1 /* 2 * FarSync WAN driver for Linux (2.6.x kernel version) 3 * 4 * Actually sync driver for X.21, V.35 and V.24 on FarSync T-series cards 5 * 6 * Copyright (C) 2001-2004 FarSite Communications Ltd. 7 * www.farsite.co.uk 8 * 9 * This program is free software; you can redistribute it and/or 10 * modify it under the terms of the GNU General Public License 11 * as published by the Free Software Foundation; either version 12 * 2 of the License, or (at your option) any later version. 13 * 14 * Author: R.J.Dunlop <bob.dunlop@farsite.co.uk> 15 * Maintainer: Kevin Curtis <kevin.curtis@farsite.co.uk> 16 */ 17 18 #include <linux/module.h> 19 #include <linux/kernel.h> 20 #include <linux/version.h> 21 #include <linux/pci.h> 22 #include <linux/sched.h> 23 #include <linux/ioport.h> 24 #include <linux/init.h> 25 #include <linux/if.h> 26 #include <linux/hdlc.h> 27 #include <asm/io.h> 28 #include <asm/uaccess.h> 29 30 #include "farsync.h" 31 32 /* 33 * Module info 34 */ 35 MODULE_AUTHOR("R.J.Dunlop <bob.dunlop@farsite.co.uk>"); 36 MODULE_DESCRIPTION("FarSync T-Series WAN driver. FarSite Communications Ltd."); 37 MODULE_LICENSE("GPL"); 38 39 /* Driver configuration and global parameters 40 * ========================================== 41 */ 42 43 /* Number of ports (per card) and cards supported 44 */ 45 #define FST_MAX_PORTS 4 46 #define FST_MAX_CARDS 32 47 48 /* Default parameters for the link 49 */ 50 #define FST_TX_QUEUE_LEN 100 /* At 8Mbps a longer queue length is 51 * useful */ 52 #define FST_TXQ_DEPTH 16 /* This one is for the buffering 53 * of frames on the way down to the card 54 * so that we can keep the card busy 55 * and maximise throughput 56 */ 57 #define FST_HIGH_WATER_MARK 12 /* Point at which we flow control 58 * network layer */ 59 #define FST_LOW_WATER_MARK 8 /* Point at which we remove flow 60 * control from network layer */ 61 #define FST_MAX_MTU 8000 /* Huge but possible */ 62 #define FST_DEF_MTU 1500 /* Common sane value */ 63 64 #define FST_TX_TIMEOUT (2*HZ) 65 66 #ifdef ARPHRD_RAWHDLC 67 #define ARPHRD_MYTYPE ARPHRD_RAWHDLC /* Raw frames */ 68 #else 69 #define ARPHRD_MYTYPE ARPHRD_HDLC /* Cisco-HDLC (keepalives etc) */ 70 #endif 71 72 /* 73 * Modules parameters and associated variables 74 */ 75 static int fst_txq_low = FST_LOW_WATER_MARK; 76 static int fst_txq_high = FST_HIGH_WATER_MARK; 77 static int fst_max_reads = 7; 78 static int fst_excluded_cards = 0; 79 static int fst_excluded_list[FST_MAX_CARDS]; 80 81 module_param(fst_txq_low, int, 0); 82 module_param(fst_txq_high, int, 0); 83 module_param(fst_max_reads, int, 0); 84 module_param(fst_excluded_cards, int, 0); 85 module_param_array(fst_excluded_list, int, NULL, 0); 86 87 /* Card shared memory layout 88 * ========================= 89 */ 90 #pragma pack(1) 91 92 /* This information is derived in part from the FarSite FarSync Smc.h 93 * file. Unfortunately various name clashes and the non-portability of the 94 * bit field declarations in that file have meant that I have chosen to 95 * recreate the information here. 96 * 97 * The SMC (Shared Memory Configuration) has a version number that is 98 * incremented every time there is a significant change. This number can 99 * be used to check that we have not got out of step with the firmware 100 * contained in the .CDE files. 101 */ 102 #define SMC_VERSION 24 103 104 #define FST_MEMSIZE 0x100000 /* Size of card memory (1Mb) */ 105 106 #define SMC_BASE 0x00002000L /* Base offset of the shared memory window main 107 * configuration structure */ 108 #define BFM_BASE 0x00010000L /* Base offset of the shared memory window DMA 109 * buffers */ 110 111 #define LEN_TX_BUFFER 8192 /* Size of packet buffers */ 112 #define LEN_RX_BUFFER 8192 113 114 #define LEN_SMALL_TX_BUFFER 256 /* Size of obsolete buffs used for DOS diags */ 115 #define LEN_SMALL_RX_BUFFER 256 116 117 #define NUM_TX_BUFFER 2 /* Must be power of 2. Fixed by firmware */ 118 #define NUM_RX_BUFFER 8 119 120 /* Interrupt retry time in milliseconds */ 121 #define INT_RETRY_TIME 2 122 123 /* The Am186CH/CC processors support a SmartDMA mode using circular pools 124 * of buffer descriptors. The structure is almost identical to that used 125 * in the LANCE Ethernet controllers. Details available as PDF from the 126 * AMD web site: http://www.amd.com/products/epd/processors/\ 127 * 2.16bitcont/3.am186cxfa/a21914/21914.pdf 128 */ 129 struct txdesc { /* Transmit descriptor */ 130 volatile u16 ladr; /* Low order address of packet. This is a 131 * linear address in the Am186 memory space 132 */ 133 volatile u8 hadr; /* High order address. Low 4 bits only, high 4 134 * bits must be zero 135 */ 136 volatile u8 bits; /* Status and config */ 137 volatile u16 bcnt; /* 2s complement of packet size in low 15 bits. 138 * Transmit terminal count interrupt enable in 139 * top bit. 140 */ 141 u16 unused; /* Not used in Tx */ 142 }; 143 144 struct rxdesc { /* Receive descriptor */ 145 volatile u16 ladr; /* Low order address of packet */ 146 volatile u8 hadr; /* High order address */ 147 volatile u8 bits; /* Status and config */ 148 volatile u16 bcnt; /* 2s complement of buffer size in low 15 bits. 149 * Receive terminal count interrupt enable in 150 * top bit. 151 */ 152 volatile u16 mcnt; /* Message byte count (15 bits) */ 153 }; 154 155 /* Convert a length into the 15 bit 2's complement */ 156 /* #define cnv_bcnt(len) (( ~(len) + 1 ) & 0x7FFF ) */ 157 /* Since we need to set the high bit to enable the completion interrupt this 158 * can be made a lot simpler 159 */ 160 #define cnv_bcnt(len) (-(len)) 161 162 /* Status and config bits for the above */ 163 #define DMA_OWN 0x80 /* SmartDMA owns the descriptor */ 164 #define TX_STP 0x02 /* Tx: start of packet */ 165 #define TX_ENP 0x01 /* Tx: end of packet */ 166 #define RX_ERR 0x40 /* Rx: error (OR of next 4 bits) */ 167 #define RX_FRAM 0x20 /* Rx: framing error */ 168 #define RX_OFLO 0x10 /* Rx: overflow error */ 169 #define RX_CRC 0x08 /* Rx: CRC error */ 170 #define RX_HBUF 0x04 /* Rx: buffer error */ 171 #define RX_STP 0x02 /* Rx: start of packet */ 172 #define RX_ENP 0x01 /* Rx: end of packet */ 173 174 /* Interrupts from the card are caused by various events which are presented 175 * in a circular buffer as several events may be processed on one physical int 176 */ 177 #define MAX_CIRBUFF 32 178 179 struct cirbuff { 180 u8 rdindex; /* read, then increment and wrap */ 181 u8 wrindex; /* write, then increment and wrap */ 182 u8 evntbuff[MAX_CIRBUFF]; 183 }; 184 185 /* Interrupt event codes. 186 * Where appropriate the two low order bits indicate the port number 187 */ 188 #define CTLA_CHG 0x18 /* Control signal changed */ 189 #define CTLB_CHG 0x19 190 #define CTLC_CHG 0x1A 191 #define CTLD_CHG 0x1B 192 193 #define INIT_CPLT 0x20 /* Initialisation complete */ 194 #define INIT_FAIL 0x21 /* Initialisation failed */ 195 196 #define ABTA_SENT 0x24 /* Abort sent */ 197 #define ABTB_SENT 0x25 198 #define ABTC_SENT 0x26 199 #define ABTD_SENT 0x27 200 201 #define TXA_UNDF 0x28 /* Transmission underflow */ 202 #define TXB_UNDF 0x29 203 #define TXC_UNDF 0x2A 204 #define TXD_UNDF 0x2B 205 206 #define F56_INT 0x2C 207 #define M32_INT 0x2D 208 209 #define TE1_ALMA 0x30 210 211 /* Port physical configuration. See farsync.h for field values */ 212 struct port_cfg { 213 u16 lineInterface; /* Physical interface type */ 214 u8 x25op; /* Unused at present */ 215 u8 internalClock; /* 1 => internal clock, 0 => external */ 216 u8 transparentMode; /* 1 => on, 0 => off */ 217 u8 invertClock; /* 0 => normal, 1 => inverted */ 218 u8 padBytes[6]; /* Padding */ 219 u32 lineSpeed; /* Speed in bps */ 220 }; 221 222 /* TE1 port physical configuration */ 223 struct su_config { 224 u32 dataRate; 225 u8 clocking; 226 u8 framing; 227 u8 structure; 228 u8 interface; 229 u8 coding; 230 u8 lineBuildOut; 231 u8 equalizer; 232 u8 transparentMode; 233 u8 loopMode; 234 u8 range; 235 u8 txBufferMode; 236 u8 rxBufferMode; 237 u8 startingSlot; 238 u8 losThreshold; 239 u8 enableIdleCode; 240 u8 idleCode; 241 u8 spare[44]; 242 }; 243 244 /* TE1 Status */ 245 struct su_status { 246 u32 receiveBufferDelay; 247 u32 framingErrorCount; 248 u32 codeViolationCount; 249 u32 crcErrorCount; 250 u32 lineAttenuation; 251 u8 portStarted; 252 u8 lossOfSignal; 253 u8 receiveRemoteAlarm; 254 u8 alarmIndicationSignal; 255 u8 spare[40]; 256 }; 257 258 /* Finally sling all the above together into the shared memory structure. 259 * Sorry it's a hodge podge of arrays, structures and unused bits, it's been 260 * evolving under NT for some time so I guess we're stuck with it. 261 * The structure starts at offset SMC_BASE. 262 * See farsync.h for some field values. 