 	u32 dcdTimerRun[FST_MAX_PORTS];
342 
343 	u32 numberOfPorts;	/* Number of ports detected at startup */
344 
345 	u16 _reserved[64];
346 
347 	u16 cardMode;		/* Bit-mask to enable features:
348 				 * Bit 0: 1 enables LED identify mode
349 				 */
350 
351 	u16 portScheduleOffset;
352 
353 	struct su_config suConfig;	/* TE1 Bits */
354 	struct su_status suStatus;
355 
356 	u32 endOfSmcSignature;	/* endOfSmcSignature MUST be the last member of
357 				 * the structure and marks the end of shared
358 				 * memory. Adapter code initializes it as
359 				 * END_SIG.
360 				 */
361 };
362 
363 /* endOfSmcSignature value */
364 #define END_SIG                 0x12345678
365 
366 /* Mailbox values. (portMailbox) */
367 #define NOP             0	/* No operation */
368 #define ACK             1	/* Positive acknowledgement to PC driver */
369 #define NAK             2	/* Negative acknowledgement to PC driver */
370 #define STARTPORT       3	/* Start an HDLC port */
371 #define STOPPORT        4	/* Stop an HDLC port */
372 #define ABORTTX         5	/* Abort the transmitter for a port */
373 #define SETV24O         6	/* Set V24 outputs */
374 
375 /* PLX Chip Register Offsets */
376 #define CNTRL_9052      0x50	/* Control Register */
377 #define CNTRL_9054      0x6c	/* Control Register */
378 
379 #define INTCSR_9052     0x4c	/* Interrupt control/status register */
380 #define INTCSR_9054     0x68	/* Interrupt control/status register */
381 
382 /* 9054 DMA Registers */
383 /*
384  * Note that we will be using DMA Channel 0 for copying rx data
385  * and Channel 1 for copying tx data
386  */
387 #define DMAMODE0        0x80
388 #define DMAPADR0        0x84
389 #define DMALADR0        0x88
390 #define DMASIZ0         0x8c
391 #define DMADPR0         0x90
392 #define DMAMODE1        0x94
393 #define DMAPADR1        0x98
394 #define DMALADR1        0x9c
395 #define DMASIZ1         0xa0
396 #define DMADPR1         0xa4
397 #define DMACSR0         0xa8
398 #define DMACSR1         0xa9
399 #define DMAARB          0xac
400 #define DMATHR          0xb0
401 #define DMADAC0         0xb4
402 #define DMADAC1         0xb8
403 #define DMAMARBR        0xac
404 
405 #define FST_MIN_DMA_LEN 64
406 #define FST_RX_DMA_INT  0x01
407 #define FST_TX_DMA_INT  0x02
408 #define FST_CARD_INT    0x04
409 
410 /* Larger buffers are positioned in memory at offset BFM_BASE */
411 struct buf_window {
412 	u8 txBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_TX_BUFFER];
413 	u8 rxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_RX_BUFFER];
414 };
415 
416 /* Calculate offset of a buffer object within the shared memory window */
417 #define BUF_OFFSET(X)   (BFM_BASE + offsetof(struct buf_window, X))
418 
419 #pragma pack()
420 
421 /*      Device driver private information
422  *      =================================
423  */
424 /*      Per port (line or channel) information
425  */
426 struct fst_port_info {
427         struct net_device *dev; /* Device struct - must be first */
428 	struct fst_card_info *card;	/* Card we're associated with */
429 	int index;		/* Port index on the card */
430 	int hwif;		/* Line hardware (lineInterface copy) */
431 	int run;		/* Port is running */
432 	int mode;		/* Normal or FarSync raw */
433 	int rxpos;		/* Next Rx buffer to use */
434 	int txpos;		/* Next Tx buffer to use */
435 	int txipos;		/* Next Tx buffer to check for free */
436 	int start;		/* Indication of start/stop to network */
437 	/*
438 	 * A sixteen entry transmit queue
439 	 */
440 	int txqs;		/* index to get next buffer to tx */
441 	int txqe;		/* index to queue next packet */
442 	struct sk_buff *txq[FST_TXQ_DEPTH];	/* The queue */
443 	int rxqdepth;
444 };
445 
446 /*      Per card information
447  */
448 struct fst_card_info {
449 	char __iomem *mem;	/* Card memory mapped to kernel space */
450 	char __iomem *ctlmem;	/* Control memory for PCI cards */
451 	unsigned int phys_mem;	/* Physical memory window address */
452 	unsigned int phys_ctlmem;	/* Physical control memory address */
453 	unsigned int irq;	/* Interrupt request line number */
454 	unsigned int nports;	/* Number of serial ports */
455 	unsigned int type;	/* Type index of card */
456 	unsigned int state;	/* State of card */
457 	spinlock_t card_lock;	/* Lock for SMP access */
458 	unsigned short pci_conf;	/* PCI card config in I/O space */
459 	/* Per port info */
460 	struct fst_port_info ports[FST_MAX_PORTS];
461 	struct pci_dev *device;	/* Information about the pci device */
462 	int card_no;		/* Inst of the card on the system */
463 	int family;		/* TxP or TxU */
464 	int dmarx_in_progress;
465 	int dmatx_in_progress;
466 	unsigned long int_count;
467 	unsigned long int_time_ave;
468 	void *rx_dma_handle_host;
469 	dma_addr_t rx_dma_handle_card;
470 	void *tx_dma_handle_host;
471 	dma_addr_t tx_dma_handle_card;
472 	struct sk_buff *dma_skb_rx;
473 	struct fst_port_info *dma_port_rx;
474 	struct fst_port_info *dma_port_tx;
475 	int dma_len_rx;
476 	int dma_len_tx;
477 	int dma_txpos;
478 	int dma_rxpos;
479 };
480 
481 /* Convert an HDLC device pointer into a port info pointer and similar */
482 #define dev_to_port(D)  (dev_to_hdlc(D)->priv)
483 #define port_to_dev(P)  ((P)->dev)
484 
485 
486 /*
487  *      Shared memory window access macros
488  *
489  *      We have a nice memory based structure above, which could be directly
490  *      mapped on i386 but might not work on other architectures unless we use
491  *      the readb,w,l and writeb,w,l macros. Unfortunately these macros take
492  *      physical offsets so we have to convert. The only saving grace is that
493  *      this should all collapse back to a simple indirection eventually.
494  */
495 #define WIN_OFFSET(X)   ((long)&(((struct fst_shared *)SMC_BASE)->X))
496 
497 #define FST_RDB(C,E)    readb ((C)->mem + WIN_OFFSET(E))
498 #define FST_RDW(C,E)    readw ((C)->mem + WIN_OFFSET(E))
499 #define FST_RDL(C,E)    readl ((C)->mem + WIN_OFFSET(E))
500 
501 #define FST_WRB(C,E,B)  writeb ((B), (C)->mem + WIN_OFFSET(E))
502 #define FST_WRW(C,E,W)  writew ((W), (C)->mem + WIN_OFFSET(E))
503 #define FST_WRL(C,E,L)  writel ((L), (C)->mem + WIN_OFFSET(E))
504 
505 /*
506  *      Debug support
507  */
508 #if FST_DEBUG
509 
510 static int fst_debug_mask = { FST_DEBUG };
511 
512 /* Most common debug activity is to print something if the corresponding bit
513  * is set in the debug mask. Note: this uses a non-ANSI extension in GCC to
514  * support variable numbers of macro parameters. The inverted if prevents us
515  * eating someone else's else clause.
516  */
517 #define dbg(F, fmt, args...)					\
518 do {								\
519 	if (fst_debug_mask & (F))				\
520 		printk(KERN_DEBUG pr_fmt(fmt), ##args);		\
521 } while (0)
522 #else
523 #define dbg(F, fmt, args...)					\
524 do {								\
525 	if (0)							\
526 		printk(KERN_DEBUG pr_fmt(fmt), ##args);		\
527 } while (0)
528 #endif
529 
530 /*
531  *      PCI ID lookup table
532  */
533 static DEFINE_PCI_DEVICE_TABLE(fst_pci_dev_id) = {
534 	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2P, PCI_ANY_ID,
535 	 PCI_ANY_ID, 0, 0, FST_TYPE_T2P},
536 
537 	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4P, PCI_ANY_ID,
538 	 PCI_ANY_ID, 0, 0, FST_TYPE_T4P},
539 
540 	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T1U, PCI_ANY_ID,
541 	 PCI_ANY_ID, 0, 0, FST_TYPE_T1U},
542 
543 	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2U, PCI_ANY_ID,
544 	 PCI_ANY_ID, 0, 0, FST_TYPE_T2U},
545 
546 	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4U, PCI_ANY_ID,
547 	 PCI_ANY_ID, 0, 0, FST_TYPE_T4U},
548 
549 	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1, PCI_ANY_ID,
550 	 PCI_ANY_ID, 0, 0, FST_TYPE_TE1},
551 
552 	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1C, PCI_ANY_ID,
553 	 PCI_ANY_ID, 0, 0, FST_TYPE_TE1},
554 	{0,}			/* End */
555 };
556 
557 MODULE_DEVICE_TABLE(pci, fst_pci_dev_id);
558 
559 /*
560  *      Device Driver Work Queues
561  *
562  *      So that we don't spend too much time processing events in the
563  *      Interrupt Service routine, we will declare a work queue per Card
564  *      and make the ISR schedule a task in the queue for later execution.
565  *      In the 2.4 Kernel we used to use the immediate queue for BH's
566  *      Now that they are gone, tasklets seem to be much better than work
567  *      queues.
568  */
569 
570 static void do_bottom_half_tx(struct fst_card_info *card);
571 static void do_bottom_half_rx(struct fst_card_info *card);
572 static void fst_process_tx_work_q(unsigned long work_q);
573 static void fst_process_int_work_q(unsigned long work_q);
574 
575 static DECLARE_TASKLET(fst_tx_task, fst_process_tx_work_q, 0);
576 static DECLARE_TASKLET(fst_int_task, fst_process_int_work_q, 0);
577 
578 static struct fst_card_info *fst_card_array[FST_MAX_CARDS];
579 static spinlock_t fst_work_q_lock;
580 static u64 fst_work_txq;
581 static u64 fst_work_intq;
582 
583 static void
584 fst_q_work_item(u64 * queue, int card_index)
585 {
586 	unsigned long flags;
587 	u64 mask;
588 
589 	/*
590 	 * Grab the queue exclusively
591 	 */
592 	spin_lock_irqsave(&fst_work_q_lock, flags);
593 
594 	/*
595 	 * Making an entry in the queue is simply a matter of setting
596 	 * a bit for the card indicating that there is work to do in the
597 	 * bottom half for the card.  Note the limitation of 64 cards.