263 */ 264 struct fst_shared { 265 /* DMA descriptor rings */ 266 struct rxdesc rxDescrRing[FST_MAX_PORTS][NUM_RX_BUFFER]; 267 struct txdesc txDescrRing[FST_MAX_PORTS][NUM_TX_BUFFER]; 268 269 /* Obsolete small buffers */ 270 u8 smallRxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_SMALL_RX_BUFFER]; 271 u8 smallTxBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_SMALL_TX_BUFFER]; 272 273 u8 taskStatus; /* 0x00 => initialising, 0x01 => running, 274 * 0xFF => halted 275 */ 276 277 u8 interruptHandshake; /* Set to 0x01 by adapter to signal interrupt, 278 * set to 0xEE by host to acknowledge interrupt 279 */ 280 281 u16 smcVersion; /* Must match SMC_VERSION */ 282 283 u32 smcFirmwareVersion; /* 0xIIVVRRBB where II = product ID, VV = major 284 * version, RR = revision and BB = build 285 */ 286 287 u16 txa_done; /* Obsolete completion flags */ 288 u16 rxa_done; 289 u16 txb_done; 290 u16 rxb_done; 291 u16 txc_done; 292 u16 rxc_done; 293 u16 txd_done; 294 u16 rxd_done; 295 296 u16 mailbox[4]; /* Diagnostics mailbox. Not used */ 297 298 struct cirbuff interruptEvent; /* interrupt causes */ 299 300 u32 v24IpSts[FST_MAX_PORTS]; /* V.24 control input status */ 301 u32 v24OpSts[FST_MAX_PORTS]; /* V.24 control output status */ 302 303 struct port_cfg portConfig[FST_MAX_PORTS]; 304 305 u16 clockStatus[FST_MAX_PORTS]; /* lsb: 0=> present, 1=> absent */ 306 307 u16 cableStatus; /* lsb: 0=> present, 1=> absent */ 308 309 u16 txDescrIndex[FST_MAX_PORTS]; /* transmit descriptor ring index */ 310 u16 rxDescrIndex[FST_MAX_PORTS]; /* receive descriptor ring index */ 311 312 u16 portMailbox[FST_MAX_PORTS][2]; /* command, modifier */ 313 u16 cardMailbox[4]; /* Not used */ 314 315 /* Number of times the card thinks the host has 316 * missed an interrupt by not acknowledging 317 * within 2mS (I guess NT has problems) 318 */ 319 u32 interruptRetryCount; 320 321 /* Driver private data used as an ID. We'll not 322 * use this as I'd rather keep such things 323 * in main memory rather than on the PCI bus 324 */ 325 u32 portHandle[FST_MAX_PORTS]; 326 327 /* Count of Tx underflows for stats */ 328 u32 transmitBufferUnderflow[FST_MAX_PORTS]; 329 330 /* Debounced V.24 control input status */ 331 u32 v24DebouncedSts[FST_MAX_PORTS]; 332 333 /* Adapter debounce timers. Don't touch */ 334 u32 ctsTimer[FST_MAX_PORTS]; 335 u32 ctsTimerRun[FST_MAX_PORTS]; 336 u32 dcdTimer[FST_MAX_PORTS]; 337 u32 dcdTimerRun[FST_MAX_PORTS]; 338 339 u32 numberOfPorts; /* Number of ports detected at startup */ 340 341 u16 _reserved[64]; 342 343 u16 cardMode; /* Bit-mask to enable features: 344 * Bit 0: 1 enables LED identify mode 345 */ 346 347 u16 portScheduleOffset; 348 349 struct su_config suConfig; /* TE1 Bits */ 350 struct su_status suStatus; 351 352 u32 endOfSmcSignature; /* endOfSmcSignature MUST be the last member of 353 * the structure and marks the end of shared 354 * memory. Adapter code initializes it as 355 * END_SIG. 356 */ 357 }; 358 359 /* endOfSmcSignature value */ 360 #define END_SIG 0x12345678 361 362 /* Mailbox values. (portMailbox) */ 363 #define NOP 0 /* No operation */ 364 #define ACK 1 /* Positive acknowledgement to PC driver */ 365 #define NAK 2 /* Negative acknowledgement to PC driver */ 366 #define STARTPORT 3 /* Start an HDLC port */ 367 #define STOPPORT 4 /* Stop an HDLC port */ 368 #define ABORTTX 5 /* Abort the transmitter for a port */ 369 #define SETV24O 6 /* Set V24 outputs */ 370 371 /* PLX Chip Register Offsets */ 372 #define CNTRL_9052 0x50 /* Control Register */ 373 #define CNTRL_9054 0x6c /* Control Register */ 374 375 #define INTCSR_9052 0x4c /* Interrupt control/status register */ 376 #define INTCSR_9054 0x68 /* Interrupt control/status register */ 377 378 /* 9054 DMA Registers */ 379 /* 380 * Note that we will be using DMA Channel 0 for copying rx data 381 * and Channel 1 for copying tx data 382 */ 383 #define DMAMODE0 0x80 384 #define DMAPADR0 0x84 385 #define DMALADR0 0x88 386 #define DMASIZ0 0x8c 387 #define DMADPR0 0x90 388 #define DMAMODE1 0x94 389 #define DMAPADR1 0x98 390 #define DMALADR1 0x9c 391 #define DMASIZ1 0xa0 392 #define DMADPR1 0xa4 393 #define DMACSR0 0xa8 394 #define DMACSR1 0xa9 395 #define DMAARB 0xac 396 #define DMATHR 0xb0 397 #define DMADAC0 0xb4 398 #define DMADAC1 0xb8 399 #define DMAMARBR 0xac 400 401 #define FST_MIN_DMA_LEN 64 402 #define FST_RX_DMA_INT 0x01 403 #define FST_TX_DMA_INT 0x02 404 #define FST_CARD_INT 0x04 405 406 /* Larger buffers are positioned in memory at offset BFM_BASE */ 407 struct buf_window { 408 u8 txBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_TX_BUFFER]; 409 u8 rxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_RX_BUFFER]; 410 }; 411 412 /* Calculate offset of a buffer object within the shared memory window */ 413 #define BUF_OFFSET(X) (BFM_BASE + offsetof(struct buf_window, X)) 414 415 #pragma pack() 416 417 /* Device driver private information 418 * ================================= 419 */ 420 /* Per port (line or channel) information 421 */ 422 struct fst_port_info { 423 struct net_device *dev; /* Device struct - must be first */ 424 struct fst_card_info *card; /* Card we're associated with */ 425 int index; /* Port index on the card */ 426 int hwif; /* Line hardware (lineInterface copy) */ 427 int run; /* Port is running */ 428 int mode; /* Normal or FarSync raw */ 429 int rxpos; /* Next Rx buffer to use */ 430 int txpos; /* Next Tx buffer to use */ 431 int txipos; /* Next Tx buffer to check for free */ 432 int start; /* Indication of start/stop to network */ 433 /* 434 * A sixteen entry transmit queue 435 */ 436 int txqs; /* index to get next buffer to tx */ 437 int txqe; /* index to queue next packet */ 438 struct sk_buff *txq[FST_TXQ_DEPTH]; /* The queue */ 439 int rxqdepth; 440 }; 441 442 /* Per card information 443 */ 444 struct fst_card_info { 445 char __iomem *mem; /* Card memory mapped to kernel space */ 446 char __iomem *ctlmem; /* Control memory for PCI cards */ 447 unsigned int phys_mem; /* Physical memory window address */ 448 unsigned int phys_ctlmem; /* Physical control memory address */ 449 unsigned int irq; /* Interrupt request line number */ 450 unsigned int nports; /* Number of serial ports */ 451 unsigned int type; /* Type index of card */ 452 unsigned int state; /* State of card */ 453 spinlock_t card_lock; /* Lock for SMP access */ 454 unsigned short pci_conf; /* PCI card config in I/O space */ 455 /* Per port info */ 456 struct fst_port_info ports[FST_MAX_PORTS]; 457 struct pci_dev *device; /* Information about the pci device */ 458 int card_no; /* Inst of the card on the system */ 459 int family; /* TxP or TxU */ 460 int dmarx_in_progress; 461 int dmatx_in_progress; 462 unsigned long int_count; 463 unsigned long int_time_ave; 464 void *rx_dma_handle_host; 465 dma_addr_t rx_dma_handle_card; 466 void *tx_dma_handle_host; 467 dma_addr_t tx_dma_handle_card; 468 struct sk_buff *dma_skb_rx; 469 struct fst_port_info *dma_port_rx; 470 struct fst_port_info *dma_port_tx; 471 int dma_len_rx; 472 int dma_len_tx; 473 int dma_txpos; 474 int dma_rxpos; 475 }; 476 477 /* Convert an HDLC device pointer into a port info pointer and similar */ 478 #define dev_to_port(D) (dev_to_hdlc(D)->priv) 479 #define port_to_dev(P) ((P)->dev) 480 481 482 /* 483 * Shared memory window access macros 484 * 485 * We have a nice memory based structure above, which could be directly 486 * mapped on i386 but might not work on other architectures unless we use 487 * the readb,w,l and writeb,w,l macros. Unfortunately these macros take 488 * physical offsets so we have to convert. The only saving grace is that 489 * this should all collapse back to a simple indirection eventually. 490 */ 491 #define WIN_OFFSET(X) ((long)&(((struct fst_shared *)SMC_BASE)->X)) 492 493 #define FST_RDB(C,E) readb ((C)->mem + WIN_OFFSET(E)) 494 #define FST_RDW(C,E) readw ((C)->mem + WIN_OFFSET(E)) 495 #define FST_RDL(C,E) readl ((C)->mem + WIN_OFFSET(E)) 496 497 #define FST_WRB(C,E,B) writeb ((B), (C)->mem + WIN_OFFSET(E)) 498 #define FST_WRW(C,E,W) writew ((W), (C)->mem + WIN_OFFSET(E)) 499 #define FST_WRL(C,E,L) writel ((L), (C)->mem + WIN_OFFSET(E)) 500 501 /* 502 * Debug support 503 */ 504 #if FST_DEBUG 505 506 static int fst_debug_mask = { FST_DEBUG }; 507 508 /* Most common debug activity is to print something if the corresponding bit 509 * is set in the debug mask. Note: this uses a non-ANSI extension in GCC to 510 * support variable numbers of macro parameters. The inverted if prevents us 511 * eating someone else's else clause. 512 */ 513 #define dbg(F,fmt,A...) if ( ! ( fst_debug_mask & (F))) \ 514 ; \ 515 else \ 516 printk ( KERN_DEBUG FST_NAME ": " fmt, ## A ) 517 518 #else 519 #define dbg(X...) /* NOP */ 520 #endif 521 522 /* Printing short cuts 523 */ 524 #define printk_err(fmt,A...) printk ( KERN_ERR FST_NAME ": " fmt, ## A ) 525 #define printk_warn(fmt,A...) printk ( KERN_WARNING FST_NAME ": " fmt, ## A ) 526 #define printk_info(fmt,A...) printk ( KERN_INFO FST_NAME ": " fmt, ## A ) 527 528 /* 529 * PCI ID lookup table 530 */ 531 static struct pci_device_id fst_pci_dev_id[] __devinitdata = { 532 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2P, PCI_ANY_ID, 533 PCI_ANY_ID, 0, 0, FST_TYPE_T2P}, 534 535 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4P, PCI_ANY_ID, 536 PCI_ANY_ID, 0, 0, FST_TYPE_T4P}, 537 538 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T1U, PCI_ANY_ID, 539 PCI_ANY_ID, 0, 0, FST_TYPE_T1U}, 540 541 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2U, PCI_ANY_ID, 542 PCI_ANY_ID, 0, 0, FST_TYPE_T2U}, 543 544 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4U, PCI_ANY_ID, 545 PCI_ANY_ID, 0, 0, FST_TYPE_T4U}, 546 547 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1, PCI_ANY_ID, 548 PCI_ANY_ID, 0, 0, FST_TYPE_TE1}, 549 550 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1C, PCI_ANY_ID, 551 PCI_ANY_ID, 0, 0, FST_TYPE_TE1}, 552 {0,} /* End */ 553 }; 554 555 MODULE_DEVICE_TABLE(pci, fst_pci_dev_id); 556 557 /* 558 * Device Driver Work Queues 559 * 560 * So that we don't spend too much time processing events in the 561 * Interrupt Service routine, we will declare a work queue per Card 562 * and make the ISR schedule a task in the queue for later execution. 563 * In the 2.4 Kernel we used to use the immediate queue for BH's 564 * Now that they are gone, tasklets seem to be much better than work 565 * queues. 566 */ 567 568 static void do_bottom_half_tx(struct fst_card_info *card); 569 static void do_bottom_half_rx(struct fst_card_info *card); 570 static void fst_process_tx_work_q(unsigned long work_q); 571 static void fst_process_int_work_q(unsigned long work_q); 572 573 static DECLARE_TASKLET(fst_tx_task, fst_process_tx_work_q, 0); 574 static DECLARE_TASKLET(fst_int_task, fst_process_int_work_q, 0); 575 576 static struct fst_card_info *fst_card_array[FST_MAX_CARDS]; 577 static spinlock_t fst_work_q_lock; 578 static u64 fst_work_txq; 579 static u64 fst_work_intq; 580 581 static void 582 fst_q_work_item(u64 * queue, int card_index) 583 { 584 unsigned long flags; 585 u64 mask; 586 587 /* 588 * Grab the queue exclusively 589 */ 590 spin_lock_irqsave(&fst_work_q_lock, flags); 591 592 /* 593 * Making an entry in the queue is simply a matter of setting 594 * a bit for the card indicating that there is work to do in the 595 * bottom half for the card. Note the limitation of 64 cards. 