598 	 * That ought to be enough
599 	 */
600 	mask = (u64)1 << card_index;
601 	*queue |= mask;
602 	spin_unlock_irqrestore(&fst_work_q_lock, flags);
603 }
604 
605 static void
606 fst_process_tx_work_q(unsigned long /*void **/work_q)
607 {
608 	unsigned long flags;
609 	u64 work_txq;
610 	int i;
611 
612 	/*
613 	 * Grab the queue exclusively
614 	 */
615 	dbg(DBG_TX, "fst_process_tx_work_q\n");
616 	spin_lock_irqsave(&fst_work_q_lock, flags);
617 	work_txq = fst_work_txq;
618 	fst_work_txq = 0;
619 	spin_unlock_irqrestore(&fst_work_q_lock, flags);
620 
621 	/*
622 	 * Call the bottom half for each card with work waiting
623 	 */
624 	for (i = 0; i < FST_MAX_CARDS; i++) {
625 		if (work_txq & 0x01) {
626 			if (fst_card_array[i] != NULL) {
627 				dbg(DBG_TX, "Calling tx bh for card %d\n", i);
628 				do_bottom_half_tx(fst_card_array[i]);
629 			}
630 		}
631 		work_txq = work_txq >> 1;
632 	}
633 }
634 
635 static void
636 fst_process_int_work_q(unsigned long /*void **/work_q)
637 {
638 	unsigned long flags;
639 	u64 work_intq;
640 	int i;
641 
642 	/*
643 	 * Grab the queue exclusively
644 	 */
645 	dbg(DBG_INTR, "fst_process_int_work_q\n");
646 	spin_lock_irqsave(&fst_work_q_lock, flags);
647 	work_intq = fst_work_intq;
648 	fst_work_intq = 0;
649 	spin_unlock_irqrestore(&fst_work_q_lock, flags);
650 
651 	/*
652 	 * Call the bottom half for each card with work waiting
653 	 */
654 	for (i = 0; i < FST_MAX_CARDS; i++) {
655 		if (work_intq & 0x01) {
656 			if (fst_card_array[i] != NULL) {
657 				dbg(DBG_INTR,
658 				    "Calling rx & tx bh for card %d\n", i);
659 				do_bottom_half_rx(fst_card_array[i]);
660 				do_bottom_half_tx(fst_card_array[i]);
661 			}
662 		}
663 		work_intq = work_intq >> 1;
664 	}
665 }
666 
667 /*      Card control functions
668  *      ======================
669  */
670 /*      Place the processor in reset state
671  *
672  * Used to be a simple write to card control space but a glitch in the latest
673  * AMD Am186CH processor means that we now have to do it by asserting and de-
674  * asserting the PLX chip PCI Adapter Software Reset. Bit 30 in CNTRL register
675  * at offset 9052_CNTRL.  Note the updates for the TXU.
676  */
677 static inline void
678 fst_cpureset(struct fst_card_info *card)
679 {
680 	unsigned char interrupt_line_register;
681 	unsigned long j = jiffies + 1;
682 	unsigned int regval;
683 
684 	if (card->family == FST_FAMILY_TXU) {
685 		if (pci_read_config_byte
686 		    (card->device, PCI_INTERRUPT_LINE, &interrupt_line_register)) {
687 			dbg(DBG_ASS,
688 			    "Error in reading interrupt line register\n");
689 		}
690 		/*
691 		 * Assert PLX software reset and Am186 hardware reset
692 		 * and then deassert the PLX software reset but 186 still in reset
693 		 */
694 		outw(0x440f, card->pci_conf + CNTRL_9054 + 2);
695 		outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
696 		/*
697 		 * We are delaying here to allow the 9054 to reset itself
698 		 */
699 		j = jiffies + 1;
700 		while (jiffies < j)
701 			/* Do nothing */ ;
702 		outw(0x240f, card->pci_conf + CNTRL_9054 + 2);
703 		/*
704 		 * We are delaying here to allow the 9054 to reload its eeprom
705 		 */
706 		j = jiffies + 1;
707 		while (jiffies < j)
708 			/* Do nothing */ ;
709 		outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
710 
711 		if (pci_write_config_byte
712 		    (card->device, PCI_INTERRUPT_LINE, interrupt_line_register)) {
713 			dbg(DBG_ASS,
714 			    "Error in writing interrupt line register\n");
715 		}
716 
717 	} else {
718 		regval = inl(card->pci_conf + CNTRL_9052);
719 
720 		outl(regval | 0x40000000, card->pci_conf + CNTRL_9052);
721 		outl(regval & ~0x40000000, card->pci_conf + CNTRL_9052);
722 	}
723 }
724 
725 /*      Release the processor from reset
726  */
727 static inline void
728 fst_cpurelease(struct fst_card_info *card)
729 {
730 	if (card->family == FST_FAMILY_TXU) {
731 		/*
732 		 * Force posted writes to complete
733 		 */
734 		(void) readb(card->mem);
735 
736 		/*
737 		 * Release LRESET DO = 1
738 		 * Then release Local Hold, DO = 1
739 		 */
740 		outw(0x040e, card->pci_conf + CNTRL_9054 + 2);
741 		outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
742 	} else {
743 		(void) readb(card->ctlmem);
744 	}
745 }
746 
747 /*      Clear the cards interrupt flag
748  */
749 static inline void
750 fst_clear_intr(struct fst_card_info *card)
751 {
752 	if (card->family == FST_FAMILY_TXU) {
753 		(void) readb(card->ctlmem);
754 	} else {
755 		/* Poke the appropriate PLX chip register (same as enabling interrupts)
756 		 */
757 		outw(0x0543, card->pci_conf + INTCSR_9052);
758 	}
759 }
760 
761 /*      Enable card interrupts
762  */
763 static inline void
764 fst_enable_intr(struct fst_card_info *card)
765 {
766 	if (card->family == FST_FAMILY_TXU) {
767 		outl(0x0f0c0900, card->pci_conf + INTCSR_9054);
768 	} else {
769 		outw(0x0543, card->pci_conf + INTCSR_9052);
770 	}
771 }
772 
773 /*      Disable card interrupts
774  */
775 static inline void
776 fst_disable_intr(struct fst_card_info *card)
777 {
778 	if (card->family == FST_FAMILY_TXU) {
779 		outl(0x00000000, card->pci_conf + INTCSR_9054);
780 	} else {
781 		outw(0x0000, card->pci_conf + INTCSR_9052);
782 	}
783 }
784 
785 /*      Process the result of trying to pass a received frame up the stack
786  */
787 static void
788 fst_process_rx_status(int rx_status, char *name)
789 {
790 	switch (rx_status) {
791 	case NET_RX_SUCCESS:
792 		{
793 			/*
794 			 * Nothing to do here
795 			 */
796 			break;
797 		}
798 	case NET_RX_DROP:
799 		{
800 			dbg(DBG_ASS, "%s: Received packet dropped\n", name);
801 			break;
802 		}
803 	}
804 }
805 
806 /*      Initilaise DMA for PLX 9054
807  */
808 static inline void
809 fst_init_dma(struct fst_card_info *card)
810 {
811 	/*
812 	 * This is only required for the PLX 9054
813 	 */
814 	if (card->family == FST_FAMILY_TXU) {
815 	        pci_set_master(card->device);
816 		outl(0x00020441, card->pci_conf + DMAMODE0);
817 		outl(0x00020441, card->pci_conf + DMAMODE1);
818 		outl(0x0, card->pci_conf + DMATHR);
819 	}
820 }
821 
822 /*      Tx dma complete interrupt
823  */
824 static void
825 fst_tx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
826 		    int len, int txpos)
827 {
828 	struct net_device *dev = port_to_dev(port);
829 
830 	/*
831 	 * Everything is now set, just tell the card to go
832 	 */
833 	dbg(DBG_TX, "fst_tx_dma_complete\n");
834 	FST_WRB(card, txDescrRing[port->index][txpos].bits,
835 		DMA_OWN | TX_STP | TX_ENP);
836 	dev->stats.tx_packets++;
837 	dev->stats.tx_bytes += len;
838 	dev->trans_start = jiffies;
839 }
840 
841 /*
842  * Mark it for our own raw sockets interface
843  */
844 static __be16 farsync_type_trans(struct sk_buff *skb, struct net_device *dev)
845 {
846 	skb->dev = dev;
847 	skb_reset_mac_header(skb);
848 	skb->pkt_type = PACKET_HOST;
849 	return htons(ETH_P_CUST);
850 }
851 
852 /*      Rx dma complete interrupt
853  */
854 static void
855 fst_rx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
856 		    int len, struct sk_buff *skb, int rxp)
857 {
858 	struct net_device *dev = port_to_dev(port);
859 	int pi;
860 	int rx_status;
861 
862 	dbg(DBG_TX, "fst_rx_dma_complete\n");
863 	pi = port->index;
864 	memcpy(skb_put(skb, len), card->rx_dma_handle_host, len);
865 
866 	/* Reset buffer descriptor */
867 	FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
868 
869 	/* Update stats */
870 	dev->stats.rx_packets++;
871 	dev->stats.rx_bytes += len;
872 
873 	/* Push upstream */
874 	dbg(DBG_RX, "Pushing the frame up the stack\n");
875 	if (port->mode == FST_RAW)
876 		skb->protocol = farsync_type_trans(skb, dev);
877 	else
878 		skb->protocol = hdlc_type_trans(skb, dev);
879 	rx_status = netif_rx(skb);
880 	fst_process_rx_status(rx_status, port_to_dev(port)->name);
881 	if (rx_status == NET_RX_DROP)
882 		dev->stats.rx_dropped++;
883 }
884 
885 /*
886  *      Receive a frame through the DMA
887  */
888 static inline void
889 fst_rx_dma(struct fst_card_info *card, dma_addr_t skb,
890 	   dma_addr_t mem, int len)
891 {
892 	/*
893 	 * This routine will setup the DMA and start it
894 	 */
895 
896 	dbg(DBG_RX, "In fst_rx_dma %lx %lx %d\n",
897 	    (unsigned long) skb, (unsigned long) mem, len);
898 	if (card->dmarx_in_progress) {
899 		dbg(DBG_ASS, "In fst_rx_dma while dma in progress\n");
900 	}
901 
902 	outl(skb, card->pci_conf + DMAPADR0);	/* Copy to here */
903 	outl(mem, card->pci_conf + DMALADR0);	/* from here */
904 	outl(len, card->pci_conf + DMASIZ0);	/* for this length */
905 	outl(0x00000000c, card->pci_conf + DMADPR0);	/* In this direction */
906 
907 	/*
908 	 * We use the dmarx_in_progress flag to flag the channel as busy
909 	 */
910 	card->dmarx_in_progress = 1;
911 	outb(0x03, card->pci_conf + DMACSR0);	/* Start the transfer */
912 }
913 
914 /*
915  *      Send a frame through the DMA
916  */
917 static inline void
918 fst_tx_dma(struct fst_card_info *card, unsigned char *skb,
919 	   unsigned char *mem, int len)
920 {
921 	/*
922 	 * This routine will setup the DMA and start it.
923 	 */
924 
925 	dbg(DBG_TX, "In fst_tx_dma %p %p %d\n", skb, mem, len);
926 	if (card->dmatx_in_progress) {
927 		dbg(DBG_ASS, "In fst_tx_dma while dma in progress\n");
928 	}
929 
930 	outl((unsigned long) skb, card->pci_conf + DMAPADR1);	/* Copy from here */
931 	outl((unsigned long) mem, card->pci_conf + DMALADR1);	/* to here */
932 	outl(len, card->pci_conf + DMASIZ1);	/* for this length */
933 	outl(0x000000004, card->pci_conf + DMADPR1);	/* In this direction */
934 
935 	/*
936 	 * We use the dmatx_in_progress to flag the channel as busy
937 	 */
938 	card->dmatx_in_progress = 1;
939 	outb(0x03, card->pci_conf + DMACSR1);	/* Start the transfer */
940 }
941 
942 /*      Issue a Mailbox command for a port.
943  *      Note we issue them on a fire and forget basis, not expecting to see an
944  *      error and not waiting for completion.