596 * That ought to be enough 597 */ 598 mask = 1 << card_index; 599 *queue |= mask; 600 spin_unlock_irqrestore(&fst_work_q_lock, flags); 601 } 602 603 static void 604 fst_process_tx_work_q(unsigned long /*void **/work_q) 605 { 606 unsigned long flags; 607 u64 work_txq; 608 int i; 609 610 /* 611 * Grab the queue exclusively 612 */ 613 dbg(DBG_TX, "fst_process_tx_work_q\n"); 614 spin_lock_irqsave(&fst_work_q_lock, flags); 615 work_txq = fst_work_txq; 616 fst_work_txq = 0; 617 spin_unlock_irqrestore(&fst_work_q_lock, flags); 618 619 /* 620 * Call the bottom half for each card with work waiting 621 */ 622 for (i = 0; i < FST_MAX_CARDS; i++) { 623 if (work_txq & 0x01) { 624 if (fst_card_array[i] != NULL) { 625 dbg(DBG_TX, "Calling tx bh for card %d\n", i); 626 do_bottom_half_tx(fst_card_array[i]); 627 } 628 } 629 work_txq = work_txq >> 1; 630 } 631 } 632 633 static void 634 fst_process_int_work_q(unsigned long /*void **/work_q) 635 { 636 unsigned long flags; 637 u64 work_intq; 638 int i; 639 640 /* 641 * Grab the queue exclusively 642 */ 643 dbg(DBG_INTR, "fst_process_int_work_q\n"); 644 spin_lock_irqsave(&fst_work_q_lock, flags); 645 work_intq = fst_work_intq; 646 fst_work_intq = 0; 647 spin_unlock_irqrestore(&fst_work_q_lock, flags); 648 649 /* 650 * Call the bottom half for each card with work waiting 651 */ 652 for (i = 0; i < FST_MAX_CARDS; i++) { 653 if (work_intq & 0x01) { 654 if (fst_card_array[i] != NULL) { 655 dbg(DBG_INTR, 656 "Calling rx & tx bh for card %d\n", i); 657 do_bottom_half_rx(fst_card_array[i]); 658 do_bottom_half_tx(fst_card_array[i]); 659 } 660 } 661 work_intq = work_intq >> 1; 662 } 663 } 664 665 /* Card control functions 666 * ====================== 667 */ 668 /* Place the processor in reset state 669 * 670 * Used to be a simple write to card control space but a glitch in the latest 671 * AMD Am186CH processor means that we now have to do it by asserting and de- 672 * asserting the PLX chip PCI Adapter Software Reset. Bit 30 in CNTRL register 673 * at offset 9052_CNTRL. Note the updates for the TXU. 674 */ 675 static inline void 676 fst_cpureset(struct fst_card_info *card) 677 { 678 unsigned char interrupt_line_register; 679 unsigned long j = jiffies + 1; 680 unsigned int regval; 681 682 if (card->family == FST_FAMILY_TXU) { 683 if (pci_read_config_byte 684 (card->device, PCI_INTERRUPT_LINE, &interrupt_line_register)) { 685 dbg(DBG_ASS, 686 "Error in reading interrupt line register\n"); 687 } 688 /* 689 * Assert PLX software reset and Am186 hardware reset 690 * and then deassert the PLX software reset but 186 still in reset 691 */ 692 outw(0x440f, card->pci_conf + CNTRL_9054 + 2); 693 outw(0x040f, card->pci_conf + CNTRL_9054 + 2); 694 /* 695 * We are delaying here to allow the 9054 to reset itself 696 */ 697 j = jiffies + 1; 698 while (jiffies < j) 699 /* Do nothing */ ; 700 outw(0x240f, card->pci_conf + CNTRL_9054 + 2); 701 /* 702 * We are delaying here to allow the 9054 to reload its eeprom 703 */ 704 j = jiffies + 1; 705 while (jiffies < j) 706 /* Do nothing */ ; 707 outw(0x040f, card->pci_conf + CNTRL_9054 + 2); 708 709 if (pci_write_config_byte 710 (card->device, PCI_INTERRUPT_LINE, interrupt_line_register)) { 711 dbg(DBG_ASS, 712 "Error in writing interrupt line register\n"); 713 } 714 715 } else { 716 regval = inl(card->pci_conf + CNTRL_9052); 717 718 outl(regval | 0x40000000, card->pci_conf + CNTRL_9052); 719 outl(regval & ~0x40000000, card->pci_conf + CNTRL_9052); 720 } 721 } 722 723 /* Release the processor from reset 724 */ 725 static inline void 726 fst_cpurelease(struct fst_card_info *card) 727 { 728 if (card->family == FST_FAMILY_TXU) { 729 /* 730 * Force posted writes to complete 731 */ 732 (void) readb(card->mem); 733 734 /* 735 * Release LRESET DO = 1 736 * Then release Local Hold, DO = 1 737 */ 738 outw(0x040e, card->pci_conf + CNTRL_9054 + 2); 739 outw(0x040f, card->pci_conf + CNTRL_9054 + 2); 740 } else { 741 (void) readb(card->ctlmem); 742 } 743 } 744 745 /* Clear the cards interrupt flag 746 */ 747 static inline void 748 fst_clear_intr(struct fst_card_info *card) 749 { 750 if (card->family == FST_FAMILY_TXU) { 751 (void) readb(card->ctlmem); 752 } else { 753 /* Poke the appropriate PLX chip register (same as enabling interrupts) 754 */ 755 outw(0x0543, card->pci_conf + INTCSR_9052); 756 } 757 } 758 759 /* Enable card interrupts 760 */ 761 static inline void 762 fst_enable_intr(struct fst_card_info *card) 763 { 764 if (card->family == FST_FAMILY_TXU) { 765 outl(0x0f0c0900, card->pci_conf + INTCSR_9054); 766 } else { 767 outw(0x0543, card->pci_conf + INTCSR_9052); 768 } 769 } 770 771 /* Disable card interrupts 772 */ 773 static inline void 774 fst_disable_intr(struct fst_card_info *card) 775 { 776 if (card->family == FST_FAMILY_TXU) { 777 outl(0x00000000, card->pci_conf + INTCSR_9054); 778 } else { 779 outw(0x0000, card->pci_conf + INTCSR_9052); 780 } 781 } 782 783 /* Process the result of trying to pass a received frame up the stack 784 */ 785 static void 786 fst_process_rx_status(int rx_status, char *name) 787 { 788 switch (rx_status) { 789 case NET_RX_SUCCESS: 790 { 791 /* 792 * Nothing to do here 793 */ 794 break; 795 } 796 case NET_RX_DROP: 797 { 798 dbg(DBG_ASS, "%s: Received packet dropped\n", name); 799 break; 800 } 801 } 802 } 803 804 /* Initilaise DMA for PLX 9054 805 */ 806 static inline void 807 fst_init_dma(struct fst_card_info *card) 808 { 809 /* 810 * This is only required for the PLX 9054 811 */ 812 if (card->family == FST_FAMILY_TXU) { 813 pci_set_master(card->device); 814 outl(0x00020441, card->pci_conf + DMAMODE0); 815 outl(0x00020441, card->pci_conf + DMAMODE1); 816 outl(0x0, card->pci_conf + DMATHR); 817 } 818 } 819 820 /* Tx dma complete interrupt 821 */ 822 static void 823 fst_tx_dma_complete(struct fst_card_info *card, struct fst_port_info *port, 824 int len, int txpos) 825 { 826 struct net_device *dev = port_to_dev(port); 827 828 /* 829 * Everything is now set, just tell the card to go 830 */ 831 dbg(DBG_TX, "fst_tx_dma_complete\n"); 832 FST_WRB(card, txDescrRing[port->index][txpos].bits, 833 DMA_OWN | TX_STP | TX_ENP); 834 dev->stats.tx_packets++; 835 dev->stats.tx_bytes += len; 836 dev->trans_start = jiffies; 837 } 838 839 /* 840 * Mark it for our own raw sockets interface 841 */ 842 static __be16 farsync_type_trans(struct sk_buff *skb, struct net_device *dev) 843 { 844 skb->dev = dev; 845 skb_reset_mac_header(skb); 846 skb->pkt_type = PACKET_HOST; 847 return htons(ETH_P_CUST); 848 } 849 850 /* Rx dma complete interrupt 851 */ 852 static void 853 fst_rx_dma_complete(struct fst_card_info *card, struct fst_port_info *port, 854 int len, struct sk_buff *skb, int rxp) 855 { 856 struct net_device *dev = port_to_dev(port); 857 int pi; 858 int rx_status; 859 860 dbg(DBG_TX, "fst_rx_dma_complete\n"); 861 pi = port->index; 862 memcpy(skb_put(skb, len), card->rx_dma_handle_host, len); 863 864 /* Reset buffer descriptor */ 865 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN); 866 867 /* Update stats */ 868 dev->stats.rx_packets++; 869 dev->stats.rx_bytes += len; 870 871 /* Push upstream */ 872 dbg(DBG_RX, "Pushing the frame up the stack\n"); 873 if (port->mode == FST_RAW) 874 skb->protocol = farsync_type_trans(skb, dev); 875 else 876 skb->protocol = hdlc_type_trans(skb, dev); 877 rx_status = netif_rx(skb); 878 fst_process_rx_status(rx_status, port_to_dev(port)->name); 879 if (rx_status == NET_RX_DROP) 880 dev->stats.rx_dropped++; 881 } 882 883 /* 884 * Receive a frame through the DMA 885 */ 886 static inline void 887 fst_rx_dma(struct fst_card_info *card, unsigned char *skb, 888 unsigned char *mem, int len) 889 { 890 /* 891 * This routine will setup the DMA and start it 892 */ 893 894 dbg(DBG_RX, "In fst_rx_dma %p %p %d\n", skb, mem, len); 895 if (card->dmarx_in_progress) { 896 dbg(DBG_ASS, "In fst_rx_dma while dma in progress\n"); 897 } 898 899 outl((unsigned long) skb, card->pci_conf + DMAPADR0); /* Copy to here */ 900 outl((unsigned long) mem, card->pci_conf + DMALADR0); /* from here */ 901 outl(len, card->pci_conf + DMASIZ0); /* for this length */ 902 outl(0x00000000c, card->pci_conf + DMADPR0); /* In this direction */ 903 904 /* 905 * We use the dmarx_in_progress flag to flag the channel as busy 906 */ 907 card->dmarx_in_progress = 1; 908 outb(0x03, card->pci_conf + DMACSR0); /* Start the transfer */ 909 } 910 911 /* 912 * Send a frame through the DMA 913 */ 914 static inline void 915 fst_tx_dma(struct fst_card_info *card, unsigned char *skb, 916 unsigned char *mem, int len) 917 { 918 /* 919 * This routine will setup the DMA and start it. 920 */ 921 922 dbg(DBG_TX, "In fst_tx_dma %p %p %d\n", skb, mem, len); 923 if (card->dmatx_in_progress) { 924 dbg(DBG_ASS, "In fst_tx_dma while dma in progress\n"); 925 } 926 927 outl((unsigned long) skb, card->pci_conf + DMAPADR1); /* Copy from here */ 928 outl((unsigned long) mem, card->pci_conf + DMALADR1); /* to here */ 929 outl(len, card->pci_conf + DMASIZ1); /* for this length */ 930 outl(0x000000004, card->pci_conf + DMADPR1); /* In this direction */ 931 932 /* 933 * We use the dmatx_in_progress to flag the channel as busy 934 */ 935 card->dmatx_in_progress = 1; 936 outb(0x03, card->pci_conf + DMACSR1); /* Start the transfer */ 937 } 938 939 /* Issue a Mailbox command for a port. 940 * Note we issue them on a fire and forget basis, not expecting to see an 941 * error and not waiting for completion. 