945  */
946 static void
947 fst_issue_cmd(struct fst_port_info *port, unsigned short cmd)
948 {
949 	struct fst_card_info *card;
950 	unsigned short mbval;
951 	unsigned long flags;
952 	int safety;
953 
954 	card = port->card;
955 	spin_lock_irqsave(&card->card_lock, flags);
956 	mbval = FST_RDW(card, portMailbox[port->index][0]);
957 
958 	safety = 0;
959 	/* Wait for any previous command to complete */
960 	while (mbval > NAK) {
961 		spin_unlock_irqrestore(&card->card_lock, flags);
962 		schedule_timeout_uninterruptible(1);
963 		spin_lock_irqsave(&card->card_lock, flags);
964 
965 		if (++safety > 2000) {
966 			pr_err("Mailbox safety timeout\n");
967 			break;
968 		}
969 
970 		mbval = FST_RDW(card, portMailbox[port->index][0]);
971 	}
972 	if (safety > 0) {
973 		dbg(DBG_CMD, "Mailbox clear after %d jiffies\n", safety);
974 	}
975 	if (mbval == NAK) {
976 		dbg(DBG_CMD, "issue_cmd: previous command was NAK'd\n");
977 	}
978 
979 	FST_WRW(card, portMailbox[port->index][0], cmd);
980 
981 	if (cmd == ABORTTX || cmd == STARTPORT) {
982 		port->txpos = 0;
983 		port->txipos = 0;
984 		port->start = 0;
985 	}
986 
987 	spin_unlock_irqrestore(&card->card_lock, flags);
988 }
989 
990 /*      Port output signals control
991  */
992 static inline void
993 fst_op_raise(struct fst_port_info *port, unsigned int outputs)
994 {
995 	outputs |= FST_RDL(port->card, v24OpSts[port->index]);
996 	FST_WRL(port->card, v24OpSts[port->index], outputs);
997 
998 	if (port->run)
999 		fst_issue_cmd(port, SETV24O);
1000 }
1001 
1002 static inline void
1003 fst_op_lower(struct fst_port_info *port, unsigned int outputs)
1004 {
1005 	outputs = ~outputs & FST_RDL(port->card, v24OpSts[port->index]);
1006 	FST_WRL(port->card, v24OpSts[port->index], outputs);
1007 
1008 	if (port->run)
1009 		fst_issue_cmd(port, SETV24O);
1010 }
1011 
1012 /*
1013  *      Setup port Rx buffers
1014  */
1015 static void
1016 fst_rx_config(struct fst_port_info *port)
1017 {
1018 	int i;
1019 	int pi;
1020 	unsigned int offset;
1021 	unsigned long flags;
1022 	struct fst_card_info *card;
1023 
1024 	pi = port->index;
1025 	card = port->card;
1026 	spin_lock_irqsave(&card->card_lock, flags);
1027 	for (i = 0; i < NUM_RX_BUFFER; i++) {
1028 		offset = BUF_OFFSET(rxBuffer[pi][i][0]);
1029 
1030 		FST_WRW(card, rxDescrRing[pi][i].ladr, (u16) offset);
1031 		FST_WRB(card, rxDescrRing[pi][i].hadr, (u8) (offset >> 16));
1032 		FST_WRW(card, rxDescrRing[pi][i].bcnt, cnv_bcnt(LEN_RX_BUFFER));
1033 		FST_WRW(card, rxDescrRing[pi][i].mcnt, LEN_RX_BUFFER);
1034 		FST_WRB(card, rxDescrRing[pi][i].bits, DMA_OWN);
1035 	}
1036 	port->rxpos = 0;
1037 	spin_unlock_irqrestore(&card->card_lock, flags);
1038 }
1039 
1040 /*
1041  *      Setup port Tx buffers
1042  */
1043 static void
1044 fst_tx_config(struct fst_port_info *port)
1045 {
1046 	int i;
1047 	int pi;
1048 	unsigned int offset;
1049 	unsigned long flags;
1050 	struct fst_card_info *card;
1051 
1052 	pi = port->index;
1053 	card = port->card;
1054 	spin_lock_irqsave(&card->card_lock, flags);
1055 	for (i = 0; i < NUM_TX_BUFFER; i++) {
1056 		offset = BUF_OFFSET(txBuffer[pi][i][0]);
1057 
1058 		FST_WRW(card, txDescrRing[pi][i].ladr, (u16) offset);
1059 		FST_WRB(card, txDescrRing[pi][i].hadr, (u8) (offset >> 16));
1060 		FST_WRW(card, txDescrRing[pi][i].bcnt, 0);
1061 		FST_WRB(card, txDescrRing[pi][i].bits, 0);
1062 	}
1063 	port->txpos = 0;
1064 	port->txipos = 0;
1065 	port->start = 0;
1066 	spin_unlock_irqrestore(&card->card_lock, flags);
1067 }
1068 
1069 /*      TE1 Alarm change interrupt event
1070  */
1071 static void
1072 fst_intr_te1_alarm(struct fst_card_info *card, struct fst_port_info *port)
1073 {
1074 	u8 los;
1075 	u8 rra;
1076 	u8 ais;
1077 
1078 	los = FST_RDB(card, suStatus.lossOfSignal);
1079 	rra = FST_RDB(card, suStatus.receiveRemoteAlarm);
1080 	ais = FST_RDB(card, suStatus.alarmIndicationSignal);
1081 
1082 	if (los) {
1083 		/*
1084 		 * Lost the link
1085 		 */
1086 		if (netif_carrier_ok(port_to_dev(port))) {
1087 			dbg(DBG_INTR, "Net carrier off\n");
1088 			netif_carrier_off(port_to_dev(port));
1089 		}
1090 	} else {
1091 		/*
1092 		 * Link available
1093 		 */
1094 		if (!netif_carrier_ok(port_to_dev(port))) {
1095 			dbg(DBG_INTR, "Net carrier on\n");
1096 			netif_carrier_on(port_to_dev(port));
1097 		}
1098 	}
1099 
1100 	if (los)
1101 		dbg(DBG_INTR, "Assert LOS Alarm\n");
1102 	else
1103 		dbg(DBG_INTR, "De-assert LOS Alarm\n");
1104 	if (rra)
1105 		dbg(DBG_INTR, "Assert RRA Alarm\n");
1106 	else
1107 		dbg(DBG_INTR, "De-assert RRA Alarm\n");
1108 
1109 	if (ais)
1110 		dbg(DBG_INTR, "Assert AIS Alarm\n");
1111 	else
1112 		dbg(DBG_INTR, "De-assert AIS Alarm\n");
1113 }
1114 
1115 /*      Control signal change interrupt event
1116  */
1117 static void
1118 fst_intr_ctlchg(struct fst_card_info *card, struct fst_port_info *port)
1119 {
1120 	int signals;
1121 
1122 	signals = FST_RDL(card, v24DebouncedSts[port->index]);
1123 
1124 	if (signals & (((port->hwif == X21) || (port->hwif == X21D))
1125 		       ? IPSTS_INDICATE : IPSTS_DCD)) {
1126 		if (!netif_carrier_ok(port_to_dev(port))) {
1127 			dbg(DBG_INTR, "DCD active\n");
1128 			netif_carrier_on(port_to_dev(port));
1129 		}
1130 	} else {
1131 		if (netif_carrier_ok(port_to_dev(port))) {
1132 			dbg(DBG_INTR, "DCD lost\n");
1133 			netif_carrier_off(port_to_dev(port));
1134 		}
1135 	}
1136 }
1137 
1138 /*      Log Rx Errors
1139  */
1140 static void
1141 fst_log_rx_error(struct fst_card_info *card, struct fst_port_info *port,
1142 		 unsigned char dmabits, int rxp, unsigned short len)
1143 {
1144 	struct net_device *dev = port_to_dev(port);
1145 
1146 	/*
1147 	 * Increment the appropriate error counter
1148 	 */
1149 	dev->stats.rx_errors++;
1150 	if (dmabits & RX_OFLO) {
1151 		dev->stats.rx_fifo_errors++;
1152 		dbg(DBG_ASS, "Rx fifo error on card %d port %d buffer %d\n",
1153 		    card->card_no, port->index, rxp);
1154 	}
1155 	if (dmabits & RX_CRC) {
1156 		dev->stats.rx_crc_errors++;
1157 		dbg(DBG_ASS, "Rx crc error on card %d port %d\n",
1158 		    card->card_no, port->index);
1159 	}
1160 	if (dmabits & RX_FRAM) {
1161 		dev->stats.rx_frame_errors++;
1162 		dbg(DBG_ASS, "Rx frame error on card %d port %d\n",
1163 		    card->card_no, port->index);
1164 	}
1165 	if (dmabits == (RX_STP | RX_ENP)) {
1166 		dev->stats.rx_length_errors++;
1167 		dbg(DBG_ASS, "Rx length error (%d) on card %d port %d\n",
1168 		    len, card->card_no, port->index);
1169 	}
1170 }
1171 
1172 /*      Rx Error Recovery
1173  */
1174 static void
1175 fst_recover_rx_error(struct fst_card_info *card, struct fst_port_info *port,
1176 		     unsigned char dmabits, int rxp, unsigned short len)
1177 {
1178 	int i;
1179 	int pi;
1180 
1181 	pi = port->index;
1182 	/*
1183 	 * Discard buffer descriptors until we see the start of the
1184 	 * next frame.  Note that for long frames this could be in
1185 	 * a subsequent interrupt.
1186 	 */
1187 	i = 0;
1188 	while ((dmabits & (DMA_OWN | RX_STP)) == 0) {
1189 		FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1190 		rxp = (rxp+1) % NUM_RX_BUFFER;
1191 		if (++i > NUM_RX_BUFFER) {
1192 			dbg(DBG_ASS, "intr_rx: Discarding more bufs"
1193 			    " than we have\n");
1194 			break;
1195 		}
1196 		dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits);
1197 		dbg(DBG_ASS, "DMA Bits of next buffer was %x\n", dmabits);
1198 	}
1199 	dbg(DBG_ASS, "There were %d subsequent buffers in error\n", i);
1200 
1201 	/* Discard the terminal buffer */
1202 	if (!(dmabits & DMA_OWN)) {
1203 		FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1204 		rxp = (rxp+1) % NUM_RX_BUFFER;
1205 	}
1206 	port->rxpos = rxp;
1207 	return;
1208 
1209 }
1210 
1211 /*      Rx complete interrupt
1212  */
1213 static void
1214 fst_intr_rx(struct fst_card_info *card, struct fst_port_info *port)
1215 {
1216 	unsigned char dmabits;
1217 	int pi;
1218 	int rxp;
1219 	int rx_status;
1220 	unsigned short len;
1221 	struct sk_buff *skb;
1222 	struct net_device *dev = port_to_dev(port);
1223 
1224 	/* Check we have a buffer to process */
1225 	pi = port->index;
1226 	rxp = port->rxpos;
1227 	dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits);
1228 	if (dmabits & DMA_OWN) {
1229 		dbg(DBG_RX | DBG_INTR, "intr_rx: No buffer port %d pos %d\n",
1230 		    pi, rxp);
1231 		return;
1232 	}
1233 	if (card->dmarx_in_progress) {
1234 		return;
1235 	}
1236 
1237 	/* Get buffer length */
1238 	len = FST_RDW(card, rxDescrRing[pi][rxp].mcnt);
1239 	/* Discard the CRC */
1240 	len -= 2;
1241 	if (len == 0) {
1242 		/*
1243 		 * This seems to happen on the TE1 interface sometimes
1244 		 * so throw the frame away and log the event.
1245 		 */
1246 		pr_err("Frame received with 0 length. Card %d Port %d\n",
1247 		       card->card_no, port->index);
1248 		/* Return descriptor to card */
1249 		FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1250 
1251 		rxp = (rxp+1) % NUM_RX_BUFFER;
1252 		port->rxpos = rxp;
1253 		return;
1254 	}
1255 
1256 	/* Check buffer length and for other errors. We insist on one packet
1257 	 * in one buffer. This simplifies things greatly and since we've
1258 	 * allocated 8K it shouldn't be a real world limitation
1259 	 */
1260 	dbg(DBG_RX, "intr_rx: %d,%d: flags %x len %d\n", pi, rxp, dmabits, len);
1261 	if (dmabits != (RX_STP | RX_ENP) || len > LEN_RX_BUFFER - 2) {
1262 		fst_log_rx_error(card, port, dmabits, rxp, len);
1263 		fst_recover_rx_error(card, port, dmabits, rxp, len);
1264 		return;
1265 	}
1266 
1267 	/* Allocate SKB */
1268 	if ((skb = dev_alloc_skb(len)) == NULL) {
1269 		dbg(DBG_RX, "intr_rx: can't allocate buffer\n");
1270 
1271 		dev->stats.rx_dropped++;
1272 
1273 		/* Return descriptor to card */
1274 		FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1275 
1276 		rxp = (rxp+1) % NUM_RX_BUFFER;
1277 		port->rxpos = rxp;
1278 		return;
1279 	}
1280 
1281 	/*
1282 	 * We know the length we need to receive, len.
1283 	 * It's not worth using the DMA for reads of less than
1284 	 * FST_MIN_DMA_LEN
1285 	 */
1286 
1287 	if ((len < FST_MIN_DMA_LEN) || (card->family == FST_FAMILY_TXP)) {
1288 		memcpy_fromio(skb_put(skb, len),
1289 			      card->mem + BUF_OFFSET(rxBuffer[pi][rxp][0]),
1290 			      len);
1291 
1292 		/* Reset buffer descriptor */
1293 		FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1294 
1295 		/* Update stats */
1296 		dev->stats.rx_packets++;
1297 		dev->stats.rx_bytes += len;
1298 
1299 		/* Push upstream */
1300 		dbg(DBG_RX, "Pushing frame up the stack\n");
1301 		if (port->mode == FST_RAW)
1302 			skb->protocol = farsync_type_trans(skb, dev);
1303 		else
1304 			skb->protocol = hdlc_type_trans(skb, dev);
1305 		rx_status = netif_rx(skb);
1306 		fst_process_rx_status(rx_status, port_to_dev(port)->name);
1307 		if (rx_status == NET_RX_DROP)
1308 			dev->stats.rx_dropped++;
1309 	} else {
1310 		card->dma_skb_rx = skb;
1311 		card->dma_port_rx = port;
1312 		card->dma_len_rx = len;
1313 		card->dma_rxpos = rxp;
1314 		fst_rx_dma(card, card->rx_dma_handle_card,
1315 			   BUF_OFFSET(rxBuffer[pi][rxp][0]), len);
1316 	}
1317 	if (rxp != port->rxpos) {
1318 		dbg(DBG_ASS, "About to increment rxpos by more than 1\n");
1319 		dbg(DBG_ASS, "rxp = %d rxpos = %d\n", rxp, port->rxpos);
1320 	}
1321 	rxp = (rxp+1) % NUM_RX_BUFFER;
1322 	port->rxpos = rxp;
1323 }
1324 
1325 /*
1326  *      The bottom halfs to the ISR
1327  *
1328  */
1329 
1330 static void
1331 do_bottom_half_tx(struct fst_card_info *card)
1332 {
1333 	struct fst_port_info *port;
1334 	int pi;
1335 	int txq_length;
1336 	struct sk_buff *skb;
1337 	unsigned long flags;
1338 	struct net_device *dev;
1339 
1340 	/*
1341 	 *  Find a free buffer for the transmit
1342 	 *  Step through each port on this card
1343 	 */
1344 
1345 	dbg(DBG_TX, "do_bottom_half_tx\n");
1346 	for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) {
1347 		if (!port->run)
1348 			continue;
1349 
1350 		dev = port_to_dev(port);
1351 		while (!(FST_RDB(card, txDescrRing[pi][port->txpos].bits) &
1352 			 DMA_OWN) &&
1353 		       !(card->dmatx_in_progress)) {
1354 			/*
1355 			 * There doesn't seem to be a txdone event per-se
1356 			 * We seem to have to deduce it, by checking the DMA_OWN
1357 			 * bit on the next buffer we think we can use
1358 			 */
1359 			spin_lock_irqsave(&card->card_lock, flags);
1360 			if ((txq_length = port->txqe - port->txqs) < 0) {
1361 				/*
1362 				 * This is the case where one has wrapped and the
1363 				 * maths gives us a negative number
1364 				 */
1365 				txq_length = txq_length + FST_TXQ_DEPTH;
1366 			}
1367 			spin_unlock_irqrestore(&card->card_lock, flags);
1368 			if (txq_length > 0) {
1369 				/*
1370 				 * There is something to send
1371 				 */
1372 				spin_lock_irqsave(&card->card_lock, flags);
1373 				skb = port->txq[port->txqs];
1374 				port->txqs++;
1375 				if (port->txqs == FST_TXQ_DEPTH) {
1376 					port->txqs = 0;
1377 				}
1378 				spin_unlock_irqrestore(&card->card_lock, flags);
1379 				/*
1380 				 * copy the data and set the required indicators on the
1381 				 * card.
1382 				 */
1383 				FST_WRW(card, txDescrRing[pi][port->txpos].bcnt,
1384 					cnv_bcnt(skb->len));
1385 				if ((skb->len < FST_MIN_DMA_LEN) ||
1386 				    (card->family == FST_FAMILY_TXP)) {
1387 					/* Enqueue the packet with normal io */
1388 					memcpy_toio(card->mem +
1389 						    BUF_OFFSET(txBuffer[pi]
1390 							       [port->
1391 								txpos][0]),
1392 						    skb->data, skb->len);
1393 					FST_WRB(card,
1394 						txDescrRing[pi][port->txpos].
1395 						bits,
1396 						DMA_OWN | TX_STP | TX_ENP);
1397 					dev->stats.tx_packets++;
1398 					dev->stats.tx_bytes += skb->len;
1399 					dev->trans_start = jiffies;
1400 				} else {
1401 					/* Or do it through dma */
1402 					memcpy(card->tx_dma_handle_host,
1403 					       skb->data, skb->len);
1404 					card->dma_port_tx = port;
1405 					card->dma_len_tx = skb->len;
1406 					card->dma_txpos = port->txpos;
1407 					fst_tx_dma(card,
1408 						   (char *) card->
1409 						   tx_dma_handle_card,
1410 						   (char *)
1411 						   BUF_OFFSET(txBuffer[pi]
1412 							      [port->txpos][0]),
1413 						   skb->len);
1414 				}
1415 				if (++port->txpos >= NUM_TX_BUFFER)
1416 					port->txpos = 0;
1417 				/*
1418 				 * If we have flow control on, can we now release it?
1419 				 */
1420 				if (port->start) {
1421 					if (txq_length < fst_txq_low) {
1422 						netif_wake_queue(port_to_dev
1423 								 (port));
1424 						port->start = 0;
1425 					}
1426 				}
1427 				dev_kfree_skb(skb);
1428 			} else {
1429 				/*
1430 				 * Nothing to send so break out of the while loop
1431 				 */
1432 				break;
1433 			}
1434 		}
1435 	}
1436 }
1437 
1438 static void
1439 do_bottom_half_rx(struct fst_card_info *card)
1440 {
1441 	struct fst_port_info *port;
1442 	int pi;
1443 	int rx_count = 0;
1444 
1445 	/* Check for rx completions on all ports on this card */
1446 	dbg(DBG_RX, "do_bottom_half_rx\n");
1447 	for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) {
1448 		if (!port->run)
1449 			continue;
1450 
1451 		while (!(FST_RDB(card, rxDescrRing[pi][port->rxpos].bits)
1452 			 & DMA_OWN) && !(card->dmarx_in_progress)) {
1453 			if (rx_count > fst_max_reads) {
1454 				/*
1455 				 * Don't spend forever in receive processing
1456 				 * Schedule another event
1457 				 */
1458 				fst_q_work_item(&fst_work_intq, card->card_no);
1459 				tasklet_schedule(&fst_int_task);
1460 				break;	/* Leave the loop */
1461 			}
1462 			fst_intr_rx(card, port);
1463 			rx_count++;
1464 		}
1465 	}
1466 }
1467 
1468 /*
1469  *      The interrupt service routine
1470  *      Dev_id is our fst_card_info pointer
1471  */
1472 static irqreturn_t
1473 fst_intr(int dummy, void *dev_id)
1474 {
1475 	struct fst_card_info *card = dev_id;
1476 	struct fst_port_info *port;
1477 	int rdidx;		/* Event buffer indices */
1478 	int wridx;
1479 	int event;		/* Actual event for processing */
1480 	unsigned int dma_intcsr = 0;
1481 	unsigned int do_card_interrupt;
1482 	unsigned int int_retry_count;
1483 
1484 	/*
1485 	 * Check to see if the interrupt was for this card
1486 	 * return if not
1487 	 * Note that the call to clear the interrupt is important
1488 	 */
1489 	dbg(DBG_INTR, "intr: %d %p\n", card->irq, card);
1490 	if (card->state != FST_RUNNING) {
1491 		pr_err("Interrupt received for card %d in a non running state (%d)\n",
1492 		       card->card_no, card->state);
1493 
1494 		/*
1495 		 * It is possible to really be running, i.e. we have re-loaded
1496 		 * a running card
1497 		 * Clear and reprime the interrupt source
1498 		 */
1499 		fst_clear_intr(card);
1500 		return IRQ_HANDLED;
1501 	}
1502 
1503 	/* Clear and reprime the interrupt source */
1504 	fst_clear_intr(card);
1505 
1506 	/*
1507 	 * Is the interrupt for this card (handshake == 1)
1508 	 */
1509 	do_card_interrupt = 0;
1510 	if (FST_RDB(card, interruptHandshake) == 1) {
1511 		do_card_interrupt += FST_CARD_INT;
1512 		/* Set the software acknowledge */
1513 		FST_WRB(card, interruptHandshake, 0xEE);
1514 	}
1515 	if (card->family == FST_FAMILY_TXU) {
1516 		/*
1517 		 * Is it a DMA Interrupt
1518 		 */
1519 		dma_intcsr = inl(card->pci_conf + INTCSR_9054);
1520 		if (dma_intcsr & 0x00200000) {
1521 			/*
1522 			 * DMA Channel 0 (Rx transfer complete)
1523 			 */
1524 			dbg(DBG_RX, "DMA Rx xfer complete\n");
1525 			outb(0x8, card->pci_conf + DMACSR0);
1526 			fst_rx_dma_complete(card, card->dma_port_rx,
1527 					    card->dma_len_rx, card->dma_skb_rx,
1528 					    card->dma_rxpos);
1529 			card->dmarx_in_progress = 0;
1530 			do_card_interrupt += FST_RX_DMA_INT;
1531 		}
1532 		if (dma_intcsr & 0x00400000) {
1533 			/*
1534 			 * DMA Channel 1 (Tx transfer complete)
1535 			 */
1536 			dbg(DBG_TX, "DMA Tx xfer complete\n");
1537 			outb(0x8, card->pci_conf + DMACSR1);
1538 			fst_tx_dma_complete(card, card->dma_port_tx,
1539 					    card->dma_len_tx, card->dma_txpos);
1540 			card->dmatx_in_progress = 0;
1541 			do_card_interrupt += FST_TX_DMA_INT;
1542 		}
1543 	}
1544 
1545 	/*
1546 	 * Have we been missing Interrupts
1547 	 */
1548 	int_retry_count = FST_RDL(card, interruptRetryCount);
1549 	if (int_retry_count) {
1550 		dbg(DBG_ASS, "Card %d int_retry_count is  %d\n",
1551 		    card->card_no, int_retry_count);
1552 		FST_WRL(card, interruptRetryCount, 0);
1553 	}
1554 
1555 	if (!do_card_interrupt) {
1556 		return IRQ_HANDLED;
1557 	}
1558 
1559 	/* Scehdule the bottom half of the ISR */
1560 	fst_q_work_item(&fst_work_intq, card->card_no);
1561 	tasklet_schedule(&fst_int_task);
1562 
1563 	/* Drain the event queue */
1564 	rdidx = FST_RDB(card, interruptEvent.rdindex) & 0x1f;
1565 	wridx = FST_RDB(card, interruptEvent.wrindex) & 0x1f;
1566 	while (rdidx != wridx) {
1567 		event = FST_RDB(card, interruptEvent.evntbuff[rdidx]);
1568 		port = &card->ports[event & 0x03];
1569 
1570 		dbg(DBG_INTR, "Processing Interrupt event: %x\n", event);
1571 
1572 		switch (event) {
1573 		case TE1_ALMA:
1574 			dbg(DBG_INTR, "TE1 Alarm intr\n");
1575 			if (port->run)
1576 				fst_intr_te1_alarm(card, port);
1577 			break;
1578 
1579 		case CTLA_CHG:
1580 		case CTLB_CHG:
1581 		case CTLC_CHG:
1582 		case CTLD_CHG:
1583 			if (port->run)
1584 				fst_intr_ctlchg(card, port);
1585 			break;
1586 
1587 		case ABTA_SENT:
1588 		case ABTB_SENT:
1589 		case ABTC_SENT:
1590 		case ABTD_SENT:
1591 			dbg(DBG_TX, "Abort complete port %d\n", port->index);
1592 			break;
1593 
1594 		case TXA_UNDF:
1595 		case TXB_UNDF:
1596 		case TXC_UNDF:
1597 		case TXD_UNDF:
1598 			/* Difficult to see how we'd get this given that we
1599 			 * always load up the entire packet for DMA.