942 */ 943 static void 944 fst_issue_cmd(struct fst_port_info *port, unsigned short cmd) 945 { 946 struct fst_card_info *card; 947 unsigned short mbval; 948 unsigned long flags; 949 int safety; 950 951 card = port->card; 952 spin_lock_irqsave(&card->card_lock, flags); 953 mbval = FST_RDW(card, portMailbox[port->index][0]); 954 955 safety = 0; 956 /* Wait for any previous command to complete */ 957 while (mbval > NAK) { 958 spin_unlock_irqrestore(&card->card_lock, flags); 959 schedule_timeout_uninterruptible(1); 960 spin_lock_irqsave(&card->card_lock, flags); 961 962 if (++safety > 2000) { 963 printk_err("Mailbox safety timeout\n"); 964 break; 965 } 966 967 mbval = FST_RDW(card, portMailbox[port->index][0]); 968 } 969 if (safety > 0) { 970 dbg(DBG_CMD, "Mailbox clear after %d jiffies\n", safety); 971 } 972 if (mbval == NAK) { 973 dbg(DBG_CMD, "issue_cmd: previous command was NAK'd\n"); 974 } 975 976 FST_WRW(card, portMailbox[port->index][0], cmd); 977 978 if (cmd == ABORTTX || cmd == STARTPORT) { 979 port->txpos = 0; 980 port->txipos = 0; 981 port->start = 0; 982 } 983 984 spin_unlock_irqrestore(&card->card_lock, flags); 985 } 986 987 /* Port output signals control 988 */ 989 static inline void 990 fst_op_raise(struct fst_port_info *port, unsigned int outputs) 991 { 992 outputs |= FST_RDL(port->card, v24OpSts[port->index]); 993 FST_WRL(port->card, v24OpSts[port->index], outputs); 994 995 if (port->run) 996 fst_issue_cmd(port, SETV24O); 997 } 998 999 static inline void 1000 fst_op_lower(struct fst_port_info *port, unsigned int outputs) 1001 { 1002 outputs = ~outputs & FST_RDL(port->card, v24OpSts[port->index]); 1003 FST_WRL(port->card, v24OpSts[port->index], outputs); 1004 1005 if (port->run) 1006 fst_issue_cmd(port, SETV24O); 1007 } 1008 1009 /* 1010 * Setup port Rx buffers 1011 */ 1012 static void 1013 fst_rx_config(struct fst_port_info *port) 1014 { 1015 int i; 1016 int pi; 1017 unsigned int offset; 1018 unsigned long flags; 1019 struct fst_card_info *card; 1020 1021 pi = port->index; 1022 card = port->card; 1023 spin_lock_irqsave(&card->card_lock, flags); 1024 for (i = 0; i < NUM_RX_BUFFER; i++) { 1025 offset = BUF_OFFSET(rxBuffer[pi][i][0]); 1026 1027 FST_WRW(card, rxDescrRing[pi][i].ladr, (u16) offset); 1028 FST_WRB(card, rxDescrRing[pi][i].hadr, (u8) (offset >> 16)); 1029 FST_WRW(card, rxDescrRing[pi][i].bcnt, cnv_bcnt(LEN_RX_BUFFER)); 1030 FST_WRW(card, rxDescrRing[pi][i].mcnt, LEN_RX_BUFFER); 1031 FST_WRB(card, rxDescrRing[pi][i].bits, DMA_OWN); 1032 } 1033 port->rxpos = 0; 1034 spin_unlock_irqrestore(&card->card_lock, flags); 1035 } 1036 1037 /* 1038 * Setup port Tx buffers 1039 */ 1040 static void 1041 fst_tx_config(struct fst_port_info *port) 1042 { 1043 int i; 1044 int pi; 1045 unsigned int offset; 1046 unsigned long flags; 1047 struct fst_card_info *card; 1048 1049 pi = port->index; 1050 card = port->card; 1051 spin_lock_irqsave(&card->card_lock, flags); 1052 for (i = 0; i < NUM_TX_BUFFER; i++) { 1053 offset = BUF_OFFSET(txBuffer[pi][i][0]); 1054 1055 FST_WRW(card, txDescrRing[pi][i].ladr, (u16) offset); 1056 FST_WRB(card, txDescrRing[pi][i].hadr, (u8) (offset >> 16)); 1057 FST_WRW(card, txDescrRing[pi][i].bcnt, 0); 1058 FST_WRB(card, txDescrRing[pi][i].bits, 0); 1059 } 1060 port->txpos = 0; 1061 port->txipos = 0; 1062 port->start = 0; 1063 spin_unlock_irqrestore(&card->card_lock, flags); 1064 } 1065 1066 /* TE1 Alarm change interrupt event 1067 */ 1068 static void 1069 fst_intr_te1_alarm(struct fst_card_info *card, struct fst_port_info *port) 1070 { 1071 u8 los; 1072 u8 rra; 1073 u8 ais; 1074 1075 los = FST_RDB(card, suStatus.lossOfSignal); 1076 rra = FST_RDB(card, suStatus.receiveRemoteAlarm); 1077 ais = FST_RDB(card, suStatus.alarmIndicationSignal); 1078 1079 if (los) { 1080 /* 1081 * Lost the link 1082 */ 1083 if (netif_carrier_ok(port_to_dev(port))) { 1084 dbg(DBG_INTR, "Net carrier off\n"); 1085 netif_carrier_off(port_to_dev(port)); 1086 } 1087 } else { 1088 /* 1089 * Link available 1090 */ 1091 if (!netif_carrier_ok(port_to_dev(port))) { 1092 dbg(DBG_INTR, "Net carrier on\n"); 1093 netif_carrier_on(port_to_dev(port)); 1094 } 1095 } 1096 1097 if (los) 1098 dbg(DBG_INTR, "Assert LOS Alarm\n"); 1099 else 1100 dbg(DBG_INTR, "De-assert LOS Alarm\n"); 1101 if (rra) 1102 dbg(DBG_INTR, "Assert RRA Alarm\n"); 1103 else 1104 dbg(DBG_INTR, "De-assert RRA Alarm\n"); 1105 1106 if (ais) 1107 dbg(DBG_INTR, "Assert AIS Alarm\n"); 1108 else 1109 dbg(DBG_INTR, "De-assert AIS Alarm\n"); 1110 } 1111 1112 /* Control signal change interrupt event 1113 */ 1114 static void 1115 fst_intr_ctlchg(struct fst_card_info *card, struct fst_port_info *port) 1116 { 1117 int signals; 1118 1119 signals = FST_RDL(card, v24DebouncedSts[port->index]); 1120 1121 if (signals & (((port->hwif == X21) || (port->hwif == X21D)) 1122 ? IPSTS_INDICATE : IPSTS_DCD)) { 1123 if (!netif_carrier_ok(port_to_dev(port))) { 1124 dbg(DBG_INTR, "DCD active\n"); 1125 netif_carrier_on(port_to_dev(port)); 1126 } 1127 } else { 1128 if (netif_carrier_ok(port_to_dev(port))) { 1129 dbg(DBG_INTR, "DCD lost\n"); 1130 netif_carrier_off(port_to_dev(port)); 1131 } 1132 } 1133 } 1134 1135 /* Log Rx Errors 1136 */ 1137 static void 1138 fst_log_rx_error(struct fst_card_info *card, struct fst_port_info *port, 1139 unsigned char dmabits, int rxp, unsigned short len) 1140 { 1141 struct net_device *dev = port_to_dev(port); 1142 1143 /* 1144 * Increment the appropriate error counter 1145 */ 1146 dev->stats.rx_errors++; 1147 if (dmabits & RX_OFLO) { 1148 dev->stats.rx_fifo_errors++; 1149 dbg(DBG_ASS, "Rx fifo error on card %d port %d buffer %d\n", 1150 card->card_no, port->index, rxp); 1151 } 1152 if (dmabits & RX_CRC) { 1153 dev->stats.rx_crc_errors++; 1154 dbg(DBG_ASS, "Rx crc error on card %d port %d\n", 1155 card->card_no, port->index); 1156 } 1157 if (dmabits & RX_FRAM) { 1158 dev->stats.rx_frame_errors++; 1159 dbg(DBG_ASS, "Rx frame error on card %d port %d\n", 1160 card->card_no, port->index); 1161 } 1162 if (dmabits == (RX_STP | RX_ENP)) { 1163 dev->stats.rx_length_errors++; 1164 dbg(DBG_ASS, "Rx length error (%d) on card %d port %d\n", 1165 len, card->card_no, port->index); 1166 } 1167 } 1168 1169 /* Rx Error Recovery 1170 */ 1171 static void 1172 fst_recover_rx_error(struct fst_card_info *card, struct fst_port_info *port, 1173 unsigned char dmabits, int rxp, unsigned short len) 1174 { 1175 int i; 1176 int pi; 1177 1178 pi = port->index; 1179 /* 1180 * Discard buffer descriptors until we see the start of the 1181 * next frame. Note that for long frames this could be in 1182 * a subsequent interrupt. 1183 */ 1184 i = 0; 1185 while ((dmabits & (DMA_OWN | RX_STP)) == 0) { 1186 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN); 1187 rxp = (rxp+1) % NUM_RX_BUFFER; 1188 if (++i > NUM_RX_BUFFER) { 1189 dbg(DBG_ASS, "intr_rx: Discarding more bufs" 1190 " than we have\n"); 1191 break; 1192 } 1193 dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits); 1194 dbg(DBG_ASS, "DMA Bits of next buffer was %x\n", dmabits); 1195 } 1196 dbg(DBG_ASS, "There were %d subsequent buffers in error\n", i); 1197 1198 /* Discard the terminal buffer */ 1199 if (!(dmabits & DMA_OWN)) { 1200 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN); 1201 rxp = (rxp+1) % NUM_RX_BUFFER; 1202 } 1203 port->rxpos = rxp; 1204 return; 1205 1206 } 1207 1208 /* Rx complete interrupt 1209 */ 1210 static void 1211 fst_intr_rx(struct fst_card_info *card, struct fst_port_info *port) 1212 { 1213 unsigned char dmabits; 1214 int pi; 1215 int rxp; 1216 int rx_status; 1217 unsigned short len; 1218 struct sk_buff *skb; 1219 struct net_device *dev = port_to_dev(port); 1220 1221 /* Check we have a buffer to process */ 1222 pi = port->index; 1223 rxp = port->rxpos; 1224 dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits); 1225 if (dmabits & DMA_OWN) { 1226 dbg(DBG_RX | DBG_INTR, "intr_rx: No buffer port %d pos %d\n", 1227 pi, rxp); 1228 return; 1229 } 1230 if (card->dmarx_in_progress) { 1231 return; 1232 } 1233 1234 /* Get buffer length */ 1235 len = FST_RDW(card, rxDescrRing[pi][rxp].mcnt); 1236 /* Discard the CRC */ 1237 len -= 2; 1238 if (len == 0) { 1239 /* 1240 * This seems to happen on the TE1 interface sometimes 1241 * so throw the frame away and log the event. 1242 */ 1243 printk_err("Frame received with 0 length. Card %d Port %d\n", 1244 card->card_no, port->index); 1245 /* Return descriptor to card */ 1246 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN); 1247 1248 rxp = (rxp+1) % NUM_RX_BUFFER; 1249 port->rxpos = rxp; 1250 return; 1251 } 1252 1253 /* Check buffer length and for other errors. We insist on one packet 1254 * in one buffer. This simplifies things greatly and since we've 1255 * allocated 8K it shouldn't be a real world limitation 1256 */ 1257 dbg(DBG_RX, "intr_rx: %d,%d: flags %x len %d\n", pi, rxp, dmabits, len); 1258 if (dmabits != (RX_STP | RX_ENP) || len > LEN_RX_BUFFER - 2) { 1259 fst_log_rx_error(card, port, dmabits, rxp, len); 1260 fst_recover_rx_error(card, port, dmabits, rxp, len); 1261 return; 1262 } 1263 1264 /* Allocate SKB */ 1265 if ((skb = dev_alloc_skb(len)) == NULL) { 1266 dbg(DBG_RX, "intr_rx: can't allocate buffer\n"); 1267 1268 dev->stats.rx_dropped++; 1269 1270 /* Return descriptor to card */ 1271 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN); 1272 1273 rxp = (rxp+1) % NUM_RX_BUFFER; 1274 port->rxpos = rxp; 1275 return; 1276 } 1277 1278 /* 1279 * We know the length we need to receive, len. 1280 * It's not worth using the DMA for reads of less than 1281 * FST_MIN_DMA_LEN 1282 */ 1283 1284 if ((len < FST_MIN_DMA_LEN) || (card->family == FST_FAMILY_TXP)) { 1285 memcpy_fromio(skb_put(skb, len), 1286 card->mem + BUF_OFFSET(rxBuffer[pi][rxp][0]), 1287 len); 1288 1289 /* Reset buffer descriptor */ 1290 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN); 1291 1292 /* Update stats */ 1293 dev->stats.rx_packets++; 1294 dev->stats.rx_bytes += len; 1295 1296 /* Push upstream */ 1297 dbg(DBG_RX, "Pushing frame up the stack\n"); 1298 if (port->mode == FST_RAW) 1299 skb->protocol = farsync_type_trans(skb, dev); 1300 else 1301 skb->protocol = hdlc_type_trans(skb, dev); 1302 rx_status = netif_rx(skb); 1303 fst_process_rx_status(rx_status, port_to_dev(port)->name); 1304 if (rx_status == NET_RX_DROP) 1305 dev->stats.rx_dropped++; 1306 } else { 1307 card->dma_skb_rx = skb; 1308 card->dma_port_rx = port; 1309 card->dma_len_rx = len; 1310 card->dma_rxpos = rxp; 1311 fst_rx_dma(card, (char *) card->rx_dma_handle_card, 1312 (char *) BUF_OFFSET(rxBuffer[pi][rxp][0]), len); 1313 } 1314 if (rxp != port->rxpos) { 1315 dbg(DBG_ASS, "About to increment rxpos by more than 1\n"); 1316 dbg(DBG_ASS, "rxp = %d rxpos = %d\n", rxp, port->rxpos); 1317 } 1318 rxp = (rxp+1) % NUM_RX_BUFFER; 1319 port->rxpos = rxp; 1320 } 1321 1322 /* 1323 * The bottom halfs to the ISR 1324 * 1325 */ 1326 1327 static void 1328 do_bottom_half_tx(struct fst_card_info *card) 1329 { 1330 struct fst_port_info *port; 1331 int pi; 1332 int txq_length; 1333 struct sk_buff *skb; 1334 unsigned long flags; 1335 struct net_device *dev; 1336 1337 /* 1338 * Find a free buffer for the transmit 1339 * Step through each port on this card 1340 */ 1341 1342 dbg(DBG_TX, "do_bottom_half_tx\n"); 1343 for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) { 1344 if (!port->run) 1345 continue; 1346 1347 dev = port_to_dev(port); 1348 while (!(FST_RDB(card, txDescrRing[pi][port->txpos].bits) & 1349 DMA_OWN) && 1350 !(card->dmatx_in_progress)) { 1351 /* 1352 * There doesn't seem to be a txdone event per-se 1353 * We seem to have to deduce it, by checking the DMA_OWN 1354 * bit on the next buffer we think we can use 1355 */ 1356 spin_lock_irqsave(&card->card_lock, flags); 1357 if ((txq_length = port->txqe - port->txqs) < 0) { 1358 /* 1359 * This is the case where one has wrapped and the 1360 * maths gives us a negative number 1361 */ 1362 txq_length = txq_length + FST_TXQ_DEPTH; 1363 } 1364 spin_unlock_irqrestore(&card->card_lock, flags); 1365 if (txq_length > 0) { 1366 /* 1367 * There is something to send 1368 */ 1369 spin_lock_irqsave(&card->card_lock, flags); 1370 skb = port->txq[port->txqs]; 1371 port->txqs++; 1372 if (port->txqs == FST_TXQ_DEPTH) { 1373 port->txqs = 0; 1374 } 1375 spin_unlock_irqrestore(&card->card_lock, flags); 1376 /* 1377 * copy the data and set the required indicators on the 1378 * card. 1379 */ 1380 FST_WRW(card, txDescrRing[pi][port->txpos].bcnt, 1381 cnv_bcnt(skb->len)); 1382 if ((skb->len < FST_MIN_DMA_LEN) || 1383 (card->family == FST_FAMILY_TXP)) { 1384 /* Enqueue the packet with normal io */ 1385 memcpy_toio(card->mem + 1386 BUF_OFFSET(txBuffer[pi] 1387 [port-> 1388 txpos][0]), 1389 skb->data, skb->len); 1390 FST_WRB(card, 1391 txDescrRing[pi][port->txpos]. 1392 bits, 1393 DMA_OWN | TX_STP | TX_ENP); 1394 dev->stats.tx_packets++; 1395 dev->stats.tx_bytes += skb->len; 1396 dev->trans_start = jiffies; 1397 } else { 1398 /* Or do it through dma */ 1399 memcpy(card->tx_dma_handle_host, 1400 skb->data, skb->len); 1401 card->dma_port_tx = port; 1402 card->dma_len_tx = skb->len; 1403 card->dma_txpos = port->txpos; 1404 fst_tx_dma(card, 1405 (char *) card-> 1406 tx_dma_handle_card, 1407 (char *) 1408 BUF_OFFSET(txBuffer[pi] 1409 [port->txpos][0]), 1410 skb->len); 1411 } 1412 if (++port->txpos >= NUM_TX_BUFFER) 1413 port->txpos = 0; 1414 /* 1415 * If we have flow control on, can we now release it? 1416 */ 1417 if (port->start) { 1418 if (txq_length < fst_txq_low) { 1419 netif_wake_queue(port_to_dev 1420 (port)); 1421 port->start = 0; 1422 } 1423 } 1424 dev_kfree_skb(skb); 1425 } else { 1426 /* 1427 * Nothing to send so break out of the while loop 1428 */ 1429 break; 1430 } 1431 } 1432 } 1433 } 1434 1435 static void 1436 do_bottom_half_rx(struct fst_card_info *card) 1437 { 1438 struct fst_port_info *port; 1439 int pi; 1440 int rx_count = 0; 1441 1442 /* Check for rx completions on all ports on this card */ 1443 dbg(DBG_RX, "do_bottom_half_rx\n"); 1444 for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) { 1445 if (!port->run) 1446 continue; 1447 1448 while (!(FST_RDB(card, rxDescrRing[pi][port->rxpos].bits) 1449 & DMA_OWN) && !(card->dmarx_in_progress)) { 1450 if (rx_count > fst_max_reads) { 1451 /* 1452 * Don't spend forever in receive processing 1453 * Schedule another event 1454 */ 1455 fst_q_work_item(&fst_work_intq, card->card_no); 1456 tasklet_schedule(&fst_int_task); 1457 break; /* Leave the loop */ 1458 } 1459 fst_intr_rx(card, port); 1460 rx_count++; 1461 } 1462 } 1463 } 1464 1465 /* 1466 * The interrupt service routine 1467 * Dev_id is our fst_card_info pointer 1468 */ 1469 static irqreturn_t 1470 fst_intr(int dummy, void *dev_id) 1471 { 1472 struct fst_card_info *card = dev_id; 1473 struct fst_port_info *port; 1474 int rdidx; /* Event buffer indices */ 1475 int wridx; 1476 int event; /* Actual event for processing */ 1477 unsigned int dma_intcsr = 0; 1478 unsigned int do_card_interrupt; 1479 unsigned int int_retry_count; 1480 1481 /* 1482 * Check to see if the interrupt was for this card 1483 * return if not 1484 * Note that the call to clear the interrupt is important 1485 */ 1486 dbg(DBG_INTR, "intr: %d %p\n", card->irq, card); 1487 if (card->state != FST_RUNNING) { 1488 printk_err 1489 ("Interrupt received for card %d in a non running state (%d)\n", 1490 card->card_no, card->state); 1491 1492 /* 1493 * It is possible to really be running, i.e. we have re-loaded 1494 * a running card 1495 * Clear and reprime the interrupt source 1496 */ 1497 fst_clear_intr(card); 1498 return IRQ_HANDLED; 1499 } 1500 1501 /* Clear and reprime the interrupt source */ 1502 fst_clear_intr(card); 1503 1504 /* 1505 * Is the interrupt for this card (handshake == 1) 1506 */ 1507 do_card_interrupt = 0; 1508 if (FST_RDB(card, interruptHandshake) == 1) { 1509 do_card_interrupt += FST_CARD_INT; 1510 /* Set the software acknowledge */ 1511 FST_WRB(card, interruptHandshake, 0xEE); 1512 } 1513 if (card->family == FST_FAMILY_TXU) { 1514 /* 1515 * Is it a DMA Interrupt 1516 */ 1517 dma_intcsr = inl(card->pci_conf + INTCSR_9054); 1518 if (dma_intcsr & 0x00200000) { 1519 /* 1520 * DMA Channel 0 (Rx transfer complete) 1521 */ 1522 dbg(DBG_RX, "DMA Rx xfer complete\n"); 1523 outb(0x8, card->pci_conf + DMACSR0); 1524 fst_rx_dma_complete(card, card->dma_port_rx, 1525 card->dma_len_rx, card->dma_skb_rx, 1526 card->dma_rxpos); 1527 card->dmarx_in_progress = 0; 1528 do_card_interrupt += FST_RX_DMA_INT; 1529 } 1530 if (dma_intcsr & 0x00400000) { 1531 /* 1532 * DMA Channel 1 (Tx transfer complete) 1533 */ 1534 dbg(DBG_TX, "DMA Tx xfer complete\n"); 1535 outb(0x8, card->pci_conf + DMACSR1); 1536 fst_tx_dma_complete(card, card->dma_port_tx, 1537 card->dma_len_tx, card->dma_txpos); 1538 card->dmatx_in_progress = 0; 1539 do_card_interrupt += FST_TX_DMA_INT; 1540 } 1541 } 1542 1543 /* 1544 * Have we been missing Interrupts 1545 */ 1546 int_retry_count = FST_RDL(card, interruptRetryCount); 1547 if (int_retry_count) { 1548 dbg(DBG_ASS, "Card %d int_retry_count is %d\n", 1549 card->card_no, int_retry_count); 1550 FST_WRL(card, interruptRetryCount, 0); 1551 } 1552 1553 if (!do_card_interrupt) { 1554 return IRQ_HANDLED; 1555 } 1556 1557 /* Scehdule the bottom half of the ISR */ 1558 fst_q_work_item(&fst_work_intq, card->card_no); 1559 tasklet_schedule(&fst_int_task); 1560 1561 /* Drain the event queue */ 1562 rdidx = FST_RDB(card, interruptEvent.rdindex) & 0x1f; 1563 wridx = FST_RDB(card, interruptEvent.wrindex) & 0x1f; 1564 while (rdidx != wridx) { 1565 event = FST_RDB(card, interruptEvent.evntbuff[rdidx]); 1566 port = &card->ports[event & 0x03]; 1567 1568 dbg(DBG_INTR, "Processing Interrupt event: %x\n", event); 1569 1570 switch (event) { 1571 case TE1_ALMA: 1572 dbg(DBG_INTR, "TE1 Alarm intr\n"); 1573 if (port->run) 1574 fst_intr_te1_alarm(card, port); 1575 break; 1576 1577 case CTLA_CHG: 1578 case CTLB_CHG: 1579 case CTLC_CHG: 1580 case CTLD_CHG: 1581 if (port->run) 1582 fst_intr_ctlchg(card, port); 1583 break; 1584 1585 case ABTA_SENT: 1586 case ABTB_SENT: 1587 case ABTC_SENT: 1588 case ABTD_SENT: 1589 dbg(DBG_TX, "Abort complete port %d\n", port->index); 1590 break; 1591 1592 case TXA_UNDF: 1593 case TXB_UNDF: 1594 case TXC_UNDF: 1595 case TXD_UNDF: 1596 /* Difficult to see how we'd get this given that we 1597 * always load up the entire packet for DMA. 1598 */ 1599 dbg(DBG_TX, "Tx underflow port %d\n", port->index); 1600 port_to_dev(port)->stats.tx_errors++; 1601 port_to_dev(port)->stats.tx_fifo_errors++; 1602 dbg(DBG_ASS, "Tx underflow on card %d port %d\n", 1603 card->card_no, port->index); 1604 break; 1605 1606 case INIT_CPLT: 1607 dbg(DBG_INIT, "Card init OK intr\n"); 1608 break; 1609 1610 case INIT_FAIL: 1611 dbg(DBG_INIT, "Card init FAILED intr\n"); 1612 card->state = FST_IFAILED; 1613 break; 1614 1615 default: 1616 printk_err("intr: unknown card event %d. ignored\n", 1617 event); 1618 break; 1619 } 1620 1621 /* Bump and wrap the index */ 1622 if (++rdidx >= MAX_CIRBUFF) 1623 rdidx = 0; 1624 } 1625 FST_WRB(card, interruptEvent.rdindex, rdidx); 1626 return IRQ_HANDLED; 1627 } 1628 1629 /* Check that the shared memory configuration is one that we can handle 1630 * and that some basic parameters are correct 1631 */ 1632 static void 1633 check_started_ok(struct fst_card_info *card) 1634 { 1635 int i; 1636 1637 /* Check structure version and end marker */ 1638 if (FST_RDW(card, smcVersion) != SMC_VERSION) { 1639 printk_err("Bad shared memory version %d expected %d\n", 1640 FST_RDW(card, smcVersion), SMC_VERSION); 1641 card->state = FST_BADVERSION; 1642 return; 1643 } 1644 if (FST_RDL(card, endOfSmcSignature) != END_SIG) { 1645 printk_err("Missing shared memory signature\n"); 1646 card->state = FST_BADVERSION; 1647 return; 1648 } 1649 /* Firmware status flag, 0x00 = initialising, 0x01 = OK, 0xFF = fail */ 1650 if ((i = FST_RDB(card, taskStatus)) == 0x01) { 1651 card->state = FST_RUNNING; 1652 } else if (i == 0xFF) { 1653 printk_err("Firmware initialisation failed. Card halted\n"); 1654 card->state = FST_HALTED; 1655 return; 1656 } else if (i != 0x00) { 1657 printk_err("Unknown firmware status 0x%x\n", i); 1658 card->state = FST_HALTED; 1659 return; 1660 } 1661 1662 /* Finally check the number of ports reported by firmware against the 1663 * number we assumed at card detection. Should never happen with 1664 * existing firmware etc so we just report it for the moment. 