1600 			 */
1601 			dbg(DBG_TX, "Tx underflow port %d\n", port->index);
1602 			port_to_dev(port)->stats.tx_errors++;
1603 			port_to_dev(port)->stats.tx_fifo_errors++;
1604 			dbg(DBG_ASS, "Tx underflow on card %d port %d\n",
1605 			    card->card_no, port->index);
1606 			break;
1607 
1608 		case INIT_CPLT:
1609 			dbg(DBG_INIT, "Card init OK intr\n");
1610 			break;
1611 
1612 		case INIT_FAIL:
1613 			dbg(DBG_INIT, "Card init FAILED intr\n");
1614 			card->state = FST_IFAILED;
1615 			break;
1616 
1617 		default:
1618 			pr_err("intr: unknown card event %d. ignored\n", event);
1619 			break;
1620 		}
1621 
1622 		/* Bump and wrap the index */
1623 		if (++rdidx >= MAX_CIRBUFF)
1624 			rdidx = 0;
1625 	}
1626 	FST_WRB(card, interruptEvent.rdindex, rdidx);
1627         return IRQ_HANDLED;
1628 }
1629 
1630 /*      Check that the shared memory configuration is one that we can handle
1631  *      and that some basic parameters are correct
1632  */
1633 static void
1634 check_started_ok(struct fst_card_info *card)
1635 {
1636 	int i;
1637 
1638 	/* Check structure version and end marker */
1639 	if (FST_RDW(card, smcVersion) != SMC_VERSION) {
1640 		pr_err("Bad shared memory version %d expected %d\n",
1641 		       FST_RDW(card, smcVersion), SMC_VERSION);
1642 		card->state = FST_BADVERSION;
1643 		return;
1644 	}
1645 	if (FST_RDL(card, endOfSmcSignature) != END_SIG) {
1646 		pr_err("Missing shared memory signature\n");
1647 		card->state = FST_BADVERSION;
1648 		return;
1649 	}
1650 	/* Firmware status flag, 0x00 = initialising, 0x01 = OK, 0xFF = fail */
1651 	if ((i = FST_RDB(card, taskStatus)) == 0x01) {
1652 		card->state = FST_RUNNING;
1653 	} else if (i == 0xFF) {
1654 		pr_err("Firmware initialisation failed. Card halted\n");
1655 		card->state = FST_HALTED;
1656 		return;
1657 	} else if (i != 0x00) {
1658 		pr_err("Unknown firmware status 0x%x\n", i);
1659 		card->state = FST_HALTED;
1660 		return;
1661 	}
1662 
1663 	/* Finally check the number of ports reported by firmware against the
1664 	 * number we assumed at card detection. Should never happen with
1665 	 * existing firmware etc so we just report it for the moment.
1666 	 */
1667 	if (FST_RDL(card, numberOfPorts) != card->nports) {
1668 		pr_warn("Port count mismatch on card %d.  Firmware thinks %d we say %d\n",
1669 			card->card_no,
1670 			FST_RDL(card, numberOfPorts), card->nports);
1671 	}
1672 }
1673 
1674 static int
1675 set_conf_from_info(struct fst_card_info *card, struct fst_port_info *port,
1676 		   struct fstioc_info *info)
1677 {
1678 	int err;
1679 	unsigned char my_framing;
1680 
1681 	/* Set things according to the user set valid flags
1682 	 * Several of the old options have been invalidated/replaced by the
1683 	 * generic hdlc package.
1684 	 */
1685 	err = 0;
1686 	if (info->valid & FSTVAL_PROTO) {
1687 		if (info->proto == FST_RAW)
1688 			port->mode = FST_RAW;
1689 		else
1690 			port->mode = FST_GEN_HDLC;
1691 	}
1692 
1693 	if (info->valid & FSTVAL_CABLE)
1694 		err = -EINVAL;
1695 
1696 	if (info->valid & FSTVAL_SPEED)
1697 		err = -EINVAL;
1698 
1699 	if (info->valid & FSTVAL_PHASE)
1700 		FST_WRB(card, portConfig[port->index].invertClock,
1701 			info->invertClock);
1702 	if (info->valid & FSTVAL_MODE)
1703 		FST_WRW(card, cardMode, info->cardMode);
1704 	if (info->valid & FSTVAL_TE1) {
1705 		FST_WRL(card, suConfig.dataRate, info->lineSpeed);
1706 		FST_WRB(card, suConfig.clocking, info->clockSource);
1707 		my_framing = FRAMING_E1;
1708 		if (info->framing == E1)
1709 			my_framing = FRAMING_E1;
1710 		if (info->framing == T1)
1711 			my_framing = FRAMING_T1;
1712 		if (info->framing == J1)
1713 			my_framing = FRAMING_J1;
1714 		FST_WRB(card, suConfig.framing, my_framing);
1715 		FST_WRB(card, suConfig.structure, info->structure);
1716 		FST_WRB(card, suConfig.interface, info->interface);
1717 		FST_WRB(card, suConfig.coding, info->coding);
1718 		FST_WRB(card, suConfig.lineBuildOut, info->lineBuildOut);
1719 		FST_WRB(card, suConfig.equalizer, info->equalizer);
1720 		FST_WRB(card, suConfig.transparentMode, info->transparentMode);
1721 		FST_WRB(card, suConfig.loopMode, info->loopMode);
1722 		FST_WRB(card, suConfig.range, info->range);
1723 		FST_WRB(card, suConfig.txBufferMode, info->txBufferMode);
1724 		FST_WRB(card, suConfig.rxBufferMode, info->rxBufferMode);
1725 		FST_WRB(card, suConfig.startingSlot, info->startingSlot);
1726 		FST_WRB(card, suConfig.losThreshold, info->losThreshold);
1727 		if (info->idleCode)
1728 			FST_WRB(card, suConfig.enableIdleCode, 1);
1729 		else
1730 			FST_WRB(card, suConfig.enableIdleCode, 0);
1731 		FST_WRB(card, suConfig.idleCode, info->idleCode);
1732 #if FST_DEBUG
1733 		if (info->valid & FSTVAL_TE1) {
1734 			printk("Setting TE1 data\n");
1735 			printk("Line Speed = %d\n", info->lineSpeed);
1736 			printk("Start slot = %d\n", info->startingSlot);
1737 			printk("Clock source = %d\n", info->clockSource);
1738 			printk("Framing = %d\n", my_framing);
1739 			printk("Structure = %d\n", info->structure);
1740 			printk("interface = %d\n", info->interface);
1741 			printk("Coding = %d\n", info->coding);
1742 			printk("Line build out = %d\n", info->lineBuildOut);
1743 			printk("Equaliser = %d\n", info->equalizer);
1744 			printk("Transparent mode = %d\n",
1745 			       info->transparentMode);
1746 			printk("Loop mode = %d\n", info->loopMode);
1747 			printk("Range = %d\n", info->range);
1748 			printk("Tx Buffer mode = %d\n", info->txBufferMode);
1749 			printk("Rx Buffer mode = %d\n", info->rxBufferMode);
1750 			printk("LOS Threshold = %d\n", info->losThreshold);
1751 			printk("Idle Code = %d\n", info->idleCode);
1752 		}
1753 #endif
1754 	}
1755 #if FST_DEBUG
1756 	if (info->valid & FSTVAL_DEBUG) {
1757 		fst_debug_mask = info->debug;
1758 	}
1759 #endif
1760 
1761 	return err;
1762 }
1763 
1764 static void
1765 gather_conf_info(struct fst_card_info *card, struct fst_port_info *port,
1766 		 struct fstioc_info *info)
1767 {
1768 	int i;
1769 
1770 	memset(info, 0, sizeof (struct fstioc_info));
1771 
1772 	i = port->index;
1773 	info->kernelVersion = LINUX_VERSION_CODE;
1774 	info->nports = card->nports;
1775 	info->type = card->type;
1776 	info->state = card->state;
1777 	info->proto = FST_GEN_HDLC;
1778 	info->index = i;
1779 #if FST_DEBUG
1780 	info->debug = fst_debug_mask;
1781 #endif
1782 
1783 	/* Only mark information as valid if card is running.
1784 	 * Copy the data anyway in case it is useful for diagnostics
1785 	 */
1786 	info->valid = ((card->state == FST_RUNNING) ? FSTVAL_ALL : FSTVAL_CARD)
1787 #if FST_DEBUG
1788 	    | FSTVAL_DEBUG
1789 #endif
1790 	    ;
1791 
1792 	info->lineInterface = FST_RDW(card, portConfig[i].lineInterface);
1793 	info->internalClock = FST_RDB(card, portConfig[i].internalClock);
1794 	info->lineSpeed = FST_RDL(card, portConfig[i].lineSpeed);
1795 	info->invertClock = FST_RDB(card, portConfig[i].invertClock);
1796 	info->v24IpSts = FST_RDL(card, v24IpSts[i]);
1797 	info->v24OpSts = FST_RDL(card, v24OpSts[i]);
1798 	info->clockStatus = FST_RDW(card, clockStatus[i]);
1799 	info->cableStatus = FST_RDW(card, cableStatus);
1800 	info->cardMode = FST_RDW(card, cardMode);
1801 	info->smcFirmwareVersion = FST_RDL(card, smcFirmwareVersion);
1802 
1803 	/*
1804 	 * The T2U can report cable presence for both A or B
1805 	 * in bits 0 and 1 of cableStatus.  See which port we are and
1806 	 * do the mapping.
1807 	 */
1808 	if (card->family == FST_FAMILY_TXU) {
1809 		if (port->index == 0) {
1810 			/*
1811 			 * Port A
1812 			 */
1813 			info->cableStatus = info->cableStatus & 1;
1814 		} else {
1815 			/*
1816 			 * Port B
1817 			 */
1818 			info->cableStatus = info->cableStatus >> 1;
1819 			info->cableStatus = info->cableStatus & 1;
1820 		}
1821 	}
1822 	/*
1823 	 * Some additional bits if we are TE1
1824 	 */
1825 	if (card->type == FST_TYPE_TE1) {
1826 		info->lineSpeed = FST_RDL(card, suConfig.dataRate);
1827 		info->clockSource = FST_RDB(card, suConfig.clocking);
1828 		info->framing = FST_RDB(card, suConfig.framing);
1829 		info->structure = FST_RDB(card, suConfig.structure);
1830 		info->interface = FST_RDB(card, suConfig.interface);
1831 		info->coding = FST_RDB(card, suConfig.coding);
1832 		info->lineBuildOut = FST_RDB(card, suConfig.lineBuildOut);
1833 		info->equalizer = FST_RDB(card, suConfig.equalizer);
1834 		info->loopMode = FST_RDB(card, suConfig.loopMode);
1835 		info->range = FST_RDB(card, suConfig.range);
1836 		info->txBufferMode = FST_RDB(card, suConfig.txBufferMode);
1837 		info->rxBufferMode = FST_RDB(card, suConfig.rxBufferMode);
1838 		info->startingSlot = FST_RDB(card, suConfig.startingSlot);
1839 		info->losThreshold = FST_RDB(card, suConfig.losThreshold);
1840 		if (FST_RDB(card, suConfig.enableIdleCode))
1841 			info->idleCode = FST_RDB(card, suConfig.idleCode);
1842 		else
1843 			info->idleCode = 0;
1844 		info->receiveBufferDelay =
1845 		    FST_RDL(card, suStatus.receiveBufferDelay);
1846 		info->framingErrorCount =
1847 		    FST_RDL(card, suStatus.framingErrorCount);
1848 		info->codeViolationCount =
1849 		    FST_RDL(card, suStatus.codeViolationCount);
1850 		info->crcErrorCount = FST_RDL(card, suStatus.crcErrorCount);
1851 		info->lineAttenuation = FST_RDL(card, suStatus.lineAttenuation);
1852 		info->lossOfSignal = FST_RDB(card, suStatus.lossOfSignal);
1853 		info->receiveRemoteAlarm =
1854 		    FST_RDB(card, suStatus.receiveRemoteAlarm);
1855 		info->alarmIndicationSignal =
1856 		    FST_RDB(card, suStatus.alarmIndicationSignal);
1857 	}
1858 }
1859 
1860 static int
1861 fst_set_iface(struct fst_card_info *card, struct fst_port_info *port,
1862 	      struct ifreq *ifr)
1863 {
1864 	sync_serial_settings sync;
1865 	int i;
1866 
1867 	if (ifr->ifr_settings.size != sizeof (sync)) {
1868 		return -ENOMEM;
1869 	}
1870 
1871 	if (copy_from_user
1872 	    (&sync, ifr->ifr_settings.ifs_ifsu.sync, sizeof (sync))) {
1873 		return -EFAULT;
1874 	}
1875 
1876 	if (sync.loopback)
1877 		return -EINVAL;
1878 
1879 	i = port->index;
1880 
1881 	switch (ifr->ifr_settings.type) {
1882 	case IF_IFACE_V35:
1883 		FST_WRW(card, portConfig[i].lineInterface, V35);
1884 		port->hwif = V35;
1885 		break;
1886 
1887 	case IF_IFACE_V24:
1888 		FST_WRW(card, portConfig[i].lineInterface, V24);
1889 		port->hwif = V24;
1890 		break;
1891 
1892 	case IF_IFACE_X21:
1893 		FST_WRW(card, portConfig[i].lineInterface, X21);
1894 		port->hwif = X21;
1895 		break;
1896 
1897 	case IF_IFACE_X21D:
1898 		FST_WRW(card, portConfig[i].lineInterface, X21D);
1899 		port->hwif = X21D;
1900 		break;
1901 
1902 	case IF_IFACE_T1:
1903 		FST_WRW(card, portConfig[i].lineInterface, T1);
1904 		port->hwif = T1;
1905 		break;
1906 
1907 	case IF_IFACE_E1:
1908 		FST_WRW(card, portConfig[i].lineInterface, E1);
1909 		port->hwif = E1;
1910 		break;
1911 
1912 	case IF_IFACE_SYNC_SERIAL:
1913 		break;
1914 
1915 	default:
1916 		return -EINVAL;
1917 	}
1918 
1919 	switch (sync.clock_type) {
1920 	case CLOCK_EXT:
1921 		FST_WRB(card, portConfig[i].internalClock, EXTCLK);
1922 		break;
1923 
1924 	case CLOCK_INT:
1925 		FST_WRB(card, portConfig[i].internalClock, INTCLK);
1926 		break;
1927 
1928 	default:
1929 		return -EINVAL;
1930 	}
1931 	FST_WRL(card, portConfig[i].lineSpeed, sync.clock_rate);
1932 	return 0;
1933 }
1934 
1935 static int
1936 fst_get_iface(struct fst_card_info *card, struct fst_port_info *port,
1937 	      struct ifreq *ifr)
1938 {
1939 	sync_serial_settings sync;
1940 	int i;
1941 
1942 	/* First check what line type is set, we'll default to reporting X.21
1943 	 * if nothing is set as IF_IFACE_SYNC_SERIAL implies it can't be
1944 	 * changed
1945 	 */
1946 	switch (port->hwif) {
1947 	case E1:
1948 		ifr->ifr_settings.type = IF_IFACE_E1;
1949 		break;
1950 	case T1:
1951 		ifr->ifr_settings.type = IF_IFACE_T1;
1952 		break;
1953 	case V35:
1954 		ifr->ifr_settings.type = IF_IFACE_V35;
1955 		break;
1956 	case V24:
1957 		ifr->ifr_settings.type = IF_IFACE_V24;
1958 		break;
1959 	case X21D:
1960 		ifr->ifr_settings.type = IF_IFACE_X21D;
1961 		break;
1962 	case X21:
1963 	default:
1964 		ifr->ifr_settings.type = IF_IFACE_X21;
1965 		break;
1966 	}
1967 	if (ifr->ifr_settings.size == 0) {
1968 		return 0;	/* only type requested */
1969 	}
1970 	if (ifr->ifr_settings.size < sizeof (sync)) {
1971 		return -ENOMEM;
1972 	}
1973 
1974 	i = port->index;
1975 	memset(&sync, 0, sizeof(sync));
1976 	sync.clock_rate = FST_RDL(card, portConfig[i].lineSpeed);
1977 	/* Lucky card and linux use same encoding here */
1978 	sync.clock_type = FST_RDB(card, portConfig[i].internalClock) ==
1979 	    INTCLK ? CLOCK_INT : CLOCK_EXT;
1980 	sync.loopback = 0;
1981 
1982 	if (copy_to_user(ifr->ifr_settings.ifs_ifsu.sync, &sync, sizeof (sync))) {
1983 		return -EFAULT;
1984 	}
1985 
1986 	ifr->ifr_settings.size = sizeof (sync);
1987 	return 0;
1988 }
1989 
1990 static int
1991 fst_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1992 {
1993 	struct fst_card_info *card;
1994 	struct fst_port_info *port;
1995 	struct fstioc_write wrthdr;
1996 	struct fstioc_info info;
1997 	unsigned long flags;
1998 	void *buf;
1999 
2000 	dbg(DBG_IOCTL, "ioctl: %x, %p\n", cmd, ifr->ifr_data);
2001 
2002 	port = dev_to_port(dev);
2003 	card = port->card;
2004 
2005 	if (!capable(CAP_NET_ADMIN))
2006 		return -EPERM;
2007 
2008 	switch (cmd) {
2009 	case FSTCPURESET:
2010 		fst_cpureset(card);
2011 		card->state = FST_RESET;
2012 		return 0;
2013 
2014 	case FSTCPURELEASE:
2015 		fst_cpurelease(card);
2016 		card->state = FST_STARTING;
2017 		return 0;
2018 
2019 	case FSTWRITE:		/* Code write (download) */
2020 
2021 		/* First copy in the header with the length and offset of data
2022 		 * to write
2023 		 */
2024 		if (ifr->ifr_data == NULL) {
2025 			return -EINVAL;
2026 		}
2027 		if (copy_from_user(&wrthdr, ifr->ifr_data,
2028 				   sizeof (struct fstioc_write))) {
2029 			return -EFAULT;
2030 		}
2031 
2032 		/* Sanity check the parameters. We don't support partial writes
2033 		 * when going over the top
2034 		 */
2035 		if (wrthdr.size > FST_MEMSIZE || wrthdr.offset > FST_MEMSIZE ||
2036 		    wrthdr.size + wrthdr.offset > FST_MEMSIZE) {
2037 			return -ENXIO;
2038 		}
2039 
2040 		/* Now copy the data to the card. */
2041 
2042 		buf = memdup_user(ifr->ifr_data + sizeof(struct fstioc_write),
2043 				  wrthdr.size);
2044 		if (IS_ERR(buf))
2045 			return PTR_ERR(buf);
2046 
2047 		memcpy_toio(card->mem + wrthdr.offset, buf, wrthdr.size);
2048 		kfree(buf);
2049 
2050 		/* Writes to the memory of a card in the reset state constitute
2051 		 * a download
2052 		 */
2053 		if (card->state == FST_RESET) {
2054 			card->state = FST_DOWNLOAD;
2055 		}
2056 		return 0;
2057 
2058 	case FSTGETCONF:
2059 
2060 		/* If card has just been started check the shared memory config
2061 		 * version and marker
2062 		 */
2063 		if (card->state == FST_STARTING) {
2064 			check_started_ok(card);
2065 
2066 			/* If everything checked out enable card interrupts */
2067 			if (card->state == FST_RUNNING) {
2068 				spin_lock_irqsave(&card->card_lock, flags);
2069 				fst_enable_intr(card);
2070 				FST_WRB(card, interruptHandshake, 0xEE);
2071 				spin_unlock_irqrestore(&card->card_lock, flags);
2072 			}
2073 		}
2074 
2075 		if (ifr->ifr_data == NULL) {
2076 			return -EINVAL;
2077 		}
2078 
2079 		gather_conf_info(card, port, &info);
2080 
2081 		if (copy_to_user(ifr->ifr_data, &info, sizeof (info))) {
2082 			return -EFAULT;
2083 		}
2084 		return 0;
2085 
2086 	case FSTSETCONF:
2087 
2088 		/*
2089 		 * Most of the settings have been moved to the generic ioctls
2090 		 * this just covers debug and board ident now
2091 		 */
2092 
2093 		if (card->state != FST_RUNNING) {
2094 			pr_err("Attempt to configure card %d in non-running state (%d)\n",
2095 			       card->card_no, card->state);
2096 			return -EIO;
2097 		}
2098 		if (copy_from_user(&info, ifr->ifr_data, sizeof (info))) {
2099 			return -EFAULT;
2100 		}
2101 
2102 		return set_conf_from_info(card, port, &info);
2103 
2104 	case SIOCWANDEV:
2105 		switch (ifr->ifr_settings.type) {
2106 		case IF_GET_IFACE:
2107 			return fst_get_iface(card, port, ifr);
2108 
2109 		case IF_IFACE_SYNC_SERIAL:
2110 		case IF_IFACE_V35:
2111 		case IF_IFACE_V24:
2112 		case IF_IFACE_X21:
2113 		case IF_IFACE_X21D:
2114 		case IF_IFACE_T1:
2115 		case IF_IFACE_E1:
2116 			return fst_set_iface(card, port, ifr);
2117 
2118 		case IF_PROTO_RAW:
2119 			port->mode = FST_RAW;
2120 			return 0;
2121 
2122 		case IF_GET_PROTO:
2123 			if (port->mode == FST_RAW) {
2124 				ifr->ifr_settings.type = IF_PROTO_RAW;
2125 				return 0;
2126 			}
2127 			return hdlc_ioctl(dev, ifr, cmd);
2128 
2129 		default:
2130 			port->mode = FST_GEN_HDLC;
2131 			dbg(DBG_IOCTL, "Passing this type to hdlc %x\n",
2132 			    ifr->ifr_settings.type);
2133 			return hdlc_ioctl(dev, ifr, cmd);
2134 		}
2135 
2136 	default:
2137 		/* Not one of ours. Pass through to HDLC package */
2138 		return hdlc_ioctl(dev, ifr, cmd);
2139 	}
2140 }
2141 
2142 static void
2143 fst_openport(struct fst_port_info *port)
2144 {
2145 	int signals;
2146 	int txq_length;
2147 
2148 	/* Only init things if card is actually running. This allows open to
2149 	 * succeed for downloads etc.