1665 */ 1666 if (FST_RDL(card, numberOfPorts) != card->nports) { 1667 printk_warn("Port count mismatch on card %d." 1668 " Firmware thinks %d we say %d\n", card->card_no, 1669 FST_RDL(card, numberOfPorts), card->nports); 1670 } 1671 } 1672 1673 static int 1674 set_conf_from_info(struct fst_card_info *card, struct fst_port_info *port, 1675 struct fstioc_info *info) 1676 { 1677 int err; 1678 unsigned char my_framing; 1679 1680 /* Set things according to the user set valid flags 1681 * Several of the old options have been invalidated/replaced by the 1682 * generic hdlc package. 1683 */ 1684 err = 0; 1685 if (info->valid & FSTVAL_PROTO) { 1686 if (info->proto == FST_RAW) 1687 port->mode = FST_RAW; 1688 else 1689 port->mode = FST_GEN_HDLC; 1690 } 1691 1692 if (info->valid & FSTVAL_CABLE) 1693 err = -EINVAL; 1694 1695 if (info->valid & FSTVAL_SPEED) 1696 err = -EINVAL; 1697 1698 if (info->valid & FSTVAL_PHASE) 1699 FST_WRB(card, portConfig[port->index].invertClock, 1700 info->invertClock); 1701 if (info->valid & FSTVAL_MODE) 1702 FST_WRW(card, cardMode, info->cardMode); 1703 if (info->valid & FSTVAL_TE1) { 1704 FST_WRL(card, suConfig.dataRate, info->lineSpeed); 1705 FST_WRB(card, suConfig.clocking, info->clockSource); 1706 my_framing = FRAMING_E1; 1707 if (info->framing == E1) 1708 my_framing = FRAMING_E1; 1709 if (info->framing == T1) 1710 my_framing = FRAMING_T1; 1711 if (info->framing == J1) 1712 my_framing = FRAMING_J1; 1713 FST_WRB(card, suConfig.framing, my_framing); 1714 FST_WRB(card, suConfig.structure, info->structure); 1715 FST_WRB(card, suConfig.interface, info->interface); 1716 FST_WRB(card, suConfig.coding, info->coding); 1717 FST_WRB(card, suConfig.lineBuildOut, info->lineBuildOut); 1718 FST_WRB(card, suConfig.equalizer, info->equalizer); 1719 FST_WRB(card, suConfig.transparentMode, info->transparentMode); 1720 FST_WRB(card, suConfig.loopMode, info->loopMode); 1721 FST_WRB(card, suConfig.range, info->range); 1722 FST_WRB(card, suConfig.txBufferMode, info->txBufferMode); 1723 FST_WRB(card, suConfig.rxBufferMode, info->rxBufferMode); 1724 FST_WRB(card, suConfig.startingSlot, info->startingSlot); 1725 FST_WRB(card, suConfig.losThreshold, info->losThreshold); 1726 if (info->idleCode) 1727 FST_WRB(card, suConfig.enableIdleCode, 1); 1728 else 1729 FST_WRB(card, suConfig.enableIdleCode, 0); 1730 FST_WRB(card, suConfig.idleCode, info->idleCode); 1731 #if FST_DEBUG 1732 if (info->valid & FSTVAL_TE1) { 1733 printk("Setting TE1 data\n"); 1734 printk("Line Speed = %d\n", info->lineSpeed); 1735 printk("Start slot = %d\n", info->startingSlot); 1736 printk("Clock source = %d\n", info->clockSource); 1737 printk("Framing = %d\n", my_framing); 1738 printk("Structure = %d\n", info->structure); 1739 printk("interface = %d\n", info->interface); 1740 printk("Coding = %d\n", info->coding); 1741 printk("Line build out = %d\n", info->lineBuildOut); 1742 printk("Equaliser = %d\n", info->equalizer); 1743 printk("Transparent mode = %d\n", 1744 info->transparentMode); 1745 printk("Loop mode = %d\n", info->loopMode); 1746 printk("Range = %d\n", info->range); 1747 printk("Tx Buffer mode = %d\n", info->txBufferMode); 1748 printk("Rx Buffer mode = %d\n", info->rxBufferMode); 1749 printk("LOS Threshold = %d\n", info->losThreshold); 1750 printk("Idle Code = %d\n", info->idleCode); 1751 } 1752 #endif 1753 } 1754 #if FST_DEBUG 1755 if (info->valid & FSTVAL_DEBUG) { 1756 fst_debug_mask = info->debug; 1757 } 1758 #endif 1759 1760 return err; 1761 } 1762 1763 static void 1764 gather_conf_info(struct fst_card_info *card, struct fst_port_info *port, 1765 struct fstioc_info *info) 1766 { 1767 int i; 1768 1769 memset(info, 0, sizeof (struct fstioc_info)); 1770 1771 i = port->index; 1772 info->kernelVersion = LINUX_VERSION_CODE; 1773 info->nports = card->nports; 1774 info->type = card->type; 1775 info->state = card->state; 1776 info->proto = FST_GEN_HDLC; 1777 info->index = i; 1778 #if FST_DEBUG 1779 info->debug = fst_debug_mask; 1780 #endif 1781 1782 /* Only mark information as valid if card is running. 1783 * Copy the data anyway in case it is useful for diagnostics 1784 */ 1785 info->valid = ((card->state == FST_RUNNING) ? FSTVAL_ALL : FSTVAL_CARD) 1786 #if FST_DEBUG 1787 | FSTVAL_DEBUG 1788 #endif 1789 ; 1790 1791 info->lineInterface = FST_RDW(card, portConfig[i].lineInterface); 1792 info->internalClock = FST_RDB(card, portConfig[i].internalClock); 1793 info->lineSpeed = FST_RDL(card, portConfig[i].lineSpeed); 1794 info->invertClock = FST_RDB(card, portConfig[i].invertClock); 1795 info->v24IpSts = FST_RDL(card, v24IpSts[i]); 1796 info->v24OpSts = FST_RDL(card, v24OpSts[i]); 1797 info->clockStatus = FST_RDW(card, clockStatus[i]); 1798 info->cableStatus = FST_RDW(card, cableStatus); 1799 info->cardMode = FST_RDW(card, cardMode); 1800 info->smcFirmwareVersion = FST_RDL(card, smcFirmwareVersion); 1801 1802 /* 1803 * The T2U can report cable presence for both A or B 1804 * in bits 0 and 1 of cableStatus. See which port we are and 1805 * do the mapping. 1806 */ 1807 if (card->family == FST_FAMILY_TXU) { 1808 if (port->index == 0) { 1809 /* 1810 * Port A 1811 */ 1812 info->cableStatus = info->cableStatus & 1; 1813 } else { 1814 /* 1815 * Port B 1816 */ 1817 info->cableStatus = info->cableStatus >> 1; 1818 info->cableStatus = info->cableStatus & 1; 1819 } 1820 } 1821 /* 1822 * Some additional bits if we are TE1 1823 */ 1824 if (card->type == FST_TYPE_TE1) { 1825 info->lineSpeed = FST_RDL(card, suConfig.dataRate); 1826 info->clockSource = FST_RDB(card, suConfig.clocking); 1827 info->framing = FST_RDB(card, suConfig.framing); 1828 info->structure = FST_RDB(card, suConfig.structure); 1829 info->interface = FST_RDB(card, suConfig.interface); 1830 info->coding = FST_RDB(card, suConfig.coding); 1831 info->lineBuildOut = FST_RDB(card, suConfig.lineBuildOut); 1832 info->equalizer = FST_RDB(card, suConfig.equalizer); 1833 info->loopMode = FST_RDB(card, suConfig.loopMode); 1834 info->range = FST_RDB(card, suConfig.range); 1835 info->txBufferMode = FST_RDB(card, suConfig.txBufferMode); 1836 info->rxBufferMode = FST_RDB(card, suConfig.rxBufferMode); 1837 info->startingSlot = FST_RDB(card, suConfig.startingSlot); 1838 info->losThreshold = FST_RDB(card, suConfig.losThreshold); 1839 if (FST_RDB(card, suConfig.enableIdleCode)) 1840 info->idleCode = FST_RDB(card, suConfig.idleCode); 1841 else 1842 info->idleCode = 0; 1843 info->receiveBufferDelay = 1844 FST_RDL(card, suStatus.receiveBufferDelay); 1845 info->framingErrorCount = 1846 FST_RDL(card, suStatus.framingErrorCount); 1847 info->codeViolationCount = 1848 FST_RDL(card, suStatus.codeViolationCount); 1849 info->crcErrorCount = FST_RDL(card, suStatus.crcErrorCount); 1850 info->lineAttenuation = FST_RDL(card, suStatus.lineAttenuation); 1851 info->lossOfSignal = FST_RDB(card, suStatus.lossOfSignal); 1852 info->receiveRemoteAlarm = 1853 FST_RDB(card, suStatus.receiveRemoteAlarm); 1854 info->alarmIndicationSignal = 1855 FST_RDB(card, suStatus.alarmIndicationSignal); 1856 } 1857 } 1858 1859 static int 1860 fst_set_iface(struct fst_card_info *card, struct fst_port_info *port, 1861 struct ifreq *ifr) 1862 { 1863 sync_serial_settings sync; 1864 int i; 1865 1866 if (ifr->ifr_settings.size != sizeof (sync)) { 1867 return -ENOMEM; 1868 } 1869 1870 if (copy_from_user 1871 (&sync, ifr->ifr_settings.ifs_ifsu.sync, sizeof (sync))) { 1872 return -EFAULT; 1873 } 1874 1875 if (sync.loopback) 1876 return -EINVAL; 1877 1878 i = port->index; 1879 1880 switch (ifr->ifr_settings.type) { 1881 case IF_IFACE_V35: 1882 FST_WRW(card, portConfig[i].lineInterface, V35); 1883 port->hwif = V35; 1884 break; 1885 1886 case IF_IFACE_V24: 1887 FST_WRW(card, portConfig[i].lineInterface, V24); 1888 port->hwif = V24; 1889 break; 1890 1891 case IF_IFACE_X21: 1892 FST_WRW(card, portConfig[i].lineInterface, X21); 1893 port->hwif = X21; 1894 break; 1895 1896 case IF_IFACE_X21D: 1897 FST_WRW(card, portConfig[i].lineInterface, X21D); 1898 port->hwif = X21D; 1899 break; 1900 1901 case IF_IFACE_T1: 1902 FST_WRW(card, portConfig[i].lineInterface, T1); 1903 port->hwif = T1; 1904 break; 1905 1906 case IF_IFACE_E1: 1907 FST_WRW(card, portConfig[i].lineInterface, E1); 1908 port->hwif = E1; 1909 break; 1910 1911 case IF_IFACE_SYNC_SERIAL: 1912 break; 1913 1914 default: 1915 return -EINVAL; 1916 } 1917 1918 switch (sync.clock_type) { 1919 case CLOCK_EXT: 1920 FST_WRB(card, portConfig[i].internalClock, EXTCLK); 1921 break; 1922 1923 case CLOCK_INT: 1924 FST_WRB(card, portConfig[i].internalClock, INTCLK); 1925 break; 1926 1927 default: 1928 return -EINVAL; 1929 } 1930 FST_WRL(card, portConfig[i].lineSpeed, sync.clock_rate); 1931 return 0; 1932 } 1933 1934 static int 1935 fst_get_iface(struct fst_card_info *card, struct fst_port_info *port, 1936 struct ifreq *ifr) 1937 { 1938 sync_serial_settings sync; 1939 int i; 1940 1941 /* First check what line type is set, we'll default to reporting X.21 1942 * if nothing is set as IF_IFACE_SYNC_SERIAL implies it can't be 1943 * changed 1944 */ 1945 switch (port->hwif) { 1946 case E1: 1947 ifr->ifr_settings.type = IF_IFACE_E1; 1948 break; 1949 case T1: 1950 ifr->ifr_settings.type = IF_IFACE_T1; 1951 break; 1952 case V35: 1953 ifr->ifr_settings.type = IF_IFACE_V35; 1954 break; 1955 case V24: 1956 ifr->ifr_settings.type = IF_IFACE_V24; 1957 break; 1958 case X21D: 1959 ifr->ifr_settings.type = IF_IFACE_X21D; 1960 break; 1961 case X21: 1962 default: 1963 ifr->ifr_settings.type = IF_IFACE_X21; 1964 break; 1965 } 1966 if (ifr->ifr_settings.size == 0) { 1967 