2150 	 */
2151 	if (port->card->state == FST_RUNNING) {
2152 		if (port->run) {
2153 			dbg(DBG_OPEN, "open: found port already running\n");
2154 
2155 			fst_issue_cmd(port, STOPPORT);
2156 			port->run = 0;
2157 		}
2158 
2159 		fst_rx_config(port);
2160 		fst_tx_config(port);
2161 		fst_op_raise(port, OPSTS_RTS | OPSTS_DTR);
2162 
2163 		fst_issue_cmd(port, STARTPORT);
2164 		port->run = 1;
2165 
2166 		signals = FST_RDL(port->card, v24DebouncedSts[port->index]);
2167 		if (signals & (((port->hwif == X21) || (port->hwif == X21D))
2168 			       ? IPSTS_INDICATE : IPSTS_DCD))
2169 			netif_carrier_on(port_to_dev(port));
2170 		else
2171 			netif_carrier_off(port_to_dev(port));
2172 
2173 		txq_length = port->txqe - port->txqs;
2174 		port->txqe = 0;
2175 		port->txqs = 0;
2176 	}
2177 
2178 }
2179 
2180 static void
2181 fst_closeport(struct fst_port_info *port)
2182 {
2183 	if (port->card->state == FST_RUNNING) {
2184 		if (port->run) {
2185 			port->run = 0;
2186 			fst_op_lower(port, OPSTS_RTS | OPSTS_DTR);
2187 
2188 			fst_issue_cmd(port, STOPPORT);
2189 		} else {
2190 			dbg(DBG_OPEN, "close: port not running\n");
2191 		}
2192 	}
2193 }
2194 
2195 static int
2196 fst_open(struct net_device *dev)
2197 {
2198 	int err;
2199 	struct fst_port_info *port;
2200 
2201 	port = dev_to_port(dev);
2202 	if (!try_module_get(THIS_MODULE))
2203           return -EBUSY;
2204 
2205 	if (port->mode != FST_RAW) {
2206 		err = hdlc_open(dev);
2207 		if (err) {
2208 			module_put(THIS_MODULE);
2209 			return err;
2210 		}
2211 	}
2212 
2213 	fst_openport(port);
2214 	netif_wake_queue(dev);
2215 	return 0;
2216 }
2217 
2218 static int
2219 fst_close(struct net_device *dev)
2220 {
2221 	struct fst_port_info *port;
2222 	struct fst_card_info *card;
2223 	unsigned char tx_dma_done;
2224 	unsigned char rx_dma_done;
2225 
2226 	port = dev_to_port(dev);
2227 	card = port->card;
2228 
2229 	tx_dma_done = inb(card->pci_conf + DMACSR1);
2230 	rx_dma_done = inb(card->pci_conf + DMACSR0);
2231 	dbg(DBG_OPEN,
2232 	    "Port Close: tx_dma_in_progress = %d (%x) rx_dma_in_progress = %d (%x)\n",
2233 	    card->dmatx_in_progress, tx_dma_done, card->dmarx_in_progress,
2234 	    rx_dma_done);
2235 
2236 	netif_stop_queue(dev);
2237 	fst_closeport(dev_to_port(dev));
2238 	if (port->mode != FST_RAW) {
2239 		hdlc_close(dev);
2240 	}
2241 	module_put(THIS_MODULE);
2242 	return 0;
2243 }
2244 
2245 static int
2246 fst_attach(struct net_device *dev, unsigned short encoding, unsigned short parity)
2247 {
2248 	/*
2249 	 * Setting currently fixed in FarSync card so we check and forget
2250 	 */
2251 	if (encoding != ENCODING_NRZ || parity != PARITY_CRC16_PR1_CCITT)
2252 		return -EINVAL;
2253 	return 0;
2254 }
2255 
2256 static void
2257 fst_tx_timeout(struct net_device *dev)
2258 {
2259 	struct fst_port_info *port;
2260 	struct fst_card_info *card;
2261 
2262 	port = dev_to_port(dev);
2263 	card = port->card;
2264 	dev->stats.tx_errors++;
2265 	dev->stats.tx_aborted_errors++;
2266 	dbg(DBG_ASS, "Tx timeout card %d port %d\n",
2267 	    card->card_no, port->index);
2268 	fst_issue_cmd(port, ABORTTX);
2269 
2270 	dev->trans_start = jiffies;
2271 	netif_wake_queue(dev);
2272 	port->start = 0;
2273 }
2274 
2275 static netdev_tx_t
2276 fst_start_xmit(struct sk_buff *skb, struct net_device *dev)
2277 {
2278 	struct fst_card_info *card;
2279 	struct fst_port_info *port;
2280 	unsigned long flags;
2281 	int txq_length;
2282 
2283 	port = dev_to_port(dev);
2284 	card = port->card;
2285 	dbg(DBG_TX, "fst_start_xmit: length = %d\n", skb->len);
2286 
2287 	/* Drop packet with error if we don't have carrier */
2288 	if (!netif_carrier_ok(dev)) {
2289 		dev_kfree_skb(skb);
2290 		dev->stats.tx_errors++;
2291 		dev->stats.tx_carrier_errors++;
2292 		dbg(DBG_ASS,
2293 		    "Tried to transmit but no carrier on card %d port %d\n",
2294 		    card->card_no, port->index);
2295 		return NETDEV_TX_OK;
2296 	}
2297 
2298 	/* Drop it if it's too big! MTU failure ? */
2299 	if (skb->len > LEN_TX_BUFFER) {
2300 		dbg(DBG_ASS, "Packet too large %d vs %d\n", skb->len,
2301 		    LEN_TX_BUFFER);
2302 		dev_kfree_skb(skb);
2303 		dev->stats.tx_errors++;
2304 		return NETDEV_TX_OK;
2305 	}
2306 
2307 	/*
2308 	 * We are always going to queue the packet
2309 	 * so that the bottom half is the only place we tx from
2310 	 * Check there is room in the port txq
2311 	 */
2312 	spin_lock_irqsave(&card->card_lock, flags);
2313 	if ((txq_length = port->txqe - port->txqs) < 0) {
2314 		/*
2315 		 * This is the case where the next free has wrapped but the
2316 		 * last used hasn't
2317 		 */
2318 		txq_length = txq_length + FST_TXQ_DEPTH;
2319 	}
2320 	spin_unlock_irqrestore(&card->card_lock, flags);
2321 	if (txq_length > fst_txq_high) {
2322 		/*
2323 		 * We have got enough buffers in the pipeline.  Ask the network
2324 		 * layer to stop sending frames down
2325 		 */
2326 		netif_stop_queue(dev);
2327 		port->start = 1;	/* I'm using this to signal stop sent up */
2328 	}
2329 
2330 	if (txq_length == FST_TXQ_DEPTH - 1) {
2331 		/*
2332 		 * This shouldn't have happened but such is life
2333 		 */
2334 		dev_kfree_skb(skb);
2335 		dev->stats.tx_errors++;
2336 		dbg(DBG_ASS, "Tx queue overflow card %d port %d\n",
2337 		    card->card_no, port->index);
2338 		return NETDEV_TX_OK;
2339 	}
2340 
2341 	/*
2342 	 * queue the buffer
2343 	 */
2344 	spin_lock_irqsave(&card->card_lock, flags);
2345 	port->txq[port->txqe] = skb;
2346 	port->txqe++;
2347 	if (port->txqe == FST_TXQ_DEPTH)
2348 		port->txqe = 0;
2349 	spin_unlock_irqrestore(&card->card_lock, flags);
2350 
2351 	/* Scehdule the bottom half which now does transmit processing */
2352 	fst_q_work_item(&fst_work_txq, card->card_no);
2353 	tasklet_schedule(&fst_tx_task);
2354 
2355 	return NETDEV_TX_OK;
2356 }
2357 
2358 /*
2359  *      Card setup having checked hardware resources.
2360  *      Should be pretty bizarre if we get an error here (kernel memory
2361  *      exhaustion is one possibility). If we do see a problem we report it
2362  *      via a printk and leave the corresponding interface and all that follow
2363  *      disabled.
2364  */
2365 static char *type_strings[] = {
2366 	"no hardware",		/* Should never be seen */
2367 	"FarSync T2P",
2368 	"FarSync T4P",
2369 	"FarSync T1U",
2370 	"FarSync T2U",
2371 	"FarSync T4U",
2372 	"FarSync TE1"
2373 };
2374 
2375 static void
2376 fst_init_card(struct fst_card_info *card)
2377 {
2378 	int i;
2379 	int err;
2380 
2381 	/* We're working on a number of ports based on the card ID. If the
2382 	 * firmware detects something different later (should never happen)
2383 	 * we'll have to revise it in some way then.