return 0; /* only type requested */ 1968 } 1969 if (ifr->ifr_settings.size < sizeof (sync)) { 1970 return -ENOMEM; 1971 } 1972 1973 i = port->index; 1974 sync.clock_rate = FST_RDL(card, portConfig[i].lineSpeed); 1975 /* Lucky card and linux use same encoding here */ 1976 sync.clock_type = FST_RDB(card, portConfig[i].internalClock) == 1977 INTCLK ? CLOCK_INT : CLOCK_EXT; 1978 sync.loopback = 0; 1979 1980 if (copy_to_user(ifr->ifr_settings.ifs_ifsu.sync, &sync, sizeof (sync))) { 1981 return -EFAULT; 1982 } 1983 1984 ifr->ifr_settings.size = sizeof (sync); 1985 return 0; 1986 } 1987 1988 static int 1989 fst_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 1990 { 1991 struct fst_card_info *card; 1992 struct fst_port_info *port; 1993 struct fstioc_write wrthdr; 1994 struct fstioc_info info; 1995 unsigned long flags; 1996 void *buf; 1997 1998 dbg(DBG_IOCTL, "ioctl: %x, %p\n", cmd, ifr->ifr_data); 1999 2000 port = dev_to_port(dev); 2001 card = port->card; 2002 2003 if (!capable(CAP_NET_ADMIN)) 2004 return -EPERM; 2005 2006 switch (cmd) { 2007 case FSTCPURESET: 2008 fst_cpureset(card); 2009 card->state = FST_RESET; 2010 return 0; 2011 2012 case FSTCPURELEASE: 2013 fst_cpurelease(card); 2014 card->state = FST_STARTING; 2015 return 0; 2016 2017 case FSTWRITE: /* Code write (download) */ 2018 2019 /* First copy in the header with the length and offset of data 2020 * to write 2021 */ 2022 if (ifr->ifr_data == NULL) { 2023 return -EINVAL; 2024 } 2025 if (copy_from_user(&wrthdr, ifr->ifr_data, 2026 sizeof (struct fstioc_write))) { 2027 return -EFAULT; 2028 } 2029 2030 /* Sanity check the parameters. We don't support partial writes 2031 * when going over the top 2032 */ 2033 if (wrthdr.size > FST_MEMSIZE || wrthdr.offset > FST_MEMSIZE || 2034 wrthdr.size + wrthdr.offset > FST_MEMSIZE) { 2035 return -ENXIO; 2036 } 2037 2038 /* Now copy the data to the card. */ 2039 2040 buf = kmalloc(wrthdr.size, GFP_KERNEL); 2041 if (!buf) 2042 return -ENOMEM; 2043 2044 if (copy_from_user(buf, 2045 ifr->ifr_data + sizeof (struct fstioc_write), 2046 wrthdr.size)) { 2047 kfree(buf); 2048 return -EFAULT; 2049 } 2050 2051 memcpy_toio(card->mem + wrthdr.offset, buf, wrthdr.size); 2052 kfree(buf); 2053 2054 /* Writes to the memory of a card in the reset state constitute 2055 * a download 2056 */ 2057 if (card->state == FST_RESET) { 2058 card->state = FST_DOWNLOAD; 2059 } 2060 return 0; 2061 2062 case FSTGETCONF: 2063 2064 /* If card has just been started check the shared memory config 2065 * version and marker 2066 */ 2067 if (card->state == FST_STARTING) { 2068 check_started_ok(card); 2069 2070 /* If everything checked out enable card interrupts */ 2071 if (card->state == FST_RUNNING) { 2072 spin_lock_irqsave(&card->card_lock, flags); 2073 fst_enable_intr(card); 2074 FST_WRB(card, interruptHandshake, 0xEE); 2075 spin_unlock_irqrestore(&card->card_lock, flags); 2076 } 2077 } 2078 2079 if (ifr->ifr_data == NULL) { 2080 return -EINVAL; 2081 } 2082 2083 gather_conf_info(card, port, &info); 2084 2085 if (copy_to_user(ifr->ifr_data, &info, sizeof (info))) { 2086 return -EFAULT; 2087 } 2088 return 0; 2089 2090 case FSTSETCONF: 2091 2092 /* 2093 * Most of the settings have been moved to the generic ioctls 2094 * this just covers debug and board ident now 2095 */ 2096 2097 if (card->state != FST_RUNNING) { 2098 printk_err 2099 ("Attempt to configure card %d in non-running state (%d)\n", 2100 card->card_no, card->state); 2101 return -EIO; 2102 } 2103 if (copy_from_user(&info, ifr->ifr_data, sizeof (info))) { 2104 return -EFAULT; 2105 } 2106 2107 return set_conf_from_info(card, port, &info); 2108 2109 case SIOCWANDEV: 2110 switch (ifr->ifr_settings.type) { 2111 case IF_GET_IFACE: 2112 return fst_get_iface(card, port, ifr); 2113 2114 case IF_IFACE_SYNC_SERIAL: 2115 case IF_IFACE_V35: 2116 case IF_IFACE_V24: 2117 case IF_IFACE_X21: 2118 case IF_IFACE_X21D: 2119 case IF_IFACE_T1: 2120 case IF_IFACE_E1: 2121 return fst_set_iface(card, port, ifr); 2122 2123 case IF_PROTO_RAW: 2124 port->mode = FST_RAW; 2125 return 0; 2126 2127 case IF_GET_PROTO: 2128 if (port->mode == FST_RAW) { 2129 ifr->ifr_settings.type = IF_PROTO_RAW; 2130 return 0; 2131 } 2132 return hdlc_ioctl(dev, ifr, cmd); 2133 2134 default: 2135 port->mode = FST_GEN_HDLC; 2136 dbg(DBG_IOCTL, "Passing this type to hdlc %x\n", 2137 ifr->ifr_settings.type); 2138 return hdlc_ioctl(dev, ifr, cmd); 2139 } 2140 2141 default: 2142 /* Not one of ours. Pass through to HDLC package */ 2143 return hdlc_ioctl(dev, ifr, cmd); 2144 } 2145 } 2146 2147 static void 2148 fst_openport(struct fst_port_info *port) 2149 { 2150 int signals; 2151 int txq_length; 2152 2153 /* Only init things if card is actually running. This allows open to 2154 * succeed for downloads etc. 2155 */ 2156 if (port->card->state == FST_RUNNING) { 2157 if (port->run) { 2158 dbg(DBG_OPEN, "open: found port already running\n"); 2159 2160 fst_issue_cmd(port, STOPPORT); 2161 port->run = 0; 2162 } 2163 2164 fst_rx_config(port); 2165 fst_tx_config(port); 2166 fst_op_raise(port, OPSTS_RTS | OPSTS_DTR); 2167 2168 fst_issue_cmd(port, STARTPORT); 2169 port->run = 1; 2170 2171 signals = FST_RDL(port->card, v24DebouncedSts[port->index]); 2172 if (signals & (((port->hwif == X21) || (port->hwif == X21D)) 2173 ? IPSTS_INDICATE : IPSTS_DCD)) 2174 netif_carrier_on(port_to_dev(port)); 2175 else 2176 netif_carrier_off(port_to_dev(port)); 2177 2178 txq_length = port->txqe - port->txqs; 2179 port->txqe = 0; 2180 port->txqs = 0; 2181 } 2182 2183 } 2184 2185 static void 2186 fst_closeport(struct fst_port_info *port) 2187 { 2188 if (port->card->state == FST_RUNNING) { 2189 if (port->run) { 2190 port->run = 0; 2191 fst_op_lower(port, OPSTS_RTS | OPSTS_DTR); 2192 2193 fst_issue_cmd(port, STOPPORT); 2194 } else { 2195 dbg(DBG_OPEN, "close: port not running\n"); 2196 } 2197 } 2198 } 2199 2200 static int 2201 fst_open(struct net_device *dev) 2202 { 2203 int err; 2204 struct fst_port_info *port; 2205 2206 port = dev_to_port(dev); 2207 if (!try_module_get(THIS_MODULE)) 2208 return -EBUSY; 2209 2210 if (port->mode != FST_RAW) { 2211 err = hdlc_open(dev); 2212 if (err) 2213 return err; 2214 } 2215 2216 fst_openport(port); 2217 netif_wake_queue(dev); 2218 return 0; 2219 } 2220 2221 static int 2222 fst_close(struct net_device *dev) 2223 { 2224 struct fst_port_info *port; 2225 struct fst_card_info *card; 2226 unsigned char tx_dma_done; 2227 unsigned char rx_dma_done; 2228 2229 port = dev_to_port(dev); 2230 card = port->card; 2231 2232 tx_dma_done = inb(card->pci_conf + DMACSR1); 2233 rx_dma_done = inb(card->pci_conf + DMACSR0); 2234 dbg(DBG_OPEN, 2235 "Port Close: tx_dma_in_progress = %d (%x) rx_dma_in_progress = %d (%x)\n", 2236 card->dmatx_in_progress, tx_dma_done, card->dmarx_in_progress, 2237 rx_dma_done); 2238 2239 netif_stop_queue(dev); 2240 fst_closeport(dev_to_port(dev)); 2241 if (port->mode != FST_RAW) { 2242 hdlc_close(dev); 2243 } 2244 module_put(THIS_MODULE); 2245 return 0; 2246 } 2247 2248 static int 2249 fst_attach(struct net_device *dev, unsigned short encoding, unsigned short parity) 2250 { 2251 /* 2252 * Setting currently fixed in FarSync card so we check and forget 2253 */ 2254 if (encoding != ENCODING_NRZ || parity != PARITY_CRC16_PR1_CCITT) 2255 return -EINVAL; 2256 return 0; 2257 } 2258 2259 static void 2260 fst_tx_timeout(struct net_device *dev) 2261 { 2262 struct fst_port_info *port; 2263 struct fst_card_info *card; 2264 2265 port = dev_to_port(dev); 2266 card = port->card; 2267 dev->stats.tx_errors++; 2268 dev->stats.tx_aborted_errors++; 2269 dbg(DBG_ASS, "Tx timeout card %d port %d\n", 2270 card->card_no, port->index); 2271 fst_issue_cmd(port, ABORTTX); 2272 2273 dev->trans_start = jiffies; 2274 netif_wake_queue(dev); 2275 port->start = 0; 2276 } 2277 2278 static netdev_tx_t 2279 fst_start_xmit(struct sk_buff *skb, struct net_device *dev) 2280 { 2281 struct fst_card_info *card; 2282 struct fst_port_info *port; 2283 unsigned long flags; 2284 int txq_length; 2285 2286 port = dev_to_port(dev); 2287 card = port->card; 2288 dbg(DBG_TX, "fst_start_xmit: length = %d\n", skb->len); 2289 2290 /* Drop packet with error if we don't have carrier */ 2291 if (!netif_carrier_ok(dev)) { 2292 dev_kfree_skb(skb); 2293 dev->stats.tx_errors++; 2294 dev->stats.tx_carrier_errors++; 2295 dbg(DBG_ASS, 2296 "Tried to transmit but no carrier on card %d port %d\n", 2297 card->card_no, port->index); 2298 return NETDEV_TX_OK; 2299 } 2300 2301 /* Drop it if it's too big! MTU failure ? */ 2302 if (skb->len > LEN_TX_BUFFER) { 2303 dbg(DBG_ASS, "Packet too large %d vs %d\n", skb->len, 2304 LEN_TX_BUFFER); 2305 dev_kfree_skb(skb); 2306 dev->stats.tx_errors++; 2307 return NETDEV_TX_OK; 2308 } 2309 2310 /* 2311 * We are always going to queue the packet 2312 * so that the bottom half is the only place we tx from 2313 * Check there is room in the port txq 2314 */ 2315 spin_lock_irqsave(&card->card_lock, flags); 2316 if ((txq_length = port->txqe - port->txqs) < 0) { 2317 /* 2318 * This is the case where the next free has wrapped but the 2319 * last used hasn't 2320 */ 2321 txq_length = txq_length + FST_TXQ_DEPTH; 2322 } 2323 spin_unlock_irqrestore(&card->card_lock, flags); 2324 if (txq_length > fst_txq_high) { 2325 /* 2326 * We have got enough buffers in the pipeline. Ask the network 2327 * layer to stop sending frames down 2328 */ 2329 netif_stop_queue(dev); 2330 port->start = 1; /* I'm using this to signal stop sent up */ 2331 } 2332 2333 if (txq_length == FST_TXQ_DEPTH - 1) { 2334 /* 2335 * This shouldn't have happened but such is life 2336 */ 2337 dev_kfree_skb(skb); 2338 dev->stats.tx_errors++; 2339 dbg(DBG_ASS, "Tx queue overflow card %d port %d\n", 2340 card->card_no, port->index); 2341 return NETDEV_TX_OK; 2342 } 2343 2344 /* 2345 * queue the buffer 2346 */ 2347 spin_lock_irqsave(&card->card_lock, flags); 2348 port->txq[port->txqe] = skb; 2349 port->txqe++; 2350 if (port->txqe == FST_TXQ_DEPTH) 2351 port->txqe = 0; 2352 spin_unlock_irqrestore(&card->card_lock, flags); 2353 2354 /* Scehdule the bottom half which now does transmit processing */ 2355 fst_q_work_item(&fst_work_txq, card->card_no); 2356 tasklet_schedule(&fst_tx_task); 2357 2358 return NETDEV_TX_OK; 2359 } 2360 2361 /* 2362 * Card setup having checked hardware resources. 