2384 	 */
2385 	for (i = 0; i < card->nports; i++) {
2386                 err = register_hdlc_device(card->ports[i].dev);
2387                 if (err < 0) {
2388 			int j;
2389 			pr_err("Cannot register HDLC device for port %d (errno %d)\n",
2390 			       i, -err);
2391 			for (j = i; j < card->nports; j++) {
2392 				free_netdev(card->ports[j].dev);
2393 				card->ports[j].dev = NULL;
2394 			}
2395                         card->nports = i;
2396                         break;
2397                 }
2398 	}
2399 
2400 	pr_info("%s-%s: %s IRQ%d, %d ports\n",
2401 		port_to_dev(&card->ports[0])->name,
2402 		port_to_dev(&card->ports[card->nports - 1])->name,
2403 		type_strings[card->type], card->irq, card->nports);
2404 }
2405 
2406 static const struct net_device_ops fst_ops = {
2407 	.ndo_open       = fst_open,
2408 	.ndo_stop       = fst_close,
2409 	.ndo_change_mtu = hdlc_change_mtu,
2410 	.ndo_start_xmit = hdlc_start_xmit,
2411 	.ndo_do_ioctl   = fst_ioctl,
2412 	.ndo_tx_timeout = fst_tx_timeout,
2413 };
2414 
2415 /*
2416  *      Initialise card when detected.
2417  *      Returns 0 to indicate success, or errno otherwise.
2418  */
2419 static int
2420 fst_add_one(struct pci_dev *pdev, const struct pci_device_id *ent)
2421 {
2422 	static int no_of_cards_added = 0;
2423 	struct fst_card_info *card;
2424 	int err = 0;
2425 	int i;
2426 
2427 	printk_once(KERN_INFO
2428 		    pr_fmt("FarSync WAN driver " FST_USER_VERSION
2429 			   " (c) 2001-2004 FarSite Communications Ltd.\n"));
2430 #if FST_DEBUG
2431 	dbg(DBG_ASS, "The value of debug mask is %x\n", fst_debug_mask);
2432 #endif
2433 	/*
2434 	 * We are going to be clever and allow certain cards not to be
2435 	 * configured.  An exclude list can be provided in /etc/modules.conf
2436 	 */
2437 	if (fst_excluded_cards != 0) {
2438 		/*
2439 		 * There are cards to exclude
2440 		 *
2441 		 */
2442 		for (i = 0; i < fst_excluded_cards; i++) {
2443 			if ((pdev->devfn) >> 3 == fst_excluded_list[i]) {
2444 				pr_info("FarSync PCI device %d not assigned\n",
2445 					(pdev->devfn) >> 3);
2446 				return -EBUSY;
2447 			}
2448 		}
2449 	}
2450 
2451 	/* Allocate driver private data */
2452 	card = kzalloc(sizeof(struct fst_card_info), GFP_KERNEL);
2453 	if (card == NULL)
2454 		return -ENOMEM;
2455 
2456 	/* Try to enable the device */
2457 	if ((err = pci_enable_device(pdev)) != 0) {
2458 		pr_err("Failed to enable card. Err %d\n", -err);
2459 		kfree(card);
2460 		return err;
2461 	}
2462 
2463 	if ((err = pci_request_regions(pdev, "FarSync")) !=0) {
2464 		pr_err("Failed to allocate regions. Err %d\n", -err);
2465 		pci_disable_device(pdev);
2466 		kfree(card);
2467 	        return err;
2468 	}
2469 
2470 	/* Get virtual addresses of memory regions */
2471 	card->pci_conf = pci_resource_start(pdev, 1);
2472 	card->phys_mem = pci_resource_start(pdev, 2);
2473 	card->phys_ctlmem = pci_resource_start(pdev, 3);
2474 	if ((card->mem = ioremap(card->phys_mem, FST_MEMSIZE)) == NULL) {
2475 		pr_err("Physical memory remap failed\n");
2476 		pci_release_regions(pdev);
2477 		pci_disable_device(pdev);
2478 		kfree(card);
2479 		return -ENODEV;
2480 	}
2481 	if ((card->ctlmem = ioremap(card->phys_ctlmem, 0x10)) == NULL) {
2482 		pr_err("Control memory remap failed\n");
2483 		pci_release_regions(pdev);
2484 		pci_disable_device(pdev);
2485 		iounmap(card->mem);
2486 		kfree(card);
2487 		return -ENODEV;
2488 	}
2489 	dbg(DBG_PCI, "kernel mem %p, ctlmem %p\n", card->mem, card->ctlmem);
2490 
2491 	/* Register the interrupt handler */
2492 	if (request_irq(pdev->irq, fst_intr, IRQF_SHARED, FST_DEV_NAME, card)) {
2493 		pr_err("Unable to register interrupt %d\n", card->irq);
2494 		pci_release_regions(pdev);
2495 		pci_disable_device(pdev);
2496 		iounmap(card->ctlmem);
2497 		iounmap(card->mem);
2498 		kfree(card);
2499 		return -ENODEV;
2500 	}
2501 
2502 	/* Record info we need */
2503 	card->irq = pdev->irq;
2504 	card->type = ent->driver_data;
2505 	card->family = ((ent->driver_data == FST_TYPE_T2P) ||
2506 			(ent->driver_data == FST_TYPE_T4P))
2507 	    ? FST_FAMILY_TXP : FST_FAMILY_TXU;
2508 	if ((ent->driver_data == FST_TYPE_T1U) ||
2509 	    (ent->driver_data == FST_TYPE_TE1))
2510 		card->nports = 1;
2511 	else
2512 		card->nports = ((ent->driver_data == FST_TYPE_T2P) ||
2513 				(ent->driver_data == FST_TYPE_T2U)) ? 2 : 4;
2514 
2515 	card->state = FST_UNINIT;
2516         spin_lock_init ( &card->card_lock );
2517 
2518         for ( i = 0 ; i < card->nports ; i++ ) {
2519 		struct net_device *dev = alloc_hdlcdev(&card->ports[i]);
2520 		hdlc_device *hdlc;
2521 		if (!dev) {
2522 			while (i--)
2523 				free_netdev(card->ports[i].dev);
2524 			pr_err("FarSync: out of memory\n");
2525                         free_irq(card->irq, card);
2526                         pci_release_regions(pdev);
2527                         pci_disable_device(pdev);
2528                         iounmap(card->ctlmem);
2529                         iounmap(card->mem);
2530                         kfree(card);
2531                         return -ENODEV;
2532 		}
2533 		card->ports[i].dev    = dev;
2534                 card->ports[i].card   = card;
2535                 card->ports[i].index  = i;
2536                 card->ports[i].run    = 0;
2537 
2538 		hdlc = dev_to_hdlc(dev);
2539 
2540                 /* Fill in the net device info */
2541 		/* Since this is a PCI setup this is purely
2542 		 * informational. Give them the buffer addresses
2543 		 * and basic card I/O.
2544 		 */
2545                 dev->mem_start   = card->phys_mem
2546                                  + BUF_OFFSET ( txBuffer[i][0][0]);
2547                 dev->mem_end     = card->phys_mem
2548                                  + BUF_OFFSET ( txBuffer[i][NUM_TX_BUFFER][0]);
2549                 dev->base_addr   = card->pci_conf;
2550                 dev->irq         = card->irq;
2551 
2552 		dev->netdev_ops = &fst_ops;
2553 		dev->tx_queue_len = FST_TX_QUEUE_LEN;
2554 		dev->watchdog_timeo = FST_TX_TIMEOUT;
2555                 hdlc->attach = fst_attach;
2556                 hdlc->xmit   = fst_start_xmit;
2557 	}
2558 
2559 	card->device = pdev;
2560 
2561 	dbg(DBG_PCI, "type %d nports %d irq %d\n", card->type,
2562 	    card->nports, card->irq);
2563 	dbg(DBG_PCI, "conf %04x mem %08x ctlmem %08x\n",
2564 	    card->pci_conf, card->phys_mem, card->phys_ctlmem);
2565 
2566 	/* Reset the card's processor */
2567 	fst_cpureset(card);
2568 	card->state = FST_RESET;
2569 
2570 	/* Initialise DMA (if required) */
2571 	fst_init_dma(card);
2572 
2573 	/* Record driver data for later use */
2574 	pci_set_drvdata(pdev, card);
2575 
2576 	/* Remainder of card setup */
2577 	fst_card_array[no_of_cards_added] = card;
2578 	card->card_no = no_of_cards_added++;	/* Record instance and bump it */
2579 	fst_init_card(card);
2580 	if (card->family == FST_FAMILY_TXU) {
2581 		/*
2582 		 * Allocate a dma buffer for transmit and receives
2583 		 */
2584 		card->rx_dma_handle_host =
2585 		    pci_alloc_consistent(card->device, FST_MAX_MTU,
2586 					 &card->rx_dma_handle_card);
2587 		if (card->rx_dma_handle_host == NULL) {
2588 			pr_err("Could not allocate rx dma buffer\n");
2589 			fst_disable_intr(card);
2590 			pci_release_regions(pdev);
2591 			pci_disable_device(pdev);
2592 			iounmap(card->ctlmem);
2593 			iounmap(card->mem);
2594 			kfree(card);
2595 			return -ENOMEM;
2596 		}
2597 		card->tx_dma_handle_host =
2598 		    pci_alloc_consistent(card->device, FST_MAX_MTU,
2599 					 &card->tx_dma_handle_card);
2600 		if (card->tx_dma_handle_host == NULL) {
2601 			pr_err("Could not allocate tx dma buffer\n");
2602 			fst_disable_intr(card);
2603 			pci_release_regions(pdev);
2604 			pci_disable_device(pdev);
2605 			iounmap(card->ctlmem);
2606 			iounmap(card->mem);
2607 			kfree(card);
2608 			return -ENOMEM;
2609 		}
2610 	}
2611 	return 0;		/* Success */
2612 }
2613 
2614 /*
2615  *      Cleanup and close down a card
2616  */
2617 static void
2618 fst_remove_one(struct pci_dev *pdev)
2619 {
2620 	struct fst_card_info *card;
2621 	int i;
2622 
2623 	card = pci_get_drvdata(pdev);
2624 
2625 	for (i = 0; i < card->nports; i++) {
2626 		struct net_device *dev = port_to_dev(&card->ports[i]);
2627 		unregister_hdlc_device(dev);
2628 	}
2629 
2630 	fst_disable_intr(card);
2631 	free_irq(card->irq, card);
2632 
2633 	iounmap(card->ctlmem);
2634 	iounmap(card->mem);
2635 	pci_release_regions(pdev);
2636 	if (card->family == FST_FAMILY_TXU) {
2637 		/*
2638 		 * Free dma buffers
2639 		 */
2640 		pci_free_consistent(card->device, FST_MAX_MTU,
2641 				    card->rx_dma_handle_host,
2642 				    card->rx_dma_handle_card);
2643 		pci_free_consistent(card->device, FST_MAX_MTU,
2644 				    card->tx_dma_handle_host,
2645 				    card->tx_dma_handle_card);
2646 	}
2647 	fst_card_array[card->card_no] = NULL;
2648 }
2649 
2650 static struct pci_driver fst_driver = {
2651         .name		= FST_NAME,
2652         .id_table	= fst_pci_dev_id,
2653         .probe		= fst_add_one,
2654         .remove	= fst_remove_one,
2655         .suspend	= NULL,
2656         .resume	= NULL,
2657 };
2658 
2659 static int __init
2660 fst_init(void)
2661 {
2662 	int i;
2663 
2664 	for (i = 0; i < FST_MAX_CARDS; i++)
2665 		fst_card_array[i] = NULL;
2666 	spin_lock_init(&fst_work_q_lock);
2667 	return pci_register_driver(&fst_driver);
2668 }
2669 
2670 static void __exit
2671 fst_cleanup_module(void)
2672 {
2673 	pr_info("FarSync WAN driver unloading\n");
2674 	pci_unregister_driver(&fst_driver);
2675 }
2676 
2677 module_init(fst_init);
2678 module_exit(fst_cleanup_module);
2679