2363 * Should be pretty bizarre if we get an error here (kernel memory 2364 * exhaustion is one possibility). If we do see a problem we report it 2365 * via a printk and leave the corresponding interface and all that follow 2366 * disabled. 2367 */ 2368 static char *type_strings[] __devinitdata = { 2369 "no hardware", /* Should never be seen */ 2370 "FarSync T2P", 2371 "FarSync T4P", 2372 "FarSync T1U", 2373 "FarSync T2U", 2374 "FarSync T4U", 2375 "FarSync TE1" 2376 }; 2377 2378 static void __devinit 2379 fst_init_card(struct fst_card_info *card) 2380 { 2381 int i; 2382 int err; 2383 2384 /* We're working on a number of ports based on the card ID. If the 2385 * firmware detects something different later (should never happen) 2386 * we'll have to revise it in some way then. 2387 */ 2388 for (i = 0; i < card->nports; i++) { 2389 err = register_hdlc_device(card->ports[i].dev); 2390 if (err < 0) { 2391 int j; 2392 printk_err ("Cannot register HDLC device for port %d" 2393 " (errno %d)\n", i, -err ); 2394 for (j = i; j < card->nports; j++) { 2395 free_netdev(card->ports[j].dev); 2396 card->ports[j].dev = NULL; 2397 } 2398 card->nports = i; 2399 break; 2400 } 2401 } 2402 2403 printk_info("%s-%s: %s IRQ%d, %d ports\n", 2404 port_to_dev(&card->ports[0])->name, 2405 port_to_dev(&card->ports[card->nports - 1])->name, 2406 type_strings[card->type], card->irq, card->nports); 2407 } 2408 2409 static const struct net_device_ops fst_ops = { 2410 .ndo_open = fst_open, 2411 .ndo_stop = fst_close, 2412 .ndo_change_mtu = hdlc_change_mtu, 2413 .ndo_start_xmit = hdlc_start_xmit, 2414 .ndo_do_ioctl = fst_ioctl, 2415 .ndo_tx_timeout = fst_tx_timeout, 2416 }; 2417 2418 /* 2419 * Initialise card when detected. 2420 * Returns 0 to indicate success, or errno otherwise. 2421 */ 2422 static int __devinit 2423 fst_add_one(struct pci_dev *pdev, const struct pci_device_id *ent) 2424 { 2425 static int firsttime_done = 0; 2426 static int no_of_cards_added = 0; 2427 struct fst_card_info *card; 2428 int err = 0; 2429 int i; 2430 2431 if (!firsttime_done) { 2432 printk_info("FarSync WAN driver " FST_USER_VERSION 2433 " (c) 2001-2004 FarSite Communications Ltd.\n"); 2434 firsttime_done = 1; 2435 dbg(DBG_ASS, "The value of debug mask is %x\n", fst_debug_mask); 2436 } 2437 2438 /* 2439 * We are going to be clever and allow certain cards not to be 2440 * configured. An exclude list can be provided in /etc/modules.conf 2441 */ 2442 if (fst_excluded_cards != 0) { 2443 /* 2444 * There are cards to exclude 2445 * 2446 */ 2447 for (i = 0; i < fst_excluded_cards; i++) { 2448 if ((pdev->devfn) >> 3 == fst_excluded_list[i]) { 2449 printk_info("FarSync PCI device %d not assigned\n", 2450 (pdev->devfn) >> 3); 2451 return -EBUSY; 2452 } 2453 } 2454 } 2455 2456 /* Allocate driver private data */ 2457 card = kzalloc(sizeof (struct fst_card_info), GFP_KERNEL); 2458 if (card == NULL) { 2459 printk_err("FarSync card found but insufficient memory for" 2460 " driver storage\n"); 2461 return -ENOMEM; 2462 } 2463 2464 /* Try to enable the device */ 2465 if ((err = pci_enable_device(pdev)) != 0) { 2466 printk_err("Failed to enable card. Err %d\n", -err); 2467 kfree(card); 2468 return err; 2469 } 2470 2471 if ((err = pci_request_regions(pdev, "FarSync")) !=0) { 2472 printk_err("Failed to allocate regions. Err %d\n", -err); 2473 pci_disable_device(pdev); 2474 kfree(card); 2475 return err; 2476 } 2477 2478 /* Get virtual addresses of memory regions */ 2479 card->pci_conf = pci_resource_start(pdev, 1); 2480 card->phys_mem = pci_resource_start(pdev, 2); 2481 card->phys_ctlmem = pci_resource_start(pdev, 3); 2482 if ((card->mem = ioremap(card->phys_mem, FST_MEMSIZE)) == NULL) { 2483 printk_err("Physical memory remap failed\n"); 2484 pci_release_regions(pdev); 2485 pci_disable_device(pdev); 2486 kfree(card); 2487 return -ENODEV; 2488 } 2489 if ((card->ctlmem = ioremap(card->phys_ctlmem, 0x10)) == NULL) { 2490 printk_err("Control memory remap failed\n"); 2491 pci_release_regions(pdev); 2492 pci_disable_device(pdev); 2493 kfree(card); 2494 return -ENODEV; 2495 } 2496 dbg(DBG_PCI, "kernel mem %p, ctlmem %p\n", card->mem, card->ctlmem); 2497 2498 /* Register the interrupt handler */ 2499 if (request_irq(pdev->irq, fst_intr, IRQF_SHARED, FST_DEV_NAME, card)) { 2500 printk_err("Unable to register interrupt %d\n", card->irq); 2501 pci_release_regions(pdev); 2502 pci_disable_device(pdev); 2503 iounmap(card->ctlmem); 2504 iounmap(card->mem); 2505 kfree(card); 2506 return -ENODEV; 2507 } 2508 2509 /* Record info we need */ 2510 card->irq = pdev->irq; 2511 card->type = ent->driver_data; 2512 card->family = ((ent->driver_data == FST_TYPE_T2P) || 2513 (ent->driver_data == FST_TYPE_T4P)) 2514 ? FST_FAMILY_TXP : FST_FAMILY_TXU; 2515 if ((ent->driver_data == FST_TYPE_T1U) || 2516 (ent->driver_data == FST_TYPE_TE1)) 2517 card->nports = 1; 2518 else 2519 card->nports = ((ent->driver_data == FST_TYPE_T2P) || 2520 (ent->driver_data == FST_TYPE_T2U)) ? 2 : 4; 2521 2522 card->state = FST_UNINIT; 2523 spin_lock_init ( &card->card_lock ); 2524 2525 for ( i = 0 ; i < card->nports ; i++ ) { 2526 struct net_device *dev = alloc_hdlcdev(&card->ports[i]); 2527 hdlc_device *hdlc; 2528 if (!dev) { 2529 while (i--) 2530 free_netdev(card->ports[i].dev); 2531 printk_err ("FarSync: out of memory\n"); 2532 free_irq(card->irq, card); 2533 pci_release_regions(pdev); 2534 pci_disable_device(pdev); 2535 iounmap(card->ctlmem); 2536 iounmap(card->mem); 2537 kfree(card); 2538 return -ENODEV; 2539 } 2540 card->ports[i].dev = dev; 2541 card->ports[i].card = card; 2542 card->ports[i].index = i; 2543 card->ports[i].run = 0; 2544 2545 hdlc = dev_to_hdlc(dev); 2546 2547 /* Fill in the net device info */ 2548 /* Since this is a PCI setup this is purely 2549 * informational. Give them the buffer addresses 2550 * and basic card I/O. 2551 */ 2552 dev->mem_start = card->phys_mem 2553 + BUF_OFFSET ( txBuffer[i][0][0]); 2554 dev->mem_end = card->phys_mem 2555 + BUF_OFFSET ( txBuffer[i][NUM_TX_BUFFER][0]); 2556 dev->base_addr = card->pci_conf; 2557 dev->irq = card->irq; 2558 2559 dev->netdev_ops = &fst_ops; 2560 dev->tx_queue_len = FST_TX_QUEUE_LEN; 2561 dev->watchdog_timeo = FST_TX_TIMEOUT; 2562 hdlc->attach = fst_attach; 2563 hdlc->xmit = fst_start_xmit; 2564 } 2565 2566 card->device = pdev; 2567 2568 dbg(DBG_PCI, "type %d nports %d irq %d\n", card->type, 2569 card->nports, card->irq); 2570 dbg(DBG_PCI, "conf %04x mem %08x ctlmem %08x\n", 2571 card->pci_conf, card->phys_mem, card->phys_ctlmem); 2572 2573 /* Reset the card's processor */ 2574 fst_cpureset(card); 2575 card->state = FST_RESET; 2576 2577 /* Initialise DMA (if required) */ 2578 fst_init_dma(card); 2579 2580 /* Record driver data for later use */ 2581 pci_set_drvdata(pdev, card); 2582 2583 /* Remainder of card setup */ 2584 fst_card_array[no_of_cards_added] = card; 2585 card->card_no = no_of_cards_added++; /* Record instance and bump it */ 2586 fst_init_card(card); 2587 if (card->family == FST_FAMILY_TXU) { 2588 /* 2589 * Allocate a dma buffer for transmit and receives 2590 */ 2591 card->rx_dma_handle_host = 2592 pci_alloc_consistent(card->device, FST_MAX_MTU, 2593 &card->rx_dma_handle_card); 2594 if (card->rx_dma_handle_host == NULL) { 2595 printk_err("Could not allocate rx dma buffer\n"); 2596 fst_disable_intr(card); 2597 pci_release_regions(pdev); 2598 pci_disable_device(pdev); 2599 iounmap(card->ctlmem); 2600 iounmap(card->mem); 2601 kfree(card); 2602 return -ENOMEM; 2603 } 2604 card->tx_dma_handle_host = 2605 pci_alloc_consistent(card->device, FST_MAX_MTU, 2606 &card->tx_dma_handle_card); 2607 if (card->tx_dma_handle_host == NULL) { 2608 printk_err("Could not allocate tx dma buffer\n"); 2609 fst_disable_intr(card); 2610 pci_release_regions(pdev); 2611 pci_disable_device(pdev); 2612 iounmap(card->ctlmem); 2613 iounmap(card->mem); 2614 kfree(card); 2615 return -ENOMEM; 2616 } 2617 } 2618 return 0; /* Success */ 2619 } 2620 2621 /* 2622 * Cleanup and close down a card 2623 */ 2624 static void __devexit 2625 fst_remove_one(struct pci_dev *pdev) 2626 { 2627 struct fst_card_info *card; 2628 int i; 2629 2630 card = pci_get_drvdata(pdev); 2631 2632 for (i = 0; i < card->nports; i++) { 2633 struct net_device *dev = port_to_dev(&card->ports[i]); 2634 unregister_hdlc_device(dev); 2635 } 2636 2637 fst_disable_intr(card); 2638 free_irq(card->irq, card); 2639 2640 iounmap(card->ctlmem); 2641 iounmap(card->mem); 2642 pci_release_regions(pdev); 2643 if (card->family == FST_FAMILY_TXU) { 2644 /* 2645 * Free dma buffers 2646 */ 2647 pci_free_consistent(card->device, FST_MAX_MTU, 2648 card->rx_dma_handle_host, 2649 card->rx_dma_handle_card); 2650 pci_free_consistent(card->device, FST_MAX_MTU, 2651 card->tx_dma_handle_host, 2652 card->tx_dma_handle_card); 2653 } 2654 fst_card_array[card->card_no] = NULL; 2655 } 2656 2657 static struct pci_driver fst_driver = { 2658 .name = FST_NAME, 2659 .id_table = fst_pci_dev_id, 2660 .probe = fst_add_one, 2661 .remove = __devexit_p(fst_remove_one), 2662 .suspend = NULL, 2663 .resume = NULL, 2664 }; 2665 2666 static int __init 2667 fst_init(void) 2668 { 2669 int i; 2670 2671 for (i = 0; i < FST_MAX_CARDS; i++) 2672 fst_card_array[i] = NULL; 2673 spin_lock_init(&fst_work_q_lock); 2674 return pci_register_driver(&fst_driver); 2675 } 2676 2677 static void __exit 2678 fst_cleanup_module(void) 2679 { 2680 printk_info("FarSync WAN driver unloading\n"); 2681 pci_unregister_driver(&fst_driver); 2682 } 2683 2684 module_init(fst_init); 2685 module_exit(fst_cleanup_module); 2686